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On the Signature for Finite
Quadratic Forms
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abstract

We give a proof to an explicit formula for the signature of finite quadratic
forms which is stated in [2] without proof. We will use Wall’s method [4] of
constructing even lattice having a given finite quadratic form as its discriminant
form, and calculate the signature of the lattice using the product formula of
Hilbert symbol and the reciprocity law of the Jacobi symbol.
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1 Basic notions and preliminaries

This section is divided into two parts, in the first of which we explain some con-
cepts such as the discriminant bilinear forms or quadratic forms etc. concerning
lattices over Z or its completions by valuations. In the second part we mention
some number theoretic facts which form the main tool of proving the signature
formula.

1.1 Lattices and discriminant forms

We let R be the ring Z of rational integers or the ring Z, of p-adic integers,
and @ denotes the quotient field of R.

An R-lattice means a finte R-module of finite rank, with a nondegenerate
symmetric R-valued bilinear form. An R-lattice M is called even if 22 =z -z €
2R for x € M, where = - y(z, y € M) is the associated bilinear form of M. If
R = Z, for odd p, the every R-lattice is even, so this terminology is meaningful
only for R=2Z and Z,.

A finite symmetric bilinear form means Q/Z-valued symmetric bilinear form
on a finite abelian group. Let G be a finite abelian group. A map ¢: G —
Q/2Z is called a finite quadratic form on G if the following two conditions are
satisfied:

i) g(nz) =n%q(z) forneZ,ze G;
i) q(z +y)—q(z) —q(y) = (2) b(z,y) for z, y € G,

where (2) is the isomorphism of Q/Z onto Q/2Z induced by the multiplication
by 2 and b is a symmetric bilinear form on G; b is then called the bilinear form
associated with gq.

These forms on a finite abelian p-group can be considered to be Q,/Z, or
Q,/2Z,-valued, by the natural inclutions:

Qu/Z,—Q/Z and Qu/2Z; — Q/2Z.

Let M be an R-lattice. We can consider a canonical embedding M — M* =
Hompg(M, R) determined by the nondegenerate bilinear form of M. We can
extend the bilinear form of M to M* as the restriction of the Q-valued extension
on M ®r Q@ = M* ®r @, and we denote this form also by z - y(z, y € M*).
The factor group A = M*/M is obviously finite. Now there is the unique finte
bilinear form bys : A x A — @Q/R with

bz +M,y+M)=z-y+R forz,yec M*.

Similarly when M is even, there is the unique finite quadratic form qps : A —
Q/2R having by as its bilinear form and satisfying

qu(z + M) =22+ 2R for z € M*.

We call byr the discriminant bilinear form of M, and qp the discriminant
quadratic form of M.

For an R-lattice M, the discriminant of M denoted by discr M is defined by
discr M := det(e;, e;) (mod (R*)?), where {e;} is some basis of M (where R
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is the multiplicative group consist of all uints of R, and (R*)? is the subgroup
of squares). If discr M € R*/(R*)2, we say M is unimodular.

Let Qu(R) and Qu™ (R) be the semigroup of isomorphism classes of R-lattices
and even R-lattices respectively, under the orthogonal direct sum. We denote
the semigroup of finite symmetric bilinear forms and finite quadratic forms
under @, by bil(Z) and qu(Z) respectively. This notation is justified by the
fact that the natural maps of Qu(Z), Qu*(Z) to these groups are surjective.
Corresponding to natural orthogonal direct sum decompositions

by = @bMP and qum =@qu
p p

where M, ~ M ®z Z,, we have the orthogonal direct sum decompositions

bil(Z) = Pbil(Z,) and qu(2) = P au(z,)
P p

coming from the decomposition of a finite abelian group into its p-components.
Consequently

Qu(Z,) — bil(Z,) and Qut(Z,) — qu(Z,)

are also surjective for each p.

Let My, M, € Qu(Z) (Qu*(Z) respectively), we say My and M; are sta-
bly equivalent if there exist unimodular Uy, Uz € Qu(Z) (Qu*(Z)) such that
U; & M; ~ U, ® M,. With respect to this equivalence relation we denote the
semigroup of equivalence classes of Z-lattices by St.Qu(Z) and that of even
Z-lattices by St.Qu*(Z). Now we can consider the two epimorphisms

b:St.Qu(Z) — bil(Z) and ¢:St.Qut(Z) — qu(2)

induced by the above natural mappings since the discriminant forms are trivial
for unimodular lattices. It is proved that they are monomorphisms, so isomor-
phisms.

For any Z-lattice M of signature (t(4),%(-)), we define sgn M = {(4) —
t(—) (mod 8). We call sgn M the signature mod 8 of M, since danger of confusion
might somehow be avoidable. It induces then the canonical homomorphism
sgn : St.Qu*(Z) — Z/8Z since the signature mod 8 is 0 for even unimodular
Z-lattice, and sgn : qu(Z) — Z/8Z via the above isomorphism q. We call
sgn q for g € qu(Z) also the signature of g. As is mentioned in the introduction,
our objective is to give an explicit formula to this sgn : qu(Z) — Z/8Z.

Following results are well known (cf. [1] Theorem 9.2).

The semigroup Qu(Z,) is generated by K, ((,p ) (p*) for every odd p, and Qu(Z5)
is generated by K2 (2¥) and U®(2¥), and V(2 (2*), where K (pk) is the p-
adic lattice of rank 1 determined by the matrix (6p*) (k > 0,0 € Z}/(Z3)?)
for all p, U®)(2*) and V@) (2F) are the 2-adic lattices of rank 2 determined by

the matrices
0 2 2kl 9k
(2’° 0) ’ ( ok 2k+1> (k 2 0).

Thus the semigroup qu(Z) is generated by the discriminant quadratic forms .
of K$P(p*), U® (2%) and V(@ (2%) denoted by ¢ (p¥), u'P (2%) and v (2¥),



" Isao Naruki and Naoshi Tsuchida

respectively, where k > 1. The semigroup bil(Z) is generated by the bilinear
forms of g (p*), u® (2%) and v (2¥) denoted by 8P (p%), u® (2%) and v (2%),
respectively, where k > 1.

1.2 The Hilbert symbol and the Jacobi symbol

In this section we introduce the Hilbert and Jacobi symbols and we mention
some of thier properties which we use in later discussions.

Let m = £ [, p{* be an odd integer (where p;’s are prime numbers and e;’s
are positive integers). If n is an integer with (m,n) = 1, then the Jacobi symbol

is defined by
() -1G) ®

i

where (2) is the Legendre symbc;l.

Let V := {v | v is a prime number or v = oo}, i.e., the set of valuations on
Q, and let
F, .= {Qlp ff'u = p :prime,
R ifv=o0.
For a, b € F} = F, \ {0}, we define the Hilbert symbol (a,b), letting it be
1 or —1 according as the F,-inner product space given by the diagonal matrix
[a, b, —1] is isotropic or not.

The Hilbert symbol is computed explicitly as follows (see [3]):
For a, b € FX = R,

1 ifa>00rb>0
- ' 2
(a,b)eo {—1 ifa <0andb<0. @

If o = p>ad/, and b = pPY are in FY = Q;,‘ for a prime p, where o/, b’ € Z, @
and S are non-negative integers. Then

INB s\ @
@8 = 000 (S)(2) o2, 3
(a’b)2 — (__l)e(c')c(b')+cxw(b’)+ﬁw(a’) (4)

22-1

where €(z) = % (mod 2), w(z) = (mod 2). Thus ( , ), is multi-
plicatively bilinear and we have the product formula

[[@by=1 fora beQ*. (5)

veV
Let m and n be integers with m odd and (m,n) = 1. Then
n
<E> = H(m, n)p. (6)
plm
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In fact, if m = p®u, where a is positive integer and p { u, ie., u € Z;,‘ then
a

n € Zj since (m,n) = 1. By (3), (m,n), = (%) (p # 2 because m is odd

integer). Hence (6) holds by the definition (1).
Let m and n are odd integers with (m,n) = 1. (m,n)y = (—1)<(™=(™) by
(4). (m,n)p =1 for ptmn by (3), and by (5),

OO o

n

For odd integer n,
2
(3)= o ®)

since (g) = (—1)“? for any odd prime p.

Let n be an odd integer and m be an integer with (m,n) = 1. If an integer
m' satisfies m = m’ (mod n) then by the definition (1),

@)-(3)

2 The signature of the discriminant forms

We calculate the signature for the generators of qu(Z) mentioned in Sec. 1.1.
We deal with the case where p is odd in the first part (g$P (p*)), and the case
where p is even in the second (q‘(,z) (2%)). In the last two parts we include also a

treatment of some exceptional cases for the completeness (uff) (2*) and vf) (2%)).
See [4].

2.1 The signature of ¢ (p*) for odd p
The purpose of this section is to prove the following formula:

g0 g (F) = K(1 - p) + 4kn (mod 8) 10)

for odd prime p, 6 € Z /(Z})* and 0 < k € Z. Here 7 satisfies (%) = (=1)".

The proof is given as follows:
Using the method of [4], we can construct an even Z-lattice with discriminant
quadratic form qu ) (p*) as follows. We can take 2n for a representative of 6,

where n € Z. To begin with, we take dy, d; € Z such that d; = 0 (mod 2),
dy =1 (mod 2) and that

1= 2nd; — p*d,. (11)
There exist then a;, d3 € Z satisfying a; = 0 (mod 2), |d3| < |dz2| and

d; = aydp — d3. (12)
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If d3 is not 0, we can do the same thing by replacing d;, dy by dp, d3. We
will repeat this division process as far as possible. We obtain successively
@j-1, dj+1 € Z satisfying a;_; = 0 (mod 2), |d;41] < |d;| and

dj-1 = aj_1d; — djpq (13)

for =2, 3,.... We have
d]_Ed3E~-°Ed2j..lE”-EO (mod2), (14)
da=dy=--=dy;=---=1 (mod 2) (15)

and there exists 7 such that dg, = +1,
dor—2 = a'2r—2d2r—1‘_ dyr  (a2r—2 =0 (mod 2), |da,| < |dar1]) (16)
and that
dor—1 = agr-1dyr (a2r—1 =0 (mod 2)). an

This process ends at this stage.
Putting dp := 1/p” and ag := 2n/p", we now introduce the matrices L €
M, (Q) and M € M. (Z) by

a 1 0 0 0
- 1 a 1 0 0
0 1 az 0 0
L = . . . . . )

0 0 0 Q242 1

0 0 0 1 G2r—1

2np* p* 0 0 0

pk ax 1 0 0

0 1 ap 0 0

M:=1" . .

0 0 0 ... a2y —2 1

0 0 o ... 1 Qa2r—1

Then det L = 1/p* and det M = p*. In fact, we can see that in L, the de-
terminant of the last i rows and columns is dj,_; by induction on 4, hence by

(11)
det L = agdy — dy = p_k(2nd1 - Pkdz) = P-k,

hence det M = p*. The matrix M defines in a usual way the even Z-lattce,
denoted by the same letter M. Then we see that the discriminant quadratic

form of M is qu )(p¥). In fact, the class of t(p7k,0,...,0) generates the group
M*/M and we have

(»7*,0,...,00Mt(p~*,0,...,0) = 2np~*.
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The signature of M is equal to that of L, so we shall calculate the signature
mod 8 of L. We will first diagonalize the symmetric matrix L by giving the

following basis: ,
(&N (0N [0

—dy —ds
d3 d3 d3
fi= —dy y fa= —d4 , fa= —dy yeon o
d2r-1 dar—1 dar—1
\ —da, } \ —dar ) \ —dr )
Since
do —dy 0
0 —dy ds
0 dy
Lf1= 0 )Lf2= 0 7Lf3= 0 ) )
0 0 0
we obtain
_d; ifi=j
t iL = dt ldt . 1] 18
FLf; {0 if i # j. (18)
Thus
dod,
dyds 0
L~ . . (19)
0 dar_2dar-1
dar_1d2r
We put now
b2i—1 = (=1)7ldgj-a,
baj = (=1)dy;, (20)
a; = (—l)jaj/2
and rewrite (13) as follows:
02j—2 = 2aj_202j-1+ 625, (21)
02j—1 = 20j-162j + 62541 (22)
Since ;-1 =0 (mod 2) by (14), we have
bo=64=---=6bz (mod4)

by (21). The equality (11) shows p*(—d;) = 1 (mod 4), i.e., —dz = p* (mod 4).
Note that

p=(-1)P (mod 4).
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Hence
625 = 63 = —dp = p* = (-1)*®)  (mod 4).
In particular,
dyr = (—1)"62r = (=1)"+*<(P)  (mod 4).
Consequently, since dy, = +1,
dyr = (=1)7<), (23)

We define 6j;_,, 65;_;, mj € Z (mj > 0) as follows:

52,1'—1 = 25:’31'_1’
i1 = 2™y, (24)
631 = 1 (mod 2).

Now, because (21) can be rewritten to 82 = 2"‘J'+2a2j_26§'j_1 + 6aj,

Spi-2)\ _ (62 ) ;. (C2i=2)( %2 \_,
v )= \er e \em s =41
2i—1 2j-1 2j-1 2j—1
The reciprocity (7) implies
(%’j-d) (55','-1)
\ 6252 824
EEEw
62j—2 b2 635-1/ \ 0351 (25)

= (631, 623-2)o0 (81, 827) o (1) Coi- D ja) elBa)e(65,0)

= (822, 02;-1)o0 (8511 62) oo

= (625-2502j-1)00(62j-1,62; ) co-

2mj 2mj
The Jacobi symbol ( ) is equal to (—), ie.,
6252 625

@) (&)= e

This is obvious when m; = 0. If m; > 0, then b2j—2 = 63 (mod 8) by 6251 =
0 (mod 4) and (21). This proves ( = (61) by (8). Hence (26) holds,
2j

b2j—2
also in this case.
By (25) and (26), we obtain
! !
(£)< 2'-1) = (625-2,62j-1) 00 (621, 62; ) co- (27)
8252 82j

By (22), 6£j-1 = azj_152j + 6£j+1' It follows that

éj 1 5éj+1
1) = . 28
( 62; ) ( 825 ) (28)
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By this, (27) is equivalent to

Sym1 (B
(32)(%2) - u-sbydalbaissba. (29

84 . '
We have (%) = 1 since 8y, = %1, so (27) is, in case j = r, of the form

( 621-— ) (82r—2,62r—1) 00 (82r—1, 02r) 0o-
2r—2

We write (29) separately:
(2)(E2)
62)Ce)

()(&)
(2)()

Further, by applying (28) to j = 1, we have

&)-G)

5 2r—-1
(é) = H (6,1’ 6J+1)oo . (30)
= (52,53)00(53,54)00 - (62r-1,02r) 0

by multiplying above equalities. To deduce the desired formula

2r—-1
(57%) H (6Ja51+1)oo (31)
) = (51,62)00(52, 03)o0 - - - (02r—1,02r)o00s

6/
(2) = 6u0a( ) (52)
which is shown as follows:

Note first that (2—2) (f;—,k) =1, €(62) = €(p*) which follow from 1 = 4n6;+p*6,
1 1

(62r—4 02r—3) 00 (6273, O2r—2) 00,

= (02j-2,02j-1)o00(62j-1,02§) 00>

(641 65)00(65’ 56)00 )

(62, 63)00(03,64) co-

Thus we obtain

still we have to prove
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omi om1
62 = p* (mod 4). By a similar way as in proving (26), < >(—> = 1.

62 p*
2m1) om1 6” 6”
(&))@ F)
5” 6" 85
- @)@ E)
= (81, 82)o0 (7, PF)oo(~1) a1+t )<(5")
= (iI)‘SZ)oo
= (61,62)c0-

On the other hand (Z—i) (%) = (4;;_6{) = (%) =1,ie.,

-6

Thus we proved (32), so established also (31).
- Now the terms of the product in (31) are rewritten as follows:
(61,62)0 = (d1,—d2)oo
= (_11 dl)oo(dlid2)ooa

Combining these,

())

(62j-1,825)00 = ((=1)7"1dpj_1,(—1)7ds;j)e0
(=1)U=D3(—1,dy; ;)i (-1, d2;)35 (d2j -1, d2j) oo
= (=1,dz;-1)2(=1,d2;)i5 (d2j-1,d2i) o0,

(02, 82j+1)00 = ((—=1)Ydaj, (~1)daj41)e0
= (=1)(-1,d25)L (-1, d2j41)2 (d2j, d2j+1) oo,

(b2r-1,62r)00 = ((—1)"'dzr_1,(—1)"d2r)oo
= (-1,d2r-1)5%(~1,dar) 5 (d2r—1, dor)co-
Furthermore, by (23), we have
(=1, doy) 51 = (=1, (=1)+eeP)r=1 _ (_1)(r=Dke(p) (33)
By multiplying these, we see that (31) is now of the form

2r—1
n
(F) = (=) Dr/2H-DkeR) (-1, dydy . .. dyr—1) oo II @i dir1)eo  (39)

j=1
On the other hand, we recall that 2n is a representative of 8 and the definition

of 1, we obtain
B-Q)-crem
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A simple computation gives

2r—-1

II  (ddit1,didisa)oo = (~L,d1dz ... daro1)oo [ (51 dj41)e0  (36)

0<i<j<2r-1

j=1

Now, with the signature (¢(,),%(—)) of L, we have ¢(;) +¢_) = 2r and

(-Dtoto0/2 = ] (didigr,djdj1)o (by (2))
0<i<j<or—1
2r—1
= (~1,didy...dpr—1)oo || (dirdjs1)eo (by (36))
j=1
n r—1)ke
= <F) (_1)(r—1)r/2+( 1)ke(p) (by (34))
= (_1)(r-1)r/2+(r—l)ke(P)+kw(p)+kn. (by (35))
Multiplying diagonal elements in (19), and (23), we get
(1)) = (~1)m+eelo, (37)
Note (—1)™ =1+ 2m (mod 4), so
2(-1)"=2(1+2m) (mod 8). (38)
We have also
(-1)™=1-2m? (mod 8), (39)
4m =4m? (mod 8). (40)
Hence
=2ty = 2{1+ 2(t(_) - l)t(_)/2} +1- 2t%_) -3

modulo 8; that is,

2(~1)t—Dkr/2 4 (1)t — 3
9(—1)(r=Dr/2+(r—Dke(p)-+he(p)+hn 4 (_q)r+ke(s) _ 3
2{1+2((r = 1)r/2+ (r — 1)ke(p) + kw(p) + kn)}
+1 —2(r + ke(p))%2 -3

2(r — 1) + 4(r — 1)ke(p) + 4kw(p) + 4kn
—2r2 — 4rke(p) — 2k%e(p)?

2(r — 1)1 + 4(r — 1)k2¢(p) + 4k>w(p) + 4kn
—2r2 — 4rk%e(p) — 2k2e(p)?

—2r + k*(~4e(p) + dw(p) — 2¢(p)?) + 4kn
—2r + k%(1 — p) + 4kn

2r — 2t_y = k*(1 —p) + 4kn (mod 8).

Since the left hand side is obviously the signature mod 8 of L, we have thus
proved the desired formula (10).
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2.2 The signature of ¢ (2)
In this section, we will prove the following supplementary formula
sgngi? (2%) = 0+ dw(O)k (mod 8) (41)

where 8 € Z3 /(Z5)? and 0 < k € Z. This is of the equal importance.
To begin with, we can take an odd integer n for a representative of §. The

proof is similar to that of qf,” ) (p*) in previous section 2.1. We take dy,dy €Z
such that d; =1 (mod 2), d2 = 0 (mod 2) and that
1 =nd, — 2*d,. (42)

By the same division process as in 2.1, we can find aj_1, dj4+; € Z satisfying
aj—1 =0 (mod 2), |dj41| < |d;| and

dj-1 = aj1dj — dj1q (43)

for j =2, 3,.... This time we have
di=dy=---= dyj1=---=1 (mod 2), (44)
dy=dy=--=dyj=---=0 (mod 2) (45)

and there exists r such that dy,_; = +1,
dar—3 = G2r—3dgr—2 —dar—1 (a2r—3 =0 (mod 2), |d2r—1| < |dor—2|) (46)
and that -
dar—2 = G2r—2d2r—-1 (a2r—2 =0 (mod 2)). 47)

With dp := 1/2" and ag := n/2". The matrix L € Ma,_1(Q) is given now
by

a 1 0 0 0

1 a 1 0 0

0 1 az 0 0
L=\ . . .

0 0 0o ... a2r—-3 1

0 0 0 ... 1 a2, -2

In the same way as in 2.1, we see that the signature mod 8 of L is equal to

sgn ¢'?) (2¥). Similarly, we can show

dod; O

dids
L~ ..
O dar_3d2r—2
dar—2d2r—1
We use the same §; and ¢; as in the definition (20):

b25-1 = (1) ldgj,
b6a; = (=1)'dy;,
a; = (—l)jaj/2.

— 44 —
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Then by (43),
b2j—2 = 2apj_202j_1+ b2 , (48)
b2j—1 = 203162 + 62541 (49)
Since 82; = 0 (mod 2) by (45). We have by (49),
01=63=---=63—_; (mod4).
From (42), dar—1 = #1 and n = (—1)“ (mod 4), it follows
dyr—y = (=), (50)
We introduce now the similar notation 6j;, 65;, m; € Z (m; > 0):
6y = 265,
éj = 2™ gj’

2 1 (mod 2).

Instead of (27), we get
A !
(M) (M) = (62;-3,62j-2) 00 (625 -2, 62j—1) co- (51)
02j-3 /) \ 621

&b
Dividing (48) by 2, 63;_, = az;j—283;-1 + 8;. This implies that (—62’ 2) =
2j-1

6h
( % ) Now (51) is equivalent to

0251
%53} ( 855\ _ (5,0 0 6o oo (BB 52
Bai=s ) \Goy1 = (6253, 02j-2)00(62j-2, 62j—1) oo (52)
By multiplying the sequence of equalities (52), we deduce

) 2r—2
(%) =TI s bs41) (53)

1 =i
As before, from (42), it follows that o il =1land [ & 6—1 =1.

n 61 oy ) \ 64

(See the discussion before (26).) From these
55\ (& YAV AYE S
F)@) - CE)EE
n 61
N CATCAYEAYAN
n 61 6g 5g
(g!nal)oo v
(2%62,m61)oo

(1 —né1,n61)00
1.
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s ) k+1 8!
On the other hand ;2 E) = 1since 2¥+1§} = 1 (mod n). Thus (5_2) =
(71_) = (-1-;) . Now (53) is equivalent to
‘ 2 k+1  2r—2
(;) =[] Gir6i41)0-
Jj=1
By (50), we have
(=1, dzr1)oq = (=) D+ =Dl
In the same way as in the proof of (34), we obtain
k+1 2r—2
(;) = (-1)=DE-N/2HE-Deln) (1 1 dy . dp,—s)e0 I1 @51 dis1)oo-
i=1
We have also a similar formula to (36):
2r—-2
I (didis1,didiir)eo = (—1,d1ds ... dor—2)oo H (dj,dj+1)o0-
0<i<j<2r—2 j=1

By (2), the-left hand side of this equality is equal to (—1)t-)(t-)=1/2 with the

2 k+1
) — (_1)(k+1)w(n) by (8)

signature (t(,),%(—)) of L. On the other hand (;

Combining these we obtain

(=1)t=) (ke =D/2 (=1)k+De(n)+H(r=2)(r=1)/2+(r~1)e(n) (54)
Instead of (37), we have by (50),
(—1)k-) = (—1)r=l+e(n), (55)
Using (54), (55), (38), (39) and (40), .
2ty = 2{1+2(t) - 1)ty/2}+1-2tF -3

2(—1)E ~Dt-)/2 + (-1t -3

(—1) D Hr=2)(r=1)/2+(r=De() |, (_1)r=L+e(m) _ 3
2{1+2((k + Dw(n) + (r —2)(r — 1)/2 + (r — 1)e(n))}
+1-2(r—1+4¢(n))? -3

—2r + 2 + 4kw(n) + 4w(n) — 2¢(n)?

= -2r+2+4kw(n)+n-1

modulo 8. Thus
2r—1-2ty=n+4kw(n) (mod 8).

The left hand side is t(4) — ¢(_) since ¢(4) + t(—) = 2r — 1. Since n was a
representative of 6, we have establish the formula (41).




On the Signature for Finite Quadratic Forms

2.3 The signature of v (2*)
To be complete, we add the following formula:

sgnuP(2¥)=0 (mod8), O0<keZ. (56)

The proof is almost trivial. Let M be a Z-lattice of rank 2, having basis {e1, ez}

with the inner product
er _ (0 2F
(32) (el, 32) - <2k 0) .

Since U?)(2%) ~ M ®z Z, and det M is 2-power, we see that the discriminant
form of M is exactly uf)(2k). We put now &; :=e; + e, & :=¢€; — €. Then

k+1
(Z) (6, &)= (2 0 _22+1) :

Hence we conclude the signature of M is (1,1). From this it follows (56).

‘we have

2.4 The signature of v?(2¥)
The only remaining formula is now
sgnv'?(2%) =4k (mod8) O<keZ. (57)
Following [4], we put the matrix M in My(Z):
2kt 2 0 0
ok ok+1 ok

0 2 2¢ 1 |’
0 0 1 2

M =

where @ = (2F — (-1)*)/3, b = (-1)¥~1. The determinant of M is 22k. We
write M also for the Z-lattice determined by the matrix M. Then by direct
computation, we see that the discriminant form of M is 'uf) (2%). Let F(z) €
R|z] be the characteristic polynomial of M: F(z) = det(zI —M). Then F(0) =
det M = 22k > 0 and F(2%+1) < 0. If k # 1, F(2b) < 0. We split the argument
into three cases.

CASE 1 k = 1. By trivial calculation, F(0) =4 >0, F(1) = -12 < 0, F(3) =
4>0,F(4) = -12< 0, F(7T) = 60 > 0. Hence the signature of M is
(4,0). In particular sgnv{? (2¥) = 4 (mod 8).

CASE 2 k is an odd integer not equals to 1. In this case, 0 < 2b < 2a < 2k+1,
and F(2a) > 0. Hence the signature of M is (4,0), i.e., sgn v_(,_z) (2%) =
4 = 4k (mod 8).

CASE 3 k is an even integer. In this case, 2b < 0 < 2¥+1. Hence the signature
of M is (2,2). Thus sgnv_(f)(Z") = 0 = 4k (mod 8).

We conclude that the formula (57) holds in all cases.
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