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The path space described here provides a very simple demonstration of the
topological invariance of the Stiefel-Whitney classes for a differentiable manifold
M. This invariance has been proved by other means by R. Thom.'

Actually, Thom proves a more general result, which implies the topological
invariance of these classes. He shows that the fiber homotopy type of the tangent
bundle of M depends only on the topological structure of M. Because the Stiefel-
Whitney classes are dependent only on the fiber homotopy type of the tangent
bundle, their topological invariance follows.
The path space we introduce is regarded as a fiber space2 over M, and it turns out

to have the same fiber homotopy type as the tangent bundle. Since the definition of
the path space is purely topological, the general result of Thom follows immedi-
ately. Also, one sees directly that the Stiefel-Whitney classes have an analogue for
manifolds without differentiability structure.
The paths considered are all continuous parametrized paths in M (parametrized by

t00 < t < 1), which do not recross the starting point (where t = 0). So, if x(t) is the
point with parameter t,

x(t) $ x(0) for t > 0

is the requirement. These paths form a fiber space over M if we define the pro-
jection mapping toM by mapping each path into its starting point, x(O).
We can regard M as provided with a smooth Riemannian metric. It is con-

venient2 to assume that this metric is such that the geodesic distance between any
pair of conjugate points is always more than one. Then, if two points are not more
than one unit apart, there is a unique shortest geodesic segment joining them, and
this segment varies continuously with the points.
The tangent bundle can now be regarded as formed by the geodesic paths of

length 1, parametrized by arc length. This makes it a subspace of our fiber space
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of paths. What we prove is that the tangent bundle (thus represented) is a fiber
deformation retract of the path space.
The retraction is easy to construct. The essential point is to find a parameter

value t* for each path which varies continuously with the path and has the property
that for 0 < t < t* the points x(t) and x(O) are less than one unit of distance apart.
Then a unique shortest geodesic runs from x(O) to x(t).
To define 1*, let d(t) be the distance from x(t) to x(O). Then we define a con-

tinuous monotone decreasing function 8(t) by

d(t) = mn If1 - d(r)J.

This function 5(t) varies continuously with the path; hence we can define t* by the
equation

t* = 8(t*).

Using t*, the deformation of the paths into geodesics of unit length can be de-
fined as a three-stage process. First, contract the path along itself until it becomes
the subpath ending at the parameter value t*. We may now deform it into the
geodesic segment-from x(O) to x(t*), with the use of the geodesic segments from
x(O) to x(t), 0 < I < t*. Finally, the geodesic segment from x(O) to x(t*) is gradually
extended until it has unit length.

I R6n6 Thom, Ann. sci. tcole norm. sup&r. (ser. 3), 69, 109-182, 1952.
2 The path space is a true fiber space in the sense that the covering homotopy theorem holds.

This fact is actually not needed to justify any of the results we obtain by use of the path space,
but it deserves a remark.
One can show by construction that covering homotopy holds locally, even if there is no global

differentiability structure on M, so we at least have a fiber space in Hu's sense. But then a re-
cent (unpublished) theorem of Hurewicz shows that this local property implies the global cover-
ing homotopy property under very general conditions. Hence the name "fiber space" is justified.

3This assumption can be avoided, if desired, by changing the later construction. It is obvi-
ously realizable for compact manifolds by scale change and is fairly easily justified in general, so
we include no proof of its realizability.
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The hypothesis that the nucleus controls the differentiation of embryonic cells
dates back to the time of Roux and Weismann. Originally it involved the assump-
tion of a segregation of nuclear determiners of differentiation during cleavage.
When put to the test, the hypothesis was found wanting.1 Embryological experi-
mentation showed that the distribution of nuclei during the early cleavages could
be altered without producing a corresponding alteration of the developmental
pattern. Furthermore, cytological evidence of the equational nature of mitosis was
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