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1 Introduction

The basic motivation of this paper is related to the theory of complex hyper-
surface singularities.

Let Sn (n ≥ 1) be the set of analytic germs f : (Cn, 0) → (C, 0) with
isolated singularity at the origin. LetN[Sn] be the free semi–group generated
by Sn and let the graded semi–group N[S] = ⊕n≥1N[Sn] be their direct
sum. N[S] has a graded semi–ring structure generated by the following
multiplicative law: if f ∈ Sn and g ∈ Sm, then f ⊕ g ∈ Sn+m is defined by
(f ⊕ g)(x, y) = f(x) + g(y), where x ∈ (Cn, 0) and y ∈ (Cm, 0).

An important analytic invariant of f ∈ Sn is the collection Spp(f) of its
spectral pairs. Spp(f) lies in the free semi–group (N[Q×N],+) generated by
Q×N [8, 9, 7]. On (N[Q×N],+) there is a compatible semi–ring structure
defined by the (multiplicative) law: (α,w) ∗ (β, ω) = (α+ β + 1, w + ω + 1).

By [7], the map Spp : (N[S],+,⊕) → (N[Q × N],+, ∗) is a semi–ring
morphism, in particular Spp(f ⊕ g) = Spp(f) ∗ Spp(g).

The most important topological invariant of f ∈ Sn is its Seifert form
Vf . It is well–known that Vf is non–degenerate and it is equivalent to the
variation map of f .
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Let (F ,+,⊗s) be the semi–ring of the non–degenerate, graded sesqui–
linear forms (i.e. the collection of forms G = (Gn)n≥1, where each Gn is non–
degenerate). The additive law is (G+H)n = Gn⊕Hn, and the multiplicative
one is (G ⊗s H)k = ⊕n+m=k(−1)nmGn ⊗ Hm. By a result of Sakamoto [6]
(or Deligne, see [1]), if f ∈ Sn and g ∈ Sm, then Vf⊕g = (−1)nmVf ⊗ Vg. In
particular f 7→ Vf⊗1C induces a semi–ring morphism V : N[S]→ (F ,+,⊗s).

Consider the natural projection prmod−2 : (N[Q×N],+, ∗)→ (N[(Q/2Z)×
N],+, ∗) induced by the natural map Q → Q/2Z. In [4] it is proved that
the information contained in the complex (equivalently, in the real) Seifert
form is equivalent to the information contained in prmod−2(Spp(f)). In fact, a
map Sppmod−2 : F → N[(Q/2Z)×N] is constructed, such that the following
diagram is commutative:

N[S] Spp−→ N[Q×N]

↓ V ↓ prmod−2

F Sppmod−2−→ N[(Q/2Z)×N]

In this note, we study the semi–ring structure of F and we prove that
Sppmod−2 is a morphism of semi–rings. This seems to be a purely algebraic
problem, and it can be formulated independently from the singularity theory.

In the study of isolated singularities it is convenient to study the vari-
ation map (Seifert form) Vf together with the intersection form bf and the
monodromy operator hf (even if bf and hf are determined by Vf ). Similarly,
in the pure algebraic study of the sesqui–linear forms V , we preffer to work
with a triplet (V, b, h) (which satisfies some axioms, inspired from the prop-
erties of (Vf , bf , hf )). We call these triplets variation structures. In [4] there
is proved that any variation structure (with non–degenerate V ) is a direct
sum of some indecomposable structures, and the indecomposable structures
are listed. Using this, in this paper, we determine the (topological) semi–ring
structure of F .

(For more information about the above diagram, and its relation with
other invariants of the singularities, see [4].)
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2 ε-hermitian variation structures

If U is a finite dimensional vector space then U∗ is its dual Hom(U,C). We
have the natural isomorphism θ : U → U∗∗ given by θ(u)(φ) = φ(u). It is
convenient to write ε = ±1 in the form ε = (−1)n.
2.1. Definition. An ε–hermitian variation structure (abbreviated by HVS)
over C is a system (U ; b, h, V ), where

a.) U is a finite dimensional C–vector space,
b.) b : U → U∗ is an ε–symmetric C–linear endomorphism, i.e. b∗◦θ = εb.
c.) h is b–orthogonal automorphism of U , i.e. h∗◦b◦h = b.
d.) V : U∗ → U is a C–linear endomorphism, with

i) θ−1◦V ∗ = −εV ◦h∗
,

ii) V ◦b = h− I.

2.2. We have two immediate properties: b◦V = h
∗,−1− I, and h◦V ◦h∗

= V.
2.3. Definition. The HVS (U ; b, h, V ) is called nondegenerate (resp. simple)
if b (resp. V ) is an isomorphism.
2.4. Remarks.

a.) If b is an isomorphism then V = (h−I)b−1 and the HVS (U ; b, h, V ) is
completely determined by the isometric structure (U ; b, h) (i.e. triplets with
axioms a-b-c and with non–degenerate form b). For their classification, see
the papers of Milnor [3] and Neumann [5].

b.) If V is an isomorphism, then h = −εV V
∗,−1

and b = −V −1−εV ∗,−1
. In

particular, the classification of simple HVS-s is equivalent to the classification
of C–linear isomorphisms V : U∗ → U or to the classification of sesqui–linear
forms on finite dimensional vector spaces.

If we would like to emphasize ε then the ε–HVS determined by V is
denoted by εV .

c.) If two real nondegenerate bilinear forms are isomorphic over C, then
they are isomorphic over R. In particular, the study of real simple variation
structures is equivalent to the study of the complex ones.
2.5. Examples.
1. If Vi = (Ui; bi, hi, Vi) (i = 1, 2) are variation structures, then V1 ⊕ V2 =
(U1⊕U2; b1⊕b2, h1⊕h2, V1⊕V2) is their direct sum in the category of HVS-s.
If V = (U ; b, h, V ) then −V denotes (U ;−b, h,−V ) with the same ε.

Assume that ε1, ε2 and ε are fixed. If Vi, (i = 1, 2) are simple εi–hermitian
variation structures, then the tensor product V1⊗V2 defines a new simple ε–
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structure. The corresponding automorphisms are related by ⊗h = −εε1ε2h1⊗
h2. In this paper always εε1ε2 = −1, i.e. h = h1 ⊗ h2.

The conjugate of V = (U ; b, h, V ) is V = (U ; b, h, V ).
2. In the next examples Jk denotes the k × k–Jordan block with eigenvalue
= 1.

Consider λ ∈ C∗ − S1. (S1 denotes the unit circle.) The ε–HVS V2k(λ)
is defined by:

V2k
λ = (C2k;

(
0 I
εI 0

)
,
(
λJk 0
0 1

λ̄
J∗,−1
k

)
,
(

0 ε(λJk − I)
1
λ̄
J∗,−1
k − I 0

)
).

Note that V2k
λ ≈ V2k

1/λ̄ ≈ −V
2k
λ .

3. We are looking for nondegenerate forms b such that b̄∗ = εb and J∗
kbJk = b.

It is immediate that bij = 0 if i + j ≤ k and bk+1−i,i = (−1)i+1bk,1. By [3] b
is determined by bk,1. Since b is nondegenerate bk,1 ̸= 0, so we can assume
that bk,1 = ω ∈ S1. By the symmetry of b one has ω = ε(−1)k−1ω. This
equation has two solutions. In conclusion, there are exactly two nondegen-
erate forms b = bk± (up to isomorphism) with b

∗
= εb and J∗

kbJk = b. Their

representatives are chosen so that (bk±)k,1 = ±i−n2−k+1.
Let λ ∈ S1. If h = λJk, then by the above argument, there are exactly

two nondegenerate ε–HVS-s (up to isomorphism):

Vk
λ(±1) = (Ck; bk±, λJk, (λJk − I)(bk±)

−1)

where ω = (bk±)k,1 = ±i−n2−k+1.
If λ ̸= 1, then by (d-ii) any HVS with h = λJk is nondegenerate. If

h = Jk, then there are some degenerate structures, too.
4. Suppose that k ≥ 2 and h = Jk but b is degenerate. Then kerb = ker(h−I)
by (d-ii). Similarly as above, any degenerated form b with kerb = ker(Jk−I)
and b

∗
= εb and h

∗
bh = b has the properties bi,j = 0 if i + j ≤ k + 1, and

bk+2−i,i = (−1)ibk,2. Therefore bk,2 ̸= 0 and we can assume that bk,2 = ω ∈ S1.
By symmetry, ω = (−1)n+kω. Similarly as in the Milnor argument, b is
completely determined by bk,2. So, we have exactly two solutions b̃k± with

(b̃k±)k,2 = ±(−1)n+1i−(n+1)2−k+1. Moreover, V is completely determined by h
and b (up to isomorphism). In particular, there are exactly two degenerate
structures with h = Jk and k ≥ 2:

Ṽk
1 (±1) = (Ck; b̃k±, Jk, Ṽ

k
±),
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where (b̃k±)k,2 = ±i−n2−k+2. In fact:

b = b̃k± =
(
0 0
0 bk−1

±

)
.

Note that the structure can also be recognized from ((Ṽ k
±)

−1)k,1 = ±i−n2−k+2;
(use the identity b = V −1(h− I)).

By computation we get that Ṽ k
± is an isomorphism. In particular, the

variation structures Vk
λ(±1), where λ ∈ S1 − {1} resp. k ≥ 1 and Ṽk

1 (±1)
where k ≥ 2, are simple, and they are determined by the corresponding
isometric structures (Ck; b, h).
5. Suppose that U = C and h = 1C. Then there are exactly five HVS-s:

V1
1 (±1) = (C;±i−n2

, 1C, 0);

Ṽ1
1 (±1) = (C; 0, 1C,±in

2−1);

and
T = (C; 0, 1C, 0).

Note that in Ṽ1
1 (±1) the variation structure is not determined by its under-

lying (degenerate) isometric structure.
6. In order to unify the notations of simple structures, we introduce: Wk

λ(±1) =
Vk
λ(±1) if λ ∈ S1 − {1}, and = Ṽk

1 (±1) if λ = 1. Set s = 1 if λ = 1 and = 0

otherwise. Then: Wk
λ(±1) =Wk

λ
(±(−1)−n2−k+1+s).

2.6. In [4] it is proved the following
Theorem. A simple ε–hermitian variation structure is uniquely expressible
as a sum of indecomposable ones up to order of summands and isomorphism.
The indecomposable ones are:

Wk
λ(±1) where k ≥ 1; λ ∈ S1; and

V2k
λ where k ≥ 1; 0 < |λ| < 1.

This theorem gives a classification of comlex sesquilinear forms (with respect
to complex conjugation) over finite dimensional C–vector spaces (cf. 2.6.b).
2.7. If we do not want to relate this presentation and classification to the
singularity and Hodge theory, then the sign–convention can be simplified.
For the sign–motivation, see [4].
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3 The multiplicative structure

3.1. If we want to study only the sesqui-linear forms, then the sign of ε is
irrelevant. But in some cases, we want to see the invariants of the associated
ε–symmetric form b, too. From this reason, it is convenient to work in a
Z2–graded theory; the gradation given by ε. On the other hand, we have
a substructure given by the automorphism h. The nilpotent element log Jk
gives a filtration of the ambient space of Wk

λ(±1). In fact, the action of
log Jk can be extended to an irreducible representation of sl2(C). In the
classical theory of the representations of sl2(C)–modules this weight filtration
is centered at zero. Inspired again by the Hodge theory, we want to work
with arbitrary centers. This gives an N–graded theory. Since in the theory of
singularities, the symmetry of the bilinear form and the center of the weight
filtration are related and are coordinated by the dimension, we will use (only)
an N–gradation. (Our results can be extended to a Z–graded version in a
trivial way.)
3.2. Definition. A graded hermitian variation structure over C (abbreviated
by GHV S) is a system of N–graded objects V = ⊕n≥0Vn+1 (finite direct
sum), such that Vn+1 is a (−1)n–hermition variation structure. V is called
simple if for any n ≥ 0 Vn+1 is either simple or zero.

The direct sum and the tenzor product (twisted with a sign) are defined
by:

(V ⊕W)n+1 = Vn+1 ⊕Wn+1;

(V ⊗sW)k+1 =
⊕

n+m+1=k

(−1)(n+1)(m+1)Vn+1 ⊗Wm+1.

(Here, by the above definition, Vn+1 ⊗Wm+1 is (−1)n+m+1–symmetric.)
3.3. The additive structure of GHVS-s is completely determined by theorem
2.6. As a byproduct of the multiplication structure, we must reobtain the be-
haviour of the tensor product Jk⊗Jl. In terms of sl2(C)–representations, this
problem is equivalent to the splitting of the tensor product of two irreducible
representation in irreducible ones, i.e. in the Clebsch–Gordan series (see for
example [2]). Now, each h = λJk (λ ∈ S1) belongs to exactly two HVS, but,
as we will see, the parameter space of the eigenvalues and this Z2–sign fit
together in a moduli space which is a Z2–covering of the parameter space
of the eigenvalues. Therefore, the multiplicative structure is coordinated by
two objects: the Clebsch–Gordan series and this moduli space.

6



3.4. A computation (or an argument using the signature) gives for ξ ∈ S1:
limλ→ξ;λ̸∈S1 V2k

λ = Vk
ξ (+1) ⊕ Vk

ξ (−1); (cf. 3.8). This, and also the next dis-
cussions, motivate the following definition: for ξ ∈ S1 set V2k

ξ = Vk
ξ (+1) ⊕

Vk
ξ (−1).

3.5. Theorem. The multiplication table, given on homogeneous elements, is:
a)

V2k
λ ⊗s V2l

η =
min(k,l)⊕

t=1

V2(k+l+1−2t)
λη ⊕

min(k,l)⊕
t=1

V2(k+l+1−2t)
λ/η̄

where λ ̸∈ S1 and η ̸∈ S1;
b)

V2k
λ ⊗sW l

ξ(±1) =
min(k,l)⊕

t=1

V2(k+l+1−2t)
λξ

where λ ̸∈ S1 and ξ ∈ S1;
c)

(Wk
λ(u))n+1 ⊗s (W l

η(v))m+1 =
min(k,l)⊕

t=1

Wk+l+1−2t
λη (uv(−1)t+1s(λ, η))

where λ = e−2πiα; η = e−2πiβ; u = ±1; v = ±1 and s(λ, η) = (−1)[α+β]−[α]−[β].
Proof. The first two parts follow from the classification theorem (2.6) and
the Clebsch–Gordan theorem. (As a remark, note that V2k

λ ⊗ · is not one-to-
one.)

We prove c) in several steps. For the left hand side of 3.5.c we use the
notation V⊗ = (b⊗, h⊗, V ⊗).
Step 1: The case λ = 1, η ̸= 1 and l = 1.
a.) If k = 1, then V ⊗ = (−1)(n+1)(m+1)uin

2−1·v(η−1)im2
= uv(η−1)i(n+m+1)2 .

This corresponds to V1
η (uv)n+m+1.

b.) If k ≥ 2, then V ⊗ = (−1)(n+1)(m+1)(η − 1)vim
2
Ṽ k
u . Therefore, b⊗ =

(V ⊗)−1(ηJk−I) = (V ⊗)−1[η(Jk−I)+(η−1)I] = (−1)(n+1)(m+1)vi−m2
[(Ṽ k

u )
−1+

η
η−1

b̃ku]. Hence (b
⊗)k,1 = (−1)(n+1)(m+1)vi−m2

(Ṽ k
u )

−1
k,1 = (−1)(n+1)(m+1)vi−m2

ui−n2−k+2 =

uvi−(n+m+1)2−k+1.
Step 2: The case λ = η = 1.
a) The case l = 1 follows from ((V ⊗)−1)k,1 = (−1)(n+1)(m+1)(Ṽ k

u )
−1
k,1 ·(Ṽ 1

v )
−1
1,1 =

(−1)(n+1)(m+1)ui−n2−k+2vi−m2−1+2 = uvi−(n+m+1)2−k+2.
b) If l = 2, then by Clebsch–Gordan theorem, we know that V⊗ = Ṽk+1

1 (x)⊕
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Ṽk−1
1 (y). If {e1, . . . , ek} resp. {f1, f2} are the standard bases such that

log Jkei = ei−1 (i = 2, . . . , k) and log J2f2 = f1, then Ṽk+1
1 (x) is generated

by ek ⊗ f2 over C[h⊗], where h⊗ = Jk ⊗ J2. Therefore xi
−(n+m+1)2−(k+1)+2 =

sign(V ⊗)−1(ek⊗f2)((log Jk⊗J2)k(ek⊗f2)) = sign(V ⊗)−1(ek⊗f2)(e1⊗f1) =
(−1)(n+1)(m+1)(Ṽ k

u )
−1
k,1 · (Ṽ 2

v )
−1
2,1. Therefore x = uv.

Now, by b = V −1(h − I), we deduce that (Ṽ k+1
x )−1

i,j = 0 if i + j ≤
k + 1. Therefore, for any z ∈ Ṽk+1

1 (x) with the property (log Jk+1)
k−1z =

0, we have (Ṽ k+1
x )−1(z, (log Jk+1)

k−2z) = 0. On the other hand, if z =∑k−1
i=1 aiei ∈ Ṽk−1

1 (y), then (Ṽ k−1
y )−1(z, (log Jk−1)

k−2z) = a2k−1(Ṽ
k−1
y )−1

k,1 =

a2k−1yi
−(n+m+1)2−(k−1)+2. Therefore, we can recover y, if we find a z ∈

ker(log h⊗)k−1 so that z⊗ = (V ⊗)−1(z, (log Jk ⊗ J2)
k−2z) ̸= 0. Take z =

ek−1 ⊗ f2 − (k − 1)ek ⊗ f1. Then (log Jk ⊗ J2)
k−2z = e1 ⊗ f2 − e2 ⊗ f1; thus

(−1)(n+1)(m+1)z⊗ = (Ṽ k
u )

−1
k−1,1 · (Ṽ 2

v )
−1
2,2 − (Ṽ k

u )
−1
k−1,2 · (Ṽ 2

v )
−1
2,1 − (k − 1)(Ṽ k

u )
−1
k,1 ·

(Ṽ 2
v )

−1
1,2 + (k − 1)(Ṽ k

u )
−1
k,2 · (Ṽ 2

v )
−1
1,1. Since (Ṽ k

±)
−1
i,j = 0 if i + j ≤ k, the first

and the last term is zero. Moreover, (Ṽ k
±)

−1
k−1,2 = −(Ṽ k

±)
−1
k,1, therefore z⊗/k =

yi−(n+m+1)2−k+3 = (−1)(n+1)(m+1)uvi−n2−k+2−m2
, i.e. y = −uv.

c) For the general case we can assume that 3 ≤ l ≤ k. By the case l = 2 we
have: (Ṽ l−1

1 (v))m⊗s(Ṽ2
1 (+1))1 = (Ṽ l

1(v))m+1⊕(Ṽ l−2
1 (−v))m+1. Now, multiply

this by (Ṽ k
1 (u))n+1 and use the obtained identity as an inductive step.

Step 3: The case λ ̸= 1, η = 1.
By Step 1: (Ṽk

λ(u))n+1 = (V1
λ(+1))1 ⊗s (Ṽk

1 (u))n. Now use Step 2 and Step 1
again.
Step 4: (V1

λ(+1))1 ⊗s (V1
η (+1))1 = (W1

λη(s(λ, η))2; where λ ̸= 1 and η ̸= 1.
a) The case λη = 1. Recall : V1

λ(+1) = (C; 1, λ, λ − 1). Therefore V ⊗ =
−(λ− 1)(η − 1) = 2(Re(λ)− 1) < 0. But s(λ, η) = −1, so we are finished.
b) If λη ̸= 1, then the left hand side is V1

λη(x) for a suitable x. Now,

b⊗ = − λη−1
(λ−1)(η−1)

therefore x = sign(i b⊗) = s(λ, η).

Step 5: For the last case λ ̸= 1 and η ̸= 1, use the “decomposition” of Vk
λ

resp. of V l
η as in the proof of Step 3, and use Step 4.

3.6. The formula (3.5.c) suggests that the four types Wk
ξ (±1) (ξ ∈ S1) fit in

a single parameter space. In order to see this, fix ξ = e−2πiβ (0 ≤ β < 1) on
S1, and consider the result of the multiplication of Vk

ξ (+1) with Ve−2πiα(+1)
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for α ∈ (0, 1):

V1
e−2πiα(+1)⊗s Vk

ξ (+1) =


Vk
ξe−2πiα(+1) 0 < α < 1− β

Ṽk
1 (−1) α+ β = 1
Vk
ξe−2πiα(−1) 1− β < α < 1.

So {Wk
e−2πiα(±1)}α,±1 fit in the following parameter space:

t t tα: 0 1 2

Ṽk
1 (±1) Vk

e−2πiα(±1) Ṽk
1 (∓1) Vk

e−2πiα(∓1) Ṽk
1 (±1)

Define Vk(α) =Wk
e−2πiα((−1)[α]). Then (3.5.c) has the following form:

3.7. Proposition.

(Vk(α))n+1 ⊗s (V l(β))m+1 =
min(k,l)⊕

t=1

Vk+l+1−2t(α+ β + t+ 1).

3.8. Fix k ≥ 1. Let D∗ = {z ∈ C∗, |z| < 1}, the open punctured disc,
and D

∗
= {z ∈ C∗, |z| ≤ 1} the closed one. By the above discussion, the

parameter space of the indecomposable nondegenerated sesquilinear forms of
type V2k

λ , (λ ̸∈ S1), and Wk
λ(±1), (λ ∈ S1), is D∗ ∪R/2Z. In order to see

the right topology on this (i.e.”limλ→e−2πiα,|λ|<1 = {α, α+1}”), we make the

following construction. We define an equivalence relation on D
∗
, generated

by: z1 ∼ z2 if z1, z2 ∈ D∗ and z21 = z22 . The factor setM = D
∗
/∼ (with the

factor topology) is the moduli space of our forms.
3.9. If X is a set, let N[X] be the free abelian semi-group generated by (the
base) X: N[X] = {finite sums

∑
nixi; ni ∈ N, xi ∈ X}. On N[M] we

define the following multiplication, given on generators:

[z1] ∗ [z2] =


[z1z2] if |z1| = 1 or |z2| = 1
[z1z2] + [z1/z2] if |z1| < |z2| < 1
[z1z2] + [z1/z2] + [−z1/z̄2] if |z1| = |z2| < 1

The resulted semi–ring (N[M],+, ∗) is denoted by H.
If R is a semi–ring then the additive structure of R[N∗] = {∑i≥1 riX

i :
ri ∈ R} can be completed in several ways to a semi–ring structure. One of
them is the polynomial structure, denoted by R[X], given by riX

i · rjXj =
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rirjX
i+j. We define another one as follows. Let A : R → R be an automor-

phism of R. We define the “twisted Clebsch–Gordan ”multiplication on R
by:

rkY
k • rlY l =

min(k,l)∑
t=1

At+1(rkrl)Y
k+l+1−2t.

In the case of R = H we have a natural automorphism induced by z 7→
−z (z ∈ D

∗
). The twisted Clebsch–Gordan semi-ring structure H[tcg], by

definition, is (H[N∗],+, •). Its multiplication is :

[z]Y k • [w]Y l =
min(k,l)∑

t=1

[(−1)t+1zw]Y k+l+1−2t.

The inclusion R/2Z ⊂ D
∗
, given by α 7→ e−πiα, induces the corresponding

sub-semi-ring structures onN[R/2Z] (with multiplication: [α]∗[β] = [α+β]),
and on N[R/2Z][tcg][X] (with automorphism A[α] = [α+ 1]).

Denote GHV S(S1) = {V ∈ GHV S : the eigenvalues of h lie on S1}.
3.10. Theorem. We have the following semi–ring isomorphisms:

a)
(H[tcg][X],+, •) ≈ (GHV S,⊕,⊗s);

b)
(N[R/2Z][tcg][X],+, •) ≈ (GHV S(S1),⊕,⊗s).

c)

(H[tcg],+, •) ≈ {simple ε–HVS,⊕,⊗} (with fixed ε)
≈ {nondegenerated sesqui-linear forms,⊕,⊗};

Proof. Use the correspondence (V2k
λ )n+1 ←→ [

√
λ]Y kXn+1, (λ ∈ D∗), and

(Vk(α))n+1 ←→ [e−πiα]Y kXn+1.
3.11. Remark. The complex conjugation (cf. 2.5.6) has the following effect:

([z]Y kXn+1)− =

{
[z]Y kXn+1 if |z| < 1[
e−πiβ

]
Y kXn+1 if z = e−πiα and β = 2[α]− α+ n+ k
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4 Hodge numbers and spectral pairs associ-

ated with variation structures

Let V = (U ; b, h, V ) be a simple variation structure.
In the sequel, we assume that the eigenvalues of our structures are on the

unit circle. Recall that s = s(λ) = 0 if λ ̸= 1 and = 1 otherwise.
We want to construct a weight filtration W on U∗

λ and a mod–2 decom-
position on GrW∗ U∗

λ . By the decomposition theorem, it is enough to define
them on the indecomposable homogeneous elements. The weight filtration
is given by h̄∗,−1, the center of the filtration associated to the homogeneous
element (Wλ)n+1, is, by definition, n + s. In fact, it is the unique filtra-
tion with center n + s and with the properties: dimGrWl (Wr+1

λ (u)) = 1 if

l = n+ s− r, . . . , n+ s+ r, and log J
∗,−1
r+1 (Wl) ⊂ Wl−2.

The Z2–decomposition

GrWl Wr+1
λ (u) = F+GrWl Wr+1

λ (u)⊕ F−GrWl Wr+1
λ (u)

is given by:

dimFvGrWn+s+r−tWr+1
λ (u) =

{
1 if uv(−1)t = 1
0 otherwise

In other words: GrWn+s+r−tWr+1
λ (u) = F(−1)tuGrWn+s+r−tWr+1

λ (u).
If Vλ =

∑
u=±1,r≥0 p

r+1
λ (u)Wr+1

λ (u) then we redefine pn+s+r,u
λ = pr+1

λ (u),
u = ±1, r ≥ 0; (n+s+r is the weight of the “primitive element” ofWr+1

λ (u));
and define hw,u

λ = dimFuGrWw U∗
λ . By these notations, we have the following

relations:

pw,u
λ = hw,−u

λ − hw+2,u
λ w ≥ n+ s;

hw,u
λ =

∑
l≥0

p
w+2l,(−1)lu
λ w ≥ n+ s;

hn+s−k,u
λ = h

n+s+k,(−1)ku
λ .

In particular, V =
∑

pr+1
λ (u)Wr+1

λ (u) is completely determined by the num-
bers {pw,u

λ ; w ≥ n+ s} or by {hw,u
λ }.

11



The Z2–spectral pairs lies in the semiring

N[(R/2Z)×N] = {
∑
(α,w)

(α,w), α ∈ R/2Z, w ∈ N},

where the additive structure is the natural one, but the multiplicative one is
given by:

(α,w) ∗ (β, ω) = (α+ β + 1, w + ω + 1).

The system of equations: {
e−2πiα = λ
(−1)w−n−[−α] = u

has exactly one solution α = αλ,w,u ∈ R/2Z. We associate with the space
FuGrWw U∗

λ the spectral pairs (α,w−s(λ)) with multiplicity hw,u
λ = dimFuGrWw U∗

λ .
The collection of the Z2–spectral pairs of V is:

Sppmod−2(V) =
∑
λ,w,u

hw,u
λ (αλ,w,u, w − s(λ)).

It is clear that passing to the spectral pairs we do not lose any information: we
can recuperate V from its spectral invariants. Moreover, Sppmod−2(V1⊕V2) =
Sppmod−2(V1) + Sppmod−2(V2).

The symmetry of the weight filtration gives the invariance of Sppmod−2(f)
with respect to the transformation (α, n + k) ←→ (α − k, n − k). If the
structure comes from a real one, the stability with respect to the complex
conjugation gives an addition invariance with respect (α, n + k) ←→ (n −
1− α, n− k).
4.1. Theorem.

hw,u
λ (V ⊗sW) =

∑
hp,v
ξ (V)hq,z

η (W)

where the sum is over the following combinations:
λ = ξη, w = p+ q + 1− s(ξ)− s(η) + s(ξη), u = vz · s(ξ, η).

Proof. It is enough to verify the theorem only on the indecomposable ho-
mogeneous elements. Instead of a direct verification, we give the following
argument. The relation λ = ξη is clear. The weights (eigenvalues of the diag-
onal element) of the tensor product of two irreducible sl2(C)–representations
are the corresponding sums of the factors’ weights. Since our centers are
shifted with n+ s(ξ), m+ s(η) resp. n+m+ 1 + s(ξη) the second relation
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follows. For the third one, it is enough to verify the sign behaviour only for
the top weights (thanks to the compatibility of the twisted Clebsch–Gordan
multiplication).
4.2. This theorem can be considered as the topologic version of (8.11–8.12)
in [7]. That result works in analytic context and its proof is based on the
theory of D–modules. In fact, our basic motivation to prove theorem (4.1)
was the decision to give a topological support to that result.
4.3. Apparently, introducing different centers and separating the cases λ ̸= 1
and λ = 1, we mixed up the multiplication structure comletely. A not very
careful analysis of theorem (4.1) suggests the same fact. But, hopefully, an
appropiate organisation of the informations will give a very nice multiplica-
tion law.
4.4. Theorem.

Sppmod−2(V1 ⊗s V2) = Sppmod−2(V1) ∗ Sppmod−2(V2).

Proof. Again, it is enough to verify the relation only on the indecomposable
homogeneous elements. For these, Spp((Wr+1

λ (u))n+1) =
∑r

k=0(α − k, n +
r − 2k) where λ = e−2πiα and (−1)s(λ)+r−[−α] = u. Now, use the identity

s(λ)− [−α] = [α] + 1 and ∪r
k=0 ∪l

j=0 {k + j} = ∪min(r,l)
t=0 ∪l+r−2t

i=0 {t+ i}.
4.5. Corollary.

Sppmod−2 : (GHV S(S1),⊕,⊗s)→ (N[(R/2Z)×N],+, ∗)

is a monomorphism of semi-rings.
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