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Summary. The purpose of this survey is to explain the open problems in the
K–theory of triangulated categories. The survey is intended to be very easy for
non-experts to read; I gave it to a couple of fourth-year undergraduates, who had
little trouble with it. Perhaps the hardest part is the first section, which discusses
the history of the subject. It is hard to give a brief historical account without
assuming prior knowledge. The students are advised to skip directly to Section 2.

1 Historical Survey

The fact that the groups K0 and K1 are related to derived categories is so
obvious that it was observed right at the beginnings of the subject. We remind
the reader.

Let A be a small abelian (or exact) category. Let Db(A) be its bounded
derived category.1 The category Db(A) is a triangulated category. What we
will now do is define, for every triangulated category T, an abelian group
K0(T). This definition has the virtue that there is a natural isomorphism
K0(A) = K0

(
Db(A)

)
. By K0(A) we understand the usual Grothendieck

group of the exact category A, while K0

(
Db(A)

)
is as follows:

Definition 1. Let T be a small triangulated category. Consider the abelian

group freely generated by the isomorphism classes [X] of objects X ∈ T.

The group K0(T) is obtained by dividing by the relations generated by all

expressions [X] − [Y ] + [Z], where there exists a distinguished triangle

X −−−−→ Y −−−−→ Z −−−−→ ΣX.

⋆ This manuscript contains the expanded notes of a talk I gave in Paris, at the
working seminar run by Georges Maltsiniotis and Bernhard Keller. I would like
to thank Keller and Maltsiniotis for inviting me to speak, and Jussieu for its
hospitality during my visit.

1 For an abelian category A, the definition of D
b(A) is classical. See Verdier [93],

or Hartshorne [41, Chapter I]. When A is only an exact category there was some
confusion about how to define D

b(A); see [64].
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The relation between K1(A) and Db(A) is not so simple. For example it
was not known, until quite recently, how to give a definition of K1(A) which
builds on Db(A). But the fact that K1 is related (more loosely) to derived
categories was known. This goes back to Whitehead’s work on determinants
of automorphisms of chain complexes and simple homotopy type.

Practically as soon as higher K–theory was defined, its relation with de-
rived category was implicit. One of the first theorems in Quillen’s founda-
tional paper on the subject is the resolution theorem [77, Theorem 3 and
Corollary 1 of §4]. The theorem says approximately the following:

Theorem 1. (Modified version of Quillen’s theorem) Let i : A −→ B

be a fully faithful, exact embedding of the exact category A into the ex-

act category B. Assume that the induced map of bounded derived categories

Db(i) : Db(A) −→ Db(B) is an equivalence. Then the induced map in

Quillen’s K–theory K(i) : K(A) −→ K(B) is a homotopy equivalence.

The reader is referred to Quillen’s original paper, or to Theorem 4 of this
article, for Quillen’s precise formulation (which does not explicitly mention
derived categories).

To make K–theory into a useful tool, it is important to understand how
K(A) changes with A. Let f : B −→ C be an exact functor of exact categories.
It induces a continuous map K(f) : K(B) −→ K(C). The homotopy fiber of
this map is a spectrum, and it turns out to be very useful to describe it in
some computable way, for example as K(A) for some A. The first theorem of
this sort was Quillen’s localisation theorem [77, Theorem 5 of §5]. Quillen’s
theorem was very powerful, with many important consequences, for exam-
ple in algebraic geometry. But, while on the subject of the algebro-geometric
applications, it should be noted that to apply the theorem effectively one
had to restrict to smooth varieties, or varieties with very mild singularities.
Important work followed, trying to generalise this to singular varieties. The
reader is referred to Levine [58, 57] and Weibel [96, 97]. The definitive treat-
ment did not come until Thomason [89], and for his work Thomason needed
a more powerful foundational basis. It turns out that the homotopy fiber of
the map K(f) above can be expressed as K(A), but only if we are willing
to understand by this the Waldhausen K–theory of a suitable Waldhausen
category A. In other words, to obtain a sufficiently powerful general theorem
one needed the domain of the K–theory functor to be expanded. Progress
depended on K–theory being defined in greater generality.

Walhausen’s work [95] provided a far more general setting for studying
K–theory. To every Waldhausen model category C one attaches a K–theory
spectrum K(C). There is a brief discussion of Waldhausen model categories,
and of their relation with triangulated categories, in Section 3. For our pur-
poses the important observation is that, once again, there is a clear relation
with triangulated categories. To each Waldhausen category C one can asso-
ciate a triangulated category ho(C). Waldhausen’s approximation theorem
says that, under some technical hypotheses,
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Theorem 2. (Waldhausen Approximation Theorem, without the
technical hypotheses) Suppose i : C −→ D is an exact functor of Wald-

hausen model categories. Suppose the induced map of triangulated categories

ho(i) : ho(C) −−−−→ ho(D)

is an equivalence. Then the K–theory map K(i) : K(C) −→ K(D) is a homo-

topy equivalence.

All of this suggests very naturally that K–theory and triangulated cate-
gories ought to be related. We still do not understand the relation, and this
survey is mainly about the many open problems in the field.

But while we are still on the history of the problem, let me discuss the work
that has been done. In the light of Waldhausen’s approximation theorem, it is
natural to ask whether Waldhausen’s K–theory depends only on triangulated
categories. Given a Waldhausen category C, Waldhausen defined a spectrum
K(C). Does this spectrum only depend on ho(C)? If so, is the dependence
functorial? I believe the question was first asked in Thomason [89].

The answer turns out to be No. In a paper by myself [65] I produce an
example of a pair of Waldhausen categories C and D, and a triangulated func-
tor f : ho(C) −→ ho(D) which cannot possibly induce a map in Waldhausen
K–theory. More recently Schlichting [85] produces a pair of Waldhausen cat-
egories C and D, with ho(C) ≃ ho(D) but K(C) 6≃ K(D).

This establishes that Waldhausen’s K–theory K(C) depends on more than
just ho(C). But it still leaves unresolved the question of whether we can
recover Quillen’s K–theory of an abelian (or exact?) category A from the
triangulated category Db(A). This question has interested people since the
1980’s. Kapranov tells me that they held a seminar about it in Moscow at
the time. There were several counterexamples produced. The reader can see
some of them in Hinich and Schechtman [42, 43] and Vaknin [90, 91]. By the
mid 1980’s, the consensus was that it could not be done.

Then in the late 1980’s and early 1990’s I proved a theorem, establishing
the unexpected. For abelian categories, all of Quillen’s higher K–theory may
be recovered directly from the derived category. In the first half of this survey
I state carefully the results I proved, and in the second half I explain the many
open problems that remain.

Still in the historical survey, I should mention that Matthias Künzer also
worked on this. He produced a construction and several very interesting con-
jectures. Unfortunately none of this ever appeared in print. His constructions
were actually quite similar to mine. The key difference was that his con-
structions did not come with coherent differentials (these will de described
in detail in Definition 7). For what it may be worth, let me quote Thomason
who said that the key input in my work was the coherent differentials.

Also deserving mention is the fascinating work of the school around
Maltsiniotis. Their work begins with something intermediate between the
Waldhausen category C and its triangulated category ho(C). Starting from
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the derivator associated to C, one can define a K–theory by modifying Wald-
hausen’s construction in a straight-forward way. It is interesting to study this,
and the reader can find an excellent account in

http://www.math.jussieu.fr/~maltsin/Gtder.html

2 Introduction

The aim of this manuscript is to explain just how little we know about the
K–theory of triangulated categories. There are many fascinating open prob-
lems in the subject. I am going to try to make the point that a bright young
mathematician, with plenty of imagination, could make impressive progress
in the field. What we now know is enough to establish that the field is inter-
esting. But the most basic, immediate questions that beg to be answered are
completely open.

The best way to explain how little we know is to tell you all of it. Therefore
we begin with a fairly careful account of all the existing theorems in the field.

Unfortunately, this requires us to be a little technical. It forces us to
introduce five simplicial sets and four maps connecting them. Let T be a
triangulated category with a bounded t–structure. Let A be the heart. Sup-
pose T has at least one Waldhausen model. The first half of the manuscript
produces five simplicial sets and four maps

S∗(A)
α // wS∗(T)

β // S∗(
dT)

γ // S∗(
vT)

δ // S∗(Grb
A).

The only simplicial set the reader might already be familiar with is S∗(A),
the Waldhausen S∗–construction applied to the abelian category A.

The main theorem is Theorem 3. It tells us

(i) The composite δγβα induces a homotopy equivalence.
(ii) The map α induces a homotopy equivalence.
(iii) The simplicial set S∗(

vT) has a homotopy type which depends only on
A. That is, S∗(

vT) ∼= S∗

(
vDb(A)

)
.

Perhaps part (i) of this is the most striking. Each of the simplicial sets wS∗(T),
S∗(

dT) and S∗(
vT) defines a K–theory for our triangulated category T. We

have three candidates for what the right definition might be. By Theorem 3(i),
all of them contain the Quillen K–theory of A as a retract. Any half-way
sensible definition of the K–theory of derived categories contains Quillen’s
K–theory. Passing to the derived category most certainly does not lose K–
theoretic information.

I have tried to organise the material so that the introductory part, the
part where we define the four simplicial maps α, β, γ and δ, is short. I tried
to condense this part of the manuscript without sacrificing the accuracy. It is
helpful to have the exact statements of the theorems we now know. It helps
delineate the extent of our ignorance.
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After setting up the simplicial machinery and stating Theorem 3, we very
briefly explain how it can be used to draw very strong conclusions about
K–theory. This part is very brief. As I have already said, we focus mostly on
the shortcomings of the theory, as it now stands. This allows us to highlight
the many open problems.

In this entire document we will consider only small categories. The abelian
categories, triangulated categories and Walhausen model categories will all
be small categories.

3 Waldhausen Model Categories and Triangulated
Categories

In this survey we assume some familiarity with triangulated categories. It
also helps to know a little bit about their models. This modest introductory
section will attempt to provide the very minimum, bare essentials. Instead of
developing the axiomatic formalism, we will give the key examples of interest.

Example 1. Let A be an abelian category. The category C(A) is the category
of chain complexes in A. The objects are the chain complexes

· · ·
∂ // xi−1

∂ // xi
∂ // xi+1

∂ // · · ·

where ∂∂ = 0. The morphisms are the chain maps; that is the commutative
diagrams

· · · // xi−1 //

fi−1

²²

xi
//

fi

²²

xi+1 //

fi+1

²²

· · ·

· · · // yi−1 // yi
// yi+1 // · · ·

So far, we have defined a category.
It is customary to consider C(A) as a Waldhausen category. This means

endowing it with a great deal of extra structure. First of all, we consider
three subcategories cC(A), fC(A) and wC(A). These subcategories all have
the same objects, namely all the objects of C(A). It is the morphisms that
are restricted. The restrictions are

(i) A morphism in cC(A), also called a cofibration in C(A), is a chain map
of chain complexes so that, for every i ∈ Z, the map fi : xi −→ yi

is a split monomorphism. (The splittings are not assumed to be chain
maps).

(ii) A morphism in fC(A), also called a fibration in C(A), is a chain map
of chain complexes so that, for every i ∈ Z, the map fi : xi −→ yi is
a split epimorphism. (Once again, the splittings are not assumed to be
chain maps).
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(iii) A morphism in wC(A), also called a weak equivalence in C(A), is a
chain map of chain complexes inducing an isomorphism in homology.

One also assumes that there is a functor, called the cylinder functor, taking
a morphism in C(A) to an object, called the mapping cylinder. Let me not
remind the reader of the detail of this construction. In Example 2 we will
see the related construction of the mapping cone, which is more relevant
for us. An important consequence of the existence of mapping cylinders (or
mapping cones) is that the category C(A) has an authomorphism, called the
suspension functor, and denoted Σ : C(A) −→ C(A). It takes the complex

· · ·
∂ // xi−1

∂ // xi
∂ // xi+1

∂ // · · ·

to the complex

· · ·
−∂ // xi

−∂ // xi+1
−∂ // xi+2

−∂ // · · ·

In other words, Σ shifts the degrees by one, and changes the sign of the
differential ∂.

Remark 1. The data above, that is the three subcategories cC(A), fC(A) and
wC(A) and the cylinder functor, satisfy a long list of compatibility conditions.
We omit all of them. The interested reader can find a much more thorough
treatment in Chapter 1 of Thomason’s [89]. Thomason calls the categories
satisfying this long list of properties biWaldhausen complicial categories. In
this paper we will call them Waldhausen model categories, or just Waldhausen

categories for brevity. The experts, please note: what we call Waldhausen
model categories is exactly the same as Thomason’s biWaldhausen complicial
categories. This allows us to freely quote results from [89].

Example 2. Suppose we start with a Waldhausen model category, like C(A).
We can form a category, often denoted hoC(A). It is called the homotopy

category of C(A), and is obtained from C(A) by formally inverting the weak
equivalences. In the case of the Waldhausen category C(A), the category
hoC(A) is usually called the derived category of A, and denoted D(A). The
suspension functor descends to an automorphism of hoC(A) = D(A). The
category D(A) is a triangulated category; it satisfies a very short list of axioms.
Basically, the only construction one has is the mapping cone. Suppose we
are given two chain complexes X and Y , and a map of chain complexes
f : X −→ Y . That is, we are given a commutative diagram

· · ·
∂ // xi−1

∂ //

fi−1

²²

xi
∂ //

fi

²²

xi+1
∂ //

fi+1

²²

· · ·

· · ·
∂

// yi−1
∂

// yi
∂

// yi+1
∂

// · · ·
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We can form the mapping cone, which is a chain complex

· · · // xi⊕yi−1



 −∂ 0
fi ∂





// xi+1⊕yi



 −∂ 0
fi+1 ∂





// xi+2⊕yi+1
// · · ·

It turns out that this mapping cone, which we will denote Cone(f), is well-
defined in the category hoC(A) = D(A). One can look at the maps

X
f // Y

g // Cone(f).

Of course, there is nothing to stop us from iterating this process. We can
continue to

X
f // Y

g // Cone(f)
h // Cone(g)

i // Cone(h)
j // · · ·

Contrary to what we might expect, this process soon begins to iterate. There
is a natural commutative square in D(A), where the vertical maps are iso-
morphisms

Cone(g)
i //

≀|

²²

Cone(h)

≀|

²²
ΣX

−Σf // ΣY

That is, up to suspension and sign, the diagram is periodic with period 3.
We call any diagram

X −→ Y −→ Z −→ ΣX

isomorphic to

X
f // Y

g // Cone(f)
h // Cone(g)

a distinguished triangle in D(A). There is a very short list of axioms which
distinguished triangles satisfy, and that is all the structure there is in D(A).
The axiomatic treatment may be found, for example, in Verdier’s thesis [93],
in Hartshorne [41, Chapter 1], or in the recent book [73].

Remark 2. It is quite possible for a single triangulated category T to have
many different Waldhausen models. For instance, there are many known ex-
amples of abelian categories A and B, with D(A) = D(B).2 The models
C(A) and C(B) are quite different, non-isomorphic Waldhausen categories.
The passage from C(A) to hoC(A) = D(A) loses a great deal of informa-
tion. What we will try to explain is that higher K–theory is not among the
information which is lost.
2 The first example may have been the one in Beilinson’s 1978 article [11]. By now,

a quarter of a century later, we know a wealth of other examples. A very brief
discussion is included in an appendix; see Section 17.
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4 Virtual Triangles

We need to remind the reader briefly of some of the results in Vaknin’s [92].
In any triangulated category T, Vaknin defined a hierarchy of triangles. When
we use the word triangle without an adjective, we mean a diagram

A
u // B

v // C
w // ΣA

so that vu = wv = {Σu}w = 0. Vaknin defines classes of triangles

splitting ⊂ distinguished ⊂ exact ⊂ virtual.

The definitions are as follows.

(i) A splitting triangle is a direct sum of three triangles

A
1 // A // 0 // ΣA

0 // B
1 // B // 0

Σ−1C // 0 // C
1 // C

(ii) A distinguished triangle is part of the structure that comes for free, just
because T is a triangulated category.

(iii) A triangle

A
u // B

v // C
w // ΣA

is exact if there exist maps u′, v′ and w′ so that the following three
triangles

A
u′

// B
v // C

w // ΣA

A
u // B

v′
// C

w // ΣA

A
u // B

v // C
w′

// ΣA

are all distinguished.
(iv) A triangle T is virtual if there exists a splitting triangle S so that S⊕T

is exact.

The important facts for us to observe here are

Lemma 1. All distinguished triangles are virtual.

Lemma 2. Homological functors take virtual triangles to long exact se-

quences.

Proof. Lemma 1 may be found in Vaknin’s [92, Remark 1.4]. For Lemma 2,
see [92, Definition 1.6 and Theorem 1.11].
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5 Categories with Squares

The input we will need to define K–theory is a category with squares. In
Section 7 we will see how, starting with a category with squares, one can
define a K–theory. This section prepares the background. We will see the
definition of a category with squares, and also the key examples of interest.

Definition 2. An additive category T will be called a category with squares
provided

(i) T has an automorphism Σ : T −→ T.

(ii) T comes with a collection of special squares

C // D

(1)

ffA //

OO

B

OO

This means that the square

C // D

A //

OO

B

OO

is commutative in T, and there is a map D −→ ΣA, which we denote

by the curly arrow

D

(1)

ffA

The (1) in the label of the arrow is to remind us that the map is of

degree 1, that is a map D −→ ΣA.

Definition 3. Given two categories with squares, a special functor

F : S −→ T

is an additive functor such that

(i) There is a natural isomorphism ΣF ∼= FΣ.

(ii) The functor F takes special squares in S to special squares in T.

The next definition is a convenient tool in the discussion of the examples.
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Definition 4. Let T be an additive category with an automorphism Σ : T −→
T. Suppose we are given a square

C
δ // D

µ

ffA
α //

β

OO

B

γ

OO

The fold of this square will be the the sequence

A



 α
−β





// B ⊕ C

(
γ δ

)

// D
µ // ΣA.

Example 3. Let T be a triangulated category. Then T is an additive category,
and it comes with an automorphism Σ : T −→ T. A square is defined to be
special if and only if its fold is a distinguished triangle in T. When we think
of the triangulated category T as being the category with squares defined
above, then we will denote it as dT.

Example 4. Given a triangulated category T, we wish to consider yet another
possible structure one can give it, as a category with squares. The suspension
functor Σ : T −→ T is the same as in dT. But there are more special squares.
In the category which we will call vT, a square will be special if and only if
its fold is a virtual triangle, in the sense of Vaknin [92] (see also Section 4).

Example 5. Let A be an abelian category. Let Grb
A be the category of

bounded, graded objects in A. We remind the reader. A graded object of
A is a sequence of objects {ai | i ∈ Z, ai ∈ A}. The sequence {ai} is bounded

if ai = 0 except for finitely many i ∈ Z.
We define the functor Σ : Grb

A −→ Grb
A to be the shift. That is,

Σ{ai} = {bi}

with bi = ai+1. A square in Grb
A is defined to be special if the fold

A



 α
−β





// B ⊕ C

(
γ δ

)

// D
µ // ΣA

gives a long exact sequence in A. That is, the fold gives us a sequence

· · · // Di−1
// Ai

// Bi ⊕ Ci
// Di

// Ai+1
// · · ·

and we require that this sequence be exact everywhere.
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Example 6. In Definition 3, a special functor S −→ T was defined to be an
additive functor taking special squares in S to special squares in T. Let T be a
triangulated category. Lemma 1 tells us that the identity functor 1 : T −→ T

gives a special functor γ : dT −→ vT. Any special square in dT is automatically
a special square in vT.

Let H : T −→ A be a homological functor from the triangulated category
T to the abelian category A. Suppose H is bounded. That is, for each t ∈ T

there exists N ∈ N with H(Σit) = 0 unless −N < i < N . By Lemma 2, H
takes virtual triangles in T to long exact sequences in A. The functor taking
t ∈ T to the graded object {H(Σit) | i ∈ Z} is a special functor

δ : v
T −→ Grb

A

of categories with squares. Summarising, we have produced special functors

dT
γ // vT

δ // Grb
A.

In some very simple cases, for example if T = Db(k) is the derived category
of a field k and H is ordinary homology, the maps γ and δ are equivalences
of categories with squares.

6 Regions

In Section 5 we learned what is meant by a category with squares. We learned
the definition, and the three examples we will refer to in this article. In the
current section we will study regions R ⊂ Z×Z, and then in Section 7 we put
it all together. The K–theory of a category with squares T is defined from
the simplicial set of certain functors from regions R ⊂ Z × Z to the category
with squares T.

Let us agree first that, from this point on, Z will be understood to be a
category. The objects are the integers, and

Hom(i, j) =

{
∅ if i > j
1 if i ≤ j

That is, Hom(i, j) is either empty or has one element. It is non-empty exactly
when i ≤ j. There is only one possible composition law.

Definition 5. A region will mean a full subcategory R ⊂ Z × Z.

Definition 6. Let R1 and R2 be two regions. A morphism of regions R1 −→
R2 is a functor F : R1 −→ R2, so that there exist two functors f1 : Z −→ Z,

f2 : Z −→ Z and a commutative square

R1
F //

Ä _

²²

R2Ä _

²²
Z × Z

f1×f2 // Z × Z
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Remark 3. In this article, the regions we most care about are

Rn = {(x, y) ∈ Z × Z | 0 ≤ x − y ≤ n + 1} .

We consider them when n ≥ 0. The picture is
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Part of the reason we care about the Rn’s is the following.

Remark 4. Recall the category ∆ of finite ordered sets. The objects are n =
{0, 1, . . . , n}. The morphisms are the order preserving maps. I assert that
there is a functor θ from ∆ to the category of regions in Z×Z. We define the
functor θ as follows.

(i) On objects: For an object n ∈ ∆, put θ(n) = Rn, as in Remark 3.
(ii) On morphisms: Suppose we are given a morphism ϕ : m −→ n in ∆.

We define f : Z −→ Z as follows. Any integer in Z can be expressed,
uniquely, as a(m + 1) + b, with 0 ≤ b ≤ m. Put

f(a(m + 1) + b) = a(n + 1) + ϕ(b).

Then f is an order-preserving map Z −→ Z (that is, a functor when we
view Z as a category). The reader can show that

f × f : Z × Z −→ Z × Z

takes Rm ⊂ Z × Z into Rn ⊂ Z × Z. We define θ(ϕ) to be the map
Rm −→ Rn induced by f × f : Z × Z −→ Z × Z.

It is useful to note that θ(ϕ) takes the boundary of the region θ(m) = Rm to
the boundary of the region θ(n) = Rn. More explicitly, the boundary point
(y, y) ∈ Rm gets mapped to the boundary point

(
f(y) , f(y)

)
∈ Rn. The

boundary point (y + m + 1 , y) ∈ Rm gets mapped to the boundary point(
f(y) + n + 1 , f(y)

)
∈ Rn.

7 The Simplicial Set

Now we know what we mean by
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(i) Regions in Z × Z.
(ii) Categories with square.

It is time to put it together and define K–theory. The key ingredient is

Definition 7. Let T be a category with squares. Let R be a region in Z × Z.

An augmented diagram for the pair (R,T) is defined to be

(i) A functor F : R −→ T.

(ii) Suppose we are given four integers i ≤ i′ and j ≤ j′. These four integers

define a commutative square in Z × Z, namely

(i, j′) // (i′, j′)

(i, j) //

OO

(i′, j)

OO

If this square happens to be contained in the region R, then the functor

F , of part (i) above, takes it to a commutative square in T

F (i, j′) // F (i′, j′)

F (i, j) //

OO

F (i′, j)

OO

We require that all such squares extend to special squares in T. That is,

we must be given a map

δi′,j′

i,j : F (i′, j′) // ΣF (i, j)

yielding a special square.

(iii) The maps δi′,j′

i,j should be compatible, in the following sense. Suppose

we are given two squares in Z × Z, one inside the other. That is, we

have integers I ≤ i ≤ i′ ≤ I ′ and J ≤ j ≤ j′ ≤ J ′, giving in Z × Z the

commutative diagram

(I, J ′) // (i, J ′) // (i′, J ′) // (I ′, J ′)

(I, j′) //

OO

(i, j′) //

OO

(i′, j′) //

OO

(I ′, j′)

OO

(I, j) //

OO

(i, j) //

OO

(i′, j) //

OO

(I ′, j)

OO

(I, J) //

OO

(i, J) //

OO

(i′, J) //

OO

(I ′, J)

OO
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Suppose the small, middle square and the outside, large square both lie

entirely in R. That is, we have two squares in R, one contained in the

other

(i, j′) // (i′, j′) (I, J ′) // (I ′, J ′)

(i, j) //

OO

(i′, j)

OO

(I, J) //

OO

(I ′, J)

OO

Part (ii) above gives us two maps

δi′,j′

i,j : F (i′, j′) // ΣF (i, j)

δI′,J ′

I,J : F (I ′, J ′) // ΣF (I, J)

The compatibility requirement is that δi′,j′

i,j should be the composite

F (i′, j′)
F (α) // F (I ′, J ′)

δ
I′,J′

I,J // ΣF (I, J)
ΣF (β) // ΣF (i, j)

where β : (I, J) −→ (i, j) and α : (i′, j′) −→ (I ′, J ′) are the unique

maps in Z × Z.

Remark 5. The definition of augmented diagrams is clearly functorial in the
pairs R,T. Given a morphism of regions f : R −→ R′ and a special functor
of categories with squares g : T −→ T′, then composition induces a natural
map

{
Augmented diagrams
for the pair (R′,T)

}
(f,g) //

{
Augmented diagrams
for the pair (R,T′)

}
.

This says that there is a functor

{
Regions

R ⊂ Z × Z

}op

×

{
Categories

with squares

}
Φ // {Sets}

which takes the pair (R,T) ∈ {Regions} × {Categories with squares} to

Φ(R,T) =

{
Augmented diagrams

for the pair (R,T)

}
.

This functor is contravariant in the region R, covariant in T (the category
with squares).

Now, finally, we come to our simplicial set.
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Definition 8. Remark 4 provides us with a functor

θ : ∆ −→ {regions in Z × Z}.

Remark 5 gives a functor

Φ :

{
Regions

R ⊂ Z × Z

}op

×

{
Categories

with squares

}
// {Sets} .

Let T be a category with squares. Then the functor taking (−) ∈ ∆ to

Φ
(
θ(−),T

)

is a functor ∆op −→ {Sets}. We wish to consider a simplicial subset

S∗(T) ⊂ Φ
(
θ(−),T

)
.

The elements of Sn(T) form a subset of

Φ
(
θ(n

)
,T) = Φ(Rn,T).

The set Φ(Rn,T) consists of all augmented diagrams for the pair (Rn,T).
The subset Sn(T) are the augmented diagrams which vanish on the bound-

ary. Recall: An augmented diagram gives, among other things, a functor

F : Rn −→ T. The augmented diagram belongs to Sn(T) if

F (y, y) = 0 = F (y + n + 1 , y).

Remark 6. At the end of Remark 4 we noted that, if ϕ : m −→ n is any
morphism in ∆, then θ(ϕ) takes points on the boundary of the region Rm =
θ(m) to boundary points of Rn = θ(n). Augmented diagrams which vanish
on the boundary of Rn therefore go to augmented diagrams vanishing on the
boundary of Rm, and hence S∗(T) really is a simplicial subset of Φ

(
θ(−),T

)
.

Remark 7. It is clear that S∗(T) is functorial in T. Given a special functor of
categories with squares S −→ T, then composition induces a map

S∗(S) −→ S∗(T).

In Example 6 we saw that, given a triangulated category T, an abelian cat-
egory A and a bounded homological functor H : T −→ A, there are special
functors of categories with squares

dT
γ // vT

δ // Grb
A.

We conclude that there are simplicial maps of simplicial sets

S∗(
dT)

γ // S∗(
vT)

δ // S∗(Grb
A).

Note that, in an abuse of notation, the letter γ stands for both the map
dT −→ vT and for the map it induces on the simplicial sets, and similarly for
the letter δ.
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Definition 9. For a category with squares T, its K–theory K(T) is defined

to be the loop space of the geometric realisation of the simplicial set S∗(T).
In symbols:

K(T) = Ω|S∗(T)|

Remark 8. Taking loop spaces of the geometric realisation of the maps in
Remark 7, we deduce continuous maps of spaces

K(dT)
γ // K(vT)

δ // K(Grb
A).

8 What It All Means

Until now our treatment has been very abstract. We have constructed certain
simplicial sets and simplicial maps. It might be helpful to work out explicitly
what are the low-dimensional simplices. The definition says

Sn(T) =






Augmented diagrams
for the pair (Rn,T)

∣∣∣∣∣∣∣∣

The functor F : Rn −→ T, given
as part of the data of the

augmented diagram, satisfies
F (y, y) = 0 = F (y + n + 1 , y)






Let us now work this out, in low dimensions, for the category with squares
dT.

Case 1. S0(
dT) is easy to compute. The region R0 is the region 0 ≤ x−y ≤ 1,

and all the points are boundary points. That is, for every (x, y) ∈ R0 we have
that x − y is either 0 or 1. There is only one element in S0(T). It is the
diagram

0 //

0 // 0

OO

// 0

OO

Case 2. Slightly more interesting is S1(
dT). The region R1 is 0 ≤ x − y ≤ 2,

and the boundary consists of the points where x − y is 0 or 2. A simplex is
therefore a diagram
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0

0 // xn+1

OO

// 0

0 // xn

OO

// 0

OO

0 // xn−1

OO

// 0

OO

0

OO

In this diagram, each square

0 // xn+1

xn

OO

// 0

OO

is a special square. It comes with a map δn : xn+1 −→ Σxn. In the case of
the category with squares dT, the fact that the square is special means that
we have a distinguished triangle

xn
// 0 // xn+1

δn // Σxn.

In other words, the map δn : xn+1 −→ Σxn must be an isomorphism. The
diagram defining the simplex is canonically isomorphic to

0

0 // Σx0

OO

// 0

0 // x0

OO

// 0

OO

0 // Σ−1x0

OO

// 0

OO

0

OO

Up to canonical isomorphism, the simplices in S1(
dT) are just the objects of

T.
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Case 3. Next we consider S2(
dT). The region R2 is 0 ≤ x − y ≤ 3, and the

boundary consists of the points where x−y is 0 or 3. A 2-simplex is a diagram

0

0 // y′

OO

// z′ // 0

0 // z

OO

// x′

OO

// 0

OO

0 // x

OO

// y

OO

// 0

OO

0

OO

The special squares

0 // x′ 0 // y′ 0 // z′

x //

OO

0

OO

y //

OO

0

OO

z //

OO

0

OO

have differentials

δx : x′ −→ Σx, δy : y′ −→ Σy, δz : z′ −→ Σz.

As in Case 2 above, these differentials must be isomorphisms. The diagram
as a whole is therefore canonically isomorphic to

0

0 // Σy

OO

v′
// Σz // 0

0 // z

OO

w // Σx

u′

OO

// 0

OO

0 // x

OO

u // y

v

OO

// 0

OO

0

OO

The isomorphism is such that, in the special squares
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0 // Σx 0 // Σy 0 // Σz

x //

OO

0

OO

y //

OO

0

OO

z //

OO

0

OO

the differentials are all identity maps. Next we will use the fact that the
differentials are coherent, to compute the maps in the diagram.

Consider the following little bit of the larger diagram above

0 // Σy

0 // z

OO

w // Σx

u′

OO

x

OO

u // y

v

OO

// 0

OO

There are three squares in this bit, namely

0 // Σx 0 // Σy z
w // Σx

x //

OO

0

OO

y //

OO

0

OO

y //

v

OO

0

OO

These are three special squares, with compatible differentials. The differen-
tials of the first two squares are

δx = 1 : Σx −→ Σx, δy = 1 : Σy −→ Σy.

The compatibility says that the differential of the third square

z
w // Σx

y //

v

OO

0

OO

can be computed as either of the composites

Σx
δx // Σx

Σu // Σy

Σx
u′

// Σy
δy // Σy

We conclude that u′ = Σu. The diagram
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0 // Σy
v′

// Σz

z

OO

w // Σx

u′

OO

// 0

OO

y

v

OO

// 0

OO

permits us to compute that v′ = Σv, and so on. The simplex becomes

0

0 // Σy

OO

Σv // Σz // 0

0 // z

OO

w // Σx

Σu

OO

// 0

OO

0 // x

OO

u // y

v

OO

// 0

OO

0

OO

In this diagram there are many special squares. So far, we have focused
mainly on the special squares of the form

0 // ΣA

A

OO

// 0

OO

where the differential ΣA −→ ΣA is the identity. But there are other special
squares. For example

0 // z

x

OO

u // y

v

OO

The differential of this special square may be computed from the fact that,
in the diagram

0 // z w // Σx

x

OO

u // y

v

OO

// 0

OO
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the larger special square

0 // Σx

x //

OO

0

OO

has for its differential the map 1 : Σx −→ Σx. Compatibility tells us that
the differential of

0 // z

x

OO

u // y

v

OO

must be w : z −→ Σx. But in Example 3 we defined special squares in dT to
be squares

C
δ // D

µ

ffA
α //

β

OO

B

γ

OO

for which the sequence

A



 α
−β





// B ⊕ C

(
γ δ

)

// D
µ // ΣA

is a distinguished triangle. In our case, this becomes a distinguished triangle

x
u

−→ y
v

−→ z
w

−→ Σx.

One of the miracles here is that the signs take care of themselves. The
special square

z
w // Σx

y

v

OO

// 0

OO

has a differential, which is easily computed to be Σu : Σx −→ Σy. This gives
a distinguished triangle

y
−v
−→ z

w
−→ Σx

Σu
−→ Σy.

The fact that the morphism v : y −→ z in the square is vertical automatically
takes care of the sign.

We conclude that the only real restriction on the diagram
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0

0 // Σy

OO

Σv // Σz // 0

0 // z

OO

w // Σx

Σu

OO

// 0

OO

0 // x

OO

u // y

v

OO

// 0

OO

0

OO

is the fact that
x

u
−→ y

v
−→ z

w
−→ Σx

is a distinguished triangle. The other special squares give distinguished tri-
angles which are just rotations of the above. In conclusion: Any element in
S2(

dT) is canonically isomorphic to a diagram which arises as above from a
distinguished triangle

x
u

−→ y
v

−→ z
w

−→ Σx.

There are three face maps

S2(
dT)

////// S1(
dT).

In the above, we identified the elements of S2(
dT) with distinguished triangles

in T. In Case 2, we identified the elements of S1(
dT) with the objects of T.

The face maps above take the distinguished triangle

x
u

−→ y
v

−→ z
w

−→ Σx

to z, y and x, respectively.

Remark 9. We now have an explicit identification of the elements of S2(
dT)

and S1(
dT), and of the three face maps

S2(
dT)

// //// S1(
dT).

Using this, one can compute the first homology group of the space |S∗(
dT)|.

Since |S∗(
dT)| is an H–space, we have

H1|S∗(
d
T)| = π1|S∗(

d
T)| = π0K(d

T).

An explicit computation easily shows this to be the usual Grothendieck group
of Definition 1.
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Remark 10. In Case 2 we saw that the diagram for a 1–simplex has objects
which repeat (up to suspension). In Case 3 we saw that the morphisms in a
2–simplex also repeat, again up to suspension. Take an element x ∈ Sn(dT),
with n ≥ 2. Then x is a diagram in T. The objects of this diagram are all
objects of 1–dimensional faces of x, and the morphisms are all composites of
morphisms in 2–dimensional faces of x. From Cases 2 and 3 we conclude that
the entire diagram is periodic.

More explicitly, a fundamental region for the diagram x ∈ Sn(dT) is given
by

Dn =




(a, b) ∈ Z × Z

∣∣∣∣∣∣

0 ≤ a ≤ n
0 ≤ b ≤ n
0 ≤ a − b




 .

Thus, a 1–simplex is completely determined by the diagram

0

0 // x

OO

and a 2–simplex is determined by

0

0 // z

OO

0 // x

OO

u // y

v

OO

If the reader is worried that the map w : z −→ Σx does not seem to appear,
the point is simple. It is the differential of the special square

0 // z

x

OO

u // y

v

OO

What is being asserted is the following. The region Rn contains the region
Dn. An element x ∈ Sn(dT) is an augmented diagram for the pair (Rn, dT).
It restricts to an augmented diagram for the pair (Dn, dT). The assertion is
that the smaller diagram determines, up to canonical isomorphism, the larger
one.

Case 4. Next we wish to study the elements of S3(T). By Remark 10, the
simplex is determined by its restriction to D3 ⊂ R3. We have a diagram
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0

0 // z

OO

0 // x

OO

// y

OO

0 // u

OO

// v

OO

// w

OO

A simplex in S3(T) is obtained from this by periodicity, up to suspension.
The simplex will look like

0

0 // Σw

OO

// Σy // Σz // 0

0 // z

OO

// Σv

OO

// Σx

OO

// 0

OO

0 // x

OO

// y

OO

// Σu

OO

// 0

OO

0 // u

OO

// v

OO

// w

OO

// 0

OO

0

OO

What does it all mean?
We have two composable morphisms

u −→ v −→ w.

The special squares

0 // x 0 // y 0 // z

u //

OO

v

OO

u //

OO

w

OO

v //

OO

w

OO

give three distinguished triangles
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u // v // x // Σu

u // w // y // Σu

v // w // z // Σv

and the special square

0 // z

x //

OO

y

OO

tells us that the mapping cones x, y and z of the maps u −→ v, u −→ w and
v −→ w fit in a distinguished triangle

x −→ y −→ z −→ Σx.

This should hopefully look familiar. What we have here is an octahedron,
with its four distinguished triangles and four commutative triangles.

Remark 11. Our octahedron is somewhat special. We have special squares

x // y z // Σv

v //

OO

w

OO

y //

OO

Σu

OO

These come with differentials, and fold to give distinguished triangles. Thus
a 3–simplex in the simplicial set S∗(

dT) is more than just an octahedron. It
is an octahedron where the two commutative squares are special.

I observed the existence of such octahedra in [66, Remark 5.5]. This exis-
tence may be viewed as a refinement of the old octahedral lemma.

Remark 12. It is perhaps worth explaining this point even further. In Re-
mark 10 we observed that a simplex in Sn(dT) is determined by its restriction
to the region Dn ⊂ Rn. But it is only right to warn the reader that not ev-
ery augmented diagram for the pair (Dn, dT), vanishing on the top diagonal,
extends to a simplex in Sn(dT). If the extension exists then it is unique up
to canonical isomorphism; but there is no guarantee of existence. For clarity,
let us illustrate this when n = 3.

An augmented diagram for the pair (D3,
dT), vanishing on the top diag-

onal, is a diagram
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0

0 // z

OO

0 // x

OO

// y

OO

0 // u

OO

// v

OO

// w

OO

together with compatible differentials, and where we have five special squares.
By the periodicity of Remark 10, we can extend this to a diagram

0 // Σw

0 // z

OO

// Σv

OO

0 // x

OO

// y

OO

// Σu

OO

0 // u

OO

// v

OO

// w

OO

// 0

OO

The periodicity provides us all the maps and differentials we might care to
have. The problem is that nothing guarantees that

z // Σv

y

OO

// Σu

OO

should be a special square. In general it will not be.
It turns out that, for the categories with squares vT and Grb

A, this
problem disappears; every augmented diagram for the pair (Dn, vT) (resp.
(Dn,Grb

A)), vanishing on the top diagonal, extends to a simplex in Sn(vT)
(resp. Sn(Grb

A)). The point is that in the diagram above we have

z // Σv

y

OO

// Σu

OO

w

OO

// 0

OO
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The squares
z // Σv y // Σu

w

OO

// 0

OO

w

OO

// 0

OO

are both special, being the rotations of given virtual triangles (resp. long
exact sequences). The 2-out-of-3 property holds, implying that the square

z // Σv

y

OO

// Σu

OO

is also special. For vT the 2-out-of-3 property is proved in [92, Section 2.4].
For Grb

A the proof may be found in [70, Lemma 4.3].

Remark 13. The elements of Sn(T) can be thought of as refinements of the
higher octahedra. Let x ∈ Sn(T) be a simplex. It is an augmented diagram
for the pair (Rn, dT). In Rn ⊂ Z × Z, consider the intersection with Z × {0}.
It is the set {(i, 0) | 0 ≤ i ≤ n + 1}. On the region Rn ∩

{
Z × {0}

}
, the

restriction of x ∈ Sn(T) is just

0 −→ x1 −→ x2 −→ · · · −→ xn−1 −→ xn −→ 0.

This gives us (n − 1) composable morphisms. The restriction of x to the
fundamental region Dn ⊂ Rn of Remark 10 is a diagram which contains all
the mapping cones on the maps xi −→ xj . And the simplex keeps track of the
relations among these. Note that the simplex remembers more data than the
higher octahedra of [8, Remarque 1.1.14]. We already observed this in the
case of 3–simplices. Somehow the coherent differentials and all the special
squares tell us of the existence of many distinguished triangles.

9 Waldhausen Models and the Existence of Large
Simplices

Let T be a category with squares. In Section 7 we defined a simplicial set
S∗(T). In Section 8 we analysed the low-dimensional simplices of S∗(

dT),
where dT is the category with squares obtained from a triangulated category
T as in Example 3. The analysis of Section 8 tells us that the 1–simplices
correspond to objects, the 2–simplices correspond to distinguished triangles,
and the 3–simplices correspond to special octahedra. The refined octahedral
axiom guarantees the existence of a great many 3–simplices. For n ≥ 4, the n–
simplices are complicated diagrams, and it is not clear if any non-degenerate
examples exist. It is therefore of some interest to see how a Waldhausen model
can be used to construct simplices.
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Let A be an abelian category, C(A) the category of chain complexes in
A. As in Section 3, our Waldhausen categories will all be assumed to be full
subcategories of C(A). We begin with a definition

Definition 10. A commutative square in C(A)

b′
δ // c

a
α

//

β

OO

b

γ

OO

is called bicartesian if the sequence

0 // a



 α
−β





// b ⊕ b′

(
γ δ

)

// c // 0

is a short exact sequence of chain complexes.

Remark 14. Suppose we have a bicartesian square in C(A) as in Definition 10.
The fact that the composite

a



 α
−β





// b ⊕ b′

(
γ δ

)

// c

vanishes gives us a natural map from the mapping cone of

(
α

−β

)
to c.

This map must be a homology isomorphism. It therefore becomes invertible
in hoC(A) = D(A). Unless confusion is likely to arise (that is, if there are
several possibilities for α, β, γ and δ), we will omit them entirely in the
notation. The map will be written

Cone(a −→ b ⊕ b′) // c.

The key lemma is

Lemma 3. Let C(A) be a Waldhausen category. Let

b′ // c

a //

OO

b

OO

be a bicartesian square in C(A). There exists a canonical choice for a dif-

ferential ∂ : c −→ Σa rendering the diagram into a special square in
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dhoC(A) = dD(A). Furthermore, this choice of differentials is coherent. That

is, given a digram in C(A) where all the squares are bicartesian

d′′′ // e′′ // f ′ // g

c′′ //

OO

d′′ //

OO

e′ //

OO

f

OO

b′ //

OO

c′ //

OO

d′ //

OO

e

OO

a //

OO

b //

OO

c //

OO

d

OO

we deduce two bicartesian squares, one contained in the other

d′′ // e′ d′′′ // g

c′ //

OO

d′

OO

a //

OO

d

OO

The above tells us that there are canonical choices for two differentials

δ1 : e′ // Σc′

δ2 : g // Σa.

The compatibility requirement, which we assert is automatic for the canonical

choices of differentials, is that δ1 should be the composite

e′ // g δ2 // Σa // Σc′.

Proof. Let

b′ // c

a
α //

β

OO

b

OO

be a bicartesian square in C(A). Let X be the mapping cone on the map

a



 α
−β





// b ⊕ b′.

We have maps

Σa X
foo g // c.



30 Amnon Neeman

By Remark 14, the map g : X −→ c is invertible in D(A). The canonical
choice for the differential is fg−1. The compatibility of these differentials
comes from the commutative diagram

Σa

²²

Cone(a −→ d ⊕ d′′′)oo //

²²

g

Σc′ Cone(c′ −→ e ⊕ e′′)oo // g

Σc′ Cone(c′ −→ d′ ⊕ d′′)oo //

OO

e′

OO

Corollary 1. Let R ⊂ Z×Z be a region. Assume that R is convex. Suppose

we have a functor F : R −→ C(A). Any time we have four integers i ≤ i′

and j ≤ j′, these four integers define a commutative square in Z×Z, namely

(i, j′) // (i′, j′)

(i, j) //

OO

(i′, j)

OO

Suppose that, whenever the square above happens to be contained in the region

R, the functor F takes it to a bicartesian square in C(A)

F (i, j′) // F (i′, j′)

F (i, j) //

OO

F (i′, j)

OO

Then there is a canonical way to associate to the functor F an augmented

diagram for the pair
(
R, dD(A)

)
.

Proof. We certainly have a functor

R
F
−→ C(A) −→ D(A).

For any square lying in R, the bicartesian square in C(A)

F (i, j′) // F (i′, j′)

F (i, j) //

OO

F (i′, j)

OO

permits us, using Lemma 3, to make the canonical choice of differential
F (i′, j′) −→ ΣF (i, j). It only remains to check that the choices are coherent.



The K-theory of Triangulated Categories 31

Suppose therefore that we have a diagram in Z × Z

(I, J ′) // (i, J ′) // (i′, J ′) // (I ′, J ′)

(I, j′) //

OO

(i, j′) //

OO

(i′, j′) //

OO

(I ′, j′)

OO

(I, j) //

OO

(i, j) //

OO

(i′, j) //

OO

(I ′, j)

OO

(I, J) //

OO

(i, J) //

OO

(i′, J) //

OO

(I ′, J)

OO

If the large square

(I, J ′) // (I ′, J ′)

(I, J) //

OO

(I ′, J)

OO

lies in the region R, then the convexity of R tells us that so does the entire
diagram. We can therefore apply F to it, obtaining a diagram of bicartesian
squares in C(A)

F (I, J ′) // F (i, J ′) // F (i′, J ′) // F (I ′, J ′)

F (I, j′) //

OO

F (i, j′) //

OO

F (i′, j′) //

OO

F (I ′, j′)

OO

F (I, j) //

OO

F (i, j) //

OO

F (i′, j) //

OO

F (I ′, j)

OO

F (I, J) //

OO

F (i, J) //

OO

F (i′, J) //

OO

F (I ′, J)

OO

Lemma 3 therefore applies, and tells us that the two special squares

F (i, j′) // F (i′, j′) F (I, J ′) // F (I ′, J ′)

F (i, j) //

OO

F (i′, j)

OO

F (I, J) //

OO

F (I ′, J)

OO

have compatible differentials.
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Remark 15. It is clear that proof of Corollary 1 uses less than the full strength
of the convexity hypothesis. The corollary remains true for some non-convex
regions. In this article, the main region of interest in Rn = {(x, y) | 0 ≤
x − y ≤ n + 1}, and Rn is clearly convex. Hence we do not take the trouble
to give the strongest version of the corollary.

Remark 16. Now we want to use Corollary 1 to construct simplices in Sn(dT).
As in Remark 13, we begin with the restriction of a putative simplex to
Rn ∩

{
Z × {0}

}
. In other words, we have sequence of composable maps in T

0 −→ x1 −→ x2 −→ · · · −→ xn−1 −→ xn −→ 0.

and we want to show that this sequence may be extended to a simplex.
Let C be any Waldhausen model for T. The first observation is that we

may choose a lifting of this sequence of composable maps to C. We will define,
by descending induction on i, a sequence of morphisms in C

yi −−−−→ yi+1 −−−−→ · · · −−−−→ yn−1 −−−−→ yn

isomorphic in T to the sequence

xi −−−−→ xi+1 −−−−→ · · · −−−−→ xn−1 −−−−→ xn.

Choose yn to be any object of C isomorphic to xn; this defines the sequence for
i = n. Suppose the sequence has been defined for i. The morphism xi−1 −→
xi ≃ yi is a map in T, and by the calculus of fractions in biWaldhausen
complicial categories (which we call Waldhausen model categories), it may
be represented as αβ−1, with α and β as below and β a weak equivalence

xi−1

β
←−−−− yi−1

α
−−−−→ yi.

The map α can be used to extend our sequence to

yi−1 −−−−→ yi −−−−→ yi+1 −−−−→ · · · −−−−→ yn−1 −−−−→ yn.

This completes the induction. Replacing the xi by yi, we now assume our
sequence lies in C.

Now we need to construct the simplex. Choose in C a cofibration x1 −→
y1
1 , with y1

1 contractible. (For example, y1
1 could be the mapping cone on

1 : x1 −→ x1). Pushing out allows us to obtain a diagram of bicartesian
squares

y1
1

// y2
1

// · · · // yn−1
1

// yn
1

// yn+1
1

// 0

0 // x1 //

OO

x2 //

OO

· · · // xn−1 //

OO

xn
//

OO

0

OO
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Choosing a cofibration y2
1

// // y2
2 , with y2

2 contractible, we can continue
to

y2
2

// · · · // yn
2

// yn+1
2

// yn+2
2

// 0

y1
1

// y2
1

//

OO

· · · // yn
1

//

OO

yn+1
1

//

OO

0

OO

0 // x1 //

OO

x2 //

OO

· · · // xn
//

OO

0

OO

Clearly, we can iterate this process, obtaining a commutative diagram where
each square is bicartesian. We can also continue this diagram in the nega-
tive direction. Suppose yn

−1 is contractible, and suppose we have a fibration

yn
−1

// // xn . We can pull back to obtain

0 // x1 // x2 // · · · // xn−1 // xn
// 0

0 // y0
−1

//

OO

y1
−1

//

OO

y2
−1

//

OO

· · · // yn−1
−1

//

OO

yn
−1

OO

By iterating this construction in both the negative and positive direction, we
obtain a functor from the region Rn ⊂ Z × Z to C. In the category hoC = T,
the object yi

i and yn+1−i
−i are isomorphic to zero. Consider the composite

functor
Rn −→ C −→ T.

It vanishes at the boundary of the region Rn. Corollary 1 then tells us that
we have a simplex in Sn(dT).

Remark 17. We have shown how to construct elements of Sn(dT) starting
from diagrams of bicartesian squares in a Waldhausen model. An element
s ∈ Sn(dT) is called Waldhausen liftable is there exists some Waldhausen
model C for T, a diagram y of bicartesian squares in C, and an ismorphism
of augmented (Rn, dT) diagrams y ∼= s.

Definition 11. The simplicial subset wS∗(T) ⊂ S∗(
dT) is defined to be the

simplicial set of all Waldhausen liftable simplices.

Remark 18. Note that the simplicial subset wS∗(T) ⊂ S∗(
dT) does not de-

pend on a choice of model. A simplex is liftable if there exists some model C

for T, and a lifting to C. The model C is not specified in advance.

Remark 19. If we let β be the inclusion map wS∗(T) ⊂ S∗(
dT), then what we

have so far are four simplicial maps
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wS∗(T)
β // S∗(

dT)
γ // S∗(

vT)
δ // S∗(Grb

A).

Next we define the fifth and last map.

Remark 20. For the remainder of this section, we will assume that the reader
is familiar with t–structures in triangulated categories. For an excellent
account, the reader is referred to Chapter 1 of Beilinson, Bernstein and
Deligne’s [8]. In this section, we will use the following facts. Given a tri-
angulated category T with a t–structure, there is a full subcategory A ⊂ T,
called the heart of T. It satisfies

(i) A is an abelian category.
(ii) Given a monomorphism f : a −→ b in A, there is a canonically unique

way to complete it to a distinguished triangle

a
f // b

g // c h // Σa

The object c lies in A ⊂ T, and

0 // a
f // b

g // c // 0

is a short exact sequence in A (this already makes the cokernel map
g : b −→ c unique up to canonical isomorphism). What is being asserted
is that, given g : b −→ c, the map h : c −→ Σa is unique. See [8,
Corollaire 1.1.10(ii)].

(iii) There is a canonical way to define a homological functor H : T −→ A.
(iv) The t–structure is called bounded if H is a bounded homological functor

(see Example 6 for the definition of bounded homological functors), and
if

{∀i ∈ Z,H(Σix) = 0} =⇒ x = 0.

Example 7. Let T = D(A) be the derived category of an abelian category
A. There is a t–structure on T = D(A), called the standard t–structure. The
heart of T is A ⊂ D(A), where A is embedded in D(A) as the complexes
which vanish in all degrees but zero. The homological functor H : T −→ A

of part (iii) is just the functor taking a chain complex X ∈ D(A) to H0(X).
This t–structure is not bounded on T = D(A). Define a full subcategory
Db(A) ⊂ D(A) by

Ob
(
Db(A)

)
=

{
X ∈ D(A)

∣∣∣∣
Hn(X) = 0 for all but
finitely many n ∈ Z

}
.

Then Db(A) is a triangulated subcategory of D(A). The standard t–structure
on T = D(A) restricts to a standard t–structure on Db(A) ⊂ D(A). The heart
is still A, and the t–structure on Db(A) is bounded, as in (iv) above.
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Lemma 4. Suppose T is a triangulated category with a t–structure, and let

A be the heart. Suppose T has at least one Waldhausen model. Then there is

a simplicial map

α : S∗(A) −→ wS∗(T).

Here, by S∗(A) we mean the Waldhausen S∗–construction on the abelian

category A.

Proof. An element in Waldhausen’s Sn(A) is a string of (n − 1) composable
monomorphisms in A, together with a (canonically unique) choice of the
quotients. That is, maps

0 // x1 // // x2 // // · · · // // xn−1 // // xn

together with a choice of the quotients xj/xi for all i < j. Choose any Wald-
hausen model C for T. In Remark 16 we saw that the sequence

0 −→ x1 −→ x2 −→ · · · −→ xn−1 −→ xn −→ 0

can be extended to a simplex in S∗(
dT), with a Waldhausen lifting to C. That

is, it can be extended to a simplex in wS∗(T).
But now the restriction of this simplex to the region Dn ⊂ Rn gives us

nothing other than the sequence of monomorphisms

0 // x1 // // x2 // // · · · // // xn−1 // // xn

together with a choice of the quotients xj/xi. This choice of the quotients
must be canonically isomorphic to the choice that comes from the simplex
in Sn(A). Remark 20(ii) tells us that even the differentials are canonically
unique. But by Remark 10 the simplex is determined by its restriction to
Dn ⊂ Rn. [The careful reader, mindful of Remark 12, will recall that not
all augmented diagrams on Dn extend to Rn. But here we know that the
extension exists, and the uniqueness always holds].

10 The Main Theorems

Up until now, we have produced is a string of definitions. Let T be a triangu-
lated category. Assume T has at least one Waldhausen model. Assume it has
a bounded t–structure, with heart A. We have constructed simplicial maps

S∗(A)
α // wS∗(T)

β // S∗(
dT)

γ // S∗(
vT)

δ // S∗(Grb
A).

Consider the loop spaces of the geometric realisations of these maps. Write
them as

K(A)
α // K(wT)

β // K(dT)
γ // K(vT)

δ // K(Grb
A).

The main theorem is
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Theorem 3. With the notation as above, we have

(i) The composite δγβα : K(A) −→ K(Grb
A) is a homotopy equivalence.

(ii) The map α : K(A) −→ K(wT) is a homotopy equivalence.

(iii) The space K(vT) has a homotopy type which depends only on A. That

is, K(vT) ∼= K
(
vDb(A)

)
.

Proof. The proofs of these statements are, at least at the moment, long and
very difficult. The proof of (i) may be found in [70] and [71], or in [66] and [67].
For the proof of (ii), see [72], or [68] and [69]. The detailed proof of (iii) does
not yet exist in print. The idea is that it follows by a slight modification of
the proof of (ii).

In the sections which follow, I will try to highlight the problems which
naturally arise. The aim of this survey is to explain why the theorems we now
know, that is Theorem 3(i), (ii) and (iii), are deeply unsatisfying and cry for
improvement.

Before we launch into an exhaustive treatment of the defects in what we
know, in this section I will give a brief discussion of the positive. Here are
some remarkable consequences of the theorems.

Remark 21. From Theorem 3(i) we know that the spaces K(wT), K(dT) and
K(vT) all contain Quillen’s K–theory K(A) as a retract. Far from losing all
information about higher K–theory, the passage to the derived category has,
if anything, added more information.

Remark 22. From Theorem 3(ii) we conclude the following. Suppose T is a
triangulated category with at least one Waldhausen model. Suppose it admits
two bounded t–structures, with hearts A and B. Then the Quillen K–theories
of A and B agree. In symbols, we have

K(A) ∼= K(B).

After all both are isomorphic, by Theorem 3(ii), with K(wT).
This was unknown even for the “standard t–structures” of Example 7.

In other words, a special case of the above is where we have two abelian
categories A and B, with Db(A) ∼= Db(B). Put T = Db(A) = Db(B). Then
T certainly has at least one Waldhausen model, namely Cb(A). It has two
bounded t–structures, namely the standard one on Db(A) and the standard
one on Db(B). The hearts of these two t–structures are A and B respectively.
We conclude that K(A) ∼= K(B).

Remark 23. In comparing the consequences of Theorem 3 with what was
known earlier, it is helpful to recall some of the work of Waldhausen.

To each Waldhausen category C, Waldhausen associates a K–theory. Let
us call it WK(C), for the Waldhausen K–theory of C. Suppose we are given
an exact functor of Waldhausen categories α : C −→ D. Suppose that
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ho(α) : hoC −→ hoD

is an equivalence of triangulated categories. From Waldhausen’s Approxima-
tion Theorem, it is possible to deduce fairly easily that

WK(α) : WK(C) −→ WK(D)

is a homotopy equivalence. For details see Thomason [89, Theorem 1.9.8]. It
follows that, given any zigzag of exact functors of Waldhausen categories

C1

α1
¢¢

¢

¡¡¢¢
¢

α2

==
=

ÁÁ=
==

α3
¦¦
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££¦¦
¦

· · ·

αn−2

>>
>>

ÁÁ>
>>

Cn−1

αn−1
yy

y

||yy
y

αn

AA
A

ÃÃA
AA

C0 C2 Cn−2 Cn

if each ho(αi) is an equivalence of triangulated categories, then WK(C0) ∼=
WK(Cn).

Example 8. For example, let A and B be abelian categories, and assume
that the categories Db(A) ∼= Db(B) are equivalent. Assume further that the
equivalence can be lifted to models. This means there is a zigzag of exact
functors of Waldhausen models from Cb(A) to Cb(B), as in Remark 23. Then
it follows that K(A) ∼= K(B). Already in this baby application there is an
advantage to Theorem 3 over the older results. The advantage is that, in
applying Theorem 3, there is no need to assume the equivalence Db(A) ∼=
Db(B) can be lifted to models.

While on the subject of comparing Theorem 3 with the earlier results, let
us mention a question raised by Thomason. Thomason asked the following:
Does there exist a pair of Waldhausen categories C and D, with

hoC ∼= hoD but WK(C) 6∼= WK(D)?

By Remark 23, a pair of the sort Thomason asked for could not possibly be
compared by a zigzag of maps of models as above. Not quite so obvious is
the fact that, if no such pair exists, then the “standard t–structure” case of
my theorem above becomes a consequence of Waldhausen’s work.

We now know that such a pair exists. The result may be found in Schlicht-
ing [85]. In this very precise sense, my result cannot be deduced from Wald-
hausen’s.

Remark 24. Quillen defined a K–theory space K(A) for any abelian category
A. If we define K ′(A) = K

(
vDb(A)

)
, we have a functor such that

(i) By Theorem 3(i), there is a natural split inclusion K(A) −→ K ′(A).
(ii) By Theorem 3(iii), if A is the heart of a bounded t–structure, on a

triangulated category T with at least one Waldhausen model, then

K ′(A) ∼= K(v
T).

No information is lost if we replace K(A) by K ′(A), and for all we know
K ′(A) might be better.
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11 Computational Problems

It is time to turn to the problems in the subject, which are very many. Let
us begin with what ought to be the easiest. We should be able to compute
the various maps, at least for low dimensions.

Theorem 3(i) tells us that the spaces K(wT), K(dT) and K(vT) all contain
Quillen’s K–theory K(A) as a retract. It is easy to see that in K0, this is an
isomorphism

K0(A) = K0(
w
T) = K0(

d
T) = K0(

v
T).

Very embarrasingly, this is all we know. The first question would be

Problem 1. Is it true that

K1(A) = K1(
w
T) = K1(

d
T) = K1(

v
T)?

If not, can one say anything about the other direct summands?

It goes without saying that the same problem is entirely open for Ki, for
any i > 1. I stated Problem 1 as a problem about K1 for two reasons.

(i) In order to show how embarrassingly little we know.
(ii) Because very recently, as a result of Vaknin [90, 91], we actually have a

half-way usable description of K1 of a triangulated category T.

Remark 25. One way to compute K1 is from the definition we gave. The
K–theory spaces are the loop spaces of the simplicial sets wS∗(T), S∗(

dT)
and S∗(

vT) respectively. This means the groups K1 are the second homotopy
groups

π2|
wS∗(T)|, π2|S∗(

d
T)|, π2|S∗(

v
T)|

I do not consider this a computationally-friendly description. The comment
(ii) above reminds the reader that, from the recent work by Vaknin [90, 91],
we have a much more useful description. It is for this reason that the problem
might be more manageable in K1.

So far we have looked only at hearts of t–structures, which are always
abelian categories. One special case is T = Db(A), with the standard t–
structure as in Example 7. We know that there are maps in K–theory

K(A)
α // K

(
wDb(A)

) β // K
(
dDb(A)

) γ // K
(
vDb(A)

)
,

and that the map γβα : K(A) −→ K
(
vDb(A)

)
is a monomorphism (it is

even split injective). It is natural to wonder what happens if we replace the
abelian category A by an exact category E. There is a sensible way to define
the derived category Db(E) for any exact category E. The category Db(E) is
definitely a triangulated category. This construction may be found in [64].
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The general formalism, valid for any triangulated category, specialises in
the case of Db(E) to give maps

K
(
wDb(E)

) β // K
(
dDb(E)

) γ // K
(
vDb(E)

)
.

Not quite so immediate, but nevertheless true, is that there is also a continu-
ous map α : K(E) −→ K

(
wDb(E)

)
. From Vaknin’s direct computations [90],

we have

Proposition 1. For certain choices of the exact category E, the induced map

K1(α) : K1(E) −→ K1

(
wDb(E)

)
has a non-trivial kernel.

Note that this is quite unlike what happens when E is abelian; in the abelian
case we know that K(E) is a retract of each of K

(
wDb(E)

)
, K

(
dDb(E)

)
and

K
(
vDb(E)

)
. This leads to:

Problem 2. For an exact category E, compute the maps

K(E)
α // K

(
wDb(E)

) β // K
(
dDb(E)

) γ // K
(
vDb(E)

)
.

Even an explicit computational understanding of what happens in K1 would
be a vast improvement over what we now know.

12 Functoriality Problems

Starting with any triangulated category T, we have defined three possible
candidates for its K–theory. They are the spaces K(wT), K(dT) and K(vT).
Of the three, K(dT) and K(vT) are functors in T. Given a triangulated functor
of triangulated categories f : S −→ T, there are natural induced maps

K(df) : K(d
S) −→ K(d

T) and K(vf) : K(v
S) −→ K(v

T).

Remark 26. The simplicial sets S∗(
dT) and S∗(

vT) have a very nice addition
defined on them, allowing us to construct an infinite loop structure on K(dT)
and K(vT). From now on, we will view these as spectra.

Theorem 3 tells us little about K(dT) and K(vT). All we know is that, if
T had a bounded t–structure with heart A, then K(A) is a retract of both
K(dT) and K(vT). The good theorem is about K(wT). Suppose T has at
least one Waldhausen model. Theorem 3(ii) tells us that K(A) = K(wT).
This suggests that we define the K–theory of the triangulated category T

to be K(wT), and forget about the other options. Let me now point to all
the faults of K(wT). First we should remind the reader of the definition of
K(wT).

Given a triangulated category T, there is a simplicial set S∗(
dT). The set

Sn(dT) has for its elements the augmented diagrams for the pair (Rn, dT),
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which vanish on the boundary of the region Rn. In Section 9, we defined
what it means for an element of Sn(dT) to have a Waldhausen lifting (see
Remark 17). The simplicial subset wS∗(T) ⊂ S∗(

dT) is defined to be the
simplicial subset of all Waldhausen liftable simplices. The K–theory K(wT)
is the loop space of the geometric realisation of wS∗(T).

Remark 27. There is no obvious H–space structure on wS∗(T). Suppose we
are given two n–simplices. Both are augmented diagrams for the pair (Rn, dT).
Each diagram has a lifting to some Waldhausen model. Suppose the first
diagram lifts to a model C1 and the second lifts to a model C2. For all we
know, the direct sum may not have a lifting to any model.

Since wS∗(T) is not obviously an H–space, it most certainly is not obvi-
ously an infinite loop space. Let us now be careful about what Theorem 3(ii)
tells us. If A is the heart of a bounded t–structure on T, the theorem asserts
that K(A) ∼= K(wT). This is only a homotopy equivalence of spaces. It is
not an H–map of H–spaces, and most certainly not an infinite loop map
of infinite loop spaces. In Remark 22 we observed that, if A and B are two
hearts of two bounded t–structures on a single triangulated category T, then
K(A) ∼= K(B). Both K(A) and K(B) are naturally infinite loop spaces, but
the above isomorphism is only as spaces. It is not an infinite loop map.

Remark 28. Unlike the many open problems I am in the process of outlining,
this problem is settled. Suppose we are in the situation above. That is, T is
a triangulated category with at least one Waldhausen model, and A and B

are two hearts of two bounded t–structures on T. Then K(A) ∼= K(B), even
as infinite loop spaces. The proof is to introduce yet another simplicial set,
which we can denote +S∗(T). We define +S∗(T) to be a subset of S∗(

dT). A
simplex in S∗(

dT) belongs to +S∗(T) ⊂ S∗(
dT) if it can be written as a direct

sum of simplices, each with a Waldhausen lifting. In other words, we obtain
+S∗(T) as the closure of wS∗(T) ⊂ S∗(

dT) under direct sums. Define K(+T)
to be the loop space of the geometric realisation of +S∗(T).

It is now easy to see that K(+T) is an infinite loop space. It turns out
that the proof of Theorem 3(ii) works well for K(+T). We conclude that the
map K(A) −→ K(+T) is a homotopy equivalence. Since it is an infinite loop
map of infinite loop spaces, the problem posed by Remark 27 is solved.

There is something quite unappetising about the nature of the proof out-
lined in Remark 28. Surely we do not want to have to introduce a new sim-
plicial set, and a new definition for the K–theory of the triangulated category
T, every time we wish to prove a new theorem. This method of proof by
modification of the simplicial set is the best we know; presumably there is a
good choice of the simplicial set, rendering such trickery unnecessary.

Remark 29. The most serious problem with K(wT) is that it is not a functor
of T. Let f : S −→ T be a triangulated functor of triangulated categories.
I do not know how to construct an induced map K(wS) −→ K(wT). The
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same problem also holds for the simplicial sets of Remark 28. Starting with a
triangulated functor f : S −→ T, I do not know how to construct an induced
map K(+S) −→ K(+T).

Problem 3. Find a simplicial set K(?T), which is a functor of T and for
which the strong statement of Theorem 3(ii) holds.

It is quite possible that K(?T) is already on the list of possibilities we have
considered, and that the problem is that we do not yet know how to prove
enough about it.

13 Localisation

In order to turn the K–theory of triangulated categories into a powerful tool,
one would need to have some theorems about the way K(?T) changes as T

varies. Note that I have left it vague which particular K–theory one should
consider. At this point our ignorance is so profound that we should do the
unprejudiced thing and consider all the possibilities. When we know more,
we will presumably know which of the simplicial sets can safely be forgotten.

There is one obvious conjecture. Suppose S is a triangulated category,
and suppose that R ⊂ S is a thick subcategory. This means that R is a full,
triangulated subcategory of S, and that if y ∈ R decomposes as y = x ⊕ x′

in the category S, then both x and x′ lie in R. That is, R is closed under the
formation in S of direct summands of its objects. Verdier thesis [93] taught us
how to form the quotient category T = S/R. We have triangulated functors
of triangulated categories

R −→ S −→ T,

and the composite R −→ T is naturally isomorphic to the zero map.

Problem 4. Find a suitable K–theory of triangulated categories K(?−) so
that

(i) K(?T) is a functor of the triangulated category T.
(ii) By (i) we know that the functor K(?−) yields continuous maps

K(?R) −→ K(?S) −→ K(?T).

The composite K(?R) −→ K(?T) must be the null map, and there is a
natural map from K(?R) to the homotopy fiber of K(?S) −→ K(?T).
We want this map to be a homotopy equivalence.

Remark 30. The natural candidates for the functor K(?−) are K(d−) and
K(v−); what makes them natural is that we know they are functors. Unless
we have a functor, the question makes no sense. Without a functor, the maps
R −→ S −→ T will not, in general, induce maps in K–theory, and it would be



42 Amnon Neeman

meaningless to ask whether the induced sequence is a homotopy fibration. For
K(d−) and K(v−), the problem is concrete enough. We are asking whether
one or both of the sequences

K(dR) // K(dS) // K(dT)

K(vR) // K(vS) // K(vT)

is a homotopy fibration.

I spent a long time working on this problem. It goes without saying that
I do not know the answer; if I did, I would not keep it secret.

Remark 31. Suppose we succeed in finding a K–theory K(?−) of triangulated
categories, so that

(i) As in Problem 4, when T = S/R we have a homotopy fibration

K(?R) −→ K(?S) −→ K(?T).

(ii) If A is the heart of a bounded t–structure on T, then there is a natural
isomorphism

K(A) −→ K(?T).

Then Quillen’s localisation theorem [77, Theorem 5 of §5] follows easily. Given
abelian categories A, B and C with C = B/A, we have triangulated categories

Db(C) =
Db(B)

Db
A

(B)
where Db

A
(B) is the category of bounded chain complexes

in B, whose cohomology lies in A ⊂ B. Applying (i) and (ii) above to these
triangulated categories with the obvious t–structures, Quillen’s localisation
theorem is immediate.

14 Bounded δ–Functors

Theorem 3(i) is very intriguing. We remind the reader. In this article we
constructed maps

K(A)
α // K(wT)

β // K(dT)
γ // K(vT)

δ // K(Grb
A).

Theorem 3(i) asserts that the composite δγβα : K(A) −→ K(Grb
A) is a

homotopy equivalence. What is quite surprising is that this composite is
independent of the triangulated category T.

For any abelian category A, Example 5 constructs for us a category with
squares Grb

A, and we formally have a simplicial set S∗(Grb
A). The space

K(Grb
A) is the loop space of the geometric realisation of S∗(Grb

A). Quillen’s
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K–theory K(A) is the loop space of the geometric realisation of Waldhausen’s
simplicial set S∗(A). The maps α, β, γ and δ are all the loops on the geomet-
ric realisations of explicit simplicial maps. It is not difficult to compute the
composite; it amounts to remembering the definitions of the maps α, β, γ
and δ. We leave the details to the reader; let us only state the conclusion. In
the next paragraphs, we tell the reader what the map δγβα does to a simplex
in Waldhausen’s S∗(A).

Suppose s ∈ Sn(A) is an n–simplex in Waldhausen’s simplicial set S∗(A).
The simplex s is a sequence of monomorphisms in A

0 // x1 // // x2 // // · · · // // xn−1 // // xn

together with choices for the cokernels yj
i of each monomorphism xi −→ xj .

Recall the region Dn ⊂ Rn of Remark 10. The simplex s ∈ Sn(A) is a functor

Dn −→ A ⊂ Grb
A.

To make it into an augmented diagram for the pair (Dn,Grb
A) we only

need to choose the coherent differentials; we choose them all to be zero. The
region Dn ⊂ Rn is a fundamental domain for augmented diagrams on Rn.
Any augmented diagram on Rn is uniquely determined by its restriction to
Dn. Furthermore, by the last paragraph of Remark 12, for the category with
squares Grb

A) there is no extension problem; our augmented diagram on
Dn extends (uniquely) to an augmented diagram on Rn. The simplicial map
δγβα : S∗(A) −→ S∗(Grb

A) takes s ∈ Sn(A) to this augmented diagram for
the pair (Rn,Grb

A).
The next step is to generalise this to arbitrary δ–functors. We should

begin by reminding the reader what a δ–functor is. I will only give a sketch
here; much more detail may be found in Grothendieck [35]. Let A and B be
abelian categories. A δ–functor f∗ : A −→ B is a functor taking short exact
sequences in A to long exact sequences in B. More precisely

Definition 12. A δ–functor f∗ : A −→ B is

(i) For each integer i ∈ Z, an additive functor f i : A −→ B.

(ii) For each integer i ∈ Z and each short exact sequence in A

0 −→ a′ −→ a −→ a′′ −→ 0,

a map ∂ : f i(a′′) −→ f i+1(a′).
(iii) The maps ∂ are natural in the short exact sequences. Given an integer

i ∈ Z and a map of short exact sequences in A

0 // a′ //

α′

²²

a //

α

²²

a′′ //

α′′

²²

0

0 // b′ // b // b′′ // 0
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there is a commutative square

f i(a′′)
∂ //

fi(α′′)

²²

f i+1(a′)

fi+1(α′)

²²
f i(b′′)

∂
// f i+1(b′)

(iv) Every short exact sequence in A

0 −→ a′ −→ a −→ a′′ −→ 0

goes to a long exact sequence in B

· · · −→ f i−1(a′′)
∂

−→ f i(a′) −→ f i(a) −→ f i(a′′)
∂

−→ f i+1(a′) −→ · · ·

A δ–functor f∗ : A −→ B is called bounded if, for every object a ∈ A, f i(a)
vanishes for all but finitely many i ∈ Z.

Now that we have recalled the definition, we make the observation

Lemma 5. Let f∗ : A −→ B be a bounded δ–functor. Define a functor,

which by abuse of notation we will write as

f∗ : A −→ Grb(B).

It is the functor taking a ∈ A to the sequence {f i(a) | i ∈ Z}. Given a

bicartesian square in A

b′
δ // c

a
α

//

β

OO

b

γ

OO

we assert that the functor f∗ : A −→ Grb(B) takes it to a special square in

Grb(B). Furthermore, if we are given a diagram of bicartesian squares in A

d′′′ // e′′ // f ′ // g

c′′ //

OO

d′′ //

OO

e′ //

OO

f

OO

b′ //

OO

c′ //

OO

d′ //

OO

e

OO

a //

OO

b //

OO

c //

OO

d

OO
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we deduce two bicartesian squares, one contained in the other

d′′ // e′ d′′′ // g

c′ //

OO

d′

OO

a //

OO

d

OO

The functor f∗ takes these to two special squares, with differentials

∂1 : f∗(e′) // Σf∗(c′)

∂2 : f∗(g) // Σf∗(a).

These differentials are compatible; that is, ∂1 is the composite

f∗(e′) −→ f∗(g)
∂2−→ Σf∗(a) −→ Σf∗(c′).

Proof. The commutative square

b′
δ // c

a
α

//

β

OO

b

γ

OO

is bicartesian, and by Definition 10 this means that

0 // a



 α
−β





// b ⊕ b′

(
γ δ

)

// c // 0

is a short exact sequence in A. But then the δ functor f∗ gives us a map
∂ : f∗(c) −→ Σf∗(a), so that

f∗(a)



 f∗(α)

−f∗(β)





// f∗(b) ⊕ f∗(b′)

(
f∗(γ) f∗(δ)

)

// f∗(c)
∂ // Σf∗(a)

is a long exact sequence. In other words, the differential ∂ : f∗(c) −→ Σf∗(a)
together with the commutative square

f∗(b′)
f∗(δ) // f∗(c)

f∗(a)
f∗(α)

//

f∗(β)

OO

f∗(b)

f∗(γ)

OO
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give us a special square in Grb(B). It remains to establish the coherence of
the differentials.

Assume therefore that we are given a diagram of bicartesian squares in A

d′′′ // e′′ // f ′ // g

c′′ //

OO

d′′ //

OO

e′ //

OO

f

OO

b′ //

OO

c′ //

OO

d′ //

OO

e

OO

a //

OO

b //

OO

c //

OO

d

OO

We deduce maps of short exact sequences

0 // a //

²²

d ⊕ d′′′ //

²²

g // 0

0 // c′ // e ⊕ e′′ // g // 0

0 // c′ // d′ ⊕ d′′ //

OO

e′ //

OO

0

The fact that f∗ is a δ–functor gives us commutative squares

f∗(g)
∂2 // Σf∗(a)

²²
f∗(g)

∂3 // Σf∗(c′)

f∗(e′)
∂1 //

OO

Σf∗(c′)

from which the coherence for the differentials immediately follows.

Proposition 2. Let A and B be abelian categories. Then any δ–functor f∗ :
A −→ B induces a simplicial map of simplicial sets

S∗(A) −→ S∗(Grb
B).

Proof. As at the beginning of this section, a simplex s ∈ Sn(A) is a sequence
of monomorphisms in A
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0 // x1 // // x2 // // · · · // // xn−1 // // xn

together with choices for the cokernels yj
i of each monomorphism xi −→ xj .

Applying f∗ to the diagram as in Lemma 5, we deduce an augmented diagram
for the pair (Dn,Grb

B). The region Dn ⊂ Rn is a fundamental domain for
Rn by Remark 10, and there is no extension problem by the last paragraph of
Remark 12. Hence the diagram extends uniquely to an augmented diagram for
the pair (Rn,Grb

B), vanishing on the boundary. That is, we have a simplex
in Sn(Grb

B). This defines the simplicial map.

Remark 32. The identity functor 1 : A −→ A can always be viewed as a
δ–functor. That is, we define a δ–functor i∗ : A −→ A by putting i0 = 1, and
ij = 0 if j 6= 0. The differential ∂ is zero for every short exact sequence in A.

In terms of Proposition 2, the computation at the beginning of the section
says that the map δγβα : S∗(A) −→ S∗(Grb

A) is nothing other than the map
induced by the the trivial δ–functor i∗. That is,

δγβα = i∗ : S∗(A) −→ S∗(Grb
A).

Theorem 3(i) asserts that i∗ induces a homotopy equivalence.

Given any δ–functor f∗ : A −→ B, we can now define an induced map
K(f∗) : K(A) −→ K(B). Consider the diagram

S∗(A)

f∗

''NNNNNNNNNNN
S∗(B)

i∗

wwppppppppppp

S∗(Grb
B)

If we pass to loop spaces of geometric realisations, we have a diagram

K(A)

K(f∗)

''NNNNNNNNNNN
K(B)

K(i∗)

wwppppppppppp

K(Grb
B)

and the map K(i∗) is a homotopy equivalence. The map induced by f∗ is
simply

K(i∗)
−1

K(f∗) : K(A) −→ K(B).

What I find so puzzling about this theorem is

Problem 5. What happens to the composite of two δ–functors? Suppose we
have three abelian categories A, B and C, and two δ–functors

A
f∗

// B
g∗

// C.
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The above tells us how to construct maps in K–theory

K(A)
K(f∗) // K(B)

K(g∗) // K(C).

There is a composite map K(g∗)K(f∗) : K(A) −→ K(C). What is the ho-
mological algebra data inducing it?

Presumably the composite map K(g∗)K(f∗) must be induced by the com-
posite g∗f∗. But what is the composite of two δ–functors? A δ–functor is a
strange beast, taking short exact sequences in A to long exact sequences in
B. What does the composite of two such things do? Does it take short exact
sequences in A to spectral sequences in B? If so, how?

It would already be interesting if someone could formulate a plausible
conjecture for Problem 5.

15 Devissage

There are two theorems about the K–theory of abelian categories which are
formally very similar. They are Quillen’s resolution theorem [77, Theorem 3
and Corollary 1 of §4] and Quillen’s devissage theorem [77, Theorem 4 of §5].
Let me remind the reader.

Theorem 4. Let f : A −→ B be a fully faithful, exact embedding of exact

categories. If either (i) or (ii) below holds, then the induced map

K(f) : K(A) −→ K(B)

is a homotopy equivalence. It remains to tell the reader what are the hypothe-

ses (i) and (ii).

(i) Resolution: Whenever we have an exact sequence

0 −→ b′ −→ b −→ b′′ −→ 0

in B, then

{b, b′′ ∈ A} =⇒ b′ ∈ A and {b′, b′′ ∈ A} =⇒ b ∈ A

Furthermore, every object y ∈ B admits a resolution

0 −→ xn −→ xn−1 −→ · · · −→ x1 −→ x0 −→ y −→ 0,

with all the xi’s in A.

(ii) Devissage: The categories A and B are both abelian. Furthermore, every

object y ∈ B admits a filtration

0 = xn ⊂ xn−1 ⊂ · · · ⊂ x1 ⊂ x0 = y,

with all the intermediate quotients xi/xi+1 in A.
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We can wonder what these theorems mean in the K–theory of triangulated
categories. For resolution, the following well-known lemma is suggestive.

Lemma 6. Let f : A −→ B be a fully faithful, exact embedding of exact

categories. Suppose the resolution hypothesis holds. Then the natural map

Db(f) : Db(A) −→ Db(B)

is an equivalence of categories.

Remark 33. In most of this article I have avoided all mention of exact cat-
egories, focusing instead on the special case of abelian categories. This is
mostly because we know much more about the K–theory of derived cate-
gories of abelian categories. For the resolution theorem, it would be a mis-
take to try to state it only for abelian categories. The reason is simple. If
f : A −→ B is a fully faithful, exact embedding of abelian categories, and
if Db(f) : Db(A) −→ Db(B) is an equivalence of categories, then one can
easily show that f must be an equivalence of categories. For an embedding of
abelian categories f : A −→ B, Quillen’s resolution theorem is content-free.

As we mentioned in Remark 33 our main result, Theorem 3, is about
abelian categories. Therefore Quillen’s resolution theorem does not formally
follow. But morally we have been learning that K–theory depends only on
the derived category. In the light of Lemma 6, Quillen’s resolution theorem
is hardly surprising.

The devissage theorem, by contrast, has always been very puzzling. Since
the statement is so similar to the resolution theorem, one has to wonder
whether the two have a common generalisation. Let me try to propose one.
In both cases, the theorem asserts that an inclusion A ⊂ B induces a homo-
topy equivalence in K–theory. Let us, for simplicity, look at resolutions and
filtrations of length 1. Conditions (i) and (ii), of the resolution and devissage
theorems in the special case of length 1 resolutions and filtrations, are

(i) Resolution: Every object y ∈ B admits an exact sequence

0 −→ x −→ x′ −→ y −→ 0

with x, x′ in A.
(ii) Devissage: Every object y ∈ B admits an exact sequence

0 −→ x −→ y −→ x′ −→ 0

with x, x′ in A.

The point I want to make is that, in the derived category, these become indis-
tinguishable. In other words, if the inclusion A ⊂ B satisfies the hypothesis
of devissage, then the natural map

Db(A) −→ Db(B)
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should satisfy a something analogous to the hypothesis of resolution. And
morally resolution is the statement that K–theory of A is really a functor of
Db(A).

This leads one to expect that there should be some construction, which
we will call the derived category of a triangulated category. In fact, cate-
gories ought to be infinitely differentiable. Given a category T, it should be
possible to define its derived category Db(T), and this category should have
a K–theory isomorphic to the K–theory of T. Devissage is presumably the
statement that the K–theory of an abelian category depends only on the
derived category of its derived category.

Since this problem is so ill-posed, let me not try to say much more. The
major thrust of the results in Theorem 3 is that K–theory is an invariant that
captures relatively little of the homological structure we have been using.
Perhaps the clearest evidence for this is the fact that even a δ–functor is
enough to induce a map in higher K–theory; see Section 14. So perhaps
the problem I am trying to pose in this section is: Find the right homological
algebra gadget, which comes closer to being completely detected by K–theory.

16 About the Proofs

There are several ideas that come into the proofs which, as I have already said,
are long and very difficult. One way to explain the strategy is the following. To
define the K–theory of a triangulated category, we looked at the cosimplicial
region Rn of Section 6. It turns out that there are many other cosimplicial
regions. For example, we can look at regions in Z × Z which look like
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It turns out to be very easy to make this into a cosimplicial region. That is,
there is a straight-forward way of finding a functor

Θ : ∆ −→ {Regions in Z × Z}

which takes an object n ∈ ∆ to a region with the indicated shape. Let T be a
category with squares. As in Section 7, we can take the functor sending n ∈ ∆
to augmented diagrams for the pair (Θ(n),T). This is a functor ∆op −→
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{Sets}, that is a simplicial set. The idea is to study many such simplicial
sets, for many choices of cosimplicial regions.

In fact, we can produce many variants. Our region is the disjoint union of
four subregions, which I have drawn well separated from each other. One way
to produce variants is by imposing different restrictions on each subregion. If
we have four subcategories A, B, C and D of T, we can look at the simplicial
subset

C

B D

A

This just means that the augmented diagram takes the indicated subregions
to the prescribed subcategories. We can also place restrictions on the hor-
izontal and vertical morphisms in each subregion, and on the morphisms
connecting the subregions:

C

¢£

£¤£¤ £¤

*

¢¢££

*

¢¢££

B

¢¢££

£¤£¤

£¤

£¤
*

*
D

¢£

£¢¤¡
£¤£¤

*
¤¤££

*
¤¤££

A

¢£

£¢¤¡
£¤

The reader will notice that the papers containing the proofs have many such
simplicial sets and simplicial maps among them. At some level, the proofs
amount to a combinatorial manipulation of the many possible simplicial sets
that arise this way. Each of the main steps in the proofs shows that two re-
gions, with all the adornment indicated above, give rise to homotopy equiv-
alent simplicial sets.

This raises the obvious problem:

Problem 6. Are there more conceptual, less combinatorial proofs? Is it pos-
sible to give easier proofs of the main theorems?

For what it is worth, let me quote what Thomason had to say about this.
When he came to believe that I really had a proof of the theorems I was
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claiming, his comment was: “There has to be a better proof.” What I have
tried to explain in this manuscript is that, before looking for the optimal
proof, perhaps we should search for improved theorems. Thomason was un-
doubtedly right about the existence of a better proof. All I wish to add to
Thomason’s remark is: “There has to be a better theorem”.

17 Appendix: Examples of D(A) = D(B)

In this appendix we outline the many examples now known, of pairs of abelian
categories A and B with D(A) = D(B). Let me thank Bernhard Keller and
Idun Reiten for much help with this appendix. However, all responsibility for
mistakes rests with me.

The overwhelming majority of known examples fall into three types.

(i) Both A and B are categories of modules, for different rings R and S.
(ii) A is a category of modules over some ring R, and B is the cate-

gory of (quasi)-coherent sheaves on some projective variety (or a non-
commutative analog of a projective variety).

(iii) Both A and B are categories of (quasi)-coherent sheaves, on some pro-
jective varieties X and Y .

The first example was probably Beilinson’s 1978 article [11]. Beilinson pro-
duces three abelian categories with D(A) = D(B) = D(C). In the example,
A is the category of coherent sheaves on P

n (the n–dimensional projective
space). For B and C Beilinson produced two rings R and S, and B and C are
the categories of finite modules over R and S, respectively. Since the module
categories for the rings R and S are not equivalent, Beilinson’s example is
simultaneously of types (i) and (ii).

The first example of type (iii) seems to be in Mukai’s 1981 article [62].
In Mukai’s example, A and B are the categories of coherent sheaves on an
abelian variety X and on its dual X̂, respectively.

Both Beilinson’s and Mukai’s example have been infinitely generalised and
extended since. Let us first discuss type (iii). Let A and B be the abelian cat-
egories of coherent sheaves on smooth, projective varieties X and Y . Orlov’s
paper [74] gives a characterisation of all the equivalences D(A) = D(B). Bon-
dal and Orlov [15] show that if the canonical bundle on X is ample or its neg-
ative is ample, then D(A) = D(B) implies X = Y . Kawamata shows [49] that
if X is of general type or if the Kodaira dimension of −KX is the dimension
of X, then D(A) = D(B) implies that X and Y are birational. Non-birational
examples (where the Kodaira dimension is restricted by the above) may be
found first of all in Mukai’s original papers [62, 63], but more recently also
in Bridgeland [20, 21], Bridgeland and Maciocia [24, 25], Orlov [74, 75] and
Polishchuk [76]. But in some sense the case where X and Y are birational is
most interesting, since it seems to be closely related to the minimal models
program. It is conjectured that whenever X and Y are related by a sequence
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of flops then the derived categories should be the same. The first paper to
prove such a theorem, for certain smooth flops, was Bondal and Orlov [17].
A particularly nice treatment for general smooth 3–fold flops, in terms of a
certain moduli problem, may be found in Bridgeland [22]. For 3–fold flops
with only terminal Gorenstein singularities this was done by Chen [30], and
for flops with only quotient singularities by Kawamata [50]. One of the prob-
lems with more general singularities is that it is not quite clear what the
precise statement should be. That is, just exactly which derived category of
sheaves is right. The reader can find a brief discussion of the conjectured
relationship between derived categories and birational geometry in Reid [78,
§3.6]. Another algebro-geometric example of D(A) = D(B) comes from the
McKay correspondence in Bridgeland, King and Reid [23]. It is slightly dif-
ferent from the above in that A is not just the abelian category of sheaves
on some variety, but rather the category of sheaves with some compatible
group action. The reader can find a much more thorough survey of all the
algebro-geometric examples in Bondal and Orlov [16].

Next we mention more examples of type (ii). That is, A is a module
category and B is a category of sheaves on some projective variety, and
D(A) = D(B). The general case, of how such equivalences come about,
was studied by Dagmar Baer [7] and by Alexei Bondal [14]. Baer applied
it to coherent sheaves on weighted projective lines. Then the algebras R are
Ringel’s canonical algebras. Bondal studied braid group actions on the col-
lection of exceptional sequences in D(B). Kapranov generalised Beilinson’s
example to other homogenous spaces; see [45, 46, 47, 48]. In the realm of
non–commutative algebraic geometry, see LeBruyn’s [56] work on Weyl alge-
bras, which was extended by Berest-Wilson [9] (note the appendix by Michel
Van den Bergh). Kapranov-Vasserot’s McKay equivalence [44] is also almost
of type (ii).

The richest collection of known examples are the ones of type (i). It is
probably fair to say that the subject began with Happel’s Habilitations-
schrift [36, 37]. Happel observes that, if (R, T, S) is a tilting triple (that is, R
and S are rings and T is an R − S–bimodule satisfying certain conditions),
then there is an equivalence of categories D(A) = D(B). Here A and B are,
respectively, the categories of R– and of S–modules.

Remark 34. We should make a historical note here. Tilting triples predate
Happel’s work. One of Happel’s key contributions was to observe that they
naturally give rise to equivalences of the form D(A) = D(B). For historical
completeness we note

– Important precursors of tilting triples may be found in Gelfand-Ponomarev
[33, 34], Bernstein-Gelfand-Ponomarev [10], Auslander-Platzeck-Reiten [6]
and Marmaridis [60]. One should note that Street independently developed
similar ideas in his (unpublished) 1968 PhD thesis. See also his article [88].

– The people (before Happel) who gave tilting theory its modern form:
Brenner-Butler [19], who first proved the ‘tilting theorem’, Happel-Ringel
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[40], who improved the theorem and defined tilted algebras, Bongartz [18],
who streamlined the theory, and Miyashita [61], who generalized it to tilt-
ing modules of projective dimension > 1.

Remark 35. Happel found that the existence of a tilting module was sufficient
to give an equivalence D(A) = D(B). A necessary and sufficient condition
appeared soon after in Rickard’s work [80].

Remark 36. For a concise introduction to tilting theory and its link with
derived equivalences the reader is referred to Keller [53]. There is also Chap-
ter XII in Gabriel-Roiter’s book [31], the lecture notes edited by König-
Zimmermann [54] and Assem’s introduction [3].

There is a long list of applications of tilting theory (that is, of examples
of rings R and S with D(R) = D(S)). If R is a hereditary algebra, the reader
is referred to Happel-Rickard-Schofield [39] for a general theorem about the
possible S’s. For certain specific R’s (precisely, for R the algebra of a quiver
of Dynkin type) there is a complete classifications of all possible S’s. For
type A, this is in Keller-Vossieck [51] and Assem-Happel [4]. For type D see
Keller [52]. Type Ã may be found in Assem-Skowronski [5], while types B
and C are in Assem [2].

More examples of algebras R, for which all S’s with D(R) = D(S) have
been classified, are the Brauer tree algebras treated by Rickard [79], the
representation-finite selfinjective algebras of Asashiba [1], the discrete alge-
bras introduced by Dieter Vossieck [94], Brüstle’s derived tame tree algebras
in [29] (the main theorem was independently obtained by Geiss [32]), or
Bocian-Holm-Skowronski’s weakly symmetric algebras of Euclidean type [12]
(the preprint is available at Thorsten Holm’s homepage).

Another large source of examples comes from Broué’s abelian defect group
conjecture. Let me state the conjecture:

Conjecture 1. Let p be a prime, let O be a complete discrete valuation ring
of characteristic zero with residue field k of characteristic p. Suppose that O
and k are large enough.

Let G be a finite group, let R be a block algebra of the group algebra OG
that has an abelian defect group D, and let S be the Brauer correspondent
of R. We remind the reader that S is a block algebra of ONG(D), the group
algebra of the normalizer of D in G. In any case R and S are rings. Their
module categories will be A and B.

Then Broué conjectured, in his 1990 paper [27], that there is an equiva-
lence D(A) = D(B).

Remark 37. It might be helpful to give the reader a special case, which is
already very interesting. Suppose k is an algebraically closed field of charac-
teristic p > 0. Let G be a finite group, P a p–Sylow subgroup of G. Assume
P is abelian. Let NG(P ) be the normaliser of P in G. Let R and S be the
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principal blocks of kG and kNG(P ), respectively. It follows from Conjecture 1
that the derived categories of R and S are equivalent.

For more on the conjecture see Broué [27, 26, 28], König–Zimmermann [54]
and Rickard [81, 82]. For us the relevance is that the cases where the conjec-
ture has been verified give equivalences D(A) = D(B). In the cases where A

and B are not equivalent (and there are many of these), this gives examples
of type (i).

A list of three of the large classes of known examples so far is:

1. All blocks with cyclic defect groups. See Rickard [79], Linckelmann [59]
and Rouquier [83, 84].

2. All blocks of symmetric groups with abelian defect groups of order at
most p5. (Preprint by Chuang and Kessar).

3. The non-principal block with full defect of SL2(p
2) in characteristic p.

The defect group is Cp × Cp. (Preprint by Holloway).

A much more complete and up-to-date list may be found on Jeremy Rickard’s
home page, at

http://www.maths.bris.ac.uk/~majcr/adgc/which.html

Remark 38. It is perhaps worth noting that the original evidence, which led
Broué to formulate his conjecture, was obtained by counting characters. In
other words, the evidence was mostly K0 computations.

We should say a little bit about examples not of the three types (i),
(ii) and (iii). The first to find a technique to produce such examples were
Happel, Reiten and Smalø [38]. For a different approach see Schneiders [86]. A
discussion of both approaches, the relation between them and improvements
to the theorem may be found in Bondal and van den Bergh [13, Section 5.4
and Appendix B].

In all of the above I have said nothing about the uniqueness of an equiva-
lence D(A) ≃ D(B). Any such equivalence is unique up to an automorphism
of D(A). If X is a Calabi–Yau manifold and A the category of coherent
sheaves on it, then D(A) is expected to have a large automorphism group,
and this is expected to be related to the mirror partner of X. The reader can
find more about this in Kontsevich [55] or Seidel and Thomas [87]. There has
been some beautiful work on this, but our survey must end at some point.
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