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F. Frankel and L. Pontrjagin [2] and H. Seifert [5] have given methods
of construction of an orientable closed surface spanning a given knot i.e.
having a given knot as a boundary. Seifert [5] has defined the genus G(k)
of the knot %2 as the minimum of the genera of orientable closed surfaces
spanning k&, whose existences are assured by [2] and [5]. Now let 4 be the
degree of the Alexander polynomial of 2. Seifert has proved that we have
always

=6 M

where the equality holds, if % is a torus knot, but there are also cases where
the equality does not hold. (There are namely knots, whose Alexander
polynomials are 1 and which are not equivalent to circles.)

In this paper, we shall show that the equality holds in (1) in certain
classes of alternating knots (Theorem 1.1). For example, “alternierender
Brezelknoten” of type (p,, 0 =+, pans1), P: being odd, i.e. alternating knots,

whose projections have p; crossing points on each arm and divide the plane
n+1

into 2 p;+2 regions, of which 2242 are “black”, belong to these classes.
i=1

It will be shown, at the same time, that for an alternating knot 2 of our

classes, the orientable closed surface spanning &, whose genus is just equal

to G(k), is obtained by Seifert’s construction.

§1. Main theorem.

Let & be a knot" and let K be an image of a regular projection® of k
onto the plane £ and let K be oriented by the orientation induced by that
of k. Let K have n double points ¢y, ¢y, -+, ca, called the crossing points. One
of the two segments through a crossing point ¢; passes under the other. It
is called the Jower segment at ¢; and the other the wpper segment. The

1) A knot means a polygonal simple closed (oriented) curve in Euclidean three
dimensional space ES,
2) See [3].
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segments® of K connecting two consecutive crossing points are called sides
of K. K divides E into n+2 regions 7,7, - -, ¥as1, Where we assume that 7,
is always an unbounded region. We can classify these regions into two
classes, called “black” and “ white” for convenience’ sake, in such a way
that each side is always a common boundary of a black and a white region,
where 7, belongs to a black class.

Let us assign to each crossing point ¢; the incidence number I(c;), where
I(c)=+1 or —1 according as the smaller rotation to make the lower seg-
ment coincide with the upper segment, the orientation of the segments
being taken into account, is carried out in the black or in the white region

(Fig. 1).

Fig. 1. (The parts drawn by the oblique lines represent the black regions)

Then the main theorem of our paper is the following

Tuarorem 1.1. For any alternating knot with a constant incidence number,
the genus is exactly equal to one half of the degree of its Alexander polynomial.

As a corollary of this theorem we have the following

Cororrary 1.2. Let k, and k, be alternating knots with constant incidence
numbers. Then the degree of the Alexander polynomial of a product knot ky of
k, and ky is exactly equal to double of the genus of k, where k, may not be
an alternating knot and may not be of constant incidence numbers.

Cororrary 1.3. The knots ky, ky, by being as in Cor. 1.2, the genus of k, is
equal to the sum of the genera of ky and k.

Remark. It was already shown by H. Schubert in [4] that the genus
of the product knot is always equal to the sum of the genera of factors.

§2. Alexander polynomial and the genus of a knot.

Let us remember the definition of the Alexander polynomials defined
in [1]. As in §1 let us assume that there are » crossing points ¢y, ¢z, *+, ¢n

3) Hereafter, a segment means generally a polygonal line.
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in K and that X divides £ into #+2 regions 7, 71, ', 7ney and that these
regions are classified into two classes, black and white.

To each region 7; an integer I(r;), called an index of r;, is assigned. At
each crossing point ¢;, just four corners of four regions r;, 7, 7; and 7, let
us say, meet. Two corners among these four corners are marked with dots
[1].

Now for each crossing point ¢;, we shall write the following linear
equation

¢i (N)=2xr;—xr+r,—1n=0,

where ¢;-corners® of 7; and 7, are dotted. We may assume, hereafter, that
J» kB, [ and m are different from one another.®

Consider the matrix M, called the L-matrix, of the coefficients of these
equations. M has » rows and #+2 columns, each row corresponding to a
crossing point and each column corresponding to a region. If we denote
the determinant of the square matrix obtained from M by striking out two
columns corresponding to a pair of regions with consecutive indices p and
p+1, by 4,,4p, it follows®

(2-]-) Ap(p-l-l)::l:xr—g Ar(rﬂ) .

The G.C.M. of these determinants, freed from the factor x, is the Alexander
polynomial of k. According to Alexander [1], we can assume that the signs
of all the elements distinct from zero in the L-matrix M are positive, i.e.
either x or 1.

Let us compute the genus of an orientable surface spanning k after
the manner of H. Seifert [5].

Let us divide K into some loops,” called standard loops, in the same
way as in [5]. Suppose that K is divided into m standard loops. Then the
genus G(k) of & is limited by®

m+1

(2.2) G(k)g”—‘z—— :

Lemma 2.1. For any alternating knot with a constant incidence number
L(cy), the number m of the standard loops is either the number of the white or of
the black regions according as I(c;)>0 or I(c;) <0.

Proor. We shall only prove Lemma in the case where I(c;)>0. We
shall prove that a standard loop L corresponds to a white region. To do

4) c¢j-corner of r; means the corner of r; meeting at c;.

5) In fact, it is impossible that j=#%, or k=1 or /=m, or m=j. Ifi=kFk we
can transform K into K’ which does not contain such a crossing point ¢;. See [3].

6) See [1].

7) A loop means a simple closed curve.

8) See [5].
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this we shall show that L will bound a white region W. Suppose that a
point P moves positively along W,» looking W on the left. When P arrives
at a crossing point ¢;, suppose it is always on the upper segment at ¢,.
Then the lower segment must be crossing under the upper segment from
right to left, as I(¢;)>>0. Thus P must turn to the left, and hence P must
move positively along the boundary of a white region W’, seeing it on the
left again. It will be evident that W=7, Thus P makes a round on W,
seeing W on the left. Consequently Z bounds W. Furthermore it will be
easily shown that two different standard loops do not bound the same
white region.

If we assume that when P arrives at a crossing point, it is always on
the lower segment, then we can prove Lemma in the same way as above.

In the same way, it will be proved that if I(¢;)<<0, a standard loop
will bound a black region. q.e.d.

§3. L,matrix.

By Lemma 2.1 we can see that it is sufficient to prove Theorem 1.1 in
the case where I(c;)>0. Consequently we shall suppose, hereafter, that

(A) I(c)>0 for all i.

Hence the number m of standard loops is equal to the number of the
white regions.

LemMma 3.1. Under the assumption (A) the elements distinct from zero in
the columns corresponding to the white regions are all ¥'s or all 1’s.

Proor. It is sufficient to prove that the corners of a white region are
either all dotted or all undotted. The proof of this fact is, however, con-
tained in the proof of Lemma 2.1, taking notice of the dots of the corners.

q.e.d.

On account of this Lemma we can replace the L-matrix M by the
matrix M,, whose elements distinct from zero in the columns corresponding
to the white regions are all equal to 1. M, will be called the Lo-matrix.

Lemma 3.2. Under the assumption (A) all the indices of the black regions
are constant, say p, and then the indices of the white regions are either p—1 or
p+1.

Proor. Let two black regions B, and B,, and two white regions W,
and W,, be four regions whose corners meet at a crossing point ¢;. Among
these four regions the ¢;,-corners of two regions, of which one is the black
and the other the white, are dotted. Suppose that the ¢;-corner of B, is

9) A dot over the symbol denotes the set of boundary points,
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dotted. If the ¢;-corner of W, is dotted, then the lower segment is oriented
as we see W, and B, on the left. Since I(c;)=1, the upper segment must
be oriented as we see W, and B, on the left. Hence it follows I(W)=p+1,
I(Wy)=p—1 and I(B,)=p. Similarly if the ¢;-corner of W, is dotted, then
it follows I(W)=p—1, [(W)=p+1 and I(By)=p. In the case where the ¢;-
corner of B, is dotted, it will be shown in the same way that we have the
same result. g.e.d.

From the proof of this Lemma, it follows

Lemma 3.3. The index of the white region with dotted corners is p+1 and
the index of the other white region is p—1, provided that the index of the black
region is p.

From this Lemma it follows

Lemma 3.4. The elements distinct from zero in either column of two columns
of the Lymatrix M, which are corresponding to two regions with consecutive
indices, are all 1’s.

Consequently, the following Lemma will be easily shown from Lemmas
3.2, 3.3 and 3.4.

Lemma 3.5. Any determinant 8%_pp 0or 4%y of the square matrix obtained
From M, by striking out two columns corresponding to two regions with consecu-
tive indices is uniquely determined, except for the sign.

Hence, hereafter, we shall consider only 4%¢.1)-

Lemma 3.6.19 Under the assumption (A) there exist 2q (q=>0) crossing
points on the boundary of any black region B and the corners adjacent to the
dotted (or undotted) corner of the black region are undotted (or dotted).

Proor. Suppose that B and the boundary of a white region W have a
side s in common. Let us denote the end points of s by ¢; and ¢;. If ¢
corner and c;-corner of B are both dotted, then either one of c¢;-corner or
ccorner of W is undotted and the other is dotted, which contradicts to
Lemma 3.1. If two corners of B are both undotted, then c¢;-corner of B’
and ¢;-corner of B’ are dotted, where B’ and B’ are black regions meeting
with B at ¢; and c; respectively. Then it is impossible that ¢;-corner and
c;-corner of W are both dotted or both undotted. This is a contradiction.

q. e.d.

§4. L-correspondence.

Consider the terms of the largest and the smallest degrees in the
determinant 4%(y+). Since 4%4y is the determinant of the degree 7 and
the elements of m—1 columns are either 0 or 1, it is the polynomial of

the degree n—m-+1 at most.

10) That the converse is also true, is pointed out by Prof. H. Terasaka.
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Now let us assign to each crossing point ¢; one of the four regions
meeting at it such that
(C) Each one of the #+2 regions except certain two regions 7, and 7,
with consecutive indices corresponds to one and only one of the crossing
d point lying on its boundary.

Such a correspondence will be called an L%-correspondence if n—m-+1
crossing points ¢; correspond to n—m--1 black regions, of which the corners
of the ¢ black regions at the corresponding crossing points are dotted.
;r Then we have clearly
' Lemma 4.1. An L-correspondence corresponds to a term ' or —x% in

A%(pﬂ)-

Lemma 4.2. Let o be an L™ -correspondence' such that each crossing
point corresponds to one and only one of the n+2 regions except for a pair of
two adjacent regions r, and rg, and let t© be another L™ -correspondence which
is obtained from o by changing the correspondences in some Crossing points.
Denoting the terms in 4%ys,) corresponding to o and + by &x* " gud e
respectively, it follows

£=¢g,
where €, e==+1.

Proor. We can suppose that the columns of 45p+1) have been arranged
so that i-th column corresponds to a black region B; (i=1,2,--,n—m+1) and
j-th column corresponds to a white region Wi-nim—y (J=n—m~+2,--, n).

Let us suppose that ¢j, corresponds to B; (A=1,+,n—m+1) and ¢y, cor-
responds to Wi_nim-y W=n—m+2,--,7) in 0. Then we can write

1 21\
£=sgn(}.1 I =fy ) ’
In z, if ¢k, and cy, correspond to B; and Wi_pim-, respectively, we can write

e=sen(, 1, k).

-Hence it is sufficient to prove that

fide = Ja
S =g =].
gn¢ g“(k. k)

Let { be represented as the product of » cycles ¢y, s+, ¢,, which are
mutually disjoint. Since sgn {=(sgn{,) (sgn {,)-+-(sgn {,), it is sufficient to
show that sgn {;=1 for every i.

Let {i=(s;-'sx). Now let us assign a chain I, called an L-chain, to {;
as follows. Take a point, called a center, in each region and fix it. Since

11) It will be shown in §5 that there exists such a .
12) Sgn P=1 or —1 according as P is an even or an odd permutation,
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both ¢, and ¢;, lie on the boundary of a region #,, say, we can join ¢, and

¢;, with the center a,, of 7, by a segment /, in 7;,. [, will be oriented in

the direction from e¢,, to ¢, through a;,. In the same way, we can join Cia

and ¢,, with the center a;, of 7;, by a segment /, in #;,, and so forth. We set
&

L=U/l. L is a loop. If L contains the centers of black regions, then we

i=]
shall transform L into L, as follows. Suppose the interior!® of I does not
contain 7, and 75 If L contains an oriented segment joining ¢; with &
through the center » of a black region B, denoted by c¢,bc,, we replace it
by a chain of the segments c,w,c,Uc,wyceU - Ucawc,, Wwhere cu,c, are the
crossing points such that, a point P moving positively or negatively from
ci to ¢, along B according as the orientation of £ induced by L is positive
or negative'¥), passes ¢,;,c, in this order, and where w,--,w, are the
centers of the white regions which have the sides csc,,+,ccc, With B in
common. Thus we obtain a figure F. Let us transform F into L, with two
following operations. (a) If F contains caw,ceUciw,cn, then we shall replace
it by cawjcn. (b) If F contains cuw,ciUcww,ci, we shall take it away. Thus
F is transformed into a loop L,.

Here we shall prove the following two facts.

Lemma 4.3. Let p, and q, be the numbers of the black and the white regions
in the interior L} (or the exterior) of L, respectively and let s, be the number of
the crossing points in L. Then

So=bot+q—1.

Proor. Let ¢ be the number of the centers of the white regions on L,.
Since ¢ is equal to the number of the crossing points on L,, LYUJL, is divided
into s,+2¢ points, 25,4 3¢ segments and p,+q,+¢ faces by the crossing points,
the centers and the sides. Hence Euler’s characteristic y of LYUL, is given
by

X =8y+2t —(25y+3)+po+ o+t =—50+ P+, .

On the other hand y=1, since LJUL, is homeomorphic to an 2-dimen-
sional closed cell. Thus we have sy,=p,+q,— 1. g.e.d.

Lemma 44. Let py, q, and s, be the numbers of the black, the white regions
and the crossing points in the interior of L. Then denoting the number of the
centers of the (white) regions lying on L, by ky, it follows

13) We may call either one of two sets £, and E, into which E is divided by
L, the interior and the other the exterior. But hereafter, we assume that the
interior of L, or generally a loop, means the bounded set among £, and Es.

14) If the exterior of L does not contain r, and 7g P will move along B in the
inverse direction.
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Po=D1
(4.1) ky=Fk+ Ei 22— —(so—5)— (041>

where A; are positive integers.
Proor. The number! of the centers of the regions on F is given by

k-i—p’i:pl(ﬂi—l), since it increases by 21;—1 per a black region which is con-
i=1

tained in the interior of L, and is not contained in the interior of L. But
the number of the centers of the regions on L, is first decreased by s,—s;
by the operation (a) and again it is decreased by g,—g, by the operation
(b). Thus we have (4.1). q.e.d.

Now in our case it follows s,=p,+¢, by the definition. Hence it follows
from Lemmas 4.3 and 4.4

k0=k+p§jl(2lﬁ —1)—(sp—s1)—(q—q1)

=k+2?§mls‘— (bo—D)— (Lot ao—1—p1—q1)—(q0—q1)

=k+1 (mod 2).

While 2,=0 (mod 2), as shown from the fact that if c¢-corner of a white
region X is dotted (or undotted), then ¢c-corner of the white region X’ which
is opposite to X over ¢ is undotted (or dotted). Hence we obtain k=1 (mod
2), i.e. sgn {;=1. g.e.d.

§5. Proof of theorem.

The subset G (or H) of E obtained by connecting the centers of all the
black regions (or all the white regions) with the crossing points lying on
their boundaries will be called the graps (or the dual graph) of K. The
segments of G (or H) connecting two consecutive centers of the regions
are called sides of G (or H). There is only one crossing point on each side.
Denote by M, the regions into which E is divided by G. M, contains
clearly only one white region. We can suppose that the indices %2 are so

arranged that lj M;NM,,, contains at least one side on M’,H for r=1,2,-,
i=1

n—m-+1.

Now let us prove the existence of an L*™*!-correspondence. To do this
let us assign in the following way to each crossing point one of the n-+2
regions except a pair of a white region 7,, contained in M, and a black

region 7z adjacent to 7,.

15) A center lying on the part ¢ wjcx Uckwjem or ¢ wjce Uckwjc; of IF is
counted doubly.
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First we shall assign n—m+2 black regions except 3 to n—m+1 cros-
sing points. Let MI consist of ¢ sides my, m,, -+, m, where m; denotes the
side connecting the center of B, with that of B, through a crossing point
cj; fori=1,2,--;¢. (We put B,.,,=B,) We assume here that B; does not coin-
cide with B; for any 4,7, (i#j). It is easily seen that if B;=B,; for some
5, J, then & will be a product knot. We shall consider this case in the next
section. We can assume without loss of generality that rg is the black
region B,. Now, from the definition of the graph either of the ¢,-corner or
the c,-corner of B, is dotted. Let the ci-corner of B, be dotted. Then, since
the c,-corner of B, is undotted, the co-corner of B, is dotted. In general
the ¢;-corner of B, is dotted. Hence we shall assign B; to ¢; for i=2,-, ¢
If the ¢,-corner of B, is dotted, we shall assign B; to ¢;.,. Next let us

"‘l’ -
suppose that each of the black regions except s Whose center is on U M,
j=1

corresponds to one and only one crossing point such that the corner of this
region at the corresponding crossing point is dotted. Then we shall assign
the regions whose centers are on ﬂf'fhﬂ to the crossing point as follows.

Let M., consist of s sides m,’, my/ e, my’ and let m,’, Mo, Mg,y MU,y Mgy,
h

m;l..---,m}u_l,m;u_l“.---,m;l be contained in lM,—, where m; denotes the side

j:
connecting the center of By’ with that of Bj,, through a crossing point ¢,’.

Then either of the c},-corner or the Cns-corner of By, is dotted. If ¢}, -
corner of By,,, is dotted, then we shall assign By, to cs,. In general, we
shall assign' Bh,siv1 to cnyy for 0<ish,—h,—2. If Crn.+1-COrner of B, is
dotted, then we shall assign Bu,rivr 10 Chyeiey. In the same way we shall
assign By, vjs1 to chIH'or Cryjer fOT =2, 2 and j=0,1,, by —1y—23 by =s.

Thus we obtain a correspondence such that each of the black regions
except 7z corresponds to a crossing point on its boundary, where the corner
of each region at corresponding point is dotted.

Finally we shall assign all white regions except 7, to the crossing
points. To do this we shall consider a subset M of G, called the semi-graph
with respect to the correspondence of the black regions. M is defined as
a subset of G obtained from G by striking out the sides, where the crossing
points on these sides do not correspond to any black regions. Then we have

Lemvma 5.1. M is a tree, i.e. M is connected and does not contain a loop.

R -
Proor. Set M"=MN U M,, for £=1,2,--,n—m~+2. Then it is obvious
j=1

that Mle,—ml or M‘=fl/'[.—m, according as the ¢,-corner of B, is dotted
or undotted and that M! is a tree. Furthermore it follows from the defini-
tion of M that if M" is connected then M"*+' is connected. Hence we shall

see that M=M""** will be connected by the induction. To prove the
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latter half of Lemma let us compute the Euler’s characteristic y of M.
Since M is divided into 2(z—m+1)+1 points and 2(r—m+1) segments by
n—m-+1 crossing points and #z—m+2 centers of the black regions on M, we
have y=1. Hence M does not contain a loop. g.e.d.

-Now let N be the subset of the dual graph H obtained by striking out
from H the sides meeting with M. Then

Lemma 5.2. N is a tree.

Proor. If N is decomposed into two components N, and N,, where
NN N;=4¢, the sides %y, hy,+-, h, of N connecting N, with N, are meeting
with the sides g, g, 2, of M respectively. Then gU--Ug, is a loop,
which contradicts to Lemma 5.1. Furthermore N does not contain a loop.
For, if N contains a loop 7, then the interior of T contains at least one
black region B. Since M contains the center of B, MNT#¢. Thus MM N+¢,
which is a contradiction. q.e.d.

Now we shall assign the white regions to the crossing points by means
of N. Let n,,n; be all the sides of N connecting the center of 7, with
the centers of the white regions W, W, through the crossing points
Cipp+*y €, Tespectively. Then we shall assign W; to ¢;,- Next, to the crossing
points ¢, on the sides #;/ of N, except n; through the centers of W,, we
shall assign the regions W which are opposite to W, over Cp, Thus we
shall obtain a correspondence such that each white region except re Will
correspond to one and only one crossing point on its boundary. For, we
see from definition of N that each white region corresponds to a crossing
point and moreover we see that if two crossing point correspond to one
white region, then N would contain a loop. Thus we obtain

Lemma 5.3. There is an L™ '-correspondence as stated in Lemma 4.2.

Similarly it follows

Lemma 54. There is an L'-correspondence o, such that each crossing point
corresponds to one and only one of the n+2 regions except a certain pair of two
adjacent regions.

Proor. 0, will be constructed as follows. If a crossing point ¢ corre-
sponds to a black region B in an L*™*!-correspondence, then we assign to
¢ a black region B’, which is opposite to B over ¢. Since ¢c-corner of B’ is
undotted, we shall obtain a correspondence such that n—m+1 crossing
points ¢; correspond to n—m+1 black regions whose ¢;-corners are undotted.
For the rest it will be shown in the same way as in the proof of Lemma
5.3, as the analogue of Lemma 4.2 holds for an L°-correspondence. q.e.d.

Lemma 5.5. If K is of m standard loops, the Alexander polynomial of k is
a polynomial of degree n—m-1.

Proor. It follows from Lemma 4.2, 5.3 and 54.
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Proor oF THEOREM 1.1.

Denote the genus of £ by G(k): If K is of m standard loops, then G(k)
n—m+1
§~—2———.
Alexander polynomial of 2 On the other hand d=2G(k). Hence it follows

d=2G(k). Thus the proof of Theorem 1.1 is completed. -

Thus 2G(k)<n—m+1=d, where d denotes the degree of the

§6. Proof of corollary 1.2.

It is well known'® that the Alexander polynomial of &, is the product
of those of &, and k,. Hence do=d,+d,, where d; denote the degrees of the
Alexander polynomials of k. Let K; be the images of the regular projec-
tions of k; onto E. From the assumption, there is a circle C on E such
that C meets with K, at only two points P and @, where P and Q are not
crossing points and these lie on two sides of the boundary of a region 7,.
C divides E£ into two parts E, and E,, and s=CNr, divides 7, into two
regions 7, and 7/. Let E, and E, contain 7’ and 7,/ respectively. Let
(EiNK)Us=K," and (E,NK,)Us=K,’. Since K;’ are equivalent to K, we
shall write K; instead of K’ Denoting the number of the crossing points
and that of the standard loops of K; by #; and m, respectively, the genera
G(k;) are given by
6.1) Gry=2=FL  for j=1,2,

Now it is obvious that
(6.2) m=n+n,.
To compute m,, let us classify the regions into which E is divided by
K, into two classes, called black and white, where the unbounded region
always belongs to the black class. Then it is easy to show that
(6.3) my=m,+m,—1.
Hence it follows from (6.1), (6.2) and (6.3) that
2G(ko)=ny—my+1
=my+ny—(m+my,—1)+1
=, —m+1)+0y—m,+1)
=2G(k,)+2G(k,)
=d,+d,
=d,.

16) For example, see [1].
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Since d,=2G(k,), we have d,=2G(k,). q.e.d

1]
£21]

£31]
(4]

L5]

Corollary 1.3 is immediately obtained from Corollary 1.2.

Hései University.
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Let % be a knot and let G(k) be the genus of & as defined by Seifert [6].
Let 4(x)=a)+ax+a.x*+-+a,x* be the Alexander polynomial of 2 Then
Seifert has proved in [6] that we have always

t=G(k). (1)

In a previous paper [3], we proved that the equality holds in (1) for a
knot in a special class of alternating knots. In the present paper we shall
show that the equality holds in (1) for all alternating knots (Theorem 4.1).
It was also shown in [3] that, for an alternating knot % of the class con-
sidered in that paper, the orientable surface spanning % whose genus is
equal to G(k), is obtained by Seifert’s construction [6]. It will be shown
that this is the case for every alternating knot.

Furthermore we shall show that 4(x) is “alternating ” for an alternating
knot %&£ (Theorem 4.4).

From this theorem, we can immediately deduce the well-known fact that
a knot 8,, in [2] is not equivalent with an alternating knot. Throughout
this paper we shall use the same notations as in [3].

§1. Preliminaries.

Let & be a polygonal oriented knot in the 3-sphere S* and let S? be a 2-
sphere in S° which does not meet £ Let K be an image of a regular pro-
jection of & into S%

Let K have n crossing points ¢, ¢y,'**,¢,. Then K divides S? into -2
regions 7y, 7y, 72y, Which are classified into two classes, called “black” or
“white”, in such a way that every side of K is the common boundary of
black and white regions. (Whenever we speak of the classification of regions
in “black” and “white”, we always mean a classification of this nature.)
As is well-known, an integer I(r;), called the index of 7, corresponds to each
region 7. We have

Lemma 1.1. For two regions r; and r; of the same colour, we have

I(ry) = I(ry) (mod 2)

and conversely.
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This is proved by the same method as used in the proof of Lemma 3.2
in [3].

Each corner of the two of the four regions" meeting at a crossing point
¢; is marked with a dot, and we can assume that the signs of the elements
distinct from zero in any column of the L-matrices are positive, i.e. either
xer 1 (ef. [1], [3]).

§2. The loops of the first and of the second kind.

Let us divide K into some oriented loops, called the standard loops, in
the same way as in [6].

Dermition 2.1. If a standard loop L bounds a region 7;, we say L is of
the first kind and 7; is the region bounded by L. Otherwise L is of the
second kind. '

Lemma 2.2, The corners of the regions bounded by a loop L of the first
kind are either all dotted or all undotted.

This is proved in the same way as in Lemma 3.1 in [3].

Conversely it is obvious that

Lemma 2.3. If the corners of a region r; are either all dotted or all undotted,
F is @ loop of the first kind.

Let m be the number of the loops of the second kind of K. The case
m=0 has been treated in [3]. In the following we assume m=1.

Now let us deform the loops of the second kind into the following loops.
Let the loops C; and C; of the second kind have a crossing point ¢. Let ¢
be a sufficiently small positive number, and a,b and d, e the points of inter-
section of the circle.(in S?) of radius ¢ with the center ¢ with C; and C;
respectively (Fig. 1).

Fig. 1

Then we replace the parts acUcb and dcUce of C; and C, by the disjoint
arcs ab and de respectively. If we perform this operation at each crossing

1) We may assume that these regions are different from one another. See the
note 5) in [3].
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point of two loops of the second kind, then we obtain m disjoint loops.
These m disjoint loops will be called hereafter loops of the second kind, and
if we need to consider the loops of the second kind in the older sense of
Def. 2.1, we shall mention it expressly. Then it is obvious that

Lemma 24. m loops of the second kind divide S* into m—+1 domains® E,,
E\--, E,.

Lemma 2.5. Let E; be a domain bounded by some loops, C;,,C;, of the
second kind: E;=C;U--UC,,. Then the regions re,+, 1y contained in E; having
some sides in common with C;, have the same index (depending on j;).

Furthermore we have

Lemma 2.6. The regions contained in the domain E; can be classified in
black and white, and in such a way that the regions having some sides in com-
mon with E, have the same colowr, say white. All these white regions have then
the same index, say p, and the black regions have loops of the first kind as
boundaries. Then indices of the black regions are either p—1 or p+1.

Proor. Let E;=Cj;,U--UC;, where Cy, i=1,2,-,v, are loops of the second
kind, and 7;,---, 7, the regions contained in E; such that each of 7, #y has
some sides with C;, in common. By Lemma 2.5, we have I(r;)=---=I(ry), so
that, if we classify ru.-—'-,r,.m in black and white as said above, 7., 7, have
the same colour, say white, by Lemma 1.1. Let us fix this classification, and
let 7; be one of black regions contained in E; such that #;, has some sides in
common with one of #;,-,7. Then 7, is a loop of the first kind, because, if
a common side of 7, and 7, say, were a part of a loop of the second kind,
r; would not be contained in E; Now let 7, be a black region in E; opposite
to 7; over a crossing point ¢,. Then 7, is also a loop of the first kind
(Fig. 2).

Fig. 2

In fact, if c,crUcke, in Fig. 2 were a part of a loop of the second Kkind,
r, would not be contained in £}, and it is impossible that c,c; and cyc; belong
to two different loops of the first kind. Thus it is easily seen that the
boundaries of all the black regions in E; are loops of the first kind. Hence
the regions in FEj; whose boundaries have some sides in common with any
one of Cj,---,C;,, are white. The remaining part is easy to prove.

2) A domain is connected and is an open subset of S2.
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Hereafter we shall use almost exclusively the classification in black and
white of the regions contained in each domain £; and consider the classifica-
tion of all regions 7+, 724 only in exceptional cases.

§3. Sign of the domain.

Hitherto the numbering of the domains E,, E,,-:-, E, and loops of the
second kind C,,C,, -, C,, was made arbitrarily. Now we introduce some rules
on the numbering.

There is at least one lcop of the second kind such that one of the two
parts, into which S* is divided by it, does not contain other loops of the
second kind. Let us fix one of these loops and denote it by C,. We denote
the domain bounded by C, which does not contain any loop of the second
kind by E,, and the domain bounded by C, and other loops of the second
kind by E,. Let the domains bounded by loops of the second kind other
than E,, E, be numbered arbitrarily. They will be denoted by Ej,:--, En. We
define the outer boundary C; of E; i=2,--,m, as follows. C; is one of the loops
of the second kind bounding E; such that the following holds: C; divides
S into two parts, one of which contains E, and the other E;. It is clear
that the loops of the second kind and the domains bounded by them are
thus numbered consistently.

Now let us take a point e¢; from each E; for i=0,1,--,m, and fix it. Let
l;; be an arc connecting e; with e; not crossing over any crossing point and
not touching any loop of the second kind. We shall now define an intersection
number I(l,;, Cy, q) for a point g at which /; meets Ci:

Derinition 3.1. <I(Z;, Cy, q)=+1, or —1 according as /;; crosses over C, at
¢ from the right to the left or from the left to the right with reference to
the orientation of C,. We set I(/;;, Ch)=2 I(ij, Cn, q). 1f l;; and C, are disjoint,

q

we set I(l;;, Co)=0. Then set e;;=23 I(/;; Cp).

It is easily shown that '

Lemma 3.2. e is uniquely determined by e; and e; independently of the
choice of Iy

Hence we may assume that /;; meets C, at most at one point for every
i,j and &. We can easily show that
(3.1 ei;=—ej
(3.2) eij=einten;j 0=i,75,h=m.

Derinrtion 3.3. We shall call the sign of E; (j=1,2,--,m) positive or
negative according as I(l;, C;, C;Nk;)=1 or —1. The sign of £, is defined as
the same as that of E..

We may assume without loss of generality that E,--, E, are positive and
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Eyyyy, En are negative, where d=1. (We have only to change the orientation
of the knot and change the numbering of E,,--, E, if necessary.) Let us
put m£in [(r))=p—1 and max I(r,)=p+h+1. We may suppose £=1.9

i

Lemma 3.4. The regions with the maximal and minimal indices are the
black regions and the corners of the former are all dotted.

Proor. Suppose that the region 7;, with the maximal index p+A+1 is
white. Let 7, be contained in E, Then E, is positive. For otherwise, the
index of a white region in E,, which is a domain separated from E, by C,
will be p+A-+2, which is a contradiction. Furthermore E, must contain
black regions. For otherwise, there would exist a positive domain E, whose
outer boundary would be CE, Hence a white region in E, would be of the
index p+A-+2, which is a contradiction. Consequeatly, E, must contain a
black region with the index p+4+2. This contradicts the assumption. Hence
7, is a black region. It will be easily shown that the corners of r;, are all
dotted.

In the same way, we shall see that a region with the minimal index is
black, q.e.d.

Remark. More generally, we obtain the following Lemma in the same
way as above.

Lemma 3.5. max I(r;)—min I(r;)= max e;;+2.

i J

0=t jsm

As this lemma will not be used in following sections, the proof is
omitted.

§4. Statement of the main theorems.

As mentioned in the introduction, our main theorems are the following :

Tueorem 4.1. The genus of an alternating knot is exactly one half of the
degree of its Alexander polynomial.’

This will be proved in §7. Hence follows in the same way as in §8 [3]

Tueorem 4.2. The genus of the product knot k, of the two alternating
knots k, and k, is exactly one half of the degree of its Alexander polynomial.

Since the Alexander polynomial of %, is the product of those of %, and
k,, we have

Cororrary 4.3 The genus of ky is equal to the sum of the gemera of k,
and k.

Furthermore, we have

Tueorem 4.4. If k is an alternating knot, then its Alexander polynomial is

3) If =0, there is no loop of the second kind. This case was considered in [3].
4) k, may not be alternating.
5) This fact is already shown by H. Schubert in [5] for all knots.
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of the form
A(x)=ay—ax+axt— -+ (=1 ax'+ - +ax®,

where a,=0, and in particular, ay, a, and ay#0, and a;=ay; for i=0,1,-,2¢.

§5. Preparations for the proofs of theorems.

Let 4,, be the determinant of the matrix obtained by striking out from
the L-matrix of K two columns corresponding to two regions with indices p
and ¢ Since d(ipe==4""4,.p. the determinant of the smallest degree
with respect to x among the determinants of the forms 4¢.ps iS d(pen+1) (p+n)e
Hence the Alexander polynomial 4(x) of & is

(5.1) A(x)=£27"d pan+1) 1) 5

where 2 is a non-negative integer. Now the determinant of the matrix
obtained by striking out from the L-matrix two columns corresponding to
two adjacent white regions 7, and 7 contained in E, and E, respectively,
may be denoted by 4(pigi1) (prg, With a suitable g, 0=¢=/—1, and we have

(5-2) A(p+-‘r.+l.) (p+n) = j:xqﬂhd(p-l-qﬂ) (p4+q) *

If 2 denotes the number of the black regions with all dotted corners, then
we have

(5-3) A(pvi-q4-l)(p4-q) =x'1-4?p+q+|)(p+q) M
Hence, from (5.1), (5.2) and (5.3), we have
(5.4) x4 (x) = Mprqs1) (p+a)

Consequently, the proof of the main theorem will be complete if only we
prove the following

m
Lemma 5.1 4%,0u0 g has terms of the degrees 3 wi—m+d—2 and d—1,
i=0

where w; denotes the number of the white regions in E;, and where d+1 is the
number of the positive domains.

In fact, it will follow that z+#—g—i=d—1 and lz+u—q—,2+2r§_%ow,;-—m

+d—2, where 2¢ is the degree of 4(x). Hence 2:2% w,—m+d—2—h+p—q—2)

=0

>3 w,—m+d—2—(d—1)=3 w;—m—1. On the other hand, we have 2t<2G(k)

i=0 i=0

<n—(E betm)+1=(E wi+ 3 0i—2)—(3 betm)+1=3 we—m—1, where G(k) de-

i=0 =0 i=0

notes the genus of &2 and b, denotes the number of the black regions in-E;.
Therefore we have ¢=G(k).

6) See [3].
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§ 6. Preparations for the proofs of theorems, continued.

Let us denote the white regions in E; by Wi, Wi, and the black
hi {
o Let Ki=U W,-J#LJIBL,,,.

Derintion 6.1. A crossing point such that at least two of four regions
meeting at it are contained in E; is called a crossing point which is contained
in K; (or simply in K;).

Hereafter a side of K; will mean a segment of K; connecting two con-
secutive crossing points iz K;. Then K; may be regarded as an image of
the regular projection of a link” into S% and we have clearly

LemMma 6.2. K, are alternating.

Since there is no loop of the second kind in K, lemmas obtained in
[3] hold for K; with slight modifications. Consequently it follows in the
same way as in Lemma 3.6 in [3]

LemmMma. 6.3. The corners of the black regions in E; are either all dotted or
all undotted. And the corners adjacent to the dotted (or undotted) corners of
the white regions in E; are undotted (or dotted). We shall say that the c-corner
and ¢’-corner of a region are adjacent, if two crossing points ¢ and ¢’ are con-
nected by a side of K;.

Let ¢ be a crossing point on C; not contained in K; and let a region 7;
in E, be one of the four regions meeting at ¢. Then it will be easily shown
that

Lemma 6.4. The c-corner of v, is either dotted or undotted according as E;
is positive or negative.

Lemma 6.5. Let § be the number of the crossing points in K, p the number
of the regions in E, and let E; consist of the § loops of the second kind. Then

§=p+q—2. '

Proor. The number of the sides of K; is given by 25. Since § crossing
points and 25 sides divide E;® into § points, 25 segments and p faces, Euler’s
characteristic y of E; is given by x=5§—25+p=—5+p. On the other hand,
zx=—q+2, since E; is homeomorphic to a 2-sphere with ¢ holes. Thus we
have 5=p+7—2, q.e.d.

Lemma 6.6. Let o be an Li-correspondence®” such that each crossing point

regions in £; by B; -, B;

7) A link means a figure composed of a finite number of the disjoint knots in
S3. We can define the standard loops of the first and of the second kind for an image
of the regular projection of a link in the same way as for a knot.

8) A bar over the symbol denotes the closure of the set.

9) In the next section, we shall show that there exists such a ¢. See [3] for
the definition of an Lf-correspondence.
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corresponds to one and only one of the n+2 regions except for a pair of two
adjacent regions r, and ry contained in E, and E| respectively. Then at least
one region in E; must correspond by o to a crossing point on C; not contained
in K for i=2,---, m.

Proor. If E; is bounded by the outer boundary C; alone, this lemma is true
by Lemma 6.5. Now let us suppose that £; is bounded by /+1 loops C;,, -+, Cy,
and C;, and the lemma is true for domains E;,,---, £;,_, and £;. That is, let us
suppose that #;,(=1) regions in £}, correspond to crossing points not contained
in K;,. Since the number of the crossing points in K; is larger than the

L
number of the regions in E; by /-1, X ¢,—/+1 (=1) regions in E; must
h=1

correspond to the crossing points not contained in K;. Thus at least one
region in E; must correspond to a crossing point on C; not contained in Kj,
q.e. d.

- m -
In the special case where I=3> w;—m+d—2, it follows

i=0

Lemma 6.7. w;+b;—1 regions in E; correspond to the crossing points in K,
for i=2,---,m. .

Proor. Let us suppose that ¢ (>>1) regions in E; correspond to the
crossing points on C; not contained in K;. If E; is negative, #; (white) re-
gions in E; correspond to the crossing points at which these regions have
undotted corners. On the other hand, if E; is positive, ¢#; (white) regions in
E;, which is separated from E; by C;, correspond to the crossing points at
which these regions have undotted corners. Thus in all cases it is impossible
that ¢ is an L®¥ "™ icorrespondence, since at least one white region in
every E; for i=d+1,---,m, corresponds to a crossing point on C; not contained
in K; at which this region has undotted corner, q.e.d. :

Lemma 6.8. Let o be an L'-correspondence and let t be another L'-corre-

spondence, [ =§ wi—m-+-d—2, such that the following property (P) holds:

i=10
(P) 0 and t© are defined on the same set of regions, and each of o, v assigns
each region of this set to some crossing point, the correspondence between the
regions and crossing points defined by o and v being allowed to be entirvely differ-
ent.
Then denoting the terms in 4% 4411)(peq COYresponding to o and t by ex' and
§x’ respectively, it follows

£=¢.

Proor. Let L, be the closed and oriented L-chain corresponding to a
cyclic permutation ¢, as used in the proof of Lemma 4.2 in [3]. To show
sgn {,=1, it is sufficient to show that the number of the centers of regions
on L, is odd.
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First we shall show that if L, crosses over the outer boundary of a
domain, then it will cross over the boundary in just two places. In fact,
let us suppose that L, crosses over C; at least at four crossing points. If
L. goes over C; into E; through some two crossing points, we see from
Lemma 6.6 that these crossing points are not contained in K; and these
correspond to some two regions in E;, which contradicts Lemma 6.7. More-
over it follows from the above fact that L, does not cross over Ci.

Next we shall show the following

Lemma 6.9. Let T, be any L-chain and TWNE=T'U---UT? and

T£=Ci,1x'£,lci,2 Uct,zxa,:cf.,au UCf'gixi’,liChk_‘_l 10) f()?’ i=1,-,p,

where x;,, -, Xi,,, are the centers of the regions in T and ¢, Ciag+1 GV the
crossing points in T*. Let t;, denote the number of the centers of the regions in
"

(@) If all c;, are contained in K;, then it follows

St=p+1 (mod 2).

(b) If ¢iy and cp,a,+1 are not contained in K; and others are all contained

in Kj, then it follows

2 t;=p (mod 2).

(€) If Ziueey Xy, are all the centers of the black regions for some i, then
t, is odd or even according as the c,-corner of 1i,, and the ¢ \-corner of Tix
are either all dotted (or undotted) or not, where 1, denotes the black region in
E; with the center x.

Proor of (a). In the same way as in Lemma 4.2 in [3], we have 2 ¢+
p=1 (mod 2), which is equivalent to (a).

Proor of (b). Let us transform 7" into T as constructed in the proof of
Lemma 4.2 in [3]. Here, in particular, we transform ¢,,%,,¢;» @nd ¢p,1,%p,2,C0,dp+1
into the chains ¢}, ¥, ciaUciadscis U~ Uciudiuciy and Cp,lpzplc;LUC;IszC;zU"'U
Cy.v-12aCp Tespectively, where ci and c3, are crossing points on the bounda-
ries of the white regions 7, and 7,3, respectively and ¢;, and c3, are con-
tained in K; and lie on C, and y,, and z,, are the centers of the black
regions whose boundaries have the sides cjgci¢ss and c¢pn-1Cpn With 7y and
7p,2p 11l COMMON, respectively, for £=1,2,-, ¢, 7=1,2,---,v and c¢j,u1=C12 €n.6
=cp,,» Let @, be the number of the white regions and b, the number of
the black regions, which are contained in a domain D in E; bounded by
T....,T? and the parts C°C'-,C? of C;,Cy,,Cj, which are contained in
E, Let 5, be the number of the crossing points in DN K;. Similarly let @,
and b, be the numbers of the white and the black regions in D, respectively,

10) For the notation see the proof of Lemma 4.2 in [3].
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which is bounded by T4,---, T3, CJ,C',---, C?, where C? is the curve connecting
¢y with ¢, on C° or on the complement of C° with respect to C;, and §, be
the number of the crossing points in DyNK,;. Then denoting the number of

. »
the centers of the white regions on T° by #;, we have @W,=,+3 ;. Let
t=]

by=b,+k. Then, since 5,=b,+w, by the definition, it follows 3,=b,+w,—1
=5+ u;+k—1.Y Moreover since one of x# and v is odd and the other
even, we can write u+v—2=2r—1. Hence denoting the number of the centers

b/]
of the regions in U T* by ¢, we have!®
i=1

-

wy—1 p—-1 % tp—1

fo—Et +Z(2lu—1) 2 > (24 -—1)-!—2(2/1‘;: 1)+2r —1—(5,—5,+k)

j=2i= i=1

b
—

4 p-1 P =

= t;—(u,—1)— 3 w;—(upy—1)—1—(Z u;+2k —1) (mod 2)
iml =2 i=1

-3, (mod 2) (1, intgers).
=1

On the other hand, since #{,=p (mod 2), we have :ﬁ‘la‘fz p (mod 2).

Proor of (c). If the c-corner of the black region 7; is dotted, then the
c-corner of the black region »; which is opposite to #; over ¢ is undotted and
conversely. From this, (¢) is immediately proved.

Thus Lemma 6.9 is proved.

Now we shall prove Lemma 6.8.

P
Let L, be divided into L,= U LOUL®M, where all L® are connected and

contained in only one domain E,“, and U LPNC,=¢'® and LWO=L,— U ™.

i=1

Now denoting the number of the centers of regions in LP by ¢{’, we have,
by Lemma 6.9 (a),

S @=p+1  (mod 2).
i=1

Next consider L®M. LM consists of p, L-chains L{",---, L%}, whose end points
are on the outer boundaries G ,,---,C,,, and are not contained in K, K} p.

P
respectively. Let L be divided into L= L JLMY, where all LI are

i=1
oy P
contained in a domain E;; and LM =L{P—J L#. Then by Lemma 6.9 (b),
i=]
we have
2t =p, (mod 2).

11) See (4.3) in [3].
12) See (4.1) in [3].
13) ¢ denotes the empty set.
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Defining #{” and p,; in the same way as above, we have

P D
DXt = 211.’?1; (mod 2).
J=

1 j=1
Moreover dividing L% into some L-chains and computing ¢ and pn in
the same way as above, we have

3D =3 pun (mod 2).
i n

Since the above decomposition will finish after a finite number of steps, the
number ¢ of the centers of the regions in L, will finally be given by

=2 tgm_!_z t!(lj)_}_z t}lﬂ::{:}_i___.__l_z r.(il**m*)
I

=p1+1+2Z D1+ 2 Drskt- + 20 Drseok »

On the other hand, p,+3 py++2 pix.s 1S even by Lemma 6.9 (c). Hence
we have =1 (mod 2). Thus Lemma 6.8 is proved.

§7. Proof of Theorem 4.1.

In this section, we shall show that there exists an L’-correspondence,

where f=§j w;—m-+d—2.
=1
Let G, be the graph'¥ of K; Denote the regions into which G, divides
S by M. Then, if we regard the complement of E; as the black regions,
then we see clearly that each M, contains one and only one black region.

We can suppose that the indices i,j are so arranged that M, contains C;
-1 . - :

for j=1,-,m, and M, contains C,, and ( U M,)NM; must contain at least
i=1

one side of M;;.

Let 7, and 73 be a pair of two adjacent white regions in. E, and E, re-
spectively. Then we can assign each one of the w,+w, white regions in E,
and E, except for 7, and 73 to one and only one crossing point lying on its
boundary by means of the graphs G, and G, in the same way as in [3],
where the corner of the region at the corresponding crossing point is dotted.
Let P, and P, denote the semi-graph of G, and G, with respect to the cor-
respondences of the white regions in E, and E, respectively. Then P, and
P, are disjoint and these are trees. Now let E,=C,UC; U--UCy;,. Then we
have

Lemma 7.1. In each E;, there exists a region 1y, say, whose center is on a

14) The graph (or the dual graph) of K means the totality of the segments con-
necting the centers of the white (or the black) regions with the crossing points
lying on their boundaries.
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side my, in M;,,, and each t;; contains at least one crossing point ci; which is
not contained in K.

Proor. If there does not exist such a region in £; , then P, would contain
the boundary of A, in which E;, would be contained. )

Furthermore we have

Lemma 7.2. We can so choose these crossing points c;; that they are differ-
ent from each other.

Proor. If ¢y,=c;, for some g,v, i.e. if there is only one crossing point
which is not contained in K‘-ﬂ and K;, there would be M,; and M,,, in which
E;, and E;, would be contained, and P, would contain a loop M,¢UM,,—(M,;
N M)

Now we can assign each one 7y, ; of the w;; white regions in £;, except for
the regions 7;;, whose existence is assured in Lemma 7.1, to only one crossing
point contained in K;; which lies on #;,,; by means of the graphs G;,, where
the corners of the regions at the corresponding crossing points are dotted.
Let P, denote the semi-graph of G;, with respect to the correspondence of
the white regions in F£;. Then P, are the trees and these are mutually
disjoint. In the same way, we obtain

LemMma 7.3. In each E;, there is one white region r;, say, whose center is on
a side of M,y and there exists on ¥, at least one crossing point c; say, not
contained in K. And these crossing points arve different from each other.

Let P; be the semi-graph of G; with respect to the correspondence of
all the white regions except for. »; in £;. P; are mutually disjoint.

Now we shall prove the existence of an L’-correspondence. This will be
performed if we can assign each one of the m—1 white regions »; and the

% b; black regions to one and only one crossing point. To do this, we shall

i=0
first assign r; (in £;) to a crossing point ¢; obtained by Lemma 7.3. Next, to
obtain a correspondence between the black regions in each F; and the crossing
points, we shall apply the proof of Lemma 5.3 in [3] to our case. We regard
the region »; and the connected component, which contains £, in the com-
plement of E; as 7, and 7 respectively and we consider the subset @;, disjoint
to P;, of the dual graph H; of K;. Then we can assign also black regions
to the crossing points on its boundaries by means of ;. Thus we obtain
the required correspondence. Thus we have

Lemma 7.4. There is an LEVi ™ 2-correspondence o as stated in Lemma
6.7.

Similarly, it follows

Lemma 7.5. There is an L* ‘-correspondence.
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From Lemmas 7.4 and 7.5, we have Lemma 5.7. Thus the proof of
Theorem 4.1 is completed.

§8. Proof of Theorem 4.4.

We can slightly extend Lemma 6.8 as follows.
Lemma 8.1. Let o be an Li-correspondence and t an L*-correspondence,

d=1=£1,5= % w;—m-+d—2, which have the property (P) as stated in Lemma 6.8.

i=0
If the terms in A%iqrnp+e COTresponding to o and t© are denoted by ex' and EX’,
where ¢,é==+1, then =& or e=—¢& according as f=5 (mod 2) or not.

Proor. We can assume without loss of generality that I=3 w;—m-+d—2.
i=0

First we shall prove this lemma in the case where m=0 and d=1, i. e. T =w,—1.
We may suppose that » crossing points ¢y, €5+ Ca correspond to 7 regions
71, Tare+, Tn Tespectively, of which first w,—1 regions arc white, by a. Let ¢;;
correspond to 7; by ¢ for i=1,--,n and let us assume that ¢;,-corner of 7, are
dotted for A=1,--,5 and cj-corner of 7, are undotted for /=5+1,-,w,—1.
Then, to prove Lemma 8.1, it is sufficient to show that

12:-m
(8.1) sgn C———sgn( 30 “_}.n) -
Let ¢ be represented as the product of some cyclic permutations ¢, (-, ¢
which are mutually disjoint.

Let &i=(y ), 19, =0 Consider an oriented L-chain, L corre-
sponding to {;,. Let us assume that L, contains ¢, centers of white regions,
of which a, centers lie on the segments of L, oriented as proceeding from
the dotted corner to the undotted corner. Then we shall transform L, into
L, which does not contain the centers of white regions, in the same way as
in the proof of Lemma 4.2 in [3]. Let p, be the number of the white regions,
¢, the number of the black regions and let s, the number of crossing points,
which are contained in the interior'® of L,. Then we have s,=p,+¢,. On
the other hand, the number of the white regions contained in the interior
L, of L, is given by p,+#,. Denoting the number of the black regions con-
tained in L, by ¢,+iv,, the number of the crossing points contained in fo is
given by sozq.+p,—|-.tl+1?1«—1=sl+wl+tl—1. If the number of the centers
of the regions lying on L, is denoted by h,, then it follows

ti=a i I
ka=k‘j['£§ (221*_1)"‘2 z(ﬂj'*]-)_(su'_sl'l'wl)

j=1

15) The interior of L, means the parts in which L, is not contained, between two
parts into which $® are divided by L,.



248 K. MURASUGI

=h+a,+1 (mod 2) (4 #; being positive integers).

Thus we have %= «,+1, since %, =0 (mod 2). Hence we have sgn {,=(—1)".
In the same way, we have sgn {;=(—1)"i, where «; are defined in the same

way as «,. Since X a;=w,—1--5, it follows sgnc.’=11[sgn¢"-=lr'[(—1)"i=
i=1 i=1

(= 1)Pemi=¥,

To prove this lemma in this case where m>0, we may compute the
numbers of the centers on the chains, into which L, is divided, in the same
way as in the proof of Lemma 6.8. Since we can accomplish this computation
in the same way as above, we shall omit the detail.

From this lemma and the fact that 4(—1) is always odd, Theorem 4.4
is easily proved.

Hdései University.
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