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The geometry of a bilinear skew form is very different from that of a
symmetric form and its main features, for example compatible complex
structures and Lagrangian subspaces, appear later as significant elements
of the global theory. Moreover, it is increasingly apparent that the linear
theory is a profound paradigm for the nonlinear theory. For example, the
fact that all symplectic vector spaces of the same dimension are isomorphic
translates into the statement that all symplectic manifolds are locally dif-
feomorphic (Darboux’s theorem in Chapter 3). A more startling example
is Gromov’s nonsqueezing theorem which implies that a ball can be sym-
plectically embedded into a cylinder if and only if it has a smaller radius.
‘We shall discuss the linear version of this result in Section 2.4.

The theory is enriched by the interplay between symmetric and skew-
symmetric forms. This appears in many guises: either directly, as in the the-
orem that a nondegenerate symmetric bilinear form and a nondegenerate
skew-symmetric form have a common diagonalization, or indirectly, for ex-
ample in the theorem that the eigenvalues of a symplectic matrix occur in
pairs of the form A, 1/)\. In the presence of a skew-symmetric form, a sym-
metric form gives rise to other related geometric objects such as Lagrangian
subspaces and almost complex structures, and we shall also explore the ele-
mentary theory of these objects.

We begin this chapter by discussing symplectic vector spaces (Sec-
tion 2.1), linear symplectomorphisms (Section 2.2), and Lagrangian sub-
spaces (Section 2.3). These can be thought of as the three fundamental
notions in linear symplectic geometry. In Section 2.4 we prove the linear
nonsqueezing theorem and discuss its consequences for the action of the
symplectic linear group on ellipsoids. We prove that a linear transforma-
tion is symplectic (or anti-symplectic) if and only if it preserves the linear
symplectic area of ellipsoids. Section 2.5 is about almost complex struc-
tures. Finally, in Section 2.6 on symplectic vector bundles, we develop the
theory of the first Chern class from scratch.

The material of the first three sections in this chapter is essential for
the study of symplectic manifolds in Chapter 3. The linear nonsqueezing
theorem will play an important role in the proof of symplectic rigidity in
Chapter 12. However, the various discussions of the Maslov index and also
the subsections on trivializations and the first Chern class may be omitted
at first reading.
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2.1 Symplectic vector spaces

The archetypal example of a symplectic vector space is the Euclidean space
R?" with the skew-symmetric form

n
W = Zd{b‘j Ady;.

j=1

More generally, a symplectic vector space is a pair (V,w) consisting of a
finite dimensional real vector space V and a nondegenerate skew-symmetric
bilinear form w : ¥V x ¥V — R. This means that the following conditions are
satisfied:

(skew-symmetry) Foral v,w e V
w(v,w) = —w(w,v).
(nondegeneracy) For every v e V
wv,w)=0 VweV — v=0.

The vector space V is necessarily of even dimension since a real skew-
symmetric matrix of odd dimension must have a kernel. (See also Exer-
cise 2.13 below.)

A linear symplectomorphism of the symplectic vector space (V,w)
is a vector space isomorphism ¥ : V — V which preserves the symplectic
structure in the sense that

U = w,

where ¥*w(v,w) = w(¥v, ¥w) for v,w € V. The linear symplectomor-
phisms of (V,w) form a group which we denote by Sp(V,w). In the case of
the standard symplectic structure on Euclidean space we use the notation
Sp(2n) = Sp(R2", wp).

The symplectic complement of a linear subspace W C V is defined
as the subspace

WY ={veV|wly,w)=0 VweW}.

The symplectic complement need not be transversal to W. A subspace W
is called

isotropic if W Cc wWv,

coisotropic if W« C W,

symplectic if W N W<« = {0},

Lagrangian if W = W,
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Note that W is isotropic if and only if w vanishes on W, and W is symplectic
:f and only if w|w is nondegenerate. The following exercise shows that
[.agrangian subspaces are closely related to linear symplectomorphisms.

Exercise 2.1 Let (V,w) be a symplectic vector space and ¥ : V — V be
s linear map. Prove that ¥ is a linear symplectomorphism if and only if its

h
grap To = {(v, Tv) |v € V}

is a Lagrangian subspace of V' x V' with symplectic form (—w) X w. (The
symplectic form is standard in the target and reversed in the source.) 0O

The next lemma shows that W is symplectic if and only if W is sym-
plectic. It also shows that every Lagrangian subspace has half the dimension
of V and that W is isotropic if and only if W* is coisotropic.

Lemma 2.2 For any subspace W C V,
dim W + dim W¥ = dim V, WeY = W.
Proof: Define a map ¢, from V to the dual space V* by setting
ty(V)(w) = w(v, w).

Since w is nondegenerate i, is an isomorphism. It identifies W« with the
annihilator WL of W in V*. But for any subspace W of any vector space
V we have dim W + dim W' = dim V. 0

The following result is the main theorem of this section. It asserts that
all symplectic vector spaces of the same dimension are linearly symplecto-
morphic.

Theorem 2.3 Let (V,w) be a symplectic vector space of dimension 2n.
Then there exists a basis u1,...,Un,V1,...,Un Such that

w(uj, ur) = w(vj,vx) =0, w(wj, Vk) = Ojk-

Such a basis is called a symplectic basis. Moreover, there exists a vector
space isomorphism ¥ : R?"® — V such that '

U w = Wo.
¢

Proof: The proof is by induction over n. Since w is nondegenerate there
exist vectors u1,v; € V such that

w(ul, '01) = 1.

Hence the subspace spanned by u; and v; is symplectic. Let W denote
. . . 4
its symplectic complement. Then (W,w) is a symplectic vector space of
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dimension 2n — 2. By the induction hypothesis, there exists a symplectic
basis ug,...,u%n,V2,---,Vn of W. Hence the vectors uy,...,un,v1,-..,v,
form a symplectic basis of V. The linear map ¥ : R2® — V defined by

n ™
Uz = Za:,—u,— + Z YV
i=1

i=1

satisfies ¥*w = wy as required. |
A symplectic basis is sometimes called an w-standard basis.

Corollary 2.4 Suppose that w; is a smooth family of nondegenerate skew-
symmetric bilinear forms on RZ" depending on a parameter t. Then there
exists a smooth family of matrices ¥, € RZ**2" gsuch that Piwy = wp for
every t.

Proof: Theorem 2.3 and Gram—Schmidt. O

Corollary 2.5 If V is a 2n-dimensional real vector space then a skew-
symmetric bilinear form w on V is nondegenerate if and only if the n-fold
erterior power is NONzero:

n

W =wA...A\wF#0.

Proof: Assume first that w is degenerate. Let v # 0 such that w(v,w) =0
for all w € V. Now choose a basis vy, ...,vs, of V such that v1 = v. Then
w™(vy,...,v2n) = 0. Conversely, suppose that w is nondegenerate. Then,
since wj is a volume form, it follows from Theorem 2.3 that w™ # 0. O

1]
Lemma 2.6 Any isotropic subspace is contained in a Lagrangian subspace.
Moreover, any basis u1,...,un of a Lagrangian subspace A can be extended
to a symplectic basis of (V,w).

Proof: Let W be an isotropic subspace. If the subspace W, is obtained
by adjoining some vector v € W« — W to W, then w vanishes on W;.
Hence a maximal isotropic subspace must be Lagrangian. Because A C W
implies W« C A¥, it follows that the Lagrangian subspaces are precisely
the maximal isotropic subspaces. This proves the first statement.

To prove the second statement it suffices to consider the case V = R?"
with the standard symplectic structure. Given a Lagrangian subspace A
the subspace A’ = JyA is also Lagrangian and can be identified with the
dual space A* via the isomorphism ¢y, : R*" — R2"" of Lemma 2.2. Hence
we may choose {vy,...,v,} C A’ to be the basis dual to uy,...,un. O

Linear symplectic reduction

Every coisotropic subspace W C V gives rise to a new symplectic vector
space obtained by dividing W by its symplectic complement. This con-
struction of a subquotient is called symplectic reduction.
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Lemma 2.7 Let (V,w) be a symplectic vector space and W C V be a
cm'b;otmpic subspace. Then the following hold:
(i) The quotient V! = W/W*¥ carries a natural symplectic structure o’

induCEd by W.
(i) FAC V is a Lagrangian subspace then A' = (ANW) + W«)/WY is

a Lagrangian subspace of V'.
Proof: Denote [w] = w + W¥ € V' for w € W. By the definition of
coisotropic, W* is an isotropic subspace of W and w(v,w) = 0 whenever
v € W¥ and w € W. Hence w(w;,wz2) depends only on the equivalence
classes [wi1] and [wz] in V' = W/W*. Hence w induces a 2-form w' on V'.
Moreover, if w € W and w(v,w) = 0 for all v € W, then w € W and
hence w' is nondegenerate. This proves (i).

To prove (ii) we first show that A = (AN W) + W¥ is a Lagrangian
subspace of V:

AY = (ANW¥NW
=(A+W NW
=(ANW)+W«
= A.
Now let w € W such that w'([w],[v]) = 0 for all [v] € A" = A/W©e.
Then w(w,v) = 0 for all v € A and hence w € A¥ = A. This implies
A e L(V',w'). Thus we have proved (ii). 0

Example 2.8 Let (Vp,wp) and (V1,w1) be symplectic vector spaces of the
same dimension, Ag C Vp be a Lagrangian subspace, and ¥ : V5 -+ W1
be a linear symplectomorphism. Consider the symplectic vector space V =
Vo x Vo x V; with symplectic form w = wg x (—wp) X wi1. Then

W=AxWcCV

is a coisotropic subspace with isotropic complement W¢ ~ A x {0} and
quotient V' = W /W% ~ V;. The subspace

AZADXF@CV

is Lagrangian and intersects W transversally. The reduced Lagrangian sub-
space is isomorphic to A; = ¥Ay. O

Exercises

Exercise 2.9 Identify a matrix with its graph as in Exercise 2.1 and use
a construction similar to that in Example 2.8 to interpret the composition
of symplectic matrices in terms of symplectic reduction. ]
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Exercise 2.10 Let (V,w) be a symplectic vector space and W C V be
any subspace. Prove that the quotient V' = W/W N W™ carries a natural
symplectic structure. O

Exercise 2.11 Let A = —AT € R2?"*27 be a nondegenerate skew-sym-
metric matrix and define w(z,w) = (A2, w). Prove that a symplectic basig
for (R?™,w) can be constructed from the eigenvectors u; + iv; of A. Hint;
Use the fact that the matrix 4 € C?"*27 ig self-adjoint and therefore can
be diagonalized. a

Exercise 2.12 Consider a smooth family of symplectic forms wi(z,w) =
(A;z,w) on R2*. Prove Corollary 2.4 by considering the family of subspaces
E; ¢ C?>™ generated by the eigenvectors of A; corresponding to eigenvalueg
with a positive imaginary part. O

Exercise 2.13 Show that if 3 is any skew-symmetric bilinear form on the
vector space W, there is a basis uy,...,Un, V1,.-.,Vn, W1,...,Wp of W such
that B(uj,vx) = d;x and all other pairings B(b1,b2) vanish. A basis with
this property is called a standard basis for (W, 8), and the integer 2n is
the rank of 3. Q

Exercise 2.14 Show that if W is an isotropic, coisotropic or symplectic
subspace of (V,w) then any standard basis for (W,w) extends to a sym-
plectic basis for (V,w). a

Exercise 2.15 Show that any hyperplane W in a 2n-dimensional sym-
plectic vector space (V,w) is coisotropic. Thus W« ¢ W and w|w has rank
2(n — 1). Hint: By Exercise 2.13 the 2-form w|w has even rank. Hence
there is some nonzero vector w € W such that w(w,z) =0 for all x € W,
Show that this vector w spans WY, O

Exercise 2.16 Let (V) denote the space of all symplectic forms on the
vector space V. By considering the action of GL(2n,R) on (V) given by

w = U*w

show that Q(V) = GL(2n, R)/Sp(2n). w

Exercise 2.17 (The Gelfand—Robbin quotient) It has been noted by
physicists for a long time that symplectic structures often arise from bound-
ary value problems. The underlying abstract principle can be formulated
as follows. Let H be a Hilbert space and D : dom(D) — H be a symmetric
linear operator with a closed graph and a dense domain dom(D) C H.
Prove that the quotient

V = dom(D*)/dom(D)

is a symplectic vector space with symplectic structure
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w([z], [y]) = (&, D*y) — (D*z,y)

for z,y € dom(D*). Here [z] € dom(D*)/dom(D) denotes the equivalence
class of z € dom(D*). Show that self-adjoint extensions of D are in one-
to-one correspondence to Lagrangian subspaces A C V. If D has a closed
range, show that the kernel of D* determines a Lagrangian subspace

Ao = {[z]|z € dom(D*), D*z = 0}.

In applications D is a differential operator on a manifold with boundary,
V is a suitable space of boundary data, and the symplectic form can, via
gtokes’ theorem, be expressed as an integral over the boundary. Hints: The
symmetry condition asserts that (z, Dy) = (Dz,y) for all z,y € dom(D).
Recall that the domain of the operator D* : dom(D*) — H is defined as
the set of all vectors y € H such that the linear functional dom(D) —
R : z — (y,Dz) extends to a bounded linear functional on H. Thus for
y € dom(D*) there exists a unique vector z € H such that (z,r) = (y, Dx)
for all x € dom(D) and one defines D*y = z. The symmetry condition
is equivalent to dom(D) C dom(D*) and D*y = Dy for y € dom(D). A
symmetric operator is called self-adjoint if D* = D. Show that a linear
operator D : dom(D) — H is self-adjoint iff graph(D) C H x H is a
Lagrangian subspace with respect to the standard symplectic structure.
Interpret the exercise as linear symplectic reduction. O

Exercise 2.18 Consider the linear operator

77, "0 -1
D"’Jﬂé_t'a JO-* (]l 0) ¥

on the Hilbert space H = L2([0, 1], R?") with dom(D) = W, ?([0, 1], R*")
(the Sobolev space of absolutely continuous functions which vanish on the
boundary and whose first derivative is square integrable). Show that in
this case the Gelfand—Robbin quotient is given by V = R*"® x R2" with
symplectic form (—wp) X wy. O

4

2.2 The symplectic linear group

In this section we shall examine the group Sp(V,w) of linear symplectomor-
phisms in moré detail. Since, in view of Theorem 2.3, all symplectic vector
spaces of the same dimension are isomorphic it suffices to consider the case
V = R?" with the standard symplectic form wp. In this case we can think of
the elements of Sp(2n) = Sp(2n, R) = Sp(R?",wo) as real 2n x 2n matrices
¥ which satisfy '

T Jo¥ = Jp.

Recall from Chapter 1 that this is equivalent o the condition
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P*woe = wp.

Recall also that matrices which satisfy this condition are called symplectic
and that they have determinant 1 (Lemma 1.14). In the complex case we
denote the group of symplectic matrices by Sp(2n, C).

We may identify R?® with C" in the usual way with z = (x,y) corre-
sponding to = + iy for x,y € R*. Then multiplication by Js in R®*" corre-
sponds to multiplication by 7 in C*. With this identification the complex
linear group GL(n,C) is a subgroup of GL(2n, R) and U(n) is a subgroup
of Sp(2n).

The following lemma demonstrates the close connection between sym-
plectic and complex linear maps. It is the first step on the way to proving
the important Proposition 2.22 which states that the unitary group U(n) is
a maximal compact subgroup of Sp(2n). As usual, we denote the orthogonal
group by O(2n).*

Lemma 2.19
Sp(2n) N O(2n) = Sp(2n) N GL{n,C) = 0(2n) N GL(n,C) = U(n).
Proof: A real 2n x 2n matrix ¥ satisfies the following three identities:

¥ c GL(n,C) <<= TJy=Jy¥,
= Sp(2n) == ‘I’TJQ‘I' = Jo,
TeO(2n) <+ TTE=1.

Any two of these conditions imply the third. Now the subgroup Sp(2n) N
O(2n) consists of those matrices

X -Y
¥ = (Y X) € GL(2n,R)

which satisfy
Xty =YTX, XTX +YTY = 1.

(See Exercise 1.13.) This is precisely the condition on U = X + iY to be
unitary. W

Lemma 2.20 Let ¥ € Sp(2n). Then
A€o(¥) <+« A 1eco(P)
*For notational convenience we identify GL(n,(C) and U(n) here with subgroups of

GL(2n,R). However, in some cases it will be important to keep the distinction between
an orthogonal symplectic 2n x 2n matrix and the corresponding unitary n x n matrix.
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and the multiplicities of A and A~ agree. If £1 is an eigenvalue of ¥ then
it occurs with even multiplicity. Moreover,

Wz =2z, Uz'=Xz 6 AN #1 —> wo(z,2') = 0.

Proof: The first statement follows from the fact that UT is similar to
gl
T = oottt

Hence the total multiplicity of all eigenvalues not equal to 1 or —1 is even.
Since the determinant is the product of all eigenvalues it follows from
Lemma 1.14 that if —1 is an eigenvalue then it occurs with even multi-
plicity. Hence the eigenvalue 1 occurs with even multiplicity as well. The
last statement follows from the identity

AN (2, Joz) = (2, Jo¥z) = (2', Joz). o

Lemma 2.21 If P = PT € Sp(2n) is a symmetric, positive definite sym-
plectic matriz then P* € Sp(2n) for every real number a > 0.

Proof: By Lemma 1.14, it suffices to show that each P preserves the

form wyg, i.e. that
wo(P*z,P*2") = we(z,2")

for all z and 2. To see this decompose R?" into a direct sum of eigenspaces
Vy for P where XA € o(P). Then V) is the eigenspace of P* corresponding
to the eigenvalue A®. Lemma 2.20 shows that if A\’ # 1 then the spaces
Vx and V). are orthogonal with respect to the form wy. In particular, the
form wp vanishes on V) for A # 1. Hence for z € V, and 2z’ € V), we have

wo(P®z, P*2') = (AN )*wo(2, 2') = we(z, 2').

Since every vector in R?™ is a sum of eigenvectors of P, the result now
follows easily. O

¥

Proposition 2.22 The unitary group U(n) is a mazimal compact subgroup
of Sp(2n) and the quotient Sp(2n)/U(n) is contractible.
[}

Proof: First let us prove that the quotient Sp(2n)/U(n) is contractible.
Now, every matrix ¥ € Sp(2n) can be uniquely decomposed as

¥ = PQ,

where P is symmetric and p031t1ve definite and ¢ is orthogonal. By the
preceding lemma,
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P=(2¥T)/?

is symplectic. Hence the map
Sp(2n) x [0,1] = Sp(2n) : (¥,t) —» (TTT)~/2yg

is a retraction of Sp(2n) onto U(n).

To see that U(n) is a maximal compact subgroup, let G C Sp(2n) be
any compact subgroup. We must show that G is conjugate to a subgroup
of U(n). To prove this, we choose a symmetric and positive definite matrix
P € Sp(2n) such that

vTpw =P for ¥ e G.

Such a matrix can be obtained by averaging the matrices ¥T¥ over ¥ € G
using the Haar measure C(G,RR) — R for a compact Lie group.* Since P!/2
is a symplectic matrix we obtain

TeG = PY2@P~1/2 e Sp(2n)N0O(2n) = U(n).

This proves the proposition. O

Proposition 2.23 The fundamental group of U(n) is isomorphic to the
integers. The determinant map det : U(n) — S' induces an isomorphism
of fundamental groups.

Proof: The determinant map det : U(n) — S! is a fibration with fibre
SU(n). Hence the homotopy exact sequence

71 (SU(R)) = 1 (U(n)) = m1(St) = m(SU(n))

shows that m; (U(n)) =~ m (S!) ~ Z.

Here we have used the fact that SU(n) is simply connected. This is best
seen by an induction argument. It obviously holds for n = 1. So suppose
n > 2 and consider the map SU(n) — $2"~! that sends a matrix U € SU(n)
to its first column. This is a fibration with fibre SU(n — 1). Hence there is
an exact sequence

72(8%* 1) = m (SU(n — 1)) - m(SUn)) — m (S?" 1) .

and this shows that if SU(n — 1) is simply connected then so is SU(n). O

*Here C(G, R) denotes the space of continuous functions on G. Observe that P gives
rise to an inner product gp defined by gp(v,w) = w¥ Py, Thus choosing P is equivalent
to choosing a G-invariant inner product on the vector space [R*™, which is compatible
with we in the sense that it has the form wo(-, J-) for some wg-compatible almost complex
structure J. A more elementary proof of this result is given in Section 2.5.
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With these few lemmata we have obtained a great deal of information
about symplectic matrices. In particular, any such matrix can be decom-
posed as a product of a positive definite symplectic matrix with a unitary
matrix. The following exercises take these ideas somewhat further. More
information about the structure of symplectic matrices and its implica-
tions for the stability of Hamiltonian flows may be found in the articles by
Arnold and Givental [8] and Lalonde and McDuff [158] and the book by
Ekeland [63].

Exercises

Exercise 2.24 (i) Show that if ¥ € Sp(2n) is diagonalizable, it can be
diagonalized by a symplectic matrix.

(ii) Deduce from Lemma 2.20 that the eigenvalues of ¥ € Sp(2n) occur
either in pairs X\, 1/A € R, A, A € §! or in complex quadruplets

!
X

1 -
A, — .
b A ? A’
(iii) Work out the conjugacy classes for matrices in Sp(2) and Sp(4): see [§]
and [158]. a

Exercise 2.25 Use the argument of Proposition 2.22 to prove that the
inclusion

0O(2n)/U(n) — GL(2n,R)/GL (n,C)

of homogeneous spaces is a homotopy equivalence. Prove similarly that the
inclusion '

O(2n)/U(n) — GL(2n,R)/Sp(2n)

is a homotopy equivalence. We will see below that GL(2n, R)/Sp(2n) can
be identified with the space of symplectic structures on R2"*. Similarly, the
homogeneous space GL(2n, R)/GL(n,C) can be identified with the space
of complex structures on R3", O

Exercise 2.26 Let SP(n,H) denote the group of quaternionic matrices
W e H**" such that W*W = 1. Prove that SP(n,H) is a maximal com-
pact subgroup of Sp(2n,C) and that the quotient Sp(2n,C)/SP (n,H) is
contractible. O

Exercise 2.27 Let

X -Y
¥ = (Y X) € GL(2n, R).

L

What is the relationship between det ¥ € R and det (X +1Y) € C? Compare
the proof of Theorem 2.29. 0
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Exercise 2.28 The Siegel upper half space &, is the space of complex
symmetric matrices Z = X + 1Y € C**" with positive definite imagi-
nary part Y. The symplectic group Sp(2n) acts on S, via fractional linear
transformations ¥, : S, — S, defined by

B . _(AB
¥,Z = (AZ + B)(CZ + D)™}, w_(CD).

Here we use the notation of Exercise 1.13. Prove that ¥, is well defined: if
Z € 8, then the matrix CZ + D is invertible and ¥,Z € S,,. Prove that

0,8,2 = (V8). 2

for ®, ¥ € Sp(2n) and Z € Sy. Prove that the action is transitive. Prove
that
v, (i1) =:1 = ¥ € U(n).

Deduce that the map ¥ — W¥,.(il) induces a diffeomorphism from the
homogeneous space Sp(2n)/U(n) to the Siegel upper half space S,,. Thus
the quotient Sp(2n)/U(n) inherits the complex structure of S,,. For more
details see Siegel [258]. i

The Maslov index

It follows from Proposition 2.22 and Propbsition 2.23 that the fundamental
group of Sp(2n) is isomorphic to the integers. An explicit isomorphism
w1 (Sp(2n)) — Z is given by the Maslov index.*

Theorem 2.29 There exists a unique functor u, called the Maslov index,
which assigns an integer u(¥) to every loop

¥ : R/Z — Sp(2n)

of symplectic matrices and satisfies the following axioms:

(homotopy) Two loops in Sp(2n) are homotopic if and only if they have
the same Maslov index.

(product) For any two loops ¥, ¥, : R/Z — Sp(2n) we have

u(U1%5) = p(¥1) + p(¥2). '
In particular, the constant loop ¥(t) = 1 has Maslov indez 0.

*Warning: In the following we shall use the notation ¥ : R/Z — Sp(2n) for a loop
¥(t) = ¥(t + 1) of symplectic matrices. Sometimes we shall also use the same letter to
denote an individual symplectic matrix. In each case it should be clear from the context
which notation is used.
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(direct sum) If n = n' + n" identify Sp(2n') ® Sp(2n") in the obvious
" way with a subgroup of Sp(2n). Then

p(¥' @) = p(¥') + u(2").

(normalization) The loop ¥ : R/Z — U(1) C Sp(2) defined by ¥(t) =
e2™t has Maslov index 1.

(X ~-Y

Y X) = (TTT)~/2¥ € Sp(2n) N O(2n),

for U € Sp(2n). (Here ¥ is an individual matrix, not a loop.) The matrix
Q = (¥¥T)"1/2¥ is the orthogonal part of ¥ in the polar decomposition
¥ = PQ. The Maslov index of the loop ¥(t) = ¥(t + 1) € Sp(2n) is the
degree of the composition po ¥ : R/Z — S*:

u(¥)=deg po 0.

In other words
w(T) = a(1) — a(0)

where o : R — R is a lift of po ¥:
det (X (t) +iY (t)) = e2™i(®),

The Maslov index is obviously an integer and depends only on the homo-
topy class of ¥. By Proposition 2.22 and Proposition 2.23 the map p :
Sp(2n) — S! induces an isomorphism of fundamental groups. This proves
the homotopy axiom. The product axiom is obvious for loops of unitary
matrices. Hence it follows from the homotopy axiom (every symplectic loop
is homotopic to a unitary loop). The additivity and normalization axioms
are obvious. This proves the existence part of the theorem. Uniqueness is
left to the reader. O

We now sketch an alternative interpretation of the Maslov index as the
intersection number of a loop in Sp(2n) with the Maslov cycle

'S“I-)-l (2n)

of all symplectic matrices ¥ which satisfy det(B) = 0 in the decomposition
of Exercise 1.13. This set is a singular hypersurface of codimension 1 which
admits a natural coorientation.* It is stratified by the rank of the matrix

*A coorientation is an orientation of the normal bundle.
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B, and so a generic loop will intersect only the highest stratum (where the
rank of B is n — 1) and all the intersections are transverse. More explicitly

let
_ [ A(®) B®)
¥ = (c(t) D(t))

be a path of symplectic matrices. A crossing is a number ¢ such that ¥(%) €
Sp,(2n). A crossing t is called regular if the crossing form T'(¥,t) :
ker B(t) — R, defined by

O(¥,t)(y) = —(B(t)y, D(t)y), y € ker B(t),

is nonsingular. At a regular crossing the crossing index is the signature
(the number of positive minus the number of negative eigenvalues) of the

crossing form. The Maslov index of a loop ¥(¢) with only regular crossings
can be defined by

p(¥) = % > " signT(¥,1),

where the sum runs over all crossings. The usual arguments in differential
topology (e.g. [208]) show that this number is a homotopy invariant, is
therefore well defined for all loops, and satisfies the axioms of the above
theorem. It follows that both our definitions of the Maslov index agree. For
more details the reader may consult Robbin and Salamon [236].

2.3 Lagrangian subspaces

In this section we shall discuss Lagrangian subspaces in more detail. We
denote by L£(V,w) the set of Lagrangian subspaces of (V,w) and abbreviate

L(n) = L(R®™ ,wp).

In more explicit terms Lagrangian subspaces of R?? are characterized as
follows.

Lemma 2.30 Let X and Y be real n X n matrices and define A C R2" by

A = range Z, Z = (‘;(,) (2.1)
\

Then A € £L(n) if and only if the matriz Z has rank n and
X'y =vYTXx.

In particular, the graph A = {(z,Az) |z € R"} of a matrizr A € R**" is
Lagrangian if and only if A is symmeiric.



LAGRANGIAN SUBSPACES 51

proof: Given two vectors z = (Xu,Yu) and 2z’ = (Xu',Yu') in A we have
wo (é .2") = uT(XTY — YTX)u'. This proves the first assertion. The second
assertion is the special case X =1, Y = A. o

A matrix Z € R2"*" of the form (2.1) which satisfies XTY = YTX
and has rank n is called a Lagrangian frame. If Z is a Lagrangian frame
then its columns form an orthonormal basis of A if and only if the matrix
U = X + ¢Y is unitary. In this case Z is called a unitary Lagrangian
frame. In particular, the previous lemma shows that £(n) is a manifold
of dimension n(n + 1)/2. To see this, note that the space of symmetric
n %X n matrices can be identified with an open neighbourhood in £(n) of
the horizontal Lagrangian

Anor = {z:(:c,y) € R*" |y=0}-

The next lemma shows that any Lagrangian plane can be identified with
Apor Via a linear symplectomorphism.

Lemma 2.31 (i) If A € £(n) and ¥ € Sp(2n) then TA € L(n).

(ii) For any two Lagrangien subspaces A, A’ € L£(n) there exists a symplec-
tic matriz ¥ € U(n) such that A’ = TA.

(iii) There is a natural isomorphism L(n) = U(n)/O(n).

Proof: Statement (i) is obvious. To prove (ii) fix a Lagrangian subspace
A C R?" and choose a unitary frame of the form (2.1). Define the matrix

' X -Y
_ ¥ = (Y X) :
Then ¥ € Sp(2n) N O(2n) and YA = A. This proves (ii). Statement (iii)
holds because the unitary matrix U = X + 7Y € U(n) determined by a

unitary Lagrangian frame is uniquely determined by A up to right multi-
plication by a matrix in O(n). O

Exercises

Exercise 2.32 Prove that the orthogonal complement of a Lagrangian
subspace A C R®" with respect to the standard metric is given by AL =
JoA. Deduce that if u;, ..., u, is an orthonormal basis of A then the vectors
Uly. .., Un, Jol1, ..., Jot, form a basis for R2"® which is both symplectically
standard and orthogonal. Relate this to the proof of Lemma 2.31. 0

Exercise 2.33 State and prove the analogue of Lemma, 2.31 for isotropic,

symplectic and coisotropic subspaces. a
]
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Exercise 2.34 Consider the vertical Lagrangian
Avery = {z = (z,y) € R*" |z =0} .
Use Lemma 2.30 to show that £(n) is the disjoint union
L(n) = Lo(n) U E(n),

where Lo(n) can be identified with the affine space of symmetric n x n
matrices and X(n) consists of all Lagrangian subspaces which do not in-
tersect Avert transversally. The set X(n) is called the Maslov cycle and is
discussed further below. ]

The Maslov index

Lemma 2.31 implies that the fundamental group of £(n) is isomorphic to
the integers. An explicit homomorphism 7;(£(n)) — Z is given by the
Maslov index.*

Theorem 2.35 There erists a unique functor u, called the Maslov index,

which assigns an integer u(A) to every loop A : R/Z — L£L(n) of Lagrangian

subspaces and satisfies the following axioms:

(homotopy) Two loops in L£(n) are homotopic if and only if they have
the same Maslov indez.

(product) For any two loops A : R/Z — L(n) and ¥ : R/Z — Sp(2n) we
have 4

p(TA) = p(A) + 2u(F).

In particular, a constant loop A(t) = Ay has Maslov tndex 0.

(direct sum) If n = n' + n" identify L(n') ® L(n") tn the obvious way
with a submanifold of L(n). Then

p(A @ A") = p(A") + u(A").
(normalization) The loop A : R/Z — L£(1), defined by |
A(t) =e™R C C=R?,
has Maslov index 1.

*Warning: As before we shall use the notation A : R/Z — Sp(2n) for a loop
A(t) = A{t + 1) of Lagrangian subspaces. Sometimes we shall also use the same letter A
to denote an individual Lagrangian subspace. Again it should be clear from the context
which notation is used. *
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proof: Define the map p: £L(n) — S? byl
2 X i
p(A) = det (U*), range ( Y) = A, U=X+iY € U(n),

for A € L£L(n). (Here A is an individual Lagrangian subspace, not a loop.)
The Maslov index of the loop A(2) = A(t+1) € L(n) is the degree of the
composition po A : R/Z — S*:

#(A) = deg po A.

In other words
#(A) = a(1) - a(0),
where a : R — R is a lift of po A:

det (X (2) 4+ iV (t)) = e™ (&),

The Maslov index is an integer and depends only on the homotopy class
of A. Conversely, assume that Ao(t) = Ao(t + 1) and A1(t) = A1(t + 1) are
loops of Lagrangian subspaces with the same Maslov index g(Ag) = p(A,).
By Lemma 2.31 we may assume without loss of generality that A;(0) =
A;(1) = R x {0}. Choose lifts U;(t) = X;(t) + iY;(t) € U(n) as above
such that Up(0) = U;(0) = 1. If necessary, we may alter U;(t) by right
multiplication with a path of orthogonal matrices to obtain U;(1) = £1.
Since u(Ag) = p(Ay) we have Up(l) = U;(1) = =£1. Hence the unitary
matrices U(t) = U, (£)Uy(¢) ™! form a loop. Since u{Ag) = p(A1) the loop
det U : S — S! is contractible. By Proposition 2.23, Uy is homotopic to
U; and hence Ay is homotopic to A;.

Thus we have proved that our Maslov index, as defined above, satisfies
the homotopy axiom. The product, direct sum, and normalization axioms
are obvious. This proves the existence statement of the theorem. Uniqueness
is left to the reader. 0

Alternatively the Maslov index can be defined as the intersection num-
ber of the loop A(t) with the Maslov cycle

%(n)

of all Lagrangian subspaces A which intersect the vertical {0} x R® non-
transversally. This set is a singular hypersurface of £(n) of codimension 1
which admits a natural coorientation. It is stratified by the dimension of
the intersection A N Aver;. A generic loop will intersect only the highest

tNote the square in this formula. It is needed because we consider unoriented La-
grangian subspaces. Compare with the proof of Theorem 2.29 and Exercise 2.27.
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stratum (where the intersection is 1-dimensional) and all the intersections
will be transverse. More explicitly, let A(#) be a path of Lagrangian planes
represented by a lift X (t) + iY (t) € U(n) of unitary Lagrangian frames.
A crossing is a number ¢ such that det(X(¢)) = 0. A crossing ¢ is called
regular if the crossing form I'(A, t) : ker X(¢) — R, defined by

T(A, 1) (u) = —(X(Hu, Y (t)u),

is nonsingular. (See Fig. 2.1.)

AW

2(n)

Fic. 2.1. The Maslov cycle

At a regular crossing the crossing index is the signature (the number
of positive minus the number of negative eigenvalues) of the crossing form.
The Maslov index of a loop A(t) = A(¢t + 1) with only regular crossings can
be defined by

p(A) =) signT(A,¢),
t

where the sum runs over all crossings. As in the case of symplectic matri-
ces this definition satisfies the axioms of Theorem 2.35. For more details
see [236].

Exercise 2.36 The Maslov index of a loop A : R/Z — L(V,w) of La-
grangian subspaces in a general symplectic'vector space is defined as the
Maslov index of the loop ¢t — ¥~ !A(t) € L(n), where ¥ : (R®>", wy) —
(V,w) is a linear symplegtomorphism. Show that this definition is indepen-
dent of ¥. Show that if one reverses the sign of w the sign of the Maslov
index reverses also. g

Exercise 2.37 Let ¥ : R/Z — Sp(V,w) be a loop of linear symplectomor-
phisms. Prove that the corresponding loop I'y : R/Z — L(V XV, (—~w) X w)
of Lagrangian graphs has twice the Maslov index pu(I'y) = 2p(¥). (I'y is
defined in Exercise 2.1.) O



THE AFFINE NONSQUEEZING THEOREM 55

3.4 The affine nonsqueezing theorem

An affine symplectomorphism of R%” is a map ¥ : R2® — R2" of the

form
ilJ(Z) =Wz + Z09,

where ¥ € Sp(2n) and zp € R*”. We denote by ASp(2n) the group of
affine symplectomorphisms.” The affine nonsqueezing theorem asserts that
3 ball in R?” can only be embedded into a symplectic cylinder by an affine
symplectomorphism if it has a smaller radius. As in Section 1.2, we denote
the symplectic cylinder of radius R > 0 by

Z*"(R) = B3(R) x R**~2 c R?".

Here the splitting R?" = R? x R?*?~2 ig 3 symplectic one, i.e. the ball B*(R)
corresponds to the coordinates (z1,y1).

Theorem 2.38 Let 1 € ASp(2n) be an affine symplectomorphism and
assume that ¥(B2*™(r)) C Z?**(R). Thenr < R.

Proof: Assume without loss of generality that 7 = 1 and write y(2) = ¥24
zo. Let u,v € R2™ be the columns of ¥T corresponding to the coordinates
z; and y;, and let a,b € R be the corresponding coordinates of zy. Then,
since ¥ € Sp(2n), we have

wo(u,v) =1

and the condition ¥(B??(1)) C Z?*(R) can be restated in the form

]SIII_p (({u, 2) + a)® + ({v,2) +b)?) < R

But the left-hand side of this inequality is greater than or equal to 1 because
1 = wo(u,v) < |u|-|v| and hence either u or v has length greater than or
equal to 1. Assume without loss of generality that |u| > 1 and choose
z = xufjul. 0

The nonsqueezing property can be formulated in a symplectically in-
variant way. A set B C R2" is called a linear symplectic ball of radius
r if it is linearly symplectomorphic to B2?"(r). Similarly, a subset Z C R2"
is called a linear symplectic cylinder if there exists a symplectic matrix
¥ € Sp(2n) and a number R > 0 such that Z = $Z?*(R). It follows from
Theorem 2.38 that for any such set Z the number R > 0 is a linear sym-
plectic invariant. It is called the radius of Z. A matrix ¥ € R??*2" ig said
to have the linear nonsqueezing property if for every linear symplectic
ball B of radius r and every linear symplectic cylinder Z of radius R we
have

¥YBC Z = r < R.
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The following theorem shows that linear symplectomorphisms are charac-
terized by the nonsqueezing property. More precisely, we must also include
the case of anti-symplectic matrices ¥ which satisfy ¥*wp = —wo.

Theorem 2.39 Let ¥ € R2"**27 pe q nonsingular matriz such that ¥ and
¥~ have the linear nonsqueezing property. Then ¥ is either symplectic or
anti-symplectic.

Proof: Assume that ¥ is neither symplectic nor anti-symplectic. Then
neither is T and so there exist vectors u,v € R?" such that

wo(¥Tu, UTy) £ twy(u, v).

Perturbing u and v slightly, and using the fact that ¥ is nonsingular, we
may assume that wo(u,v) # 0 and wo(¥Tu, ¥Tv) # 0. Moreover, replacing
¥ by ¥~! if necessary, we may assume that |wo(¥Tu, ¥Tv)| < |wo(u,v)|.
Now, by rescaling u if necessary, we obtain

0 < A2 = |wo(¥Tu, ¥Tv)| < wo(u,v) = 1.

Hence there exist symplectic bases uy,v; ..., Un, v, and uj, vy ..., ul, v, of
R2" such that

U = u, v = v, ul, = 271w Ty, vy = A1 Ty,

Denote by ® € Sp(2n) the matrix which maps the standard basis e;, ..., fn
to u1,...,vn and by ® € Sp(2n) thg matrix which maps e;,..., fn to
ul,...,v,. Then the matrix

A=%""0Tp
satisfies
Aep = Aey, Afi =AM,

This implies that the transposed matrix AT maps the unit ball B2*(1) to
the cylinder Z27(A). But since:A < 1 this means that ¥ does not have the
nonsqueezing property in contradiction to our assumption. This proves the
theorem. 0

The affine nonsqueezing theorem gives rise to the notion of the linear
symplectic width of an arbitrary subset A C R?”, defined by

wr(A) = sup {7r? | Y(B**(r)) C A for some 3 € ASp(R*™)}.

It follows from Theorem 2.38 that the linear symplectic width has the
following properties: 4
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(monotonicitY) If ¥(A) C B for some ¥ € ASp(2n) then wr(4) <
wr (B)-

(conformality) wr(AA) = Nwr(A).

(nontriviality) wr(B**(r)) = wp(Z2%"(r)) = mr.

The nontriviality axiom implies that w;y is a two-dimensional invari-
ant. It is obvious from the monotonicity property that affine symplecto-
morphisms preserve the linear symplectic width. We shall prove that this
property in fact characterizes symplectic and anti-symplectic linear maps.

Exercise 2.40 Prove that every anti-symplectic linear map has determi-
nant (—1)". Prove that every anti-symplectic linear map preserves the lin-
ear symplectic width of subsets of R?*". Hint: The linear symplectic width
wy,(A) agrees with the maximal radius of a ball which can be mapped into
A by an anti-symplectic affine transformation. ]

Theorem 2.41 Let ¥ : R*® — R2" be a linear map. Then the following
are eguivalent.

(i) ¥ preserves the linear symplectic width of ellipsoids centred at 0.

(ii) The matriz ¥ is either symplectic or anti-symplectic, i.e. ¥*we = Fwy.

Proof: We have seen above that (ii) implies (i). Hence assume (i). We
prove that ¥ has the nonsqueezing property. To see this let B be a linear
symplectic ball of radius r and Z be a linear symplectic cylinder of radius
R such that

¥B C Z.

Then it follows from the monotonicity property of the linear symplectic
width that
7 = wr(B) = wr (¥B) < wr(Z) = 7R?

and hence r < R. It also follows from (i) that ¥ must be nonsingular be-
cause otherwise the image of the unit ball under ¥ would have linear sym-
plectic width zero. Moreover, ¥~1 also satisfies (i) because wy(¥~!E) =
wr (P¥ 1 E) = wr (F) for every ellipsoid E which is centred at zero. Thus
we have proved that both ¥ and ¥~! have the nonsqueezing property,
and in view of Theorem 2.39 this implies that ¥ is either symplectic or
anti-symplectic. Q

We shall now study in more detail the action of the symplectic linear
group on ellipsoids. The main tools for understanding this action are the
affine nonsqueezing theorem and the following lemma about the simulta-
neous normalization of a symplectic form and an inner product. Note that
this lemma provides an alternative proof of Theorem 2.3.

Lemma 2.42 Let (V,w) be a symplectic vector space and g : VXV — R be
an inner product. Then there exists a basis u1,...,Un,V1,...,Un of V which
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is both g-orthogonal and w-standard. Moreover, this basts can be chosen
such that

g(uj, u;) = g(vj,v5)
for all 3.

Proof: Consider the vector space V = R2" with the standard inner prod-
uct g = (-,:) and assume that

w(z,w) = {z, Aw)

is a nondegenerate skew-form. Then A is nondegenerate and AT = —A.
Hence iA € ?7*2n js a Hermitian matrix and so the spectrum of A is
purely imaginary and there exists an orthonormal basis of eigenvectors.
Let the eigenvalues of A be *ic; for 3 = 1,...,n with a; > 0 and choose
eigenvectors z; = u; + iv; € C*" such that

— vz L, —= 4.
Az; =1tajz;, Z; 2k = Ojk-
Then we have AZ; = —ia;Z; and hence
z;rzk = 0.

With z; = u; + ¢v; we obtain
» R Y I ;== T
Au; = —ajvy, Av; = aju;

and

T

T, _.T. .
Uj v = u;up = v v =0, 7 #£ k.

This implies
w(uj,vj) = u}Avj = ajlu;1? >0
and similarly w(uj, vx) = w(u;,ux) = w(vj,vx) = 0 for § # k. Rescaling the

vectors u; and v;, if necessary, we obtain the required symplectic orthogonal
basis of R27. =

The next lemma is a geometric interpretation of this result. Given an
n-tupler = (r1,...,r,) with0 < r; < ... < r, consider the closed ellipsoid

E(r)zt{ze(:"’i :2S1}.

Zg
Lif
'
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Lemma 2.43 Given any ellipsoid

2n
E = w€R2nl Zaijwiwjgl

i,7=1

there is a symplectic linear transformation ¥ € Sp(2n) such that YE =
E(r) for some n-tuple r = (r1,...,mp) with0 < r < --- < ry,. Moreover,
the numbers r; are uniquely determined by E.

Proof: Consider the inner product

2n
glv,w) = Z QijViWj

i,j=1
on R2". Then the ellipsoid E is given by
E = {w e B" | g(w,w) < 1}.

By Lemma 2.42 there is a basis u1,...,Un,v1,...,v, of R2® which is both
symplectically standard and orthogonal for g. Moreover, we may assume

t
tha {

g(uj,uj;) = g(vj,v5) = —;.
rj

Let ¥ : R2® — R2" be the symplectic linear transformation which takes
the standard basis of R®” to this new basis, i.e. ’

n
Pz = Z(Ij‘u_j + y,—vj)

i=1
for z = (z1,...,Zn,¥Y1,---,Yn). Then
no. 2 2
g(¥z,¥z) =
=1 7
and hence ¥~1F = E(r). ;

To prove uniqueness of the n-tuple r; < .- < r, consider the diagonal
matrix '
A(r) = diag(1/r2, ..., 1/r2,1/r3, ..., 1/r2).

We must show that if there is a symplectic matrix ¥ such that

TTA(R)T = A@) .
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then r = 7. Since Ju¥T = ¥~1J,, the above identity is equivalent to
L LA(ME = HAGF).

Hence JoA(r) and JoA(r') must have the same eigenvalues. But it is easy
to check that the eigenvalues of JyA(r) are &i/r12,...,+i/r,%. This proves
the lemma. m|

Remark 2.44 In the case n = 1 the existence statement of Lemma 2.43
asserts that every ellipse in R? can be mapped into a c1rcle by an area-
preserving linear transformation. m|

In view of Lemma 2.43 we define the symplectic spectrum of an
ellipsoid E to be the unique n-tuple r = (ry1,...,ry) with0 <r; <--- <r,
such that E is linearly symplectomorphic to E(r) = E(ri,...,7s). The
spectrum is invariant under linear symplectic transformations and, in fact,
two ellipsoids in R27?, which are centred at 0, are linearly symplectomorphic
if and only if they have the same spectrum. Moreover, the volume of an
ellipsoid E C R?" is given by

VOI(E)=/ c_u_g___ﬂ Hr, .

j=1

Ellipsoids with spectrum (r, ..., r) are linear symplectic balls. The following
theorem characterizes the linear symplectic width of an ellipsoid in terms
of the spectrum.

Theorem 2.45 Let E C R2" be an ellipsoid centred at 0, with empty or
nonempty interior. Then

wr (E) = glé%wL(B) = jnf w.(2),

where the supremum runs over all linear symplectic balls contained in E
and the infimum runs over all linear symplectic cylinders containing E. If
E has empty interior, then wi(E) = 0 end, if £ has nonempty interior
and symplectic spectrum 0 <71y < --- < ry,, then

wL(E) = 7TT12.

Proof: Assume first that F has empty interior. Then, by definition of
the linear symplectic width, wr(E) = 0. Moreover, there exists a linear
symplectomorphism ¥ € Sp(2n) such that that ‘I'E C {0} x R?7~1 with
coordinates (z1,y1,.. »En,Yn)- Hence, for every 4 > 0, the linear trans-
formation &5 = d1ag(1 /8,8,1,...,1) is symplectic and embeds ¥FE into
Z2"(§). Thiss proves the lemma in the case of empty interior.
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Now assume that F has nonempty interior and symplectic spectrum
0<r1 <12 <--- <1y Then there exists a symplectic matrix ¥ € Sp(2n)
such that ¥ = E(r1,...,r,). Hence

‘I,—1B2n(r1) CECcC l];,—lzzn(,r})

and soO
; < nri? < sup wr(B).
inf wy(2) r1° < sup wr(B)

Now suppose that B is a linear symplectic ball of radius 7 contained in
E. Then YB Cc ¥E C Z?"(r;) and so r < r;. Similarly, if Z is a linear
symplectic cylinder of radius R containing F then B?"(r) C ¥E C ¥Z
and so 7y < R. Hence

B) < nr 2 < inf Z).
g\épEwL( ) < 7ry __ZlngL( )

Since wi (£) = supgc g wr(B) this proves the theorem. 0

Exercise 2.46 Let E C R?™ be an ellipsoid and define the dual ellipsoid
by
E*={veR™|{v,e) <1Vee€ E},

where (-,-) is the standard inner product on R2". Prove that
E** = E, (PEY* = ()1 E*,

b ]

for ¥ € Sp(2n). Prove that the symplectic spectrum of E* is given by

(1/rp,...,1/r1), where {(r1,...,7r,) is the symplectic spectrum of E. De-
duce that the dual of a linear symplectic ball is again a linear symplectic
ball. O

2.5 Complex structures

A complex structure on a vector space V is an automorphism J : V —» V
such that J2 = —1. With such a structure V becomes a complex vector
space with multiplication by ¢« = /—1 corresponding to J

C>§V——>V:(s+it,v)i—>sv+t.fv.

In particular, V is necessarily of even dimension over the reals. We denote
the space of complex structures on V by 7 (V). The basic example is the

automorphism
_({0-1
»=(370)
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of R?", As we saw above, if we identify R?*" with C* via the isomorphism
(z,y) — T + iy for &,y € R*, then the matrix Jy corresponds to multi-
plication by i. The following lemma shows that every complex structure is
isomorphic to the standard complex structure Jp.

Proposition 2.47 Let V be a 2n-dimensional real vector space and let
J € J(V). Then there exists a vector space isomorphism & : R*" — V
such that

J® = ®Jp.

Proof: Let V¢ denote the complexification of V and denote by E* =
ker (1 £ iJ)) = range (1 F iJ) the eigenspaces of J. Then V¢ = E+ @ E~

and hence dim E* = n. Choose a basis w; = u; +iv;, j = 1,...,n, of E*.
Then the vectors us,...,Un,v1,...,V, form a basis of V and
Ju; = —vj, Jvj = u;.

The required transformation ¢ : R2™ — V is given by

B¢ =Y (&u; — 1;05)

=1

forc=(611---:‘511:771:-"11771)' -

Proposition 2.48 The space J(R?") is diffeomorphic to the homogeneous
space GL(2n,R)/GL(n,C). This space has two components. The compo-
nent J+(R2") which conteins Jy is diffeomorphic to the homogeneous space
GL* (2n,R)/GL(n,C) and homotopy equivalent to SO(2n)/U(n). It is the
space of all complex structures on R2" with fized orientation. In the case
n = 2 this space is homotopy equivalent to S2.

Proof: Define a map GL(2n,R) — J(R??) by A — A"1'JyA. By Propo-
sition 2.47 this map is surjective and its kernel is GL(n;C). (Here we iden-
tify GL(n,C) with a subgroup of GL(2n,R) as in Section 2.2.) Thus we
have identified 7 (R?") with the homogeneous space GL(2n, R)/GL(n,C).
This space has two components distinguished by the determinant. By Ex-
ercise 2.25 the space GL*(2n,R)/GL(n,C) is homotopy equivalent to the
quotient SO(2n)/U(n). Note also that J is homotopy equivalent to J N
O(2n,R).

Now consider the case n = 2 and let {e;, ez, €3, e4} denote the standard
basis of R*. We claim that a matrix J € JNS0O(4) is completely determined
by the unit vector Je1 € {(z1,Z2,y1,y2) |1 = 0}. To see this note that the
vectors e, Je; form an orthonormal basis of a 2-plane E C R*. The matrix
J is then completely determined by the fact that for any unit vector v € E-+
the vectors v, Jv form an orthonormal basis of £+, which is oriented so that
the vectors e;, Je1, v, Jv form a positively oriented basis for R?. O
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Compatible complex structures

Let (V, w) be a symplectic vector space. A complex structure J € J(V) is
said to be compatible with w if

w(Jv, Jw) = w(v, w)

for all v,w € V and
w(v, Jv) >0

for all nonzero v € V. If J is a compatible complex structure then
gs(v,w) = w(v, Jw)

defines an inner product on V. Moreover, J is a gj-skew-adjoint transfor-
mation of V, that is,

95 (v, Jw) + g5 (Jv,w) = 0.

We denote the space of compatible complex structures on (V,w) by J(V,w).

Exercise 2.49 Let (V,w) be a symplectic vector space and J be a complex
structure on V. Prove that the following are equivalent:

(i) J is compatible with w.

(ii) The bilinear form g; : V X V — R defined by

gs(v,w) = w(v, Jw)
is symmetric, positive definite, and J-invariant.
(iii) The form H : V x V — C defined by

H(v,w) = w(y, Jw) + itw(v,w)

is complex linear in w, complex anti-linear in v, satisfies H (w,v) = H (v, w),
and has a positive definite real part. Such a form is called a Hermitian
inner product on (V,J). Note that here V is understood as a complex
vector space with the complex structure given by J. Thus one must show
that H(v, Jw) = i H(v,w), etc. .

Our*next aim is to show that the space 7(V,w) is contractible. The
next proposition gives two proofs of this important fact. The first is by
a direct argument, and the second constructs a homotopy equivalence be-
tween J(V,w) and the space 9Met(V) of all inner products (i.e. positive
definite symmetric bilinear forms) which is obviously contractible.

Proposition 2.50 (i) J(V,w) is homeomorphic to the space P of sym-
metric positive definite symplectic matrices.
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(ii) There exists a continuous map r : Met(V) = J(V,w) such that
r(gs) =J,  r(®*g) =2r(g)

for all J € J(V,w), g € Met(V), ® € Sp(V,w).
(ii1) J(V,w) is contractible.

Proof: First note that either of the assertions (i) and (ii) implies (iii). We
prove (i). By Theorem 2.3 we may assume V = R*™ and w = wo. A matrix
J € R?" is a compatible complex structure if and only if

J? = -1, JYJoJ = Jo, (v, =JoJv) >0 Vv # 0.
The first two identities imply that
(JoNT = =TTy = JTJoJ?% = JoJ.

Hence P = —JpJ is symmetric, positive definite and symplectic. Con-
versely, if a matrix P has these properties, then it is easy to check that
J = —~J5'P € J(R®*™,wp). Now it follows from Lemma 2.21 that J(V,w)
is contractible.

We prove (ii). First observe that the very existence of a continuous map
r: Met(V) — J(V,w) with the stated properties implies the contractibility
of J(V,w). In fact, the maps f; : 7(V,w) — J(V,w) given by

fe() =r((1 —t)gp +tgs), 0<t<1,
provide a homotopy connecting the constant map fo(J) = Jp to the identity
ATy =J.
Thus we just have to define the retraction r. To do this, let g € IMet(V)
and define the automorphism A:V — V by

w(v, w) = g(Av,w).

The identity w(v,w) = —w(w,v) is equivalent to g(Av,w) = —g(v, Aw).
Therefore A is g-skew-adjoint. Hence, writing A* for the g-adjoint of A,
we find that P = A*A = —A? is g-positive definite. It follows that there

is a unique automorphism @ : V — V which is g-self-adjoint, g-positive
definite, and satisfies
Q*="P

(To see this, use the fact that P can be represented as a positive definite
symmetric matrix with respect to a suitable basis for V. Details are given
in Exercise 2.52 below.) It follows easily that the automorphism

J,=Q'A



COMPLEX STRUCTURES 65

is a complex structure compatible with w. Hence we define r(g) = J;. The
continuity of r follows from Exercise 2.52 .

If we begin with a metric g of the form g;, then A = J and Q = 1 and
hence r(gs) = J. Moreover, if g is replaced by ®*g(v, w) = g(®v, Pw) where
& € Sp(V,w), then A is replaced by ®~! A% and hence Jp.;, = &1 J,P.
This proves that the map r has the required properties. O

The above result can be considered in terms of the following diagram:

U(n) — Sp(2n) — Sp(2n)/U(n) = J(V,w)
4 4 4 Itr
SO(2n) — GL*T(2n,R) — GLY(2n,R)/SO(2n) =  IMet

Statement (i) establishes the existence of the homeomorphism e while the
proof of (ii) constructs the map r. Another way to prove that e is a bijection
would be to define an action of Sp(2n) on J(V,w) with isotropy group
U(n). To do this, one has to show that J is w-compatible if and only if it
is conjugate to Jy by a symplectic matrix (see Exercise 2.52).

In many situations we do not need to work with compatible complex
structures. For example, in order to ensure that the compactness theorems
hold for J-holomorphic curves, it is enough that J satisfies only the second
compatibility condition. Thus a complex structure J € J(V) is called w-
tame if

w(v, Jv) >0

for every nonzero yector v € V. We denote the space of all w-tame complex
structures on V by J.(V,w). Clearly, this is an open subset of the space of
all complex structures on V. It is easy to see that the formula

g7(v,w) = %(w(v, Jw) + wlw, Jv))

defines an inner product on V for every J € J-(V,w).
Proposition 2.51 The space J,(V,w) is contractible.

We give two proofs of this result. The first appeared in Gromov [108]
and is easy if you know some homotopy theory. The second is by direct
calculation and is due to Sévennec [15, Chapter II]. Recall that Q@ = Q(V)
is the space of all symplectic forms on V and 7 = J (V) is the space of all
complex structures.

Proof 1: Consider the spaces

Cr = {w,J)eQx T|Je T (V,w)},
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C={(w,)eUIxT|JeTV,w)}
It is easy to see that all the projections
C, = Q, Cr = J, C — 1, C—J

are locally trivial fibrations. Moreover, the fibre of the map C; — 7 is the
set of all w which tame J. This space is convex and hence contractible.
Hence the projection C, — 7 is a homotopy equivalence. A similar remark
applies to the map C — J. Hence, by considering the diagram

C = C,

1
J ,

where the vertical arrows are homotopy equivalences, we see that the in-
clusion C — C, is a homotopy equivalence. Now consider the diagram

3¢,
/

2 O

Since the projection C — ) has contractible fibres, both projections to
are homotopy equivalences, and so the fibres of C, —  are contractible. O3

Proof 2: We may assume that (V,w) = (R??,wp). Then J = —JpZ is
w-tame if and only if

Z>0, Z'=J;'ZK.

Here we write Z > 0 to mean that (v,Zv) > 0 when v # 0 but the
matrix Z is not required to be symmetric. To transform the second identity
into something which is manageable we use the Cayley transform* z —
(1 ~2)(1+ 2)"! = w. As a map of the Riemann sphere this takes the
positive half space {z € C|Rez > 0} into the unit disc, interchanges
the points +i, and transforms the involution z +— 1/z into the involution
w — —w. Similarly, if we think of this as a map on matrices

W=F(Z)=(1-2)1+2)"1,

it is easy to check that it is well defined on the half space Z > 0 and takes
it onto the open unit disc {W |||W|| < 1}. Moreover, it interchanges +.Jg,
and transforms the identity Z—! = J;'ZJ; into

*This also appears in [8, 1.4.2].
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-W = J;'Woh.

But the set of such matrices W is convex and hence contractible. 0

We note that the calculation in Proof 2 above can also be applied to
show that J(V,w) is contractible. The only difference in this case is that
Z is now symmetric, and this property is preserved by F'.

Exercises
The following exercises explore further the interconnections between sym-
plectic forms, inner products, and almost complex structures.

Exercise 2.52 (i) Prove the continuity of the map r : Iet(V) — T (V,w)
in Proposition 2.50 as follows. If V = R?” and w = wyp then an inner prod-
uct g € Met (R?™) can be written in the form g(v,w) = wTGv, where G €
R27*27 is positive definite. The formula wp(v,w) = (Jov)Tw = g(Av, w)
determines the matrix A = G—1Jy. Prove that the g-adjoint of A is repre-
sented by the matrix A* = G~ ATG = —A. Prove that the g-square root
Q of the matrix P = A*A = — A2 = G 1 J,TG'J, is given by

Q=G-1/2 (G—1/2J0TG_1JOG—-1/2)1/2 Gl/2.

Deduce that the map G — Jg = Q~1G~1.J, is continuous.

(i1} The algebra here is also just a reformulation of that in the proof of
Lemma 2.42. Use the current methods to give an alternative proof of this
result. Hint: Find a symplectic basis which is orthogonal with respect to
both g and gs, where J = r(g).

(iii’) Deduce from (ii) that a complex structure J is w-compatible if and
only if it has the form J = ¥~1J,¥ for some ¥ € Sp(2n). Hint: Use a
basis which is both gj-orthogonal and wy-standard. D

Exercise 2.53 Here is yet another proof of the contractibility of 7 (V, w)
taken from [15, Chapter II]. This proof illustrates in a clear geometric
way the relationship between Lagrangian subspaces, complex structures,
and inner products. Given a Lagrangian subspace Ag € £(V,w) there is a
natural bijection

J(‘/ﬂ w) - ‘CO(V’ W, AO) X S(AO)a

where L£o(V,w, Ag) is the space of all Lagrangian subspaces which intersect
Ap transversally and S(Aqg) is the space of all positive definite quadratic
forms on Ag. Note that, by Lemma 2.30, the space Lo(V,w,Ag) is con-
tractible. The above correspondence is given by the map

&

J (JAOa ngAO)’

where g;(v,w) = w(v, Jw) as above. Show that this is a bijection. O
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Exercise 2.54 Let w and g be given. Show that there is a basis for V which
is both g-orthogonal and w-standard if and only if there is a Lagrangian
subspace A whose g-orthogonal complement At is also Lagrangian. a

Exercise 2.55 Let J € J(V,w). Prove that a subspace A C V is La-
grangian with respect to w if and only if JA is the orthogonal complement
of A with respect to the inner product gs. Deduce that A € £(V,w) if and
only if JA € L(V,w). O

Exercise 2.56 Suppose that J; is a smooth family of complex structures
on V depending on a parameter t. Prove that there exists a smooth family
of isomorphisms ®; : R2* — V such that J;®; = $:Jp for every t. O

Exercise 2.57 Prove that the real 2 x 2 matrix

a b
7=(2a)
satisfies J2 = —1 if and only if ad — bc = 1 and a = —d. Deduce that Jo

and —.Jg lie in different components of .7 (R?). Prove that each component
of 7 (R?) is contractible. a

Exercise 2.58 Let V be a 2n-dimensional real vector space with complex
structure J. Show that the space of all skew-forms w which are compatible
with J is convex. a

Exercise 2.59 A linear subspace W C V is called totally real if it is of
dimension n and
JWNW = {0}.

If W C V is a totally real subspace show that the space of nondegenerate
skew-forms w : V x V — R which are compatible with J and satisfy

W e L(V,w)

is naturally isomorphic to the space of inner products on W and hence is
convex, O

*

2.6 Symplectic vector bundles

In this section we discuss the basic properties of symplectic vector bundles.
For convenience, we will always assume that the base space M of the bun-
dle is a smooth manifold, perhaps with boundary &M, but the theory can
of course be developed in more generality. The main result is Theorem 2.62
which says that symplectic vector bundles are essentially the same as com-
plex vector bundles. After sketching how this follows from the theory of
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classifying spaces, we give an explicit and elementary proof. We also give
a complete proof of the existence of the first Chern class.

A symplectic vector bundle (F,w) over a manifold M is a real vector
bundle 7 : £ — M which is provided with a symplectic bilinear form w,
on each fibre E,, which varies smoothly with ¢ € M. These forms w, fit
together to give a smooth section w of the exterior power E*AE* of the dual
bundle E* = Hom(E, R). This form w is a nondegenerate skew-symmetric
bilinear form on E which we will call a symplectic bilinear form. Two
symplectic vector bundles (E;,w;) and (E2,wz) are isomorphic if and only
if there is a linear map ¥ : E; — E3 such that ¥*(w2) = w.

Example 2.60 If £ — M is any vector bundle, the sum E & E* is a
symplectic bundle with form Qcan given by

Qcan(vo & v7, wo @ wy) = wj (Vo) — vy (wo)- d

Exercise 2.61 Prove that such a symplectic vector bundle is locally sym-
plectically trivial. This means that every point ¢ € M has a neighbourhood
U such that (7w~ (U),w) is isomorphic to (U x R2™,wy) by a map 1 which
lifts the identity map of U. Hint: Construct sections which form a sym-
plectic basis in each fibre. Compare with Exercise 2.11. O

It follows from Exercise 2.61 that the structure group of a symplectic
vector bundle (E,w) can be reduced from GL(2n; R) to Sp(2n). This means
that £ can be constructed by patching together disjoint pieces U, x R2"
using transition functions U, N Ug — Sp(2n). According to the theory of
classifying spaces (see, for example, [210] and [136]) isomorphism classes
of symplectic bundles over the base M correspond to homotopy classes of
maps from M to the classifying space BSp(2n). But BSp(2n) is homotopy
equivalent to BU(n) by Proposition 2.22. Hence each symplectic bundle
has a complex structure which is well defined up to homotopy. Moreover,
this complex structure characterizes the isomorphism class of the bundle
in the following sense.

Theorem 2.62 The symplectic vector bundles (Ey,w1) and (E2,ws) are
isomorphic if and only if their underlying complex bundles are isomorphic.

Here is a more direct proof of this result. As in the case of vector spaces,
a complex structure on a vector bundle £ — M is an automorphism J
of E such that J? = —1 (think of J as multiplication by z). This complex
structure is said to be compatible with w if the induced complex structure
Jq on the fibre E; is compatible with w, for all ¢ € M. For any such
compatible pair the bilinear form g; : £ x E — R defined by

. 97 (v,w) = w(v, Jw)
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is symmetric and positive definite. A triple (w, J, g) with these properties
is called a Hermitian structure on E. The following proposition asserts
that every symplectic vector bundle admits a Hermitian structure.

Proposition 2.63 Let E — M be a 2n-dimensional vector bundle.

(i) For every symplectic bilinear form on E there exists an almost complex
structure J which is compatible with w. The space J(E,w) of such complez
structures ts contractible.

(ii) Let J be a complex structure on E. Then there ezists a symplectic
bilinear form w which is compatible with J. The space of such forms is
contractible.

Proof: The corresponding statements when M is a single point are proved
in Proposition 2.50 and Exercise 2.52 above. The global statements are
proved by the same arguments. In particular, the existence of a compatible
complex structure on F follows from the existence of an inner product on
E via the map r : 9Met(V) — J(V,w) of Proposition 2.50 with V' = E,.
Statement (ii) follows from Exercise 2.58. The details are left as an exercise
for the reader. 0

Proof of Theorem 2.62: Let J, and J; be compatible complex structures
on the symplectic vector bundles (E;,w;) and (E2,ws). Assume first that
there exists a bundle isomorphism ¥ : E; — E2 such that

‘I’*wg = Wwhi.

Then the complex structures J, and ¥*J, are both compatible wjth w;.
Hence it follows from Proposition 2.63 (i) that there exists a smooth family
of complex structures

Jy i By — By

which are compatible with w; and connect Jo = ¥*J; to J;. By Exer-
cise 2.56 there exists a smooth family of bundle isomorphisms ®; : £y, — F;
such that

‘I’t*Jt = Jl .

Thus the bundle isomorphism ¥ o &, : F;, — E, intertwines J; and Js.
Conversely, a similar argument using Proposition 2.63 (ii) and Corollary 2.4
shows that if the complex vector bundles (E;, J;) and (FE,, J3) are isomor-
phic then so are the symplectic vector bundles (¥;,w;) and (E2,w2). O

Similar results hold for pairs (E, F'), where E is a symplectic bundle
and F' is a subbundle with fibres which are symplectic or Lagrangian sub-
spaces. The next exercise formulates this precisely in the case when F is a
Lagrangian subbundle over the boundary OM of M.
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Exercise 2.64 Let £ — M be a 2n-dimensional vector bundle with com-
plex structure J and F' — M be an n-dimensional totally real subbundle.

This means
JoFq N Fy = {0}

for all g € M. Prove that there exists a symplectic bilinear form «w which
is compatible with J and satisfies F; € L(E4,w,) for ¢ € M. Prove that
the space of such forms is contractible. 0

Trivializations
A trivialization of a bundle F is an isomorphism from F to the trivial
bundle which preserves the structure under consideration. For example, a
symplectic trivialization preserves the symplectic structure, and a complex
trivialization is an isomorphism of complex vector bundles. It follows from
Theorem 2.62 that these notions are essentially the same. For example, a
symplectic bundle (E,w) is symplectically trivial if and only if, given any
compatible complex structure J on E, the complex vector bundle (£, J)
is trivial as a complex bundle. It is therefore convenient to combine these
notions and consider unitary trivializations. The results we develop now
will be used to define the first Chern class in the next subsection.

A unitary trivialization of a Hermitian vector bundle £ is a smooth

map
MxR"™ = E: (¢q,() — ®(g)

which transforms w, J and g to the standard structures on R*":
@*J = JOa P w = Wo, (I’*g = go:

where go(€,7n) = (£,7) for £,7 € R?*. A unitary trivialization along
a curve 7 : [0,1] =& M is a unitary trivialization of the pull-back bundle
Yy E.

Lemma 2.65 Let E — M be a vector bundle with Hermitian structure
(w,J,g). Let v : [0,1] = M be a smooth curve with unitary isomorphisms
Py : R2? — E. o) and @, : R2"™ — E,) at the endpoints. Then there exists
a unitary trivialization ®(t) : R*™ — E._y of v*E such that ®(0) = &, and
(I’(I) = ‘I’] .

Proof: We first prove that such a trivialization exists on some interval
0 <t < e. Choose 3559 € E. ) such that

®o¢ = Z 80¢;
I

for ¢ € R3™. We must construct 2n sections s;(t) € E. ;) which satisfy
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(Sj: Sk) = jk> w(s_,-,sj+n) =1

and w(s;j, sx) = 0 for all other values of j and k. Here {s;, sx) = g(3;, sk)
denotes the inner product. To construct these sections choose a Riemannian
connection V on E (see Kobayashi and Nomizu [145] or Donaldson and
Kronheimer [61]) and choose 3§;(t) € E,(;) to be parallel:

V§_,- == 0, §J(0) — 8j0.

Then for small ¢ the first n vectors §;(t), ..., §»(t) are linearly independent
over C. Now use Gram—Schmidt over the complex numbers to obtain a
unitary basis:

k- -
(87:5x) N~ w086 _
|Sk| Z 84 Z ——rJ 8y, Sk4n — JSk.

N

This works for small time intervals. Now cover the interval [0, 1] by finitely
many intervals over which a unitary trivialization exists and use a patching
argument on overlaps. More precisely, given two trivializations ®; and ®.
over an interval (a, b) choose a smooth path of unitary matrices ¥ : (a,b) —
U(n) C Sp(2n) such that ¥(¢) = 1 for ¢ near a and ¥(t) = ®,(¢) "1 ®a(t)
for t near b. Then ®(t) = ®1(¢)¥(¢) agrees with ®; near a and with &,
near b. O

Proposition 2.66 A Hermitian vector bundle E — ¥ over a compact
Riemann surface ¥ with nonempty boundary 0X admils a unitary trivializa-
tion. !

Proof: The proof of the proposition is by induction over the number
E(S) = 29(Z) + £(%),

where £(2) > 1 is the number of boundary components and g(3) > 0 is the
genus. If k(X)) = 1 then ¥ is diffeomorphic to the unit disc and in this case
the statement is a parametrized version of Lemma 2.65: trivialize along
rays starting at the origin.

Suppose the statement has been proved for k(E) < m and let k(%) =
m + 1. Then ¥ can be decomposed as ¥ = £; Uc Es such that k(X;) = m
and X, is diffeomorphic to the unit disc with two holes. (See Fig. 2.2.)

There are two cases. Either C' has one component and

9(%1) = g(%), X)) =4£(%) -1
or (' has two components and

9E) =g(X) -1, LT) =) +1.
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\ Cs

F1G. 2.2. Decomposing &

In either case k(2,) = k() — 1.

By the induction hypothesis the bundle F admits a trivialization over
3;. We must prove that any trivialization of E over C extends to a trivi-
alization over 4. Denote

622 =C1 UCz UC3,

where C] and Cs, are the (interior) boundaries of the two holes and Cj is
the (exterior) boundary of the disc. If C' = C] U C connect the two circles
¢y and Cs by a straight line. By Lemma 2.65 extend the trivialization over
C to that line. Then use Lemma 2.65 along rays to extend the trivialization
to ¥. If C = C; choose first any trivialization over Cy and then proceed as
above. O

Exercise 2.687 Define the notion ‘symplectic trivialization’. Show that a
Hermitian bundle has a unitary trivialization if and only if its underlying
symmplectic bundle has a symplectic trivialization. 0

Exercise 2.68 Prove that the space of paths ¥ : [0,1] = Sp(2n) of sym-
plectic matrices satisfying ‘

T(1) = ¥(0)?

has two components. Deduce that up to isomorphism there are precisely
two symplectic vector bundles (of every given dimension) over the real
projective plane RP?. Hint: Think of RP? as the 2-disc with opposite
points on the boundary identified. 'O

First Chern class

Since the set of isomorphism classes of symplectic vector bundles coincides
with the set of isomorphism classes of complex vector bundles, symplectic
vector bundles have the same characteristic classes as complex vector bun-
dles, namely the Chern classes. In this subsection we establish the existence
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of the first Chern class. This is an element of the integral 2-dimensional
cohomology of the base manifold. For bundles over 2-dimensional bases,
the first Chern class ¢, is completely described by the first Chern number,
which is the value taken by c¢; on the fundamental 2-cycle of the base,
Therefore we will begin by describing this integer invariant for symplectic
vector bundles over compact oriented Riemann surfaces without boundary,
It can be defined axiomatically as follows.

Theorem 2.69 There exists a unique functor ¢y, called the first Chern
number, that assigns an integer ¢;(E) € Z to every symplectic vector
bundle E over a compact oriented Riemann surface ¥ without boundary
and satisfies the following axioms.

(naturality) Two symplectic vector bundles E and E' over ¥ are isomor-
phic iff they have the same dimension and the same Chern number.

(functoriality) For any smooth map ¢ : ¥’ — X of oriented Riemann
surfaces and any symplectic vector bundle E — X

c1(¢" E) = deg(9) - c1 (E).
(additivity) For any two symplectic vector bundles Ey — % and E3 — X
(B @ E2) = a1 {Er ® Ey) = 1 (E1) + a1(E2).
(normalization) The Chern number of the tangent bundle of ¥ is
a(TE) =2 - 2g,

where g is the genus.

Remark 2.70 (i) It follows from the axioms that the first Chern number
vanishes if and only if the bundle is trivial. Hence the first Chern num-
ber ¢;(E) can be viewed as an obstruction for the bundle E to admit a
symplectic trivialization.

(ii) If E is a symplectic vector bundle over any manifold M then the first
Chern number assigns an integer ¢; (f*E) to every smooth map f: X —+ M
from a compact oriented Riemann surface without boundary to M. We
will see in Exercise 2.78 that this integer depends only on the homol-
ogy class of f. Thus the first Chern number generalizes to a homomor-
phism Hy(M;Z) — Z. This gives rise to a cohomology class ¢ (E) €
H?(M; zZ)/torsion. There is in fact a natural choice of a lift of this class to
H?(M;Z), also denoted by c;(E), which is called the first Chern class.
We shall not discuss this lift in detail, but only remark that in the case of
a line bundle L — M the class ¢; (L) € H?(M;Z) is Poincaré dual to the
homology class determined by the zero set of a generic section.
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(iii) It is customary to define the Chern class as an invariant for complex
vector bundles. It follows from Theorem 2.62 that our definition agrees with
the usual one. . 0

We will prove Theorem 2.69 by giving an explicit definition of the first
Chern number and checking that the axioms are satisfied. Given a compact
oriented Riemann surface ¥ without boundary choose a splitting

X=31Uc Xy

such that 8X, = 0Xs = C. Orient the 1-manifold C' as the boundary of X;:
a vector v € T,C is positively oriented if {v(g),v} is a positively oriented
basis of T,%, where v : C — TX is a normal vector field along C' which
points out of %;.
Now let FE be a symplectic vector bundle over ¥ and choose symplectic
trivializations
T xR 5 E:(q,0) — Pr(g)C

of E over ¥; and 3. The overlap map ¥ : C' — Sp(2n) is defined by

P(q) = ®1(q) "' ®2(q)

for ¢ € C. Consider the map p : Sp(2n) — S! defined by

p(¥) == det (X + 1Y), (;", "}2) = (PeT)~1/2yg

as in Theorem 2.29. We shall prove that the first Chern number of E is the
degree of the composition po ¥ : C — S!:

c1(E)=deg po V.

In other words, the first Chern number is the sum of the Maslov indices of
the loops ¥ o v; : R/Z — Sp(2n)

i

a(E) = p(¥ o),

j=1 ,
where ¢ is the number of components of C' and each component is para-
metrized by a loop «v; : R/Z — C such that ¥;(t) is positively oriented. A
direct application of this definition is given in Example 2.74 below. The next
lemma is required to prove that with this definition the first Chern number
is independent of the choices, i.e. that the degree of p o ¥ is independent
of the splitting and of the trivializations.
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Lemma 2.71 Let ¥ be a compact oriented Riemann surface with non-
empty boundary. A smooth map ¥ : %X — Sp(2n) eztends to X if and only

if
deg po ¥ = 0.

Proof: First assume that ¥ extends to a smooth map £ — Sp(2n). Then
the composition po ¥ : 3% — S! extends to a smooth map ¥ — S* and
hence must have degree zero.

Now assume that X = Cy U C}, where both Cy and C; are nonempty.
We prove that any smooth map ¥ : Cy — Sp(2n) extends over X. This is
obvious in the case of the cylinder ¥ = S! x [0,1]. The case where ¥ is
the disc with two holes and C; is the outer boundary can be reduced to
that of the cylinder by extending the map ¥ : Cp — Sp(2n) over a line
which connects the two holes. The general case is proved by decomposing
a Riemann surface as in the proof of Proposition 2.66.

Conversely, assume deg p o ¥ = 0. By what we just proved the map
¥ : 0¥ — Sp(2n) extends over £ — B, where B is a disc. By the first part
of the proof the resulting loop 8B — Sp(2n) has Maslov index zero. By
Theorem 2.29 this loop is contractible. 0

Proof of Theorem 2.69: We prove that the degree of p o ¥ as defined
above is independent of the choice of the splitting and the trivialization
and satisfies the axioms of Theorem 2.69. By Lemma 2.71 the degree of
p o ¥ is independent of the choice of the trivialization. We prove that it is
independent of the choice of the splitting. Consider a threefold splitting

Y+ Y32 Uc, ¥21 Ue, 10
and choose trivializations ®3; and ®49 of E over
Y31 = X3z Ug, 321, Y20 = X21 U, Lio-

(See Fig. 2.3.)
The corresponding overlap map is

U1 () = P31(q) ' ®20(g)

'for g € ¥21. The restriction ¥; = ¥,;|C} corresponds to the splitting
2 = 231 U(j1 210 and ‘I’z = ‘DQ]'CQ to the Splitting Y = 232 U02 220.
By Lemma 2.71 both curves ¥, and ¥, with the induced orientations of
C1 = 0%y and of Cy = 9X90 have the same Maslov index. This proves the
statement for two splittings along disjoint curves €} and C,. The general
case can be reduced to this one by cfloosing a third splitting.

We prove naturality. Fix a splitting ¥ = X; U¢c Za, where C has only
one component. Choose trivializations of F and E' over £; and ¥, and
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3

F1G. 2.3. A threefold splitting

let ¥ : C — Sp(2n) and ¥’ : C — Sp(2n) be the corresponding loops of
symplectic matrices. Since ¥ and ¥’ have the same Maslov index the loop
¥'P—1: C — Sp(2n) extends to a smooth map ¥, — Sp(2n). Use this map
to construct the required symplectic isomorphism E — E'.

We prove functoriality. Choose a regular value ¢ € Z of ¢ : £’/ — ¥ and
cut out a small neighbourhood B C ¥ of ¢. Then ¢~*(B) consists of d =
deg(¢) discs By, ..., By C ¥'. Let ¥ : B; — Sp(2n) be the corresponding
parametrized loops of symplectic matrices arising from trivializations of
¢*E over B} and ¥’ — U; B;. These loops all have the same Maslov index
deg po ¥ = ¢;(E). Hence c1(¢*E) = d - c1(E).

Additivity follow from the identities

det(Uy @ Us) = det(Uh ® Up) = det(U;) det(Us)

for unitary matrices U; € U(n;). The axiom of normalization is left as an
exercise and so is the proof of uniqueness. O

Chern—Weil theory

The first Chern class can also expressed as a curvature integral. We explain
this in the case of a line bundle L — ¥ over a compact oriented Riemann
surface . Let L be equipped with a Hermitian structure and consider the
circle bundle (or unitary frame bundle) 7 : P — X of all vectors in L of
length 1:

P={(z,v)]|z € Z,v'€ L,, |v| = 1}.

The circle S = {A € C||\] = 1} acts on this bundle in the obvious way.
We denote this action by P x §' = P : (p,\) — p- \. For i6 in the Lie
algebra iR = Lie(S!) we denote the induced vertical vector field on P by

d . iBt
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for p € P. A connection on P is a 1-form A € Q'(P,iR) with values in
iR = Lie(S!) which is invariant under the action of S' and canonical in
the vertical direction, namely

Apa(v-A) = Ap(v), Ap(p-i) =i

for p € P, v € T,P, and X € S!. Since the group is abelian, the curvature
of a connection 1-form A agrees with the differential dA. This differential is
invariant and horizontal in the sense that dA,(p-i,v) =0 for all v € T, P.
Any such form descends to the base %, i.e.

dA = 7*T, T € N2(%,iR).
The following result is a simple case of Chern—Weil theory.
Theorem 2.72 Every connection 1-form A on P satisfies

(]

c;(P) = T, dA =7'T.

27!'2

Moreover, for every 2-form T € Q*(%,iR) with [T = —2mic,(P) there
exists a connection 1-form A on P with dA = 7"T.

Proof: Decompose ¥ = ¥; Uc ¥2 and choose sections
§; ! Ej — P.
These give rise to trivializations ¥; x € — L : (2,{) = s;(z){ and,
according to the discussion after Theorem 2.69, the first Chern number
c1(L) = ¢1(P) € Z is the degree of the loop v : C — S! defined by
s1(z)v(z) = s2(2), z€C,

where C' is oriented as the boundary of ¥;. Now the connection A pulls
back to 1-forms a; = sjA € Q'(Z;,iR) and we have

* f T = f day + das
x h 38 22

= [ (a1 — a2)
c
= - / vy
c
. = —2mideg(y).

The last identity is a simple exercise. Since ¢;(L) = ¢1(P) = deg(~y) this
proves the first statement of the theorem. To prove the second statement
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let 7 € Q%(X) be any 2-form such that ;. 7" = —2nxic,(P). Then 7/ — 1 is
exact and hence 7 — 7 = do for some 1-form a € Q!(X, iR). It follows that
A’ = A+ m*a is a connection 1-form with curvature dA4’ = 7=*r'. ]

Chern class and Euler class

Let L — X be a complex line bundle (or symplectic bundle of rank 2) over
an oriented Riemann surface 3. Then the first Chern number can also be
interpreted as the self-intersection number of the zero section of L. More
precisely, let s : 3 — L be a section of L which is transverse to the zero
section. Then s has finitely many zeros and at each zero z the intersection
index ¢(z, 8) is defined to be %1 according to whether or not the linearized
map Ds(z) = wods(z) : T;X — L. is orientation preserving or orientation
reversing. The following theorem shows that the sum of these indices agrees
with the first Chern number of L. In other words ¢; (L) is the obstruction
to the existence of a nonvanishing section of L and so coincides with the
Euler class of L.

Theorem 2.73 If the section s : ¥ — L is transverse to the zero section
then the first Chern number of L is given by

erl(L)= Y. uz,s). (2.2)

8(z)=0

Proof: The proof is an exercise with hint. Cut out a small neighbourhood
U of the zero set of s and use s to trivialize the bundle L over the comple-
ment ¥’ = ¥ — U. Use a different method to trivialize, ¥ over U and then
compare the two trivializations over the boundary of U (which consists of
finitely many circles). |

Examples

We begin by working out the first Chern class of the normal bundle ycp:
to the line CP! in the complex projective plane CP2. We will use the
notation of Example 4.21 and, for simplicity, will work in the complex
context, choosing complex trivializations rather than symplectic ones. By
Theorem 2.62, this will make no difference to the final result.

Example 2.74 Consider tpe line {[z0 : z; : 0]} in CP2. It is covered by
the two sets Xy = {[1:2; : 0]|]|z1] € 1} and X2 = {[20 : 1: 0]||z0| < 1},
which intersect in the circle C = {[1 : €2 : 0]}. Note that @ is a positively
oriented coordinate for C. It is not hard to see that the fibre of vgcp1 over
the point [1 : 2 : 0] € ¥, embeds into CP? as the set {[1: z; : w]|w € C}.
Therefore we may choose the complex trivializations

®; 5, xCouvepr, &1([1:2,:0],w) =[1:21%w],
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Py :3, xC ~>vep1, P2([z0:1:0],w) =[20:1:w].
The map &7 1®,(z) : C - C is the composite
wr—[1/z:1:w] =[1: z:2w] — zw,
and so induces the map

C—U@1):0 > ¥,

This shows that ¢; (vep1) = 1. |
Exercise 2.75 Use the formula (2.2) to calculate the first Chern number
¢1(vepr) of the normal bundle vepr of CP! in CP2. Q

Exercise 2.76 Let L ¢ C* x CP™ ! be the incidence relation:

L={(z0]|z¢€t}
= {(21s++s2n;[wr i ...t wg]) |wize = wrz; V 5, K}

The projection pr : L — CP"~! gives L the structure of a complex line
bundle over CP™*~!. Show that when n = 2 the first Chern number of the
restriction L|cp1 is —1, and hence calculate ¢; (L) for arbitrary n. Another
approach to this calculation is given in Lemma 7.1. : 0

Exercise 2.77 Prove that every symplectic vector bundle over a Riemann
'surface decomposes as a direct sum of 2-dimensional symplectic vector bun-
dles. You can either prove this directly, or use the naturality axiom in
Theorem 2.69. 0

Exercise 2.78 (i) Suppose that £ — % is a symplectic vector bundle
over an oriented Riemann surface X that extends over a compact oriented
3-manifold ¥ with boundary 8Y = %. Prove that the restriction E|x has
Chern class zero. Hint: Use part (i) of Remark 2.70 and consider a section
s as in Theorem 2.73.

(11) Use (i) above and Exercise 2.77 to substantiate the claim made in Re-
mark 2.70 that the Chern class ¢; ( f* £) depends only on the homology class
of f. Here the main problem is that when f.([X]) is null-homologous the
3-chain that bounds it need not be representable by a 3-manifold. However,
its singularities can be assumed to have codimension 2 and so the proof of
(i) goes through. W

Exercise 2.79 Prove that every symplectic vector bundle £ — 3 that
admits a Lagrangian subbundle can be symplectically trivialized. Hint:
Usci the proof of Theorem 2.69 to show that ¢; (£) = 0. O



3
SYMPLECTIC MANIFOLDS

This is a foundational chapter, and everything in it (except perhaps
Section 3.4 on contact structures) is needed to understand later chapters.
The first section contains elementary definitions and first examples of sym-
plectic manifolds. The second section is devoted to Darboux’s theorem.
As Gromov notes in [110], symplectic geometry is a curious mixture of
the ‘hard’ and the ‘soft’. Some situations are flexible and there are no
nontrivial invariants, while other situations are rigid. In this chapter we
deal with ‘soft’ phenomena, the fact that in symplectic geometry there are
no local invariants. The classical formulation of this principle is known as
Darboux’s theorem: all symplectic forms are locally diffeomorphic. However
there are many other related results, such as Moser’s stability theorem and
various versions of the symplectic neighbourhood theorem. We prove these
in Sections 3.2 and 3.3 using Moser’s homotopy method. The chapter ends
with a brief discussion of contact geometry. This is the odd-dimensional
analogue of symplectic geometry, and there are many connections between
the two subjects.

3.1 Basic concepts .

Throughout we will assume that M is a C°°-smooth manifold, which (unless
specific mention is made to the contrary) has no boundary. Very often, M
will also be compact.

A symplectic structure on a smooth manifold M is a nondegenerate
closed 2-form w € 22(M). Nondegeneracy means that each tangent space
(TyM,w,q) is a symplectic vector space. The manifold M is necessarily of
even dimension 2n and, by Corollary 2.5, the n-fold wedge product

c:JA.../\w

never vanishes. Thus M is orientable.
The first example of a symplectic manifold is R?” itself with the stan-
dard symplectic form

]
Wo = Z dx; A dy;
j=1

+

which was defined in Section 1.1. Another basic example is the 2-sphere
with its standard area form. If we think of $2 as the unit sphere
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Py : 30 xC— vepr, Po[z0:1:0],w) =[20:1:w].
The map <I’1“1'I>2(z) : C — C is the composite
wrr [1/z:1:w]=(1: z: zw] — 2w,
and so induces the map

C—U@R):0 e,

This shows that ¢ (vgp1) = 1. a
Exercise 2.75 Use the formula (2.2) to calculate the first Chern number
¢1(vep1 ) of the normal bundle vepr of CP! in CP2. 0

Exercise 2.76 Let I. ¢ C* x CP" ! be the incidence relation:

L={(z¢0|z€t}
= {(21,..-,2n;[w1 1 ... wy)]) | wjzk = wrz; V j, k}.

The projection pr : L — CP®~1 gives L the structure of a complex line
bundle over CP?~!. Show that when n = 2 the first Chern number of the
restriction L|cp1 is —1, and hence calculate c; (L) for arbitrary n. Another
approach to this calculation is given in Lemma 7.1. : !

Exercise 2.77 Prove that every symplectic vector bundle over a Riemann
'Surface decomposes as a direct sum of 2-dimensional symplectic vector bun-
dles. You can either prove this directly, or use the naturality axiom in
Theorem 2.69. -

Exercise 2.78 (i) Suppose that E — X is a symplectic vector bundle
over an oriented Riemann surface X that extends over a compact oriented
3-manifold Y with boundary Y = . Prove that the restriction E|x has
Chern class zero. Hint: Use part (i) of Remark 2.70 and consider a section
s as in Theorem 2.73.

(it) Use (i) above and Exercise 2.77 to substantiate the claim made in Re-
mark 2.70 that the Chern class ¢, (f* E) depends only on the homology class
of f. Here the main problem is that when f,([2]) is null-homologous the
3-chain that bounds it need not be representable by a 3-manifold. However,
its singularities can be assumed to have codimension 2 and so the proof of
(i) goes through. 0

Exercise 2.79 Prove that every symplectic vector bundle £ — ¥ that
admits a Lagrangian subbundle can be symplectically trivialized. Hint:
Use the proof of Theorem 2.69 to show that ¢;(E) = 0. O



