
MASLOV INDEX AND CLIFFORD ALGEBRAS

Jan Nekovář

The Maslov index of triples of Lagrangean subspaces of a symplectic space over a local field F is
considered in the book of G. Lion and M. Vergne [4]. The authors use the Maslov index to construct
a central extension of Sp(2n, F ) by the Witt group WF of the field F . The cocycle of this extension
determines the cocycle of the Weil representation of Sp(2n, F ).

In the present work we introduce a generalised Maslov index associated to triples of non-zero vectors in
a plane. It takes values in a certain non-commutative group Ñ , which contains K2(F ) as a subgroup. The
generalised Maslov index can be reduced to this subgroup, giving rise to a central extension of SL(2, F ) by
K2(F ) (the field F is arbitrary). The cocycle of this extension coincides with Matsumoto’s cocycle ([1], [6]).
The Witt group (more precisely, its quotient) should be regarded as a “reduction of the group Ñ (mod 2)”.
In this work we give an analogous interpretation of the “reduction of Ñ (modn)”: it is related to a certain
class of Z/n-graded algebras, which generalise Clifford algebras.

This work was carried out during my stay at the Steklov Mathematical Institute. I am grateful to
Yu.I. Manin for his interest in my work and to A.B. Goncharov for his help with the preparation of the
manuscript.

1. Maslov Index (after [4])

The Maslov index arises naturally in the study of invariants of systems of one-dimensional subspaces of
a two-dimensional space. Fix the following notation: let F be a field of characteristic char(F ) 6= 2, V = F 2

a two-dimensional vector space over F , B a symplectic form on V , G = SL(2, F ) = Aut(V,B). Denote by

T =

{(
∗ 0

0 ∗

)}
, B =

{(
∗ ∗

0 ∗

)}
, U =

{(
1 ∗

0 1

)}
,

respectively, the standard maximal torus in G, the standard Borel subgroup and its unipotent radical.
As {lines in V } = P(V ) = G/B, we have

G\{pairs of lines in V } = G\(G/B ×G/B) = B\G/B = W,

where W is the Weyl group of G. The non-trivial element of W corresponds to pairs of transversal lines.
Let us consider invariants of triples of lines. We first restrict our attention to the case of general position,

when l0, l1, l2 are pair-wise transversal lines. After applying suitable g ∈ G, we have

l0 =

{[
∗

0

]}
, l1 =

{[
0

∗

]}
, l2 =

{[
x

ax

] ∣∣∣∣x ∈ F
}
,

for some a ∈ F ∗. The stabiliser of the pair (l0, l1) is the torus T and the action of an element

(
t 0

0 t−1

)
∈ T

changes the parameter a to at2. This yields an invariant

m : G\{triples of lines in general position in V } ∼−→ F ∗/F ∗2({[
∗

0

]}
,

{[
0

∗

]}
,

{[
x

ax

]})
7→ a.

Let l0, l1, l2, l3 be four lines in general position. We can again assume that l0 and l1 are the axes of

coordinates and that l2 =

{[
x

ax

]}
, l3 =

{[
x

bx

]}
, in which case
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m012 = m(l0, l1, l2) = a, m013 = b, m023 =
ab

a− b
, m123 = a− b,

m012m
−1
013m023m

−1
123 = 1 ∈ F ∗/F ∗2,

hence m is a 2-cocycle. In fact, a stronger statement holds: let 〈a〉 (where a ∈ F ∗/F ∗2) be the class of the
one-dimensional quadratic form x 7→ ax2 in the Witt ring WF of the field F . We have the equality in WF

〈a− b〉 −
〈

ab

a− b

〉
= 〈a〉 − 〈b〉 ,

as

(a− b)X2 − ab

a− b
Y 2 = a

(
X − b

a− b
Y

)2

− b
(
X − a

a− b
Y

)2

.

This identity implies that m is a 2-cocycle, when considered as a function with values in WF . We extend
the domain of definition of m as follows: set m(l0, l1, l2) = 0 ∈ WF for any triple of lines l0, l1, l2 not in a
general position.

Definition. The Maslov index is the above defined function m : G\{triples of lines in V } −→WF .

Proposition 1. The Maslov index is a skew-symmetric 2-cocycle.

Proof. The skew-symmetry follows from the definition. The cocycle relation has been verified in the case of
general position; it is trivial in all other cases.

Corollary. Fix a line l ∈ P(V ). The formula (g1, g2) 7→ m(l, g1l, g1g2l) then defines a 2-cocycle on G
with values in WF , hence a central extension

1 −→WF −→ ? −→ G −→ 1.

2. Reduction of the Maslov Index

We shall reduce the Maslov index to a certain subgroup of WF . An oriented line is a pair l̃ = (l, v),
where l ∈ P(V ) and v ∈ (l − {0})/F ∗2. The space P̃(V ) of oriented lines is naturally identified with G/B̃,

where B̃ =

{(
a2 ∗

0 a−2

)}
⊂ B. As before, we have

G\{pairs of oriented lines in V } = B̃\G/B̃.

This set projects onto B\G/B = Z/2 with fibres F ∗/F ∗2 and admits a natural structure of an abelian group,
which is closely related to the Witt ring; its definition follows.

Let us first recall basic facts about the structure of WF (see [3]). Every quadratic space Q has a
well-defined dimension dim(Q) = n ∈ N and discriminant d(Q) ∈ F ∗/F ∗2, but it is only n (mod 2) and
d±(Q) = (−1)n(n−1)/2d(Q) that descend to the Witt ring. Denote by IF the kernel of the homomorphism
dim : WF −→ Z/2. As an abelian group, IF is generated by the forms 〈1,−a〉, that is by the norm forms
attached to quadratic extensions. Set

QF = {(e, a) | e ∈ Z/2, a ∈ F ∗/F ∗2}

with the abelian group law

(e, a) · (e′, a′) = (e+ e′, (−1)ee
′
aa′).
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Proposition 2 (see [3]). The map s = (dim, d±) induces an isomorphism of exact sequences

0 −→ IF/I2F −→ WF/I2F −→ WF/IF −→ 0yo d± yo s yo dim

0 −→ F ∗/F ∗2 −→ QF −→ Z/2 −→ 0.

We define a lifting ˜ : QF −→WF of the morphism s by the formulas

˜(0, a) = 〈1,−a〉 , ˜(1, a) = 〈a〉 .
As a set, QF has the same structure as B̃\G/B̃, for the following reason: if we denote

T̃ =

{(
a2 0

0 a−2

)}
⊂ T, N =

{(
∗ 0

0 ∗

)
,

(
0 ∗

∗ 0

)}
⊂ G,

then B̃\G/B̃ is naturally identified with N/T̃ and the formulas(
0 A

−A−1 0

)
T̃ 7→ (1, A),

(
A 0

0 A−1

)
T̃ 7→ (0, A)

define an isomorphism N/T̃
∼−→ QF . Putting everything together we obtain an identification

n : {pairs of oriented lines in V } = B̃\G/B̃ = N/T̃
∼−→ QF

and, composing with the lifting ˜ : QF −→WF , a map

ñ : {pairs of oriented lines in V } −→WF.

An explicit formula for n: if l̃i = (li, vi), then

n01 = n(l̃0, l̃1) =


(

0, v1
v0

)
, l0 = l1

(1,−B(v0, v1)) , l0 6= l1.

Proposition 3. For every triple of oriented lines (l̃0, l̃1, l̃2) we have

m012 = ñ01 − ñ02 + ñ12 (mod I2F ).

Proof. If the three lines are not in general position, then both sides vanish. In the case of general position

we can assume that v0 =

[
x

0

]
, v1 =

[
0

y

]
, v2 =

[
z

az

]
. In this case we have

m012 − ñ01 + ñ02 − ñ12 = 〈a, xy,−axz,−yz〉 ∈ Ker(dim, d±) = I2F. �

We define the reduced Maslov index of a triple (l̃0, l̃1, l̃2) of oriented lines by the formula

m̃012 = m̃(l̃0, l̃1, l̃2) = m012 − ñ01 + ñ02 − ñ12.

Corollary. m̃ : G\{triples of oriented lines in V } −→ I2F is a 2-cocycle cohomologous tom (more precisely,

to the lift of m via the projection P̃(V ) −→ P(V )).

3. Relation to K-theory

Let us recall the structure of I2F . As an abelian group, I2F is generated by the classes of forms
〈1,−a〉 ⊗ 〈1,−b〉 = 〈1,−a,−b, ab〉. Such forms are the reduced norms on quaternion algebras. Denote by(
a,b
F

)
2

the quaternion algebra
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X2 = a, Y 2 = b, Y X = −XY
over F , and by Quat(F ) the subgroup of the Brauer group of F generated by the classes of quaternion
algebras (of course, Quat(F ) ⊂ Br(F )2 is an abelian group of exponent 2). Let BW(F ) be the Brauer-Wall
group of the field F , i.e. the group of similitude classes of Z/2-graded central simple algebras over F (in the
graded sense, see [3]). The abelian group law in BW(F ) is given by the graded tensor product of algebras:

(a⊗̂b)(a′⊗̂b′) = (−1)deg(b)deg(a′)aa′ ⊗ bb′.
Proposition 4 (see [3]). The functor C : Q 7→ C(Q) which associates to each quadratic space its Clifford
algebra induces a homomorphism of abelian groups C : WF −→ BW(F ) with kernel Ker(C) = I3F and a
commutative diagram with exact rows

0 −→ I2F/I3F −→ WF/I3F −→ WF/I2F −→ 0yo yoC yo s
0 −→ Quat(F ) −→ Clif(F ) −→ QF −→ 0

∩
↓

∩
↓ ‖

0 −→ Br(F ) −→ BW(F ) −→ QF −→ 0,

in which Clif(F ) denotes the image of C and the isomorphism I2F/I3F
∼−→ Quat(F ) is given by the formula

〈1,−a〉 ⊗ 〈1,−b〉 7→
(
a,b
F

)
2
.

According to Proposition 4, m̃ induces a 2-cocycle

G\{triples of oriented lines in V } −→ I2F/I3F
∼−→ Quat(F ).

Recall that the Milnor groups KM
n (F ) are generated by the symbols {a1, . . . , an} (ai ∈ F ∗) which are

multiplicative in each argument and which satify the relation {· · · , a, 1− a, · · ·} = 1.

Proposition 5 (see [7]). The map

{a1, . . . , an} (mod 2) 7→ 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 (mod In+1F )

induces a surjective homomorphism of abelian groups sn : KM
n (F )/2 −→ InF/In+1F .

Milnor conjectured that the maps sn are all isomorphisms. For n = 0, 1 this follows from Proposition 2. The
Merkurjev-Suslin theorem [5] implies that the composite homomorphism

K2(F )/2 = KM
2 (F )/2 s2−→I2F/I3F ↪→ Br(F )2

is an isomorphism, i.e. Quat(F ) = Br(F )2.

4. Generalised Maslov Index

We are going to modify the above construction to obtain a 2-cocycle with values in K2(F ). We replace
B̃ by the unipotent group U and we consider the basic affine space G/U = V − {0} of non-zero vectors in
V . There is a canonical identification

n : G\{pairs of non− zero vectors in V } = U\G/U = N,

where N is the normaliser of the torus T . This means that the group QF should be replaced by its extension
N . We must construct, however, an analogue of the group BW(F ). The latter abelian group has the
following structure.
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Proposition 6 (see [3]). The extension

0 −→ Br(F ) −→ BW(F ) −→ QF −→ 0

is given by the cocycle

c′((0, a), (0, b)) = c′((1, a), (1, b)) =
(
a, b

F

)
2

, c′((0, a), (1, b)) = c′((1, b), (0, a)) =
(
a,−b
F

)
2

Definition of the group Ñ : set

(0, A) =

(
A 0

0 A−1

)
, (1, A) =

(
0 A

−A−1 0

)
∈ N.

The formulas

c((0, A), (0, B)) = −c((1, A), (1, B)) = −{A,B}
c((0, A), (1, B)) = c((1, B), (0, A)) = −{A,−B}

define a 2-cocycle, which gives rise to a central extension

1 −→ K2(F ) −→ Ñ −→ N −→ 1

together with a section ˜ : N −→ Ñ satisfying ñ·ñ′ = c(n, n′)nn′. According to Proposition 6, the subgroup
Clif(F ) of BW(F ) is equal to “the reduction of Ñ (mod 2)”, i.e. to the image of Ñ via the homomorphisms
s2 : K2(F ) −→ Quat(F ), N −→ N/T̃ = QF .

Definition of the generalised Maslov index: for v0, v1, v2 ∈ G/U set

m012 = m(v0, v1, v2) =
(

˜n12n
−1
02 n01

)−1

∈ Ñ (Maslov index)

m̃012 = ñ12(ñ02)−1ñ01m012 ∈ K2(F ) (reduced Maslov index)

Note that, for n, n′ ∈ N , we have

m(U, nU, nn′U) = 1 ∈ Ñ , m̃(U, nU, nn′U) = c(n, n′),

since n01 = n, n02 = nn′, n12 = n′ and ñ · ñ′ = c(n, n′)nn′ (where c is the cocycle for the extension Ñ).

Formulas for the Maslov index:
(1) u, v linearly independent, A,B ∈ F ∗: m̃(u, v,Au+Bv) = {A,B}.
(2) u, v linearly independent, A ∈ F ∗, B = B(u, v): m̃(u,Au, v) = −m̃(u, v,Au) = m̃(v, u,Au) = {A,−B}.
(3) A,B ∈ F ∗: m̃(u,Au,Bu) = {−B,A}.

These formulas follow directly from the definitions. Recall that the function

n : G\{pairs of non− zero vectors in V } −→ N

is given by the formulas

n(u,Au) =

(
A 0

0 A−1

)
= (0, A) ∈ N, n(u, v) =

(
0 −B−1

B 0

)
= (1,−B−1) ∈ N.

We set, using the previous notation, x(u,Au) = A−1, x(u, v) = B.
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Proposition 7. For any triple of non-zero vectors v0, v1, v2 in V we have

m̃012 =
{
x(v0, v1)
x(v0, v2)

,
x(v1, v2)
x(v0, v2)

}
=
{
x01

x02
,
x12

x02

}
.

Proof. In the case of general position we use the identity

˜(1, A)˜(1, B)
−1
˜(1, C) =

˜
(

1,
AC

B

) {
C

B
,
A

B

}
for A = −x−1

12 , B = −x−1
02 , C = −x−1

01 . The remaining cases are similar.

Theorem 1. The map m̃ : G\{triples of non− zero vectors in V } −→ K2(F ) is a 2-cocycle.

Proof. The function m̃ is almost skew-symmetric: it changes sign if we exchange two arguments in general
position; in the case of exchanging linearly dependent vectors u,Au one has to add an additional term
{A,−1}. It follows that the coboundary

(δm̃)0123 = m̃012 m̃
−1
013 m̃023 m̃

−1
123

is fully skew-symmetric and that it is enough to consider only the case of linearly dependent v0, v1 and the
case of four vectors in general position.

If v0 = Av1, then x01 = x02x
−1
12 = x03x

−1
13 = A and

m̃012 m̃
−1
013 = {A, x03x

−1
02 }, m̃012 m̃

−1
013 m̃023 = {x23x

−1
03 A, x03x

−1
02 } = {x23x

−1
13 , x13x

−1
12 } = m̃123.

In the case of general position the function m̃ is GL(2)-invariant, so we can assume that v0 =

[
1

0

]
, v1 =

[
0

1

]
,

v2 =

[
A

B

]
, v3 =

[
C

D

]
. Consider a new quadruple of vectors v′0 = v0, v′1 = v1, v′2 =

[
1

1

]
, v′3 =

[
AC−1

BD−1

]
.

Multiplicativity of { , } implies that (δm̃)(v0, v1, v2, v3) = (δm̃)(v′0, v
′
1, v
′
2, v
′
3). However, for the vectors

[
1

0

]
,[

0

1

]
,

[
1

1

]
,

[
X

Y

]
we have

m̃012 = 1, m̃013 = {X,Y }, m̃023 = {X − Y, Y }, m̃123 = {Y −X,X},

(δm̃)0123 =
{

1− Y

X
,
Y

X

}
= 1. �

Note that we had not used the Steinberg relation {A, 1 − A} = 1 before in its full force, only its
consequence {A,−A} = 1. The relation itself can be reconstructed during the construction: one requires
that m̃(v0, v1, v2) = 1 for all triples of vectors whose endpoints are collinear.

The above construction then has to be modified as follows.

(1) Suppose that we are given a bimultiplicative function [ , ] : F ∗ ⊗ F ∗ −→ A with values in an abelian
group A, which satisfies the relation [X,−X] = 0.

(2) Using the function [ , ] instead of { , }, define a central extension 1 −→ A −→ Ñ −→ N −→ 1 and a
lifting ˜ : N −→ Ñ using the same formulas as before.

(3) For v0, v1, v2 ∈ G/U define

m̃012 = ñ12(ñ02)−1ñ01

(
˜n12n
−1
02 n01

)−1

∈ A.
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(4) Let X = {(v0, v1, v2) ∈ (G/U)3 | ∃g ∈ G, ∃uij ∈ gUg−1 vi = uijvj} be the set of the triples of vectors
whose endpoints are collinear. We divide A by the Steinberg relation: let A = A/(subgroup generated by
m̃012(X)).

(5) The induced function m : G\(G/U ×G/U ×G/U) −→ A then turns out to be a 2-cocycle.

It is natural to ask whether the construction (1)–(5) can be applied to the groups SL(n, F ) as an
alternative to Matsumoto’s construction ([1], [6]). According to Proposition 7, the cocycle m̃ coincides with
Matsumoto’s cocycle for SL(2) in Kubota’s form ([1], [2]). For n > 2, however, the function m̃ defined
according to (1)–(4) will coincide with Matsumoto’s cocycle only on those triples of elements of G/U which
are “not in a very general position”.

5. Z/n-graded Clifford Algebras

The construction of the generalized Maslov index m̃ with values in K2(F ) implies that the corresponding
central extension

1 −→ K2(F ) −→ ? −→ SL(2, F ) −→ 1

is mapped via the morphism K2(F ) −→ K2(F )/2 s2−→Quat(F ) to the extension with kernel Quat(F ) ∼−→
I2F/I3F , which is given by the usual (reduced) Maslov index.

We are now going to give an interpretation of the objects related to K2(F )/n for n > 2. Even though
the definition of “the Witt ring of forms of degree n” is not known in this case, there exists a natural analogue
of the group WF/I3F , namely the group of generalised Clifford algebras defined below.

Let F be a field of characteristic prime to n, which contains the group µn of the n-th roots of unity.
Fix once for all a primitive root of unity ζ ∈ µn. Any ordered set of elements a1, . . . , aN ∈ F ∗ determines
an F -algebra A = 〈a1, . . . , aN 〉 with generators X1, . . . , XN and relations

Xn
i = ai, XjXi = ζXiXj (i < j).

The algebra A has a natural Z/n-grading, for which deg(Xi) = 1 for all i.
We define the graded tensor product A⊗̂B of two Z/n-graded algebras A,B as follows: as a vector

space it coincides with A⊗B and the multiplication is defined by the formula

(a⊗ b) (a′ ⊗ b′) = ζdeg(b)deg(a′)aa′ ⊗ bb′.
We have 〈a1, . . . , aN 〉 = 〈a1〉 ⊗̂ · · · ⊗̂ 〈aN 〉; in particular, dim 〈a1, . . . , aN 〉 = nN .

The algebra 〈a, b〉 is the standard cyclic central simple algebra over F . Its class (a, b)n,ζ in the Brauer
group Br(F ) depends on the choice of ζ, but

(a, b)n = (a, b)n,ζ ⊗ ζ ∈ Br(F )⊗ µn
does not depend on ζ. The map {a, b} 7→ (a, b)n defines a homomorphism K2(F ) −→ Br(F ) ⊗ µn; denote
by Cycn(F ) its image.

Before we start developing structure theory of the algebras 〈a1, . . . , aN 〉, recall an elementary lemma:

Lemma. Let A be a central simple algebra over F . If A = ⊕Ai admits a Z/n-grading, then there exists an
invertible element z ∈ A0 such that

Ai = {a ∈ A | az = ζiza}.
The element z is determined uniquely up to a scalar multiple and zn = F ∗.

Proof. The automorphism f(a) = ζ−deg(a)a of A is inner, by the Skolem-Noether theorem: f(a) = zaz−1.
As fn = id, zn is contained in the centre F of A, which also contains the ambiguity of the choice of z. �

Denote by d(A) the image of zn in F ∗/F ∗n; it is uniquely determined by the Z/n-grading. In other
words, the centraliser ZA(A0) of the subalgebra A0 in A is isomorphic to 〈d(A)〉.

For any F -algebra A let (A) be the Z/n-graded algebra with (A)0 = A and (A)i = 0 (i 6= 0).
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Proposition 8. Let A = 〈a1, . . . , aN 〉.
(1) If N ≡ 1 (mod 2), then A

∼−→ (A0)⊗̂ 〈d〉 = (A0)⊗ 〈d〉, A0 is a central simple algebra over F , [A0]⊗ ζ ∈
Cycn(F ) and ZA(A0) = 〈d〉.
(2) If N ≡ 0 (mod 2), then A is a central simple algebra over F , [A]⊗ ζ ∈ Cycn(F ) and ZA(A0) = 〈d(A)〉.

Remarks. The usual tensor product A⊗B denotes the algebra with the usual multiplication

(a⊗ b) (a′ ⊗ b′) = aa′ ⊗ bb′.

The symbol [A] denotes the class of a central simple algebra A in the Brauer group Br(F ).
Proof. We use induction on N . The case N = 1 is trivial. We perform the induction step N 7→ N + 1.
Case (1): N ≡ 1 (mod 2). In this case

A⊗̂ 〈b〉 = (A0)⊗ (〈d〉 ⊗̂ 〈b〉) = (A0)⊗ 〈d, b〉

is indeed a central simple algebra over F whose class lies in Cycn(F ).
Case (2): N ≡ 0 (mod 2). Let x ∈ 〈b〉1 be a element satisfying xn = b and let z ∈ A0 be an element defining
the grading, as in Lemma. Set B = A⊗̂ 〈b〉. Then y = z ⊗ x generates the centre Z(B) ∼−→ 〈d〉 of the
algebra B, as yn = znxn = d(A)b. It follows that B = (B0) ⊗ 〈d〉 and ZB(B0) = 〈d〉. By the induction
hypothesis, we have A = C ⊗ 〈u, v〉, where C ⊂ A0 and [C] ⊗ ζ ∈ Cycn(F ), so it is enough to consider the
case A = 〈u, v〉. The algebra A is generated by two elements X,Y satisfying Xn = u, Y n = v, Y X = ζXY ;
then X = −X ⊗ x−1 and Y = −Y ⊗ x−1 generate B0, Y X = ζXY , X

n
= −ub−1 and Y

n
= −vb−1, hence

B0 =
〈
−ub−1,−vb−1

〉
and [B0]⊗ ζ ∈ Cycn(F ), as claimed. �

As a consequence, we obtain that each algebra A = 〈a1, . . . , aN 〉 determines a triple of invariants

C(A) = (e(A), d(A), D) ∈ Z/2× F ∗/F ∗n × Cycn(F )

e(A) = N (mod 2), 〈d(A)〉 = ZA(A0), D =

{
[A]⊗ ζ, N ≡ 0 (mod 2)

[A0]⊗ ζ, N ≡ 1 (mod 2)

The set S of all algebras 〈a1, . . . , aN 〉 forms a semi-group with respect to the graded tensor product ⊗̂. The set
of triples (e, d,D) inherits the group structure from Ñ via the homomorphisms ( , )n : K2(F ) −→ Cycn(F )
and F ∗ −→ F ∗/F ∗n:

(0, d,D) · (0, d′, D′) =
(
0, dd′, DD′(d, d′)−1

n

)
(0, d,D) · (1, d′, D′) =

(
1, dd′, DD′(d,−d′)−1

n

)
(1, d,D) · (0, d′, D′) =

(
1, dd′−1, DD′(−d, d′)n

)
(1, d,D) · (1, d′, D′) =

(
0,−dd′−1, DD′(d, d′)n

)
.

The signs in the definition of the cocycle c have been chosen in order to make the following statement hold.

Proposition 9. For A,B ∈ S we have:
(1) C(〈a, b〉) = (0,−ab−1, (a, b)n).
(2) C(A⊗̂B) = C(A) · C(B).
(3) C(A) = 1 ⇐⇒ there exists a Z/n-graded vector space V and an isomorphism A

∼−→ End(V ) (the
grading on End(V ) is defined by the formula Hom(Vi, Vj) ⊂ (End(V ))j−i).
(4) For A = 〈a1, . . . , aN 〉 put A◦ = 〈−aN , . . . ,−a1〉. Then C(A) · C(A◦) = C(A◦) · C(A) = 1.

Proof. (1) The grading is defined by the element z = −XY −1, where Xn = a, Y n = b, Y X = ζXY , hence
zn = −XnY −n = −ab−1.
(2) Thanks to the associativity of both products, it is enough to consider the case A = 〈a1, . . . , aN 〉, B = 〈b〉.
Case (1): N ≡ 1 (mod 2). In this case C(A) = (1, d(A), [A0]⊗ ζ) and, by (1) and the proof of Proposition 8,

C(A⊗̂ 〈b〉) = (0, d(A′), ([A0]⊗ ζ)(d(A), b)n),
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where A′ = 〈d(A), b〉.
Case (2): N ≡ 0 (mod 2). Using again the proof of Proposition 8, it is enough to consider the case N = 2,
A = 〈u, v〉, when we have d(A⊗̂B) = d(A)d(B) and

[(A⊗̂B)0]⊗ ζ = (−ub−1,−vb−1)n = (u, v)n(−uv−1,−b)−1
n = ([A]⊗ ζ) (d(A),−d(B))−1

n .

(3) If A ∼−→ End(V ), then Z(A) = F =⇒ N ≡ 0 (mod 2) and A is a central simple algebra over F with a
trivial class in Br(F ). The grading is defined by the element z =

∑
ζipi, where pi : V −→ Vi is the natural

projector, hence zn = 1. Conversely, if C(A) = 1, then N ≡ 0 (mod 2), A ∼−→ End(V ) in the non-graded
sense and the grading is defined by an element z satisfying zn = 1. As µn ⊂ F , z must be of the form∑
ζipi, where pi are projectors.

(4) It is enough to consider the case N = 1; the statement then follows from (1) and (2). �

We say that two algebras A,B ∈ S are similar if there exist Z/n-graded vector spaces V,W and an
isomorphism A⊗̂End(V ) ∼−→ B⊗̂End(W ). According to Proposition 9, the similitude classes of the algebras
〈a1, . . . , aN 〉 form a group with respect to ⊗̂, which will be denoted by Cn(F ) (“the Clifford algebras of
degree n”). It is a natural generalisation of the group of Clifford algebras Clif(F ) ⊂ BW(F ).

Putting everything together, we obtain the following statement.

Theorem 2. There exists an exact sequence

1 −→ Cycn(F ) −→ Cn(F ) −→ Qn(F ) −→ 1,

where Qn(F ) is the group of pairs (e, a), e ∈ Z/2, a ∈ F ∗/F ∗n with multiplication

(e, a) · (e′, a′) =
(
e+ e′, (−1)ee

′
a(a′)(−1)a

)
.

As a final remark, we note that Cycn(F ) = Br(F )n ⊗ µn, according to [5].
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