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Abstract 

The main motivation of the paper is the signature of the Milnor fiber of the germ fl + f;, 
where (fl, f2) is an isolated complete intersection singularity. This is computed in terms of a 
new invariant of the pair (ft , fz), which corresponds to the algebraic version of the eta-invariant, 
introduced by Atiyah, Patodi and Singer, for a hermitian flat bundle over the circle. 
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1. Introduction 

Let ft : ((I?+’ ,O) + (C, 0) be the germ of an analytic function with one-dimensional 

singular locus C. Consider a germ f2 so that the pair 4 = (ft , f2) defines an isolated 

complete intersection singularity (ICIS). Our goal is to compute the correction term 

4f1 + $7 - Qt)> w h ere c(f) denotes the signature of the Milnor fiber of the germ f. 

Let G be the local fundamental group of the complement of the discriminant locus 

of the ICIS. Then 4 defines a representation p : G --t Aut(U; b), where U is the middle 

homology group of the fiber with intersection form b. Moreover, since the geometric 

monodromy of #J at the boundary of the fiber is trivial, for each g E G, we have a 

variation map V(g) : U* --+ U. 

Any g E G defines a spectral decomposition of the system 

(UU47)JW) = @ (&4~,>P,(57)7!&))~ 
X 
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(here U, are the generalized eigenspaces associated with p(g)). Define v(g) = C, q(g)X, 

where: 

rl(s)x = 
(1 - 2a) sign b, ifx=e-‘“‘“; O<a< 1, 

sign(l + p1 (g-‘))K (9) if x = 1. 

In fact, 7 is well defined on the conjugacy classes of G. Let M, respectively L, be the 

topological standard meridian, respectively the longitude of the discriminant component 

4(C). 
The main result of this paper is the following (Theorem 5.2): 

Theorem. For q > 0, the following relation holds: 

4fl + f,“, - 4fl) = 9 77(Jc + 77(L) - v(L + 4M). 

In general, the question is the following. Let inv be any invariant of the analytic 

germs. For example, x(f) = the Euler characteristic of the Milnor fiber, c(f) = the zeta 

function of f, Sp(f) = the spectrum of f, a(f) = the signature, etc. 

Question: Can the correction term inv(fl + f;) - inv(fi) be computed in terms of 

some information provided by the restriction of 4 above a small neighbourhood of the 

link of 4(C)? If the answer is yes, then what is this correction term? 

For x(f), c(f)? Sp(f) th e answer is yes. For x(f) the correction term depends on 

the transversal Milnor numbers of C [18], for C(f) (respectively, Sp(f)) it depends 

on the monodromy representations (respectively, the mixed Hodge module &Qk,a,) in 

the neighbourhood of d(C) [16,8] (respectively, [14]). (Note, that these invariants are 

“additive” invariants.) 

Our result shows that for g(f) th e answer is again yes. The correction term depends on 

the monodromy representation and the variation map (we prefer to call this pair variation 

structure), and it is expressed in terms of some “eta-invariants”. (For another presentation 

of these eta-invariants and their relations with the spectral pairs, see [9].) 

The attentive reader can realize that our eta-invariant is, in some sense, a generalized 

version of the eta-invariant (associated with the circle and with a hermitian representation) 

defined in [ 11. The clarification of this relation is the subject of another paper. 

Our approach is algebraic, in Sections 2-4 we extend Meyer’s result [5] to the case of 

variation structures. In Section 2, we study abstract variation structures (U; b, p, V) and in 

Section 3 we determine their Witt group when G = Z”. The object of Section 4 is a spe- 

cial 2-cocycle of G which measures the nonadditivity of the signature of two-dimensional 

manifolds (with boundary) with coefficients in a variation structure. This generalizes the 

Meyer’s cocycles [5], which were defined for nondegenerate representations. (See 2.6 

for a more detailed explication.) In the classical case, for abelian representations, the 

Meyer’s cocycle is the coboundary of the classical eta-invariant cocycle. This fact is 

generalized in Section 4 for the degenerate case. Section 5 contains the main application: 

the computation of the correction term of the signature in the case of the Yomdin series. 

(In this paper, the signature of a (- 1)-hermitian form b is sign b = sign(i . b).) 
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2. Hermitian variation structures 

2.1. If U is a finite dimensional @-vector space, we denote its dual Hom(U, @) by U*. 

There is a natural identification 8 : U + U” given by O(~L)((P) = p(u). 

Any @-linear endomorphism b: U -F U’ with b* o B = Eb defines an &-hermitian form 

on U. (Here E = 3~1 and 7 is the complex conjugation.) We will use the notation 

B : u 63 u -+ @, B(u, w) = b(u)(v), 

too. The automorphisms h : U + U with h* o b o h = b form the orthogonal group 

Aut(U; b). Any group endomorphism p: G + Aut(U; b) is called a b-representation of 

the group G. 

Any representation p: G + Aut(U) defines a left action of G on Hom(U*, U) by 

g * ‘p = p(g) o cp. Then, by definition, a twisted homomorphism is a map 

V : G -+ Hom(U*, U) 

with V(gh) = p(g) 0 V(h) + V(g) 

Definition 2.2. An E-hermitian variation structure of the group G is a system V = 

(U; b, p, V) with the following properties: 

(a) b is an &-hermitian form on (the finite dimensional space) U, 

(b) p is a b-representation of G, 

(c) V is a twisted homomorphism (with respect to the left action of G), with the 

following properties: 

(i) 0-i o V(g)* = -EV(g)p(g)*, and 

(ii) V(g) o b = p(g) - I. 

If b is nondegenerate then V is called nondegenerate too. 

It is not difficult to verify that an e-hermitian variation structure satisfies also the 

following supplementary 

Properties 2.3. (a) For any g E G, one has b 0 V(g) = p(s)“-’ - I. 

(b) Consider the right action of G on Hom(U*, U) defined by cp * g = cp o p(s)*‘-‘. 

Then V is a twisted homomorpism with respect to the right action, too, i.e., for any g 

and h E G, one has V(gh) = V(g) opo”-I + V(h). 

(c) If gh = hg, then p(h) o V(g) o p(h)* = V(g). (Write V(gh) = V(hg) and use 

Definition 2.2(c) and (b).) 

Definition 2.4. Two &-hermitian structures (U; b, p, V) and (U’; b’, p’, V’) of the group 

G are isomorphic if there exists an isomorphism cp : U + U’ such that b = p*b’cp, p(g) = 

‘p-‘p’(g)p, and V(g) = cp-‘V’(g)(p*)-’ for any g E G. 

The set of isomorphism classes of e-hermitian variation structures is denoted by 

EWE(G). The natural direct sum determines a semigroup structure on it. 
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Examples 2.5. (1) If b is nondegenerate then V(g) = (p(g) - I)b-*, i.e., the semigroup 

of the nondegenerate variation structures is equivalent to the semigroup HI,(G) of E- 

hermitian isometric structures (systems (U; b, p) with nondegenerate form b and with 

axioms (a) and (b)). 

(2) If V(g) is an isomorphism, then p(g) = -&V(g)(&l o V(g)*)-l, and b = 

-V(g)-’ - &(&I o V(g)*)-‘. In particular, if G = Z, then the sub-semigroup 

HV,S(Z) = {V c HV@); V(1) isomorphism} is equivalent to the semigroup of the 

sesqui-linear forms over C. 

(3) An important element in HV: (Z), provided by an isolated hypersurface singularity 

f, is V(f) generated by (U; b, h(l), V( 1)) = (middle homology of the Milnor fiber of 

f; intersection form, monodromy, variation map). Notice that the variation map V(1) of 

f can be identified with the inverse of the Seifert form (up to a sign) [3], in particular, 

V( 1) is an isomorphism. 

(4) Consider an isolated complete intersection singularity f : (C?‘, 0) + (C2, 0) 

(n > 1). Let 4: (X, 0) 4 (S, 0) b e a “good representative” of f with discriminant locus 

A c S. Consider a base-point * E S - A. The homology of the fiber F = 4-l (*) 

is concentrated in U = H,,_l(F, C). Identify its dual U* with H+l(F, aF;@), and 

extend the real intersection form to a hermitian form b : U -+ U*. The monodromy 

representation p: G = n-1 (S - A, *) + Aut(U; b), and the variation map V : G 3 

Hom(U*, U) constitute a system V(4) = (U; b, p, V) which is our basic example of 

(- I)“-‘-hermitian variation structure. 

Remarks 2.6. Even for very simple groups, the classification of the variation structures 

is nontrivial. In the case G = Z, the elements of two important sub-semigroups of 

HV,(Z) are classified. Namely, the nondegenerate structures (i.e., the isometric ones) 

are classified by Milnor [6], the semigroup HV,S(Z) is determined in [lo]. (For the 

semi-ring structure of HV,“(Z), see [ 111.) 

But in the general case, without any supplementary assumption about the variation 

structures, even in the case G = Z, the classification is not known (for the author). (For 

the type of anomalies, which may occur already in the case G = Z, see Example 2.7.9 

in [lo].) 

The classification of the elements of HVz(Z) gives a nice description and organization 

of the topological invariants of an isolated singularity f. For this, and for the relation of 

V(f) to the spectral pairs off, see [9,10]. 

In the case of G = Z” (Ic > 2), even the underlying problem of classification of 

endomorphisms p : Z” -+ G&(C) is open. 

Geometric examples 2.7. Relation to the signature and motivations for further defini- 

tions. 

(a) Let (B, aB) b e a two-dimensional, connected manifold with boundary. Assume that 

p: K -+ B is a locally trivial fibration with fiber F, a (41c - 2)-dimensional manifold 

without boundary, 
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By a result of Meyer [S], the signature a(X) of X can be computed by the isomet- 

ric structure (U; b, p) associated with p. More precisely: let b be the (-l)-symmetric 

hermitian (intersection) form on U = Hzk_i (F, e), and let p: ~1 (B) -+ Aut(U; b) be 

the monodromy representation of p. Then the twisted cohomology group H’ (B, aB; p) 

carries a symmetric hermitian form with signature a(p). Meyer proved that U(X) = g(p). 

Moreover, even if aF # 8 (in this case X is a manifold with corners), but b is 

nondegenerate, the above identity still holds. 

(b) If B and F both have boundaries, and if the intersection forms on Ht (B) respec- 

tively, on Hlk-1 (F) are both degenerate, then the signature g(X) can not be reduced to 

a(p). The form b and the representation p have no control over the geometric behaviour 

of the fibration in the neighbourhood of the boundary of the fibers (aF, in this algebraic 

sense, corresponds to ker b). 

Assume that the restriction of p : CIX np-‘(B - aB) + B - aI3 is a trivial fibration 

(cf. 2.5.4). Then, we can associate with p a variation structure V(p) = (U; b, p, V) (where 

V is the variation map of p). Now, V preserve a lot of information from the geometry 

of the fibration in the neighbourhood of the boundary. It turns out that the variation 

structure V(p) takes the role of the (nondegenerate) isometric structures in the case when 

b is degenerate. 

(c) Assume again that b is nondegenerate. Then there exist some methods for the 

computation of g(p). The question is: can these methods be generalized to the case of 

variation structures (i.e., to the nondegenerate case)? 

The first remark is that g(p) vanishes on the hyperbolic structures, therefore it depends 

only on the class of (U; b, p) in the corresponding Witt group. 

Here arises the first question: when is a variation structure “hyperbolic”, and how 

can the definition of Witt groups be extended to the case of variation structures. This 

problem is solved in Section 3, and the Witt group of G = Z” is computed. (In our case, 

the signature will not vanish on the hyperbolic structures, but some other invariants will 

vanish, see Section 4.) 

(d) Meyer computed a(p), when b is nondegenerate, using his “Meyer cocycles” [5]. 

This gives a motivation to find the corresponding “Meyer cocycles”, when b is degenerate, 

in terms of the variation structure. This construction is given in Section 4. 

(e) By the index theory, g(p) can be computed as follows (b is nondegenerate again). 

The representation p is equivalent to a flat bundle F. Since b is (-1)-symmetric, there 

is a natural complex structure (r, J) on r. The signature bundle sign(r) is defined 

by (r, J)* - (r, J). Let ct be its first Chern class (this is, in fact, a pull-back of the 

cohomology class given by the Meyer cocycles). Then a(p) = a(B, sign(r)), and by [l] 

a(B, sign(r)) = S, cl - iq(a8: sign(F)). 

Here the last term is the eta-invariant associated with the signature operator of aB and 

the signature bundle sign(r). 

Assume that the representation p is abelian. Then cl = 0, i.e., the primary invariant 

s cl vanishes, and c(p) can be computed by the eta-invariant associated with plaB. 
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This motivates one more question: assume that b is degenerate and the variation struc- 

ture is abelian. Can the signature g(X) be computed only by the restriction of the variation 

structure on aB? What is the corresponding expression of this new “eta-invariant” in 

terms of this restriction? 

Our basic, new definition is exactly this new “eta-invariant”. Our main application 

(Theorem 5.2) is, in fact, a result of type (*). 

3. The Witt group of variation structures 

Definition 3.1. A hermitian variation structure is hyperbolic if there exists a kernel K C 

U, i.e., a subset K such that 

(a) dim K = i dim U, 

(b) K c Kl = {z 1 B(z,y) = 0 for any y E K}, 

(c) for any g E G one has p(g)(K) C K and V(g)(K*) C K where K* = {‘p E U* 1 

q(K) = 0). 

Examples 3.2. (1) If b is nondegenerate then V is hyperbolic if and only if the isometric 

structure (U; b, p) is hyperbolic (i.e., there exists a p-invariant K with K = K’). 

(2) Consider -V = (U; -b, p, -V). Th en LJ @ (-U) is hyperbolic with kernel K = 

AU = ((2, x) 1 z E U}. 

3.3. By 3.2(2) the semigroup WV,(G) = (HVc(G)/{hyperbolic structures}, @) is a 

group. It is called the Witt group of the variation structures of G. 

Our first goal is the computation of WVE(Zk). For any x f Hom(Z”,C*), we define 

the generalized eigenspace 

u, = {x E u I (p(g) - x(s)) No = 0 for some N and any g E G}. 

G = Hom(Z”, S]) denotes the group of characters. 

The verification of the following lemma is left to the reader. 

Lemma 3.4. Let G = Z”. Then: 

(a) There is a direct sum decomposition: 

(U; b, p, V) = (U’;b’, P’, V’) a; @(Ux; b,, ,+, Vx), 

x4 

where U’ = @Kg& U,. Moreovel; (U’; b’, p’, V’) is hyperbolic. 

(b) (U; b,p, V) is hyperbolic if and only ;f (Ux; b,,p,,V,) is hyperbolic for any 
x E CL?, in particular 

Here WVE(G)x is the Witt group of variation structures I/’ with p(g) - x(g)1 nilpotent 

for any g E G. 
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These Witt groups are given by the following proposition: 

Proposition 3.5. 

WVE(Zk)X = 1 z ifXEG’-{l}, 

Zz $x=1. 

The generators are (@; &(1-E)/2, x, +(x - l)i(E-‘)/2) if ‘x # 1, und (@;O, 1,O) ifx = 1. 

101 

Proof. If x # 1, then WVE(Zk)X is the Witt group of the corresponding isometric 

structures. Thus the isomorphism is given by V t-+ signature(i(‘-E)/2b,). 

Assume that x = 1. Fix a nonzero element go E iz”. Consider the weight filtration W’ 

on Ut, centered at zero, induced by go; i.e., the unique filtration W’ with the following 

properties: 

(a) W” C IV’+‘; N(W’) C Wkd2, 

(b) N”:GrhUi + GrGkUi is an isomorphism, where Gr&,Ui = Wi/Wi-’ and 

N = log p(so). 
Set m E N such that W” = UI. The dual filtration Wt is given by 

w; = {‘p E u; 1 Tp(W’“_‘) = o}. 

Then WT, = UT; Wz C Wz_ 1. Moreover, N* Wz c W;,, and 

(N*)” : Gr!$* UT + Gry* UT 

is an isomorphism (here x* = log&$*). 

Now, since p(ga) E Aut(U1; bi) one has Bt (W”, W’) = 0 for Ic + 1 < 0. Indeed, take 

z E wk and y E Wl. Consider a maximal s 3 0 (respectively, t > 0) such that z = N”z’ 

(respectively, y = Nty’). Then N2s+k+1~’ = 0 respectively, N2t+1+‘y’ = 0. Therefore 

B(z, Y) = B(N Sz’,Nty’)=Oifeithers+t32s+~+10rs+t32t+1+1.1fboth 

inequalities fail, then s + t < 2s + Ic and s + t < 2t + 1. By taking their sum: 0 < Ic + I 

which is a contradiction. The vanishing of B(W”, W’) for Ic + 1 < 0 is equivalent to 

bi ( Wk) C Wfk for any -m < Ic < m. 

We want similar restrictions for V(g) where g E G is an arbitrary element of G. Since 

G is abelian, 

p(g)V(h) + V(g) = V(gh) = V(hg) = V(h)po*‘-’ + V(g). 

In particular, for any g E G one has N o V(g) = -V(g)N*. By a similar argument as 

above: v(g)(w;) C v-k. 

Consider a base in UI (and a dual base in UT> compatible with the filtration W’. 
This gives the splittings W” = W”-’ $ W,“. Our maps have the following block- 

decomposition: 



(The dimension of the i-block is n, = dim GrhUt , where -m < i < m.) 

Since the weight filtration can be characterized completely by kernels and images 

of powers of N, the commutativity of G implies that the weight filtration W’ is p- 

invariant. Consider -Gr$,Vl = (Gr&U,; [-b’], [PO], [-V”]) and the direct sum R = 

VI @(-G&VI). Define K c UI $GT~UI by K = (W-1 @{O})@{(z, [cc]) 1 z E IV,“}. 

Then K is a kernel (use the above matrix forms) and defines a hyperbolic structure on 

31. Consequently, in the Witt group, VI can be replaced with GrbV1. The representation 

p” of this latter structure has the property @‘(go) = identity. Using induction over the 

generators of G, we obtain that the Witt group is generated by structures with p(g) = 1 for 

any g E G. Now, since b* = Eb, v* = --EV and V 0 b = 0, we deduce that, in fact, it is 

generated by the structures (C; ii(1-‘)/2, 1 , 0), (C; 0, 1, Itic’+‘)/*) and 7 = (C; 0, 1,O). 

But the direct sum of any of these with 7, is hyperbolic, in particular WV(G)1 is 

generated by 7 and 27 = 0. On the other hand ‘T is not zero in the Witt group because 

the dimension of a hyperbolic space is even. 0 

Remark 3.6. In the classical theory the following statement is true: If an isometric 

structure Z = (U; b, p) (b nondegenerate) is zero in the Witt group WU(G), then Z is 

hyperbolic. In our case this is not true. Take for example V = 2(@; 1, 1,O). Moreover, 

this example shows that the signature does not vanish on the set of hyperbolic structures, 

that is, the set of hyperbolic structures is too large apparently. This is true, but exactly for 

this reason it will be helpful in our discussion. In fact, we want to define some cocycles 

on WVE(G) (as secondary invariants) rather than elements in the cohomology of G (i.e., 

primary characteristic classes). 

4. The cocycle associated to the nonadditivity of the signature 

4.1. Let V = (V; b, p, V) be an &-hermitian variation structure of G. Then b defines an 

&-hermitian nondegenerate form @ on U* $ U by 

@((cp> ~1, ($7 ~1) = E?(U) + ~(5) + b(u)@). 

Any g E G defines two maps sr(g), sl(g) : U* CB U + U* $ U defined by 

Sl(S)(%U) = (%P(S)U - P(S)V@‘)& 

sT(g)f%u) = (po*,-i cp, -V(!J)cp + u 
> 

By a straightforward verification (use 2 x 2 blocks computation), we obtain that sl 

respectively, s, are representations of the group G in the orthogonal group O(Q) of @. 

4.2. For any g E G, define Kg = { (9, IL) E U* CBU 1 V(g)p = IL}. It is not hard to verify 

that K, is a @-kernel, i.e., Kg = Kj (the latter one is the @-orthogonal). Moreover, for 

any g and h: 

4.3. sl(h)K, = Khs and s,(h)K, = Kgh-l. 
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4.4. Any three kernels Ki (i = 1,2,3) in U* @ U define an (-&)-hermitian form [17]. 

We recall this construction. On the space 

Ki n (K2 + K3) = {XI E KI 1 there exist 22 E Kz, 5s E Ks 

with xi + 22 + xs = 0} 

define the sesqui-linear form P(zi,zi) = @(zi,zk) (where CZ: + xh + xi = 0 and 

xi E K2, ~5 E K?). Then 9 is (-&)-hermitian with kernel Ker = KI n K2 + K, fl K3. 

We define o(V; K1, K2, K3) as the signature of the induced nondegenerate form on 

K1,2,3 = KI n (K2 + K3)IK er multiplied by E (if there is no danger of confusion then 

it is denoted by a(K1, K2, K3)). If Ki = Kj for some pair (i, j), then Ki,2,3 = 0, hence 

~(KI, K2, K3) = 0. 

Lemma 4.5. (a> a(K,(i), K+), K+)) = sign(r)a(Kt , K2, K3) for any permutation 

5- E S3; (here sign(r) E {*l} is the sign oft). 

(b) ~(KI,K~,K~) -~(Ko,K~,K~)+~(Ko,K~,K~) -a(Ko,Kl,K2) = Oforany 
kernels K, (i = 1,2,3,4). 

(c) If 0 E O(Q) is an orthogonal automorphism, then a(o(Kl), o(K2), o(K3)) = 

c~(K1, K2, Kj). In partidal; a(Kh,, , K/q?> Khgl) = g(K,,h> Kg2h, Kg-ih) = a(Kg,, 

K,,>K,,). 

Proof. (a) follows from [17], (b) from [13]. If o E O(Q) then o induces an isometry of 

the corresponding !P forms. This with 4.2-4.3 proves (c). 0 

4.6. By 4.5, (T(V; KI, K2, K3) defines a homogeneous cocycle of the group G in Z (Z 

is considered with the trivial G-action). The corresponding nonhomogeneous cocycle is 

a(s, h) = c(K,, K,, Kgh) ( e is the neutral element of G). This cocycle is a coboundary 

if there exists a function f : G + Z such that g(g, h) = f(g) + f(h) - f(gh); i.e., if 

a(K,, K,, Kh) = f(g) + f(g-‘h) - f(h). The semigroup morphism 

O1 : H&(G) + H’(G, Z), OI(V) = a(V; ., ., .) 

is not trivial in general. For example, if G is the mapping class group r, and 

v= (c2g;(:I :>; P7 (P-W) 
where p is given by r, + Sp(2g,C) (“passing to the homology”), then @I(V) is the 

generator of H2(G, Z) = Z [4]. 

4.7. A kernel l? c U* @ U is called V-invariant if for any g E G sl(g)K = K. For 

example, if K C U is a kernel of the variation structure V (see 3.1), then K = K* @ K 

is an invariant kernel in U* @ U. 

If K is an invariant kernel, then 4.5(b)-(c) gives for K, K,, K, and Kh: 

4.8. a(K,, Kg, Kh) = CT(~?, K,, Kg) + CT(~?, K,, Kg-jh) - a(&?, K,, Kh). In particular, 

CT(V) is a coboundary. (Moreover, f(V;g) = a(V;l?, K,, K,) is independent of the 

choice of the invariant kernel K; to see this, consider 4.5(b) for Ki, l?2, K, and Kg.) 



Therefore 01 induces a map (denoted in the same way): 

6’1: WV‘-(G) + H*(G, 72). 

4.9. Set V E HI/,(G). Any g E G defines a morphism Z -+ G by n ++ gn. This 

induces a structure g*V = (U; b,g*p,g*V) E HI/,(Z) where g*p(n) = p(gn) and 

g*V(n) = V(gn). This is an abelian structure, hence 

g*V = @(g*V)x = (u’; b’, P’, V’) @ @(ux; bx, px, v,), 
X XE2 

where U’ = $x@g U, (cf. 3.4). 

We define q : G + Z by 

rl(V;g) = rl(g*V) = c7/(g*VxI where 
X 

0 ifx$?+ 

q(g*v)x = (1 - 2~) sign(bx) if x(g) = e-2aia; 0 < a < 1, 

sign[(l+ pt(g-‘))K(g)l if x = 1. 

(Notice that b, is e-hermitian, and (I + p(g-‘))V(g) is (-&)-hermitian form.) 

By definition v(g) depends only on the variation g*V E HV,(Z). 

The first result of this section is: 

Proposition 4.10. Suppose that V is hyperbolic, i.e., it has a kernel K c U. If l? = 
K’ @ K denotes the corresponding invariant kernel in U’ ~3 U, then 

46 Ke, K,) = v(g). 

In particulal; g(K, K,, Kg) depends only on g*V. 

Proof. In order to simplify the notations, we will assume that the eigenvalues of g lie 

on the unit circle; the proof in the general case is the same. 

The element g defines a decomposition $,(Ux; b,, px, V,) of g*V. Notice, that 

UC = {‘p E U‘ ] pT(U,t) = 0 if x’ # x}. 

In particular, the kernel Kg has a decomposition @,(Ks)x, where 

(Kg), = { (cp, u) E U; @ Ux I v,cp = + 

On the other hand, K, = U* obviously has a decomposition K, = ex U; = @x(K,)x, 

too. 
Since the kernel K c U is p(g)-invariant, one has K = ex K,, where K, = KnU,. 

Obviously K, c Ki. If x # 1 then b, is nondegenerate and V, is an isomorphism. 
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Therefore K, is a kernel for x # 1. Now, from a dimension computation we get this for 

x = 1 too. In particular, 2, = KG $ K, is a kernel in UC $ U, and 

6 K,, K,) = x@,, (Ke)x, (K,),). 
X 

Therefore, we can assume that U = Ux for some x. Consider x # 1. Then sign b, = 0 

because b, is nondegenerate and (Ux; b,) is hyperbolic. On the other hand, !PX is the 

zero form (because V(g)-‘(K) = K*). 

Assume that x = 1. We want to compute CT(K, K,, Kg) = g(Ks, K, K,). Consider 

the map A : K, fl (I? f Ke) + V(g)-‘(K) given by 

{(IY, U) ) Va = 21, cx = -cp - +, p E K”, v = -k, where k E K} e cx. 

A defines an isomorphism, so we can transfer the form !P on V(g)-‘(K). Notice that 

we can choose cp = 0. Therefore 

*((a, u), (a’, 21’)) = @((a, u), (~‘1 k’)) = @((o>u), (0, -V(g)o’)) 

= --(y(V(s)o’) - b(V(g)o)(V(g)o’). 

Since V(g)a and V(g)& are in K, and K c K I, the latter term vanishes. In conclusion, 

9 on V(g)-‘(K) has the form !P(o,cr’) = -a(V(g)cr’). 
--’ - 

Consider the sesqui-linear form !Pe = -i(!P - EG*) = --+(I + p(g) )V(g) on U*. 

Obviously, !Pe is (-&)-hermitian, and it extends P. 

Fact. The !Pe-orthogonal ofV(g)-‘(K) in U’ is in V(g)-‘(K). 

Proof of Fact. Set o E V(g)-‘(K)l such that Pe(cr, a’) = 0 for any o’ E V(g)-’ (K). 

Then ~(1 + p(g)-‘)(i) = 0 for any k E K. But, I + p(g)-’ is an isomorphism and 

preserves K, thus cy E K’. The inclusion K’ c V(g)-‘(K) ends the proof of Fact. 

Now, by a well-known result, sign*= = sign !PekkjV(g)-‘(K) = sign@. 

The verification E sign !Pe = q(g) is easy, considering the two cases E = &l. (Recall 

that for E = 1, sign b = sign 6, and for E = - 1, sign b = sign(ib).) 0 

Example 4.11. Assume that b’ is nondegenerate. Then 

v(g) = skn{b’(g) - PI b-‘lbT’I = E . sign@’ [PI (9) - PI (g)-‘I>. 
The latter equality follows, for example, by a verification on the generators of HI,(Z) 

(for their description, see for example [9, (3.1 S)]). Notice, that even in this nondegenerate 

case, 7’ (g) does not vanish, in general, on hyperbolic spaces. In fact, it vanishes on odd- 

dimensional indecomposable structures, and it is nonzero on even-dimensional ones. 

4.12. Denote the 2-dimensional G-cocycles (respectively, coboundaries) by Z2(G, Z) 

(respectively, B*(G, Z)). For arbitrary U E HVE(G), define the following 2-cocycle: 

e(uv;g, h) = Qv; K,, K,, Kh) - q(g) - q(g-‘h) + q(h). 
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This defines a map 611: HVE(G) + Z”(G, Z). Notice that 011 factorized in H2(G, Z) 

is exactly Or. Now, 011 vanishes on hyperbolic structures (by 4.8 and 4.10). The induced 

map, still denoted by 011, is: WVE(G) -+ Z2(G, Z). 

Notice that there are examples with 011 # 0 (even with 01 = 0, for example when 

G = {free group}). For the interested reader, we sketch out one example. Consider a flat 

bundle r, with a nondegenerate flat hermitian form b over an orientable surface 5’ with 

genus g 3 2. Assume that cr(S; r,) # 0. Consider an embedded (open) disk D* c S. 

Set G = 7~ (S - D2) and V = (U; b, p) the induced structure associated with G. Then, 

by the general index theory, 011(V) # 0 ( even if we replace q with any f(V) which 

depends only on g*V). 

The vanishing of 01 is equivalent to imO~r C B*(G, Z); i.e., @‘; K,, K,, Kh) = 

f(V; 9) + f(V; g-Q) - f(R h) f or some f(V). In general, f(V; g) depends on V and 

g, and not only on g*V. The main question is: can f(V) be constructed “independently 

of V”, i.e., so that f(V;g) depends only on g*V? A candidate for such an f is 7. The 

vanishing of 011 gives a positive answer to this question with f(V) = v. 

Theorem 4.13. If G is a (finitely generated) abelian group then @II vanishes. In par- 

tic&al; 

o0’; Ke, K,, Kh) = rl(g) + q(g-‘h) - q(h). 

Proof. Since we can construct an epimorphism Z” + G, it is enough to verify the 

theorem for G = Zk. If x = 1, then WV,(Z”) = Z:2 is generated by 7 (3.5), and 

OIIr = 0. 

Assume that x E G - { 1). Then, by 3.5, we have to verify the identity only for 

I/ = (C; b, x, V), where b # 0, & = &b and V(g’) = (x(g’) - l)b-’ for any g’ E G. 

If x(g) = 1, then V(g) = 0 and Kg = K,, hence a(K,, K,, Kh) = 0. On the other 

hand, q(g) = rot = 0 and v(g-‘h) = q(h). Similarly, if x(h) = 1 or x(g-‘h) = 1, 

both sides of the identity vanish. So, we can assume that 1 # x(g) = e-2nia # x(h) = 

e-2?ric # 1, where 0 < a < 1, 0 < c < 1. Then the form 9 is 

[l - x(g)l[l - x(h)1 
[x(h) - x(g)lbE 

Therefore, 

E sign 9 = sign(sin(c - a)~) sign[-i/b] = sign b. sign(sin(c - a)~). 

Now, the verification is elementary. 0 

5. The signature of the Yomdin series 

5.1. Let fi : (C n+’ 0 -+ (C, 0) (n > 1) be a nonisolated singularity with one-dimensio- , ) 

nal singular locus C. Consider a germ f2 : (C w’, 0) + (C, 0) so that the pair (fi, f2) 

forms an isolated complete intersection singularity. Let 4 : (X, 0) + ( D2, 0) be a “good 
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representative” of (f’ , fz). The irreducible components of the discriminant locus A are 

A’, . , A,. Here A’ = 4(C). 

Now, 4 defines two sets of invariants. The first one is the associated (- I)“-*-hermitian 

variation structure V(4) = (U; b, p, V) as in 2.5(4). The second one is a set of q- 

invariants, as it will be defined in the sequel. 

Any g E G defines a structure g*V(4) E HV~_‘J~-I ( Z , in particular a number q(g) = ) 

v(g*V(4)) as in 4.9. It is not hard to verify that r](g-‘) = -v(g) and q(h-‘gh) = q(g). 

This shows that 17 is well defined on the conjugacy classes of G. In particular, ?(S’) is 

well defined for any (oriented) embedding S’ + D2 - A. 

Let T be a closed tubular neighbourhood of A’ n aD2 in S’ = aD2. Let L and 

M be the standard topological longitude and meridian in aT. They can be represented 

by embeddings S’ 4 aT. Moreover, for any q E Z, the homology class [L + qM] E 

H’ (aT, Z) can also be represented (essentially, in a unique way, up to isotopy) by an 

S’ + aT. In particular, the numbers v(L), q(M), and q(L + qM) are well defined. 

Theorem 5.2. For q E W suj‘iciently large: 

dfr + f,“> - df-~ i = q. q(M) + q(L) - v(L + qM). 

Proof. 
Step 1. Let (F,,dF,) (i = 1,2) b e t wo copies of (the fiber of 4) (F, aF). Assume that 

the orientation of (F’ , aF1) (respectively, of (F2, aF2)) is the orientation (respectively, in- 

verse orientation) of (F, aF). Glue F’ and F2 along aF’ = -aF2. The result is 2, an ori- 

ented 2(7z - I)-dimensional manifold. Consider the maps p’ : H+_I (2) -+ H,_‘(Z, F2) 

induced by the injection (2,0) + (2, Fz), and p2 : H,_’ (2) + H,_’ (F’) induced by 

the projection 2 + F’ (given by the identifications Fi + F’). Then (p’, ,&) : H,(Z) + 

U* $U is an isomorphism. This identifies a cycle ‘p E U* = H,_‘(F, aF) with the cycle 

pU+ (-p) in 2, where cp is considered in F’ and -‘p in F2, and the gluing is along acp. 

A cycle u E U = H,_‘(F) is identified with the corresponding cycle imbedded in F’. 

Now, it is easy to verify that the (-I)“-‘-hermitian intersection form on 2, identified 

on U* CB U, is exactly @. 

Step 2. Consider the closed unit disc D’ in @ with its natural orientation and boundary 

S’. Let St = {z E S’ 1 Rez > 0) be a segment in S’ with its natural orientation. 

Set g E G and consider a representative of its geometric monodromy m, : (F, aF) + 

(F, aF) so that m,laF = 1 a~. Construct Eg = (F, aF) x 10, l]/(,,r+(m,(z),‘), and 
identify (0, I]/, with S’. Then Es is a locally trivial fibration of pairs of spaces over S’ 

with fiber (F, aF) and characteristic map mg. Since S!+ is contractible, we can assume 

that this fibration has a product structure F x St over Si. Since aE, = aF x S’, we 

can construct X, = Eg u (i3F x 0’) by gluing along Kg x S’. Now we cut a window in 

X,: consider 2, = X, - (F - aF) x SL. This 2, is a (272 - I)-dimensional manifold 

with boundary 2 (its corners can be smoothed). Moreover, the kernel ker{ H,- l(Z) + 

H,,_‘(Z,)} is exactly Kg E U* @ U. 
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Step 3. We are in the following geometric situation. (See, for example [16,7,10].) There 

is an embedding j of the closed disc 02 = { jz/ < 2) in D2 (in fact j(D2) = {(c, d) E 

02 1 c + d’J = small constant}), so that: 

(a) a(j(D,)) n A = 0, a(j(Dl)) n A = 0, w h ere D1 c Dz is the closed unit disc, 

(b) 4-l (j(D2)) (respectively, C’(j(O ))I can be identified with the Milnor fiber of 

f + f; (respectively, of f), 

(c) j(D2) n Al is a subset of j(D2 - Dl), and it contains exactly Q points; the small, 

positively oriented circles in j(D2) around these intersection points correspond to the 

meridian M of Al. Moreover, the oriented boundary aj(Dl) is the longitude L of A,. 

In the sequel, we identify D2 with j(D2). Consider an embedded path y : [0, 1] -+ D2 

with endpoints y(O) # y(l), y(O), y( 1) E aD 2, such that it separates the points D2 n A, 

from the point of D1. Dz-im y has two connected components, D’ and Dt with DI c D’ 

and D; n A = 02 n AI. In particular d-‘(D’) is diffeomorphic to the Milnor fiber of 

f. Applying Wall’s theorem [ 171 (for the skew-symmetric case, see [5]), we get 

a(f~ + f,“) = @I) + sign 6’ (Di) + g(K,, Krl~, K-L). 

Now, if D(j) is a small disc which contains an intersection point zj E 02 n A,, then 

sign4-‘(D(j)) = 0, b ecause for an arbitrary point z E D(j) - {zj}, the natural map 

K-I (K’(z)) -+ Hn-,W’(W))) IS onto. Cutting 4-l (Dg) q - 1 times by paths as 

above, we obtain: 

q--l 

sign 4-l (Di) = c g(K,, K,v, K-(q-lc)hf). 
k=l 

Since ML = LM, by 3.13, and by 7(-g) = -q(g), we obtain the desired relation. 0 

5.3. In [9] the equivariant version of 5.2 is proved by a different method. Moreover, also 

the quasiperiodicity of the expression {qq(M) - q(L + qA4)}q is proved. 

Examples 5.4 (The suspension case). Let f : (@“, 0) + (C, 0) be an isolated singularity. 

Consider fi : (@ n+l ,O) + (@,O) defined by fi ( z,z~+I) = f(z). Set f2 = z,+i and 

$ = (fi, f2) as above. The singular locus of the ICIS 4 is C = {zi = . = z, = 0}, 

and the discriminant locus A contains only one irreducible component A = A,, which 

is smooth. In particular, G = Z and L = 0, and the (generally very rich) structure 

provided by the variation map and the monodromy representation of 4 collapses in 

the variation structure V(f) of f. Therefore, there is a huge qualitative and technical 

difference between the suspension case and our case of the Yomdin series. 

Since I = 0, Theorem 5.2, for suspensions, gives: 

4f + $,i) = 4. rlP(4); w - rl(V4);qW = 4. rlow; 1) - 77Gw; 9). 

5.5. In the following, we compute the expression q q(V; 1) - q(V; q) for some (-l)- 

hermitian variation structure of the group Z. In particular, we will reprove Brieskorn’s 

signature formula [2] for his singularities zp’ + . . . + z:Q:’ (n even). 
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We start with a one-dimensional structure V(o) E ENS,(Z), generated by V(1) = 

e”‘“, where Q E R. Then by 2.5(2), b = 2i sin rro, and for any n E Z the representation 

is p(n) = e2*jna, and 

neria 

V(n) = 
if cy E Z, 

b-‘[p(n) - l] = *enin” if LY $ Z. 

The signature cr(U(cr); Ko, Kt , K,+I) (n E Z), can be computed directly from the def- 

inition (see 4.4). If Kn+r = KO then this signature is zero, otherwise it is equal to 

sign ~~~!~‘_“v’;i), . This gives for n 2 1: 

++); Ko, Kl, &I+,) = 

i 

( - 1)” if cy E Z, 

sign(sin 7rno . sin x(n + 1)~) if a $ Z. 

The right hand side of the above identity has a completely different presentation, too. 

Define the function h : IR + { - 1, 0, 1) by h(a) = sign sin KIT(Y and 

forn>2andFt(cr)=O. 

Lemma 5.6. Let n 3 1. Then: 

5x+1 (a) - CL(~) = 1 ( - 1F ifffEZ, 

sign(sin 7rno . sin x(n + 1)~) if a cj Z. 

Proof. The verification is elementary, and it is left to the reader. 0 

Corollary 5.7. Fix q 3 1. Then: 

9. rl(Vb); 1) - 77pw; 4) = Fq(Q). 

Proof. 

q-1 

4+w; 1) -77(%4;q) =~“(w;Ko,K1,Kn+l) 
n=l 

q--l 

= c (EL+d4 - &(a)) = Fq(a). 0 

n=l 

Example 5.8 (The signature of the Brieskorn’s singularity). Set f = 27’ + . + z:n 

where n is even. The variation map V(j) is the inverse of the Seifert form of f (see 

[3]). This latter one, by a result of Sakamoto [ 151, is (- 1 )(n-‘)n/21’a, @. . @Tan, where 

r, is an (a - 1)-dimensional form with (ra)ij = 1 if i = j or i + 1 = j, and = 0 
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otherwise. Now, if we write r, in the base given by the eigenvectors of the monodromy 

-r;‘r;, then r, is diagonal. By a computation we obtain that 

k=l 

Therefore: 

a,-1 a,,-1 rikk,/n, n 

V(f) = V(I) = (_])“(“-‘)/2(_2i)‘” @ . . . @ e J=I 

kl=l k,=l 

n sin Y$i 

j=l 3 

which is equivalent (as a sesqui-linear form) to 

By 5.7, 

Therefore, we obtain Brieskorn’s formula: 

a,-1 an+, - 1 

a(q +. . . + z;“+:’ ) = c ... c signsin 

k,=l k,+,=l 
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