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PREFACE

Differential topology may be defined as the study of those proper-
ties of differentiable manifolds which are invariant under differentiable
homeomorphisms. Problems in this field arise from the interplay between the
topological, combinatorial, and differentiable structures of a manifold.
They do not, however, involve such notions as connections, geodesics, curva-
ture, and the like; in this way the subject may be distinguished from dif-
ferential gecmetry.

One partlcular flowering of the subject took place in the 1930's,
with work of H. Whitney, 8. 8. Cairns, and J. H. C. Whitehead. A second
flowering has come more recently, with the exciting work of J. Milnor, R.
Thom, S. Smale, M. Kervaire, and others. The later work depends on the
earlier, of course, but differs from it in many ways, most particularly in
the extent to which it uses the results and methods of algebraic topology.
The earlier work is more exclusively geometric in nature, and is thus in
same sense more elementary.

One may make an analogy with the discipline of Number Theory, in
which a theorem is called elementary if its proof involves no use of the
theory of functions of a complex variable — otherwise the proof is said to be
non-elementary. As one is well aware, the terminology does not reflect the

difficulty of the proof in question, the elementary proofs often being harder
than the others.

It is in a similar sense that we speak of the elementary part of
differential topology. This is the subject of the present set of notes.

Since our theorems and proofs (with one small exception) will in-
volve no algebraic topology, the background we expect of the reader consists
of a working knowledge of: the calculus of functions of several variables
and the associated linear algebra, point-set topology, and, for Chapter II,
the gadnetry (not the algebra) of simplicial complexes. Apart fraﬁ these
toplcs, the present notes endeavor to be self-contained.

The reader will not find them especially elegant, however., We are
vii



not hoping to write anything like the definitive work, even on the most
elementary aspects of the subjJect. Rather our hope is to provide a set of
notes from which the student may acquire a feeling for differential topology,
at least in its geometric aspects. For this purpose, 1t is necessary that
the student work diligently through the exercises and problems scattered
throughout the notes; they were chosen with this object in mind.

The word problem is used to label an exercise for which either
the result itself, or the proof, is of particular interest or difficulty.
Even the best student will find some challenges in the set of problems.

Those problems and exercises which are not essential to the logical continui-
ty of the subject are marked with an asterisk.

A second objJect of these notes is to provide, in more accessible
form than heretofore, proofs of a few of the basic often-used-but-seldom-
proved facts about differentiable manifolds. Treated in the first chapter
are the body of theorems which state, roughly speaking, that any result
which holds for manifolds and maps which are infinitely differentiable holds
also if lesser degrees of differentiability are assumed. Proofs of these
theorems have been part of the "folk-literature" for some time; only recent-
ly has anyone written them down. ([8] and [9]).) (The stronger theorems of
Whitney, concerning analytic manifolds, require quite different proofs,
which appear in his classical paper [15].)

In a sense these results are negative, for they declare that nothing
really interesting occurs between manifolds of class ¢! and those of class
C”. However, they are still.worth prqving, at least partly for the tech-
niques involved. '

The second chapter 1s devoted to proving the existence and unique-
ness of a smooth triangulation of a differentiable manifold. In this, we
follow J. H. C. Whitehead [14]), with some modifications. The result itself
is one of the most useful tools of differential topology, while the tech-
niques involved are essential to anyone studying both cambinatorial and
differentiable structures on a manifold. The readef whose primary interest
is in triangulations may omit §4, §5, and §6 with 1little loss of continuity.

We have made a conscious effort to avoid any more overlap with the

lectures on differential topology [4] given by Milnor at Princeton in 1958
viii



than was necessary. It is for this reason that we omit a proof of Whitney's
imbedding theorem, contenting ourselves with a weaker one. We hope the
reader will find our notes and Milnor's to be useful supplements to each

other.

Remarks on the revised edition

Besides correcting a number of errors of the first edition, we have
also simplified a few of the proofs.

In addition, in Section 2 we now prove rather than merq}y quote
the requisite theorem from dimension theory, since few students have 1t as
part of their background. The reference to Hurewicz and Wallman’s book was
inadequate anyway, since they dealt only with finite coverings.

Finally, we have added at the end some additional problems which
exploit the Whitehead triangulation techniques. The results they state have
already proved useful in the study of combinatorial and differentiable struc-
tures on manifolds.
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ELEMENTARY DIFFERENTIAL TOPOLOGY



CHAPTER I.

DIFFERENTIABLE MANTFOIDS

§1. Introduction.

This section 1s devoted to defining such basic concepts as those of
differentiable manifold, differentisble map, immersion, imbedding, and dif-
feamorphism, and to proving the implicit function theorem.

We consider the euclidean space R® as the space of all infinite
i

sequences of real numbers, X = (x‘, xe, «..), such that x* = 0 for
1> m; euclidean half-space H® 1s the subset of R® for which x* 2 0.
Then R%' ¢ H® ¢ R%. We denote J((x‘)2 N e k) by x|, and

max |x1[, by |x|. The unit sphere g1 15 the subset of R® with

Ix|] = 1; the unit ball B™, the set with (x|l < 1; and the r-cube C™(r)
is the set with |x| < r. Often, we also consider R® as simply the space
of all m-tuples (x‘,...,xm), where no confusion will arise.

1.1 Definition. A (topological) manifold M 1s a Hausdorff space
with a countable basis, satisfying the following condition: There is an in-
teger m such that each point of M has a neighborhood hamecmorphic with
an open subset of H®™ or of R&.

If h:U = H' (or R%) 1is a homeomorphism of the neighborhood U
of x with an open set in H"™ or R™, the pair (U,h) is often called a
goordinate neighborhood on M. If h(U) is open in H® and h(x) lies in
Rm", then x 1is called a boundary point of M, and the set of all such
points is called the boundary of M, denoted by Bd M. If Bd M 1is empty,

we say M 1s non-bounded. (In the literature, the word manifold is common-

ly used only when Bd M 1is empty; the more inclusive term then is manifold-

3



b I. DIFFERENTIABLE MANTFOLD3

with-boundary.) The set M - BA M 1is called the interior of M, and is

dencted by Int M. (If A 1is a subset of the topological space X, we

also, Gse Int A tomean X - C£(X-A), but this should cause no confusion.)
To justify these definitions, we must note that if h, : U, = H"

"and h, : U, = H' are hameomorphisms of neighborhoods of x with open sets
in H%, and 1f h,(x) 1lies in R™', so does hy(x): For otherwise, the
map h.,h;' would give a homeomorphism of an open set in RT with a neigh-
borhood of the point p = h,(x) 1in H®. The latter neighborhood 1is certain-
1y not open in Rm, contradicting the Brouwer thecrem on invariance of
domain [3, p. 95].

One may also verify that the number m 1is uniquely determined by
M; 1t is called the dimension of M, and M 1is called an m-manifold.
This may be done either by using the Brouwer theorem on invariance of domain,
or by applying the theorem of dimension theory which states that the topo-
logical dimension of M 1s m [3, p. ¥6]. Strictly speaking, to apply the
latter theorem we need to know that M 1s a separable metrizable space; but
this follows fram a standard metrization theorem of point-set topology (2,
p. 751. '

Because M 1s locally campact, separable, and metric, M is
paracompact [2, p. 79]. We remind the reader that this means that for any
open covering @ of M, there is another such collection @ of open sets
covering M such that

(1) The collection ® 1is a refinement of the first, i.e., every ele-
ment of ® 1s contained in an element of @&.
(2) The collection @ is locally-finite, i.e., every point of M has

& neighborhood intersecting only finitely many elements of ®
In passing, let us note that because M has a countable basis, any locally-
finite open covering of M mst be countable.

| (a) Exercise. If M 4is an m-manifold, show that Bd M is & non-
bounded m-1 manifold or is empty.

(b) Exercise. Iet M be an m-manifold with non-empty boundary.
Iet My =Mx0 and M, = Mx 1 ©be two copies of M. The double of M,
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denoted by D(M), 1s the topological space obtained from My UM, by identi-
fying (x,0) with (x,1) for each x in Bd M. Prove that D(X) is a non-
bounded manifold of dimension m.

(¢c) Exercise. If M &and N are manifolds of dimensions m and
n, respectively, then M x N 'is a manifold of dimension m + n, and
Bd(M x N) = ((Bd M) x N) U (M x (Bd N)).

1.2 Definition. If U 4is an open subset of R, then f : U— R"

is differentiable of class C° if the partial derivatives of the component
functions f',...,f% through order r are continuous on U. If f is of
class C¥ for all finite r, it is said to be of class C .

If A is any subset of R™®, then f : A= R" 1is differentiable

of class C° (1 < r < ») if for each point x of A, there is a neigh-
borhood Ux of x such that f|(A N Ux) may be extended to a function
which is of class C° on Uy

If f: A—R" 1s differentiable, and x 1s in A, we use Df(x)
to denote the Jacobian matrix of f at x — the matrix whose general entry
is 844 = afifaxj. We also use the notation afi,...,fn/B(x1,...,xm) for
this matrix. Now f must be extended to a neighborhood of X before these
partials are defined; in the cases of interest, the partials arc independen-.
of the cholce of extension (see Exercise (b)).

We recall here the chain rule for derivatives, which states that
D(fg) = Df - Dg, where fg 1is the composite function, and the dot indicates
matrix multiplication.

I (a) Exercise. Check that differentiability is well-defined; 1i.e.,
that the differentiability of f : A— R” does not depend on which "contain-
ing space” R™ for A 1is chosen.

(b) Exercise. Let U be open in R™; let UCA CU. If f :
A—R" 1is of class 01, and x 1is in A, show that Df(x) 1s indepen-
dent of the extension of f{ toc a neighborhood of x in R™ which is

chosen. l




6 I. DIFFERENTIABLE MANIFOLDS

Remark. Our definition of the differentiability of & map f:
A=R® is essentially a local one. We now obtain an equivalent global
formulation of differentiability, which is given in Theorem 1.5.

1.3 Iemma. There is a c* function Q ¢ Rm-rﬁ1 which equals 1
on C(1/2), 1is positive on the interior of C(1), and is zero outside C(1).

Proof. Let f(t) =e '/t for t> 0, ana f£(t) =0 for t<o.
Then f is a C° function which is positive for t-> 0.

Let g(t) = £f(t)/(f(t) + f(1-t)). Then g is a C” function such
that g(t) =0 for t<0, g'(t) >0 for 0<t<1, and g(t) =1 for
t> 1,

Iet h(t) = g(2t+2) g(-2t + 2). Then h is a C” function such
that h(t) =0 for |[t| > 1, h(t) >0 for |t] <1, and h(t) =1 for
] < 1/2.

y = g(t) y= h(t)

Iet o(x',...,X% = h(x') + h(x®) - h(xD).

#

(a) Exercise. Generalize the preceding-lemma as follows: ILet U
be an open subset of Rm; let C be a campact subset of U. There is a
c* real-valued function ¥ defined on R such that ¥ is positive on C
and is zero 1n a neighborhood of the complement of U.
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Remark. Whenever an indexed collection {Cy} of subsets of X 1is
said to be locally-finite, we shall mean by this that every point of X has
a neighborhood intersecting C; for at most finitely many values of 1.
This convention is convenient; it implies that only the empty set can equal
Ci for more than finitely many 1.

1.4 Iemma. (1) Iet {Ui} be an open covering of the paracampact
space X. There is a locally-finite open covering {Vil of X such that
vV, CU, for each 1. (2) Let (V,] be a locally-finite open covering of

the normal space X, where i1 =1, 2, ..., there is a closed covering (Ci) of
X such that Ci C Vi for each 1.

Proof. (1) Let ® be a locally-finite refinement of (U;). For
each element B of @®, choose an index J(B) such that B C UJ(B) . De-
fine VJ as the union of those B for which j(B) = j. Each point has a
neighborhood intersecting only finitely many elements of ®; this neligh-
borhood intersects Vj for only finitely many values of J.

(2) We construct the coverings [Cil by induction. Let W, be an
open set containing X - (V, UV3; U ...), whose closure is contained in
V,. let C, =W, '

Suppose W, U ... ij_.1 UV"j Uv3+1 U... =X. Let WJ be
an open set containing

X"(WI U "o ij_1 UV U-c-)

J#

vhose closure is contained in VJ. let CJ = 'JJ.

To prove that the collection [Wj} covers X, note that any point

X lles in only finitely many sets V;]' Hence for some J, x 1is not in
VJ U’VJH U.... Asaresult, x must belong to W, U ... UW, ,, by

4he. induction hypothesis. Transfinite induction may be used to prove (2) for
an arbitrery index set.

1.5 Theorem. Let A be a subset of R'; let f : A—R" be

of class C°. Then f may be extended to a function which is of class C¥
in a neighborhood of A. .
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Proof. By hypothesis, for each polnt x of A, there is a neigh-
borhoed Uk of x such that f|A n U, may be extended to a function which
is of class C° on Uy. We choose DX to be compact. ILet M be the union
of the sets U,; it is an open subset of R". Let (V,] be a locally-
finite open refinement of the covering [Ux] of M. Let [Cil be a cover-
ing of M by closed sets such that C, C V; for each 1. Iet ¥, bea C°
function defined on R™ which ié positive on Ci and equals zero in a neigh-
borhood of the complement of Vi. Here we use Exercise (a) of 1.3. Then
z YJ(x) is a C® function on M, since it equals a finite sum in some neigh-
borhood of any given point of M. Define o,(x) = wi(x)/E ?J(x); then
Lo (x) =1.

For each. 1, let f, denote a c® extension of flA N Vy to Vy;
if ANV, 1is empty, let f; be the zero function. Then o;f, may be ex-
tended to be of class C° on M by letting it equal zero outside V.
Define

F(x) = Iy og(x) £5(x) .
This is a finite sum in some neighborhood of any point x of M, and hence
is of class C° on M. Furthermore, if x 1is in A, then o fy = o;f
for every 1, so that

F(x) = L og(x) £(x) = £(x) .
Hence f 1s the required C' extension of f to the neighborhood M of A
in R™. .

1.6 Definition. A differentiable m-manifold of class ¢’ 1is an

m-manifold M and a differentiable structure I of class ¢ on M. A

differentisble structure of class C° on M, in turn, is a collection of

coordinate neighborhoods (U,h) on M, satisfying three conditions:
(1) The coordinate neighborhoods in O cover M.
(2) 1If (U1,h1) and (U2,h2) belong to P, then
-1, R
h,h7': h,(U,n U,) = R
is differentiable of class CT. e

(3) The collection ¥ is maximal with respect to property (2); i.e.,
if any coordinate neighborhood not in 9 1is adjoined to the collection D,
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then property (2) fails.
The elements of ® are often called coordinate systems on the differentiable
manifold M.

(a) Exercise. ILet D'- be a collection of coordinate neighborhoods
on M satisfying (1) and (2). Prove there is a unique differentiable struc-
ture D of class C¥ containing D'. (We call D' a basis for D, by
analogy with the relation between a basis for a topology and the topology.)

Hint: Iet 3D consist of all coordinate neighborhoods (U,h) on
M which overlap every element of ' differentisbly with ciass c’; this
means that for each element (Ul,h1) of D,

h,h™' & h(U N U) = R"

end h hy' : h,(UnU) =R

are differentiable of class c’. To show D is a differentiable structure, the
local formulation of differentliability is needed.

(b) Exercise. Iet M be a differentiable manifold of class C¥
(we often suppress mention of the differentiable structure X, where no
confusion will arise). Then M may also be consldered to be a differenti-
able manifold of class Cr-1, in a natural way; one merely takes D as a
basis for a differentiable structure D, of class ¢! on M. Verify
that the inclusion D C i)l is proper. This proves that the class C' of a
differentiable manifold is uniquely determined.

We see in this way that the class of a differentiable manifold M
may be lowered as far as one likes merely by adding new coordinate systems
to the differentiable structure. The reverse is also true, but it will re-
quire much work to prove.

(c) Exercise*. If M 1is a differentiable manifold, what are the
difPiculties involved in putting a differentiable structure on D(M)? (D(M)
was defined in Exercise (b) of 1.1.)

1.7 Definition. Iet M and N be differentiable manifolds, of

dimensions m and n, respectively, and of class at least C'. ILet A be
asubset of M and let f : A— N; then f 1is sald to be of clags C' if
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for every pair (U,h) and (V,k) of coordinate systems of M and N, res-
pectively, for which f(A n U) C V, the composite
kth™' : h(A n U) = R"

isof class C'. (Note that a map of class C° 1is also of class 01, al-
though & manifold of class C° 1s not one of class C' until the differ-
entiable structure is changed.)

The rank of f at the point p of M 1s the rank of D(lct‘h")
at h(p), where (U, h) and (V, k) are coordinate systems about p and
f(p), respectively. This number is well-defined, provided there is an
open subset W of M such that WCA CW, for if (U,, h,) and (V,, k,)
were other such coordinate systems, we would have

D(k,fh]') = D(k,k™') * D(kfh™') - D(bh]') .

The requirements for a differentiable structure assure that k,k"‘ and
!t.lur.;'1 are both differentiable, so that D(k.lk") is non-singular, having
D(kk;") as 1ts inverse. Similarly, D(hh;1) is non-singular, so D(k1fh1‘1)
and D(kfh™') have the same rank.

| (a) Exercise. The standard C® differentiable structure on R™
is that having as basis the single coordinate system i : R™ — R”., Similar-
ly for H". Check that the definitions of differentiability given in 1.2
and 1.7 agree. I

1.8 Definition. Let f : M— N be differentiable of class C';
let M and N have dimensions m and n, respectively. If rank f = m
at each point p of M, f 1is said to be an immersion. If f is a homeo-
morphism (into) and is an immersion, it is called an imbedding. If f 1is a
homeomorphism of M onto N and is an immersion, it i1s called diffecmor-
phism; of course, m = n in this case.

I (a) Exercise. Note that Bd H® a th"‘ and the inclusion

R™! -« H® 1s an imbeading. Generalize this as follows: If M 1s a differ-
entiable manifold of class C”, then there is a unique differentiable struc-
ture of class C* on Bd M such that the inclusion BA M—M is a CF
imbedding. '



ir

§1. INTRODUCTION 1

(b) Exerclse. Show that the composition of two immersions 1s an
Immersion.

(c) Exercise. Let M and N have class C"; let M be non-
bounded. Construct a CF differentiable structure on M x N such that the
natural inclusions of M and N into M x N are imbeddings. Why do we
require M to be non-bcocunded?

(a) Exercise*. Construct a C” differentiable structure on
H x H' so that the inclusion 1 : H' x H' = R® is differentisble. What
are the difficulties inveclved in.putting a differentiable structure on
M x N in general?

(e) Exercise". Construct a C° immersion of 8' into RZ which
1

carries S

immersion of B® into R%?

into a figure eight. Can such an immersion be extended to an

(f) Exercise . Prove that two differentiable structures of class
c* on the topological manifold M are the same 1f and only if the identity
map from each differentiasble manifold to the other is a C' diffeomorphism.

(g) Exercise*. Construct two different differentiable structures
of class C° on the manifold R', such that the resulting differentiable
manifolds are diffeomorphic.

1.9 Prdblem.* Prove that any two differentiable structures on

R1

glve manifolds which are diffeomorphic.

(It was long a classical problem to determine whether two differ-
ent differentiable structures on the same topological m-manifold always
gave rise to diffeomorphic differentiable manifolds. Recently, it has
turned out that the answer is yes if m < 3 [10, 13], and no 1if m = 7
[5]. The answer 1s also yes for RP, 4if n # b4 [16]. Other results are

known, but much work remains to be done.)

1.10 Problem. If f : M— N 1s a diffecmorphism of class Cr,

prove that f~' 4s a diffeomorphism of class CF.
‘ Hint: Prove the result in the following steps. let g map the
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open subset U of R™ into R".

(1) Dg(x) exists if there is a matrix A and a matrix function
R(x1) such that

g(x,) - &x) = A - (x, -x) +R(x,)’

(here g, X;, X, and R are written as column matrices), and R(x1)/ﬂx1— x|l
=0 as x, =~ x. It follows that A = Dg(x) .

(2) If g 1is cof class ¢! on U and A is a compact subset cf
U, then

g(x;) - g(x) = Dg(x) -+ (x; - x) + R(x,, x),

where R(x,, x)/lx,- x|l = 0 uniformly as Ix, - x| = o, for x, and x

1
in A. (For later use, this is stated in more generality than is actually

needed here.)
(3) If g isof class C' on U and has rank m at x, then
g satisfies a Lipschitz condition: There is a & > 0 and constants m and
M such that
0 <m< [lglx,) - gx)/lx; - x| <M

for o < lx, - x| < 8.

(4) Let g be a homeomorphism of the open subset U of R® onto
an open set in R%;  1let g be of class C1 on U and have rank m at Xx.
Then D(g") exists at g(x) and equals the inverse of Dg(x).

Remark. Previously, we appealed to the Brouwer theorem on in-
variance of domain to prcve that the boundary and dimension of & manifold
are wvell-defined. If one restricts oneself to considering manifolds for
which there exist differentiable structures (and it has recently been shown
by Kervaire [17] that this is a real restriction), then this appeal may be
to some extent avolded by use of the following thecrem, which resembles the
invariance of domain thecorem.

1.11 Theorem. Let f be a C' mapping of the open subset U of

R® into R™ which has rank m at the point x. Then f 1is a homeomor-
phism of some neighborhood of x onto a neighborhood in R™® of f(x).

Proof. We may assume that x and f(x) are at the origin, and
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that Df(0) = I, the identity matrix. (Why?) Choose r small enough that
the cube C(r) 1lies in U, and so that the maximum entry of Df(x) - I 1is
within 1/2m of 0 for x in C{r). If we let g(x) = f(x) - x, then for
x, eand x, in C(r), it follows from the mean-value theorem that

lg(x,) - g(x,) | < (1/2) 1%, - %,

|£(x) - f(xx) | > (1/2) 1%, - x,1 .
First, we prove that every point y of Int C(r/2) 1is the image

and

under f of a point x of 1Int C(r). To do this, let Xg = 0, Xy =Y,

and in general,
Xpe1 = ¥ - 8(x))

n

providing x  lies in the domain of g. Note that |x ., - x|

= lg(x) - (x| < (1/2)1x, - x,_,|, so that
'xn+1 - J’j]' < (7/2}n1x1 - xol = (1/2)1'1‘3_] .

Summing this inequality, we see that

I, = %0 < (/207 2ly|

for m < n. In particular, |x - xol < 2]yl < r. Hence Xnel necessarily

n+1

lies in the domain of g If x cer Xp do, so that in fact x is

n
is a Cauchy se-

cr -

defined for all n. It also fcllows that the sequence X

quence. Hence it converges, say to x. Then |[x - x4l < 2lyl, so that x

is in Int C(r). Also, x =y - g(x), so that f(x) =y, as desired.
Second, we note that there is only one point x of C(r) such

that f(x) = y. For the contrary would contradict the fact that

I£(x,) = £(x,)1 > (1/2) %, - x,] for x, o in C(r).

Third, we ncte that the inverse map f": Int C(r/2) = C(r) 1is

and X

continucus, since |y, - y,l 2_(1/2)|f'1(y1) - f-T(ye)I, for y, end y,
in Int C(r/2). '

Hence f 1is a homeomorphism of the open set f'1(Int C(r/2))n
Int C(r) onto the open set Int C(r/2), as desired.

1.12 Corollary (Inverse function theorem). Iet f map the open
subset U of R™ into R™; let f be of class C' and have rank m at
X. Then f is a diffecmorphism of class C' of a neighborhood of x onto
a neighborhood in R®™ of f£(x).
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Proof. Since we know f 18 a homeomorphism on some such neighbor-
hood, we need merely restrict the neighborhood to a smaller one on which the
rank of  1s m. This is possible because the get of those podnts x for
which det Df{x) # o is open.

1.12 Corollary (Impliclt function thoorem). Iet (x', ..., X2,

31 , «vn, ¥YP) dencie the gereral point of RT x RP. et f be a ¢" map .of
a neighborhivod U of o $n RM « BP inle R®; 1let f(0) =0 and let

ar!
tion g mapping a neighberhood o 0 ix R? 1nto RF such thas g(o) = o,
CI"

s seey :'p,fﬁ(y" g vy yp) be nen-gingular at o. There 1s a unique func-

and f(x, g(x)) = 0 for x In this neighborhucd; g is of class

Proof. Define F : U — R™¥P by the equation
F(x,y) = (x1,...,xn, fT(x,y),...,f‘p{x,y)) .

Since DF(x) has the form
- o
af /ax af /3y

it 19 non-singular at the origin. Hence [ has a local invergse G near 0,
If we are to heve f(x,g(x)) = 0, then we must have

F{x,g(x)) = {(x,t(x,8(x))) = (x,0} ,

GF{x,g({x)) = (x,g(x)) = G{x,0) .
Hence we must delfine g(x) = nG(x,0), where =x is the projection of R™¢ RP

so that

onto RP, We leave it to the reader to check that this definition of g{x)
will satisfy the requirements of the theorem.

1.14  Corollary. Lot U be an open subset of R©, let f : U— R

be a map of class C° such that { has rank m at the origin, and f(0)
=0, There 1a a C° diffeomorphism g of a neighborhaod of the origin in
R? onto another such that

gf(x?,...,xm) = (x1,---,xm,0,, o' -’0) .

Prool'. We may assume the submatrix af ' goen ,JS‘”‘/B{:{.1 gooe ,xm) of
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Df i3 non-sipgular at 0, since this condition may be obtained by following
f by = suitable non-singulas linear map. Define F : U x R =~ R" by the

equalion

F:UxR™4R? by tho equation
PEx', e, m®) = £(x7,..,X + (0,0 .,0,X LX)
Then F has renk n &t 0, for DF has the block form

0.
3f /3% .
T

Hence ¥ has a local Inverse g. Now g is & ¢¥ diffecmorphism of &
neighborhood of the origin in R? onto itself, and

N

gftx1, R g(F(xt,...,xm,s,...,o)) = (x‘,...,x ,0 0y .

[ |
Nete. The preceding ¢orollary also holds Lf U 1s an open sub-
set of HO. One merely cxleids f to an cpen subset of R and spplies

Lthe result jusi praved.

— R" e

n
-

[

1.15 Problom” Lot U be an open subset of R™, lel [:
a nmap of cléss c” such that (' has rank n at the origin, and {0) - o.
There is a cF diffeomorpnism h of a neighborhood of the origin in R"
cnto another such thaf

f‘h(xl)o--, xm) = (Xl,.-., ch}-

1.16 Prablem.” ILet U be an open subsel of Rm, lew 100U —-g"
Le a map cf eclass ¢ such that f has rank k in a neighborhood of the
origin, and f(¢) - o. There are ¢¥ diffeomorphisms g and h of nelgh-

korheods of the origin in R™ and R" respectively onto others such that

1 1
gfh(x,ic-, J{.m}=(x 3 =3 xk’ G’ . aey C).



§2. Submanifolds and Imbeddings.

In this section we define what is meant by & submanifold of a dif-
ferentiable manifold, and prove that every differentiable manifold is a sub-
manifold of same euclidean space,

2.1 Definition. Iet N be an n-manifold, of class at least C';
let N' denote the menifold of class C¥ obtaining by possibly adding to
the collection of coordinate systems. Iet P be a subset of Int N. P 1is

called a submanifold of N of class ¢’ 1if there is & covering of P by
coordinate systems (U;,h;) of N' such that hy(U;nP) 1s an open subset
of H° or RP, for some fixed p.

One shows at once that the coordinate neighborhoods (Uinl; hi)
form a basis for a differentisble structure of class C* on P, and that
relative to this strgcture on P, the inclusion 1 : P—- N is a ct
imbedding.

It is appropriate to note here that ours is a different usage of
the term submanifold than that employed by differential geameters. For them,

& submanifold 1s the image of a one-to-one immersion f : P— N of one mani-
fold in another, rather than the image of an imbedding.

Note that under our definition, the number r 1is not uniquely de-
termined by P. The real line R1, for instance, considered as a subset of
the C® manifold R, 41s a submanifold of R? of class C° for every r
between one and infinity.

[— (a) Exercise. Show that B®™ and 8™ ' are C® submanifolds of
RO

(b) Exercise . Let R° be given the natural C® structure.
Given r with 1 {r < », construct a subset of R? which is & ¥ sub-

menifold of R° but not a C°*' submanifold of RS2,

17 -
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2,2 Theorem. If f : M= Int N is a C* imbedding, then f(M)
is a submanifold of N of class C%.

Proof. Let p be a point of M; 1let (U, h) be a coordinate sys-
tem about p; and let (V, k) be a coordinate system about f(p). Assume
h(p) and kf(p) are at the origin (why is this justifiable?). Using
Corollary 1.14, there is a diffeomorphism g of a neighborhood of kf(p)
in R® onto an open set in R? such that

geth™ ' (x', ..., ® = (x', ..., ®, 0, ..., 0)

The coordinate system (V' gk) 1s the required coordinate system about f(p);
it carries a neighborhood of f(p) in f(M) onto an open set in E® or R®,

(a) Exercise*. Show that this theorem fails if f 1is only a cr

homeomorphi sm. '

2.3 Problem . Iet f : R®—R' be of class C¥; 1let P be the
set of points x for which f(x) = 0; suppose grad f = af/a(x‘,...,xn) is

non-zero at each point x of P. Prove that P 1is a non-bounded submani-
fold of R® of class C” and dimension n-1.

State and prove a generalization to the case in which f maps R
into R™.

Remark. The preceding sections suggest that a very natural way in
which differentiable manifolds may occur is as submanifolds of some
euclidean space. At once the question arises as to whether every differen-
tiable manifold so occurs. The answer to this question is yes, as we shall
now prove. First we treat a special case.

2.4 Theorem. Iet M be a compact m-manifold of class c¥. Then
there 1s a C¥ imbedding of M 1in same euclidean space.

Proof. For each p in Int M, choose a coordinate system (U,h)
about p such that h(U) contains C(1), and h(p) 1lies at the origin.
(Why is this possible?) If p 1is in Bd M, we require h(U) to contein
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C(1)nH® Iet V denote h™'(Int C(1)), and let W denote h™'(Int C(1/2)).

The sets W cover M; choose a finite subcollection W,,...,W, which

n
cover M; 1index the corresponding h, U, and V's accordingly.
Iet ¢ Dbe the function defined in ILemma 1.3, For 1 = 1,...,n,

define
94(Xx) = 9(hy(x)) for x in T;

?4(x) =0 for x in M-T .

Each msp o4: M- R' 1s of class C®, for it is of class C* on the two
open sets U and M - ¥V, and is well-defined on their intersection. Let
¢ : M= R" be defined by the equation &(x) = (9,(x),...,0,(X)).

Define f : M=R®xR® x ... x R® = R® x (R®® by the equation
£(x) = (o(x), 9,(x) * hy(x),...,0,(x) - hy(x))

Of course, g4(x) - hitx) is defined only for x in Uy, but if it is de-
fined to be zero outside U,;, it becomes a C” function on all of M;
this we assume done.

f 1is clearly of class C'. To prove it is 1-1, suppose f(x)
= f(y). Then q>i(x) = cpi(y] for every 1, so that if x belongs to Vi,
y must also. From the fact that qaitx) . hi(x) = cpi(y) . hi(y) and Qi(x)
= 94(y) > 0, 1t follows that hy(x) = hy(y), contradicting the fact that
hi is 1-1.

Since M 1is compact, f 1s a homecmorphism. We must show, finally,
that it has rank m. Iet x, belong to W,, and let us use the coordinate
system (Uk,hk) for computing the rank of f at x,. We need to show that
the matrix D(f h1_<1) contains a non-singular m x m matrix. Let h,(x)
=(u,...,u™ =u and hx,) =u,. Nov @ (x) * hy(x) = h(x) for x
in & neighborhood of x,, so that the m x m submatrix a(q,k( hl-(‘ (u)) * u)/3u
of D(fhg') 1s the identity matrix when u = ug.

Remark. The proof just given generalizes to the non-campact case,
but there are a few additional difficulties. One arises fram the difficulty
of finding finitely many coordinate systems which cover M. The other
arises fraom the fact that f need not be a homeomorphism just because it
is 1-1. These difficulties are disposed of in the following lemmas and

problems (2.6 - 2.9); we then leave the proof of the general theorem to the
student (2.10).
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2.5 Definition. If ¢ 1is a non-negative function defined on M,

the carrier of ¢ 1is the closure of the set of points x for which o(x)

>0. A €' partition of unity on M 1s a collectlion of non-negative func-

tions 4 of class CF¥ defined on M, such that the sets C1 = carrier Py
form a locally-finite covering of M, and such that Zi o i(x) = 1 for each

X. The same definition holds for a topological space, except differentiabll-
ity has no meaning.

2.6 Problem. Let [Uil be a locally-finite open covering of the
c® manifold M. There is a CT partition of unity {¢i} such that

carrier ¢; C U; for each 1i; {q:i] is said to be dominated by the covering

{Ui] - In the case r = 0, this holds for a space X (separable and metric,

as always). int: Use 1.3 and 1.4,

(a) Exercise. Let [Ci] be a locally-finite ccovering cf the se-
parable metric space X by compact sets; let €, be a sequence of positive
constants. There is a positive real-valued function 5(x) defined on X

such that 5(x) <ei for x 1in Gi.

2.7 Lemma. Let M be an m-manifold; 1let @ be an open covering
of M. There is a locally-finite open refinement of @ which is the union
of m+1 collections @®,,...,®, such that the sets belonglng to any one ® 1
are pairwlise disjoint.

Proof. We apply a fundamental theorem of dimensicn theory: If M
is an m-manifold, then every opcn covering @ of M has a refinement €
such that no point of M 1lies in more than m+1 elements of €. A proofl
for the case M campact may be found in [3, p. 67). The result may readily
be extended to the non-compact case, but it is just as easy to prove the
theorem from scratch. This is done in 2.12-2.15.

et € = (U,); 1let (V

J
that VJ C U‘j for each J; let {q’j] be a partition of un'ty dominated

j} be a locally-finite open covering such

by {VJ], by 1.4 and 2.6. We now may assume the indices are positive integers

Given an integer n such that 0 <n <m, consider any set iu’ RN in
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of distinct posltive integers. Let H(io, ceey in) be the open set con-
sisting of those x for which

9;(x) < min(coiofx), ceey min(x))

for all values of 1 other than iy5+++,1,. The collection ®, 1is to con-
sist of all such sets W(iy,...,1).

We must prove the elements of (Bn to be pairwlise disjoint. Let
i1y5+--51, and Jos+-+»J, be different sets of indices; suppose k belongs
to the first set and not to the second, and £ belongs to the second set and
not to the first. If x is in W(io,...,in), then wﬂ(x) < ¢k(x); if x

is in W(J,,..-,J,), then o, (x) < @p(x). Hence these two sets are disjoint,

n
as desired.

We prove that & = ® U...U®  covers M. If x is in M, let
io,...,in be those indices for which mi(x) > 0. There 1s some such index,
since 2 mi(x) = 1; there are at most m+1 of them, by choice of the cover-
ing Uj' Then ¢i(x) = 0 for all other indices 1, so that x 1is in
W(ig,...,1).

The fact that ® is locally-finite follows similarly. Each point
X has & neighborhood U on which all but a finite number of the functions
p; 8are identically zero. Let 1i,, ..., ia be those indices for which o,
i1s not identically zerc on U. The only sets W(jo, coey jk) which U can
intersect are those for which [jo, coey jk] is a subset of {io, ...,lg] ;

these are finite in number.

(a) Exercise . let M be a simplicial complex in the plane, with

vertices VisVaseos = let Vi be the (open) star of Vi, and let mi(x)

‘be the barycentric coordinate of x with respect to vy (Tt is zero unless
X is in V,, of course.) Carry out the preceding construcE}on in this case,
and sketch the resulting sets of the form W(io) and W(io,i1).

This exercise should make clearer the idea of the proof of the pre-
ceding thecren.

2.8 Problem. ILet M be a C'¥ manifold of dimension m. Prove

that M may be covered by m+1 coordinate systems ((Uy,hy)). Indeed,
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choose Ui 80 that it is the union of a countable collection of disjoint
open sets V,, where hy(V;;) 1is a bounded subset of R™.

2.9 Definition. ILet X and Y be separable metric spaces; let
f : X=Y be continuous. The limit gg_t_: of f 1s defined as the set of all

¥y in Y such that for some sequence X, in X having no convergent sub-
sequence, f(’ﬁ'x) converges to y. It is denoted by L(f).

(a) Exercise. L(f) 1s a closed subset of Y, if X is locally
campact.

(b) Exercise. Iet f : X—+Y be continuous and 1-1. L(f)nfAX)
is empty if and only if f 1s & homeomorphism; f(X) 1s closed in Y if
and only if L(f) C £(X). N

2,10 Problem. Iet M be a C* manifold of dimension m. Prove

that M has a CT imbedding as a closed subset of euclidean space of di-

mension (m + 1)2.

Remark. This theorem shows that any differentiable manifold is a
submanifold of same euclidean space. This fact will be of crucial import-
ance to us in the next chapter.

A natural question to ask now is whether one needs to use a euclid-
ean space of such a high dimension in order to imbed M. The answer is no.
It is a classic result of Whitney that RZ*' will suffice [15]. Milnor’s
notes contaln a neat proof of this. In fact, R™ w111 suffice, but the
difficulties involved in proving this are much greater.

2,11 Problem . Iet M be a C* manifold of dimension m. Show
that 4f A 1s & closed subset of M and " h, 1s a C* imbedding of a neigh-
borhood U of A in RP , then there is a Cf imbedding f of M in some

euclidean space which agrees with h, on A. f(M) mey be chosen to be
closed if h,(A) is.
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Hint: Cover M - A by coordinate systems (Ui' hi) for 1 =

2, ..., 2. ILet U, =U; let o,, ..., o, > bea ¢* partition of unity

dominated by the covering U,, ..., U

o Then proceed as in 2.4.

2.12 Definition. A'space A has covering dimension at most m

1f every open covering of A has a refinement of order at most m (which
means that no point of A 1lies in more than m+1 elements of the refine-
ment). If A 1s a closed subset of X, this is equivalent to the state-
ment that every open covering of X has a refinement whose restriction to
A has order at most m. .If A' 1s a closed subset of A and A has

covering dimension at most m, so does A!'.

2.13 Temma. Let A, be a closed subset of X, such that A C

Int A ., and UA =X. If A, and each set e!mm_1 - A)) have covering
dimension at most m, so does X.

Proof. Gilven an open covering of X, let ®, be a refinement of
it such that any element of B, which intersects Ay les in Ay ,. Let
®, be a refinement of ®, whose restriction to A, has order at most m.

Iet A, be empty for convenience.

Assume that (Bn is a refinement of B, whose restriction to A,
has order at most m. Let € be a refinement of ®,  whose restriction to
CY(A ., - A)) has order at most m. Define (Bnﬂ as follows:

(1) If U 1s in ®, and intersects A _,, let U be in @ ,.

(2) For each V in @ which intersects A, but not An—ﬂ
choose an element f(V) in ® ~ which contains V. Then for each U in
®,, let U' denote the union of those V in € for which f(V) 1is de-
fined and equals U, Iet U' belong to ®,q-

(3) For each V in @ which does not intersect A , 1let V be-

long to &n+1 .

It is easy to check that Gnﬂ covers X and that its restriction

to An-n-‘l has order at most m. let @® consist of those open sets which
belaong to ®, for all but finitely many n. Then B has order at most m.
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2.14 Corgllary. If 131 and 132 are closed subsets of Y which

have covering dimension at most m, so does B, UB,.

Proof. ILet A, =B, and let A =X =B, UB, for n> 2; apply
the preceding lemma. Since C£(A, - A;) 1s contained in A,, 1t has

covering dimension at most m.

2.15 Theorem. Every m-manifold M has covering dimension at

most m.

Proof. (1) Any compact subset B of R™ has covering dimension
at most m: B 1lies in some cube C, which in turn is the polyhedron of
a simplicial complex K of dimension m. Given eny open covering @ of
C, there is a subdivision K' of K sufficiently fine that the collec-
tion of stars of the vertices of K' are a refinement of @ . This re-
finement has order m.

(2) Cover M by a locally-finite collection of sets B; which
are homeomorphs of compact subsets of R%. let ﬁx1 = B1 . In general,

glven An =B, U... U Bq, choose an integer p > q such that An C
Int (B, V... UBp), and let A, =B, U... UBp. Each A, has covering

dimension at most m, by 2.14 The theorem follows from 2.13.
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. In this section we define what is meant by & strong C1 approxima-
tion to a differentiable map of one manifold into another (3.5); in order to
do this neatly, it 1s necessary first to construct the tangent bundle of a
differentiable manifold. We then prove (3.10) an important thecrem about
approximations, which states that if f : M- N 1is an immersion, imbedding,
or diffeomorphism, then so is any sufficiently good strong 01 approximation
g Lo . (In the case of a diffeomorphism, we need tc assume thst
g(Bd M) ¢ Bd N.)

3.1 Definition. Iet M be a CF manifold of dimension m; let xo

be a peint of M. A tangent vector vV to M at X, 1s a correspondence

assigning to every ccordinate system (U, h) about X, @& column matrix o«

of size mx 1 with the following condition:

If (U, h) and (V, k) are two coordinate systems about Xy, and

if o and & are the corresponding column matrices, then

)

& = D(kn“)(uo) .«

where u, = h(xo). The entries of a are called the components of Y in

the coordinate system (U, h).
If £ : [a, bl =M is a C' map, where [a, b] 1s an interval in

Rl, f 1s called a (parametrized) curve in M. Let f(t)) = x If we

o.
define V as assigning to the coordinate system (U, h) the matrix D(hf)(toh

then Vv is a tangent vector to M st x as the reader may verify. It

Q2
1s called the velocity vectcr of the parametrized curve f.

We should note that every tangent vector vV to M at Xy 1s the
velocity vector of some perametrized curve: lLet a', ..., & be the cam-
ponents of ¥ in the ccordinate system (U, h); let h(xo) = 0, Define
£(t) =h'(a'- t,..., 0" t). If x, 1sin Int M, f 1is well-defined on

some interval [-€,e] about 0; if x, 1is in Bd M, f will either be

0
well-defined on [-€,0] or [0,€]. In either case, VvV will be the velocity

vector of f at Xg -
25
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Note that the tangent vectors to M at x, form an m-dimensional
vector space; we merely take the camponents of VvV and W 1in the coordinate
system (U,h) and carry out addition component-wise. One checks that this
definition is independent of coordinate system. This space 1s called the
tangent space to M at Xy

3.2 Definition. Let M be a C° manifold. Let T(M) denote
the set of all tangent vectors to M; let =« : T(M) - M carry the vector
V at x, into the point x,. T(M) 1s called the tangent bundle of M,
and = 1s called the projection mapping.

If (U, h) 1is a coordinate system on M, define h : n~'(U) —
R® x R® or H" x R™ by the equation

h(® = h(¥) x (&', ..., M
where (a‘,...,am) are the components of V 1in the coordinate system (U,h).

The requirement that n~'(U) be open and that 1 be a homeomorphism immedi-
ately imposes & topology on T(M) which is Hausdorff and separable (see
Exercise (a)).

T(M) 1s a 2m-manifold with =~ '(Bd M) as its boundary, for the
pairs (x~'(U),h) will be coordinate neighborhoods on T(M).

If (U,h) and (V,k) are overlapping coordinate neighborhoods on
M, then

kB (x, ) = (kn'(x), D(kh™)(x) * @)

on h(UNV) xR, where o is written as a column vector. Thus ku’

1s of class C'~', so that the collection of pairs (x~'(U), B) serves as

a basis for a differentiable structure of class C' ' on T(M).
Whenever we consider T(M), we will assume it provided with this differen-

tliable structure, if »r > 1.
The inclusion mapping 1 : M- T(M) which carries x into the
zero vector at x, and the projection mapping =, are maps of class cr-1.

(a) Exercise. Iet (U,h) and (V,k) be two ovei-lapping coordi-
nate systems on M. Show that k h~' 1is a homeomorphism of h(U n V) x R®
with (U n V) x R®, Conclude that the topology on T(M) is well-defined.
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Show also that it is separsble and Hausdorff.

(v) Exercise . Show that for some neighborhocod V of the point
x of M, there is a diffecmorphism g : = '(V) = VxR® such that = g~
is the natural projection of Vme*V, and g 1s a linear isomorphism of
the tangent space at x onto x xR".

This shows that = : T(M) = M is a fibre bundle, with R" as
fibre and the non-singular linear transformations of R™ as structural
group. (See [12].) |

3.3 Definition. Iet M and N be manifolds of class at least
c'; let g: M= N bea C° map. There is an induced map dg : T(M) —
T(N) of class Cr‘1, defined as follows: Let Vv be a vector at X,

assigning the matrix « to the coordinate system (U, h), and let ¥ be
a vector at g(xo) assigning B to the coordinate system (V, k). We de-
fine dg(¥v) =W if

B =D(kgh™)ra .
Note that dg 1is a linear map on each tangent space; 1t 1s called the
differentlial of g.

(a) Exercise. Check that dg 1s well-defined, independently of
coordinate system.

(b) Exercise. Show that if f : [a,bl =M 1s a C' curve having
vV as velocity vector, then dg(V) 1s the velocity vector of the curve
gf : [a,b] = N.

(¢) Exercise. If f : [a,bl] =M 4is a C' map, interpret df
geametrically, noting that;‘ f maps the 1-dimensional manifold [a,b] into
M. The preceding exercise then merely states that d(gf) = dg«df. General-
ize this formula to the case where the damain of f is a manifold of dimen-
sion greater than 1.

(d) Exercise'. If g 1s an immersion, an imbedding, or a diffeo-
morphism, how is this fact reflected by the map dg ? J

3.4 Definition. Iet M be a C°* manifold. Suppose we have an

"
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inner product [V, W) defined on each tangent space of M, which is dif-

ferentiable of class C%, 0 < q < r, in the sense that the map of T(M)
into R which carries v into [v, V] is of class C%. Such an inner

product is called a Riemannian metric on M. As usual, ¥ is used to de-

note V[V, Vl.

Let us note that it follows from the identity
v, V1 = W+ VI - 3IF -¥I°

that the real function [Tz', W] 1is continuous on the subspace of T(M) x
T(M) consisting of all pairs (?, ;;) such that rr('\';) = rr(-'.?) .

(a) Exercise. Tiere is a standard Riemannian metric on the mani-
fold R%; we simply take the components ot and Bi of V and W relative to
the coordinate system 1 : R® - R and define [?,T-f] as their dot product,
F olpl,

let M be a C” manifold; let f : M—R® be a C3*' immersion.
If Vand W are tangent to M at x, let us define [?,—J] to equal the
dot product in T(R®) of 4f(V) and 4f(W). Check that this is & Remannian
metric on M. Why do we need f to be an lmmersion?

(b) Exercise.* ILst ['\}',T;] be a Riemannian metric on M; let
(U, h) be a coordinate system on M, and let @ and B be the matrices
corresponding to V¥ and W under this coordinate system. Show there 1s a
unique €% matrix function G(x) defined on U which is symmetric and po-

sitive definite, such that
v = ¥ . gx) -«
Let G(x) be the matrix function corresponding to the coordinate system

(V, k); show that
G(x) = D(hk )™ .« a(x) - D(hk™)

Any correspondence assigning to each coordinate system (U, h) about Xg»
a matrix G, with this equation relating G and é, is called classically

a covariant tensor of second order.

3.5 Definition. If Vv 1is a tangent vector to R" at x, let

ot be the components of V relative to the coordinate system 1 : R® — R,
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The correspondence v — (x, @) glves a homeamorphism between T(R®) and
R® x R® which 1s an isomorphism of the tangent space at x onto x % R,
We often identify T(R™) with R™ x R® for convenience, and we write C2
(x, @). If f : M—R® isa C' map and YV isa tangent vector to M at
x, we define dofﬁ?) by the equation ar(v) = (£(x), dof‘(?)).

Consider F'(M, R®), the space of all C' maps of M into RM.
We topologize thls space as follows:

Choose & Riemannian metric on M. Given the C' map f : M-ﬂ-Rn,
and the positive continuocus function &(x) on M, let W(f, 8) denote the

set of all C' maps g : M= R® such that

If(x) - g(x)Il < 8(x)
and
la,£@) - dgg@M Il < 8(x) [Vl

for each x in M eand each V § 0 tangent to M at x. If g 1is in W(f, 8),
then g 1s called a s-gpproximation to f. It is also called a strong C1

approximation to f. The sets W(f, 8) form a basis for what is called the

fine C' topology on F’(M, RY).

Given a differentiable manifold N, let us imbed it differentiably
in some R®. The fine C' topology on F'(M, N) is defined to be that induced
from the fine C' topology on F1(M, Rn). This topology is independent of the
Riemannian metric on M and the choice of the imbedding of N (see Exercise
(b) of 3.6).

To obtain the coarse C' topology, one alters the definition to re-

quire that the inequalities hold only for x in some campact set A; one
takes sets W(f, 5, A) as a basis. We shall make no essential use of the

coarse C’ topology.

(a) Exercise. Check that the sets W(f,s) form a basis for a
topology.

(b) Exercise. The fine C° topology on F(X,Y) (the space of all
continuous maps of the separable metric space X 1into the separable metric

space Y) is obtalned as follows: Given f : X—=Y and a positive contimu-
ous function & on X, let a neighborhood of f consist of all maps g

such that p(f(x), g(x)) < 8(x) for all x, where o 1is a (topologlcal)
metric on Y. The map g 1is called a strong C0 approximation to f, or
simply, a C° s-approximetion to f. Check that these sets form a basis for
a topology.
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3.6 lemma. Let N be a submanifold of R%; let f : MU= NP be
a C‘ma.p. Iet (U, h) be a coordinate system on M; let C be a compact
subset of U; 1l1let (V, k) be a coordinate system on N about f£(C).
Given € > 0, there existsa & > 0 such that if g : M— N and

(%) g(C) cv,
lkth™"'(y) - kgh™(y) | < 5,
ID(kfh™ ") (y) - D(kgh™ (] < 5,

for 81l y € h(C), then

(*%) If(x) - g(x)|| < €,

la e - a gl < € ¥l
for each non-zero v tangent to M at a polnt x of C.

Proof. Suppose not. Then there exists for each n a function
g, and a vector Tr’n #0 tangent to M at & point x, of C, such that the
ineq?mlities in (*) hold for g = g»s» Y=V, = h(xn), and 5 = 1/n, but
the inequalities in (**) do not hold for g=8, xX=x, and 7V = -v'n,
and all large n. By passing to subsequences and renumbering, we may assume
X, = x and -v'nflﬁf.n" - TJ'n-*TI, a unit tangent to M at x.

Now |kf(x,) - kg (x))| < 1/n, so that kf(x)) and kg (x ) con-
verge to kf(x). Then both f(xn) and gnbﬁu) converge to f(x), so that
I£(x,) - gy(x,) Il = o.

Let dh(W) = (y,, @), in R®xR® « T(R"). Then

ID(krh™") (y,)) * @ - D(kg b ) (y,) * ol <mlo|/n
lagk(ar(d )) - dok(ag, (4 )l < ¥B mlan@ ) I/n
Since the right side approaches zero, so does the left. Hence both
dok(ar(q))) and da k(dg (4 )) converge to d,k(daf(d)), so that ak(af(d))
and dk(dg,(d,)) converge to dk(df(W)). Since 4a(k™') is contimous,

af(W,) and dg (T)) converge to df(d), so [d () - due, (T = o.
Contradiction.

l (a) Exercise. Prove the converse of this lemma: Given 8 > O,
there is an € > 0 such that if (**) holds, so does (*).
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(b) Exercise. Iet f : M= N, Ilet {Ci] be a locally finite
covering of M by compact sets; let (U, hi) and (V,, ki) be coordi-
nate systems about C; and f(C;) respectively. Let X(f, 8,) consist
of all maps g : M— N such that g(Cy) C Uy, Ikifh£1(y) - kigh£1(y)| < 8y,
and [D(k;fhi")(y) - D(kghi")(y)| < 8y, for all y in hy(C,). Show this
neighborhood system of f 1s equivalent to the fine c! neighborhood sys-
tem of f. Conclude that the fine C' topology on F'(M, N) is independent
of the Riemannian metric on M and the imbedding of N.

(¢) Exercise. let X(f, bi) be defined as in the preceding ex-
ercise, except that the sécond inequality (involving the derivatives of f)
is deleted. Show the resulting neighborhood system of f 1is equivalent to
the fine ©° neighborhood system of f. Conclude that the fine c® to-
pology on FO(M, N) 1is independent of the metric chosen for N.

(d) Exercise*. Show that the topology on F'(M, N) induced
from the fine C° topology is strictly ccarser than the fine ¢! topology.

(e) Exercise*. The coarse ¢! topology on F1(M, N) 1s defined
above. Formulate an alternate definition similar to that given in the
statement of Lemma 2.6, and prove the two definitions equivalent.

(f) Exercise*. Consider Fl(R, R) in the fine and coarse C' to-
pologies, and in the uniform topology, whose basis elements are of the form
W(f, €), where f : R—R, € >0, and W(f, €) 1s the set of all g
such that 1lub |f(x) - g(x)| < €. Describe the path-camponent of the zero

function in each case.

3.7 Problem. Iet f : M- N and g : N—= P be &m@&

(1) Given €(x) > 0, defined on M, prove there is a &(x) > o
such that whenever f is a s-approximation to f, then g? is an €-approx-
imation to gf.

(2) If f 1imbeds M as-a closed subset of N, prove there exist
51(x) >0 and 8,(y) > 0 such that whenever T isa 8, -approximation to
f and E is a 5,-approximation to g, then EF is an €-approximation to gf.
(3) If f 1s a diffeomorphism, show that given e€(y) > o0, there
exists 5(x) > 0 such that if f is a b-approximation to f and is a diffeo-

morphism, then ! is an €-approximation to g3,
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(a) Exercise.* Show that (2) may fail if f 1s not & homeomor-
phism, or if f(M) 1s not closed.

3.8 Definition. Consider the set F'(M,N) of C* maps of M into
N. The definition of the fine c! topology given in Lemma 3.6 generalizes

to defining the fine C¥ topology for this space. The same definition is

used, except that the second equality (which requires closeness of the first
partial derivatives) is replaced by the statement that the partial deriva-
tives of kighii, through order r, approximate the corresponding partial
derivatives of kifh£1 within &y, for x in C;. The fine C” topology
on F®(M, N) 1is the one having as basis the union of the C* topologies for
all finite r. We shall have no occasion to use these topologies.

3.9 Definition. Let f, and f, be C' maps of M into N. A

regular ¢! homotopy between fo end f; 1s a continuous map fi: MxR—N
such that

(1) For same € > 0, f, = f, for t<e and f, = f,
fOX‘ t>1 -C.

(2) ft is a C' map for each t.

(3) dfy: T(M) x R— T(N) 41s continuous.

The hamotoby ft is said to be a differentiable c! homotopy if the map

ftz MxR— N 4is of class 01; this 1s stronger than conditions (2) and (3).
It is a differentiable C* homotopy if it is of class CT.

If f, and f, are both immersions, we make the (standard) conven-
tion that a "regular (or differentiable) hamotopy f." between them always
means that ft is an immersion for each t. If f, and f‘1 are lmbeddings,

a regular (or differentiable) hamotopy f, 1is said to be an isotopy if f,
is an imbedding for each t.

The two notions of regular and differentiable homotopies in fact
differ only slightly. It will appear later as a problem, to prove that the
exlstence of a regular hamotopy between fo and f1 impllies the existence
of a differentiable one. It is not clear, however, which notion should be

given preference as being more natural. A regular homotopy is natural in
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that it is equivalent to the existence of & path ¢ : R-*»FI(M,N) between

the maps f, and f,, where the coarse ¢! topology is used for the func-
tion space. However, the hamotopies one constructs in practice are usually
differentiable rather than merely regular. This i1s the case with us, so we

shall have little occasion to use the weaker notion.

(a) Exercise. Ilet fy be a homotopy between f; and f,; Ilet
g, be a homotopy between g and g,; let f‘1 = g Define h‘t’ MxR—N
by the equations hi(x) = £,4(x) for t < 1/2

he(x) = gyp_q(x) for t> 1/2

Show that ht is a regular (or differentiable) ¢! homotopy if -ft and 8¢
are.

(b) Exercise . Construct a regular c! hamotopy which is not a
differentiable C' homotopy.

(e) Exercise . Iet fy be a regular ¢! homotopy. Define
® : R—F'(M,N) by the equation

o(t)(x) = fi(x) .

Show that ¢ 1s continuous, if the coarse c! topology is used for F'(M, N).
State and prove the converse. _J

3,10 Theorem. ILet £ : M— N be a c! mep. If £ 1s an immer-
sion or imbedding, there 1s a fine ¢! neighborhood of f consisting only

of immersions or imbeddings, respectively. If f 1s & diffeomorphisam,
there is a fine C1 neighborhood of f such that if g 1s in this

neighborhood and g carries Bd M into Bd N, then g 1s a diffecmorphism.

Proof. Iet (C;} be a locally-finite covering of M by compact
sets, such that the sets Int C; also cover M, and (Uy,hy) and (Vy,k)
are coordinate systems about Ci and f(Ci}, respectively.

(1) Suppose f 1is an immersion. Then the matrix D(kifh£1f(x) has
rank m =dim M for all x in hi(Ci). We denote the set of p x q
matrices of rank r by M(p,q;r); 1t is considered as a subspace of rRPY,
Now the set M(m,n;m) 1s open in R™: If one maps each matrix into the
sum of the squares of the determinants of its mxm submatrices, the set is
the inverse image of the open set R - (0]} under this continuous map.
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The matrices D{klfhi"l)(x), where x 1s in h:;(Gi), form a com-
pact subset K; of M(m,n;m). Hence there is a &; such that the 8-
neighborhood of K; 1lles in M(m,n;m). This choice of the 8, specifies
the desired fine C' neighborhood of f, as in 3.6.

(2) Let f be an imbedding. We have just proved that there is a fine
¢! neighborhood W, of f consisting of immersions. Within this, there is
a fine ¢’ neighborhood W, consisting of maps g which are 1-1 on each Cy:

For otherwise, there would exist a number 1 and a sequence g,
vhere g  converges to f, and dg 6 converges to df, uniformly on Cy,
but sn(’ﬁ'x) - gn(yn) for two distinct points x, and y, of Cy;. By
passing to subsequences and renumbering, we may assume X, X and Yo~ V-
Since f(xn) - f(x), gn(xn) - f(x); similarly, gn(yn) - f(y). Hence
f(x) = f(y); since f 1s 1-1, x = y.

We refer f and g to coordinate systems: let f = ltnj_fh._‘_'1 ,
- -1 - -
g =keh', x;=h(x), and y, = h(y,). Then

0 = By(Ry) - Bi(F) = DEylzy g) * (Fy - )

for scme point Znq On the 1line segment joining X 6 and §,. By passing
to a subsequence and renumbering, we may assume (X, - i'rn)/ Ix, - ¥, - .
Then since W X, we have
0 = DEN(X) - T ,

for each i, ocontradicting the fact that Df(X) is non-singular.

(3) Let f be an imbedding. We have just proved there is a fine C'
neighborhood W, of f consisting of immersions which are 1-1 on each
ci. Now we prove there i1s a fine c® neighborhood of f whose intersection
with W, consists of maps which are globally 1-1; we shall denote this
intersection by w5. We specify this neighborhood by a continmous function
8(x); thus we assume N 1is given a topological metric p. There 1s a
covering D; of M by compact sets, with D, C Int C; for each 1 (see
1.4). let €, be the distance in N from f(Di) to (M - Int Ci); since
f is a homeomorphism, this distance is positive. Iet 8(x) be a continuous
function on M which is less than 61/2 on C; (see 2.6). lLet g bea
c® s-approximation to f which ldes in W,. Suppose g(x) = g(y), where-
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X .is in Dy and y 1s iIn DJ, and €; < €y- Then

o(£(x), £(7)) < €;/2 + €4/2 < €4.
Since g 1s 1-1 on Cj, X 1s not in Cj, so that o(f(x), £(y)) > €
by choice of €j' Thus we have a contradiction.

Finally, we prove there exlsts a fine c® neighborhood of f whose
intersection with W3 cons;i.si:.s of homeomorphisms. Since f 1is a homeomor-
phism, L(f)n f(M) 1is empty. Let € < 1/1i and let €; be less than the
distance in N from the compact set f(Ci) to the closed set L(f). lLet
8(x) be a continucus function on M such that &(x) <€ for x in C,.
Ilet g be & C0 3-approximation to f which lies in w3.

First we show that L(f) = L(g). If x, is a sequence in M hav-
ing no convergent subsequence, then each Ci contains only finitely many
terms of the sequence. This means that o(f(x,), &(x,)) =0, since
p(f(x,), &8(x))) < 1/ if X, isin C,. Hence f(x,) =y 1f and only if
g(x,) =y, sothat L(f) = L(g).

It follows that L(g)n g(M) 1is empty. If x 1is in Cy, then
o(g(x), f(x)) < €5, so that g(x) is not in L(f), which equals L(g).
Hence g 1s a homecmorphism. Note that g(M) 1s a closed subset of N if
and only if f(M) is.

(4) Let f be a diffeamorphism. There is a fine C' neighborhood W,
of f consisting of imbeddings. The following lemma shows that there is a
fine c° neighborhood of f such that if g 1lies in the intersection of W,
and this neighborhood, and g(Bd M) C BA N, then g is a diffeomorphism.

(a) Exercise. let f be a hameamorphism of X into Y; 1let
[Cil be & locally-finite covering of X by compact sets such that the sets
Int Ci cover X. Prove there 1s a fine c® neighborhood of f such that if
g lles in this neighborhood and g 1s 1-1 on each C;, then g is a
homecmorphism. (X and Y are separable metric, as always.)

(b) Exercise*. lLet M and N be C' manifolds; let f, be a
regular C' hamotopy between the maps f, and f, of M into N. If f,
is an immersion for each t, prove that for some 8(x) > 0, any ¢! regu-
lar hamotopy F, between f, and f, which is a 3-approximation to ft
for each t, 1is also an immersion for each t. Prove simlilar theorems when
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ft. is an imbedding and M 1s campact, or when ft is a diffeomorphism be-
tween non-bounded manifolds.

Hint: Generalize the proof of 3.10. (1) and (2) suffice for the
case of an immersion or an imbedding; for the case of a diffecmorphism, (3)
and (4) may be applied to themap F : Mx R— N x R defined by the equa-
tion F(x, t) = (f.(x), t).

(c) Exercise*. Show the hypothesis that M is campact is needed
in the preceding exercise when fy 1is an imbedding.

5.11 _Temma. Iet f be a homeomorphism of M onto N, where M
and N are topological manifolds. There is a fine c® neighborhood of f
such that if g 1lies in this neighborhood and g(Bd M) C BA N, then g

carries M onto N.

Proof. We consider first the case in which B4 M 1s empty.
Choose a locally-finite covering of M by sets C; such that for some
coordinate system (V,,k;) about f(Cy), Kk f(Cy) equals the unit m-ball
Bm, and the sets Int C; also cover M (see Exercise (a)).

Choose 8; small enough that the ball B(1 + 84) of radius 1 + By
1s contained in ky(V;), and so that the sets D, = (k)™ (B(1 - 5,))
still cover M (see 1.4). Then the sets f(Di) cover N.

Iet g : M= N be a map such that || k;g(x) - kf(x)]| < 8; when
x 1is in C:I.’ for a1l i. We prove that g 1is onto; 1in particular, we
prove that g(ci) contains’f%i). Said differently, the camposite map
h = (1(_1_g)(}c11‘)"I 1s & well-defined map carrying B® into R™, and the
image of the unit sphere 8% ' . Ba B® under h lies outside B(1 - 5) 3
we prove that h(B™) contains B(1 - 81).

Suppose z lies in B(1 - 5,) but not in h(B"). Iet X\ be the
radial projection from 2z, of R™ - z onto S%'. Then Ah carries BY
into s%1,

On the other hand, consider hlsm" : 8%V L RP, 1t is hamotopic
to the identity; we merely define Ft(x) =t hix) + (1-t) * x for x in
s, This hamotopy carries h(x) along the straight line between h(x)
end x, 80 Ft(x). lies outside B(l—si). Hence the map JLFt- is well-
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defined, and is a homotopy between h|S™' : 877! — 877! and the identity.
Consider the homology sequence of the pair (B™, 8™ ') and the
homomorphism of it induced by ah:

o—H (B", ™" =K (") ~o

| o, (x| 8771,
A\ Vv
o—H (B", 8" =g (8™ =0
Now (ah), 1s the zero-hcmomorphism of the infinite cyclic group Hm(Bm, Sm'l),
because Ah maps B" into ™', And (ah | 8 '1), 1s the identity hamomor-
phism of the infinite cyclic group Hm_.l(sm"1) because \h| -1 15 homoto-
pic to the identity map. This contradicts the commutativity of this diagram.
(This argument is the only place where we use a bit of algebraic topology.)
Now let us consider the case in which Bd M 1is non-empty. Let
D(M) be the double of M, as in 1.1; 1let D(N) be the double of N; 1let
¥ : D(M) = D(N) be the homeomorphism induced from f. Choose a metric o
on D(N). There is a positive continuous function €(x) on D(M) such that
if % : D(M) - D(N) and p(?(x), g(x)) < €(x), then E is onto.
Now D(M) = MU M,;; € determines two positive continuous functions
and €

€ on M. Similarly, p» induces two metrics p, and p, an K.

0 1
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let g: M= N; if g(BA M) CBA N, g induces amap g : D(M) = D(N). If
we require g to be an eo-approximation to f relative to the metric Po»
and an €, -spproximation relative to p,, then g€ 1is an e-approximation to
¥ and hence is onto. Then g is necessarily onto as well.

(a) Exercise. Prove the existence of the sets C; wused in the
preceding proof.

(b) Exercise. Let A be a closed subset of the non-bounded mani-
fold M; let B be a closed set containing A in its interior. Prove
there is a positive continuous function 8(x) defined on B sucH that if
f:B=M 1sa C° s-approximation to the identity, then f(B) contains A.




§4. Smoothing of Maps and Manifolds.

We now approach the two main goals of this chapter. The first of
our theorems states that if M and N are C” manifolds, and f : M= N
is a ¢! immersion, imbedding, or diffecmorphism, then f may be approxi-
meted by a C” immersion, imbedding, or diffeomorphism, respectively. The
proof of this appears in 4.2 - k.5, except for the case where f 1is a dif-
feomorphism and M has a boundary, which is postponed to Section 5.

The second theorem states that every differentiable structure of
class C1 on & manifold M contains a C* structure. The proof in the
case where M 1s non-bounded appears in 4.7 - 4.9; the other case 1s treat-
in Section 5.

. The fundamental tool needed for proving these theorems is the fol-
lowing "smoothing lemma."

4.1 Jemma. Iet U be an open subset of H' or RV. Iet A be

a campact subset of the open set V, where VCU. Iet f : U—R® bea
¢’ map, 1 < r. Let 3 be a positive number. There is a map fl: U - RP
such that

(1) f, is of class C” in a neighborhood of A.

(2) f1 equals f outside V.

(3) |fy(x) - f(x)| <& and |Df,(x) - Df(x)| < 8, for all x.

(4) f, 4is of class CP on any open set on which f 1s of class
c?, 1<p<e.

(5) There is a differentiable C* homotopy f, between f, = f and
f1, such that ft patisfies conditions (2)-(4) for each t.

Proof. It suffices to consider the case in which U 1is open in
Rm, since the other case reduces to this after f 1s extended to a neigh-
borhood of U in R™. We may also assume V 1s compact.

Let W be an open set containing A, such that WCV. Iet Y be
a C™ function on R®™ which equals 1 in a neighborhood of A and equals
0 outside W. (Take a partition of unity dominated by the two-element
covering (W, R® - A}, and let ¥ be the function corresponding to W.)

39
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let g(x) = ¥(x) r f(x); then g : U—R™?. We extend g to R
by letting it equal zero outside W; then g is of class C'.

Iet ¢(x) be a C® function on R™ which is positive on Int C(e),
and zero elsewhere. Here € 1s a positive number yet to be chosen. We
also assume that

(o ax-n
C(e)

since this may be obtained by multiplying ¢ by an appropriate constant.

Define

) = { oy gx+ v ay
C(e)

for x in R™. Choose vme less than the distance from W +to the comple-
ment of V., Then h(x) = 0 for x outside V. Define
£,(x) = £(x) - (1 - ¥(x)) + h(x)
Since ¥(x) and h(x) = 0 for x outside V, condition (2) of the lemma
is satisfied.
Now f,(x) = h(x) for x 1in a neighborhood of A, and h is a
function of class C:

h(x) = g o(y) g(x + y) dy
C(e€)

= S o(z - x) g(2z) dz
x +C(€)

= S‘ q(z'— x) g(z) dz ,
R®
since o¢(z - x) = 0 if 2z isnot in x + C(e). Since ¢ is a C” func-
tion, h 1is clearly of class C”. Thus condition (1) holds.

Since f, = f:(1 -%) +h, and ¥ and h are of class C”, the
class of f, on any open set is no less than the class of f. Hence condi-
tion (&) 1s satisfied.

Now f,(x) = £f(x) + (h(x) - g(x)), so that we need merely choose
€ small enough that h 1s a 8-approximation to g. By & mean-value theorem,

h'(x) = g'(x + ¥;)

ant d
gj’(x) = 35(3{ + Y:LJ)

where y; and yy5 are points in C(e€). The functions gi and agi/axj

and
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are uniformly continuous, so we need merely choose € so that
Igi(x) - gi(x*)| and Iagifbe(x) - Bgi/BxJ(x*)l are less than & 1if
|x - x| < €; then condition (3) holds.
Finally, let o be a monotonic C* function such that a(t) =0
for t<1/5 and o(t) =1 for t> 2/3 (see 1.3). Define
fo(x) = a(t) £(x) + (01 - a(t)) f(x)
Then f, 1is a ¢ differentiable homotopy between f and f,. Outslde V,
fy =f, sothat f, =F° also. Likewise,
£, - £l = a(t) |y - £] < B
Ipf, - Df| = a(t)|Dfy - Df| < &

1

and

Finally, ft is of class CP on any open set where f, and f are.

l (a) Exercise. Consider the proof just given. 8Show that if U is
open in R® and f(U) C H?, then £,(0) C H®. Show that if U dis open in
H" and f(U) C H®, it need not be true that f,(U) C H'. Modify the con-
struction of f, so that this relation will hold. (Hint: Replace C(¢€)
by C(e) n H® throughout the proof.)

(b) Exercise. Consider the preceding theorem in the case r = 0.
Show that the conclusions still hold, except that [Df,(x) - Df(x)| < 8 no
longer makes sense (since Df does not exist), and ft is of class C° and
hence only a homotopy.

4.2 Theorem. Iet M and N be manifolds of class CP. Let

f:M—=N be amapof class C© (1 {r<p<=). Let 8(x) > 0. There
isaC’map h: M— N such that

(1) h 1is a s-approximation to f.

(2) There is a C” differentisble homotopy f, between f and
h which is a 3-approximation to f, for each ¢t.

Proof. Let (U;} be a locally-finite covering of M, ﬁi compact,
where (U,, hi) is a coordinate system on M and f(Ui) is contained in
the coordinate system (oi, ki) on N. Let (Wil be an open covering of
M, with ﬁi contained in the open set V,, and Gi contained in .
Let 8 be so small that any s-approximation to f carries ﬁi into fﬁpﬁg
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let f, = £f. Assume f; ,: M— N is a C" msp which is of class
c® on WU ... UW,_, and approximates f within &(1 - 1/21'1). Con-
sider g, _, = Kk fy_, h£1, which carries hy(U;) into the open subset
ki (@4) of R® or H®. We apply Lemma k.1 to obtain a C* mep g °
hi(Ui)-* R? or Hp, which equals g 1 outside hi(Vi) and is of class
c” en h,(W;). We need Exercise (a) of 4.t if both M and N -have bound-
apdesg. Iet g be a close enough approximation to 841 that it carries
1;1(111) into k;( ©,). Then f; is well-defined by the equations

£,(X) = £;_4(x) for x outside V,;

f‘i(x) - ki"' gihi(x) for x in Uy
Also, fy 1s of class c® on W,U...UuW;. (Recalling that g, 1s of
class CP on any open set where 8¢ 1s.) Furthermore, if we require
lgy(y) - 8;_4(¥y)| and |Dg(y) - Dg;_,(y)| to be sufficiently small, we
can make f; a &(x)/ei approximation to £y.4- (Here we use Lemma 3.6,
of course.) Define h(x) = Um, _, fi(x); h 1is well-defined because
fi(y) = fi+1(y) = ... on some neighborhood of x, for 1 sufficiently
large. Also, h 1s of class cP and is a s-approximation to f.

To construct the differentiable homotopy between f and h, we
preceed as follows: Iemma 4.1 gives us a ¢ aifferentiable homotopy between
g_y &nd g;. From this we obtain a c” differentiable hamotopy Fy(x, t)
between f, ,(x) and f,(x); F; will be a 5 /2% approximation to fy_,

for each fixed t; F, 1s constant in t, for x outside Vy. Define

i
F(x, t) = F\(x, t) for t <1

F(Xx, t) = Fy 4(x, t-1) for 1<t <1+ 1

Then F is of class C° on MxR; and for any campact subset B of M,

there is a number n such that F(x, t) = h(x) for t>n and x 1in B.

Define f‘t(x) = f(x) for t <0
fo(x) = F(x, tan (xt)) for 0t < 1/2
[ (a) Exercise. Strengthen the preceding theorem as follows: ILet

A be e closed subset of M and let f already be of class CP in a neigh-
borhood U of A. Then we may add the following to the conclusion of the
theorem: (3) fl(x) = f(x) and ft(x) = f(x) for each x in A.
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Hint: In the above proof, take ({U;} to be a refinement of the
covering (U, M - A) of M, and choose g, =g;_, if U, CU.
(b) Exercise. Assume the hypotheses of the preceding theorem.
Iet B be a closed subset of the open set U of M. Prove there is a CT
map h : M— N such that h is of class cP ina neighborhood of B and

equals f outside U, and (1) and (2) of the preceding theorem hold.
(c) Exercise. Consider the preceding theorem in the case r = 0.

Show that the results still hold, except that h and f, are, of course,
only c® s-approximations to f.

4.3 Corollary. Iet M and N be manifolds of class CP; 1let
f:M—=N bea C' immersion (1 <r<p<w). There is a CP immersion

fy: M~ N, and a C" differentieble homotopy f, between f and f,.

Proof. This follows from Theorems 3,10 and 4.2. We remind the
reader that by our convention (3.9), fy 1s required to be an immersion for

each t.

4.4 Corollary. Let M and N be manifolds of class CP; 1let
f:M—=N bea C° imbedding (1 < r < p < ). There is a CP imbedding

fy+ M= N, and a C" differentisble isotopy between f and f,.
4.5 Corollary. ILet M and N be non-bounded manifolds of class
€’ let f : M- N bea C° diffecmorphism (1 < r < p < =). There is &

P diffeomorphism f,: M— N, and a C" differentiable isotopy f, between
f end f,; ft is a diffeomorphism for each t.

(a) Exercise . State and prove the stronger forms of these three
corollaries, obtained by applying the results given in Exercises (a) and
- (b) of 4.2.
(b) Exercise . Let M and N be manifolds of class C'; 1let
fo and f1 be ¢F maps of M into N; 1let ft be a Cl differentiable
homotopy between fo and f,. Iet 8(x) > 0. Prove there is a cr
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differentiable homotopy F, between f, and f, such that F, is a
s-approximation to fy for each +t. ’

4.6 Problem . ILet M and N be manifolds of class C'; 1let £o

and 15‘1 be (}1 maps of M 1into N; 1let ft be a 01 regular homotopy be-
tween them. ILet 8&(x) > 0. Prove there is a ¢! differentisble hamotopy Fy
between them such that F, 1s a s-approximation to f,, for each t.

Outline: Consider first the following problem: For each t, 1let
f, bea ¢! map of the open subset U of H® or R® into H® or into
R™; suppose ft is a C1 regular homotopy between f, and f1 . Let A be
& campact subset of U; let ¥ be as in 4.1; 1let gt(x) = 7(x) - ft(x) .

Define +€
B(x) = { o(s) gyg(®) ds

-€

for suitably small €, where o 1s positive on (-€, €) and 0 outside,
€

and S 9 = 1. let Ft(x) = f‘t(x) < (1 - ¥(x)) + nt(x). Then F, 1s a c!
-€

differentiable hamotopy between f, and f, on some neighborhood of A,
and equals ft outside some neighborhoed of A.

.7 Lemma. et U, V, and W be bounded open subsets of RT,
with WCV and VCU. Iet = be the projection of R® onto R™. Suppose
f: U—=R® is a C” map such that «f : U—R™ 1s an imbedding. Given
8(x) > 0, there is a C' imbedding h : U— R® such that

(1) h equals f outside V.

(2) h is a s-approximation to f.

(3) h(W) 1is a C* submanifold of R-.

(4) If U, 1is an open subset of U and f(U,) is a C* submanifold
of R", then h(U,) 4is also a C™ submanifold of R".

Proof. The restriction of =« to f(U) i1s a homsomorphism of f£(U)
onto an open subset © of RT; let g : © = R? be the inverse of this map.

Then
gx', ..., = (x', ..., %%, x),..., R x)

and g is of class CF, since it equals f(xf)"'.
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D =

Further, if f(U,) 1is a C” submanifold of R", the restriction
of g to =f(U,) is of class C”. (The converse is easy (2.2).) For impose
on f(U,) 1its induced C” structure, and note that =|f(U,) is a C” map
relative to this structure. The map g 1s the inverse of this, which is
C”, followed by the inclusion of f(U,) into R", which 1s C%.

Consider g,: @ = R"", defined by the equation

g (x) = (&7 (x),...,gNx))
Using 4.1, choose gom to be an e-approximation to g, which is of class
c® on nf(W) and equals 2y outside =f(V). We further require that go
be of class C* on any open subset of © where g 1s c®. let B :
© = R® be defined by the equation g(x) = (x, EO(X))i it is an €-approxima-
tion to g.

Define h : U— R" by the equation h(x) = grf(x). By 3.7, if €
is properly chosen, h will be a s-approximation to f = g=xf.

4.8 Theorem. Let M be a non-bounded C* manifold (1 < r). Let
f : M=R" bea C° imbedding. Iet &(x) > 0. There is a C' imbedding
h : M= R? which is a s-approximation to f, such that h(M) 1is a C°
submanifold of R".

Proof. Let 5 be small enough that any s-approximation to f 1is
an imbedding. For each x in M, df(x) has rank m. Then for some pro-
Jection = of R onto a coordinate m-plane, the map d(=f)(x) has rank m,
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so that xf 1s a CF diffeamorphism of a neighborhood of x onto an open
get in the coordinate m-plane, by the inverse function theorem. Choose a
covering of M by sets C, such that for some coordinate system (U, hy)
about 01, hi(Gi) equals the unit m-ball, such that the sets Int C;
cover M, and such that for some projection =; of R? onto a coordinate
m-plane, ﬁiflci is an imbedding. ILet 8, be a number such that any 3,-
approximation to “1f|°1 is an imbedding; let 8(x) be small encugh that
8(x)< 84 for x in Ci. Then if f': M= R® 1is a s-approximation to f,
then =,f' is a 8-approximation to =, f, so that “if'lci is an imbedding.
Iet W, be an open covering of M, with W, contained in the open set V,,
and V, C Int C,.

Let f, = f. As an induction hypothesis, suppose fy_,: M= R
18 a C* map which is & (1 - 1/23'1)5(1) approximation to f such that
£y.,(W) 1s a C” submanifold of R®, for k < j. We then construct a map
fJ. Apply the preceding lemma to the map

fJ_1h31 t hy(Int Cy) - R

to obtain e mp fy: M- R? which is a 8/2) approximation to fy_y, vhich
equals f, , outside V,, and such that f,(W,) isa C* submanifold of
R®. Condition (4) of the preceding lemma guarantees we can choose fj SO
that fy(W,) 1s a C” submanifold of R® for k< J .

As before, we let h(x) = Umy , fJ(x), and note that h satis-
fies the conditions of the theorem.

4.9 Corollary. If O is a C' differentiable structure on the

non-bounded manifold M, D contains a C” structure.

(a) Exercise. let M be a non-bounded CT manifold; let N be
& non-bounded C” manifold. Let &(x) > 0. If f : M= N isa C° imbed-
ding, prove there is a c’ imbedding h : M~ N which is a s-approximation
to f, such that h(M) is a C” submanifold of N, and h is C* differ-
entiably isotopic to f. l
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There are additional technicalities involved in proving our two

main theorems 4.5 and 4.9, for manifolds with boundary.
First, we need to prove the local retraction theorem (5.5),

which states that a non-bounded - C* submanifold M of euclidean space has
a neighborhood which is retractable onto M by a ¢’ retraction. If r > 1,
it is easy to find such a retraction of class C ' '; roughly, one takes the
plane normal to M at x and collapses it onto x. To construct a retrac-
tion of class C” requires more work; one needs first to study the Grass-
mann manifolds (5.1 - 5.4). One also needs a topologlcal lemma (5.7).

From this, we can prove the product neighborhood theorem, which
states that Bd M has a neighborhood in M which is diffeomorphic with
Bd M x [0, 1). This in turn is used to construct a differentiable structure
on D(M), the double of M (5.8 - 5.10).

The theorems for M then reduce to the corresponding theorems for
the non-bounded manifold D(M) (5.11 - 5.13).

5.1 Definition. The Grassmann manifold Gp n is the set of all
F

n-dimensional subspaces of RMP,
Let M(p,q) denote the set of all pxq matrices; M(p,q;r) de-
notes those having rank r. The rows of any matrix A of M(n,n+p;n) are

a set of n independent vectors of Rn+p, so they determine an element of

Gp n Which we denote by A(A). Further, two matrices A and B determine
the same element of Gp n 1f and only if the rows of each are linear combi-
)

nations of the rows of the other; 1i.e., if A = CB for some non-singular

nxn matrix C.

M(n,n+p;n) 1is an open subset of Rn(n+p) (see 3.10), so that it
has & natural topology and C” differentiable structure. Let G, n be given
»

the identification topology: V 1s open in Gp if and only if 2"V
H

n
is open in M(n, n+p; n).

We note that A: M(n, n+p; n) = G
p,n
be open in M(n, n+p; n). For any C in M(n, n; n), the map C : A— CA

i1s an open map. For let U

L7
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is a homeomorphism of M(n, n+p; n) with itself, so that C(U) is open in
M(n, n+p; n). x“(x(U)) is the union of the sets C(U) for all C in
M(n, n; n), so ATU) 1s open.

5.2 Theorem, Gp n 1s a non-bounded C® manifold of dim pn; the
3
map X : M(n,n+p;n) — Gp n 1is of class C®.
3
Proof. (1) Gp n is locally euclidean. ILet us explain first the
b}

geometric ldea of the proof. If @ is an n-plane through the origin in
R™P, there is some projection = of R™P onto a coordinate n-plane
which is a linear isamorphism on ® . Iet U be the set of all planes on
which = 1s a linear isamorphism. Each plane of U uniquely determines an
n-tuple of vectors (_v'.l,. . .,Tr'n) which 1lie in it and project under = into
the natural unit basis vectors for the coordinate n-plane. Conversely, each
such n-tuple determines a plane of U. Thus, each vector ?r'i has p com-
ponents which may be chosen arbitrarily; since there are n such vectors,
U 1is homeamorphic with RP,

More precisely, let A(A) be the general element of G n
nxn submatrix of A has rank n; suppose it consists of the f;rst n

Scome

columns. Iet U be the set of matrices of the form [P Q) where P 1is
nxn and non-singular. Then U is open in R™™P) ang nence 1n
M(n,n+p;n). Hence V = A(U) 1is open in Gp,n'

Iet ¥ map the arbitrary matrix Q of M(n,p) into the matrix
[I Q] of M(n,n+p); let ¥, = \¥. Then ¥, 1s a continuous map of M(n,p)
into Gp,n' It is 1-1, since A[I Q,] = A[I Q] only if [I Q,] = CII Q,k
it maps M(n,p) onto V, since A[P Q) = A[I P Q) = !’(:,(P_1 Q).

Iet ¢ : U~ M(n,p) be defined by the equation o([P Ql) = P Q.
Now ¢ 1s constant on each set ~'(®), since the equation AP, Q1) =
MIP, Q,]) means that [P, Q,] = C[P, Q,), whence P;'Q, = (CP,)”'(CQ,) =
PE'QE. Hence ¢ 1nduces a continuous mep ®q of V into M(n,p):; ?0 is
the inverse of Y,, since @,¥,(Q) = o([I Q]) = I7'Q = Q. Hence ¥, 1sa

hameamorphi sm.
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—
M(n,p) ¥ C M(n,n+p;n)
®

®q ‘10 A S

VEC G

(2) Gp,n has a C” differentiable structure. We need only prove
that two coordinate neighborhocds (V, qao) of the type Jjust constructed have
class C” overlap. let ;,?,fl‘ﬁ be the corresponding maps and open sets
which determine another coordinate neighborhood. Then ¥ takes the columns
of the matrix Q and distributes them in a certain way among the columns of
the identity matrix I, so that 7 is certainly of class C°. ILikewise ¢
is of class C* on the open set U of M(n,nsp;n), since o([P Q)) = P"Q.

Hence o.¥. = o¥ 1s of class C° (on the open set o(UNTU) where it is
o¥o =

defined).
(3) GP o 1s Hausdorff. For let X(A) and M(B) be distinct sub-
b
spaces of Gp o+ Then the matrix ( % ] must have rank at least n+1.
3

Choose € > 0 so that any 2n x (n+p) matrix within € of this one has
rank at least n+1. Iet U denote the e€-neighborhood of A, and V, the
€-neighborhood of B, in M(n, n+p; n). Then A(U) and A(V) are disjoint
neighborhoods of A(A) and X(B), respectively, since , 1s an open map.

(&) Gp,n has a countable basis. Indeed, Gp,n is covered by

(n+p) ! /n!p! coordinate systems of the type constructed above.

(a) Exerciae*. Show that Gp n is compact.
’
(b) Exercise . Show that there is a C® diffeomorphism of Gp n
Hl
onto Gn,p'
5.3 Lemma. ILet f:M-Gpn be a C" map. Given x in M,
2

there 1s a neighborhood U of x and a ¢’ map f,: U— M(n,n+p;n) such
that A, = f. (f, 1s called a lifting of f over U.)

Proof. ILet (V, q)o) be a coordinate system on G.

Frool ,n?

such that f(x) 1lies in V. Now g9,: V— M(n,p) is a C” diffecmorphism.

as in 5.2,
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Simply define

[ (a) Exercise . let (v, q:o) be as in 5.2. Show that there is
a diffeamorphism g of A N(V) with V x M(n, n; n) such that rg"! is
the natural projection of V x M(n, n; n) onto V.

Let (V, 30) be another coordinate system on G ,, and g the
corresponding diffecmorphism. For each x in VNV, let a map hx' carrying
M(n,n;n) into itself, be defined by the equation

(x, h(P)) = & g”'(x, P)
Show that h, 1s merely multiplication by & non-singular matrix A,, and
show that the map x - A, 1s continuous. This will show that
At M(n,n+p;n) — Gp,n is a principal fibre bundle with fibre and structural

group M(n,n;n). (See [12].) l

5.4 Definition. Let f : M— R® be a C' immersion. If VvV is

tangent to M at x, then df(V) is a tangent vector to RT at f£(x).
If we identify T(R") with R" x R", then af(V) = (£(x), d,£f(¥)), as in
3.5. As V ranges over the tangent space at X, dof('*?) renges over an
m-plane through the origin in R®. The tangent map t of the immersion f
will be the map t : M- Gp,m which assigns this m-plane to the point x.

(n « m + p, of course.)

Iet (U, h) be a coordinate system on M. Then locally the map ¢t
is given by the equation t(x) = x(D(fh")), where the matrix D(fh“) is
evaluated at h(x), and A 1s the projection of M(m,m+p;m) onto G_. .

p,m
Hence t 1is of class Cz"1.

Similarly, one has the normel map of the immersion, n : M- Gm,p’
vhich carries x into the orthogonsl complement of +¢(x). Now the matrix

D(fh™") 1s non-singular; suppose it is of the form [P(x) Q(x)) where P
is mxm and non-singular. Then locally n 1is given by the equation n(x)

= M [R(x) I]), where R = - (P'1Q)t‘r. Hence n is also of class CY V.
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5.5 Theorem (local retraction theorem). Let f : M- RD be

e C¥ imbedding; M non-bounded. There is & neighborhood W of f£(M)
and a C* retraction r : W— f£(M). (We recall this means that r(y) = y
for y in £(M).)

Proof. Consider the normal map n : M— Gm’p and the tangent map
t:M=G, . of the imbedding f (p = n -m). Both are of class cr-l,
There is a fine C° neighborhood of n such that for any map ™ which
lies in this neighborhood, IH(x) and t(x) are independent subspaces of
Rn, i.e., thelr intersection is the zero vector (see Exercise (a)). Choose
amep 0N : M=G m ©Of class ¢’ which lies in this neighborhood, using
Theorem L4.2. (In,the case r =1, n 1s only of class Go, and we need to
use Exercise (c) of that section.) ILet t(x) be ths orthogonal camplement
of M(x); t 1is also a map of class CT.

Iet E be the subset of MxR® consisting of pairs (x, V) such
that v 1ies in the subspace nN(x). (If we used the map n instead of o,
E would be what is called the normal bundle of the imbedding.) We prove
that E 1is a C* submanifold of MxR™ of dimension n.

Given x 4in M; let X, and t, be C¥ liftings of X and t
in a neighborhood of x. Then MN,(x) = A(Xx) is a pxn matrix, and

%}(x) = B(x) 4is an mxn matrix; the rows of A and B Jointly form a

linearly independent set. Iet (U, h) be a coordinate system about x
such that n, and T, are defined on U; 1let h(x) = (u', ..., uM.
Define g : U x R® = R® x R® by the equation
g(x,(v',...,v%) = (h(x), tvl... v - [A(x)] 1)
B(x)
Then (U x R®, g) 1s a C¥ coordinate system on M x R®. Now if (x, V)
1lies in E, then VvV 1is some linear combination of the rows of A(x), so

that
A(x)
Vely ... 0 ...01 °
vely v [B(x)]

for same choice of y‘ 9 o9y yp . Conversely, if ¥V 1is of this form, then
(x, V) 1lies in E. As a result, (x, V) lies in E if and only if

g(x, V) 1lies in h(U) x RP. Hence the coordinate mep g carries the in-
tersection of E with U x R® anto the open subset h(U) x RP of Rm-o-p’
so that E 1s a C* submanifold of M x R™.
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Consider the CT map of M x R® =R which carries (x, ¥) into
f(x) + V; let F be the restriction of this map to E.

We prove that dF has rank n at each point of Mx0. Use the
coordinate system g(x, V) = (u',...,u%,y',...,y°,0,...,0) on E which vas
constructed above. Then )

Fgl(u, y) = fhl(u) + [y'... ¥ ah () ,

3Fg™ ) By = AT (N,

a(Fg~") puk < a(en™h) /ouk + ([yt...¥P) ¢ 3ARTT) 2T .
The last term vanishes at points of g(M x 0), since y = 0 at such points.

sc that
and

Hence
D(Fg™") - (D(fh™)(w) AR (w) ')

at points of g(M x 0). The columns of D(f‘h'1) span the tangent plane t(x);
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the rows of A span the plane HN(x); by choice of & these spaces are
independent.

Now, F : E— R® 1s a hameomorphism when restricted to the sub-
space Mx 0; furthermore, each point of Mx0 has a neighborhood which
F maps homecmorphically onto &n open subset of R® (by the inverse func-
tion theorem). It follows that there is a neighborhood of Mx0 in E
which F maps homeomorphically onto an open set in R® (see Lemma 5.7).
There is also & neighborhood of Mx0 in E on which dF has rank n;
let V be the intersection of these neighborhoods and set W = F(V).

There 1s a natursal projection = of MxR® onto M. Since P is
a C' diffeomorphism of V onto W, Fnx F' =« r is the required retrac-
tion of W onto f(M).

(a) Exercise. Construct the fine c® neighborhood of the normal
maep n required in the preceding proof.

Hint: Use the fact that XA 1s an open map to construct neighbor-
hoods of n(xo) and t(xo) consisting of subspaces which are independent.j

5.6 Corollary. Iet f : M— N be a C* imbedding; M non-bounded.

There is a neighborhood W of f(M) in N and a c* retraction r : W—
f(M).

Proof. let g: N— R? ve a CT imbedding. There is a neighbor-

hood U of gf(M) in RY and a CT retraction r, of U onto gr(M).

Then 5'11‘03 is the required retraction, defined on W = g"‘(U) .

(a) Exercise.” Iet f : M—N be a C¥ immersion, with r > 2;
M and N non-bounded. The normal bundle E of f may be described most

simply when N is a submanifold of RP having the derived Riemannian met-
ric. In this case, let E be the subspace of M x RP consisting of pairs
(x, V) such that V is a p-tuple representing a vector tangent to N and
normal to df(¥) for each W tangent to M at x. (In the more general
case, E 1s described as a subset of M x T(N).) Then E 1s a C*~' sub=
manifold of M x RP. Prove the tubular neighborhood theorem:
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If £f:M=NCRP is a CTimbedding, there is a neighborhood U
of Mx 0 in the normal bundle E and a C*~! diffecmorphism h of U
with a neighborhood of f(M) in N such that h|[Mx 0 = f.

Hint: Iet F : E—~RP be themap F(x, V) = £f(x) + V; 1let r
be a retraction of a neighborhood of N onto N; let h = rF. J

5.7 Lemma. Iet A be a closed subset of the locally compact
space X. ILet f: X—=Y be a homeomorphism when restricted to A; sup-
pose each point x of A has a nelghborhood U, which f maps home cmor -
phically onto an open subset of ¥, Then f 1s & homecmorphism of scme
neighborhood of A onto an open subset of Y. (X and Y are separable met-

ric, as always.)

Proof. Iet U be the union of the neighborhoods Ux' Then f 1s
locally 1-1 at each point of U. Furthermore, if B 1is any subset of U

such that f|B 1s 1-1, then f|B 1is a homeomorphism. For let f(x,) —
f(x), where x, and x are in B. Now f(U,) 1s open in Y, so it con-
tains all elements of the sequence f(xn) from some n onwards. Since
£|U, 1s a homeomorphism, x, must converge to x.

(1) If C 1is a campact subset of U and f 1is 1-1 on C, we
prove there is a neighborhood of C on whose closure f 1is 1-1. Let U,
be the €/n-neighborhood of C, where € 1s small enough that U, 1s com-
pact and ldes in U. If f 1is 1-1 onno set U , there are points x,
and y, of U, such that f(x,)) = f(y,). By passing to subsequences and
renumbering, we may assume X, — X and Yo ¥; X and y will be points
of C. Then f(x) = f(y); since f 1is 1-1 on C, x=y. But f 1is
locally 1-1 at x, so we could not have f(x)) = f(y,) for large n.

(2) If C 4is a compact subset of U and f 1is 1-1 on CUA,
we prove there is a neighborhood V of .C such that f 1is 1-1 on VUA.
Iet U, be the e/n-neighborhood of C, where € 1is small enough that U,
is compact and 1ies in U, and so that f 1s 1-1 on T, (using (1)).
If £ 1s 1-1 onno set UQPA, there are points x, of U, - A and y,
of A -TU, such that f(x,) = f(y,). By passing to subsequences and re-
numbering, we may assume X -+ x, where x 1s a point of C. Then f(y,) —
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f(x). Now f|CUA 1is a homeomorphism, so that Yo~ Xx. But f 1s locally
1-1 at x, so we could not have f(x.n) = f(y,) for large n.

(3) We now prove the lemma. ILet A be the union of the increas-
ing sequence AOC A1C... of campact sets, where Ao is empty. Define VO
to be the empty set. In general, suppose Vn is a neighborhood of An,
such that V, 1s a compact subset of U and f 1s 1-1 on VUA. By (2),
we may choose & neighborhood V. , of the compact set V,UA  , such that
is & compact subset of U and f 1s 1-1 on V  VUA.

Iet V be the union of the sets Voo Then £ 1s 1-1 on the
neighborhocod V of A.

vn-l- 1

5.8 Lemma. let M be a C' manifold. There is a non-negative
real-valued 'c" function g on M such that for each x 1in Bd M, g(x) =0
and dg(x) has rank 1.

Proof. ILet ((U;, hy)} be a locally-finite covering of M by
coordinate systems; let {g;) be a partition of unity dominated by the
covering (U;}. Iet dim M = m. For each 1, the m*P coordinate function
h’_il(x) is zero for x In U;NBd M. Furthermore, 1f k(x) = (u',...,u®
is another coordinate sustem about the point x, then a(rff k) /ou® 1s
positive at k(x): For hy k' isa non-singular transformation of an open
set in H® about k(x) onto an open set in H", and h;'_l k"(u’,...,um"l,o)
=0, sothat 3(hy k™')/dul = 0 at points of R™', for J < m. Since
D(hik”) is non-singular, a(h“; k")/auln must be non-zero at points of R
since hljr_l(x) is non-negative for all x, this derivative must be positive
at points of R™ .

Let g(x) = I; o4(x) -Hj(x). Then g(x) = 0 whenever x 1isin
Bd M. Purthermore, if k(x) = (u‘,...,um) is a coordinate system on M,
then

Agk™ ) /™ = Ty W« 3ok /AU 4+ I @ ¢ A(HT k1) /20"

Whenever x 1s in Bd M, the first term vanishes, because hf(x) = 0; the
second term is strictly positive. Hence dg(x) has rank 1 if x is in
B4 M.
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5.9 Theorem. Iet M be a CF manifold. There is a C¥ diffeomor-
phism p of a neighborhood of Bd M with Bd Mx [0, 1) such that p(x) =

(x, 0) whenever x 1s in Bd M. Such a neighborhood is called a product
neighborhood of the boundary.

Ll

Proof. By 5.6, there is a neighborhood W of Bd M in M and a

c* retraction r : W— Bd M. By 5.8, there is a non-negative ¢’ function

g on M such that if x 1is in Bd M, g(x) =0 and dg(x) has rank 1.

Define f : W— Bd Mx [0, ») by the equation f(y) = (r(y), &y)). If x

is in Bd M, then f(x) = (x, 0) and df(x) is non-singular: For let

k(x) = (u1,...,um) be a coordinate system about x; let h = (k|BdA M) x 1.
I *

D(hfk™') =
o gk /o

One uses Theorem 1.11 to prove that each x 1n Bd M has a neighborhood

U, which f carries homecmorphically onto an open subset of Bd M x [0, =).
Since f 1s a hameamorphism when restricted to Bd M, it follows fram 5.7
that f 1s a haneomorphism of scme neighborhood U of Bd M in W onto

a neighborhood V of BA Mx 0 in Bd M x [0, «). Using Exercise (a) of
2.6, we may construct a cY function 8(x) > 0 on Bd M such that the point
(x, t) of Bd Mx [0, ») lies in V if t < 8(x). Let s be the diffeo-
morphism of Bd M x [0, =) onto itself which carries (x, t) into

(x, t/8(x)), and let p = sf. Then p(U) contains Bd M x [0, 1), and

a restriction of p will satisfy the demands of the theorem.

5.10 Definition. Iet M be a CF manifold with non-empty boundary.
Recall that the double of M, D(M), 1s the union of M; = Mx0 and M, =
Mx1, with (x, 0) and (x, 1) identified whenever x 1is in Bd M. We

may impose a differentiable structure on D(M) as follows: Let

Py* UO -+ Bd N{)xio, 1) and p,: U, = Bd M1x(-1, 0] be product neighborhoods
of the boundery in M, and M;. Iet U be the union of U, and U, in
D(M), and let P : U—Bd Mx(-1, 1) be the homeomorphism induced by p,
and p,. A C" differentisble structure on D(M) is well-defined if we
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require (1) P to be a ol diffecmorphism, and (2) the inclusions of Mo
and M, in D(M) to be C¥ imbeddings.

Now the differentiable structure on D(M) depends strongly on
the choice of the product neighborhoods Py, and p,. However, the differ-
entieble manifolds arising from two such choices are diffeamorphic, as we
shall prove later (6.3).

| (a) Exercise*. Impose two distinct differentiable structures on
D(H?) by using different cholces for the product neighborhood of Bd B,
Show that the resulting differentiasble manifolds are diffeomorphic, but that
the diffecmorphism may not be chosen as an arbitrarily good C' approxima-
tion to the identity on each copy of H?.

(b) Exercise*, If M and N are C¥ manifolds, show that Mx N
has a C* differentiable structure such that each inclusion M — M x y and
N—xxN is a C¥ imbedding.

5.11 Theorem. If 9 1is a C' differentiable structure on the
manifold M, then D contains a C* structure.

Proof. We have proved the theorem in the case where B4 M 1s
empty. Otherwise, let us consider the non-bounded manifold D(M), and
provide it with a C¥ differentiable structure, as in 5.10. Choose a C®
structure contained in this, and let D' denote the corresponding differen-
tiable manifold.

Consider the map P~': Bd M x (-1, 1) = D(M) where P 1is the map
defined in 5.10. The C* structure on Bd M contains s C” one; let us de-
note the resulting differentiable manifold by (Bd M)'. Then P~ is a CF
diffecmorphism of the C” manifold (Bd M)' x (-1, 1) with an open subset
U of the C* manifold D'.

Now there is a C¥ diffeomorphism h of (Bd M)' x (-1, 1) with
U, which is C® in a neighborhood of (Bd M)' x 0, and equals P~' outside
(BA M)' x (-1/2, 1/2). (Here we use Exercise (b) of 4.2.) Then the set
h(Bd M x 0) 1is a C* submanifold of D!.
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Now h d4nduces a C¥ diffecmorphism f of D' onto itself; we
merely define f(x) = hP(x) if x is in U, and f(x) = x otherwise. If
1 : M= MCD' is the inclusion mepping, then fi is a C imbedding of M
in D', and the set fi(M) is a C” submanifold of D'. Our result follows.

5.2 Lemma. It M and N be non-bounded cP manifolds; 1let
f: M= N bea C' diffecmorphism. Identify N with Nx0 in NxR for

convenlence. Given a positive function € on NxR, there 1s a positive
function 8 on M such that the followlng holds:
let g be a cP imbedding of M into N xR which is a 8-approxi-

mation to f. Then there is a CP diffeomorphism h of NxR onto itself,
such that

(1) h carries g(M) 1into N.

(2) h 1is an e-approximation to the identity, and equals the identity
outside N x (-2/3, 2/3).

Proof. Let B(t) be a monotonic C” function which equals 1 for
t < 1/3 and equals 0 for t > 2/3. let k >|s'(t)] for all t; then
k> 3. Let = be the projection of N xR onto Nx O. Iet 8 be small
enough that g(M) 1ies in N x (-1/3, 1/3), and small enough that =g
is a diffeomorphism of M onto N x 0. (By 3.7, =g may be made to approx-
imate «f = f as closely as desired by taking & small enough.)

Then the general point of

g(M) 1s of the form (y, o(y)), ' f
—_—
where y 1sin N and ¢ 1is a real g S
function on N, with =-1/3 < ¢(y) f (x)
< 1/3 . Since (y, o(y)) = I
x 0) T Ja) = (y-¢
g((ﬂg)-‘(y, 0))’ Q(}") 13 a cp func- ® (9‘ () ( (g))
tion of y.
Define h: NxR=NxR by R
the equation 1y
| (] (ﬁ_

h(y, 8) = (y, ¥(y, 8)), M N v

where

Y(y, s) = s - o(y)e(ls]),
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Now |o(y)l < 1/3, so when s = @(y), B(s) = 1. Hence h carries g(M) in-
to NxO. If Isl>2/3, B(s) =0 and h 1is the identity.

By proper choice of &, we may make ¢(y) as close an approxima-
tion to the zero-function as desired. For this, we note that (y, o(y)) =
g(ug}'1(y, 0); wusing 3.7, we see that if g approximates f closely
enough, ng approximates =xf = f, (Kg)—l approximates f-‘, and g{ug)"
approximates ff~' = identity. Let & be small enough that ¢(y) is an
e,(y)/2k epproximation to the zero functlion, where €,(y) = min e(y, s)
for -1 < s< 1. N mst be lmbedded in some RP vefore this makes sense;
then N x R 1s imbedded in RP*'. Now lo(y)| < eo(y), so

I n(y, 8) - (v, )l = |¥(y, 8) - 8| < €y(y) ,
as desired. lLet V be a unit tangent to NxR at (y, s); let ¥V, and

-—
v

» be 1ts camponents tangent to Nxs and y xR, respectively.

I an(@ -V I < | dhﬁﬂ) --\'F’,H + | an(¥,) - Y,
The second term is less than e,/2, since [3¥/ds - 1] = |le(y)B's)] «
50/2. The first term equals
har(F DI = letsdde(F I < ey/2 ,
as desired.

5.13 Theorem. ILet M and N be manifolds of class Cp; let

f : M= N be aC’ diffecmorphism (1 < r < p < =). Given &(x) > O, there
is a CP diffeomorphism f,: M— N which is a 8-approximation to f.

Proof. Let & be small enough that if f, 1s & C° s-approxima-
tion to f and f,(Bd M) CBd N, then f, 1s onto. Consider N as a sub-
manifold of D(N); then f is a C¥ Imbedding of M into D(N). By Prob-
lem 3.7, there are positive functions 8, and 8, on M and D(N) re-
spectively, such that if g is a 3, -approximation to f, and h : D(N) -
D(N) 1is a 3,-approximation to the identity, then hg is a s-approximation
to f.

Iet g : M= D(N) be a CP imbedding which is a 8, -approximation
to f. If 5y, 1s small enough, g will carry Bd M 1into the product
neighborhood Bd Nx(-1, 1) which is used to give D(N) its differentiable
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structure. Then we may apply the preceding lemma, to obtain a cP aiffeomor-
phism h of D(N) which carries g(Bd M) onto Bd N. By making &, small
enough, we may make sure h 1is a &,-approximation to the identity.

Then hg = f; maps M into D(N) and cerries Bd M into Bd N;
a connectivity argument shows that M must be carried into the subset N
of D(N). B8ince f, is of class cP?, our result follows.

S5.14 Problem. Generalize the preceding theorem to prove that

there is a CT differentiable isotopy ft between f and f,, such that
fy 1s a diffeomorphism of M onto N for each t.

Hint: You will need to generalize Lemma 5.12 as follows: ILet gt
be & CF differentiable isotopy between two c’ imbeddings of M into NxR
which is a sa-approximation to f for each t. Then there is a ¢’ qiffer-
entiable isotopy hy which is a diffeomorphism of NxR onto itself for
each t, which satisfies (1) and (2) for each t, and in addition satisfiles
the conditions:

(3) If g(M) C N for some t, then hy is the identity map,
() If g 1is of class c® for some t, so is h, .

5.15 Problem . Let f : M— N be a C' map; N non-bounded.

Prove that any sufficiently good strong approximation to f 1is differenti-

ably hamotopic to f.
Specifically, prove that given e(x) > 0, there is a &(x) > 0

such that for any cr map g : M— N which 1s a s-approximation to f,
there is a C¥ differentiable homotopy fy between f and g which is an
e-approximation to f, for each t.

Hint: Let N be a submanifold of euclidean space RP; let r be
a CF retraction of a neighborhood of N in RP, onto N. Deform f into
g along straight lines in Rp, and then apply r to make the image remain
in N.
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5.16 Problem*, Generalize Problem 5.15 to the case where N has

a boundary; draw the additional conclusion that whenever both f(x) and
g(x) 1ie in B4 N, so does fi(x) for each t.

Hint: Imbed Bd N in RP; extend to an imbedding h : U- RP*!,
where U 1s a neighborhocd of Bd N in D(N), so that =xh(U) = h(N),
where = 1s the projection of RP*' onto RP. Finally, choose an imbedding
of D(N) in same euclidean space which agrees with h 1in a neighborhood
of Bd N, wusing 2.11. Then apply the techniques of 5.15, choosing the re-
traction r so that it carries a neighborhood of x in the plane normal
to D(N) at x onto x. This implies that r carries the line segment
Joining two nearby points of h(Bd N) into h(Bd N).

l (a) Exercise*. Provide an alternate proof for Problem 5.1%,

5.17 Problem*. A space X 1s locally contractible if for each

polnt x of X and each neighborhood U of x, there is a neighborhood
V of x such that the inclusionmap 1 : V= U is homotopic to the con-
stant map c : V- x.

Iet M and N be CF manifolds; M campact. Prove that
Fr(l-i, N) 1s locally contractible in the C' topology. Prove also that the
following spaces are locally contractible in the c' topology:

(1) The space of all C” immersions of M into N.

(2) The space of all C¥ imbeddings of M into N.

(3) The space of all CF diffecmorphisms of M onto M.
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6.1 Lemma . Let M be a non-bounded C* manifold; let W be a
neighborhood of Mx 0 in M xR, where R = [0, »). ILet f be a CF
imbedding of W into M x R; whieh equals the identity on M x 0. There
is a CF diffecmorphism 'f" of W onto f(W) which equals f 1in a neighbor-
hood of the complement of W, and equals the identity in a neighborhood of
Mx 0.

Proof. Let (x,t) denote the general point of M x R _. We may as-
sume that W is the set of points (x,t) for which 0 < t < B(x), where
B(x) < 1 is a positive CT function on M. Let f(x,t) = (X(x,t), T(x,t)).

Step 1. Since f is non-singular, 3T(x,0) /3t 1s positive.
Choose a positive c¥ function €(x) <1 on M such that

d3T(x,t) /3t > 0 for t < e(x) ,
1 > e(x)|dT(x,t) /at] for t < B(x)
We define a diffeomorphism g of W with itself by the equation g(x,t) =
(x, ¥(x,t)), where
¥(x,t) = (1 - a(t/B(x))) €(x) «t + a(t/B(x)) ¢

Here a(t) 1is, as usual, a monotonic C* function which equals 0 for

0 <
and 0<

t < 1/3 and equals 1 for 2/3 < t. Themap g is a diffecmorphism, be-
cause g(x,0) = (x,0), and g(x,t) = (x,t) for t > 28(x)/3, and

d¥(x,t) /3t = (1 - a)e(x) + a+ (1 - €(x))(1/B(x)) - a' > e(x) >0 .

Iet f, = fg. Then f, is a C* diffecmorphism of W with f£(W),
which equals f near W-W. Furthermore, if we set f,(x,t) = (X,,T,),
then

0 < 3T, (x,t) At < 1 for t < B(X)/3 .

This follows from the fact that T,(x,t) = T(x,e(x)t) for t < B8(x)/3, so
that 3T, (x,t) /ot = €(x) + IT(x,€e(x)t) /dt, which is positive and less than 1,
by choice of €.

Step 2. Now we define a diffeamorphism h of W with itself by
the equation h(x,t) = (x, ¢(x,t)), where

o(x,t) = a(2t/B(x)) *t + [1 - a(2t/B(x))] T,(x,t) .

Again, h 1s a diffeomorphism because o(x,0) = 0, and o(x,t) = t for

63
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t > B(x)/3, and Jp(x,t)/dt > 0 for t < B(x)/3. This last inequality
follows from the following computation:

dop(x,t) /Ot = @ + (1-a) 'BTI(x,t)/Bt + [1 - T1(x,t)/t]' Ptea'/p ,

which 18 positive because dT,(x,t)/d3t > 0 and T,(x,t)/t = 6T1(x,t*) /ot < 1,
where 0 < t* < t.

let f, = f1 h
f(W) which equals f near W-W. Furthermore, if we set fo(x,t) = (X,,T,),
then T,(x,t) =t in a neighborhood Y of Mx0 in MxR,_.

"', Then f, 1is a C* diffeomorphism of W with

Step 3. If M 1s caompact, the completion of the proof is easy.
Choose & small enough that Mx [0,8] 1s contained in Y, and define
f3(x,t) = (1{5,’1'3), where Ty = T, and

X3(x,t) = X,(x, a(t/s)-t)

f‘5 is a diffeomorphism because the map x — x(x,to) is a diffeomorphism of
M for t0<5, and Tj(x,t) =t for t < s.

If M 1is not compact, more work is involved. We need the follow-
ing lemms:

6.2 I.enma.*. Iet U be an open set in R™ whose closure 1s a
ball. Iet C be a compact subset of U; let V be a neighborhood of C
whose closure is contained in U. Let f be a C'imbedding of U x (0,a] into
R™ [0,a] which equals the identity on U x 0, such that f£(x,t) = (X(x,t),t).
There is a C* diffecmorphism fy = (X{,t) of Uxlo,a]l with
f(Ux [0,a]) such that
(1) f, 1is the identity on Ux0 and on Cx[0,5], for same s > 0.
(2) X,(x,t) = X(x,t) outside V xl[0,a/2].
(3) If f 1s the identity on some set xx[0,b], then £, 1is the
identity on this set also.

Proof. Let o(x) be & C® function on R™ which equals 1 on C
and equals O outside V. Let 7y(t) be a monotonte C* function on R
which equals 1 for t < 1/3 and equels 0 for 2/3 < t.
Let f£(x,t) = (X(x,t),t). Define £ (x,t) = (X,(x,t),t), where
X (x,t) = X(x, tl1 - y(t/e) - o(x)])

Here € < a/2 1s a positive number yet to be chosen.
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Now for x in C and t < €/3, X,(x,t) = X(x,0) = x, so condi-
tion (1) 1is satisfied. Condition (2) is clear, since ¢(x) = 0 for x
outside V, and y(t/e) = 0 for t > a/2. Finally, suppose f 1is the
identity on xx[o,bl. If t 1is in [o,b], so is t(1 - 79), 80 that
X,(x,t) = X(x,t(1 - 7y9)) = x. Thus condition (3) holds.

All we need now to do is to show f 1s a diffeomorphism, and for
this it will suffice that the map h,(x) = X,(x,t) be an imbedding of U
in R®, for each t. By Exercise (b) of 3.10, there is a function 8(x) > ©
on U such that 1f hy 1is a s-approximation to the map g,(x) = X(x,t),
then ht is an imbedding. Then there is a positive constant &, such
that hy will be an imbedding if

IX,(x,t) - X(x,t)| < 8,
[3X, (x,t) /ax - 3X(x,t)/3x| < 8,

and

for all x in U.

By uniform continuity of X and 3X/3x, there is a constent e,
such that |X(x,t,) - X(x,t)| < 8, and [3X(x,t,)/dx - 3X(x,t)/dx| < 8 /2
if x 1sin U and ]t-to] < €, Iet M be the maximum value of the
entries of |3X(x,t)/3t -3p(x)/3x] for x in U. Choose € to be the
minimum of €, and &,/2M.

Now X,(x,t) = X(x,t,), where t, = t(1 - 79). Hence |t - t;| =

It-r(t/e) - o(x)] < €, so that [X,(x,t) - X(x,t)| < B,, @&s desired. Also,
X, (x,t) /3x = ;X(x,ty)/3x - t r(t/e)[3;X(x,t,) /3t - do(x) /3x)
The first term is within 50/2 of dX(x,t)/dx, and the second is within

60 /2 of zero. Hence our desired result follows.

Completion of the proof of the theorem. Cover M by a locally-

finite collectlion of open sets U,;, for which there is a diffeomorphism
hi of ﬁi with a ball in RM™. Iet Ci be a campact subset of Ui such
that {011 covers M. For convenience, assume U, and U, are empty.
Induction hypothesis: f; = (X,,Ty) 1is & C' diffeamorphism of Y
with f(Y) which equals f near Y-Y, such that
(1) Ti(x,t) =t on Y, and
(2) Xi(x,t)=x 1‘.‘(:«1*)::1.110:j andogtgaj, for J < 1.
Choose ¢ so that U, ,x[0,c) 1is contained in Y. By applying
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the lemme, we may obtain a diffeamorphism f, , = (X;, ,,t) which equals f,
outside Ui+1 x[0,c), such that Xi+1(x,t) = X on Ui_ﬂxo and on
Cy,yx(0,84,,], for some choice of &, ,. Because of condition (3) of the
lemma, we will have X, ,(x,t) = x on Cj x[o,ajl for all J < 1.

We then define ¥(x,t) = lm _ . fy(x,t) for (x,t) in Y; we
extend 1t to U by letting it equal f, outside Y. It is easily seen
that f satisfies the requirements of the theorem.

6.3 Theorem . The double of & C* manifold M is uniquely deter-

mined, up to diffecmorphism.

Proof. Iet D(M) and D'(M) be two differentiable manifolds cb-
tained by using different product neighborhoocds of Bd M to define the 4if-
ferentiable structure. Then P : V—-Bd Mx(-1,1) and P': V= Bd Mx(-1,1)
are diffeomorphisms of the open subsets V and V' of D(M) and D'(M),
respectively, with Bd Mx(-1,1). Now P'P"' maps a neighborhood W of
Bd Mx0 in Bd Mx(-1,1) into Bd Mx (-1,1); 1t equals the identity on
Bd Mx0, and 1s a diffeamorphism when restricted to the subsets
(BA Mx[0,1))NW = W, and (Bd Mx(-1,0]1)nW = W_ of W. By the preceding
theorem, there is a homeamorphism g of W with P'P"'(W) which equals
P'P"' near BA W, is & diffeomorphism when restricted to the subsets W,
and W_, and equals the identity in a neighborhood of Bd M xO0,

Then f = (P')"'gP 1s defined on the neighborhood P~ (W) of
Bd M in D(M), and equals the identity map of D(M) — D'(M) near the
boundary of this neighborhood. Hence f may be extended to a homecmorphism
of D(M) with D'(M) by letting it equal the identity outside P~ '(W).

One checks readily that f 1s a diffeocmorphism of D(M) onto D'(M).

(a) Exercise . Let Diff M denoté the space of all C* diffeamor-
phisms of M onto itself. If f and g are in DIiff M, f 1s sald to be
weakly diffeotopic to g 4if there is a C' diffeomorphism F of M xR
such that PF(x,t) = (f(x),t) 1in a neighborhood of Mx(-»,0] and F(x,t) =
(g(x),t) in a neighborhood of Mx [1,o). Show that this i1s an equivalence
relation. Let ?"(M) denote the equivalence classes. The composition of two
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diffeomorphisms is a diffeomorphism, so that DIff M 1s a group; show that
this group operation makes T(M) into a group.

(b) Exercise*. Show that if there exists a differentiable isotopy
fy Dbetween £ and g which is a diffeomorphism for each t, then f and
g are weakly diffeotopic. (The converse is an unsolved problem.)

(¢) Exercise . Let M be non-bounded; let G be a C" diffeo-
morphism of MxI with itself such that G(x,0) = (f(x),0) and G(x,1) =
(g(x),1). Prove that f and g are weakly diffeotopic.

(d) Exercise . lLet M be orientable; let r{M) denote the sub-
group of T(M) generated by orientation-preserving diffeomorphisms. Show
that T(M)/r(M) = Z, or 0 according as M possesses an orientation-
reversing diffeomorphism or not.

(e) Exercise*. Show that T(Rm) = 0,

Hint: If f 1is a diffeomorphism of Rm, first deform f into
the linear map which carries x into Df(0) * x; then deform this into the
identity map.

(f) Exercise . If £ : M— M, the support of f 1s the closure
of the set of all x for which f(x) # x. Let Dif‘fc M denote those ele-
ments of Diff M having caompact support; let F;(M) denote the weak diffeo-
topy classes of DiffcM, where the support of the diffeotopy is required
to have compact intersection with MxI. If M 1s orientable, let T,(M)
denote the subgroup generated by orientation-preserving diffeomorphisms.
Milnor has proved that Fc(Rﬁ) is non-trivial (see [5] and [10]). Prove
that in general Pc(Rm) is abelian.

Hint: Given f and g, deform them so their supports are dis-
joint.

() Exercise . let f be a diffeomorphism of Bd M onto Bd N.
Iet MUN denote the non-bounded manifold obtained from MUN by identify-
ing each x in Bd M with f(x). Put a differentiable structure on M UpN
such that the inclusions of M and N are imbeddings. Show that the re-
sulting differentiable manifold is unique up to diffeocmorphism.

(h) Exercise . Let fy be a fixed diffeomorphism of Bd M onto
Bd N. For any diffeomorphism f of Bd M onto Bd N, let f denote the
element f3'r of Diff(Bd M). Show that up to diffecmorphism, the
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differentiable manifold M UsN depends only on the weak diffeotopy class
of ¥.




CHAPTER II.

TRIANGULATIONS OF DIFFERENTIABLE MANIFOLDS

§7. Cell Complexes and Cambinatorial Equivalence.

In this section we prove the theorem that two finite polyhedra in
euclidean space may be subdivided into simplicial complexes in such a way
that their intersection is a subcomplex of each of them (7.10). For this
purpose, it is necessary first to define what 1s meant by a rectilinear cell
complex, and to study some properties of cell complexes.

7.1 Definition. If v v are independent points of Rn,

o’coo’ m

the simplex o = vg...vp they span is the set of points x such that

x = Lbyvy, where by >0 and Iby = 1. The numbers by are called the

barycentric coordinates of x. The point ¥ vi/(m+1) is called the bary-

center of ¢ and is denoted by o. A face of a simplex ¢ 1s the simplex
spanned by a subset of the vertices of o. The simplex ¢ 1s homecmorphic
to B™; the interior of o 1s called an open simplex.

If A and B are two subsets of R®, the join A« B of A and
B 1is the union of all closed line segments joining a point of A and a
point of B,providing no two of these line segments intersect except pos-
sibly at their end points. Then o = Vo # (v1 » (v2 * ... )).
A (simplicial) camplex K is a collection of simplices in Rn,
such that
(1) Everyg face of & simplex of K is in K.
(2) The intersection of two simplices of K 1is a face of each of them.
(3) Each point of |K| has a neighborhood intersecting only finitely

many simplices of K. 69
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Here |K| denotes the union of the simplices of K and is called the
polytope of K; scometimes 1t is called a polyhedron. (It would be mors
general to let the simplices of K 1die in R™ = Uy R®, but this definition
will suffice for ocur purposes. We are in fact restricting ourselves to
finite-dimensiocnal complexes.)

A subdivision K' of X 1s a complex such that |K'| = |K| and
each simplex of K' 1is contained in a simplex of K. A subcomplex of K
is a subset of K which is 1tself a complex.

If x is e point of |K|, the ster of x in K dis the union of
the Interiors of all simplices ¢ such that X 1lies in e¢. It is an open
subset of |K|, denoted by St(x,K). If 8 1s any subset of |K|, we de-
fine 8t(8,K) to be the unlon of the sets St(x,K) for all x in 8. If
J 1s a subcomplex of K, it is convenient to write St(J,K) for
st(|J],K).

Let o be the simplex v,...v,. Amsp f : ¢ —RP is linear if
£(x) = £(Zbyvy) = Zby flvy) forall x in o. If K and L are com-
plexes, a map f : K| = |L| 4is linear relative to K and L if it carries

each simplex of X linearly into & simplex of L. We often shorten this to
the phrase — f +: K= T is linesr. The map f : K— L 4is pidcewlse-linear

if for some subdivision K' of X, f : K'=1L is linear, f : K= L is

& linear iscmorphism if it is & homeomorphism of |K| onto [L| and carries

each simplex of K Ilinearly onto one of L,
It was long a famous unsolved problem (often called the Hauptvermut-

ung) whether the existence of a hameomorphism between |K| and |L| im-
plied the existence of a plecewise-linear homeomorphism of |K| onto |L|.
Pertisl answers were: Yes, if dimension K = 2 [11]; yes, if (K| 1s a 3=
manifold f[1, 7); yes, if K and L are smooth trlangulations of diffeco-
morphic manifolds (this we shall prove). Recently, Milnor has shown that
the answer is no if dimension K> 6 [6]. It is still unknown if the ans-
ver is yes when |K| is a manifold. '

l (a) Exercise. ILet K be & complex. Show that the closure of
S3t{x,K), denoted by B¥(x,K), 1s the polytope of a finite subcomplex of K.
We sametimes use E—J( x,K) to denote the camplex as well as the polytope,

where no confusion will arise.
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(b) Exercise. Show that 1f f : K= L 1s a plecewise-linear
homeomorphism of |K| onto |L|, then they have subdivisions K' and L'
such that f : K' = L' is a linear isomorphism.

7.2 Definition. Let' c be a bounded subset of Rn, consisting

of all points x satisfying a system of linear equations and linear in-
equalities

Ly(x) = ZJ 843 xJ 2by 3 1=1,...,p
such a set ¢ 1s called a (rectilinear) cell. It is a compact convex sub-
set of R%. (Convexity of a set ¢ means that c¢ contains each line seg-
ment Jjolning two of its points.)

The dimensilon m of c¢ 1s the dimension of the smallest dimension-
al plane @ containing c; this means that ¢ contains m + 1 independent
points, but not m + 2. Since ¢ must contain the simplex spanned by these
m + 1 points, it must have interior points as a subset of ®. ILet Int c
denote these points; let Bd ¢ be the remainder of c¢. We show there is a
homeomorphism of ¢ with the m-ball B™ carrying Bd ¢ onto S ':

Let us adjoin to the system defining ¢ a set of equations for @
Some of the inequalities of the system may now be redundant; let Ly (x) >
by, 1=1, ..., p, be a minimal system of inequalities which, along with
the equations for @, serve to determine c. We note that for 1 =1, ...,
p, the hyperplane L,(x) = b; intersects & in a plans of dimension m-1;
for otherwise, thils hyperplane would contain @ and the corresponding in-
equality could be discarded without changing the set c¢. Furthermore,

Int ¢ equals the set A of those points for which each of these inequali-
ties is strict: Clearly, A 1s contained in Int ¢. On the other hand,
if x, 1s a point of the intersection of @ with the hyperplane LJ(x) -
bj » ‘then arbitrarily near x, are points of @ for which LJ(X) < by,
so that x, does not lie in Int c.

let ¢ be a point of Int ¢ and let r be a ray in @ begin-
ning at ¢. The intersection of r with c¢ 1s non-degenerate, compact,
and convex; i.e., a closed interval. One end point is ¢T; the other is
necessarily a point y of Bd ¢. Each point x of the open line segment
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'53‘ necessarily lies in Int ¢, for Li('c':") > bi and Li(y) z_bi for
1=1, ..., p, sothat L;(x) >b;. Hence c 1is equal to the join of ¢
with Bd c.

To caomplete the proof we need only show Bd ¢ homeomorphic with
s%=', Without loss of generality we may assume @® 1is R® and ¢ is the
origin. The map x — x/||x|l carries R™- 0 continuously onto the unit

sphere; it 1s necessarily a homecomorphism when restricted to Bd c.

7.3 lemma. Iet ¢ be an m-cell. Then Bd ¢ 1s the union of a
finite number of m-1 cells, each the intersection of an m-1 plane with
Bd ¢c. These cells are uniquely determined by c.

Proof. Iet @ be the m-plane containing c; let c¢ be glven
by equations for (@, along with a minimal set of inequalities Li(x) 2 bi'
1 =1, ..., p.

Let d; denote the set of points x of c¢ for which Lj_(x) = bys
then d; 1s a cell, and Bd c 1s the union of these cells. Furthermore,
the intersection of the hyperplane Litx) = b1 with @ 1s an m - 1 plane
@®;, whose intersection with Bd ¢ 1s precisely d,.

We prove that di is & cell
of dimension m - 1. Let 8 denote
the subset of @ for which LJ(x) > by
for &ll j #1. Then 8 1is convex
and contains Int ¢; 1in particular, it
contains a point x for which Li(x) >

bi' It also contains a point y such
that L,(y) < by, since otherwise 3
would lle entirely in the region

Li(x) > bi , 80 that discarding the

inequality Lifx) 2 by from the set of inequalities for ¢ would not change
the set c¢. By convexity, 8 contains a point Zz such that Litz) = by.
Then S N G’i is not empty; since 8 is openin @, 8 n ®; 1s open in
®;. Since 8n @ Cay, d; must be a cell of dimension m - 1.
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The uniqueness of the cells dy 1s easy: Bd ¢ is contained in the
union of p planes of dimension m-1. Hence the intersection ¢!’ any other
m-1 plane with Bd ¢ lies in the union of finitely many planes nf dimension

less than m-1, and hence has dimension less than m-1.

7.4 Definition. If ¢ 1is an m-cell, each of the m - 1 cells d

i
into which Bd ¢ decomposes 1s called a face of ¢; each m - 2 face of a

di is called @ m - 2 face of c¢. And so on. By convention, the empty set

is elso a face of ¢, as is c¢ 1itself.

7.5 Lemma. Iet ¢ be a cell given by a system of linear equations
and lnequalities. Replacing some inequalities by equalities determines s

face of c¢, and conversely.

Proof. We proceed by induction on m, the dimension of c¢. If
m = 0, the lemma is trivial. If m > 0, let @ be the m-plane containing
¢; adjoin to the system determining c¢ a set of equations for ®. This
we clearly may do without loss of generality. Let Lifx) > by, be the in-
equalities for ¢, sc numbered that those for which 1 {1 <p forma
minimal set. Then let us replace some inequality Lj(x) z_bj by an equality.
If J < p, this determines an m-1 face dJ of ¢, as we have just proved.
i In the case Jj > p, consider the subset of c¢ satisfying Lj(x) =
bj. If the hyperplane Lj(x) = bj contains @, this gives the trivial
face c¢; 1if 1t does not Iintersect c¢, 1t gives the empty face. Otherwise,
let e be the intersection of ¢ with this hyperplane; it is a cell. Now
the intersection of @ with this hyperplane is an m - 1 plane, so that ar-
bitrarily near each point of e are points y of @ for which Lj(y) < bj.

Hence e 1lies on the boundary of c.

Since e 1is convex, it must lie in same m-1 face d,: otherwise,

1?
let q be the smallest integer such that e 1lies in d,u...u dq. Iet x
be a pcint of e not in d,u...u dq_1; let y be a point of e not in
dq' Then

Ly (x) > b; for 1<q and Ih(x) = bq 3

Li(y) 2 by for 1<q and Ly(y) > by .
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The point z = (x + y)/2 1lies in e, but L;(z) > by forall 1<q, s0

that 2z does not lie in 4,U...Ud contrary to hypothesis.

q!
The system of equations and inequalities for c¢, with the equation

L,(x) = by adjoined, determine the m - 1 cell d; which contains e.

Furthermore, e 1s obtained fram this system by replacing LJ(x) > bJ by

an equality. By the induction hypothesis, e 1is a face of d;, and of c.

7.6 Definition. A (rectilinear) cell complex K 1s a collection
of cells in R® such that
(1) Each face of a cell In K 1is in K.
(2) The intersection of two cells of K 1s a face of each of them.
(3) Each point of |K| has a neighborhood intersecting only finitely
many cells of K. (Here |K| denotes the union of the cells of K.)
In order that this definition be non-vacuous, we need to note that a single

cell ¢, along with its faces, constitutes a cell complex. This follows
from the preceding lemma (see Exercise (a) below).

A subdivision of a cell complex K 1is a cell complex K' such that
|K'| = |K| and each cell of K' 1is contained in one of K. The dimension
of K 1s the dimension of the largest dimensional cell in K. The p-skele-
tan of K, denoted by KP, 1s the collection of all cells of K having
dimension at most p. One checks that F isa subcaomplex of K.

(a) Exercise. If K consists of a single cell, along with its
faces, show that K 1s a cell complex.

(b) Exercise. Show that the simplex o = v v 1s an m-cell,

o *** Vm
and that the notion of "face" 1s the same whether one uses the definition in
7.1 or the one in 7.4. Show that a simplicial complex is a special kind of

cell camplex. : ]

7.7 lemma. Let K, and K, be cell complexes such that [K,| =

K Then K, and K, have a common subdivision.

2l



§7. CELL COMPLEXES AND COMBINATORIAL EQUIVALENCE 75

Proof. .It is clear that the intersectiaon of two cells is agaln a
cell. ILet L. be the collection of all cells of the form c,Nc,, where
¢, isacell of K, and c, 1sa cell of K,. Then L 1s a cell camplex,

and |K,| = |K,| = |L].

(a) Exerclse. Show that any face of c,Nc, 1is of the form
e,Ne,, where ey is a face of ¢y; and conversely.

(b) Exercise. Show that L 1is a cell complex.

7.8 ILemma. Any cell complex K has a simplicial subdivision.

Proof. We proceed by induction on the dimension m of K. If
m=0 or m=1, K is already a simplicial complex. In general, suppose
I 1is a simplicial subdivision of K® ', the m - 1 skeleton of K. If ¢
is an m-cell of K, 1let Oyseees0p be the simplices of L 1lying in Bd c.
Choose an interior point+ ¢ of c¢; adjoin to the collection L the sim-
plices o, x &',...,op » &. (Recall that o, x & denotes the join of o
and ¢.) If we carry out this construction for each m-cell ¢ of K, the
result will be a simplicial complex K' which is a subdivision of K.

It is often convenient to choose ¢ as the centroid of ¢, in
order that K' be canonically defined. If K 1is already simplicial, the

centroid is the same as the barycenter, and this subdivision K' 1is called
the barycentric subdivision of K.

(a) Exercise. Check that K' 1is a complex, and that it is a sub-
division of K.

7.9 Corollary. If K, and K, are simpliclal complexes such that
IK,| = IK,|, K, and KX, have a common simplicial subdivision.

7.10 Theorem. ILet K, and K, be two finite simplicial complexes
in R". There are simplicial subdivisions K; and K} of K, amd K;,
respectively, such that K{ UK; is a simplicial camplex.
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Proof. A rectilinear triangulation of R? is a simplicial camplex

L such that |L| = R®. We prove that some subdivision of K, 1s a subcom-
plex of a rectilinear triangulation L, of R":

let S PR be the simplices of K,. Choose a rectilinear tri-
angulation J, of R® which contains o,. One way to construct such a J,
1s to take any rectilinear triangulation J of R® eand find a non-singular
affine transformation h1 of R® which carries one of its simplices onto
o,; the collection h,(J) will be the required complex. (An affine trans-
formation is a linear transformation composed with a translation.) Similarly,
let J; Dbe a rectilinear triangulation of R? containing o4; let L, be
a cammon subdivision of J1,...,Jp (using 7.9). Then |K,| 1s the poly-
tope of a subcamplex of L1, and this subcomplex is & subdivision of Kl.

Similarly, let L, be a rectilinear triangulation of R contain-
ing some subdivision of K, as a subcomplex. ILet L be a common subdi-
vision of L, and L,, and let K; and K, be the subcomplexes of L
having polytopes |K,| and |K,|, respectively.

7.1 Problem*. Generalize this theorem to the case in which K1
and K2 are not finite. You will need some further hypothesis to avoid
the case where IK1| is the set [0,1]1x0 1in R° and IK2| is the union

of the sets [0,1lx1/n for n=1,2,... .

7.12 Definition. The proof of lemma 7.8 generalizes to the follow-

ing situation: Let K, be a subcomplex of the simplicial complex K; let
K; be a simplicial subdivision of K,. We define a canonical way of ex-
tending K; to a subdivision of K, without subdividing any simplex outside
St(K1,K). We will call it the standard extension of K{ to a subdivision of

K:

Every simplex of K; belongs to K', of course, as does every sim-
plex of K which is outside St(K,,K). The simplices whose interiors lie
in A = St(K,,K) - |K,| are subdivided step-by-step as follows: No verti-
ces of K 1lie in A. Each 1-simplex o of K whose interior lies in A
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is subdivided into two 1-simplices, the barycenter of o being the extra

vertex. In general, suppose the m - 1 simplices have already been subdi-

vided. For any m-simplex o, 1ts boundary has already been subdivided.

Let ¢ be its barycenter, and for each simplex s of the subdivision of

Bd o, let s x & be a simplex of the subdivision of a. (Convention: the
~

join of the empty set with o 1s ¢ itself.) After a finite number of
steps, we will have the required subdivision of K.

(a) Exercise. Check that the collection of simplices obtained in
this way is a complex whose polytope is |K|.

7.13 Problem. Let K be a simplicial complex; let (A,]) be a

locally-finite collection of subsets of |K|. Let K;, K5, ... Dbe a se-
quence of simplicial subdivisions of K such that K1+1 equals Ki outside
A;. This means that any simplex of K; which does not intersect Ai is a
simplex of K; , as well. Iet lim; _,  K; denote the collection of those
simplices o¢ such that o belongs to K; for all 1 greater than some
integer N, . Show that this collection i1s a subdivision of K.

(a) Exercise. ILet K be a simplicial camplex; let 8(x) be a
positive continuous function on |K|. There is a subdivision K' of K
such that for any simplex o of K', the diameter of o¢ 1s less than the
minimum of &(x), for x in . j




§8. Immersions and Imbeddings of Complexes

In this section, we define the notion of a ¥ map f : K—=M,
where K 1s a simplicial complex and M is a differentiable manifold, and
we develop a theory of such maps analogous to that for maps of one manifold
into another. In particular, we define (8.2) the differential of such a map
and use this to define (8.3) the concepts of immersion, imbedding, and tri-
angulation (which is the analogue of diffeomorphism). As before we define
(8.5) what is meant by & strong C' approximation to amsp f : K— M, and
prove the fundamental theorem which states that a sufficiently good strong
c1 approximation g to an immersion or imbedding is also an immersion or
imbedding, respectively. (The theorem also holds for triangulations, with
the additional hypothesis that g carries Bd |K| into Bd M.)

From now on, we restrict ourselves to simplicial caomplexes and sub-
divisions, unless otherwise specified. The integer r (1 < r < =) will
remain fixed, for the remainder of this chapter.

8.1 Definition. Iet K be & complex. The map f : |K| - M is

differentiable of class c’ relative to K if flo 1is of class c’, for

each simplex ¢ of K. We usually shorten this to the phrase, f : K-~ M
is of class C'. The map f is said to be non-degenerate if f|¢ has rank

equal to the dimension of o, for each ¢ in K.

We wish to generalize the notions of immersion and imbedding to
this situation. As an analogue to a c” imbedding of a manifold, one might
take a CT non-degenerate hameomorphlism of a complex. That is, until one

”ﬁ,J?'
—

79
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looks at the homeomorphism f of the accompanying illustration. The crucial
property of imbeddings — that any sufficiently gocd strong 01 epproximation
to an imbedding 1s also an imbedding — fails here, since arblitrarily close

to f are maps like g. This example shows us that we must seek further to
find the proper generalization.

8.2 Definition. lLet f : ¢ =R® be a C' map. Given the point

b of o, define the map dfb: g = R" by the equation

dfb(x) = Df(b) - (x - b) .
Here x and b are written as column matrices, as usual; and we choose
some orthonormal coordinate system in the plane in which o 1lies, in order
to compute Df. The map dfb is independent of this choice of coordinates
in the plane of o:

let R be some ray in o beginning at b. Then f|R is a C"
curve in Rn, which we suppose parametrized by arc length alocng R. Now
dfb(x) is merely the tangent vector of this curve at f(b), multiplied by
Il x - b |l. Hence dfb(x) does not depend on the choice of ccordinates,
since it involves only the distance function in the plane of . Further-
more, it follows that dfblR depends only on f|R, not on any other values
of f.

Now if f : K= R? is a Cf map, we have maps afy : o = R defin-
ed for each ¢ in TT(b,K). These maps agree on the intersection of any
two simplices of TE(b,K), since either (1) one is a face of the other, or
(2) their intersection lies in the union of rays emanating from b. Hence
the map

dry: SE(b,K) = R"
is well-defined and continuous. By analogy with the situetion for differen-
tiable manifolds, we call it the differential of f.

8.3 Definition. Let f : K— M bea C' map, where M isa C¥

submanifold of R™. The map f d4is sald to be an lmmersion 1if
ar,: SE(b,K) = R"

is one-to-cne for each b. An immersion which is a hcmeomorphism is called
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an imbedding; il it is alsc a homecamorphism onto, it is called &
¢ triangulation of M.

If %= and b %belong to the simpiex o of K, then the require-
ment that 4% o be one-to-one implies that the matrix D(f|oj has rank at
© equal te the drmension ¢f o. Hence an immersion is automatically a non-
degenerate map. The converse is not true in general, as the example in
g.17 shows. However, in the cage wherg T is & homeomorphism onto, there is

a converse; as the following theorem shows.

] (a) Exereize., Iagt T : K—-M Be a Qr ifmersion of the complex
K in the menifold M; let g : M= N be a C° immersion of M in the
menifeld N, Show that gf 1s a € fmmersion of the complex K in W,
(h) Exercgise. Bhow that the definitions of ¢¥ immersion , imbed-
ding; and trisngulaticn sre indepemdent of which particulaer lmbedding of M

in euclidean space Is chosen.

8.4 Theorem. Tet £ : K— M bes CF non-degenerate map which

1s s Homeumorphism of |E| onto M. Then £ 1s a CF triangulation of M.

Prool'. We need te ppove that df), s 1-1 on S¥b,X). The only
way 1t coald feil vo be 1-1 is for it to map rays R, and R, beginning
at b into a single ray in BT beginning at f(b). This meens that £IR,
&nd f1Re are €' cusves In M which are tangent to each cther at f(b).
Since f 1s non-isgenerate, the réstriction of d_l‘h to any simplex ef
BE(D,K) 1s 1-1. Henee nc neighborhoads of b in R, and Ry lle in the same
simpisx of St(h, k).

Chocse & coordinate system (U,h) In M about f{b). Ilet X,
and y, be sequences of points of R, and R,, respectively, converging
ta b3 let xI;, y;I, k' be their vespective images under hf. Iet s De
the simplex of TE(DL,X) into whose interior R, oxtends; let V be the
npey g=t SL(S,K) N 1'“‘1(113 « How hT(V)} de oper in R™: 1t coulalns x;l, but not
Vo TE 0 Zs large, x, ldes In V, 50 the line seguent, x&yr'l intersects
hf{? - ¥V} In at least cne point zr'l; further, zr'l # b' because the angle:
between xr'l -b' amy y) - 3! saporoaches 0, not x, as n- =,

et 2. denote the peint of ¥ -V corresponding to z5. By
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passing to subsequences and renumbering, we may assume 2z, 1lies in a single
simplex of K and that the unit vectors (zn - 1)/l z, - b || converge, say
to the vector u. Let R3 be the ray along which U lies.

4

b

h(R)

Now R, and R, 1lie in a single closed simplex of TE(b,K), al-

1 3
though hfIR1 and hfIH3 are tangent at b'; this contradicts the assump-

tion that f 1s non-degenerate. The computation is as follows:

(x; -b")/| XA - b' | approaches the unit tangent vector to hf(R,) at b'.
Further,
1 1
-b (z. - b) offl z, =bv [
,fil______. = D(hf) (b). n + n
Iz, -ol Iz, - | lz, -bl

Since the angle between xﬁ - b' and z; - b' goes to zero, the left side
of this equation approaches a vector tangent to hi‘]R1 at b'. Ths right
side approaches D(hf)(b)+ 1, which is tangent to hi‘IR5 at b'.

(The picture is, unfortunately, a bit misleading, since it shows
z, lying on RS’ which we can't guarantee. The proof would be easier if

this were the case.)

(a) Exercise*. Assume the hypotheses of 8.4. Show that K is a
combinatorial n-manifold. This means that for each k-simplex s of K,
the link of s, Lk s = ST § - 3t s, is a combinatorial n-k-1 sphere; that
is, it has a subdivision isomorphic with a subdivision of the boundary of an
n-k simplex o.
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Hint: Prove it first when s = v, a vertex cf K. Find a linear
isomorphism h of Bt v with a complex L in R%, such that h(v) = &
and |L]DJo. Find a subdivision ¢' of ¢ such that the inclusion 1 :
o' = I, is linear. Radial projection fram o of Bd o' onto Bd |L| will

then be a linear hoameamorphism.

8.5 Definition. Let f : K~R® bea C map. Iet 8 be a

positive continuous function on K. By analogy with 3.5, themap g : |K| —
R" 1s sald to be a s-approximation to f if
(1) For some subdivision K' of K, g : K'=R® is a C* map.
(2) || £(b) - g(®)|l < 8(b) for all b in |K|.
(3) I afy(x) - dg (x) <8(b)l x -b | forall b in |K| and all
x in S€(b, K').
Such a map g 1s also called a strong c! approximation to f.

Note that this definition is independent of coordinate systems, de-
pending only on the distance functions || x - y || in the euclidean space
containing K, and in R™. Note also that if X 1s finite, & may be re-
quired to be constant, without changing the situation; we shall always as-

sume & 1s constant in this case.

As in 3.6, condition (3) holds if the Jacobians of f and g are
close to each other, since | df,(x) - dg (X)II/l x - b [ <¥A p |D(f|e)(b) -
D(glo)(b)|, where p equals the dimension of the simplex ¢ containing x.

let £ :K—=R" and g: K'=R® be C' maps. If U is an open

subset of |K|, g 4s said to be & s-approximation to f on U if con-
ditions (2) and (3) hold for all b in U. Supposing f and g to be
non-degenerate on U, g 1s sald to be an a angle-approximation to f on

U 1if the angle between the vectors d4f,(x) and dg (x) 1is less than «,
forall b in U and all x #b in St(b,K').

8.6 lemma. Iet f : K—~R® be a non-degenerate c* map. Let
a> 0. If b is in |K|, there is a neighborhood of b on which afy is
an o angle-approximation to f.
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Proof. It will suffice to prove this in the case where K 1s &
single simplex o. If X 1is a point of ¢, and U 1s a unit vector in
the plane of ¢, we wish to make the angle between Df(x) +U and
D(df )(x) *U less than a. But df (x) = Df(b)+ (x - b), so D(Afy)(x) =
Df(b). Now the angle between Df(x) - U and Df(b)-u 1s & continuous
function of x and 'ﬁ, and its value 1s zero when X = b. S8ince the do-
main of U is a compact set, there 1s some neighborhood U of b such that

this angle is less than « when x 1s in U, for any u.

8.7 Lemma. Let f : K— R® be a non-degenerate C* map; K
finite. Given « > 0, there isa & > 0 such that any non-degenerate C*
map g : K! - R® which 1s a s-approximation to f on U 1is an o angle-
approximation to f on U, for any U.

Proof. Let € =min | af, (x)I/ll x - b || for all b in |K|and all
x#b in 3E(b,K); since f 1is non-degenerate, € > 0. Let & = a€/x;
let g : K' = R? be a non-degenerate c’ map which is a &s-appraximation to
f on U.

Iet o be a simplex of K'; let b and x 1lie in o¢; 1let b
lie in U. The angle 6 between dfb(x) and dg,b(x) is the same as that
between V¥ = D(f|o)(b) +T and W = D(g|o)(b) .U , where U = (x - b)/lx-bl.
-% || #/I¥]], which is less
than 8x/e = a. (For if 6 1s acute, then |V -¥ | > [Vl sin 6 >
IVl 26/x; and if 6 4is not mcute, ||V -W | > [Vl > [Vl e/x.)

-

The angle between ¥V and W 1is less than | v

8.8 Theorem. Iet f : K—R® be a C* immersion, or imbedding;

let K be finite. There is a & > 0 such that any s-approximation to f
is an immersion, or imbedding, respectively.

Proof. We first make two preliminary-definitions, and prove &
speclal case of the theorem.

(1) Let o,
face of each. The angle from o

and o, be two simplices, with o = 0,0 o, & proper

, Yo o, 1is defined as follows: Let d
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be the barycenter of o. Consider the angle o(y,z) between the line seg-

ments y& and 23, where y lies in the face of o, opposite ¢ and =z

1

is any point of o, different from o. This angle is positive. The mini-

2
mum such angle 6 1is called the angle from °, and o,.

Now 6 4s positive: If we extend the ray from ¢ to 2z, 1t will

intersect o, - St(¥). So we would get the same minimum if 2z renged only

over g, - St(9); since y and 2z then range over compact sets, 6 1is
positive.

Now the angle 8 from o, to o, 1s a function of the vertices

1 e

of o, and o,. If we vary these vertices continuously (without-allowing

1

o, and o, to become degenerate), then 6 varies continuously as well

1
(see Exercise (a)).

(2) Let o be a proper face of the simplex o,. We define the
projection of ¢, onto ¢ as follows: First, it is the identity on o
itself. Second, suppose p belongs to ¢, - o. Iet 8, be the face of
o, opposite o; let § be the barycenter of o. There are uniquely de-
fined points y of s, and x of o such that the line segments y& and
px are parallel. The projection of o, onto o is defined to carry p
into x.

Projection 1s a continuous map of o, onto o¢; furthermore, it is
natural in the sense that it is invariant under a linear iscmorphism of o

1
with another simplex (see Exercise (b)).

The fact about projection which is useful for us is the following:
Iet o = 0,0 o, be a proper face of both o, and o,; let p belong to
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o, -0 and q to o, - g. If the projection of ¢, onto ¢ carries p
into x, then the angle between the line segments px and xq 1s no less
than the angle from o, to o,. To prove this, merely choose a point 2z
in o, such that Gz 1s parallel to xgq, and use the definition of the
angle from o, to o,.

(3) Now we prove a very special case of the theorem: Let L be
a complex consisting of two line segments e, and e, with vertex v in
common, and let F : L— R be a 1-1 linear map. Let the images under F
of the two line segments make an angle of a > 0 with each other. If
G : L' = R? 1s a non-degenerate ¢ map which is an «/2 angle-approxima-

tion to F, 1t follows that G 1is 1-1.

|

L —&5 "~

For let @ be a 2-plane containing F(L). (¢ 1s in fact unique
unless a = n.) Let £ be the straight line in ( perpendicular to the
bisector of «. Now no vector dGb(x) is perpendicular to &£, so each

has a non-zero projection on £°'. If we let = denote the orthogonsl pro-

~

Jection of R® onto L, it follows that =G 1s 1-1, Hence G 18 1-1,
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This special case contains the crux of the entire argument.

Proof of the theorem.
() Let f Dbe an immersion. First, choose & small enough that

any b&-approximation to f. is a non-degenerate map. This 1s easily done.
A second condition on &: For each pair of simplices o, and o,
of K such that ¢ = o,n o, 1s a proper face of each, consider
n
dfb: 61U o, =R s
where b 1is any point of o¢. It is a 1-1 linear map, so there is a posi-

tive angle from the image of o, to the image of o This angle varies

2.
continuously with b, so there is a minimum such angle aofo0,,0,), as b

ranges over o. let a be the minimum of a(s,,0,) for all such pairs

0y50,- Choose & small enough that any s-approximation g to f 4is an
a/6 angle-approximation to f (using 8.7).

It follows that any s-approximation g : K' =R® to f is an im-
mersion, as we now prove.

Iet b be a point of |K|; we need to prove

dg.: SE(b,K)— R"

is 1-1. Suppose dg (p) = dg.(q), for some points p and q in BJE(b,K').
Then dg, maps the two rays beginning at b and passing through p and q,
respectively, onto a single ray of R™. Hence there are points p and q
on these rays as close to b as we wish such that dg,(p) = dg,(q).

There is a neighborhood U of b such that U lies in St(b,K'),
such that dfb(x) is an «/6 angle-approximation to f(x) for x in U,
and such that dg,(x) is an a/6 angle-approximation to g(x) for X in
U (by 8.6). Then on the set U, dg,(x) 1s an a/2 angle-approximation to
df‘b(x).

If p and q 1lle in the same simplex ¢ of K, take them close
enough to b that the line segment pq 1lies in U. lLet x be the mid-
point of pg; 1let e, =px amd e, = xq; let L =e,Ue,. Now dfb is
linear on the complex L, and dfb(e1) and dfb(eg) make an angle of =
with each other. Further, dg, 1s an a/2 angle-approximation to af, on
L. Since o < x, the special case of our theorem applies to show that dgb
is 1-1 on L, contrary to hypothesis.
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Otherwise, let o, and o, be the simplices of K contalning
p and ¢, respectively, 1n their interiors. 38ince nelther simplex is a
face of the other, ¢ = o,N o, 1is a proper face of each. Iet x be the
image of p under the projection of ¢, onto o. Take p and q close
enough to b that the line segment e, from p to x and the line segment
&, fram x to q 1lie in U. Now dfy 1is linear on the complex L = e,U e,,
and dgb is an a/2 angle-approximation to dfb on L.

We claim that the angle between the line segments dfb(e1) and
dfb(ee) is at least «; it will then follow from the special case that
dg, 1is 1-1 on L, contradicting the assumption that dgb(p) = dgb(q).
To prove this, note that dfb is a linear isomorphism on Oy because pro-
Jection 1s natural with respect to linear 1lsomorphisms, the projection of the
simplex df,(s,) onto the simplex dfb(u) must carry dfb(p) into dfb(x).
This means, as noted in (?) above, that the angle between dfb(e1) and
dfb(ee) is at least as large as the angle fram dfy(o,) to df,(¢,); this

angle is, in turn, at least a.

(5) Iet f be an immersion; choose &5 as above. Glven b 1in
K|, there is a neighborhood V of b such that for any s-approximation
g:K' — R® to f, g 1is 1-1 on V. The proof is as follows:

First choose an e-neighborhood U of b on which dfy 1is an a/l3
angle-approximation to f./ Then choose a neighborhood V of b, 1lyling in

¢ of simplices of K containing b such

U, such that for any 95

that o 1s a proper face\of o
vn o, into U.

the projection of o onto o carries

12 1

Now g is an a/6 angle-approximation to f; hence g 1is an «o/?
angle-approximation to dfb on U. It follows that g 1is 1-1 on V.
For suppose g(p) = g(q), p and q in V. If p and q 1lie in the same
simplex ¢ of K, let x be the midpoint of the line segment pq; let
e, = px and e, = gx. 3ince U 1is an e€-neighborhood, UNo is convex,
so L=e,Ue, lies in TU. Now dfb(e1) and dfb(eg) make an angle of =«
with each other. Since a < x, g is 1-1 on L, by the special case of
our theorem, contrary to hypothesis.

The argument in the case where p and q do not lie in the same
simplex of K 1is similar. Iet p 1lie in Int o, and q 1in Int o,,
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where o = o,N o, is a proper face of each. Iet X be the image of p

under the projection of o, onto o; then x 1s in U. Let e, be the

1
line segment px; 1let e, be the line segment gx. Then L = e,V e, lies
in U, and dfb(e1) and dfb(ee) make an angle of at least « with each
other. The special case of the theorem applies to show g 1is 1-1 on L,

contrary to hypothesis.

(6) Let f Dbe an imbedding; let s\ be chosen as in (4). Apply-
ing (5), choose a finite number of compact sets

Ci whose interiors cover
K| such that any s-espproximation g to f 1§ necessary 1-1 on C;. By
Exercise (a) of 3.10, there is a &, > 0 such fhat if g : K| = R® is a
c° 5o-approximation to f and g 1is 1-1 on gach Ci, then g 1s a homeo-
morphism. Hence 1f g 1s botha 8 and

0 s-approximation to f, g
will be an imbedding.

(a) Exercise. Iet f : XxY—R be continuous. Iet A be a com-
pact subset of Y and define f,(x) = min f(x,y) for y in A. Prove that
fA: X—R 1s continuous. Conclude from this that the angle ¢ fraom o,

to op 1s & continuous function of the vertices of ¢ and o

1 2°

(b) Exercise. Derive a formula for the projection of ¢, onto o.

1
Conclude that projection is continuous, and natural in the sense previously
described.
(c) Exercise. Generalize the theorem to the case K infinite;
8 will have now to be a positive continuous function on |K|, of course.
(d) Exercise. Show that given a C¥ triangulation f: K- M,
any sufficiently close approximation g to f 1is also a triangulation,

providing g carries Bd |K| into Bd M.




§9. The Secant Map Induced by f.

Given a complex K, a finite subcomplex K,, and a C" map f of
K into euclidean space R%.  We would. like to approximate f by a cr map
g of some subdivision K' of K into R® such that g 1s linear on each
simplex of the corresponding subdivision K; of K1.

The first step is to show that if K, 1s subdivided very carefully,
the secant map g induced by f, which is automatically linear, will be a
strong c! approximation to f on K, (9.1 - 9.6). The second step is to
prove that g may be extended to all of |K| in such a way that the ex-
tension will be a strong C' approximation to f (9.7 - 9.8).

9.1 Definition. Iet f : K—=R® be a C' map. let s be any
simplex which is contained in a simplex of K. The linear map Lg: s — R

which equals f on the vertices of f 1s called the secant map induced by
f.

Similarly, if K' 1is a subdivision of K, then the secan D

induced by f, Ly,: K' = R", is the linear map which equals f the verti-

-1

ces of K'. Note that 1f f carries a simplex into H® or R , 8o does

the secant map induced by f.

9.2 Definition. The radius r(c) of the simplex o¢ 1is the mini-
mum distance from the barycenter ¢ to Bd o. The diameter d(o) of ¢
is the length of the longest edge. The thickness t(o) of ¢ 1is n(o)/d(o).

9.3 lemma. Iet f : c—R"® bea C' map; let & and t, be
positive numbers. There is an € > 0 such that for any simplex s con-
talned in o having diameter less than € and thickness greater than t,,
the secant map L; 1s a s-approximation to fls.

90
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Proof. Given b in o, let Fb(x) = f(b) + Df(b) * (x - b).
Then (x) - F,(x) = h(x, b), where In(x, ®)I/llx - bll = 0 uniformly as
lIx h\gﬂ:a-o. (See (2) of 1.10.) Also, Df(x) - DFb(x) = Df(x) - Df(b).
It follows tWe is an €, independent of b such that Fp is a 8/2
approximation to f on the €, neighborhood of b. We require € to be

less than € this implies that |Ih(x, d)|l < 8/2 for |[x - bll < €. We

17
further require that [h(x, b)/lIx - bll < 8ty /4 for [x - bl < €.

We prove that if s has thickness at least t, and dlameter less
than €, then Ly 1is a 8/2 approximation to Fp|s, where b 1s the bary-
center of s. This suffices to prove our theorem, since Fbls is a 8/°
approximation to f]s.

(1) We need a preliminary result: If L and F are linear maps
of a simplex s into R" and | L(x) - F(x)|| < 8 for all x, then

| DL(x) + ¥ - DF(x) - U || < 28/r(s)
for all unit vectors u in the plane of o.
For let b be the barycenter of s. Since L 1is linear,
L(x) = L(b) + DL(b) * (x-b), and DL(x) = DL(b). Similarly for DF. Then
[DL(X) - DF(x))-Wd = [DL(b) - DF(b)]- (x-b)/ll x - b ||
for some X in Bd s. This equals
([L(x) - L(®)] - [F(x) -FM®N/Ix-b | ,
| DL(x) - & - DF(x) -0 || < 28/l x - b || < 28/r(s)
(?) Proof of the lemma. Let v

80

0ressVp be the vertices of s;
let x =2 v, be the general point of s. Since L, and F, are linear,
LS(X) = 2 ai Ls(vi) = Zai f(vi)

and

so that
u Ls(x) - Fb(x) “ = " X ai h(vi’ b) “ < ITlB-XlIh(Vi, b) I -

Now |h(x,b)|| < 8/2 whenever |x —Db| < €, so that | Ls(x) - Fb(x)ﬂ <
8/2, which is the first part of our desired conclusion. Furthermore,
Il (x,B)I/Il x - b |l < bto/h whenever || x - b || < €, so that

I Lg(x) - Fp(x) | < max|lv; - bllaty/4 < d(s) dt,/% < & r(s)/4 ,
since t, < r(s)/d(s). From the preliminary result (1) we conclude that

Ly is a 8/2 approximation to Fbls.



92 II. TRIANGUIATIONS OF DIFFERENTIABLE MANIFOLDS

»
(a) Exercise . Show by means of an example that the theorem fails
without the hypothesis that the thickness of s is bounded away from zero,

9.4 Iemma. ILet X be a finlte complex. There 1is a to > 0 such
that X has arbitrarily fine subdivisions for which the minimal simplex
thickness is at least to.

Proof. We first remark that if the theorem is true for the camplex
K, 1t is true for any camplex which 1s Iisomorphic to K. For let f : K— K,
be a linear isomorphism. For each simplex of K, the ratlo
| £(x) - £(y)II/ll x-y || is bounded, and bounded above zero. Choose & and B8
so that

o<a< || f(x) - f(PI/Il x-y | <8
whenever X and y belong to the same simplex of K. Given € » 0, let K!'
be a subdivision of K of diameter less than € and thickness greater than
t, (i.e., the maximal diameter of a simplex of K' 1is less than/e€, and
the minimal thickness of such a simplex 1s greater than to). The corres-
ponding subdivision of K1 has diameter less than pe and thickness greater
than atO/B, as the reader may verify, so our result follows.

Now the camplex K 1s iscmorphic to a subcomplex of some "standard
simplex" — the "standard simplex" of dimension p being the one having
eo,e1,...,ep as vertices, where €, 1s the origin and the others are the
natural basis vectors for RP. Hence it will suffice to prove the theorem
in the case where X i1s this standard simplex.

Let J be the cell complex whose polytope 1is Rp, whose cells are
obtained as follows: If 10,11,...,ip are integers, consider the cube in
RP defined by the equation

C(Ly,eeenty) = x 45 <xd <Ly v 1 for 3 =1,..,0)

and intersect it with the region
R(io) = (x | io _<_x1+...+ xps_ 10 + 1) .

The resulting set will be a cell. (To illustrate, the accompanying illus-
tration shows C(0, 0, 0) intersected with R(0), R(1), and R(2),) Take
J as the collection of all such cells and their faces. The cell complex
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-~
7/

J has two properties which are important for us:
(1) Any cell of J 1s the lmage of one of the cells contained in the
unit cube C(0,...,0), under a translation of RP,

(2) The simplex Em spanned by O,me€,,...,me_ 1s the polytope of a

P
subcomplex of J, for each positive integer m.

Now we subdivide J 1into a simplicial complex L by the step-by-
step process described in Lemma 7.8; at each step we use the centroid ¢
of ¢ &as the interior point of the cell c¢ which determines the subdivision.
It follows that conditions (1) and (2) hold for the caomplex L as well. As
& result, the simplices of I have a minimal thickness t, > 0, and maximal
dlameter 4.

The similarity transformation on RP which carries x into x/m
does not change the thickness of any simplex, and it multiplies the diameter
by 1/m. Therefore the image of L, under éhis transformation will be a
rectilinear triangulation of 21 of thlckness at least to and dlameter at

most d/m. Since m is arbitrary, the theorem is proved.

I (a) Exercise'. Let K consist of a 2-simplex and its faces.
Let K, be the barycentric subdivision of K, K, the barycentric subdi-
vision of K1, etc. Show that the thickness of Kh approaches zero as

Il =+ o,

9.5 Unsolved problem*. Generalize this theorem to non-finite com-

plexes K. One would expect t, and € to be continuous functions on |K],
but it is not entirely clear even what the proper conjecture should be.
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9.6 Theorem. Iet f : K—=R® be a C' map; K finite. Given

& > 0, there 1s a subdivision K' of K such that the secant map
]‘_K,: K' = R? induced by f 1s a s-approximation to f.

We now obtain the following generalization of this theorem, which
will follow immediately from the lemma which succeeds it:

9.7 Theorem. let f : K=~ R® be a CF map; let K, be a finite

subcomplex of K. Given & > 0, there is a &-approximation g : K' — R
to f such that
(1) g equals the secant map induced by f on K.;
(?) g equals f outside St(K,,K).
(3) K' equals K outside St(K, ,K) .
Here K; is the subdivision of K, induced by K'; and condltion (3) means
that every simplex of K outside St(K1 ,K) appears in K'.

9.8 lemma. let f : K—R" bea C' map. Let K, be a finite
subcomplex of K. Given € > 0, there is a & > 0 such that any s&-approxl-
mation g : K; - R? to f‘lK.I can be extended to an e-approximation
h:K =R to f. Here K' is the standard extension of K, (see 7.12),
and h equals f outside St(l(1 ,K).

Proof. The subdivision K' of K 1s specified, and the map h
is defined on [|K,| and on K| - St(K,,K). The only problem remaining is
to extend h to each simplex of K' whose interior lies in St(X,K) - X, |,
and to see how good an approximation h 1s. We carry out this extension
step-by-step, first to the 1-simplices, then the 2-simplices, and so on.
For this reason, it will suffice to prove ocur lemma for the special case of
a single simplex:

Speclal case. Let L be a complex E§nsisting of a simplex o and

its faces; let L, = Bd o. Given € > 0, there i1s & > 0 such that any

-approximation g: Ly = R" to f|L, may be extended to an e-approxima-
tion. h: L' = R" to f|L , where L' is the standard extensicn of L;_
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Proof of special case. An obvious extension of g would be the

one mapping the line segment yo linearly onto the line segment g(y) f(9),
vhere ¢ 1is the barycenter of o¢. But there are difficulties here,
for the resulting map will not be differentiable at ¢. We modify this
definition, "tapering off" between g(Bd ¢) and f(¥) by a smooth function
a(t), rather than linearly.-

Let o(t), as usual, be a monotonic C” function which equals o
for 1/3< t, and equals 1 for t> 2/3. If x 1isin o, then x -
ty + (1-t) &, where y isin Bde¢ and 0< t < 1; t is uniquely deter-
mined, and y is unique if x # ¢. Furthermore, if L.; is any subdivision

of Bd o, and L' is the standard extension, then y and t are C°
functions of x on each simplex of L', except at the point x = d.
let g be a C” map of a subdivision L, of L, into R".
Define
h(x) = f(x) + a(t(x)) * [g(y(x)) - f{y(x))]

Since a(t(x)) = 0 for x in a neighborhood of &, h 1s of class C* on
each simplex of L'. We show that h 1is automatically a good approximation
to f if g is a good approximation to f|Bd o.

First note that | h(x) - f(x)l < || &(y) - £f(y)ll, so h will be
as good & c® approximation to f as g 1is.

Second, we compute 3(h-f)/dx for t > 1/3. It equals

a'(t)lgly) - £(y)] -3t/3x + a(t)[3g/dy - of/dyl *dylex y -
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where g and f are written as column vectors, as usual.

and oa(t) * dy/dx

L; and the map g.

Now a'(t) - d3t/dx
are bounded independent of the choice of the subdivision
Hence we may make J(h-f)/dx as smsll as desired,

simply by requiring |g(y) - f(y)| and [3g/dy - 3f/dy|

to be sufficiently
small.

I (a) Exercise. Compute exactly how small |g(y) - f(y)| and

|3g/dy - 3r/3y| need to be in order that |3d(h - f)/3x|
than 5.

should be less

(b) Exercise. Complete the proof of the lemma using the result

for the special case proved above.

(c) Exercise. Show that the following addendum to the lemme holds:

Suppose that whenever f carries a simplex o, of K, into the plane @,

1 1into @ , &s well. Prove that whenever f carries
a simplex o of K into @ then h carries

]

then g carries ¢
¢ into ® , as well.

(d) Exercise. let @ 19 res @ K be a finite number of the

planes in R®. Prove Theorem 9.7, with the additional ccnclusion that

each simplex ¢ of K which f carries into one of the planes @ i is

also carried by g into @ ,.

(e) Exercise. sShow that (c) does not hold if you replace the

plane P throughout by a half-plane, for instance H™.
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Suppose now we have c’ imbeddings of two complexes into the differ-
entiable manifold M, whose iméges in M overlap. We would like to prove
that by altering these imbeddings slightly, we may make their images fit to-
gether nicely, i.e., intersect in a subcomplex, after suitable subdivisions.

If M 1s euclidean space, this is not too difficult; the construc-
tion is carried out in 10.2. The basic idea 1s to alter the imbeddings so
that they are linear near the overlap (using the results of §9), for we know
from §7 that two rectilinear complexes always intersect nicely.

If M 1is not euclidean space, we must use the coordinate systems
on M, which look like euclidean space, and carry out this alteration step-
by-step. The process is not basically more difficult, but it is somewhat
more complicated (10.3 - 10.4). After this, however, the two main theorems

of Chapter II fall out almost trivially (10.5 - 10.6).

10.1 Definition. ILet f,: K1--Rn and f,: Ke-*-Rn be homeomor-
phisms; let f,(|K;|) and f,(|K,|) be closed subsets of their union.
(X,,fy) and (K,,f,) are sald to intersect in a subcamplex if the inverse
images of f|(|K1|) n fa(ngl) are polytopes of subcomplexes L, and L,
of K, and K,, respectively, and f51f1 is a linear isaomorphism of L,

with L,. They intersect in a full subcomplex if L; contains every simplex
of K1 whose vertices belong to L,, eilther for 1 =1 or for 1 = 2, In
such a case, there is a camplex K and a homeamorphism f : K— R® such

that the following diagram is commutative:
K
1
K £ » RP
12 | /
K, 2

Here 1, and 1, are linear iscmorphisms of K1 and K, with subcamplexes

97
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of K whose union equals K. The pair (K,f) is unique up to & linear iso-
morphism; it is called the union of (K1,f‘1) and (Ke,fa). Iet I denote
the subcamplex i, (Kl) n 12{1(2) .

We will be interested in this situation in the case where
f,: K, =R" and f,: K, —=R" are, in addition, C' imbeddings. The map
f : K= R? will be a C” non-degenerate hameomorphism in this case, but it
may not be an imbedding, because the immersion condition may fail. That is,
for some point b of |L|, the map di‘b may not be 1-1, even though f
is. (8See the example of 8.1.) However, if fj should happen to be linear
on S’E(LJ,KJ) for J =1 and 2, then the union is necessarily an imbed-
ding, for in this case df, = fISt b for b in |L|; and f 1is given to be
1-1, This fact will bs of importance in what follows. Another case in
which the union is an imbedding is given 1n Exercise (c).

l (a) Exercise. Let f‘J: KJ —R? be a homeomorphism, J = 1,2. 1If
f,: K1 - R® and fa: K2 — R® intersect in a subcomplex, prove that

£y K." - R? and £y K; - R% 1intersect in a full subcamplex, where K"

and K,:_, are the barycentric subdivisions of K, and K,, respectively.

(b) Exercise. Prove existence and essential uniqueness of the
union (K,f).

Outline: Form an abstract complex K whose vertices are the points
fJ(vJ}, where vJ is any vertex of Kj (j =1,2). If vg v% is a
simplex of K,, let the collection [fj(vg),...,fjfv%)l be a simplex of K.
Then take a geometric realization of this abstract complex, and define f.
To show f 1is a homeomorphism, you will need to consider the limit set of
f.

(c) Exercise. Let fy: K, —-R® be C' imbeddings (J = 1,2)
whose intersection is a full subcomplex. Iet f : K— R™ be their union,
and let 1:] be the inclusion of K‘j in K. If |K| is the union of
Int 1,(|K,|) and Int 1,(|K,|), then f.: K= R® 1isa C" imbedding.

10.2 lemma. Iet f : P=R® bea CF map. Iet Q@ and A he
subcomplexes of P whose union is P; let f|Q and f|A be C¥ imbeddings
whose images are closed in R™; 1let A be finite. Given
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8 > 0, there 1s a &-approximation g : P'=R® to f such that glQ’

and gl|A' intersect in a full subcomplex, and their union is a C* imbedding.
Furthermore, g equals f, and P' equals P, outside

st2(£71£(A),P) = St(SE(E(£'£(A)))), all stars being taken in P.

Proof. Let P, be the complex whose polytope is TE(£~'r(A)); it
consists of all simplices whose images intersect f(A), along with their
faces, so 1t contains A. We assume 5 1is less than half the distance from
£(P) - f(Po) to f(A), so that any s-approximation g to f cannot
carry a point of P - P, into a point of g(A). We also assume that 8 is
small enough that for any s-approximation g : P' = R® to f, g|Q' and
g|A' are C' imbeddings.

Let P, be the subcamplex of P whose polytope is SE{PO,P). By
Theorem 9.7, there is a s-approximation g : P' = R™ to f which equals
the secant map induced by f on the subcomplex P;; further, g equals
f and P' equals P outside St(Pl,P).
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Let Q1 be the part of P, that lies in @, so that P1 = Q1U.A.
Now ng; and g|A' are linear imbeddings, so the images are finite recti-
linear camplexes in euclidean space. By Theorem 7.10, one may choose sub-
divisions of these complexes whose union is a complex. These subdivisions
induce, via 3-1, a subdivision P: of P; such that gIQ: and gl|A"
intersect in a subcomplex. We take the barycentric subdivision P, of Py,

so that ng,.| and glA”'intersect in a full subcomplex (see Exercise (a) of

10.1). Extend this subdivision of P; in the standard way to & subdivision

P of P!' (see T7.12).

We now claim that g|Q"' and g|A''' intersect in a subcomplex.

For suppose g(o¢,) intersects g(o,), where o, 1isin Q''"' and o, is
in A'"', Then o, must lie in |P,|, by our original assumption on 3,
so that in particular, o, lles in |Q,|. But g|Q;'' and gl|aA'"' inter-

sect in a subcomplex. Hence g|Q"' and g|A" intersect in a subcomplex.
A simllar remark shows this subcomplex is full.

It follows that the union of g|Q'"' and g|A'""' 1s a C¥ imbed-
ding; we apply the remark at the end of 10.1. For if g(b,) = g(b,), for
b, 1in 19| and b, in |A|, then b, must lie in lPol, by choice of
8. But g 1is linear on P,", which contains Sf(|POI,P'”). Hence the
union of glQ''' and g|A"' 1s a CT imbedding.

10.3 Corollary. Let M be a non-bounded ¢’ submanifold of some

euclidean space. The preceding lemma holds if R® 1is replaced by M

throughout, providing we assume that f(A) 1s contained in some coordinate
system (U,h) on M.

Proof. First take the collection of those simplices of P which
intersect f“f(A) and subdivide them finely enough that each has diameter
less than one-fourth the distance from £ f(A) to £ '(M - U). Extend to
a subdivision P' of P 1in the stendard way. The result is that
carries SE*(£°'f(A),P') into U.

We then take the subcaomplex J of P' whose polytope is
Sfu(f'1f(A),P') and consider the C¥ map hf : J = R™. The preceding
lemma applies. There is an approximation G : J'=R" to hf; G equals



§10, FITTING TOGETHER IMBEDDED COMPLEXES 101

nf and J' equals J outside St’(f”'f(A),P'). Hence we may define
g=h"'¢ on st*(r '£(A),P'), and g -f outside JE (£ '£(A),P') to
obtain the desired map; no simplex of P' outside J needs to be sub-
divided at all.

The preceding lemma guarantees that G 1s a homecamorphism. To be
sure g 1s, we need to have g approximate f closely enough that
g(FE(£'£(A),P')) and g(P - St*(£7'£(A),P')) are disjoint. Similarly,
the lemma guarantees that G 1is a CF imbedding; the fact that h™' G
is an imbedding follows from Exercise (a) of 8.3. Finally, one uses Exer-
cise (c) of 10.1 to prove that g 1is an imbedding.

(a) Exercise. Note that the following additional conclusion holds
in the preceding corollary: g(x) = f(x) if f(x) 1lies outside the coor-
dinate neighborhood (U,h) chosen containing f(A).

10.4 Theorem. Iet M be a non-bounded ¢’ submanifold of Rn.

let £ :K—=M and g : L—=M be C' imbeddings whose images are closed in
M. Given B8(x) > 0, there are s-approximations f': K'—= M and

g': L'=+M to f and g respectively, which intersect in a full subcomplex,
such that their union is a CF imbedding. (& 1s to be continuous on the
disjoint union of |K| and |L|.)

Proof. Assume g carries each simplex of L 1nto a coordinate
neighborhood on M. (See Exercise (a) of 7.13.) Order the simplices of
L : Aj,A,,... 1in such a way that each simplex is preceded in the ordering
by all its faces. Choose a neighborhood V; of g(Ai) in M, for each 1,
80 that [Vi} is a locally-finite collection of compact subsets of M.

(#) Assume & is small enough that for any s-approximations f'
and g' to f and g, respectively, g'(Ai) is contained in V,; and is
disjoint from f£'£71(M - V,).

Iet fy =f and g, = g.

Induction hypothesis. Suppose fi’ Ki-*»M and g ¢ Ii-ﬂ-M are

¢* imbeddings, where K, 1s a subdivision of K and L; 1is a subdivision
of L; and f; and g, are (1 - 1/21)- 8(x) approximations to f and g,
respectively. Furthermore, if Ji denotes the subcomplex of L1 whose
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polytope is A,U...U A,, suppose that f,: Ky =M and gilJi intersect in
a full subcamplex, and their union is an imbedding.

' Let h:Q-M be the C* imbedding which is the union of (Kj,f;)
and 31'J1' Consider K; and J, as subcomplexes of Q, so that Q =
KU Jy. Now Ai+1 is the polytope of a subcomplex of I, which we also
denote by A1+1; let P be the complex obtalned by identifying each point
of Bd Ai+l with the corresponding point of Ji' We may have to subdivide
Ai+1 in order that P should be a complex; we assume this done without
change of notation. Extend h to P by letting it equal g on Ai+1'

Now apply the preceding corollary. The map h : P—- M 1s a ct map;
h|Q and h|A,,, are C" imbeddings, and h(A; ,) 1s contained in & coordi-
nate system on M. Given € > 0, there is an e€-approximation h': P'—~M
to h such that h'|Q' and h'|A;,, are ¢’ imbeddings which intersect in
a full subcomplex such that their union is an imbedding. This union is the
same as the union of h'|K{ and h'|JjUA; ,, sO the union of the latter
pair is also an imbedding.

If € is small enough, h': Ky =M will be & &(x)/2M*’

approxi-
mation to h, 8o that fi01 = h'lKi isan (1 - 1/21*1)5(x) approximation
to f, as desired.

Further, if € 1is small enough, h': JyUA; , =M may be extended

toa CF map gy ,.4° L1+1-* M which is a 6(x)/2i+1

approximation to
8;: Ly = M. Here we use Lemma 9.8 again. Thus the induction hypothesis is
satisfied, so that f, and g; are defined for all 1.

We would like to define f' = lim, ,  f; and K' = lim Ky; and
similarly for g' and L'. The induction hypothesis does not contain enough
information to enable us to do this, so let us examine the definitions of
f1+1 and 8,1 more closely.

Carollary 10.3 tells us that Q' equals Q and h' equals h,
outside St>(h™'n(A,,,),P). Hence f; , equals f;, and K, , equals K,
for simplices outside St’(f{' gi(Ai+1)’Ki)' Now by the original assumption
(«) on 8, f, carries a point x of K into g,(A; ,) only if f
carried Xx 1into Vi. Thus it i1s certain that fi+1 equals f,, and X,
equals K,, outside St>(£7'(V,),K). These sets are a locally-finite col-

lection of subsets of K, so that lim f; and 1lim K; do exist (see 7.13).
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Similarly, g, equals g, and L, , equals Ly, outslde
st3(g]' g (Ay,1),Ly) = St2(Ay,,, Ly C St>(A;,, L). Hence the limits
exist in this case as well. The limiting maps will automatically be 8&(x)-
approximations to f and g, respectively. That their union is a C* im-
bedding 1s easily checked.

r (e.) Exercise. By examining the proof of this theorem more closely,
draw the following additional conclusion: If V 1s any neighborhood of
g(ILl), then we may so choose K' and f' that K' equals K, and f'
equals f, outside St2(£1(V),K).

{b) Exercise. Apply Exercise (&) of 10.3 and Exercise (d) of 9.8
to strengthen 10.4 as follows: Assume f and g carry subcomplexes of K
and L, respectively, into the non-bounded C* submanifold N of M. Then
f' and g' may be chosen so as to carry these subcomplexes into N.

10.5 Theorem. Iet M be a CF manifold; let f : K— M and

g :L-+M be cr triangulations of M. There are subdivisions of K and
L which are linearly isomorphic.

In fact, given 8(x) > 0, there are &s-approximations f': K'—M
end g': L' =M which are C° triangulstions of M, such that (f')”' g
is a linear isamorphiam of L' with K'.

Proof. In the non-bounded case, we choose 3(x) > 0 so that any
s-approximations to f and g are necessarily onto maps, using Iemma 3.11.
Our result then follows from Theorem 10.4. In the other case, we consider
M as a submanifold of D(M), and apply Exercise (b) of 10.% to assure that
f' : K' = D(M) carries Bd |K| into Bd M. If & 1is small enough,
£'(Bd |K|) = BA M, so that f'(|K|) C M. Again, if 8 1s small enough,
£'(IK|) = M. Similarly, if & 1is small enough, g'(|L|) = M.

10.6 Theorem. If M 1is a non-bounded CF manifold, M has a c*

triaengulation. If M is a manifold having a boundary, any C* triangulation
of the boundary may be extended to & cf triangulation of M. (If
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f:J=BdM isa CT triangulation of Bd M, an extension of f 1s a cr

1

triangulation g : L=+ M of M such that g f 1s a linear isamorphism

of J with a subcomplex of L.)

Proof. Let M be non-bounded. Cover M by m + 1 coordinate
systems (Uy,hy), 1 =0,...,m, chosen so that hy(U;) 1s the union of a
countable collection hi(vij) of disjoint bounded open sets in R™ (see 2.8).
let Cij be a closed set contained in Vi;j such that the collection (Cijl
covers M. Let K_LJ be a finite rectilinear complex in R® contained in
hl(vij), and containing a neighborhood of hj_(C“); let K; be the com-
plex U?ﬂ Kyy- Then hI': Ky,—M isa ¢’ imbedding whose image contains
a neighborhood of Uy Cyy. Let g: K =M be a 8,(x)-approximation to
h? , for 1 =0,...,m; chosen so that (Kc‘),go),...,(Kn',l,gm) intersect in
a full subcomplex and their union is an imbedding. This union will be a CF
triangulation of M 1if 8,(x) > 0 is chosen small enough that g, ( |K1U
contains U‘j 131:| (see Exercise (b) of 3.11).

Now suppose M has a boundary; let f : J—BA M be a C° tri-
angulation. We triangulate the space |J| x[0,1) as follows: Suppose J
lies in R™. For each simplex ¢ of J, and each positive integer n,
consider the cells ox([1 - 1/n, 1 - 1/n+s1] and o x(1 - 1/n), which are
contained in R™'. The collection of all such cells is a cell complex
whose polytope 1s |J|x [0,1); this cell complex may be subdivided into a
simplicial complex without subdividing any cell ox (1 - 1/n) of the second
kKind. We denote the resulting simplicial complex by K.

Let K, be the subcamplex of K whose polytope is |J|x [0,5/6];
let P : Bd Mx[0,1) - M be a product neighborhood of the boundary. The
camnposite

Jxlo,1) £X& Ba Mx(o0,1) E>m |
when restricted to Ko, isa CF imbedding g : Ko —+ M whose image is
closed in M and contains P(Bd Mx [0,4/5]) 1in its interior.

Iet h:L—=M bea C' triangulation of the non-bounded manifold
Int M. By subdividing L 1if necessary, we may assume that any simplex of
L which intersects the set P(Bd Mx(4/5)) 1s disjoint from the set
P(Bd Mx [0,3/4]), using Exercise (a) of 7.13. Let L, be the subcomplex
of L consisting of simplices whose images under h intersect
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M - P(Bd Mx[0,4/5)), and their faces. Then h : L,—=M is a C* imbedding
whose image is closed in M, contains M - P(Bd M x[0,4/5]) 1in its interior,
and 1s contained in M - P(Bd Mx[0,3/4])). By Theorem 10.4, there are

ks g.(ifo) | 'J%A
— - Ne v R’ /A

=S
—1
—X

approximations g': K, =+ M and h': L(') - M to g and h, respectively,
whose intersection is a full subcomplex such that the union is an imbedding.

According to Exercise (a) of 10.4, we may assume g' equals g, and K(;
equals K,, on |[J]x[0,1/2]. The union of (Ké,g') and (L{'),h') will
thus be the required CF triangulation of M, providing g'( IXK,!) and
h'(|Ly]) cover M.

Now g( IKOI) contains P(Bd Mx[1/2,4/5]) 1in its interior, and
h(|L,]) contains M - P(BA Mx[0,3/4]) 1in its interior. Exercise (b) of
3.11 applies to show that the images of g' and h' will contain these two
closed sets, if the approximation is good enough; and g'(lKol) autamati-

cally contains P(Bd Mx[0,1/2]). Thus in this case g'(|K,|) and h'(|L,|)
do cover M.

10.7 Problem . Let A be a closed subset of the manifold M.
Let f: K—M be a C' imbedding such that f£(|K|) contains A in its

interior. If K, 1s a subcomplex of K such that :‘.“IK0 triangulates A,
then f[K, may be extended to a triangulation of M.
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10.8 Problem*. Iet M be a non-bounded ¢’ submanifold

of R®. Iet r: W—M be the retraction of a neighborhoed W of M in
R® onto M which was defined in 5.5. Prove there is a rectilinear com-

plex K in R® 1ying in W such that r|K is a C* triangulation of M.

Hint: If M 1is compact, one may take the secant map induced by
a suitably chosen smocth triangulation f: K— M. If M 1s not compact,
this will not suffice. Instead write K as the union of finite subcom-
plexes K, with |K/| C Int |K;,,|, and use the fact that if g: K'— R"
is linear on K{, then the secant mep induced by g equals g on Ki

10.9 Problem*. Iet f: K=M be aC’ map. Prove that any map
sufficiently close to f 1s isotopic to f. BSpecifically, prove the fol-

lowing: Given €(x) > 0, there exists &(x) > 0 such that for any &-
approximation g: K'—<M to f, there is a map f,: |K] x I =+ M such
that

(1) ft 18 of class C* on the cell oxI, for each simplex o of

K',
(2) fiy: K'=<M 1is an e-spproximation to f, for each t, and
(3) f,=f and f, = g.
Hint: Use the techniques of Problem 5.15.

10.10 Definition. Let N,, ..., N, be non-bounded submanifolds
of the non-bounded n-manifold M. They are said to intersect transversally

if for each x in the intersection of any collection N, ,...,N of these

i i
1 J
submanifolds, there is & coordinate system h: U-R" about x in M
such that h(U N N:!. ) 1s contained in a plane in R® whose dimension 1is
k

that of N, , for each k.
k

10.11 Problem. Generalize Theorem 10.4 as follows: (1) If H

is & subcomplex of L and f"g is a linsar isomorphism of H onto a sub-
complex of K, then we may require that (£ g - f"g on |H|.
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(2) Iet N,, ..., Np be non-bounded submanifolds of M which intersect
transversally. If f and g carry subcomplexes K(i) and L(i) of K
and L, respectively, into the submanifolds Ni' then we may require f!
and g' to carry these subcomplexes into Ni.
Hint: Condition (2) will follow readily from Exercise (d) of 9.8.
To obtain condition (1), proceed ;a.s follows: Assume H is a full subcom-

prlex. Let A,, A dencte the simplices of L not in H. Alter the

2, L
induction hypothesis in the proof of 10.4 as follows: Suppose f,: Kf—+M

and gg: Ly =M are c* imbeddings which are (1 - 1/21) 8(x) approximations

to f and g, respectively, and fj g = f"]‘g on |H|. Iet J, denote

the subcomplex of Li whose polytope is H U A’ u...u Ai; suppose that

f'i:

a C* imbedding.

K; =M and gilJi intersect in a full subcomplex and their union is

10.12 Theorem. Iet f: K— M be a smooth triangulation of the

non-bounded manifold M. Iet g: L—M be a C' imbedding, with g(L)
closed in M. Given 8(x) > 0, there is a s-approximation g': L'=M to
g such that £71g': L' =X is linear.
(1) 1Ir f‘“g is linear on the subcomplex H of L, we may
require that g' = g on |H|.
(2) If g carries subcomplexes Ly, «eov, Lk of L into
the transversally intersectin'g non-bounded submanifolds
Ny ooey Nk of M, respectively, and if f triangulates
a. neighborhood of g(Li) in N, for each 1, then we
may require that g‘(Li) C Ni'

Proof. We may assume that f"g is a linear isomorphism of H
with a subcomplex KX, since this may be obtained by a preliminary subdivi-
sion. We apply 10.11 to obtain €-approximations f': K'=- M and g":
L'—- M, where € 1is small enough that f' 1s a triangulation. Then
(£") 'g": L'=K is linear, and equals f 'g on |H|. We let g' =
(e 1g".
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To obtain (2), choose K; so that f(X;) 1ies in N, and contains
a neighborhood in N, of g(L;). If € 1is small enough, £'(K;) will con-
tain g''(Ly) (see Exercise (b) of 3.11; by 10.11, both lie in Ni)' Then
g'(Ly) C Ny.

10.13 Corollary. Ilet f: K—M and g: L—+ M be smooth tri-
angulations of the manifold M. Given &(x) > 0, there 1s a s-approxima-

tion g': L'=-M to g which triangulates M, such that f“"g': L~ K
is linear. If f~'g 1is linear on the subcomplex H of L, then we may

choose g' equal to g on |H].

Proof. If M 1is non-bounded, this follows at once from 10.12.
In the other case, we form the menifold D(M). Assuming the aubcon‘zplexea
of K and L which triangulate Bd M to be full subcomplexes, we may
double the triangulations f and g, obtaining triangulations I and g
of D(M). We now apply 10.12, taking N to be the submanifold Bd M of
D(M). A restriction of g' will be the desired triangulation of M.

10.14 Problem. Let M be & C* submanifold of N which is closed
in N (M CInt N). €¢.ow there is a C* triangulation of N which induces
a triangulation of M.

Hint: Suppc that both M and N have boundaries. (This is
the hardest case.) Extend the imbedding i1: M— N to an imbedding i of
a neighborhood V of M in D(M) into Int N. ILet f be a triangulation
of D(N) which iuces a triangulation of Bd N; let g be a triangulation
of M. Apply 10.11, letting N, = 1(V), N, = Bd M, and N3 = Bd N.
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