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EQUIVARIANT EMBEDDINGS IN EUCLIDEAN SPACE

By G. D. Mostow*
(Received June 4, 1956)

Section 1. Introduction

Let G be a group of transformations on a topological space E. If p ¢ E we
denote by G, the set of transformations in G which keep p fixed. If H is a sub-
group of G, we denote by (H) the totality of subgroups of G of the form zHz ™
with z in G. We denote by L(G, E) the totality of (G,) as p varies over E. The
orbits Gp and Gq through points p and q of E are called equivalent if (G,) = (G,).
Thus G has but a finite number of inequivalent orbits in E if and only if L(G, E)
is a finite set. This is the case for example if E is a compact differentiable mani-
fold and G is a compact group of differentiable transformations (cf. Section 7).

The main results are the following.

THEOREM 6.1. Let G be a compact Lie group operating faithfully on a separable
metric finite-dimensional space E. Assume G has only a finite number of inequiva-
lent orbits in E. Then there exist a homeomorphism ¢ of E into a euclidean space E™
and an isomorphism 0 of G into the unitary group on E™ such that ¢ is equivariant
with respect to 0 i.e. o(gp) = 0(g) o(p) for all p € E, g € G. Furthermore, if G has
no fixed points on E, then 6, ¢ may be so chosen that 6(G) has no fixed points on
E™ except the origin.

TuEOREM 2.1. Let G be a compact Lie group of transformations on a completely
regular space E. Then at each point p of E there exists a pseudo-section to the orbat
through p. (See Section 3 for definitions).

TuEOREM 4.2. Let G be a compact Lie group of transformations of a separable
metric finite dimensional space E. Assume all the orbits are equivalent. Then there
exists a finite set of local cross-sections whose orbits cover E.

Theorem 2.1 on pseudo-sections is a more general version of a theorem first
proved by Montgomery and Yang for spaces satisfying suitable connectivity
conditions. The proof of Montgomery and Yang is strictly topological; in con-
trast, our proof hinges essentially on producing a suitable representation of the
transformation group.

From the point of view of transformation groups, one can obtain quite di-
rectly some information about the conjugacy of subgroups of a compact Lie
group. Thus we can obtain the result:

THEOREM 7.1. In a compact Lie group, any set of (connected) analytic sub-
groups whose normalizers are mutually non-conjugate (under an inner automorph-
ism) is finite. Any set of semi-simple analytic subgroups which are mutually non-
conjugate s finite.

* This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command under Con-
tract No. AF 18 (600)-1474.
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This result is useful in finding conditions under which L(G, E) is finite. This
question will be taken up in a future paper.

It is of interest to note that Theorem 2.1 yields as a consequence the result
of Montgomery and Zippin that nearby closed subgroups of a compact Lie
group are conjugate (see Corollary 3.2 in Section 3).

Section 2. Faithful representations of orbits

LeEmMA 2.1. Let H be a closed subgroup of the compact Lie group G. Then there
1s representation a of G by unitary transformations on the finite dimensional com-
plex euclidean space E™ and a point p ¢ E™ such that o« («(@),) = H. If H = G,
a can be so chosen that (@) keeps only the origin fixed.

Proor. If G = H, the lemma is obviously true. We assume therefore G = H.
For any compact Lie group F containing the closed subgroup H, there exists an
irreducible representation 8r whose restriction to H contains the trivial unit
representation (cf. CHEVALLEY, Theory of Lie Groups, vol. 1, Prop. 5, p. 192,
p. 211). Taking F to be a closed subgroup of G properly containing H, the
representation 8y is contained in the restriction to F of some representation of
G (loc. cit. Prop. 4, p. 191). We denote this representation of G by ar. Let
Ve, Er denote the representation spaces of 8r, ar respectively. Select any
point g other than the origin in each Vp and set Hr = ar (ar(G),). Set K =
Nr He (all F D H properly). Then K is a compact subgroup of G containing H.
If K contains H properly, then 8k is not the unit representation and thus

Bx(K)q # Bx(K).

Now Hx n K = ax'(ax(G),) n K is the totality of elements z of K with
ax(z)qg = ¢ and, since ¢ € Vg, coincides with x'(8x(K),). Thus K = H implies
Hxn K # B85 (Bx(K)) = K; that is, K is not contained in Hx—a contradiction.
Thus H = K =Ny Hr (all F D H).

It is next to be observed that any (well-ordered) descending chain of compact
subgroups of a compact Lie group is finite; for in a descending chain, only a
finite number of subgroups of the same dimension can occur, and only a finite
number of dimensions can occur. On the other hand, we can clearly well order a
subset of the subgroups F containing H—say F;, F2, -+, Fo - -+ (o an ordinal
less than v) so as to obtain a strictly descending chain Hy,Hy, - -+ Ha, -+~
(all @ < ) with the property H = N, H, (all @« < v). Hence v is a finite ordinal
n+ land H= Hen---nHp.Seta = ar, + -+ ar,, E" = Ep, +
--- 4+ Ep, (direct sum), and p = (¢1, -+, ¢.) € E" where ¢; is a non zero
element of Ve, (i = 1, ---, n). Then o ((G),) = N; a7 (ar(@),) = He, n

- n Hp, = H, as asserted in the lemma.

If H # @, we could have selected the ar in the construction above so as to
not contain the trivial unit representation of G. For G being compact, ar is a
direct sum of irreducible representations; upon omitting from the sum the
trivial representations, we obtain a representation whose restriction to F con-
tains Br but which does not contain the trivial representation. Selecting for
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each F such an ap, we obtain an « which does not contain the trivial repre-
sentation of G. Hence the only fixed point of a(@) in E" is the origin.

DerinNiTION. Let G be a compact group operating on a topological space E.
A (@-equivariant map of @ into a finite dimensional complex or real euclidean
space E" is a continuous map ¢ of E into E" together with a continuous homo-
morphism 6 into the unitary group on E" such that 6(g)e(p) = ¢(gp) for all
p e E, g ¢ G. A G-equivariant map is called a G-equivariant homeomorphism if
the associated ¢ is a homeomorphism.

The associated 6 of a G-equivariant homeomorphism is an isomorphism if
the group G operates faithfully on E.

We remark that a complex euclidean space E" can be identified in a natural
way with a real euclidean E*, and that real euclidean EY can be extended
naturally to a complex euclidean EY. These natural isomorphisms convert
(G-equivariant maps into complex euclidean space to G-equivariant maps into
real euclidean space and vice-versa.

The following is a fundamental result about extensions of G-equivariant maps
due to A. GLEAasoN (Proc. Amer. Math. Soc., v. 1 (1950), pp. 35-43).

GLEASON’S LEMMA. Let G be a compact group operating on a completely regular
(resp. normal) space E and let F be a compact (resp. closed) subset invariant under
G. Then any G-equivariant map of F into EV can be extended to a G-equivariant
map of E into E~.

For the sake of completeness, we repeat the proof of this lemma. Let ¢ be a
continuous map of F into EV, and let § be a homomorphism of G into the
unitary group of EY with ¢(gp) = 6(g) ¢(p) for all p ¢ F and g ¢ G. Extend ¢
to a continuous map ¢ of E into EY (Tietze Extension Lemma). Set

3(p) = f 6() "W (gp) dg,

for all p € E. Then ® gives the desired extension, since

fa 0(9) "¥(gp) " dg = fa o(p) dg = ¢(p) for peF

and

®(g1p) = fa 8(9) W(gg1p) dg = f 8(gg1") W (gg1 g1 p) dg

= [ otaot@wiep) dg = o0 23)

for all p ¢ E.

TueorREM 2.1. Let G be a compact Lie group of transformations on a completely
reqular space E. Let p1, - - -, p. be any finite set of points of E. Then there is a
G-equivariant map (e, 0) of E with ¢ a homeomorphism on the orbits through p; , - - -
p. and 0(Q) keeping only the origin fixed if G has no fixed point on E.
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Proor. Set H; = G,;. By Lemma 2.1, there is a representation a; of G by
unitary transformations on euclidean space E"i and a point ¢; ¢ BV such that
2 (ai(@),;) = H;and (@) keeps only the origin fixed if H; = G,¢ = 1, --- , n.
Let ¢i(gp): = ai(g)p:, 7 = 1, -+, n. Then ¢; is a homeomorphism of the orbit
through p; . Set EY = E™ + ... 4+ E" (direct), and identify E* with a sub-
space of EV in the natural way. Let o(p) = #i(p) for p in the orbit Gp; through
pi(@=1,---,n),set 0 = o1+ --- + a,andset F = Gp, U - - - u Gp, . Then
(¢, 0) is clearly a G-equivariant homeomorphism of F into EV. By Gleason’s
lemma, (¢, 6) can be extended to a G-equivariant map of E into E”, which we
denote by (¢, 6) also. If G has no fixed points on E, then H; % G for all ¢ and
hence 8(@) keeps only the origin of E" fixed.

Section 3. Existence of pseudo-sections

DerFintTION. Let G be a compact Lie group of transformations on a topological
space E, and let p ¢ . A pseudo-section to the orbit Gp at p is a closed subset
K containing p satisfying: (1) K is invariant under the isotropy group G, ;
(2) there exists a continuous cross-section map f into G of a neighborhood U of
the coset G, in G/G; such that the mapping (u, ¢) — f(w)q is a homeomorphism
of the product space U X K onto a neighborhood of p; (3) gK n K is empty if
geG@ — G,.

A pseudo-section is closely related to a notion employed by Koszul (Col-
loques Intern. de CNRS, Strassbourg, 1953 pp. 137-41) and its existence has
been proved by him in the case of compact groups of differentiable transforma-
tions on a differentiable manifold.

In case all the orbits in E are equivalent, we call a pseudo-section at p a
“local cross-section at p”’.

If K is a local cross-section at p to the orbit through p, then gK is disjoint
from K for any element g of G which is not in the isotropy subgroup @, . Thus
G, C G, for all ¢ in K. Since no compact Lie group is conjugate to a proper
subgroup of itself, G, = G, for all ¢ in K. As a result distinct points of K belong
to distinct orbits. A local cross-section at p can be characterized as a closed
subset K such that (1) distinct points of K lie in distinct orbits (2) G, = G,
for each ¢ in K (3) GK is a neighborhood of p. Thus a local cross-section K at
p is a local cross-section at all of its points which are interior to the set GK.
We define a “local cross-section” to be a local cross-section at some point.

If K is a pseudo-section at p and g € G, then gK is a pseudo-section at gp.

Lemma 3.1. Let G, G’ be compact Lie groups of transformations on the space
E, E’ respectively. Let ¢ be a continuous map of E into E', let  be a homomorphism
of G into G', and assume o(gq) = 0(g)e(q) for all g € G, q € E. Let p ¢ E, let K’
be a pseudo-section to the orbit G'¢(p) at ¢(p) and assume ¢ is 1-1 on the orbit Gp.
Then K = ¢ '(K') is a pseudo-section to the orbit Gp at p.

Proor. By hypothesis, G, K = K and there exists a continuous cross-section
map f of an open neighborhood U of G, in @' /G, such that F': (u, ) — f(u)gq
is a homeomorphism of U X K’ onto a neighborhood N’ of ¢(p). Inasmuch as
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¢ is one-to-one on the orbit G, , 67 (G, 4)) = G, and 6 induces a homeomorphism
of G/G, onto G'/G,; we identify G/G, with G'/Gp . To verify that K is a
pseudo-section, we observe first that G,K = 6 (G )¢ "(K') = o (GomK') =
¢ (K" = K'. Next, F:(u, q) — f(u)q is clearly a continuous map of U X K
into E and it is one-to-one also; for if u; , us and ¢, , ¢, are distinct elements in
U and K respectively, then o(f(u:)g:) = 6(f(u:))e(q:) are distinct elements of N
since 0(f(u;)) and ¢(g;) (¢ = 1,2) are distinct elements of G’ and K’ respectively.
Finally, F is an open mapping of U X K onto the neighborhood ¢ *(N’) of p
since F = ¢ 'F’, and gK n K isempty if g ¢ @ — G, . Thus K is a pseudo-section.

Lemma 3.2. Let G be a compact group of linear transformations of the real or
complex finite dimensional linear space V. For any v € V, there exists a pseudo-
section at v to the orbit through v.

Proor. By the well-known unitary trick, an inner product may be introduced
on V which is preserved by the elements of G. For any v ¢ V, the orbit Gv is a
submanifold of V. Let L denote the affine subspace perpendicular to the tangent
plane to Gv at v. Clearly L is invariant under G, . Let & and ®, denote the Lie

algebra of G' and the Lie subalgebra of G, respectively. Let X, , ---, X, be a
base for the Lie algebra & with X,,1, ---, X, a base for @, . Let € denote the
linear subspace spanned by X, ---, X,, let ¥ denote the map t:;,X; + --- +

tXn — exp X exp t:X, - - - exp t,X, of ® into @, and let T be a neighborhood
of zero in & on which the map v is one-to-one and regular. Since G, is a closed
subgroup of G, v(W) n G, = v(W n ©,) for W suitably small. Selecting such a
small 8, we deduce that the projection = of G onto G/G, maps v(TW n €) homeo-
morphically and bi-differentiably onto a neighborhood U of the coset G, in
G/G, . Set f(r(g)) = g for g = v(W n €) and set F(u, q) = f(u)q foru e U,
q € L. The map F is differentiable and regular at the point (G, , v) of (G/G,) X
L and hence by the implicit function theorem F is a homeomorphism of a neigh-
borhood U X K; of (G,, v) onto a neighborhood of » in V. Since G,v = v and
@, preserves distance, there is a neighborhood K, of v in K, which is invariant
under G, . Since F is a homeomorphism, gK, n K, is empty for g ¢ = *(U) —
@G, . Let e denote the minimum distance between v and g v for g ¢« @ — = " (U),
and let K be closed ball in K, with center » and radius e/4. Then gK n K is
empty for all g e @ — G, . Hence K is a pseudo-section at v.

THEOREM 3.1. Let G be a compact Lie group of transformations on a completely
reqular space E. Then at each point p of E, there exists a pseudo-section to the
orbit through p.

Proor. Let p ¢ E. By Theorem 2.1, there is a G-equivariant map (¢, 6) of E
into some EV with ¢ one-to-one on the orbit through p. By Lemma 3.2, there
exists a pseudo-section K’ at ¢(p) to the orbit through ¢(p). Set K = ¢ '(K’).
By Lemma 3.1, K is a pseudo-section at p to the orbit through p.

NotEe. The hypothesis that G be compact is not superfluous. It is easy to find
examples of groups of linear transformations which do not admit pseudo-sec-
tions.

CoroLLARY 3.1. Let G be a compact Lie group of transformations on a com-
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pletely regular space E, let U be a neighborhood of the identity in G, and let p ¢ E.
Then there is a neighborhood N of p such that for each ¢ ¢ N, G, C gG,g " with
geU.

Proor. Let K be a pseudo-section to the orbit Gp at p. Then ¢gK is disjoint
from K for g not in G, . Hence G, C G, for q ¢ K. Since G,, = gG.g", the neigh-
borhood UK has the desired property.

Nore. We could have taken for N the neighborhood UL where L is the set
ofallg e E with G, C G, .

From the foregoing we deduce the following result of MoNTGOMERY and ZIPPIN,
A Theorem on Lie Groups, Bull. Amer. Math. Soc., v. 48 (1942), pp. 448-452.

CoroLLARY 3.2. Let G be a compact Lie group, let U be a neighborhood of the
identity in G, and let H be a closed subgroup of G. There exists a neighborhood V
of the identity such that any subgroup in the subset VH is conjugate to a subgroup
of H by an element in U.

Proor. Let E be the set of all closed subsets of G topologized by the metric
d(A, B) = sup c¢(p, B) + sup ¢(4, q), where A ¢ E, B ¢ E, and c(p, q) is a right
invariant metric on the compact group G. The group G operates on E by left
translation and the map (g, 4) — g4 of G X E into E is continuous. Clearly
the isotropy subgroup of the point H ¢ E is the subgroup H, i.e. Gz = H. Let
L be the set of all points A in E with G, C Gg and set N = UL. Then as re-
marked above, N is a neighborhood of H in E and therefore contains a ball
with center H and radius d, .

Let V be a closed ball with center at the identity of G and radius do. If F
is a closed subset of VH which meets H, then

d(FH,H) = supiegc(fh, H) + supnen ¢(FH, h) = supy.rc(f, H)

< supgevmc(g, H) < supger c(g, H) =< do

and consequently FH ¢ N.

Suppose now that F is a subgroup in VH. Since F is a closed subgroup in
VH, no generality is lost when we assume that F is closed. Then FH ¢ UL.
Obviously F C Gy . It follows immediately that gFg™ < Gy < H with g € U.
Proof of the Corollary is now complete.

Note. In their result, Montgomery and Zippin do not impose the hypothesis
that G is compact, i.e. they assume that G is a Lie group and H a compact
subgroup.

It can be proved that Corollary 3.2 implies Corollary 3.1 and hence the two
are equivalent.

Section 4. Finite spanning set of cross-sections

A covering of a topological space is called star-finite if each set of the covering
meets at most a finite number of others; the covering is called star-bounded if
there is a finite number b such that each set of the covering meets at most b
others. Such a number b is called a bound of the covering.
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We require the following fact:

TaEOREM 4.1. Any open covering of a finite dimensional separable regular
space admits a star-bounded open refinement.

Inasmuch as an n-dimensional separable regular (and hence metric) space
can be embedded in a bounded portion of euclidean 2n + 1 space, Theorem
4.1 will follow immediately from

TueoREM 4.1’. Let O be a bounded open set in euclidean r-space E'. Let S be
an open covering of O. Then there exists a star-bounded open refinement of O.

Proor. Inasmuch as any open set in £ is a union of disjoint connected open
sets, there is no generality lost if we add the hypothesis that O is connected.
Assume therefore that O is connected as well as bounded and open.

Let B = 0 — 0, and let ¢(p) = id(p, B) where d(p, q) is the euclidean metric
in E". The function ¢(p) is continuous on the compact set O and therefore attains
its maximum at a point po € 0. Set a = c(po), and we denote the set consisting
of po by Hy . Inductively, we define H,1 = 2, S(p, ¢(p)) (p e H,) where S(p, c)
is the closed ball with center p and radius ¢. We next define the family of sets
H({),0 <t < o as follows: H(t + na) = D_, S(p, tc(p)/a) (p e H,) for 0 <
t < a. Clearly H(na) = H, (n = 0, 1, - - - ). The proof of Theorem 4.1’ is ar-
ranged in a series of remarks.

1. H(t) is compact. We prove this for ¢ between na and (n + 1)a by induction
on n. The assertion is true for n = 0. Assuming by induction that H, = H(na)
is compact, let ¢ ¢ H(t), na < t < (n + 1)a. Then ¢ = lim g; with

qx € S(px, (t — na)c(pr)/a)

where each p; is in H,. H, being compact, we can assume without loss
of generality that lim p, = p where p ¢ H,. Hence ¢(p) = lim ¢(px) and
therefore d(q, p) = lim d(gx, pr) = (t — na) c¢(p)/a. Consequently ¢ ¢ H(t),
H(t) is closed and therefore cempact for na = ¢t = (n + 1)a. Hence H(?) is
compact for all ¢.

2. If t < ¢/, then H(t) C int H(t'). This follows at once from the observation
that if ¢ < ¢’ then S(p, ¢) is in the interior of S(p, ¢’).

3.2 H(t) = 0(0 £t < »). By the preceding remark, Y, H(t) is open. We
now prove that it is closed in O. Clearly it equals Y e H,. Suppose therefore
that ¢ is in the closure of D, H,. Then there is a point p e Y, H, with
d(q, p) < c(g). Say for definiteness p ¢ H, . Then ¢ ¢ S(p, ¢(p)) € Hny1, and
therefore Y, H(t) is closed in 0. But O being connected, we infer Y, H(t) = O

4. If s < tandq e H(t), thend(q, H®) =< t — s. Supposefirstthatna = s < t =
(n 4+ 1)a for some n. Then there is a point p € H, with d(p, ¢) = (t — na)c(p)/a.
Let ¢: be the point on the line segment pq at the distance (s — na)c(p)/a from p.
Then ¢, e H(s) and d(¢q1, ¢) = (t — s)c(p)/a =t — s. Now let s and ¢ be arbitrary
with 0 < s < t. Then there are integers k and A such that ka = s = (k + 1)a =

- < ha £t = (h+ 1)a. By the foregoing result, there is a point ¢; in H(ha)
with d(q, ¢1) S t — ha. Inductively we get a point ¢, in H(na) such that
d(gn, gna) S a(n=1,---h — k). We then have d(q, H,) = d(qg, ) + --- +
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dgr, H) = (t —ha) + (ha— (h— Da+ -+ (k+ Da —s) =t — s.
Proof is now complete.

Let & be an open covering of O. Tor each integer n, we select a finite covering
R, of the compact set H, — int H,_; by open sets in O each of which lies in
some set of S and in the open set int H,;; — H,_,. Let ) denote the union of
R, for all n. Any set of R, meets at most the sets of Royi, bk = —2, —1,0, 1, 2.
Hence 9t is a star-finite open refinement of &.

5. Given a positive number ¢, there exists a positive number L satisfying the
condition: if 4 is a set in O of diameter less than L and A meets H(t), then A
lies in a set of R. For let L; be the Lebesgue number of the finite open covering
of H(t + 2a) by R. Let L, = d(H(t), O — H(t + 2a)) andset L = min (L, , L,).
Clearly L satisfies the required condition. We define the number L(t) to be the
maximum of the numbers satisfying the condition. Clearly L(f) decreases to
zero as t increases to infinity.

6. L(t 4+ s) = L(t) — s. For let A be a set in O of diameter less than
L(t) — s and meeting H(¢ + s). Then there is a point q in A with d(q, H(t)) <
s by Remark 4 above. Let 4, be a ball of diameter s meeting both H(¢) and 4,
and set 4, = A + A;. A; has a diameter less than L(t) and meets H(t); there-
fore it lies in some set of R. Hence A lies in a set of RN, and thus L(t + s) =
L(t) — s.

It follows directly from Remark 6 that | L(¢ + s) — L(t) | < | s | and hence
L(t) is a continuous positive function of ¢, 0 < ¢t < . Moreover L(t + s)/
L) =z 3if s = L(t)/2.

7. We denote by D, , u > 0, the decomposition of E" formed by planes z; =
nu/(r)* (n = 0, +1, --- ), where z;, - - - z, form an orthonormal base of linear
functions on E". Each cube of the decomposition has diameter u. We define the
sequences of numbers ¢, and u, as follows: to = 0, t,yn = t, + LL(t); u. =
L(t,) /2" ** where [t,] is the lar ~st integer less than or equal to t,. In proving
Theorem 4.1’ no generality is _ . in assuming a = 1 and we henceforth assume
a =1 Then L(t) < 1and § < Upp1/u, < 1.

8. d(Hu41, B) = 3d(H., B). For given q ¢ H,,1, there is a point p(q) in H,
with d(p(q), ¢) = 3d(p(q), B). Therefore d(¢, B) = 3d(p(q), B) = 3d(H., B),
so that d(H,41, B) = 3d(H., B). Since d(H,, B) = 1, we conclude d(H, , B) =
in

9. d(H(t),0 — H(s)) = (s — t)/2"if n < t < s < n + 2. For any ¢, H(t)
contains all points within the distance (¢t — [t]) d(H{y, B) of Hy, . If [s] =
[t] then H(s) contains all points within 2(s — ¢) d(Hy, B) of H(t). If [s] =
[t] + 1, then H{, contains all points within 3([s] — ¢) d(Hy, B) of H(t) and
H(s) contains all points within (s — [s]) d(H,, B) of Hy, . Since>_, S(q, a)
(all ¢ € S(p, b)) = S(p, a + b) for balls in E, we infer that H(s) contains all
points within 3(s — [s]) d(Hy, B) + 3([s] — ?) (d(H[,] , B) of H(t). Hence
d(H(t), 0 — H(s)) = 3(s — ) d(Hy, B) 2 (s — 1)/2""

10. Let &, denote the collection of closed cubes from the decomposition D,
which meet H(¢,) — H(taw). ®, is a finite collection and the set G, = Y. Q
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(all @ ¢ ®,) is compact. G, C H(t, + iL(t,)) by Remark 9, and hence G, C
H(tus1). On the other hand, d(H(ta2), O — H(tu1)) = (taey — tag)/2""-27* =
L(t,)/2"1** and therefore G, does not meet H (tn_2), that is G, € O — H(t. ).
As aresult G» n Gnyr is empty if | k| = 3.

11. Let §. be the collection of open cubes obtained by enlarging each cube of
®, to an open cube with same center and side (1 + e,)u, where e, is positive
and satisfies

en < min (1) €n-1, %d(Gn—3 ’ Gn)’ %d(Gn ) Gn+3))'

Then (1 + en)un/(1 + €nsr) Ungx < 1if bk =0, —1, =2 and < 8,if k = 1, 2
respectively. Hence each set of §. meets sets from only §.x (k = —2, —1, 0,
1, 2). If Q € ., then @ meets no more than 3" sets from each of Fn, Fr-1, Frs
and no more than 10" sets from §,.1 and 34" sets from Fny42. Set b = 3.3" +
10" + 34", and set § = 2. §. (alln = 0, 1, --- ). Then § is a star bounded
open refinement of & with bound b. Proof of Theorem 4.1’ is now complete.

TueorEM 4.2. Let G be a compact Lie group of transformations on a separable
metric finite-dimensional space E. Assume all the orbits are equivalent. Then
there exists a finite set of local cross-sections whose orbits cover E.

Proor. Let X denote the space of orbits of G in E, and let = denote the
continuous map of E onto X which sends each point of E into its orbit under G.
Clearly = is a homeomorphism on local cross-sections and therefore X is a finite
dimensional separable regular space. A subset of X is called “liftable” if it is
the image under # of a subset of a local cross-section in E. Let © denote the
collection of open liftable subsets of X. Clearly & is an open covering of X.
Let §:1 be a star-bounded open refinement of & with bound b. The space X is
normal and therefore the covering §; is shrinkable to a covering § by closed
sets whose interiors cover X; § is a fortiori star-bounded with bound b.

Now select from § a maximal subcollection I?; of disjoint sets. Inductively,

select in § — (Pu + - - + IM.) a maximal subcollection of disjoint closed sets
and denote it by Mn41 . Then § = Py + - -+ + P with & < b + 1. For other-
wise, there is a set V ¢ P42 which meets some set of M; (7 = 1, ---, b + 1).

Since no set of M; is in M, for 7 = j, V meets more than b sets—a contradiction.

Nowset L; =2  V (@l V eM): =1, ---, k. Each point in L, has a neigh-
borhood meeting only a finite number of sets of IM; and thus L; is closed, i =
1, -, k.

We assert that each L; is liftable 7 = 1, --- , k. In proving this, assume for
definiteness that ¢ = 1. For each V ¢ ¢, there corresponds a homeomorphism
ov of V into E such that r-¢y = identity and ¢4(V) is a local cross-section in
E. Let H denote the isotropy subgroup G, for some definite point p in E. For each
V € M select an element py in ¢y(V) and an element gy in G such that Gy,
gvGpygv' = H. Then set Ky = Y v gvoyu(V) (all V e My). It is easily verified that
K, is closed, that G, = H for all ¢ ¢ K;, and that distinct points of K; lie on
distinct orbits. It follows at once that K, is a local cross-section, and hence L; is
liftable, 7 = 1, --- , k. Let K; , - - - , K denote local cross-sections mapping onto
Ly, ---,Lybyx. ThenGK, --- + GK; = E.
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Section 6. Union of homeomorphisms

Let G be a compact Lie group of transformations of a space E having no
fixed points, and let ¢ be a G-equivariant map of E into euclidean space with
associated homomorphism 6. The map ¢ is called an n.t. map if the representa-
tion 6 does not contain the trivial representation, i.e. if the origin is the only
point fixed under 6(G).

LemMmA 5.1. Let G be a compact Lie group of transformations of a space E, and
let ¢ be a G-equivariant homeomorphism of E into E~. Then there is a G-equi-
variant homeomorphism ¢, of E into E™ with |e1(p) | = 1 for all p € E. If ¢ is
an n.t. map, then ¢, can be chosen so as to be an n.t. map.

Proor. We introduce the functions

a(r) = (L + /@ + *)and 8(r) = (1 — (1))’ on0 £ r < =;

we define maps A and B of euclidean space minus the origin into the ball of
radius1 as follows: A(v) = a(|v|)|v| v and B@v) = 8(|v|)|v | for v ¢ E".

We form EV X E', and set¥(p) = (¢(p), w) where w is a fixed non-zero vector
in E'. Set ¢1(p) = ¥(»)/ | ¥(p) | and set 6 = 6 + 8 (direct) where 8,(G) con-
sists only of the identity transformation of E'. Then ¢; is G-equivariant.

If G has no fixed points on E, then ¢(E) does not contain the origin of E".
The map ¢1(v) = (A(v), B(v)) of E into the unit sphere of E' X E" is equi-
variant with respect to 8 + 8 (direct) and is a homeomorphism. Clearly it is
an n.t. map if ¢ is.

LeMMA 5.2. Let G be a compact Lie group of transformations on a metric space
E, and let Ty, T, be invariant subsets with E = Ty + T, and T, closed. Assume
there exists a G-equivariant homeomorphism ¢; of T; into E™ (i = 1, 2). Then
there exists a G-equivariant homeomorphism ¢ of E into euclidean space E~, which
s an n.t. map if each ¢; is an n.t. map.

ProoF. By Lemma 5.1 we may assume that | ¢ (p) | = 1 for all p ¢ Ty . By
Gleason’s lemma, ¢, can be extended to a G-equivariant map of E into E™,
which we denote by ¢, also. Let di(z, y) denote the metric on E. Then di(gz, gy)
regarded as a function on G X E X E is continuous. Consequently d(z, y) =
sup, di(gz, gy) (all g € G) is continuous on E X E. Moreover d(z, y) is a metric
on E; it is equivalent to di(z, y) since every d; ball contains a concentric d ball
by definition of d, and every d ball contains a concentric d; ball by the con-
tinuity of the function d. It is clear too that d(gz, gy) = d(z, y).

Set d(z) = inf, (d(x, t) + | e2(x) — @2(t) | ) (all ¢ € T:). The function d(z) is
continuous on E, zero on T:, and non-zero on Ty — T,. In addition d(gz) =
d(z) for all g € G. Define ¢ as the map of E into E™ X E™ = E™*" given by:

e(x) = (d(x)es(z), 1 + d(x))ea(x)) forz e T,
= (0, ¢2(x)) forz eT,.

The map ¢ is clearly continuous, G-equivariant, and is n.t. if ¢; and ¢, are n.t.
It is clear too that ¢ is one-to-one, that it is a homeomorphism on 7', and on T}
also. To complete the proof that ¢ is a homeomorphism, it suffices to demon-
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strate that if z, € Ty — T2, % € T2, and ¢(x,) — ¢(Z), then z, — Z. To this
end, we observe that d(x,) — d(£) and g.(x.) — ¢2(Z). By definition of the func-
tion d(z), there exists a point ¢, of T, with d(x,, t,) < 2d(z.) and | gx(x,) —
ea(tn) | < 2d(z,). Since d(£) = 0, lim ¢s(t.) = lim @a(zs) = @2(%). Since @2 is a
homeomorphism on T, lim {, = & and hence lim z, = Z. Proof of the Lemma is
now complete.

Section 6. The embedding theorem

Throughout this section E denotes a finite dimensional separable metric
space and G a compact Lie group of transformations on E with L(G, E) finite,
i.e. with at most a finite number of inequivalent orbits. By ‘“‘euclidean space” we
understand finite dimensional real or complex euclidean space with a distinguished
origin. If H, and H, are closed subgroups of G, we mean by H:(=<)H, that H,
is conjugate in G to a subgroup of H,, and by H:(<)H, that H; is conjugate to
a proper subgroup of H,. If H,(<)H, then Hj(<)H; for any Hi in (H;) and
H; in (H,). The relation (<) is clearly transitive. Furthermore if Hy(=<)H,
and Ho(=<)H, then H, is conjugate to H, ; for H, and H; must have the same
dimension and the same number of connected components. Upon carrying H,
into a subgroup H; of H, by an inner automorphism, we find that H; and H,
have the same Lie algebra, and therefore the same connected component of the
identity. Since they have the same number of connected components, H; =
H, and therefore H; and H, are conjugate.

In the set L(G, E) we define (H;) < (H,) if Hi(<)H, . This relation is well
defined and is a partial ordering. We set E, = the set of all ¢ ¢ E with (G,) =
(G,), T, = the set of all ¢ ¢ E with (G,) = (G,) and S, = the set of all ¢ with
(Gp) < (G); that is T, = E, + S,. According to a theorem of MONTGOMERY
and ZippPiN (Bull. Amer. Math. Soc., v. 48 (1942), pp. 448-452) (cf. also Corollary
3.1 above), G,,(Z)G, for all points ¢; is some neighborhood of ¢. It follows im-
mediately that S, and T, are closed sets of E. It is to be noticed that E,, S, ,
and T, are invariant under @ for any p ¢ E. Also, all orbits in £, are equivalent.

Lemwma 6.1. Let p € E. Then there is a G-equivariant homeomorphism of E, into
euclidean space, which is n.t. of G, = G.

Proor. By Theorem 4.2 there exists in E, a finite set of local cross-sections
to the orbits K; , - -- , K such that E, = GK; + --- 4+ GK . By Lemma 2.1,
there exists a representation a of @ into the unitary group on the euclidean
space E" and a point v other than the origin of E™ such that (1) o *(a(G),) =
G, and (2) « does not contain the trivial representation of G if G, = G Let V
denote the one-dimensional subspace spanned by v and the origin. Let r; be an
integer such that K; can be embedded homeomorphically in E™ (z = 1, - - - | k).
We identify E™* with the subspace V. + -+ + Vof E" + --- + E" = E",
and obtain thereby a homeomorphismy; of K; into E™" with the property that
B:(G)ei(g) = oi(q) for all ¢ e K; where 8; = a« + -+ 4+ a (r; times) (7 = 1,
-+, k). As a result the map @,:(9G,, ¢) — (Bi(gWi(q), a(g)v), where ¢ € G,
q € K, is a well-defined continuous one-to-one map of (G/G,) X K, into E""*"
(=1, ---,k). It is clear too that the inverse mapping is continuous.
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Let x; denote the map (¢G,, q¢) — gq of (G/G,) X K; onto GK;. Each ;
is well-defined since G, = G, for all ¢ ¢ K;. m; is a homeomorphism in a set
U X K; where U is a neighborhood in G/G, by definition of a pseudo-section
and hence m; is a homeomorphism throughout (G/G,) X K; (i = 1, ---, k).
Set ¢; = @;-x . Then ¢, is a G-equivariant homeomorphism of GK; which is
n.t. if G, # G. Since each GK; is closed in E, we can construct a G-equivariant
homeomorphism ¢ of E, in euclidean space by repeated applications of Lemma
5.2. The map ¢ is n.t. if G, #= G.

TuEOREM 6.1'. Let G be a compact Lie group operating on a separable metric
finite dimensional space E. Assume L(G, E) is finite. Then there exists a G-equi-
variant homeomorphism of E into eulidean space E, which is n.t. if G has no
fized points in E.

Proor. The set of conjugacy classes L(G, E) is partially ordered by the rela-
tion = introduced above. We define the length of L(G, E) as the maximum
number of elements appearing in a linearly ordered subset. The theorem is
proved by induction on the length of L(G, E).

If the length of L(G, E) is 1, then E, = T, for any p ¢ E, and therefore E,

is closed in E. Now there exists a finite set of points p; , - - - , p, in E such that
E=E,+ - ---+ E,, . By Lemma 6.1 there is a G-equivariant homeomorphism
of E,; into euclidean space which is n.t. if G,; = G,7 = 1, --- | r. By repeated

applications of Lemma 5.2, there exists a G-equivariant homeomorphism of E
into euclidean space which is n.t. if G, = G for all p ¢ G, that is, if G has no
fixed points in E.

Assume inductively that the theorem is true whenever the length is less than
L(G, E). There obviously exists in E a finite set of points p; , - - - , p, such that
E=T,+ -+ T, .Each T, = E, + S, and hence length L(G, S,,) =
length L(G, E) — 1,7 =1, - - - , r. By the induction hypothesis there is a G-equi-
variant homeomorphism of S,, which is n.t. if G has no fixed point on S, and
a similar assertion holds for E,, ,7 = 1, --- , r. By Lemma 5.2, a similar asser-
tion holds for each T, and also for T, 4+ -+ 4+ T,, = E. Proof of the theorem
is now complete.

Theorem 6.1 mentioned in the introduction is simply a restatement of Theorem
6.1’ coupled with the observation that the unitary representation which is
associated with a G-equivariant map is faithful if G operates faithfully on E.

If G is a compact group operating faithfully on a space E and there is a G-equi-
variant homeomorphism of £ into euclidean space, then E is separable, metric,
and finite dimensional; also G is a Lie group. We show in Section 7 that L(G, E)
is finite. Thus the hypotheses on E of Theorem 6.1 are necessary and sufficient
for the existence of a G-equivariant homeomorphism into euclidean space.

Section 7. Groups acting differentiably. Applications

We collect first several remarks about compact Lie groups of differentiable
transformations. Numbers 1, 2, and 3 below were noted independently by
Montgomery and Yang. We include them here for the sake of completeness.

Throughout this section G denotes a compact Lie group of differentiable
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transformations, M denotes a differentiable manifold, and E, denotes a real
euclidean n-space with distinguished origin and = finite.

1. Let G operate on M, and let p ¢ M. There is a pseudo-section to the orbit
through p which is a closed ball submanifold (of lower dimension in general).

Proor. The isotropy subgroup G, is a compact group of differentiable trans-
formations keeping the point p fixed. Hence by a result of Bochner admissible
coordinates may be introduced in a neighborhood of p with respect to which G,
is a group of orthogonal transformations. Since G, keeps invariant the tangent
space at p to the orbit Gp, it keeps invariant a complementary subspace K in
the new coordinates. With the help of the implicit function theorem one can see
that the mapping (g, ¢) — ¢q is a homeomorphism of U X K; onto a neighbor-
hood of p, where U is a differentiable local cross-section to the coset G, in G and
K, is a ball neighborhood of p in K. Select a ball K, in K; with center p so that
gK. n K, is empty for g e @ — G, . It follows that the ball submanifold K, is a
pseudo-section.

2. If M is compact, then L(G, M) is finite.

Proor. We use induction on dim M. Let P(n) denote the assertion that
L(G, M) is finite if dim M =< n. Let Q(n) denote the assertion that L(G, E") is
finite if @ is a compact group of linear transformation of E". The well-known
“unitary trick” tells us that a compact group of linear transformations of E" is
equivalent to a compact group of orthogonal transformations. Since the latter
keeps the unit sphere S" ' invariant and sends rays into rays, we see that Q(n)
is equivalent to P(n — 1) if M = S™ . Also, no generality is lost in assuming
@ operates faithfully for the subgroup of G operating trivially is in every isotropy
subgroup.

The assertion P(0) is true, for then @ is simply a finite group of permutations
of a finite set.

Assume now dim M = nand P(n — 1) is true. Hence @(n) is true. Now since
M is compact, there is a finite number of ball-submanifold pseudo-sections
K,,---, K, through points P, ---, P, respectively such that M =
GK, + --- + GK, and G, is equivalent to a linear group on K;. If g is not
in G, , then gK; does not meet K; so that G, C G, for all ¢ ¢ K; . Hence (G,) =
(Gy,) for all ¢ e GK;, and therefore the number of elements in L(G, GK;) is no
greater than the number of elements in L(G, , K;), the latter being finite by Q(n).
Hence L(G, E), which has no more elements than »_; L(G, GK)) is a finite set.

In view of the equivalence hetween Q(n) and P(n — 1) when M = 8™, we
conclude

3. L(G, E") is finite if G is a compact group of linear transformations on E”.

4. If L(G, M) is finite, one can follow through our construction of the G-equi-
variant embedding of M in euclidean space and obtain after slight modifications
a differentiable G-equivariant embedding. If M is a compact differentiable mani-
fold, a short proof can be given based on the following method.

Let B denote the set of differentiable functions on M. Let {U,} be a finite cov-
ering of M by coordinate neighborhoods and let {V,} be an open covering with
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each V, C U, . For each f ¢ B define || || = sup, (|f(p) | + X« | 8f/3z%(P) |)
(all & with p e Vo, all p e M). B is a Banach space with || f|| as norm. If g e G
and f is a function on M (resp. on G) we define gf to be the function f-¢g~'. We say
a function f on M (resp on @) is a representation function if the linear span of the
set of functions Gf is finite dimensional. The representation functions on G are
continuous and by the Peter-Weyl theorem approximate uniformly any continu-
ous function on G.

We assert now that the representation functions in B form a dense subset
of B. For given any f ¢ B and any positive number e, there is a neighborhood U
of the identity in @ such that || gf — f| < e/2for all g e U. Let s = sup, || ¢f ||
(all g € @). Let v be a non-negative continuous function on G vanishing outside
U with fgv(9) dg = 1, the Haar measure of G being one. For any continuous
function w on @, we set f, = [¢ w(g)gf dg; the function f, is in B. Now || f, —
fll =1 fevigafdg — fll = Il fov(g)af — f)dg || £ [ov(g)e/2dg = e/2.
Next select a representation function w on G such that |v(g) — u(g) | < e/2s

forall geG. Then || f — full = [|f = fol + Ifu = full = e. Moreover fuisa
representation function on M for

n(fu) = ¢ [G u(g)gf dg = fa u(g)grgf dg = fo w(gr'g19)919f dg

= j; u(g'9)gf dg = foru -

Since f,, depends linearly on u, it follows that Gf, lies in a finite dimensional sub-
space of B. Thus f, is a representation function on M lying in an e-neighborhood
of f, and therefore the representation functions in B are dense in B.

Let f1, - - -, f» be the component functions of a differentiable embedding ¢ of
M into E". We can assume that M is a metric space. Then select approximating
representation functions b , - - - , h, whose functional matrix has the same rank
as the functional matrix of f;, - - - , fn , i.e. dim M. Each point lies in a neighbor-
hood on which the mapping ¢1: p — (hi(p) - - -, ha(p)) is one-to-one and regu-
lar. Take a finite covering by such neighborhoods and let b denote the Lebesgue
number of this covering. Then we select representation functions ki, ---, ka
which are so close to fi , - - - , f. respectively, that if k;(p) = ki(g),7=1,---,n
then d(p, ¢) < b. Select from the linear span in B of each Gh; and Gk; a base
with first base vector h; and k; respectively, and with respect to which the opera-
tions of G are orthogonal. Let A;1, - -+ hi; and kj 1, -+ -, kj,.; denote the bases
for the linear spans of Gh; and Gk; respectively. Then p — (h11(p) - -« , kn,ta (D))
is a differentiable, regular G-equivariant homeomorphism of M into a euclidean
space.

The foregoing proof of the existence of a G-equivariant embedding in euclidean
space applies with a slight modification to compact subsets of a differentiable
manifold. However it cannot be generalized to arbitrary differentiable manifolds
for a compact Lie group of differentiable transformations can have an infinite
number of inequivalent orbits on an open manifold.
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5. If the transformation group G is not compact, then L(G, E) can be infinite
even if E is euclidean space and G is an algebraic Lie group of linear transforma-
tions. For let G be the algebraic linear group in E® whose Lie algebra is the set
A of matrices M(a, b) of the form

0 a b
0 00
0 00

The Lie algebra A4 is abelian. Let B(u) be the set of all M(a, b) with a + bu = 0,
and let H(u) be the analytic subgroup corresponding to B(u). Then H (u) is the
isotropy subgroup of the vector (0, 1, u). Thus @ has an infinite number of dis-
tinct isotropy subgroups and being abelian, L(G, E®) is infinite.

THEOREM 7.1. Let G be a compact Lie group. Then there exist at most a finite
number of mutually non-conjugate subgroups which are normalizers of analytic sub-
groups. Moreover, there exist at most a finite number of mutually non-conjugate
semi-simple analytic subgroups.

Proor. Let A denote the Lie algebra of G, let E denote the exterior algebra
of 4, and let P denote the projective space of one dimensional linear subspaces
of E. Each linear subspace B of A determines a point in P by the Grassman cor-
respondence; this point we denote by B*. The adjoint representation of G on A
induces a representation = of G by projective transformations of P and clearly a
subgroup N of G keeps a linear subspace B invariant if and only if =(N) keeps
the point B* fixed. If H is an analytic subgroup of G and B is its Lie algebra, then
zHz™' = H if and onlyif Ad (z)(B) = B, and therefore if and only if #(z)(B*) =
B*. Consequently a subgroup N is a normalizer of some analytic subgroup of G
if and only if N = #~'(x(()s.) with B a Lie subalgebra of 4. Since L(x(G®), P) is
finite, G has at most a finite number of mutually non-conjugate normalizers of
analytic subgroups.

In order to prove the second part of the theorem, it suffices to prove that
there are only a finite number of distinct semi-simple analytic subgroups which
have the same normalizer. Upon considering the corresponding Lie algebra, it
suffices to prove that a Lie algebra contains only a finite number of distinct
semi-simple ideals. This follows in turn from the fact that (1) the linear span of
the semi-simple ideals in a Lie algebra is semi-simple and (2) a semi-simple Lie
algebra is the direct sum of all its minimal ideals and therefore has but a finite
number of ideals.
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