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Abstract

Let X be a 3-dimensional oriented manifold and ketc ¥ be a knot. We assume that is an
integer homology sphere and’, K) has a plumbing representation. We denote the cyclicld
covering of X branched along by ¥ (K, n), and we assume that this manifold is integer homology
sphere as well. Ik denotes the Casson invariant, then we showt0at(K, n)) — n - A(X) can be
computed from homological information only. More precisely, we compute in terms of an eta-type-
invariant associated with the isometric structure of the knc000 Elsevier Science B.V. All rights
reserved.
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1. Introduction and the main result

If ¥ is a 3-dimensional oriented manifold such t&t( ¥, Z) = H.(S°, Z), we denote
its Casson invariant (see [1]) by X). If K c ¥ is a knot in X, then then-fold cyclic
covering of X branched along is denoted byX' (K, n). We would like to compute the
expression. (X (K,n)) — n - A(X) in terms of homological invariants of the covering,
provided that> (K, n) is an integer homology sphere as well.

In this note, if the group of coefficients of a homology group is not specified, then it
is C. SetX = X \ T, whereT is an open tubular neighborhood &f, and letX be
the infinite cyclic covering ofX determined by the natural homomorphism(X) —
Hi(X,7Z) = Z. In particular,Z acts freely as the group of covering transformations of
X. Its generator 4 induces the monodromy transformatian H1(X) — Hi(X). On
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the other hand, there exists a natural skew-symmetric non-singular cup product pairing
HY(X,0X)®? > H2(X,3X) = C [9]. By the duality H1(X,3X) = H1(X), we can
consider its duab: H1(X) ® H1(X) — C. Moreovem(t.x, t,y) = b(x, y) for anyx andy,

in particular, the systerfi = (Hl()?), b, t,) constitutes an isometric structure. Notice also
thatz, has no eigenvalue equal to one. The isometric structulefines a flat hermitian
bundle over the circles® with hermitian form+/—1 - » and monodromy,. In particular,
following Atiyah, Patodi and Singer [2], we can define its eta-invariant. Actually, for any
integern with the property det! — 1) # 0 (or equivalentlyH; (X (K, n)) = 0), we define

n(Z; n) in the following way. Consider the spectral decomposition

(H1(X), b) = @D (H1(X) . by)
X
provided by the operataf (i.e., (H1), is the generalizeg -eigenspace of’). Then the
eta-invariant)(Z; n) is defined by the suﬁZX n(Z; n),, where

(1— 2c) - signatur€ib, ) if x = e, 0<c <1,
n(Z;n)y = .

0 if |x]#1.
(In the above definition we used the fact that= 1 is not an eigenvalue af'. For the
definition of n in the general case, see [14]. Actually, fpr# 1, n(Z; n), is the eta-
invariant of Atiyah, Patodi and Singer associated with the cisdleand the flat bundle
over S with monodromyy and hermitian formdi, .)

The main result of this note is the following:

Theorem 1. Assume that the pairX, K) has a plumbing representatiqor equivalently,
if (X, K) is a graph knot, in the sense of Eisenbud and Neumann’s [agpkf the n-fold
cyclic covering ofY, branched along<, is integer homology sphere as well, then

ME(K,n) —n-M2)=3(n(T;n) —n-n(T; D). (%)

In the plumbing representation we allow non-connected plumbing graphs as well, or
equivalently, we allow disjoint union of splice diagrams.

This shows that in the above cases the Casson invariant behaves as a secondary invariant
with respect to the-fold cyclic (branched) coverings.

Remarks.

(1) The above theorem gives in homological terms the Casson invariant of any cyclic
covering of $° branched along a knok ¢ $3, which can be represented by
plumbing (or splice) diagram (sinc&s®) = 0).

(2) The formula from Theorem 2 shows that the functior- n(Z; n) (n with det(r! —

1) # 0) is periodic (cf. [14, Section 5]). Therefore,(ifZ, K) is a graph knot, then
n+— A(X (K, n)) is quasi-periodic (i.e., is a sum of a linear function and a periodic
function).

(3) The relation(x) makes sense even in the case of rational homology spheres (for the
left hand side, see generalization by Walker [26]). Hence, one can expect that it is
true even in that case.
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The first part of the proof of the theorem contains the reduction to the Seifert graph
case. The key steps of the proof are the relations (1) and (3) (proved in [6] and [14],
respectively). The first one relates the Casson invariant to the signature of the Milnor fiber
of a hypersurface singularity. The second one expresses this signature in terms of eta-
invariant, this is an index-theoretical result about the signature defect.

In Sections 3 and 4, we emphasize the arithmetical aspects. If a 3-maBifokth be
represented by a splice diagram, then there is an arithmetical formal&ofin terms of
the weights (see, for example, [13]). In this paper we give a different set of relations.

In Section 3, we express the eta-invarigiif; n) in terms of generalized Dedekind
sums [22,27] associated with the multiplicities of the plumbing graph of the(paiK )
(Theorem 2). This relation makes the connection between the Casson invariant, eta-
invariant and the Dedekind sums. In Section 4 we apply the Rademacher—Dedekind
reciprocity law in order to transform our relation into a deeper formula which describes
A(X (K, n)) in terms of the combinatorics of the graph and Dedekind sums (Theorem 3).
Here we discuss also the particular case of algebraic kabtX). This makes the
connection with the signature of hypersurface singularities and the result of Mordell [10]
about the number of lattice points in a (three-dimensional) tetrahedron.

2. Proof of Theorem 1

In the case of integer homology spheres, the plumbing representation is equivalent to
the representation i, K) in terms of splice diagrams [5]. Since the latter one is more
concise, in this proof we prefer this representation.

Reduction to the irreducible caseAssume that the splice diagram of (X, K) is not
connected:I" is the disjoint unionly U I, where I'y is connected and contains the
arrow corresponding to the knét. This means thak is the disjoint sumX1#X», where
K C X¥1. Moreover, X (K,n) = X1(K,n)#X#.--#X> (n copies of X»), hence by the
additivity theorem of Casson (see [1]):

ME (K, n)) —ni(X2) = r(Z1(K, n)) —ni(Z1).

On the other hand, the isometric structdreX, K) associated with the paitX, K) is
isomorphic to the isometric structufg >'1, K), hence the relatiotx) is true if and only if
it is true for connected diagrams.

In the sequel we assume that the splice diagfanf (X, K) is connected and > 1.

The irreducible case. Call a weight on an edge df “near” or “far” according to whether

it is on the end of the edge nearest to or further from the (unique) arrowhed@d of
(representingl). We recall the following results. (In the following two facts we assume
thatI" is minimal.)

Fact 1 [13]. Then-fold cyclic cover ofX branched alongk is an integer homology
sphereX (K, n) if and only ifn is prime to all near weights iff", and X (K, n) is then
represented by the splice diagram obtained frbnby multiplying each far weight by.
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Fact 2 [5, (11.2)]. (¥, K) is a fibered knot if and only if the multiplicities of all nodes are
non-zero, or equivalently, all the near weightslinare non-zero.

These give the following:

Corollary 1. The irreducible graph knotX, K) is fiberable if and only if there exists
n > 1 such that then-fold cyclic cover X (K, n) is an integer homology sphere. In
particular, we obtain the fiberability of>', K) in the main theorem.

If F denotes the fiber off \ T — S (which is isotopic to the minimal Seifert
surface ofK), thenX ~ F x R, hence:Z = (H1(F); (,); h), where (,) is the skew-
symmetric intersection form on the 2-dimensional manifBldand# is the monodromy
transformation of the fibration.

Notice that the grapl™ is not unique, but equivalent graphs [5, 8.1] give the same
invariantsi and»n, so we can choose (by [5, 8.1, Property 6]) a diagfasuch that each
vertex has a degree less than or equal to three (see also [13, p. 60]).

Now, if we have a multilink( X', K’(m)), represented by the grapH:

"
Fl

a
r >@C— m) K (e =+1)
b

1"
FZ

then we can consider its splice decomposition:

ry 4+—— m) Ky (0

a
¢ (m) K'

b

ry) +——— (am)Kj (0

and the splice diagram:
a
Tap.c(e,m): - (m) K'
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(Sometimes it is convenient to write= a1, b = az. Above, if I (i =1,2) is only a
vertex, then the diagraifi” — (a;m) is empty.)

Using the additivity of the Casson invariant under splicing, proved independently by
Akbulut and McCarthy [1], Boyer and Nicas [4] and Fukuhara and Maruyama (according
to [4]) (see also [13, p. 60]) one has:

MEZ(K',n) —n(Z")=A(Z(a, b, c)(K',n)) —ni(Z(a,b,c))

2
+ > M(EZ(K] ) — nn(Z]).
i=1

On the other hand, by a simple Mayer—Vietoris argument, the isometric structure
Z(I'’, K'(m)) splits in the direct (orthogonal) sum

2
@I(r/’, K/ (aim)) ® I(Lup.c(e,m), K'(m))
i=1
(see, for example, [5, pp. 114-116]). Therefore, in order to p¢e)gt is enough to prove
it for diagramsI, » (e, m), where(m, n) = 1 (cf. Fact 1), and the isometric structure is
provided by the fibration of the multilink structus’ (m).

Using [5, 8.1, Property 2], we can assume that 0, b > 0, ¢ > 0. Fact 2 gives that
a>0andb > 0. If c =0, then(a, b, ¢) = (1, 1, 0) and (by the classification theorem of [5])
¥ is $3 and the link is trivially embedded. Hence both sidegofare zero.

In the sequel assume that- 0, b > 0, ¢ > 0. By [5, 8.1, Property 1], we can assume
thatm > 0 as well. In the diagram = +1 denotes the orientation classXf if we change
¢ into —e then in (x) both sides will change their sign, so we can assumedhat-1
(cf. [5, p. 119)).

Notice that the left hand side ¢f), applied for the diagrani, , (1, m) is independent
of (the multilink structure)x. In the following lemma we prove the similar fact for the
right hand side.

Let F be the fiber of(I}, ..(1, 1), K(1)), b the intersection formk the monodromy
operator, and sét = (H1(F, k), b, h). Then the fiber of the multilink 5 (1, m), K (m))
is the disjoint unionF U --- U F' (m copies) and the corresponding isometric strucfiyye
is [5, p. 115]:Z,, = (H1(F, k)®™, b®"  h,,), whereh,, (x1, ..., xu) = (x2, X3, . . ., h(x1)).

Lemma 1. Assumethak > 0, (m,n) = 1, anddet(h” —1) # 0. Theny(Z,,,; n) = n(Z; n),
in particular:

Nmin) —n-n@m; D=nT;n) —n-n; 1.

Proof. Notice that the monodromy has distinct eigenvalues hence, o@the isometric
structureZ decomposes in a sum of one-dimensional hermitian isometric structures [8].
Therefore, it is enough to verify the above equality for a hermitian isometric structure
7 = (C,i,e*i¢), where O< ¢ < 1, andnc ¢ Z. In this case:

-1
T :né; (C,i,gmiet/m),
j=0

J
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hence:

m—1 .
N n) = Z (1—2{n . C;J }) =1-2{nc} =n(Z;n).

Jj=0

(Cf. (A.1) or Lemma 1 [23]. Abovéx} denotes the fractional part of) O

Remark 1. Itis not difficult to verify that for anyl” andm > 0 one has:
n(I(F, K(—m)); n) = n(Z(F, K(m)); n)

Indeed, the modificatiom — —m in the multilink structure provides the modification
(b, 1) — (—b, t;l) in the isometric structure. In particulagZ (I", K (m)); n) is indepen-
dent of the choice ofi € Z \ {0}.

By Lemma 1, we can assume that=1, i.e.,(¥ = X(a, b, ¢), K) is the Seifert knot
given by the diagranTy » (1, 1), wherea, b, ¢ are relative prime integers. Thefold
cyclic coveringX (K, n) is exactly ¥ (a, b, cn) (where(a,n) = (b,n) = 1). Now, by [6,
(2.10)]:

8-A(X(a, b, N)) = signaturex of the Milnor fiber of the hyper-
surface singularityx® + y? + zV. 1)

Let Z,» = (H,ba b, hap) be the isometric structure associated with the ket =
X(a,b,1),K,p) (given by the diagramiy ; 1(1,1)). Then (see, for example, [7])
(X(a, b, N), K) is the N-fold cyclic covering of(S3, Ka.p), in particular:

I(2(a,b,N),K) = (H,bap.h) ). )
Now, by [14, (5.22)]:

o(x + " +2V) = 0Zap: N) = N - 1(Zap: D). 3)
Therefore:

8[A(Z(K,n)) —ni(X)]
Lo+ 9P 27 —n- o (x4 yP + 2
D 0(Zai ne) = nen@ap; ) = n[n@ap ©) — cn(@aps 1]
=n(Za,p;nc) —nn(Za,p; c)
2@ n) - nn(T: D).

This ends the proof of Theorem 10

3. The eta-invariant via the plumbing graph

In this section we compute the eta-invariai{; n) of the isometric structur& =
Z(X, K) in terms of the combinatorial data of a plumbing graplof (X, K).
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First, we introduce some notations. Dat be the set of non-arrowhead vertices@®f
The knotK is represented i by an arrow attached to the vertexy € V. LetV be the set
of vertices:Y = Wu {vo}, whereuvg is the arrowhead correspondingko For anyw € W,
we denote by, the set of vertices € V adjacent tow. Sets,, = #V,, for anyw € W.

If 8§, > 2, thenw € W is called “rupture point”. The set of rupture points is denoted by
R. Let & be the set of edges (i.e., the set of non-ordered paing), u, v € V, such thai
adjacent ta).

Since X' is a homology spherei; is a tree. It is decorated by the Euler-numbers
ey (w € W). We recall that the plumbing construction provides a canonical orientation
of ¥, and an orientation oK: K is a fiber of the oriented circle bundle corresponding to
wo.

Recall that anym € H1(X \ K, Z)* defines a multilink structure of the pai&’, K)

(cf. [5, pp. 136-137]). ItM = M,, is the standard topological meridian & (i.e.,
(M, K) =1, wherd denotes the linking number), then M) = m,,, (which sometimes is
denoted only byn) is the multiplicity of the knotk ; and the mapS] — m([S]) is defined
by m([S]) =m - I(S, K). For anyw € W let M,, be an oriented fiber of the oriented circle
bundle (used in the plumbing construction) corresponding.tdhen the “multiplicity of
w” is:

my=m(Myl)=m-1(My, K). (3.1)
They satisfy the following relations: for any € WV one has

ey - My + Z my, =0. (3.2)

veVy

Lemma 2. Let (¥, K) andrn be as in the introduction; a plumbing graph of X, K),
andm = m,, = +1. Then one has

(@) (n,my)=1foranyw e R;

(b) (n,my,m,)=1forany(u,v) € &;and

(c) if G is minimal(see, for examplg5]), thenm, # 0 for anyv € V.

Proof. (a) The rupture points correspond to the Seifert components in a splice decompo-
sition. By the algorithm given in [5, p. 844, is a product of near weights. Now apply
Fact 1.

(b) Consider a chaifu, up, ..., us} of G (i.e.,ujy1 €V, fori=1,...,s —1;8,, =2
fori =2,...,5 — 1) such that{uy, us} = {u, v} andu, € R. Letd = (n, m,, my). Then
(3.2) applied for the nodes, ... ., u;_1 gives thatd|m,, . Therefored = 1 by (a).

(c) This follows from the fiberability condition; it is a reformulation of Fact 2 for
plumbing graphs. O

In the sequel it is convenient to use the following classical notation:

_ltxy -3 ifx¢z,
() {o * itrez
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Theorem 2. Let (¥, K) be as above, and its isometric structure. Le& be a plumbing
graph of (X, K) such thatm, # 0 for anyv € V. Fix a multilink structurem with m # 0.
Letn be an integer such thaX' (K, n) is a rational homology sphere. Then

nZ,n)=4. Z S, whereS,, = Z Im§1<<7wv>> , ((ﬁ:lj")) (s)

wew veV, k=1

Remark 2.

(a) Notice that by (3.1F,, is independent of the choice of. (This fact is consistent
with Lemma 1 and Remark 1.)

(b) Equivalent graphs (with the property,, # 0 for any w € W) provide the same
expressior)_,, Sy, i.e., the operations described on page 140 in [5] do not alter the
right hand side ofxx).

(c) By (#x), the functiom — n(Z; n) is periodic.

Proof of Theorem 2. The relations (3.2) imply that fow with §,, < 2 one has

Sw = 0. Therefore, the right hand sid&(G,n) =43, .y Sw Of (k%) is4- > 1 Sw.

This shows thatR(G,n) is additive with respect to splicing. On the other hand, we
can repeat the additivity argument of the eta-invariant used in the proof of Theorem 1
(namely [5, pp. 114-116]). These, and Remark 2(a), imply that it is enough the verify
the identityn(Z, n) = R(G, n) only for plumbing graphs corresponding to Seifert knots
(eX(as,...,as), K(1), whereay, ...,as > 0, a1 > 0, anda; is the far-weight of the
edge which has the arrow correspondingkto

If a1 =0, theng; =1 fori > 1 andn(Z; n) = 0. But the multiplicity of the unique
rupture pointist1, soR(G,n) = 0 too.

In the sequel we assume that, ..., as > 0. In the next paragraph we prove that the
cases = —1 follows from the case = +1.

Indeed, if G({ew}weyy, K(1)) is the decorated plumbing graph associated with
(+X(a1,...,as), K1), thenG({—ey}wew, K((—1)")) is a possible decorated graph of
(—=X(a1,...,as), K(1)), wherer is the number of vertices in the chain (strict) between
the rupture point and the arrow-head [11, (3.3)}=If denotes the corresponding multi-
plicities fore = +£1, then by (3.2)m, € {m;", —m’} foranyv € V, and

— +

m m
L =— i forany(u,v) € €.
ny ny

ThereforeR(G(—¢),n) = —R(G(+¢),n). But n(Z(—X, K); n) = —n(Z(X, K); n) (be-
cause the change of the orientation provides the modific&tion) — (b, t;1)). Hence
the reduction follows.

Now consider the kno(X(ay,...,as), K(1)). This is an algebraic knot (see, for
example, [5, p. 62]): there exist an analytic normal surface singuléfityx) and an
analytic germf : (X, x) — (C, 0) such that(X N S, f~1(0) N S,) is diffeomorphic to
(X, K), whereS, = p~1(r) for a sufficiently small- > 0 and real analytic map: X —
[0, 0o) with p~1(0) = {x}.
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In the sequel we would like to apply the results of [14, Sections 5.16-5.22] and [15].
These are formulated for hypersurface singularities. In their proofs we used two
ingredients: the variation map associated with the g¢ries an isomorphism (over real
numbers), and the polarization properties of the limit mixed Hodge structure of the
vanishing cohomology of . In our new situation heréf N S, = X' is an integer homology
sphere, therefore the variation mapofwhich is equivalent to the Seifert form &f c X
by Alexander duality) is unimodular. On the other hand, all the polarization properties
of the mixed Hodge structure are valid in this case as well, see, for example, [25,17,
15]. (Actually, in our case the monodromy operator has no eigenvalugs so the
limit mixed Hodge structure of the vanishing cohomology has the same nice polarization
properties as the limit mixed Hodge structure associated with degeneration of projective
fibers.) In particular, the results described in [15] and [14, (5.16-5.22)] are true for germs
f:(X,x)— (C,0) as well, provided tha’ N S, is a homology sphere.

Notice that defr, — 1) # 0 and detr — 1) # 0, hence (5.20-5.21) in [14] reads as:

n(T;n) =2 ((10)(Zpr,—(f) = Tpr+(),

where the sum is over all eigenvalues- e27 (0 < ¢ < 1) of the monodromy operator;
and

Zpa+(f) =#|c: cis a spectral number of with . = e 2"¢, (-l = +1}.

On the other hand, the set of spectral numbers (or the characteristic nurBpgefs)
Z[Q] associated withf is computed from the plumbing graph (or equivalently from the
embedded resolution graplt’, f~1(0))) in [24,21]. Proposition 6.5 and Remark 2.11
of [21] give:

SR(f) = Zgjié(( - mi> " (mi»

my—1

SEE L] L) (k)

s (X

wherem, = (m,, m,) foranye = (u, v) € £. Since

£((2)-

the contribution fron€ is zero inn(Z; n), and by a computation:

1Tm=4-3 Y mf{%((%))

weWvey,, k=1
This is equivalent t@xx) because of (3.3). O

Remark 3. Assume that X, K) is represented by a splice diagram Then the right
hand side of(xx) can be computed (without the construction of the whole plumbing
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graph) as follows [12]. We need for any € R the multiplicities {m,},cy, (modulo

my). The rupture points of the plumbing diagram, which can be constructed by the
algorithm described in [5], correspond to the Seifert componentg offf w € R
corresponds to the Seifert componéBt(as, ..., as); m1K1 U ---UmsKs), thenm,, =
Zf.zl ar---a;---asmj, and the neighbor vertex corresponding to the edge marked with
aj (j=1,...,8) has a multiplicity, which is module:,, equal to(m ; — 8;m,,)/a;, where

the number$g;}; satisfy;ay---a;---as =1 (moda;).

4. The Casson and eta-invariant via generalized Dedekind sums

For arbitrary non-zero integews, b, ¢, we consider the generalized Dedekind sum
(cf. [22,27]):

() (6)

Using this notation, Theorem 2 reads as:

Theorem 2. With the choicen = 1 one has

N(Tin) =4 Y signimy) - s(my, n; my).
weRveVy

Now, we recall the famous generalization of the reciprocity law of Dedekind given by
Rademacher [22] (see also [27]).df b, ¢ are strict positive, mutually coprime integers,
then:

1 a?+b%4c?
b? ; b ; b b’ ; = A 1
s(b,c;a)+s(c,a;b)+s(b,a;c) 4+ T20be
Now, for anya, b andc with (a, b, ¢) = 1:

b c a
s(b,c;a)=s , ; .
((a,b)(b,C) (a,c)(b,c) (a,b)(a,C))
Therefore, Rademacher’s result reads as:

Reciprocity Law. Leta, b, ¢ be strict positive integers such thét, b, c) = 1. Then the
following relation holds
1 d®(b,0)* +b%a,0)* + c*(b, a)?

S(b,C;a)JrS(c,a;b)+S(a,b;C)=—Z+ 1oabe

. (RL)

Using this, in the next theorem we express the eta-invariant in terms of Dedekind sums
with denominator..

Theorem 3. Let (X, K), Z andn be as in the introduction. Fix a plumbing graghwith
a multilink structure given byn,, = 1, such thatn,, # 0 for anym,, € W (e.g., takeG
minimal). Then, with the notations of SectiBnone has
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2
n(Z;m) =—4 Z Sy, my;n) — Z sign(m,my) +n - Z M

(u,v)e€ (u,v)e€ (u,v)e€ 3mumv

+ %(:nwo + ) (n,mw)z(—ew>).

weW
Proof. First notice thatm,, m,,n) =1 for any(u, v) € £ (cf. Lemma 2b). Then:
N(Tin)=4" > signimym,)-s(imy|,n; m.))
weWveV,

=4 Y signimumy)(s(Imyl, n: Imal) + s (Imal. n; lmy ).
(u,v)e€

Now apply (RL), and notice the following:

Z mﬁ(”, my)2 + mﬁ(n, my)?

(u,v)e€ Multty
o 1 mwO mwmv
weWuve
(n,my)? (3.2)
= My + Z — Z My = My + Z (n,mw)z(_ew)~ (
weW w veVy weW

Corollary 2. With the above notations, one has
8- [MZ(K,n) —n-M2)]
=—4. Z s(my,my;n) —(1—n)- Z Sigr(mumv)

(u,v)e€ (u,v)e€
1—n? (n, my)2 — n?
Myo + ——(—ey).
5, "o ZW 3 (e
w

Example. If X(K, 2) is an integer homology sphere, then:

. 1
8- [M(Z(K,2)—2-A(D)] = Z Slgn(mumv)+§(—mw0+ Z ew>.

(u,v)e€ weW
my, odd

Remark 4. n(Z; n) even forn = 1 is important, because:

(—8)- lim AME(K,n)) —n-A(XY ) n(Z: 1).

n— o0 n

(Notice that in the expression @fZ; 1) (in Theorem 3} (m,,, m,; 1) =0.)

The algebraic case. If (¥, K) is algebraic (i.e., it is the link of the paiY, f~1(0)),
where(X, x) is a normal surface singularity, an (X, 0) — (C, 0) is an analytic germ),
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then the embedded resolution graph$f £ ~1(0)) provide nice plumbing diagrams. For
example, they satisfy,, < 0 andm,, > 0 for anyw € W (herem = m,, = 1).

If X is smooth, thenZ = $% and K c $2 is the link of an irreducible plane curve
singularity f. Let Z( f) be its isometric structure (i.eZ( ) = Z(S3, K)). By [7], Z(K, n)
is exactly the link of the singularityf (x, y) + z"}. By Theorem 1:

8-A(Z(K,m)) =n(Z(f);n) —nn(Z(f);1).

But, by [14], the right hand side of the last equality is exactly the signatqye+ z") of
the Milnor fiber of f (x, y) 4+ z". In particular, we obtain:

8- A(link of f + ") = signature off + z". (%)

This equality was proved by Neumann and Wahl in [13] and it was one of the leading
relations what the author wanted to understand.

Now, using =), all the results of [18] about the signaturefof-z¥ can be transformed
for the Casson invariant of the link ¢f + zV = 0}.

Above, if f(x,y) = x* + y?, then the signature of? + y” + 7" can be com-
puted by Brieskorn formula [3] from the number of lattice points in the tetrahedron
(0,0,0), (0,0,4), (0,b,0), (n,0,0). Now, if we apply for the graph of® + y” (which
has only one rupture point) the result of Theorém& obtain the number of these lattice
points in terms of Dedekind sums. This is exactly the famous Mordell's formula [10] (for
details, see [19,20]).

References

[1] S. Akbulut, J.D. McCarthy, Casson’s Invariant for Oriented Homology 3-spheres, An Exposi-
tion, Math. Notes 36, Princeton University Press, Princeton, NJ, 1990.

[2] M.F. Atiyah, V.K. Patodi, .M. Singer, Spectral asymmetry and Riemannian geometry, I, 11, llI,
Math. Proc. Cambridge Philos. Soc. 77 (1975) 53-69; 78 (1975) 405-432; 79 (1976) 71-99.

[3] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitaten, Invent. Math. 2 (1966) 1-
14.

[4] S. Boyer, A. Nicas, Varieties of group representations and Casson’s invariant for rational
homology 3-spheres, Trans. Amer. Math. Soc. 322 (2) (1990) 507-522.

[5] D. Eisenbud, W. Neumann, Three-Dimensional Link Theory and Invariants of Plane Curve
Singularities, Ann. of Math. Stud. 110, Princeton University Press, Princeton, NJ, 1985.

[6] R. Fintushel, R.J. Stern, Instanton homology of Seifert fibered homology 3-spheres, Proc.
London Math. Soc. (3) 61 (1) (1991) 109-137.

[7] L.H. Kauffman, W.D. Neumann, Products of knots, branched fibrations and sums of singulari-
ties, Topology 16 (4) (1977) 369—-393.

[8] J. Milnor, On isometries of inner product spaces, Invent. Math. 8 (1969) 83-97.

[9] J. Milnor, Infinite cyclic coverings, in: J.G. Hocking (Ed.), Conference on the Topology of
Manifolds, The Prindle, Weber and Schmidt Complementary Series in Mathematics, Vol. 13,
pp. 115-133.

[10] L.J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. 15
(1951) 41-46.

[11] D.W. Neumann, A calculus for plumbing applied to the topology of complex surface sin-
gularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (2) (1981) 299-344.



A. Némethi / Topology and its Applications 102 (2000) 181-193 193

[12] D.W. Neumann, Splicing Algebraic Links, Adv. Stud. in Pure Math. 8 (1986) 349-361
(Complex Analytic Singularities).

[13] W. Neumann, J. Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65
(1990) 58-78.

[14] A. Némethi, The equivariant signature of hypersurface singularities and eta-invariant, Topology
34 (2) (1995) 243-259.

[15] A. Némethi, The real Seifert form and the spectral pairs of isolated hypersurface singularities,
Compositio Math. 98 (1995) 23-41.

[16] A. Némethi, The eta-invariant of variation structures, |, Topology Appl. 67 (1995) 95-111.

[17] A. Némethi, The mixed Hodge structure of a complete intersection with isolated singularity,
C. R. Acad. Sci. Paris 321, Série | (1995) 447-452.

[18] A. Némethi, Dedekind sums and the signatureg’ef, y) +zV, Sel. Math., to appear.

[19] A. Némethi, On the spectrum of curve singularities, in: Proc. Singularity Conference,
Oberwolfach, July 1996.

[20] A. Némethi, The signature of (x, y) + 2", in: Proc. of Real and Complex Singularities (C.T.C
Wall's 60th birthday Meeting), Liverpool (England), August 1996, to appear.

[21] A. Némethi, J. Steenbrink, Spectral pairs, mixed Hodge modules and series of plane
curve singularities, New York J. Math. (1995); http://nyjm.albany.edu:8000/j/v1/Nemethi-
Steenbrink.html.

[22] H. Rademacher, Generalization of the reciprocity formula for the Dedekind sums, Duke Math.
J. 21 (1954) 391-397.

[23] H. Rademacher, E. Grosswald, Dedekind Sums, The Carus Math. Monographs 16 (1972).

[24] R. Schrauwen, J. Steenbrink, J. Stevens, Spectral pairs and topology of curve singularities, Proc.
Sympos. Pure Math. 53 (1991) 305-328.

[25] J.H.M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Proc.
Sympos. Pure Math. 40 (2) (1983) 513-536.

[26] K. Walker, An Extension of Casson’s Invariant, Ann. of Math. Stud. 126, Princeton University
Press, Princeton, NJ, 1992.

[27] D. Zagier, Higher-dimensional Dedekind sums, Math. Ann. 202 (1973) 149-172.



