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A Chain Level Transfer Homomorphism
for PL Fibrations

Hans J. Munkholm*

Department of Mathematics, Princeton University, Princeton, N.J. 08540, U.S.A.
Matematisk Institut, Odense Universitet, Campusvej 55, DK-5320 Odense, Denmark

Let p: E— B be a Hurewicz fibration with compact fiber F, and h* a generalized
cohomology theory. It is well known, see e.g. [1] and [2], that p gives rise to a
transfer homomorphism t(p)*: h*(E) — h*(B). Also, if B has the homotopy type
of a finite CW complex then t(p)* is induced by an S-map t(p): B*—E*
(+ means addition of a base point); t(p) is called a transfer map.

The simplest case of a transfer homomorphism occurs when h* =ordinary
cohomology and p: E— B is a finite sheeted covering. Then t(p)* is induced by
the chain map (singular chains, say)

1(p)y: C(B)— C(E)

having
1(p)4(0)=26 1

where : A[s]— E runs over all liftings of a: 4[s] — B, A[s] being the standard
s-simplex.

In this note we show that when we deal with PL fibrations (i.e. Serre
fibrations in the category of polyhedra and PL maps, compare [4]) having
compact fibers then there is an equally trivial definition of a chain map

©(p)y: C(B)— C(E)

which induces the transfer map on (co-)homology. Here C is the simplicial chain
functor.

We have no specific applications in mind that cannot equally well be derived
from the existing definitions. Thus our only reason for publishing the present
note is the inherent simplicity (and consequent beauty) of the approach.

Let p: E—> B be a PL map between polyhedra. Assume that E and B have
been given triangulations for which p is simplicial. Simplices of E (and B) will be
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denoted by e, e; (and b,b,). Also let B’ be the standard barycentric subdivision of
B and let E' be some barycentric subdivision of E for which p: E—B is
simplicial (compare remark (1) p. 225 of [3]). The typical s-simplex f of B’ has
the form

B=(bo,b,,...,b)

where bo>b, >...>b_in B, and ~denotes barycenter. We shall let C(B') be the
simplicial chains on B'. To define 7(p),: C(B')— C(E') we note that when g is a
vertex of E" with p(e;) =b,, then g, =€, for some simplex e, mapped onto b, by p.
Now let e;=e,np~!(b,). Then

T(ﬂ’ 80)=(é09 éla ey és)

is a well defined s-simplex of E' which projects to § under p. We define 7(p)w (B)
to be an alternating sum of these liftings of f with one summand for each
simplex ¢ of p~!(b,) S E/, to wit

T(P)+ (B) =§( = 1) 7(B,4(0) (2
Here |¢] is the dimension of ¢ and ¢(0) is the 0" vertex of @.

Theorem. Let p: E— B be a PL fibration with compact fibre F. Then
(i) ©(p)y: C(B)— C(E') is a chain map
(i) The composition C(B')—-2*, C(E)-2% C(B) is multiplication by x(F)
(i) t is natural w.r.t. inclusion of subcomplexes A < B.
(iv) With the standard diagonal approximation A the following diagram com-
mutes

C(B)—2"— C(E)

K

4 C(EY® C(E)
j 1@p4
C(B)® C(B)—s— C(E)® C(B)

Remarks 1. Property (ii) is the chain level edition of the characteristic property for
a transfer homomorphism.

2. Property (iv) is the dual of a chain level edition of the so called projection
formula for the cohomology transfer homomorphism, vizually

T(P)*(x-p*y)=1(p)*(x)-y, xeH*(E), yeH*(B).

Proof. Properties (ii) and (iii) are trivially verified. The same is true for (iv) after
we remark that the diagonal approximation has
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Albo, ) =Y (bo, -, 5) ® (b, ... ).
Let B9 be the it f‘ace of B. One then has
©(B,e)" =1(B%,¢)
whenever i>0. Thus, to verify (i) we only need to establish the formula

@)+ B =1(p)4 (B). ©)

To that end we define the simplicial map g=g®: p~'(by)—p~'(b,) by the
formula

g(f()’fl’”"fz):(éo’""é()s ei=f;ﬂp_1(b1);

here ¢ =(fy.f;,....f) is a typical simplex of p~ 1(Bo), ie fo>fi>...>f,in E and
p(f)=b, for all i. It is easily seen that g is indeed a simplicial map. Moreover,
directly from the definitions one has

©(B.e) " =1(8”, g(¢)) Q)

for any vertex ¢ of p~ 1(710). Using this, and the definition of z(p) ., we see that (3)
follows from

Y (—D¥=(=1¥, all yep~'(b,). )
¢peg~ (W)

Now, for a given y, the subsets
g Wne,  deg'(¥)

form a decomposition of the polyhedron g '() into convex cells with the
dimension of g~ (y)n ¢ being |p|—|y|. Thus (5) is equivalent to

1@ '(P)=1 for each yep~i(h,). 6)

But Hatcher shows, see proposition 2.1 of [4], that each g~ !(}}) is contractible.
Hence our proof is finished.

Remarks. 1. The above shows that t(p), is a chain map provided x((g®)™*(}))
=1 for each f in B’ and each yep~!(b,)<E’, B=(by,b,,...,b,). Hatcher, [4],
shows that p is a PL fibration if and only if ()~ ! () is contractible for all ¥
and f as above. Thus in our theorem we could state a weaker (but also less
natural) hypothesis for p.

2. The above ideas could probably be used to give a new definition of the
transfer homomorphism

©(p)*: h*(B)— h*(E)

for any generalized cohomology theory. However, such a definition would, most
likely, not be any simpler, nor more elegant, than its existing competitors, so we
have not pursued the idea.
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