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We consider closed differential manifolds; our main interest being in
their diffeomorphism classification. Using recent results of Smale [19],
we obtain a set of diffeomorphism invariants which determine a manifold
whose boundary is homeomorphic to a sphere. We then attempt to com-
pute the conditions under which the boundary is diffeomorphic to a sphere,
so that a disc can be attached to it to make the manifold closed. Our
calculations give the form of the answer in general, and the complete an-
swer for 3 < n < 8.

The diffeomorphism invariants yield easily a full set of homotopy type
invariants, and a large number of combinatorial invariants. Using all
these, one can more easily follow the known examples of non-existence
or non-uniqueness of differential structures on a given manifold under
suitable conditions. We can also study the problem of unique factorisation
of manifolds.

In a subsequent paper, the author intends to study the diffeomorphisms
of the manifolds here obtained; in particular, to give a complete set of
isotopy invariants of a diffeomorphism, and to consider more carefully the
problem of actual diffeomorphism classification of closed (n — 1)-connected
2n-manifolds (which is not settled in this paper, even when our results
are complete).

Throughout this paper it will be assumed that # = 3. In the case n =2,
our arguments break down completely; for a discussion of what is known
in that case (not substantially out of date) see Milnor [13]. The case n=1
is well-known, and moreover our arguments are not valid without a great
number of alterations. It is also to be understood throughout that all
manifolds are oriented.

The invariants of a presentation of M

We shall rely heavily on results of Smale [19], and adopt his notation
for handlebodies. First recall [19, 1.1]:

PROPOSITION 1. If M*"is an (n — 1)-connected closed manifold, n =3,
and if N** is formed from M* by removing the interior of a closed disc
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164 C.T.C. WALL

D* imbedded in M*, then N e H(n).

Thus N is completely determined by a presentation ¢ =(D*"; fi,++ +, f,,n),
which in this case is essentially an imbedding f of 7 copies of 8D x D"
disjointly in 8.D**:

(1) f: U_(0D; x D*) — D™ .

Moreover, by the diffeotopy extension theorem [29], diffeotopic maps f
determine diffeomorphic manifolds N. Hence we seek a complete set of
diffeotopy invariants for f.

We split this problem into two parts. First, we seek a set of diffeotopy
invariants for f = f|U]_ _,(@D7 x 0). This problem also is solved by Smale
[19, 4.1]. Write ¢;, for the linking number of f(@Dp x 0), f(@D} x 0):
two (n — 1)-spheres disjointly imbedded in a (2n — 1)-sphere. Then we
know that

(2) ¢y = (—1)ciy .
We call (c;;) satisfying this condition n-symmetric. Then we have

PROPOSITION 2. The diffeotopy classes of f stand in (1-1) corre-
spondence with the n-symmetric integer matrices (c;;) without diagonal
elements.

Next we must give diffeotopy invariants of f corresponding to a given
7. Now it is easy to see that any S*~! differentiably imbedded in S**~*
has trivial normal bundle, so any tubular neighborhood is diffeomorphic
to the product S*~* x D*. By the tubular neighborhood theorem of Milnor,
given any two tubular neighborhoods, there exists a diffeotopy carrying
one onto the other so that the following is satisfied (after the diffeotopy):

(3) t(z, y) = ti(, s(x) - v)

where t,, t, are the tubular neighborhoods, and s: S"*— SO, a map. Thus
diffeotopy classes of imbeddings of neighborhoods f(S™* x D") for given
f1S™* x 0 correspond to elements of «,_,(SO,).

Since the (n—1)-spheres are disjoint, we may clearly take the neighbor-
hoods now found, and the images of their diffeotopies, also disjoint. Thus
we have our classification:

LEMMA 1. The complete set of invariants of the presentation ¢ of N,
where equivalence of presentations is equivalence under a diffeomor-
phism of N*™ diffeotopic to the identity, is

(1) An n-symmetric r x r integer matriz (c;;) with c;; not defined,

(2) A set of r elements of 7, (SO,).
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Of course, in this lemma, N can be any element of H(n), not necessarily
coming from a closed manifold M.

Diffeomorphism invariants of NV

We now look at Nin the abstract, to see which invariants we can find.
In fact we obtain all the above, in a rather more natural manner.

Write H = H,(N). This is a free abelian group of rank r, so r is in-
variant. Intersection numbers define an n-symmetric bilinear form
HQ® H— Z, where Z is the group of integers. Now as N is (n — 1)-con-
nected, we have the Hurewicz isomorphism =,(N) = H,(N) = H. Then
by theorems of Haefliger [5], for n = 3, every element of 7,(N) can be
represented by a differentiable imbedding S™ — N, and for n = 4, two
such imbeddings which are homotopic are diffeotopic. Hence for n = 4
an element of H defines a unique (up to diffeomorphism) imbedding of S™
in N, and so a corresponding normal bundle, which is classified by an ele-
ment of 7,_,(SO,). Thus we have a map a: H— w,_(S0O,). For n =3,
the map is still well-defined, since 7,(SO,) consists only of the zero element.

Thus we have a free abelian group H of rank 7, an n-symmetric bilinear
form HQ H— Z (which we write simply as the product), and a map
a: H—m,_(SO,). We assert that, from this, all the invariants of Lemma 1
can be recovered.

First recall that N is constructed as follows. We take a disc D*", a map
f: U,_0D! x D*— 8D’ with the given invariants, attach U;_ D/ x D"
using f, and round the corners. Now 8D} x 0 C 8D* bounds a disc D/"
in D*, It also bounds D x 0. These two discs give us a sphere S7,
which we may take to be differentiably imbedded. Then since the classes
of the D x 0 in H,(N**, D*) form a free basis, so do those of the S in
H,(N) = H. The intersections of S and S} in N are just those of D}",
D™ in D*: their number is by definition the linking number of S, S/*
in 8D*. Hence we recover the c;;: if e; is the class of S in N, we have
¢;; = e;-e;. Finally, a(e;) is the characteristic class of the normal bundle
of S, so if the tubular neighborhood t, in (8) is the neighborhood of S/~
in 0D* deduced from one of D" in D*", since t, is deduced from the obvi-
ous tubular neighborhood of D x 0 in D x D", we have, by the defini-
tion of the characteristic class of a bundle, that the map s of (3) represents
a(e;), so the r invariants in 7,_,(SO,) are simply the a(e;).

We note that a presentation of N determines not merely the above
structures on H, but also a basis for H. It will be useful to have the follow-
ing theorem. The proof follows without difficulty by the methods of
Smale, so we shall only outline it.
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THEOREM 1. Suppose N e H(n), and choose a basts for H(N). Then
N has a presentation corresponding to this basis.

ProoF. Let D?* be a fixed disc in the interior of N**, and let K*" denote
the closure of N** — D>, Since all these spaces are (n — 1)-connected,
we have

H’n(NZn) =~ Hn(N2n’ DZn) ~ Hn(KZ'IL’ aDZn) ~ n-n(KZn, 6D27L) .

We represent the elements of our chosen basis by maps f;: (D", 8D") —
(K*,0D™); by results of Whitney, we may suppose that each of these is
an imbedding, with f,(D") transverse to 8D along their intersection
f:0D™). We may further suppose that the images of any two f; meet in a
finite number of points; but these can be ‘pushed away’ across the bound-
ary into D> by methods of [30], since (M*", D**) is 2-connected.

We now have disjointly imbedded discs, in the right homology classes.
We can extend the maps f; to tubular neighborhoods f;: (D", 8D") x D™ —
(K*,0D™). Of course, the restrictions of these to the boundary will give
a presentation. Let N’ be the union of D*" with the images of the f;; then
N’ is a submanifold of N (we can round the corners if we wish) and the
injection of N’ in N is a homotopy equivalence.

Write L for the closure of N — N’. This has two boundary components,
oN and 8N’, both (n — 2)-connected (2n — 1)-manifolds. It is easy enough
to compute the homology groups (cf., Lemma 3 below) and deduce that
each of these is a deformation retract of L, which thus defines a J-equiva-
lence (or “h-cobordism”) between them. Now by a result of [17], ON is
diffeomorphic to 8N’, and L diffeomorphic to the product of either with
an interval. This shows that we can effectively identify N and N’ (they
are diffeomorphic, with a diffeomorphism diffeotopic in N to the identity),
so the presentation of N’ leads to the required one of N.

COROLLARY. Any automorphism of H,(N) respecting the invariants
can be realised by a diffeomorphism of N.

The statement that the invariants of a presentation were a complete
set means precisely that, given an isomorphism of such a set, there exists
a corresponding diffeomorphism.

Relations between the invariants

Thus in fact ¢;; = e, - ¢, (¢ # j) and a(e;) already give a complete set of
diffeomorphism invariants for N. But e¢; - ¢;, and the values of « on other
elements, are also diffeomorphism invariants, so must be functions of the
above. Hence, there are relations between our invariants. We now de-
termine all of these.
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We first recall a little homotopy theory: there is a canonical homomor-
phism J: 7,(SO,) — «,.:.(S") and the Hopf invariant H: ,,,(S") — Z. We
also use a section of the homotopy sequence of the fibering S* = SO, ,/SO,;

(4) 78" — 7, (S0,) — 7, (SO,r) = 70 1(SOs) .

Let ¢, € 7,(S™) be the class of the identity map; then Jac, is the Whitehead
product [¢,, ¢,], whose Hopf invariant is +2 (n even). We suppose orien-
tations chosen so that HJdc, = 2 (n even).

LEMMA 2. We hawve
(5) 2 = HJa(x) ,
(6) a(x + y) = a(r) + a(y) + xy(0c,) .

ProorF. We can identify HJ: w,_(SO,) — Z with the homomorphism
7,(S0,) — m,_(S™*) induced by projection. To find 2* we take a sphere,
representing x, and a tubular neighborhood, defined by a(x), and consider
the intersection of the sphere with a neighboring sphere in general posi-
tion. But this intersection is simply the obstruction to finding a cross-
section of the associated S**-bundle. By the remark above, this is HJa(x).

For the second part we may join two imbedded spheres representing x
and ¥ by a tube in N, and note that we then have an immersed sphere,
representing x + y, with self-intersection number 2y, and with normal
bundle defined by a(x) + a(y). We now propose to show that, for each
removal of a self-intersection, we must add ¢, to the normal bundle. The
result will then follow.

First of all, we remark that it is a fairly simple exercise in homotopy
theory to prove that if there is no element of Hopf invariant 1 in 7,,_,(S*),
ie., if k # 1, 3,7, then the homomorphism 7,(SO,) — 7,(SO,,) is onto,
and so 7,(S0,.,/S0,) — m,_(SO,) is a monomorphism; hence, by stability,
so is the map €: 7, (Vy.x) — Ti—1(SOy).

Moreover, the maps 7,(S*) — 7,(SO,.,/SO;) — 7,(Vy ) are onto. Hence
the image of 4 is the cyclic subgroup generated by o¢,.

It follows by a result of Smale [16] that two immersions of S™ in E** are
regularly homotopic if and only if a certain obstruction in m,(V, ) van-
ishes. Using the above, we now see that this is true (for n» # 1, 3, 7) if
and only if they have the same normal bundles, and that the characteristic
classes of any such bundles are multiples of d¢,. Also it has been proved
by Kervaire [9] that such an immersion is regularly homotopic to an im-
bedding if and only if its Smale invariant « vanishes, i.e., it has trivial
normal bundle.

Now we refer to a paper of Whitney [25]. It is known that his methods
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are valid if euclidean 2n-space is replaced by a simply connected manifold.
First, he defines the self-intersection number of an immersed manifold
M™ in E*; this being an integer if n is even, and an integer mod 2 if » is
odd. It is proved that if this number is zero, the immersion is regularly
homotopic to an imbedding. Whitney also gives a method of locally intro-
ducing a self-intersection, which adds +1 to this number.

Comparing these results with the above, we deduce the following: up
to sign, the intersection number of an immersion of S™ in E** is ) if and
only if the normal bundle is given by the characteristic class Mo¢,. It fol-
lows that the local introduction of a single self-intersection for S™ adds
(or maybe subtracts) d¢, to (from) its normal bundle. But since this is an
entirely local property, it holds for an immersion of S™ in any 2n-manifold.
Then, following Whitney, pairs of opposite self-intersections can be re-
moved without changing the regular homotopy class, and thus the normal
bundle.

Now if n = 8,7, relation (6) becomes trivial. If n is any other odd
number (1 excluded), 8¢, has order 2, and the relation is proved. If n is
even, our argument has established the relation up to the sign of a¢,; and
the fact that this sign is correct now follows by applying HJ to each
side, using (5).

In the case when % is even, we can give a much simpler proof. We first
suspend, and show that S« is a homomorphism of H to «,_,(SO,.,): it is
sufficient (by stability) to prove that S*a: H— x,_,(S0,,) is additive. But
since the tangent bundle of a sphere representing « is stably trivial,
S"a(x) defines the restriction to such a sphere of the tangent bundle of N.
But this is certainly additive. Now by the exact sequence (4), writing
B = a(x + y) — a(x) — a(y), since SB = 0, B lies in the image of 9, so
for some integer ), 8 = \(0¢,). Now apply HJ, in the case when 7 is even:

(7) (x+y)—a"—y =27,

Thus » = «y, and the result follows.

The group H, with n-symmetric product H @ H — Z and map a: H—
7.-1(S0,) satisfying the formulae (5), (6), we call a pre-n-space. Then the
classification theorem may be compactly stated, using Theorem 1:

Elements of H(n) (n = 3) stand in (1-1) correspondence with pre-n-
spaces.

The advantage of this over Lemma 1 is of course in its coordinate-free,
functorial form. As we have seen, it is essentially the same statement.

Almost closed 2n-manifolds

We have digressed somewhat from our main theme in considering N any
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element of H(n). We now want to restrict the boundary of N to be a
sphere. Certainly, since n = 3, the boundary of N is simply connected;
in fact, one sees at once that its homology is non-zero only in dimensions
(n — 1) and n. Thus it is easy to give conditions for it to be a homotopy
sphere.

Let H* be the integral dual of H. It is a free abelian group with rank
r and basis e, -« -, e, with a Kronecker product defined by <e;, ;) = &;;.
The product in H defines a map #: H— H* by

(8) <y, w(@)y =yx,
since H* = Hom (H, Z).
LEMMA 3. There are natural isomorphisms
H, (6N) = Coker 7, H,(dN) = Kerm .

PROOF. 0N is constructed from S*~* and f (given in (1)) by first remov-
ing the interiors of the r copies of S*' x D™ and then pasting in 7 copies
of D" x S**'. Write X =8*""'—»(S"*'x D") =8N — r(D" x S*™).
Then H,_(X) =0, H,_(X) = H*, for the homology class of an (n — 1)-
cycle is determined by its linking numbers with the S?~!, which may be
arbitrary, H,(X) = 0. To obtain dN, we paste in r copies of D" (which
is all that affects the middle dimensions). Thus we have chain groups,
zero in dimensions » — 2, n + 1, C,_, = H*, C, = H, and the boundary
homomorphism is given by the attaching maps. This shows that it must
be m. The result then follows.

COROLLARY. 9N is a homotopy sphere i f and only if & 1is an isomor-
phism.

A pre-n-space H, whose corresponding map 7 is an isomorphism, is called
an n-space. Equivalent conditions are that = be onto, and that the bilinear
form be unimodular.

By results of Smale [18], a homotopy sphere T'**~*, with n = 3, is homeo-
morphie, and even combinatorially equivalent, to the standard sphere S**~*,
Hence it defines an element of the group I',,_; [22], [15]. Thus Nis derived
from a closed manifold M by removing the interior of a disc if and only
if 8N is a homotopy sphere, and defines the zero element of I',,—;.

The reader will note, however, that even if 9N is diffeomorphic to S*,
we must choose some diffeomorphism to form M from N, and in general,
different diffeomorphisms lead to different M. However, if two diffeomor-
phisms belong to the same orbit under the operation of the subgroup of
diffeomorphisms of S?*~* which extend to D?**, we clearly get a diffeomor-
phic M, hence the indeterminacy lies in the quotient group I';,. Two such
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manifolds M are related by the fact that one is the connected sum of the
other with a manifold homeomorphic (in fact, combinatorially equivalent)
to S?*, which defines the element of I',,.

In this paper, we shall not investigate the problem of different mani-
folds M corresponding to the same invariants (or N). We merely consider
uniqueness mod I';,, and it is with this understanding that we obtain a
complete diffeomorphism classification.

We now investigate the boundary of N in the case when this is a homo-
topy sphere. First, however, let us again consolidate our gains.

A manifold N> is called almost closed if its boundary is an element of
I',,_, (i.e., is combinatorially equivalent to S**~*). Then we have shown:

Almost closed (n — 1)-connected 2n-manifolds stand in (1-1) corre-
spondence with n-spaces H.

(That almost closed (n — 1)-connected 2n-manifolds are handlebodies
follows from Smale [19, 1.2]. We recall that all manifolds in this paper
are oriented.) .

Thus each n-space H determines uniquely an element of I';,_,. The next
stage is to compute which element. This is facilitated by Lemma 4 which
follows.

We define the direct sum H, @ H, of two n-spaces in the obvious man-
ner: products and a are to be reckoned coordinate-wise and added:
(., )1, ¥s) = 2., + 2.y, and a(z, y) = a(x) + a(y). It isimmediate that
this sum satisfies (5), (6), and defines an n-space. The sum of two 2n-
manifolds with boundary is defined in Smale [17]: the manifolds are to be
glued together along a (2n — 1)-disc imbedded in the boundary of each,
with opposite orientations.

LEMMA 4. Forming the sum of two almost closed (n — 1)-connected
2n-manifolds corresponds to taking the direct sum of the corresponding
n-spaces.

PROOF. This is completely trivial. The inclusions of the summands in
the sum lead to an injective representation of H as a direct sum. Two
homology classes in a summand have the same (geometrical and therefore
algebraic) intersection in that summand or in the sum, and two in differ-
ent summands have zero intersection. Likewise the normal bundle of an
imbedded sphere is unaltered on proceeding to the sum. The result now
follows using bilinearity of intersections and using (6).

COROLLARY 1. Taking the direct sum of two m-spaces corresponds to
adding the corresponding elements of T',,_;.
We may put this in a more algebraic form, using the Grothendieck
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group of m-spaces. First take the free abelian group on all (isomorphism
classes of) n-spaces. Then consider the subgroup generated by relations
{H,® H,} — {H} — {H;}. The quotient group is the Grothendieck group
G,. The above corollary can now be re-phrased as

COROLLARY 2. The map from n-spaces to I',,_, defines a homomorphism
(9) 01 gn_’FZn—l-
We shall now investigate the homomorphism o. It is first necessary to

compute G,, and for this we need to know what the groups z, (SO,)
actually are, so we now give these groups, and use our knowledge of them.

n-Spaces for odd n

The groups 7,_,(SO,) have been calculated by Kervaire [7], using results
of Bott. We now quote them. We must distinguish no less than 7 cases
(and recall n = 3).

n even. In each case, S HJ: =,_(S0,) — w,_(SO) P Z is a mono-
morphism, with image of index 2.

Q) n=04),n>8. w,_(S0)= Z, HJ(@) is even.
2) n=4,8. 7,-(S0)= Z, S(x)+ HJ(x)iseven.
3) n=2(@). 7,-(S0) = Z, , HJ(c) is even.
4) n=6(8). 7,—(SO) =0, HJ(c) is even.
n odd. In this case, HJ(x) = 0.

(5) n=1(@). 7.(S0,) = 2Z, ,

S projects onto the first component; let ¢ denote projection on the second.
S@¢,) =0, @(dc,) =1, and J(d,) # 0. @ is not well defined; we could
equally well use @' = S + .

(6) n=3517@8),n+3"7. 7,S0,)=2,.
Let @ be the isomorphism. ¢(d¢,) = 1, and J is a monomorphism.

) n=23,17T. 7,—(S0,) =0.

Now in the case when 7 is odd, the product on the n-space H is skew-
symmetric; in these cases, we are able to give a complete classification.

Case 7. In this case, an m-space is a free abelian group with a uni-
modular skew-symmetric form. Then by a well-known result, the rank
is even, say r = 2s, and we may choose a base in H (a symplectic base)
e, e (1 <1 =<s)so that el = —ele; =1 (1 = ¢ = s), and all other prod-
ucts of basic elements are zero. Thus the only invariant is s, which can
be any natural number.
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Recall that, by the usual proof, any indivisible element of H can be
taken as e;.

Case 6. An m-space now is a free abelian group H with a unimodular
skew form, and a map ®: H— Z, with ¢(x + y) = ¢(x) + P(y) + xy.
Again the rank is even. We may take a symplectic base, and it is known
[27] that the only invariant apart from s is the Arf invariant

(10) Q=3 _ple)ple))  (mod2).

Since this is less well-known in this context, we shall give a proof.

Note that @ is determined by the @(e;) and @(e!). In fact H is a direct
sum of s m-spaces, those spanned by (e;, ¢!) for 1 <4 <s. For each of
these, @ is determined by ¢(e;), P(e!). Write W,, for the n-space spanned
by e, ¢’ with ee’ = —e'e =1, @(e) = a, p(¢’) =b. Then W, = W, = W,,
for, first change coordinates by e —e’, ¢’ — —e, and then write f = ¢ + ¢,
f'=¢€'. Thus the only two indecomposable n-spaces are W, and W,
which we note are distinguished by ®. That ® is the only invariant fol-
lows, since W, W,, = W,, @ W, by the change of variables

fi=e, fi=e —e, i =6 + e, fi=e;.

Finally, ® is an invariant: this may be checked directly, or since ® is
really a function on H/2H, which has 2% elements, andif ® =1, ¢ =1
on 2% + 2! of them; if ® =0, =1 on 2% ! — 25! of them, as can
easily be checked.

Thus here enumeration is given by s, ® (mod 2), where s = 0; if s = 0,
®=0.

Case 5. Sa is a homomorphism H— Z,, so as #: H= H* = Hom(H, Z),
and Hom(H, Z,) = Hom(H, Z) R Z, = HQ Z,, determines an element x
of H (determined mod 2H) with Sa(x) = yx (mod 2) for all x € H. There
are now two cases. If y =0 (mod 2), reduction proceeds exactly as in
Case 6. If y + 0 (mod 2), we may suppose that y is indivisible; then it
may be taken as the first element of a symplectic base. As in Case 6, the
n-space splits into the direct sum of irreducible n-spaces with s = 1; those
other than the first may now be dealt with as before. The space with
% = eand ¢(e) = a, ¢(e') = b we will refer to as X,,. However, now, a =
®(x) is a genuine invariant mod 2. We have X,, = X,, by ¢’ — ¢ + ¢’, but
X, X10y X1 are distinet. The first is distinguished by (), the latter two
by ®. We may now assemble these results. Call the n-space of type 0 if
% # 0 (mod 2); of type 1, if x = 0.

LEMMA 5. For n odd, we can classify n-spaces as follows.
In Case 5, the non-negative integer s, the type T, ®, and () form a
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complete set of imvariants which are related by:
Ifs=0then T=1, ® = p(x) = 0.
If T =1then 9(x) = 0.
Ifs=1, T=0and () =0, then ® = 0.
In Case 6, s, ® form a complete set of invariants, and ® =0 if s =0.
In Case 7, s is a complete set of invariants.
Note. In Case 5, instead of @, we might equally well use ' = @ + S.
The new invariants will then be related to the old by

PE) =20, P =2+ (),
as is easy to verify.

From these enumerations it is easy to compute the Grothendieck groups
G, (n odd). The only one of the invariants above which is not additive
under direct sums is the type T in Case 5, which is multiplicative. This
has no effect on G,. Thus we have:

Case 7. G, = Z by taking s.

Case 6. G, = ZP Z, by s, ®.

Caseb. G, = Z® Z,P Z, by s, ©, ¢(x).

Grothendieck groups of n-spaces, n even

In the case when 7 is even, we can give no such simple classification.
This would involve a classification of quadratic forms, a task not yet
achieved. But even if a form were given, it would not be easy to classify
the corresponding m-spaces. Hence in these cases, we shall ignore the
classification problem, and proceed directly to determine the Grothendieck
groups.

We need some information on unimodular quadratic forms. In the first
place, these are classified as of type II or 1 depending upon whether or not
x* is always even. (Note: there are two definitions of integral quadratic
forms; strictly speaking, we refer to symmetric bilinear forms.) Note that
in Cases 1, 3, 4 we deal solely with quadratic forms of type 1I. We may
now quote the standard theorems. For their elucidation and further
references see Milnor [13].

PROPOSITION 3. The rank, index (i.e. signature) and type form a com-
plete system of imvariants for the genus of an unimodular quadratic
form. These satisfy just four conditions: |7| < r; T = r (mod 2); for
type 11, T = 0 (mod 8); and for type 1, r > 0.

This is given force by the next

PROPOSITION 4. Two indefinite unimodular forms are equivalent if
and only if they have the same genus.
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LEMMA 6. The Grothendieck group G, for forms of type II is iso-
morphic to 2Z. An isomorphism is defined by the map ((r — 7)/2, 7/8).
The Grothendieck group G, for all forms is also isomorphic to 2Z, under
the map ((r — 7)/2, 7).

Proor. Take two forms of the same genus, and add to each an in-
definite form of type II, such as U below. By the last proposition, they
become equivalent. Hence they define the same element of the Grothen-
dieck group. It now follows that 7 and 7 are the only valid invariants (in
the first case all forms have type 1; and in the second, type is not pre-
served on addition); we know the additive relations between them, so the
result follows.

Note. It has been pointed out to me by J. Milnor that all these lemmas
up to the determination of the Grothendieck groups can be proved using
only his lemma:

PROPOSITION. An indefinite unimodular quadratic form over the inte-
gers represents zero.

Since the proof of this, however, entails most of the classification of
forms over the rationals, and as we shall need the more detailed results
later, we may as well use them here.

Case 4 is now settled. The invariant in that case consisted precisely of
a quadratic form of type II. In fact we now note in general that, since
S @ HJ is a monomorphism and HJa(x) = «*, the invariant a can be re-
placed by the invariant Sa: H — x,_,(SO) which, as before, determines
by duality an element % of H® x,_,(SO) such that for all x € H, Sa(x) =
yx. We may now re-phrase the n-space structure of H (n even) as follows:

(1) We have a quadratic form of type 11 on H, and an element y of H.

(2) We have a quadratic form, and an element ) of H, such that for
all z € H, yx = «* (mod 2).

(3) We have a quadratic form of type Il on H, and y € HQ Z..

(4) We have a quadratic form of type II on H.

First consider Case 1. Clearly y is invariant, and since the form is of
type II, we may write N = y’. Consider the auxiliary n-space U spanned
by e, and e, with e? = €2 = 0, e, = ee, = 1. If } = \e, + te, we denote
this space by U(\, t).

LEMMA 7. HP U(0, 1) = H,D U(N, 1) where H, denotes the n-space
derived from H by setting ¥ = 0.

ProOOF. Letx,, -+ +,2, be abasis for H. Set x} = z; — (x;Y)e;in HH U (0, 1):
then 2]y = 0 for 1 < ¢ < r. Also #; is orthogonal to e, (though not, in
general, to ¢,), and xzlx] = x,x;,. Write H' for the subspace spanned by
the #: then &, — 2} induces an isomorphism v: H— H' preserving products:
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wie, = —w X = —xiv(Y) .

Set e; = e, + 7(x). Then H’ is orthogonal to e, e;, so we have another
splitting as a direct sum. e = 0, e,e;, = ¢,¢, (since e, is orthogonal to H')
and

o = e + 2¢,7(0) + (v(0))*
=0—2y-x+x=—2N;

so writing e; = e}, + Ne,, we have ¢ =0, ¢,el! =1, e}’* = 0. Finally, the
‘x’ for the direct sum is x + e, and since ¥(y) = x — x’¢, = X — 2Ne,,
this is v()) + 2Ne, + ¢, = 2Ne, + ¢, = Ne, + el. The result is proved.

It follows from this that two n-spaces with the same quadratic form
and value of N determine the same element of the Grothendieck group.
Since N is invariant, our problem is solved. ((r —7)/2, 7/8, N) determines
an isomorphism of G, onto ZP Z @ Z, since taking y = 0, we know, by
Lemma 5, we get an isomorphism onto the first two components, and
U(N,1)— (1,0, N).

In Case 3, we utilise the above to see that 7, 7 and N are the only possi-
ble invariants, but now, since y is only defined modulo 2, U(N, 1) =
U(N',1) for N= N’ (mod 2). But N (mod 2) is invariant, for if y’ =
X + 2x, we have

2N' = 3 = * + 4y + 40* = * = 2N (mod 4)

so that N’ = N (mod 2).

Case 4 has already been dealt with. It remains only to consider Case
2. Our forms are no longer of type II, but we still have invariants
(r—7)/2, 7, ). We have the following examples of n-spaces: spanned by
the single element ¢, with ¢* = =1, and y =e. We call them T, T".
Given an m-space, we may add to it copies of these spaces and reduce ¥*
to zero. We may thus suppose x> = 0. We note that ¥* — 7 is unaltered
by this process.

Similarly, by adding (if necessary) one copy each of T, T', we may sup-
pose also that y is indivisible. Then we can find 4/, with ¥y’ = 1. Thus
P =y’ =1 (mod 2) is odd. Set ¢ =’ — 3 (" — 1)x. Then y* =0,
1 =1, y*=1. The space S spanned by x and +r is unimodular, so a
direct summand. Write H =S H'. Then in H', y =0, so r, T are the
only invariants remaining for consideration. Thus 7, 7, ¥* is a complete
set of invariants for G, in this case also.

Now consider H': x = 0. For any € H’, 2* = yx =0 (mod 2). Thus for
H', 7 is divisible by 8, hence so is ¥* — 7. The same is valid for H, since
¥?, T both vanish for S. But we remarked above that the step from an
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arbitrary m-space to H left y* — 7 unaltered; hence this is always divisi-
ble by 8.

We have now determined all the Grothendieck groups &,, and sum-
marise them for further convenience. As well as stating invariants, we
give examples of spaces to show that all values of the invariants are at-
tained. We first introduce symbols for certain matrices:

T=@1), T =(-1)), S=<(1)%>’ U=<(1)(1))' Wz(—(l)(1>>’

and

(2 0 0-1 0 0 0 0

0 2 1.0 0 0 0 0

0 1.2 1 0 0 0 0

1 0 1 2 1 0 0 0

=0 0 0 1 2 1 0 o

0 0 0 0 1 2 1 0

0O 0 0 0 0 1 2 1

\o 0 0 0 0 0 1 2/

THEOREM 2. For eachn, G, = Z@P «,_(SO,). These isomorphisms are
defined as follows:

) (’”;T%%—) G = IBIPZ;
@ (TR L=0):0,= 2020 2;
®) (L==2.L) :6=20204;
@ (£F==5)  a=zez;

®) (Loew) G=Z0ZO%;
(6) (% o) 0, =ZDZ;

(7) (%) LG, =7.

Values of the invariants are realised as follows:

@ U0,0—>@1,0,0, VHx=0-—(0,1,0, UQ1)—>(1,01);
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(2 U©0,0—~>(@1,00, THx=e—(0,10, T(=3e)—(011);
@ U@©0,0-100, Vik=0-(0,1,0, ULDH->@10,1);

@ U-@1,0, V—(0,1);
W(x =0, p(e)) = Plex) = 0) —> (1, 0,0) ,
®) W(x =0, ple) = ple) =1) > (1,1,0),

W(X = e, (&) = 1, p(e,) = O) —(1,0,1);
6) W(ple) = Ple) = 0)— (1,0), W(p(e) = ples) =1)— (1, 1);
) W-1.

Thus there are no relations between the invariants as stated.

Obstruction to closing vV

Each n-space determines an almost closed manifold N. Taking the
boundary of N defines a homomorphism o: G, — I';,_, by Lemma 4, Corol-
lary 2. We must now consider this homomorphism. We note that if N
actually corresponds to a closed manifold M, o must vanish on N. Hence
it is desirable to have some examples of closed, (n — 1)-connected 2n-
manifolds. The first obvious example is the product manifold S x S,
We can at once verify which element of &, corresponds to this. In each
case, the first invariant of the element of &, is 1; the others (if any) zero.
Our invariants were chosen partly with this in mind. Thus the first com-
ponent of G, is irrelevant in computing the obstruction. We can enunci-
ate this simple and general result:

THEOREM 3. The obstruction to closing an almost closed (n — 1)-con-
nected N depends only on T, x* (n even) and P, P(y) (n odd).

However, it is difficult to make any further progress, especially in the
case of the elements of order 2. We first refer to work on almost parallel-
isable closed manifolds by Milnor and Kervaire [12]. A 2n-manifold is
almost parallelisable if the restriction of its tangent bundle to the (2n—1)-
skeleton is trivial. For (» — 1)-connected manifolds, we have the obstruc-
tion y to triviality on the m-skeleton. Further obstructions lie in zero
groups. Hence, for us, y = 0 is equivalent to almost parallelisability.
Then if n is even and ¥ = 0, the index 7 must be divisible by a certain
integer I(M:") = 81, say, where n = 2I.

PROPOSITION 5. If n = 2l, x = 0, the obstruction is (/8)(mod I).
In fact we already know that in this case the obstruction is of this form.
But in [12], some facts are given about I,.

PROPOSITION 6.

(11) I = 22742 — DB/l ,
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where B, is the ' Bernoulli mumber, j, the order of the image of
J: 7y (SOy)— Ty w(ST) for N large, and a, =2 forl odd, 1 for I even.
It can then be deduced, for example (cf., [12]),

(12) 2872 — Dao | 1, ,

e.g., 28.7| 1, 2°.127| I, 2°-31| I,. In fact it is known [11] that I, = 2.7,
, = 27381, I, = 2°-127. However, higher values of I, are not yet known.
Likewise, although for almost parallelisable manifolds with n odd, the
obstruction must be ® or zero; it is not known, except in one case, whether
it is @ or zero.

Although, up to this point, we have considered » arbitrary (n = 3), we
now solve the problem only for » < 8 (this has the advantage of taking
in the special Cases 2, 7; and these are, in fact, easier than the general
case).

n = 3,7, we have Case 7, and there is no obstruction.

n = 5, we have Case 6, and the obstruction was computed by Kervaire
[10]: for a closed manifold, ® = 0.

n = 6, we have Case 4, and the obstruction depends only on 7: we found
above that it is (7/8)(mod 2°-31).

n = 4, 8, we have Case 2. In these cases we are able to construct fur-
ther closed manifolds: the projective planes over the quaternions and
Cayley numbers. These have index 1, and the Pontrjagin class p (and
hence x) is known. We find that ¥* = 1. Hence both — (0, 1, 0). Thus
the obstruction in these cases depends only on (}* — 7)/8. But in the case
% = 0, the obstruction was determined above: it is (7/8)(mod I;). Hence
the obstruction is (¥* — 7)/8(mod 28) or (mod 2°-127) in the two cases.
Now we have this obstruction, it is not without interest to compute, and
find that in each case we obtaln the Todd genus A: for n =4, A=
(1/28){(x* — 7)/8}, and for n =8, A = 2-°-(1/127){(;* — 7)/8}. (Cf. Eells and
Kuiper [4].)

THEOREM 4. For the range 8 < n < 8, the obstruction is as follows:
for n=38or", it is zero; for n =5, it is ®; for n =6, it is (7/8) mod 2°-31;
Jor n = 4 (respectively 8), it is (x* — 7)/8 mod 28 (resp. 2°-127).

Thus in these cases we can in principle enumerate all closed (n — 1)-
connected 2n-manifolds.

If we agree to ignore the groups Z,, then, we find the following. For
n odd, there is nothing left. For n = 2 (mod 4) the single obstruction is
(z/8)(mod I,). Case 2 is completely dealt with above; this leaves Case 1.
We know again that if ¥* = 0, the obstruction is (z/8)(mod ): thus the
main question remaining for consideration is: what values of x* are possi-
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ble? Unfortunately, the author has been unable to settle this question.
However, we may restate it in line with current notation. Set n = 4m.
We have, by Kervaire [8], the formula

and by Hirzebruch [6], a formula 7 = L(p%, p,.) for the index in terms of
Pontrjagin numbers. Hence linear combinations of ¥?, 7 can be equally
well regarded as linear combinations of %, ,,. Then, certainly, for a
closed manifold, p,, is integral, which gives one condition, and the Todd
genus fi(p?n, Dsn) is integral [1], which yields another.

We will now compute these relations explicitly.

For any genus as defined by Hirzebruch [6] from the formal power series
@(2) we have, in the case when p, and p,, are the only non-vanishing
Pontrjagin classes,

K(M) = 8,0 + g (8 — Sun)D%
where the coefficients s,, are given by
R(2) = Q) % (#Q@) =1 + X" (—1)s2 .

We shall apply this in two cases: for the L-genus we have

Q(2) = /z/tanh (1V2) = 1 + 3 7(—1)*"'2*B,2"/(2k)! ,

SO
R() = = (1 + 2v/2fsh (21/2)) = 1 + 7(—1p2"@*™ — DB.2*/(2k)!
and
s, = 29291 — 1)B,/(2))! .
For the A-genus of Borel and Hirzebruch [2], we have
—_— 1 1 —_ Al . kOl—2k 2k—1 __ k
Q@) =L vz /sh (-2_ 1/z> =1+ Xo(— 12 1)B.2*/(2k)! ,
SO
— 1 1 1 — o0 1\k—1 %
RG) =+ (1+ - Vz/tanh (7 1/z>> = 1 + Y 7(—1)B,2*(22k))),
and

§; = “—;‘ B,/(27)! .

These formulae give explicity L(M) = = and A(M) as linear combinations
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of p%, P.n. Solving these equations in terms of x* and 7, where p;, =
ak(@m — 1))y, we find

Pum = E‘zﬂ (@m — 1))’ {1 _ @ -1y <4m> B: }Xz

(14) 2t —1 \2m/ B,
" (4m)! .
24m(24m—1 _ l)Bzm ’
n 2im l)a B )2 Xz r
15 m Azm = {( m m} _ .
(15) 2m 8(2!~1 — 1) Qim+1(Qim—1 _ 1)

This last formula is surprisingly simple, almost all the terms having can-
celled out, and is the simplest relation between any 8 of the 4 invariants.
We have already noted that for m = 1, 2 it reduces to

(15), A, =27 — )T
and
(15), A, =2-(p — 7)127 ,

and in these cases the integrality of A guarantees the vanishing of the

obstruction. This, however, is not true in general, for in the very next
case we have

(15)3 A\G = 2_13(28X2 _ T)/2047 ,
but
6.53.72. . __ 98,92 K2, 2
(14), p, — 35%T11.180 — 2°.8.5%.82, 5T3y"
2.2047-691

and neither condition of divisibility implies the other, though the divisi-
bility conditions mod 2047 are the same.

Let us in fact examine these conditions more closely. By a theorem of
Euler [28],

e, = 2%, (2" — 1)B,[/m
is an integer. Then the expression for A may be written
(15) imiim—l _ NA, = ey — T

so this clearly represents a divisibility condition by precisely 2‘™~*(2‘»~'—1),
as in the special cases already listed. The other condition is more compli-
cated. Write q,,, = P,, — 4p%. The conditions that p,,, and ¢,,, be integral
are clearly equivalent.

Setting B,, = N,/D,, as a fraction in its lowest terms, we assert that
it follows, from the fact that ﬁm is an integer, that N,,q., is also. In
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fact, we can show more. Write m = K,,L,, where the prime factors of
K, divide D,,, and those of L, do not. Then von Staudt’s second theorem
[28] states that N, = L, R,, with R, an integer. Then we claim that, if
a,,, x* are integers, so is R,,q,.. For the formula for A4,, in terms of
Dom, D2, leads to

- B, \: B
24, = (am_m> 2 D g
: am )5 T dmy

and so to

Bonton = 22om (4m) {(42B= Yy 24, )|
Cim dm
Here, the coefficient of /fm is integral since C,,, is, by definition, a factor
of 2m, and we may verify that the same holds for y? since 16m’D,,C,, is
a factor of (4m)! for 1 < m, and we have studied above the case m = 1.

Thus the further divisibility condition involves R,,. Nothing is known
about this number, except that it is prime to D,, (and so odd), and tends
to have rather large prime factors. In every case known to the author,
R,, is prime to 2m(2'™~' — 1), and we get a divisibility condition inde-
pendent of the one deduced from A, and one may conjecture that this
holds in general. If this were so, we note that we have no divisibility
condition applying to x* alone.

Although it is certainly necessary that both 4,, and Q.. be integral for
the obstructions to vanish, it is by no means clear that this is sufficient
(cf. (11)); and, for the present, this seems the most unsatisfactory part
of the whole theory. It would be most desirable at this stage if one could
find constructions giving examples of closed, differential, (n» — 1)-con-
nected 2n-manifolds, but for the present this must stand as an unsolved
problem.

Homotopy and combinatorial classifications

In this section we continue our policy of integrating as far as possible
all known facts on (n — 1)-connected 2n-manifolds in a single framework,
and express homotopy type and combinatorial invariants in terms of our
main invariant, the n-space.

Notice that if Nisan almost closed (n — 1)-connected 2n-manifold, then
its boundary is combinatorially equivalent to a simplex boundary. Hence
we can construct from N a closed combinatorial manifold M in a natural,
unique way. We shall consider the set of such manifolds.

First consider homotopy type classification. Since we have simply con-
nected polyhedra, we can use the homology decomposition of Hilton and
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Eckmann [3]. H,(M) is given by the integer r as rZ; there is then a single
k'-invariant B € w,,_(M"), where M" is the n-skeleton. This is a defor-
mation retract of N, and is a bouquet of » copies of S*. Define maps
e;: S® — M corresponding to the generators of w,(M") = H.

Now 7,,_,(M") is known, since M" is a bouquet, and in fact

(16) Tgu_1(M™) = rr,,—(S™) D <72">n-2n_1(szn—1) .
Write
17) B =D e0B: + 2, Yules, e5]

Then A is the invariant; or, {8;, 7;,} is the set of invariants. Now the v;,
define the cup product in M. If e is the base of H"(M) dual to the e;,
we have

(18)  efref = vi(if t <J) = (—Drvi(if ¢ >5) = H(B)Gf @ =7).

Define v,, for all 7, j as ef-ef. Then (v;;) is up to sign the inverse of
(ciy), for write f; = M N e}, and e, = M N g;. Then

< i7e;'k>:<M!e;kUe;‘k>=ryiJ!
SO fi = E'Y“e,, and f,;'ek = E')'MC_“,. But
firer = (=Dre, N M Nef = (—1)e, Nef = (—1)"0; .

We now interpret B;. In the case r = 1, a result of Milnor [14] states
that e¥oB = Ju(e;), where e} is the map M" — S™ inducing the cohomology
element e*. The proper generalisation of this is clearly:

(19) gioB = Ja(e;)

where g, € #*(M") corresponds to g; € H(M™"), so g.ce; = ¢;;.
From these interpretations of v;; and B we deduce the following

LEMMA 8. Given an n-space, a complete set of homotopy type invari-
ants for the corresponding M is given by the bilinear form HQRQ H— H
and by Ja: H— 1,,_,(S™).

Now in Cases 5 and 6, o, is an element of order 2 in x,_,(SO,). It is
well-known that J(o¢,) = [¢,, ¢.], and that this is non-zero. Thus ¢ (in
Case 6), and @ or @' (in Case 5) (we cannot tell which, but if the result
does not hold for both, define ¢ as the one for which it does) is a homotopy
type invariant. Thus in Cases 4, 6, 7, homotopy type classification coin-
cides with diffeomorphism classification (modulo I';,). These cases are given
by » = 3,5, 6, 7 (mod 8); i.e., by 7, ,(SO) = 0.

THEOREM 5. If m,_(SO)=0,n =3, and M,, M,are differential (n—1)-
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conmected 2n-manifolds of the same homotopy type, then for some mani-
fold T homeomorphic (and so combinatorially equivalent) to S**, M, is
di ffeomorphic to M, ¢ T. If n = 8, 6, M, is diffeomorphic to M,.

The last clause in the theorem follows since I', = I';, = 0.

Now we consider the combinatorial classification of these manifolds.
Of course, a homotopy type invariant is a fortior: a combinatorial in-
variant, so, in particular, are the bilinear form, and the map @ (when n
is odd). Also, in the case when n = 4m, the Pontrjagin class p, (M) is
defined, and combinatorially invariant with rational coefficients, by Thom
[21]. Since M is torsion free, this shows (by (13)) that in this case, y is a
combinatorial invariant. Hence in Cases 1, 2, 4, 6, 7 the combinatorial
classification coincides with the differential. In Cases 8, 5 we do not know
whether or not y is a combinatorial invariant. If we could prove J a
monomorphism in the stable range when n = 1, 2 (mod 8), ¥ would be an
invariant of homotopy type, and the classifications again coincide; by
Kervaire [7], this holds for n = 9, 10, and it is also known for n = 17, 18.

We observe that in Cases 1 and 2 the combinatorial classification differs
widely from that according to homotopy type; in fact for any manifold
with H = 0, we can find infinitely many inequivalent manifolds all with the
same homotopy type (by varying %), and, being simply connected, the
same simple homotopy type [24]. Note in particular that they will in gen-
eral have different Pontrjagin numbers. The simplest example is with
n =4, r = 1, H generated by e with ¢’ =1, and ¥ = ¢ or 97¢ (both yield-
ing closed differential manifolds). Nothing, however, appears to be known
about the homeomorphism classification of such manifolds.

Applications

We now apply our results to various problems that seem of interest.
Our conclusions are mostly not new qualitatively; but it is of interest to
fit these questions in our framework, and see how theorems follow from
our general classification, without need of special investigations.

Problem 1. Existence of differential structures on manifolds. We
have noted that a closed combinatorial manifold corresponds to any -
space, but that there is an obstruction to the existence of corresponding
closed differential manifolds. This point needs no further discussion. How-
ever, in some cases we can even find homotopy type obstructions. This
is clear, for example, if the index is restricted to certain values, as in
Proposition 5. Now consider the case n = 4: the obstruction is (}* — 7)/8
(mod 28). Now Jy is a homotopy type invariant, i.e., ¥ is invariant mod 24.
Then x* is invariant mod 48, and so (}* — 7)/8 mod 6. Thus ()* — 7)/8 mod 2



184 C.T.C. WALL

is a homotopy type obstruction to the existence of differential structure.
Similarly for » = 8, we have (¥* — 7)/8 mod 4. For n =5 we have &
which, as noted above, is also a homotopy type invariant. Thus in all
these cases there are closed combinatorial manifolds not of the homotopy
type of any closed differential manifold. These results are due to Kervaire
[10] and Milnor.

Problem 2. Additive decompositions of manifolds. The connected sum
of two closed differential manifolds is defined in Milnor [15]. Given such
a sum, M = M, ¥ M,, we call this an (additive) decomposition of M. It is
clear that M is (n — 1)-connected if and only if both M, and M, are. We
first consider the problem:

Problem 2A. When do any two additive decompositions of M admit
isomorphic refinements? (The unique factorisation problem.) For this
problem, the non-uniqueness of M corresponding to I',, is unimportant,
and it is sufficient to examine the corresponding n-spaces. If n is even,
unique factorisation breaks down completely. This follows from the corre-
sponding statement for quadratic forms of type 11. In fact, choose an n-
space with » =7 # 0, x = 0, and zero obstruction (we omit Case 2, which
may be similarly discussed, and even more explicitly); such exists by Propo-
sition 5 if and only if 7 is divisible by 81,, — we take ¢ = 81,,,. Then the
corresponding manifold M, is indecomposable. By changing orientation
we obtain an indecomposable manifold M, with 7 = —8I,,,. But for the
connected sum M, # M,, the index is zero, and the form indefinite, hence,
using Proposition 4, it decomposes as a direct sum of » forms given by the
matrix U. We deduce

(20) M %M, =4(S" x S)4T,

where T is an element of T',, (a unit). Here each element is indecompos-
able. The discussion is similar, but simpler, in the combinatorial case.

If » is odd, on the other hand, unique decomposition nearly holds. For,
as shown above, each n-space splits as a sum of spaces of rank 2, and we
must then compare these pairwise. We find the following. In Case 7,
unique decomposition holds (Smale [19]). In Case 6, it fails for combi-
natorial manifolds; it holds for closed differential manifolds if and only if
& is zero for all these. In Case 5, it never holds; in the combinatorial
case, this again follows by using ®. In the differential case, even if @,
@(x) = 0 in every case, we still have one invariant: the type, and non-
uniqueness again follows. Specifically, let W,, W, be the n-spaces with
matrix W, ¢(e;) = ¢(e,) =0 for each, and y =0, )y =e, respectively. Then
the obstruction certainly vanishes for each, so they correspond to closed
manifolds. But now W, + W,, both are indecomposable, and we have
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W, W, = W, @ W,, by our classification. (Lemma, 5.)

Problem 2B. Which manifolds M are indecomposable? (Problem of
primes.) This problem is of interest, since if we can desecribe all inde-
composable manifolds, we know that all the rest are connected sums of
these known ones.

Let us first consider the problem for n-spaces. Then we see at once that
any decomposition of the bilinear form determines one of the n-space («
then splits automatically). For n odd, then any indecomposable space must
have matrix W. For n even, any indefinite form is decomposable unless
it has matrix U; but the structure of definite forms is complicated, and
we know of no general theorems of any use for this problem. Applying
these results to the combinatorial case, we have

LEMMA 9. A combinatorial manifold of the type considered is decom-
posable unless

(a) it has rank 2 and matriz U or W, or

(b) n is even and the quadratic form definite and indecomposable.
A di fferential manifold (of this type) with n odd is decomposable unless
it has rank 2. ‘

Proor. For the last part it suffices to note that the decomposition ex-
plicitly produced in our classification of n-spaces above has the property
that, if one or both of ®, ®(x) vanish for the total, the same holds for
each decomposed part; in fact, ¥ was non-zero only in one summand, and
we gave an explicit method to make ® zero.

When 7 is even, we are in general unable to solve the problem posed
above. This is partly on account of our lack of knowledge of the obstruc-
tion. However, if we restrict ourselves to the almost parallelisable case
(x = 0) it is possible to make some progress, and in Case 4 this is no re-
striction. Even so, all we are able to prove is: An almost parallelisable
manifold, with indefinite quadratic form, is decomposable unless it has
rank 2. For in this case, the n-space decomposes, with U as one summand.
Since ¥ = 0 throughout, the obstruction vanishes for U; since it vanishes
for the total, it does also for the other summand. Hence the manifold de-
composes, with (S” x S™) as one summand.

While considering indecomposable manifolds it seems appropriate to
give geometrically one obvious example that the reader may have ex-
pected us to mention earlier; namely, that of n-sphere bundles over S”.
These are classified by 7,-,(SO,,,), onto which S maps z,_,(SO,) by (4).
Picking a reduction to SO,, given by a e x,_,(SO,), determines a cross-
section e;, the characteristic element of whose normal bundle is «@. An-
other imbedded sphere is a fibre e, which of course has trivial normal bundle.
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Our invariants are then
e =HJ), ee,=(—1)ee;, =1, e=0, afe,) =a, ale)=0.

If we are not in Case 2, we can pick the reduction so that HJ(a) = 0.
The reader will now notice that the element determines the same element
of G, as does (S™ x S*), so throws no further light on the obstruction
map o. If n is odd, the only non-trivial case is Case 5, where the bundles
with S(«) = 0 (the product) resp. # 0 correspond to the spaces W,, W,
above. If n is even, a simple computation shows that all n-spaces with
r=2, y* =t =0, are given by U with x = de, (d even in Case 2) or, in
Case 2, S with 3 = de, (d odd), and we now see that all these are given
by bundles of this type.

Problem 2C. Does M, % M, = M, ¥ M, imply M, = M,? (Unique subtrac-
tion problem.) This problem is related to 2A, but is a more refined ques-
tion. If we regard the connected sum (which is clearly commutative and
associative) as turning our set of manifolds into a monoid, with an equiva-
lence relation induced by the operation of the maximal subgroup I';, con-
sisting of all invertible elements of the monoid [15], [18], then Problem
2A asks whether the monoid is free, Problem 2B asks for a minimal set
of generators, and Problem 2C asks whether subtraction is possible in the
monoid, so that its canonical map into a group is an imbedding.

If » is even, the result is false. For choose two inequivalent quadratic
forms of the same genus (necessarily definite), of type II and with given
index 7 (divisible by 8, and greater than 8); this is possible by a result of
Eichler [26]. Set y = 0; the forms are supposed of type II, so this is legiti-
mate even in Case 2. Let them define manifolds M,, M,. Then M,, M,
have not the same homotopy type. But M, # (S™ x S") = M,§(S™ x S™),
since both have the same invariants.

(Note that though we only prove isomorphism modulo T',,, this gives an
adequate counter-example.)

Even in the case n = 2 the result is known to be false, for if P,(C) de-
notes the complex projective plane with orientation reversed, then

(21) P(C)% P(C) 4 P(C) = P(C)%(8* x 87,

as has been shown by Hirzebruch, but P,(C) # P,(C) has different homo-
topy type (and even genus) from S? x S%. Replacing in this example n = 2
by 4 resp. 8, and C by quaternions resp. Cayley numbers, (21) continues
to hold, for we can produce an explicit isomorphism of the corresponding
n-spaces. In fact, if e, e,, ¢, is a base of the homology cooresponding to
the left-hand decomposition, set /i =x =¢€, + e, + €, fr =6 + e, f; =
¢, + e, and we obtain the decomposition on the right of (21). It is also of
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interest to note that if n = 1, the answer is yes if and only if we restrict
attention to oriented manifolds (which form a free monoid).

For n odd, in Cases 6 and 7, the conjecture holds for our class of mani-
folds, since the only invariants, r and ®, are additive. But in Case 5, the
counter-example given to Problem 2A serves in this case also, in the
differential case, and in the combinatorial case whenever X is a combi-
natorial invariant, e.g., for n = 9.

Finally we remark that although this problem is superficially similar to
that of Whitehead (Question 3 of [24]), the latter is much more difficult,
and our results have no relevance to it. Whitehead’s problem is posed for
bounded manifolds, and is: Does M, + M, = M, + M, imply that M,, M,
have the same simple homotopy type? But our bounded manifolds N had
the homotopy types of bouquets of spheres, so the conjecture is trivially
true for them.

Problem 3. Multiplicative decompositions of manifolds. The only case
which we contemplate is that in which each of the factors is a homotopy
sphere. The invariants of such a product are easy to compute. The inter-
section matrix is U or W according as n is even or odd (since it is homotopy
invariant); and in the latter case, for the same reason, @(e;) = 9(e,) = 0.
Let the product be T, x T,, and let the characteristic elements of the
tangent boundles of T, T, be ay, a,e 7, (SO,.,). It is known that they
are zero except perhaps in Cases 3, 5 and are annihilated by the J-homo-
morphism; it is probable that they must be zero. Then a straightforward
computation with bundles gives Sa(e;) = a; ( =1, 2), and so ¥ = a,e, + ae,.

Thus in all Cases except 3, 5 the product has the same invariants as
S™ x S”. This could have been predicted, since in these cases the combi-
natorial classification agrees with the differential and (for n = 5), each
of T\, T, must be combinatorially equivalent to S* (Smale [18], [31]). Note
that if there exist T with «; not vanishing, we find that in Case 3, % 2
and in Case 5, ¢()) is non-zero, thus we gain more information about the
obstructions. Of course, there is no converse inference. If just one «; is
non-zero, we have the same invariants as for a certain n-sphere bundle
over S*, by a remark above.

Let us now consider the case &, = @, = 0. We have proved

LEMMA 10. Let T;, T, be two homotopy n-spheres which are m-mani-
folds. Then for some TeT,,, we have T, x T, = (S" x S*) # T.

This is really precise if I',, = 0; however, for n = 3, this is only known
to occur for n = 3, 6.

Actually, for n = 6, T is diffeomorphic to S°®, so this result is trivial.
But we can easily find a non-trivial case. For example, I', = Z,, I, = Z,.
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Hence all the products T, x T, (T; € I;) fall into one of two diffeomorphism
classes, so at least one of these admits many differentially distinet multi-
plicative decompositions. In fact, we are able to decide which class. This
was pointed out to me by J. Milnor. First we note that all the manifolds
under discussion are 7-manifolds. Moreover T, bounds a 7-manifold, hence
so does T, x T, and of course S™ x S™ does. Hence T bounds a w-mani-
fold, and this shows that T defines the zero element of I',.

COROLLARY 1. Let T, T, be differential manifolds homeomorphic to
S?. Then T, x T, is diffeomorphic to S™ x S”.

COROLLARY 2. Let T,, T, be two homotopy 3-spheres. Then T, x T, is
di ffeomorphic to S® x S°.

This result is of interest with relation to the Poincaré conjecture. Of
course, the power of the result derives from Smale’s theorem that a com-
pact contractible 6-manifold with simply connected boundary is diffeo-
morphic to a dise [17].
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