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1. Introduction

The present paper has two goals.

First, we compute the signature of the Milnor fiber associated with a singularity
of type f(x, y) + zN , and we prove some conjectures of A. Durfee.

A. Durfee in [4] listed some conjectures about the signature σ, the Milnor num-
ber µ, and the geometric genus pg of an isolated complete intersection singularity
g : (Ck+2, 0) → (Ck, 0). Namely, he conjectured that pg ≤ µ/6 (Conjecture 5.3
in [4], in the sequel (∗)), which is equivalent to −3σ ≥ µ + 3µ0 (where µ0 is the
rank of the kernel of the Milnor lattice). In particular (∗) implies a weaker con-
jecture (5.2 in [4]): the negativity of the signature. On the other hand, J. Wahl
in [17] constructed a smoothing of a non-complete intersection with positive signa-
ture, showing the subtility of the problem. But, even in the hypersurface case, the
conjectures still resist persistent attempts at proof (see [22]).

In a series of papers, the author studied suspensions of hypersurface singularities
(i.e., germs of type f(x1, . . . , xn) + zNn+1). In particular, in [7], the signature of
f+zN is computed in terms of eta-invariants η(f ;N) associated with (the variation
structure of) f and the number N : σ(f + zN) = η(f ;N) − N · η(f ; 1). In [10],
the eta-invariant η(f ;N) of a plane curve singularity f is expressed in terms of
generalized Dedekind sums associated with the embedded resolution graph Gf
of f (we recall this here in 2.3). This is a powerful relation; for example, in the
particular case of Brieskorn polynomials, it is equivalent to the computation of the
lattice points in a tetrahedron in terms of Dedekind sums, solved in particular cases
by Mordell [6], and in general by Pommersheim [13]. This formula generalizes a
result (Proposition (2.5) [12]) of W. Neumann and J. Wahl, where the signature is
computed when the link of g = f + zN is an integer homology sphere. Using this
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relation (2.3) in [10] we prove that for an irreducible germ f , its eta-invariant and
the signature of f+zN are additive with respect to the splice decomposition of the
graph Gf . In particular, we prove that the inequality (∗) is valid for these type of
germs. Unfortunately, additivity results as in [10] (or as in [12]) are not true if f
is not irreducible.

In this paper, by a different method, we attack the same problem for arbitrary f .
We prove (∗) for f + zN with reducible f and with the following additional restric-
tion: gcd(mw, N) = 1 for all multiplicities mw of the irreducible exceptional divisors
in the minimal embedded resolution of f . Actually, we provide a large list of in-
equalities: we compare the signature with the Milnor number µf of f (topological
inequality), with the multiplicity νf of f (algebraic inequality) and the size of Gf
(combinatorial inequality) (cf. section 5). (Using any of these inequalities one can
prove the negativity of σ.)

The method is the following. We start with the relation which describes the
signature in terms of Dedekind sums (cf. 2.3). Using some properties of these
Dedekind sums, in section 3 we transform this relation in some inequalities ex-
pressed in terms of the combinatorics of the embedded resolution graph Gf of f .
These inequalities are verified in section 4.

Now we come to our second point. This is less precise but more important (for
the author). We are searching for an answer to the following question: what is
special in the hypersurface case? Why does the Milnor fiber of a hypersurface have
negative signature and a non-hypersurface maybe not? From the present paper
we learn that the answer is in the particular form of the embedded resolutions of
hypersurface singularities. In the two dimensional case (i.e., when f : (X,x) →
(C, 0), with (X,x) normal surface singularity) we can be more precise: all the
combinatorial relations (which imply our inequalities) proved in section 4 for plane
curve singularities (i.e., with X smooth) distinguish these hypersurface germs from
the general class of germs of functions defined on a normal surface singularity
(cf. 4.25). The author expects that similar relations are valid in higher dimension,
and they are responsible for the particular behaviour of hypersurface singularities.

Something more about the relation σ(f + zN) = η(f ;N) − Nη(f ; 1). Since
η(f ;N) is periodic in N , limn→∞(σ(f + zN)/N) = −η(f ; 1), and any estimate for
η(f ; 1) will provide inequalities for σ when N is large. In particular, any inequality
of type σ(f +zN) ≤ c ·N (c constant) with c > −η(f ; 1) is “weak” for large N , but
can be very difficult for small N , because of the very irregular behaviour of η(f ;N)
(i.e., of the Dedekind sums). Moreover, any inequality of type σ(f + zN) ≤ c · If ,
(where If = µf , or νf or any invariant of f), can be very weak for f with If large,
but very sharp for germs at the beginning of the classification list. For germs with
If small, in order to verify an inequality as above, the periodic term η(f ;N) must
be really computed. This explains the form of our inequalities in section 4 (and
the difficulties in their proofs).

Finally, we mention the papers of Y. Xu and S. S.-T. Yau [19], [20], where
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they verified the inequality (∗) (actually, even a stronger version) in the case of
quasi-homogeneous germs g : (C3, 0)→ (C, 0).

2. σN in terms of the embedded resolution graph of f

In this section we introduce some notations and we recall one of the main results
of [10].

Let f : (C2, 0) → (C, 0) be a germ of an analytic function which defines an
isolated singularity at the origin. We consider an embedded resolution φ : (Y, D)→
(C2, f−1(0)) of (f−1(0), 0) ⊂ (C2, 0) (here D = φ−1(0))). Let E = φ−1(0) be
the exceptional divisor and let E = ∪w∈WEw be its decomposition in irreducible
divisors. If f =

∏
a∈A fa is the irreducible decomposition of f , then D = E ∪

∪a∈ASa, where Sa is the strict transform of f−1
a (0). Let Gf be the resolution

graph of f , i.e., its vertices V = W
∐
A consist of the non-arrowhead vertices

W (corresponding to the irreducible exceptional divisors), and arrowhead vertices
A (corresponding to the strict transform divisors of D). We will assume that
no irreducible exceptional divisor has an autointersection and W 6= 0. If two
irreducible divisors corresponding to v1, v2 ∈ V have an intersection point, then
(v1, v2) (= (v2, v1)) is an edge of Gf . The set of edges is denoted by E . Since Gf
is a tree, one has

#W + #A = #E + 1. (2.1)

For any w ∈ W, we denote by Vw the set of vertices v ∈ V adjacent to w. The
graph Gf is decorated by the self-intersection (or Euler) numbers ew := Ew · Ew
for any w ∈ W.

For any v ∈ V, let mv be the multiplicity of f ◦ φ along the irreducible divisor
corresponding to v. In particular, for any a ∈ A, one hasma = 1. The multiplicities
satisfy the following relations. For any w ∈ W one has

ewmw +
∑
v∈Vw

mv = 0. (2.2)

These relations determine the multiplicities {mw}w∈W in terms of the self-inter-
section numbers {ew}w.

It is convenient to use the following notations:
(a) for any w ∈ W, we define Mw := gcd (mw,mv1 , . . . ,mvt), where Vw =
{v1, . . . , vt}; and

(b) for any e = (v1, v2) ∈ E , we define me := gcd (mv1 ,mv2).

For any a ∈ A, there exists exactly one wa ∈ W such that (a,wa) ∈ E .

With these notations one has (cf. also [12], Proposition 2.5).
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2.3. Theorem. [10] Let f : (C2, 0)→ (C, 0) be an isolated plane curve singularity
as above. Then the signature σN of the Milnor fiber of the suspension f(x, y) + zN

is
σN = η(f ;N)−N · η(f ; 1),

where

η(f ;K) = #A− 1 +
∑
e∈E

(
(K,me)− 1

)
−
∑
w∈W

(
(K,Mw)− 1

)
+

+4 ·
∑
w∈W

∑
v∈Vw

mw∑
k=1

((
kmv

mw

))
·
((

kK

mw

))
.

Notice also that K 7→ η(f ;K) is a periodic function.

3. σN via the reciprocity law of Dedekind sums

In this section we will use the generalization of the reciprocity law of Dedekind given
by Rademacher [14], [21] in order to rewrite theorem (2.3). In the new expression
all the Dedekind sums will have the integer N in the denominator. We separate
the needed notations and facts about the Dedekind sums in the appendix.

We start with the following easy remark. If g : V × V → R is an arbitrary
function, then∑

w∈W

∑
v∈Vw

g(w, v) +
∑
a∈A

g(a,wa) =
∑

(u,v)∈E

(
g(u, v) + g(v, u)

)
. (3.1)

Since s(mwa , N ;ma) = 0 for any a ∈ A (because ma = 1), (3.1) gives

4
∑
w∈W

∑
v∈Vw

s(mv, N ;mw) = 4
∑

(u,v)∈E

[
s(mv, N ;mu) + s(mu, N ;mv)

]
. (3.2)

Using the reciprocity law (A.2), this expression is equal to∑
e=(u,v)∈E

[
−4s(mu,mv;N)− (N,me) +

N2m2
e +m2

u(N,mv)2 +m2
v(N,mu)2

3Nmumv

]
.

Using this equality, the formula of the eta-invariant η(f ;N) given in (2.3) can be
transformed in

η(f ;N) = #A− 1−#E −
∑
w∈W

(
(N,Mw)− 1

)
− 4

∑
(u,v)∈E

s(mu,mv;N)+

∑
(u,v)∈E

N

3
m2
e

mumv
+

1
3N
·

 ∑
(u,v)∈E

mu(N,mv)2

mv
+
mv(N,mu)2

mu

 . (3.3)
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For the last sum we apply (3.1), (2.2) (and ma = 1), hence it can be replaced by∑
w∈W

∑
v∈Vw

mv(N,mw)2

mw
+
∑
a∈A

mwa(N,ma)2

ma
=
∑
w∈W

(−ew)(N,mw)2 +
∑
a∈A

mwa .

Using (2.1) and the above identity, (3.3) reads

η(f ;N) = −#W −
∑
w∈W

(
(N,Mw)− 1

)
− 4

∑
(u,v)∈E

s(mu,mv;N)+

∑
(u,v)∈E

N

3
m2
e

mumv
+

1
3N

[∑
w∈W

(−ew)(N,mw)2 +
∑
a∈A

mwa

]
.

(3.4)

The periodicity of η(f ;N) and (3.4) applied for N = 1 provide:

3.5. Theorem.

lim
N→∞

−σN
N

= η(f ; 1) = −#W +
1
3

∑
(u,v)∈E

m2
e

mumv
+

1
3

[∑
w∈W

(−ew) +
∑
a∈A

mwa

]
.

The expression σN = η(f ;N)−N ·η(f ; 1) of Theorem (2.3) transforms into the
following formula:

3.6. Theorem.

σN = (N − 1) ·#W −
∑
w∈W

(
(N,Mw)− 1

)
− 4

∑
(u,v)∈E

s(mu,mw;N)+

1
3N
·
∑
w∈W

(−ew)
[
(N,mw)2 −N2]+

1−N2

3N

∑
a∈A

mwa .

It is interesting to consider some particular cases:

3.7. Corollary.
a) Assume that (N,mw) = 1 for any w ∈ W. Then

σN = (N − 1) ·#W − 4
∑

(u,v)∈E
s(mu,mv;N)+

1−N2

3N

[∑
w∈W

(−ew) +
∑
a∈A

mwa

]
.

b) Assume that N = 2. Then

σ2 = #
{
w ∈ W : 2 -Mw

}
− 1

2

∑
w∈W
2-mw

(−ew) +
∑
a∈A

mwa

 .
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Now, for (3.7.a) we can apply the inequality (A.3) and (2.1), and we obtain:

3.8. Corollary. Assume that (N,mw) = 1 for any w ∈ W. Then

σN ≤
1−N
N

(
#W + #E

)
+

1−N2

3N

[
−4#W −#A+ 1 +

∑
w∈W

(−ew) +
∑
a∈A

mwa

]
.

We would like to have a similar inequality for arbitrary N . We start with the
following lemma:

3.9. Lemma. There exists a one-to-one function l : W → E such that l(w) =
(w, v) for some v ∈ V.

The proof is easy and is left to the reader.

Notice that (A.4) provides for l(w) = (w, v)

−4 · s(mw,mv;N) +
1

3N
(
(N,mw)2 −N2) ≤ 0. (3.10)

Therefore, by (3.10) and (A.3) one has

−4
∑

(u,v)∈E
s(mu,mv;N) +

1
3N
(
(N,mv)2 −N2) ≤

−4 ·
∑

(u,v)∈E
(u,v)/∈l(W)

s(mu,mv;N) ≤ (N − 1)(N − 2)
3N

(#A− 1).

This inequality and (3.6) give:

3.11. Corollary. For any N the following inequality holds:

σN ≤ −
∑
w∈W

(
(N,Mw)− 1

)
+

1
3N
·
∑
w∈W

(−ew − 1)
[
(N,mw)2 −N2]

+
1−N
N

#E +
1−N2

3N

[
− 3#W −#A+ 1 +

∑
a∈A

mwa

]
.

This inequality simplified reads as:

3.12. Corollary.
a) For any N ≥ 1

σN ≤
1−N
N

#E +
1−N2

3N

[
− 3#W −#A+ 1 +

∑
a∈A

mwa

]
.
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b) If N − 1 ≥ B(f) :=
[∑

w∈W(−ew − 1)(m2
w − 1)

]
/(3#E) then:

σN ≤
1−N2

3N

[
− 4#W −#A+ 1 +

∑
w∈W

(−ew) +
∑
a∈A

mwa

]
.

Proof. Use −ew − 1 ≥ 0, and (N,mw)2 −N2 ≤ (m2
w − 1 + (1−N2). �

All our inequalities ((3.8), (3.12), cf. also (3.5) and (3.7.b)) give estimates of
type (−σN )/(N − 1) ≥ {combinatorial expression in terms of Gf}. In the next
section we will study these expressions.

4. Inequalities satisfied by the minimal resolution graph of f

I. Preliminaries

Let f : (C2, 0) → (C, 0) be an isolated plane curve singularity. Let Gf be its
minimal embedded resolution, with the convention that #W 6= ∅, (which in the
sequel will be shortly called resolution). We will keep the notations of section 2 for
the numerical invariants of Gf . Recall that, for any arrow a ∈ A, wa ∈ W is the
unique vertex adjacent with a, and mwa is its multiplicity.

In this section we will present some properties of

Mr
f :=

∑
a∈A

mwa − r ·#W(Gf ) (r = 2, 3, 4),

which distinguish the plane curve singularities among the singular germs f :
(X,x) → (C, 0) defined on a normal surface singularity (X,x) (cf. 4.32). We will
compare Mr

f with the Milnor number µf of f (topological inequality), with the
multiplicity νf of f (algebraic inequality), and with the size of Gf (combinatorial
inequality).

It is convenient to use the following notation: if two germs f and g have the
same topological type, in particular, the same minimal embedded resolution graph
Gf = Gg, then we write f ∼ g. (Notice that f can have large modularity, but Gf
depends only on the topological embedding (f−1(0), 0) ⊂ (C2, 0).)

We recall the structure of Gf when f is irreducible. Assume that f has New-
ton pairs (pi, qi)si=1 (pi ≥ 2, qi ≥ 1, q1 > p1). The minimal embedded resolution
graph of y(xpi + yqi) (qi ≥ 1, pi ≥ 2) has the following form:
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where uli and vli (u0
i , v

0
i ≥ 1, and uli, v

l
i ≥ 2 for l > 0) are given by the continuous

fractions:

pi
qi

= u0
i −

1

u1
i −

1
. . . − 1

utii

;
qi
pi

= v0
i −

1
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i −

1
. . . − 1

vrii

.

The graph Gf can be reconstructed (by splicing) from the graphs of y(xpi + yqi)
and the numbers u0

i as follows ([5] Appendix of chap. 1, and section 22):
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s

In particular

#W(Gf ) =
s∑
i=1

#W(Gy(xpi+yqi)). (4.1)

If qi = 1, then
#W(Gy(xpi+y1)) = pi. (4.2)

For qi ≥ 2 we have the following estimate:

4.3. Lemma. Assume that f ∼ xp + yq or f ∼ y(xp + yq), with (p, q) = 1, p ≥ 2,
q ≥ 2. Then

#W(Gf ) ≤ (p+ q + 1)/2.

Proof. First notice that Gxp+yq and Gy(xp+yq) differ only by an arrow, so the
number of their vertices agrees. We will use the induction over the pair (p, q).
Assume that q > p. If q = p+ 1, then 2#W(Gf ) = p + q + 1. Assume q ≥ p+ 2.

Consider the blowing up (u, v)
φ→ (x, y) = (uv, u). Then f̃ = f ◦φ = up(vp+uq−p).
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Now, by the inductive step and the above remark: #W(Gf ) ≤ 1+(p+q−p+1)/2 ≤
(p+ q + 1)/2. �

The unique arrow of Gf corresponds to A = {a}, and

mwa = asps, (4.4)

where as can be computed inductively as follows:

a1 = q1, and for i ≥ 1 : ai+1 = qi+1 + pipi+1ai. (4.5)

Now, assume that f is not irreducible: f =
∏
a∈A fa, where fa’s are irre-

ducible and #Af > 1 (Af := A(Gf )). It is convenient to fix an ordering of the
set A.

In the next lemmas, we would like to compare the graphs Gf and Gfa ’s. Recall
that for any germ g, Gf denotes its minimal embedded resolution graph. If we
want to emphasize that a certain invariant is considered in a graph G, then we put
G in a parenthesis near the corresponding invariant.

If E is one of the irreducible exceptional divisors of the embedded resolution
φ : (Y, D) → (C2, f−1(0)) of f−1(0), and g : (C2, 0) → (C, 0) is any germ, then
mE(g,Gf ) denotes the multiplicity of g◦φ along E. In particular, if Ea corresponds
to wa ∈ W in the graph Gf , then mEa(f,Gf ) = mwa(Gf ) = mwa . If a 6= a′

(a, a′ ∈ Af ), then (cf. e.g. [3]): mEa(fa′) = ν(fa, fa′), where ν( , ) denotes the
intersection multiplicity at the origin. With these notations one has∑

a∈A
mwa(Gf ) =

∑
a∈A

mEa(fa, Gf ) + 2
∑
a<a′

ν(fa, fa′). (4.6)

LetGfa denote the minimal resolution graph of fa. By our conventionmwa(Gfa)
is the multiplicity of fa along the irreducible divisor (in Gfa) which intersects the
strict transform of fa = 0.

We say that two germs are “tangent” if their tangent cones at the origin have
a common line.

4.7. Lemma. Assume that f = g · f0 and f ′ = g · f ′0 such that f0 ∼ f ′0 are
topologically equivalent irreducible germs, and f ′0 and g are not “tangent”. Then

(a)
∑
a∈Af

mEa(fa, Gf )− 2#W(Gf ) ≥

∑
a∈Af′

mEa(f ′a, Gf ′)− 2#W(Gg)−

2#W(Gf0) + 2 + 2T + T ′,
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(b)
∑
a∈Af

mEa(fa, Gf ) + 2ν(g, f0)− r#W(Gf ) ≥

∑
a∈Af′

mEa(f ′a, Gf ′) + 2ν(g)ν(f0)−

r#W(Gg)− r#W(Gf0) + r + (r + 2)T + 2T ′,

where r = 3 or 4, and T = T ′ = 0, unless f0 is a non-smooth (resp. smooth)
component tangent with a non-smooth component of g, in which case T = 1
(resp. T ′ = 1).

Proof. Let φ1 : (Y, E) → (C2, g−1(0)) be the minimal resolution of g−1(0) with
exceptional divisor E (and W 6= ∅). Let X0 be the strict transform of f−1

0 (0)
via φ1. Let φ2 be the minimal resolution of (Y, E ∪ X0) at the point E ∩ X0.
Notice that φ2 can be considered as a “part” of the minimal resolution tower of
(C2, f−1

0 (0)). Set φ = φ1 ◦ φ2, and let Z0 (resp. Za) be the strict transform of
{f0 = 0} (resp. of the irreducible component {ga = 0} of g) via φ.

Assume that Z0 ∩ Za = ∅ for any a ∈ Ag. First notice that φ provides
Gf , φ1 provides Gg, and the number of irreducible exceptional divisors of φ2 is
≤ #W(Gf0)− 1.

Now we claim that the following inequalities hold (with k = 0):

(i)
∑
a∈Af

mEa(fa, Gf ) ≥
∑
a∈Af ′

mEa(f ′a, Gf ′) + T ′ + 2k

(ii) #W(Gf ) ≤ #W(Gg) + #W(Gf0)− 1− T + k

(iii) ν(g, f0) ≥ ν(g)ν(f0) + T + T ′ + k.

Indeed, in general
∑
a∈AfmEa(fa, Gf ) ≥

∑
a∈Af ′mEa(f ′a, Gf ′), but if f0 is smooth

tangent with g, then mEf′0
(f ′0, Gf ′) = 1. But mEf0

(f0, Gf ) ≥ 2, which gives (i).
For (ii) notice that #W(Gf ) ≤ #W(Gg) + #W(Gf0) − 1 (see above), but if two
non-smooth components are tangent, then they have at least two common infinitely
near points, so the minimal resolution graph satisfies (ii); (iii) is obvious.

Now assume that Z0 ∩ Za = P for some a ∈ Ag. Let D be the irreducible
exceptional divisor of φ with P ∈ D. If the smooth germs Z0 and Za have contact
k (k ≥ 1), then we need k more blow ups. The last newly created exceptional
divisor is denoted by D′. Then we claim that the inequalities (i)–(iii) are valid.
Indeed: mD′(ga) = mD(ga) + k and mD′(f0) = mD(f0) + k, which proves (i), (ii)
follows by the same argument as above, and finally, (iii) follows, for example, from
Max Noether’s theorem (cf. e.g., [3]) which describes the intersection multiplicity
in terms of the multiplicity sequence.

Finally, notice that (i)–(iii) implies the lemma. �
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4.8. Lemma. Let f =
∏
a∈Af fa be the irreducible decomposition of f . Then

(a)
∑
a

mEa(fa, Gf )− 2#W (Gf ) ≥∑
a

[
mwa(Gfa)− 2#W(Gfa)

]
+ 2(#Af − 1) + 2T + T ′,

(b)
∑
a

mwa(Gf )− r#W(Gf ) ≥∑
a

[
mwa(Gfa )− r#W(Gfa )

]
+ r(#Af − 1)+

2
∑
a<a′

ν(fa) · ν(fa′) + (r + 2)T + 2T ′,

where r = 3 or 4, and T = T ′ = 0 unless f has a non-smooth irreducible
component tangent to some other non-smooth (resp. smooth) component,
in which case T = 1 (resp. T ′ = 1.)

Proof. The proof is over induction. We replace step by step all the irreducible
components fa of f (starting with the smooth ones) by f ′a such that fa ∼ f ′a and
the tangent cone of f ′a is in a generic position with respect to the tangent cone of
the other components. The inductive step is provided by (4.7). With the notation
of (4.7), notice that

#W(Gf ′) = #W(Gg) + #W(Gf ′0)− 1. (4.9)

Therefore, (4.7.a) reads ∑
a

mEa(fa, Gf )− 2#W(Gf ) ≥∑
a

mEa(f ′a, Gf ′)− 2#W(Gf ′) + 2T + T ′.
(4.10)

Moreover, using (4.6) and (4.9), (4.7.b) reads∑
a

mwa(Gf )− r#W(Gf ) ≥∑
a

mwa(Gf ′)− r#W(Gf ′) + (r + 2)T + 2T ′.
(4.11)

So induction can be applied. Finally, notice that if the components of f have all
distinct tangent cones, then ν(fa, fa′) = ν(fa) · ν(fa′), mEa(fa, Gf ) = mwa(Gfa),
and #W(Gf ) =

∑
a #W(Gfa) − (#Af − 1). Hence the lemma follows (again

by 4.6). �
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II. Examples

We are interested in the following expressions:
Etop
f :=

∑
amwa − 2#W(Gf )−#A+ 1− (µf − 2),

Ealg
f :=

∑
amwa − 3#W(Gf )− (ν2

f − 2νf − 3),
Ecom
f :=

∑
amwa − 4#W(Gf )−#A+ 1.

The following table gives these invariants of the following plane curve singu-
larities: f ∼ x (i.e. f smooth), f ∼ x2 + y2k+1, (A2k, k ≥ 1), f ∼ x3 + y3k+1,
(E6k, k ≥ 1), f ∼ x3 + y3k+2, (E6k+2, k ≥ 1), f ∼ x2 + y2k, (A2k−1, k ≥ 1),
f ∼ (x2 + y2k+1)(y2 + x2l+1), (A2k,2l, k ≥ 1, l ≥ 1), f ∼ y(x2 + y2k+1), (D2k+3,
k ≥ 1).

f ∼ #A
∑
amwa #W Etop

f Ealg
f Ecom

f

∑
(−ew)

smooth 1 1 1 1 2 −3 1
A2k 1 2(2k + 1) k + 2 0 k − 1 −6 2k + 4
E6k 1 3(3k + 1) k + 3 k − 1 6k − 6 5k − 9 2k + 7
E6k+2 1 3(3k + 2) k + 3 k 6k − 3 5k − 6 2k + 7
A2k−1 2 4k k 2 k + 3 −1 2k − 1
A2k,2l 2 4l+ 4k + 12 k + l + 3 0 k + l + 2 −1 2k + 2l+ 7
D2k+3 2 4k + 7 k + 2 1 k + 1 −2 2k + 4

The Milnor number in the case of A2k,2l is 2k+ 2l+ 7, in other cases is exactly
the corresponding index.

III. The topological inequality

4.12. Theorem. If Gf is the minimal embedded resolution graph of f , and µ is
the Milnor number of f , then

(a) Etop
f :=

∑
a∈A

mwa − 2#W(Gf )−#A+ 1− (µ− 2) ≥ 0.

If f 6∼ An (n > 1), A2k,2l (k ≥ 1, l ≥ 1), D2k+3 (k ≥ 1), E6, then

(b)
∑
a∈A

mwa − 4#W(Gf )−#A+ 1 +
∑
w∈W

(−ew) ≥ µ.

Proof. Assume that f is irreducible with s = 1 and Newton pair (p, q). By (4.3)
and (4.4), mwa − 2#W ≥ pq − (p+ q + 1) = µ− 2. Assume that s ≥ 2 (cf. I). Let
f(l) be a germ with Newton pairs (pi, qi)l1=1, (1 ≤ 1 ≤ s). Notice that

µ(f(l)) = (al − 1)(pl − 1) + pl · µ(f(l−1)). (4.13)
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First consider the expression P(l) := plal−µ(f(l)). Then P(1) ≥ 4 and for l ≥ 2:
P(l) − plP(l−1) = pl + ql − 1 ≥ 2. Therefore P(l) ≥ P(l−1) + 2, hence by induction
P(l) ≥ 2 + 2l for any 1 ≤ l < s.

Now, by (4.1): Etop
f(l)−E

top
f(l−1) = plal−pl−1al−1−2#W(Gy(xpl+yql ))−µ(f(l))+

µ(f(l−1)). If ql ≥ 2 then by (4.3), (4.5) and (4.13): Etop
f(l)−E

top
f(l−1) ≥ (pl−1)P(l−1)−

2 ≥ P(l−1) − 2. The same inequality is valid in the case ql = 1 (use (4.2) instead
of (4.3)). Therefore Etop

f(l) −E
top
f(l−1) ≥ 2l− 2 for any 2 ≤ l ≤ s, which gives:

for irreducible f one has: Etop
f ≥ s(s− 1). (4.14)

Now assume that f =
∏
a fa. First recall that

µ(f) =
∑
a

µ(fa) + 2
∑
a<a′

ν(fa, fa′)−#A+ 1. (4.15)

Now, (4.6), (4.8.a) and (4.15) gives:

Etop
f ≥

∑
a

Etop
fa

+ 2T + T ′ (cf. (4.8) for notations). (4.16)

Therefore (a) follows from (4.14) and (4.15). In order to prove (b) we need to verify
that

Etop
f +

∑
w∈W

(−ew)− 2#W ≥ 2, (4.17)

excepting the four cases given in the hypothesis. Consider the invariant I(G) =∑
w(−ew)− 2#W associated with any graph G. After a blow up, #W increases 1,

and
∑

(−ew) with 2 or 3. Therefore, for any G, I(G) ≥ −1, but if we blow up at
least one node of the exceptional divisor, then I(G) ≥ 0. Therefore, if f has at
least one factor with ν(fa) ≥ 2, then

I(Gf ) ≥ 0; and I(Gf ) = 0⇐⇒ f ∼ A2k. (4.18)

Assume that (4.17) is not true for f . If f is irreducible, then ν(f) ≥ 2, hence
by (4.14) and (4.18) s = 1. For ν(f) ≥ 4, one has I(Gf ) ≥ 2, hence by (II)
f ∼ A2k or E6. (In fact, if s = 1, then I(Gf ) = #W − [q/p]− 2.)

Assume that #A > 1, and let S be the number of smooth components. Since
Etop

smooth = 1, one has S ≤ 2. If S = 2, then by (4.18) we can have no other
component, hence f ∼ A2k−1. If S ≤ 1, then by (4.18) I(Gf ) ≥ 0, hence all the
tangent lines are distinct (by 4.16). In this case

I(Gf ) =
∑
a

I(Gfa) + #A− 1. (4.19)

So, if S = 1, then (4.18), (4.19) and Etop
smooth = 1 implies f ∼ D2k+3. If S = 0, then

similarly: f ∼ A2k,2l. �
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IV. The algebraic inequality

4.20. Theorem. If Gf is the minimal embedded resolution graph of f and ν is
the multiplicity of f , then

(a) Ealg
f :=

∑
a∈A

mwa − 3#W(Gf )− (ν2 − 2ν − 3) ≥ 0,

(b)
∑
a∈A

mwa − 3#W(Gf )−#A+ 1 ≥ 0.

Proof. The proof is similar as the proof of (4.12). First recall that if f is irreducible,
then ν = p1 . . . ps (recall p1 < q1). If s+1, then Ealg ≥ 0 by (II) if p1 = 2 or 3, and
by (4.3) if p1 ≥ 4. If s ≥ 2, then Ealg

f(l)
≥ Ealg

f(l−1) by a similar argument as in (4.12).

If f =
∏
fa, then by (4.8.b) Ealg

f ≥
∑
aE

alg
fa

. This last inequality, together with
table (II), shows (b) in the case ν ≤ 3. If ν > 3, then ν2 − 2ν − 3 ≥ #A− 1. (The
details are left to the reader.) �

V. The combinatorial inequality

4.21. Theorem. Let Gf be the minimal embedded resolution graph of f .

(a) Assume that f 6∼ An (n ≥ 1), E6, E8, A2k,kl (k ≥ 1, l ≥ 1), D2k+3 (k≥ 1).
Then

Ecom
f :=

∑
a∈A

mwa − 4#W(Gf )−#A+ 1 ≥ 0.

(b) Ecom
f ≥ −6 for any f , and Ecom

f ≥ #A(#A− 1)− 4 if #A ≥ 2.

Proof. For irreducible f with s = 1: Ecom
f ≥ −6, and for p1 ≥ 4: Ecom

f ≥ 0 (use the
table (II) and (4.3)). By a similar inductive step as in (4.12) Ecom

f(l)
≥ Ecom

f(l−1)
+ 6.

Therefore
Ecom
f ≥ 6(s− 2) for irreducible f. (4.22)

If #A ≥ 2, write f = g · f0 with f0 irreducible. With the notation of (4.7.b), if
f ′a 6= f ′0, then mEa(f ′a, Gf ′) = mEa(f ′a, Gg), hence by (4.6) and (4.7.b):

Ecom
f ≥ Ecom

g +Ecom
f0

+ 2ν(g) · ν(f0) + 3 + 6T + 2T ′. (4.23)

Notice that Ecom
smooth = −3. Let S be the number of smooth components of f .

Assume #A = 2. If S = 2, then f ∼ A2k−1. (4.22) and (4.23) implies that if
S = 1, then either Ecom

f ≥ 0 or f ∼ D2k+3, and if S = 0, then either Ecom
f ≥ 0 or

f ∼ A2k,2l. In all cases Ecom
f ≥ −2.

Assume that #A > 2. Notice that Ecom
f0

+2ν(g)ν(f0) ≥ 2#Af −5, hence (4.23)
gives Ecom

f ≥ Ecom
g + 2(#Af − 1), which provides (b). �
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VI. Remarks

4.24. In the previous inequalities the minimality of the resolution graph Gf is
necessary. With some additional blow ups, we may keep the invariants µ, ν, mwa

constant, but increase #W arbitrarily high.

4.25. If we want to formulate in a very simple form the above results proved for
plane curve singularities, then we can say that

∑
amwa is “large” with respect to

the other invariants. On the other hand, for general germs f : (X,x) → (C, 0)
(where (X,x) is a normal surface singularity) it is no longer true that

∑
amwa is

large. In particular, all the inequalities presented in this section are specific for
plane curve singularities, and the negativity of σ(f + zN) is provided exactly by
the existence of this type of relations in Gf . We expect that similar relations exist
for the embedded resolution of higher dimensional hypersurface singularities.

To see that in general
∑
mwa can be small, consider the following diagram with∑

mwa = 4, but with #W arbitrary high.

r r r r

r

r

@@

��

���

@@R

: : :

-2

-2

-2 -2 -2 -2(1)

(1)
(2) (2) (2) (2)

(1)

(1)

5. Inequalities satisfied by σN

For the convenience of the reader we recall the notations: #W (resp. #E) denotes
the number of vertices (resp. edges) of the minimal embedded resolution graph Gf
of f , Af is the number of irreducible components of f , νf is its multiplicity and
µf is its Milnor number.

I. Topological inequalities

Let εf be 1 if f ∼ An (n ≥ 1), A2k,2l (k ≥ 1, l ≥ 1), D2k+3 (k ≥ 1), E6, otherwise
εf = 0.

5.1 Theorem.

(a) σ(f + z2) ≤ −1
2
(
µf + #A− 1

)
.

(b) For any f and N :

σ
(
f + zN

)
≤ 1−N

N
#E +

1−N2

3N
(
µf −#W − 2

)
.
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(c) If N ≥ B(f) + 1 (cf. 3.12.b), then

σ
(
f + zN

)
≤ 1−N2

3N
(
µf − 3εf

)
.

(d) If (N,mw) = 1 for any w ∈ W(Gf ), then

σ
(
f + zN

)
≤ 1−N

N

(
#W + #E

)
+

1−N2

3N
(
µf − 3εf

)
and with the same assumption (below pg is the geometric genus):

σ(f + zN) ≤ −µ(f + zN )/3 or, equivalently:

pg(f + zN) ≤ µ(f + zN)/6.

Notice that in the inequality (5.1.a) the coefficient 1/2 of µ is the same as in
the inequality σ ≤ −µ/2− µ0 of Tomari [16].

Proof. By (2.2) there are at least two vertices w such that mw is odd, hence (3.7.b)
and (4.12.a) give (a). (b–c) follows from (4.12) and (3.12); and the first part of (d)
from (4.12) and (3.8).

Recall the standard relations (for a germ g : (C3, 0)→ (C, 0): µ = µ0+µ++µ−,
σ = µ+−µ− and 2pg = µ0+µ+. The hypothesis (N,mw) = 1 for any w implies that
µ0(f + zN) = 0 (use, e.g. A’Campo’s theorem about the characteristic polynomial
of f in terms of mw’s). Therefore σ ≤ −µ/3 is equivalent to pg ≤ µ/6. We already
know from the first part of (d) that these inequalities are valid for f 6∼ An, A2k,2l,
D2k+3, E6. In the sequel we verify these cases.

Let g : (C3, 0)→ (C, 0) be an isolated singularity with Milnor lattice Lg. Let gt
be a deformation of g such that g0 = g and gt, for t 6= 0 small, has k singular points
with Milnor lattices L1, . . . , Lk. Then there is a natural embedding⊕iLi ↪→ Lg. If c
is the codimension of this embedding, then σ(g) ≤ c+

∑
i σ(Li). In the suspension

case, any deformation ft of f provides an embedding in L(f + zN).
Now we verify the exceptional cases. If f ∼ An, then σ ≤ −µ/3 follows

from (5.1.a). Actually, (5.1.a) implies that (∗) σ(x2 + y2k+1 + zN) ≤ −k(N − 1).
If f ∼ D2k+3, then if we put the components in generic position, we obtain an
embedding A2k ⊕ A1 ⊕ A1 ↪→ D2k+3. Therefore σ(D2k+3 + zN) ≤ σ(A2k + zN) +
σ(A1 + zN) + (N − 1) ≤ −k(N − 1)− 2(N− 1) + (N − 1) < µ/3 (here we used (∗)).
If f ∼ A2k,2l, one has the embedding A2k ⊕ A2l ⊕ 4A1 ↪→ A2k,2l. Recall that
µ(A2k,2l) = 2k + 2l + 7. Now (∗) gives easily the result if k + l ≥ 4, otherwise we
use σ(x2 + y3 + zN) ≤ −4(N − 1)/3 (provided that (N, 2) = 1) which can be easily
verified by Brieskorn’s formula [2]. The case f ∼ E6 is again Brieskorn type and
its verification is left to the reader. �
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II. Algebraic and combinatorial inequalities, and the limit limn→∞−σN/N

Similarly, as in the “topological case”, we can give a list of inequalities correspond-
ing to the different cases. In the next theorem we present only a few; the interested
reader can formulate all the others.

5.2. Theorem. For any f and N :

σ(f + zN ) ≤ 1−N
N

#E +
1−N2

3N
(ν2
f − 2νf − 3−#A+ 1).

σ(f + zN ) ≤ 1−N
N

#E +
1−N2

3N
(#W + #A(#A− 1)− 6).

σ(f + zN ) ≤ 1−N
N

#E ≤ 0.

Proof. Use (3.12), (4.20) and (4.21).
Our first inequality in (5.2) is similar to the main result of [1].

5.3. Theorem. The limit limN→∞(−σN )/N = η(f ; 1) satisfies

η(f ; 1) ≥ (µf + #W + #A− 3 +B)/3,

where B :=
∑
w∈W(−ew)− 2#W ≥ −1; and also:

η(f ; 1) ≥ (3#W + #A− 8)/3.

Proof. Use (3.5) and (4.12).

III. Conjectures

For any f : (C2, 0)→ (C, 0) and N conjecturally, the following inequalities hold:

1. σ(f + zN) ≤ −N + 1
3N

µ(f + zN).

2. η(f ; 1) + η(f ;N)− η(f ;N + 1) ≥ 0,

(which would imply the monotonity: σN+1 ≤ σN ).

3. η(f ; 1) + η(f ;N)− η(f ;N + 1) ≥ µf/3,

(which would imply, for example, the inequality σ ≤ −µ/3 for f + zN).
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Appendix

In this appendix we separate some properties of the generalized Dedekind sums [14],
[21]. They are defined for arbitrary non-zero integers a, b, c by

s(b, c; a) =
a∑
k=1

((
kb

a

))((
kc

a

))
,

where ((x)) is the usual function defined via the fractional part {x} as

((x)) =
{ {x} − 1/2 if x /∈ Z

0 otherwise.

Below (a1, . . . , an) denotes the greatest common divisor of these numbers. By a
similar argument as in [10] (A.1), one can prove that

s(b, c; a) = (a, b, c) · s
(
b(a, b, c)

(a, b)(b, c)
,
c(a, b, c)

(a, c)(b, c)
;
a(a, b, c)

(a, b)(a, c)

)
. (A.1)

The famous generalization of the reciprocity law of Dedekind, given by Rademacher
[14] (see also [21]), asserts that if a, b, c are strict positive, mutually coprime inte-
gers, then s(b, c; a)+s(c, a; b)+s(b, a; c) = −1/4+(a2+b2+c2)/12abc. Using (A.1),
this relation for arbitrary, strict positive integers reads

s(b, c; a) + s(c, a; b) + s(b, a; c) =

− (a, b, c)
4

+
a2(b, c)2 + b2(a, c)2 + c2(b, a)2

12abc
. (A.2)

The inequality (A.3) of [10] together with (A.1) of this paper provide:

Corollary. For any integers a, b, c (a > 0) one has:

| s(b, c; a) | ≤ (a− 1)(a− 2)
12a

. (A.3)

| s(b, c; a) | ≤ a2 − (a, b)2

12a
. (A.4)
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[4] A. Durfee. The Signature of Smoothings of Complex Surface Singularities. Math. Ann. 232

(1978), 85–98.
[5] D. Eisenbud and W. Neumann. Three-Dimensional Link Theory and Invariants of Plane

Curve Singularities. Ann. of Math. Studies 110. Princeton University Press, 1985.
[6] L.J. Mordell. Lattice points in a tetrahedron and generalized Dedekind sums. J. Indian

Math. 15 (1951), 41–46.
[7] A. Némethi. The equivariant signature of hypersurface singularities and etainvariant. Topol-

ogy 34 (1995), 243–259.
[8] A. Némethi. The eta-invariant of variation structures I. Topology and its Applications 67

(1995), 95–111.
[9] A. Némethi. The real Seifert form and the spectral pairs of isolated hypersurface singularities.

Compositio Math. 98 (1995), 23–41.
[10] A. Némethi. Dedekind sums and the signature of f(x, y) + zN . Selecta Mathematica, New

ser. 4 (1998), 361–376.
[11] W. Neumann. Splicing Algebraic Links. Advanced Studies in Pure Math. 8 (1986), 349–361,

(Proc U.S.-Japan Seminar on Singularities 1984).
[12] W. Neumann and J. Wahl. Casson invariant of links of singularities. Comment. Math. Helv.

65 (1991), 58–78.
[13] J.E. Pommersheim. Toric varieties, lattice points and Dedekind sums. Math. Ann. 295

(1993), 1–24.
[14] H. Rademacher. Generalization of the Reciprocity formula for Dedekind sums. Duke Math.

Journal 21 (1954), 391–397.
[15] H. Rademacher and E. Grosswald. Dedekind sums. The Carus Math. Monographs 16 (1972).
[16] M. Tomari. The inequality 8pg ≤ µ for hypersurface two-dimensional isolated double points.

Math. Nachr. 164 (1993), 37–48.
[17] J. Wahl. Smoothings of normal surface singularities. Topology 20 (1981), 219–246.
[18] Y. Xu and S.S.-T. Yau. The inequality µ ≥ 12pg − 4 for hypersurface weakly elliptic singu-

larities. Contemporary Math. 90 (1989), 375–344.
[19] Y. Xu and S.S.-T. Yau. Durfee’s conjecture and coordinate free characterization of homoge-

neous singularities. J. Diff. Geometry 37 (1993), 375–396.
[20] Y. Xu and S.S.-T. Yau. A sharp estimate of the number of integral points in a tetrahedron.

J. reine angew. Math. 423 (1992), 199–219.
[21] D. Zagier. Higher dimensional Dedekind sums. Math. Ann. 202 (1973), 149–172.
[22] C. Weber. (Ed.) Noeuds, tresses et singularités. Monographie No. 31 de L’Enseignement
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