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Abstract. The mixed-Hodge theoretical data of an isolated hypersurface singularity f are codified
by the set of spectral pairs Spp( f ) E N[Q x N]. We prove that its projection in N[Q/2Z x N] is
equivalent to the real Seifert form of f. In order to prove and illustrate this, we discuss and classify
the sesqui-linear forms from the viewpoint of the Hodge theory.
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1. Introduction

The final goal of this paper is the description of the connection between the
complex (real) Seifert form and the collection of spectral pairs Spp( f ) of an
isolated hypersurface singularity f. The Seifert form is defined topologically and
coordinates the intersection form and the monodromy. On the other hand, the
powerful discret invariant Spp( f ), defined in the free abelian group generated by
Q x N, is equivalent to the collection of Hodge numbers {hp,q03BB} [11, 12, 13].

In this paper we prove the following

THEOREM. Consider the image SPPmod-2(f) of Spp(f) under the projection
induced by Q x N - (Q/2Z) x N. Then the information contained in

SPPmod-2(f) is equivalent to the information contained in the real Seifert form
of the singularity. Moreover, this correspondence is very explicit (see 6.1 and
6.5).

Therefore, we can distinguish three levels of invariants. The first one is deter-
mined by the monodromy. The collection of the eigenvalues and the weight filtration
(measuring the dimension of the blocks) can be codified in N[(Q/Z) x N]. The
second one is the level of the real Seifert form codified in N[(Q/2Z) x N]. The addi-
tional Z2-invariants can be identified with some signatures. The analytic invariant
Spp( f ) is codified in N[Q x N]. The relation between them is the corresponding
factorizations. So, the Seifert form contains complete information about the weight
filtration and a Z2-(Hodge) decomposition. The latter can be understood in the fol-
lowing way. We collapse the mixed Hodge structure (in fact the Hodge filtration)
of f (or the spectral pairs) corresponding to the signs given by the polarization.

* Partially supported by NSF grant No. DMS-9203482.
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This result is similar to the Hodge signature theorem in the case of smooth
projective varieties. In that classical case, the signature is given by the collapsed
Z2-("even-odd")-Hodge decomposition, where the collapse is induced by the polar-
ization. In our case, the real Seifert form of an isolated singularity is equivalent to
the collapsed mixed Hodge structure associated with the singularity.

This correspondence motivates an intensive study of sesqui-linear forms: we
develop the "theory of mixed Hodge structures" at this level. In fact, it is convenient
to study the Seifert form together with the hermitian intersection form and the
monodromy operator. This triplet forms a "variation structure". Since we did not
find a convenient presentation form our point of view in the literature, we start
in Section 2 with the classification of the variation structures. In Section 3 we
introduce their spectral invariants and in the next section we relate them to the
signature-type invariants. In Section 5 we recall some properties of the mixed
Hodge structure associated with an isolated hypersurface singularity. Section 6
contains the proofs of the main theorems and some examples.

As an application, we find new obstructions for the algebraic Seifert forms,
compute the complex Seifert forms of quasi-homogeneous isolated singularities,
establish different connections between our invariants (for example, we compute
the equivariant signatures corresponding to the eigenvalues ~ 1 in terms of mod-

2-spectral numbers).

2. 03B5-hermitian variation structures

If U is a finite dimensional vector space then U* is its dual Homc(U, C). We have
the natural isomorphism 0 : U - U** given by 0(u)(p) = ~(u). We denote by ·
the complex conjugation. Ifp E Homc( U, U’), then ~ E HomC(U, U’) is defined
by ç3(z ) : = ~(x). The dual ~*: U’* ~ U* of ~ is defined by ~*(03C8) = 03C8 o ~.

It is convenient to write 03B5 = ± 1 in the form E = (-1)n.
2.1. DEFINITION. An E-hermitian variation structure (abbreviated as HVS) over
C is a system ( U; b, h, V), where

(a) U is a finite dimensional C-vector space,
(b) b : U ~ U* is a C-linear endomorphism with b* o 0 = -b; (i.e. it is e-

hermitian).
(c) h is b-orthogonal automorphism of U, i.e. h* o b o h = b.
(d) V : U* ~ U is a C-linear endomorphism, with

(i) 0- o V* = -EV o h*, (i.e. V is "E-h-hennitian")
(ii) V o b = h - I (the "Picard-Lefschetz relation").

2.2. The endomorphism b defines an E-symmetric hermitian form B : U 0
V - C by B(u, v = b(u)(v). Indeed, B v, u = b(v)(ù) = Eb* o 03B8(v)(u) =
eb*8(v)( u) = 03B503B8(v)(b(u)) = eb( u)(v) = 03B5B(u, v). Condition (c) is equivalent to
B(hx, hy) = B(x, y) for any x and y.
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We have two immediate properties:
2.3. LEMMA. b o V = (h*)-1 - I, and h o V o h* = V.

Proof. The first identity follows from b* o 0o 03B8-1 o V* = h* - 1. For the
second one, one has: h o V o h* = (h - I)Vh* + Vh* = VbVh* + Vh* =
V(h*,-1 - I)h* + Vh* = V. ~

2.4. DEFINITION. The HVS ( U; b, h, V) is called non-degenerate (resp. simple)
if b (resp. V) is an isomorphism.
2.5. DEFINITION. Two e-hermitian variation structures ( U; b, h, V) and ( U’; b’,
h’, V’) are isomorphic (denoted by ~) if there exists a (C-linear) isomorphism
~: ~ U’ such that b = ~*b’~,h = ~-1 h’~, and V = ~-1 V’(~*)-1.
2.6. REMARKS.

(a) If b is an isomorphism then V = (h - I)b-1 and the HVS ( U; b, h, V)
is completely determined by the isometric structure ( U; b, h) (i.e. triplets with
axioms a-b-c and with non-degenerate form b). The classification (up to isomor-
phism) of the isometric structures is equivalent to the classification of the conjugate
classes in the orthogonal group O(b). For this classification, see, for example, the
papers of Milnor [4] and Neumann [7]. 

(b) If V is an isomorphism, then h = -,-V(O-1 o V*)-1 and b = -V-1 -
03B5(03B8-1 o V*)-1. In particular, the classification of simple HVS-s is equivalent to
the classification of C-linear isomorphisms V : U* ~ U or to the classification
of sesqui-linear forms on finite dimensional vector spaces. Here V : U* ~ U and
V’ : U’* ~ U’ are isomorphic if V’ = ~V~* for an isomorphism ~: U ~ U’.

If we would like to emphasize 03B5 then the E-HVS determined by V is denoted
by03B503BD.

(c) Any base leili of U defines a dual base {e*i}i of U* by e*j(ei) = 1 if j = i
and = 0 else. In all our matrix notations we will use the matrix representation in a
convenient base and its dual base. (Notice that 0 corresponds to the identity matrix.
If the endomorphism ~ : U ~ U’, in a given base, has matrix representation A,
then p* in the dual base is represented by the transposed matrix A*.)
2.7. EXAMPLES.

1. Define the trivial structure T by U = C, b = 0, h = 1C, V = 0.
2. Let SI be the unit circle. Any 03BE E S1 - tEl defines an 03B5-hermitian 1-

dimensional simple structure 03BD(03BE) by

3. If Vi = (Ui; bi, hi, Vi) ( i = 1, 2) are variation structures, then 03BD1 ~ V2 =
(U1 ~ U2; b1 ~ b2, h1 ~ h2, V1 ~ V2) is their direct sum in this category. nV
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denotes the direct sum of n copies of V. If V = (U; b, h, V) then -V denotes
(U; -b, h, -V) with the same 03B5.

If Vi, ( i = 1, 2) are simple £i-hermitian variation structures, then the tensor
product Vi 0 V2 defines a new simple --structure. The corresponding automor-
phisms are related by Oh = -03B503B5103B52h1 ~ h2. If we want to emphasize the sign of
E in the tensor product, we write VI 0ë V2. (In this paper always 03B503B5103B52 = -1, i.e.
h = h1 ~ h2.)

The conjugate of V = ( U; b, h, V) is V = ( U; b, h, V).
4. In the next examples Jk denotes the k x k-Jordan block:

Consider À E C* - S1. The --HVS 03BD2k(03BB) is defined by:

Note that V2k 03BD2k1/03BB ~ -03BD2k03BB.
5. We are looking for non-degenerate (k x k)-matrix b such that b* = Eb and

JgbJk = b. It is immediate that bij = 0 if i + j  k and bk+i-i,i = (-1)i+1bk,1. By
[4] the isomorphism class of (b, Jk) is determined by bk,1. Since b is non-degenerate
bk,1 ~ 0. Since for any t ~ (0, ~) one has (U; b, Jk, Y) N (U; t2b, Jk, t-2V),
we can assume that bk,l = 03C9 E S1. By the hermitian property of b one has W =

03B5(-1)k-103C9. This equation has two solutions. In conclusion, there are exactly two
non-degenerate forms b = bk± (up to isomorphism) with b* = Eb and Jk*bJk = b.
Their representatives are chosen so that (bk±)k,1 = ±i-n2-k+1; (this strange choice
has a Hodge-theoretical motivation and it will simplify the description of the results
in the next sections). Note that bk,1 = B(ek, el) = B(ek, (Jk - J)k- 1 ek)
B(ek, (log Jk)k-1ek). (Here {el}l denotes the standard base of Ck.)

Let À E S1. If h = a Jk, then by the above argument, there are exactly two
non-degenerate E-HVS-s (up to isomorphism):

where w = (bk±)k,1 = ±i-n2-k+1.
If 03BB ~ 1, then by (2.1.d-ii) any HVS with h = ÀJk is non-degenerate. If h = Jk,

then there are some degenerate structures, too.
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6. Suppose that k  2 and h = Jk but b is degenerate. Since ker b C ker( h - I)
(by 2.1.d-ii), and dimker(Jk - I) = 1, one has kerb = ker(h - I). Similarly as
above, any degenerated form b with ker b = ker( Jk - I ) and b* = eb and h*bh = b
has the properties bi,j = 0 if i+j  k+1, and bk+2-i,i = (- 1)’bk,2. Therefore
bk,2 ~ 0 and in the isomorphism class of the structure there is a representative with
bk,2 == ce E S1. By symmetry, w- = (-1 )n+k03C9 and b is completely determined
by bk,2 modulo an isomorphism. So, we have exactly two solutions k± (up to
isomorphism) with (k±)k,2 = ±(-1)n+1i-(n+1)2-k+1 (notice the shift n - n + 1
in the exponent of i). Moreover, V is completely determined by h and b (up
to isomorphism). In particular, there are exactly two degenerate structures with
h = Jk and k  2:

where (k±)k,2 = B4(ek, (log Jk)k-2ek) = ±(-1)n+1i-(n+1)2-k+1 = :l:i-n2-k+2.
In fact:

Note that the structure can also be recognized from ((k±)-1)k,1 = :i:i-n2-k+2;
(use the identity Vb = h - I).

By computation we get that k± is an isomorphism. In particular, the varia-
tion structures 03BDk03BB(±1), where À E SI - {1} resp. k  1, and k1(±1) where
k  2, are simple. They are determined by the corresponding isometric structures
(Ck; b, h).

7. Suppose that U = C and h = 1C. Then there are exactly five HVS-s (up to
isomorphism):

and

Note that in 11(±1) the variation structure is not determined by its underlying
isometric structure.

8. In order to unify the notations of the simple structures, we introduce:
Wk03BB(±1) = Vk03BB(±1) if À E S1 - {1}, and = k1(±1) if À = 1. Set s = 1 if

À = 1 and = 0 otherwise. Then: Wk03BB(±1) = Wk03BB(±(-1)-n2-k+1+s).
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9. Consider the following matrices:

They define an indecomposable (+1)-HVS, but the automorphism h has two Jordan
blocks. Note that even the associated (degenerate) isometric structure (b, h) is
indecomposable (cf. 2.9.b).

2.8. For the completeness of the discussion, we recall (the complex version of)
Milnor’s result [4] (see also [7]):

Any isometric structure (U; b, h) is a sum of indecomposable ones. The inde-
composable ones are the corresponding isometric structures of Vk03BB(±1), where
À E S1; and of V2k@ .X where A E C* - S1.

The main result of this section is:

2.9. THEOREM.

(a) An E-hermitian variation structure is uniquely expressible as a direct sum
V’ ~ V" so that h’ - I is an isomorphism (in particular, V’ is simple and non-
degenerate), and h" - I is nilpotent.

(b) A simple s-hermitian variation structure is uniquely expressible as a sum
of indecomposable ones up to order of summands and isomorphism. The indecom-
posable structures are:

2.10. REMARK. Part (b) of this theorem gives a classification of complex sesqui-
linear forms (with respect to complex conjugation) over finite dimensional C-vector
spaces (cf. 2.6.b).

If two real non-degenerate bilinear forms are isomorphic as sesqui-linear forms
over C, then they are isomorphic as real bilinear forms. In particular, the study of
real simple variation structures is equivalent to the study of the complex ones. This
follows from the comparation of (2.9) and the corresponding real classification
result [4].

2.11. PROOF of 2.9. We start with the following
Fact. Suppose that (U; b, h, V) = (U’ ~ U"; b’ ~ b", h" ~ h", V). If b’ or b" is

non-degenerate, then V = V’ ~ V", in particular V = V’ ~ V" (with the obvious
notations).

The proof is a direct verification.
Set U03BB = {u ~ U : (h - 03BBI)Nu = 0 for N sufficiently large}. Then U03BB~U03BC

(B-orthogonal) if 03BB03BC ~ 1 and U = ~03BBU03BB. Define U~1 = ~03BB~1U03BB; U*1 = {~ E
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U* : ~|U~1 = 0} resp. U*~1 = {~ ~ U* : ÇÔIUI = 0}. The subspaces U1 and
U~1 are h-invariants, U*1 and U*~1 can be considered as the duals of Ul resp. U~1.
Moreover, b(Ul) ~ U*1 and b(Uel) C U;l. Since b~1 is non-degenerated, by the
above Fact: V = Vi Q9 V~1. This gives the first part.

Now, V~1 is non-degenerate, hence it is completely determined by the isomet-
ric structure (U~1; b~1, h~1). Thus the result follows from the result of Milnor
[loc. cit.].

The decomposition of VI = (Ul; bl, hl, Vl) follows from the decomposition
of VI 0 V(03BE) (where e E S 1 {±1}) by the same argument as above. D

2.12. EXAMPLE. If V -1 = -0393m, where

and V is the simple --HVS defined by V, then V = ~V(03BE), where the sum is over
the roots of 03BEm+1 = 03B5m+1 with 03BE ~ -.

In the sequel, the £-sign of V(e) is always 03B5(V(03BE)) = +1; i.e. V(e) =
(C; 1, 03BE, 03BE - 1) ~ V~03BE(+1).
2.13. PROPOSITION. The e-suspension property.
Set e 54 1. Then

Proof If k  2, then the bilinear form of the tensor product is ~b = (k±)-1 +
(bk±)03BE 03BE-1. Therefore (~b)k,1 = ((k±)-1)k,1. Using thé identité = (k±)-1(Jk -
1), we get ~bk,1 = (k±)k,2 = ±(-1)n+1i-(n+1)2-k+1 = (-1)n+1((-1)n+1bk±)k,1.

If k = 1 , then ~b = [±(-1)n+1i(n+1)2]-1 = (-1)n+1((-1)n+1b1±). 0

2.14. If we do not want to relate this presentation and classification to the singularity
and Hodge theory, then the sign-convention can be simplified. The sign of (bk±)k,1
is motivated by the polarization formula (see 5.6.ii). The fact, that the structures
with À = 1 and with weight filtration centered at n have the same behaviour as
the structures with À =1 1 and with weight filtration centered at n + 1, is central in
the mixed Hodge theory of singularities. This motivates the shift in the definition
of (k±)k,2. The additional sign (-1)n+1 cornes from Deligne’s (or Sakamoto’s)
theorem about the Seifert form of singularities with separable variables.

2.15. REMARK. For the multiplicative properties of the hermitian variation struc-
tures, see [6].
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3. Hodge numbers and spectral pairs associated with variation structures

Fix an integer n and set E = (-1)n.
Let V = ( U; b, h, V ) be a --symmetric hermitian simple variation structure.
In the sequel, we assume that the eigenvalues of the automorphism h are on the

unit circle S1. Recall that s = s(03BB) = 0 if 03BB ~ 1 and = 1 otherwise.
We want to construct a weight filtration W on U*03BB and a Z2-decomposition on

GrW*U*03BB. By the decomposition Theorem (2.9), it is enough to define them on the
indecomposable elements Wr+103BB(u), where r  0, A E S1, and u = ±1. The
weight filtration is given by h*,-1, the center of the filtration is, by definition,
n + s. In fact, it is the unique filtration with center n + s and with the properties:
dim GrWl(Wr+103BB(u)) = 1 if l = n + s + r - 2t, where t = 0, 1, ... , r, and
log J*,-1r+1(Wl) ~ Wl-2.

The Z2-decomposition

is given by:

In other words: GrWn+s+r-2tWr+103BB(u) = F(-1)tuGrWn+S+r-2tWr+103BB(u).
If V = 03A3u=±1,r0pr+103BB(u)r+103BB(u) then we redefine pn+s+r,u03BB = r+l()

u = ±1, r  0; (n + s + r is the weight of the "primitive element" ofWr+103BB(u));
and we define hw,u03BB = dim FuGrWwU*03BB. By these notations, we have the following
relations:

In particular, V = 03A3pr+103BB(u)Wr+103BB(u) is completely determined by the numbers
{pw,u03BB; w  n + s} or by the set {hw,u03BB}.

There is a dual weight filtration (with center n - s(03BB) for Wr+103BB(u)) induced
by h, and a dual Z2-decomposition on UÀ. We prefer the theory on U* because it
can be easily compared to the mixed Hodge theory of singularities defined on the
cohomology groups.



31

The (mod-2)-spectral pairs associated with a variation structure lies in

The system of equations:

has exactly one solution a = 03B103BB,w,u E R/2Z. We associate with the space
FuGrWwU*03BB the spectral pairs ( a, w-s(03BB)) with multiplicity hw,u03BB = dim FuGrWwU*03BB.
The collection of the spectral pairs of V is:

It is clear that passing to the spectral pairs we do not lose any information: we can
recuperate V from its spectral invariants. Moreover, Spp(V1 ~ V2) = Spp(V1) +
SPP(V2)-

The symmetry of the weight filtration gives the invariance of Spp(f) with respect
to the transformation (a, n + k) ~ (a - k, n - k). If the structure comes from
a real one, the stability with respect to the complex conjugation gives an addition
invariance with respect to the transformation (a, n + k) ~ (n - 1 - a, n - k).

4. Other invariants of the variation structures

4.1. Let V be a HVS with eigenvalues on the unit circle. The null-space of a bilinear
form b is denoted by po. If b is (+1 )-symmetric, then 03BC+(b) resp. y- (b) denote the
maximal dimension of a positive resp. negative definite subspace of b. If b is ( -1)-
symmetric then M± (b) is defined as 03BC± (i · b). The signature of b is Q = 03BC+ - 03BC-.
(By this notation, since our form b is (-1)n-symmetric, 03BC±(b), by definition, is
03BC±(in2b).)

Now, consider the homotopy t ~ bk±(t); bk±(t)ij = tc(i,j)(bk±)ij, where c(i, j) =
0 if i + j = k + 1 and = 1 otherwise. Since the determinant is non-zero for
t e [0, 1] : 03BC±(bk±) = 03BC±(bk±(0)). Using this, we obtain that the li-invariants of
the simple indecomposable variation structures are:

4.2. In the sequel, we describe the relation between the spectral pairs and the
03BC-invariants of a variation structure V.
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The first entry of a spectral pair is called spectral number. Their collection
defines two numbers corresponding to v = ±1:

SpA (v) (V) = #{03B1| a is a spectral number with e-203C0i03B1 = 03BB and (-1)[03B1] = v}.
PROPOSITION. Let V = ~03BB ~pl03BB(±1)Wl03BB(±1). Then:

(a) For any À and v == ±1 one has:

In particular:

(Compare with the classical Hodge signature formula.)
(c)

Proof. Use (4.1) and the definition of the spectral pairs. o

4.3. By the above proposition, the equivariant signatures corresponding to the
eigenvalues 03BB ~ 1, are determined by the (mod-2) spectral numbers. On the
other hand, Q(Vl) cannot be computed from the spectral numbers alone. It can be
recovered from the spectral pairs in many ways, for example:

4.4. Consider the filtration 0 C U(1) ~ ··· C uim) = UA, where U(k)03BB = ker((h -
03BBI)k; Ua) with dimension n(k)03BB = dimc Uik). On U(k)IU(k-1) we can define a
(±1)-hermitian form by Bik)(x, y) = B(x, 03BB1-k(h - 03BBI)k-1y). Let aik) be its
signature.
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4.5. PROPOSITION. The number of the indecomposable components of the direct
sum ~)pl03BB(± 1)Wl03BB (±1) is determined by the collection of numbers n(k)03BB and 03C3(k)03BB.

Proof. Since n(m)03BB = #{all 03BB-blocks} and n(k)03BB-n(k)03BB = 03A3lk#{l- 03BB-blocks},
(k  m), the numbers n(k)03BB determine the number of 1 - 03BB-blocks. Since we have
only two types of 1 - À-blocks, they can be separated by 03C3(k)03BB. In fact 03BC0(B(k)03BB) =
03A3l&#x3E;k#{l - 03BB-blocks} and 03BC±(B(k)03BB) = #Wk03BB(±1). ~

5. Isolated hypersurfaces singularities

We review some topological and Hodge-theoretical definitions and results as a
preparation for the next section. The basic references are [11,12,13,10,9] and the
first chapter of [1].

5.1. Consider an isolated hypersurface singularity f : (Cn+1, 0) ~ (C, 0). We
recall the definitions of the main invariants.

For 6; sufficiently small and 0  6 « E define Sj = {w : |w| b 1 C C and
E : = f-1(S103B4) ~ {z : IZI  03B5} C Cn+l . Then the induced map f : (E, ~E) ~ Sj
is a locally trivial fibration with fiber (F, OF), such that f|~E is trivial. The
(Milnor) fiber F is homotopically equivalent to a bouquet V Sn therefore its

reduced (real) homology (cohomology) is concentrated in UR = Hn(F, R) ( UR =
fIn (F, R) ) . The characteristic map of the above fibration at (co)homological level
defines the algebraic monodromies hR : UR ~ UR and TR = h*,-1R : U*R ~
UR. The natural, real intersection form is denoted by bR : UR ~ UR. Fixing a
trivialization of f|~E one defines a variation map Var: U*R ~ UR.

These invariants satisfy the relations: Var o bR = hR - I ; hR o bR o hR =
bR; b* o 03B8 = 03B5bR; and Var* == -03B5 Var o hR, where 03B5 = (-1)n.

In particular, the complex maps b = bR~1C, h = hR~1C, and V = Var~ 1 c
define a (-1)n-HVS on U = UR 0 C. It is denoted by V(f). (We recall that b is a
hermitian form rather that a bilinear form.)

It is well-known that V is an isomorphism (see, for example, [1, p. 41]),
therefore our variation structure is simple. The real Seifert form L can be defined
as follows. If (, ) denotes the pairing between Hn ( F, 9F, R) and Hn ( F, R), then
for a, b E Hn(F, R) one has L(a, b) :== Var-1(a), b). By our notation, (, )
identifies Hn(F, âF, R) with U*, therefore Var can be identified with the inverse
of the Seifert form (cf. [3] or [1, p. 41]).

5.2. Consider the Jordan decompositions h = hshu and T = TsTu into semisimple
and unipotent part; and the generalized eigenspaces U03BB = ker( hs - 03BBI) resp. Uâ =
ker(TS - 03BBI); and the corresponding decomposition log hu = cN = ecNx resp.
log Tu = N = ~ N03BB. Let s = 0 if 03BB ~ 1, and = 1 if À = 1.
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5.3. The space U*03BB carries a mixed Hodge structure with weight filtration centered
at n + s. For r  0, the space

carries an induced Hodge structure of weight n + s + r:

By the monodromy theorem and [9]:a+b=n+s+r  2n.
The discrete invariants of the Hodge and of the weight filtrations are collected in

the Hodge numbers: hB,q = dim GrpFGrWp+qU*03BB (and hp’q = 03A303BBhp,q03BB). We will use
the dimensions (of the primitive spaces) pa,b03BB = dim Pa,b03BB (r = a + b-n-s  0),
too. Since N03BB is a morphism of Hodge structures of type (-1, -1), one has:

This system of linear equation can be solved in the Hodge numbers, thus

In fact, this can be also regarded as a consequence of the direct sum decomposi-
tion :

Moreover, since hp,q03BB = hn+s-p,n+s-q03BB, the system of numbers {hp,q03BB}p,q is equiva-
lent to the system of numbers {pa,b03BB}a+bn+s.
5.6. We want to relate V(f) to the mixed Hodge structure of the singularity. Since
the former object (more precisely b) is defined on U and the latter on U*, we will
consider the dual of this mixed Hodge structure, too.
We identify U with É) (F, C). By [13]:
(i) The space Ua carries a mixed Hodge structure with weight filtration centered

at n - s. For r  0, the space

carries an induced Hodge structure of weight n - s + r:
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(ii) If 03BB ~ 1 then the form Qr,03BB: cPr,03BB ~ cPr,03BB ~ C given by Qr,03BB(x, y) =
B (x, cNr03BBy) has the (polarization) properties:

From the duality, dim cPa,b03BB = cpa,b03BB is equal to 1, provided that 03BB ~ 1. (For
more precise description of the duality, see [13].)

5.7. An excellent codification of the Hodge numbers is the collection of the spectral
pairs considered in the free abelian group Z[Q x N], generated by Q x N:

Since hp qis the coefficient of (a, p + q - s), where a is the unique solution of
À = exp(-203C0i03B1) with n + [-03B1] = p, the collection of the Hodge numbers is
equivalent to Spp( f ). The symmetry of the Hodge numbers gives the invariance
of the spectral pairs under (a, w) ~ (n - 1 - a, 2n - w).

If we forget the weight filtration, then the information of the equivariant Hodge
filtration is codified in the spectrum:

(the sum over the spectral pairs (a, w)).

Any spectrum number a is in the interval (-1, n).
5.8. EXAMPLE. If f(x) = x 1 + 1, then U = C""’, n = 0, e = +1, and V = -0393-1m.
By (2.12), V( f ) = ~ml=1v(exp(203C0il m+1)). U = GrW0 U is pure ofweight w = 0 and

5.9. In Section 6, we compare the spectrum pairs and the 03BC-type and signature-type
invariants of f. These are defined as follows: 03BC±(03BB)(f) = 03BC±(b; U03BB), 03C303BB(f) =
03BC+(03BB)(f) - 03BC-(03BB)(f) for 03BB ~ SI; and 03BC0(f) = 03BC0(b), 03BC±(f) = 03A303BB03BC±(03BB)(f),
03C3(f) = 03A303BB03C303BB(f).

6. Topology and Hodge structure

Let f : (Cn+1, 0) - (C, 0) be an isolated hypersurface singularity. The connec-
tion between the topological invariant V(f) and the Hodge theoretical invariants
pa,b03BB(f) is given in the following
6.1. THEOREM.
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where s = 0 if A 0 1, s = 1 if A= 1 and r = a + b - n - s  0. In particular,
the Hodge numbers determine the real Seifert form.

Proof. Let À =11. Then by (5.6.ii) one has

Now, since

the result follows for these 03BB-components from the polarization properties.
Suppose À = 1. Consider the germ ( z, zn+1) ~ f(z) + zm+1m+1 : ( Cn+2, 0) ~

(C, 0). Then, by a result of Deligne (see [2]) (which solves the Sebastiani-Thom
problem at variation-map level) (or equivalently, by a result of Sakamoto [8] which
solves the Sebastiani-Thom problem at Seifert matrix level):

where V is associated with -0393-1m. The HVS associated with (z ~ zm+1) is

(+1 )-symmetric, hence by (2.12) V = ~03BEm+1=1,03BE~1v(03BE). Consider m so that the
monodromies hf and h(z~zm+1) have no common eigenvalues. Then:

Moreover, by the solution of the Sebastiani-Thom problem at the mixed Hodge
structure level [9]:

(since ho’o = 1 by (5.8)). Now, V1(f) 0 V(03BE) =

Since - 0 V(1) is one-to-one, the result follows. ~

6.2. EXAMPLE (The case of quasi-homogeneous polynomials). Let f : Cn+1 - C
be a quasi-homogeneous polynomial of type (wo,..., wn) with isolated singularity
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at the origin. Let {z03B1| a E 1 C Nn+1} be a set of monomials in C[z] whose
residue classes form a bases for the Milnor algebra C[[z]]/(~f). For a E l let
l(a) = 03A3ni=0(03B1i + 1)wi. By [12]:

Therefore, our result becomes:

6.3. THEOREM. If f is as in (6.2), then:

where [.] denotes integral part.
This, in particular, determines the dimension of the null-space Po = #{03B1 ~

Z, l(a) E Z}, too, as proved in [12]. But our result gives a supplementary connec-
tion between the topological invariants of the singularity and the combinatorics of
the lattice points; (i.e. it gives significance to the parity of l(a) when l(a) e Z).
6.4. Theorem 6.1 can be formulated in terms of spectral pairs as follows.

The projection Q x N ~ (Q/2Z) x N induces a natural map

at the level of the free abelian groups generated by Q x N resp. (Q/2Z) x N.

DEFINITION. The mod-2-spectral pairs of f are defined as the images of the spec-
tral pairs by prmod-2. The element prmod-2(Spp(f)) is denoted by SPPmod-2(f).
6.5. THEOREM. Giving the real Seifert form of an isolated hypersurface singu-
larity is equivalent to giving the mod-2-spectral pairs of f.

In fact, SPPmod-2 (f) = Spp(V(f)), where V ( f ) is the variation structure given
by Seifert form V(f) of f. Moreover:

Proof. Use theorem 6.1 and the corresponding definitions. ~

6.6. COROLLARY For any À e S1:
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and

([·] denotes integral part.)
Proof Use (4.2): 03BCu(Wk03BB(v)) = [2k+1-2s+uv 4], where u, v = ±1. ~

6.7. EXAMPLES. The case n = 1 is: 03BC+(03BB) = h1,103BB + h1,003BB, 03BC-(03BB) = h1,103BB +
h 0’l’ 03C303BB h 1 10 - h0,103BB for 03BB ~ 1; and 03BC0 = h1,11. In this case 03BC±(1) = 0. But for
n  2, the invariants 03BC± (1) might be non-trivial.

If n = 2, then by computation:

Using these and the relations hp,q03BB = hl’P, we get:

(These relations for n = 2 were proved for globalisable smoothings of normal
singularities by J. Wahl; for complete intersection by A. Durfee; and for smoothings
of isolated singularities by J. Steenbrink.)

The sum 03A3kh2,k in the right hand side of (a) is dim Gr 2 U*, and it can be
identified with the geometric genus pg of the singularity f [13].

6.8. EXAMPLE. Theorem 6.5 for n = 1 and n = 2 can be formulated as follows.
If n = 1 then a E (-1, 1) for any spectral pair (a, w). In conclusion, the

real Seifert form is equivalent to the spectral pairs. This result is proved in [10]
by the complete computation of the spectral pairs of curve singularities in terms
of the resolution graph and using a characterization of the Seifert form of curve
singularities, given by Neumann (cf. 6.15).

Assume n = 2. Let SppI(f) = {03A3(03B1, w) ; (a, w) is a spectral pair with
a E Il and #SppI(f) its cardinality. Then, by Theorem 6.5, Spp[0,1](f) is com-
pletely determined by the real Seifert form. In particular its cardinality must be a
remarkable invariant of the Seifert form. Indeed, suppose that a e (0, 1). Take
À = exp(-203C0i03B1). Since p = n + [-03B1] = 1, by (6.7): #{03B1|03B1 is spectrum number
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with A = exp(-203C0i03B1) and a E (0, 1)} = h1,003BB+h1,103BB+h1,203BB = h2,103BB+h1,103BB+h1,203BB =
p- (a). Sinceg- ( 1 ) = 0 (again by 6.7), we get that:

and

Moreover, #Spp{0}(f) = #Spp{1}(f) = 1 2. dim Ul.
6.9. In fact, for any n, 4.2 implies the following relation between spectrum numbers
and y-invariants. Denote: Sp03BB(±1)(f) = #{03B1|03B1 is a spectral number of f with
e-21r’a = À, and (-1)[03B1] = ±1}. Then by (4.2), one has:
PROPOSITION. Suppose 03BB ~ 1. Then Sp03BB(±1)(f) = 03BC~(03BB)(f), in particular,
03C303BB(f) = SP,B(-I)(f) - SP03BB(+1)(f).
6.10. EXAMPLE. Let fi = f-1,-1;1,1(x, y)+ Z2 and fii = f-1,1;-1,1 + z2, where
fk,l;m,n = ((y - X2)2 _ x5+k)((y + x2)2 - x5+l)((x - y2)2 - y5+m)((x + y2)2-
y5+n).
Then fi and fjl have the same spectral numbers [10], in particular the same
equivariant signatures for À =11. But their spectral pairs differ [10], the nonequal
pairs are: (0, 3) and (1,1) for the first germ, (0, 2) and (1, 2) for the second one. In
particular, their signatures differ: (j l = (j l l + 1.

6.11. In the end of this section we discuss some properties of variation structures
which are satisfied by the Seifert form of the isolated singularities.

Let #V be the number of V-components in V(f).
There are several obstructions of the decomposition of V(f). The first is the

stability of V(f) with respect to the complex conjugation. Using either (2.2.8), or
the symmetry of the Hodge numbers, we get:

(where a + b - n - s = r).

6.12. Now, since a  n and b  n, V(f) determines the numbers pa,b03BB where
(a, b) = (n, n), (n, n - 1), (n - 1, n) and (n - 1, n - 1) (with a + b  n + s.)
For these pairs:

In particular, for n = 1, the system of Hodge numbers is completely determined

by V(f). For n = 2, only {pa,b1}a,b; p2,203BB; p2,103BB; p1,203BB; 1 1 and the sum p0,203BB+p2,003BB =
#V103BB(+1) are determined by V(f).
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Our main obstruction, as a consequence of (6.13), is:

6.14. PROPOSITION. The structures Wn+1-s03BB((-1)n+1) do not appear in the
decomposition of V(f) for any isolated singularity f : (Cn+1, 0) - (C, 0).
This obstruction is nontrivial even for n = 1 : V203BB(+1), 03BB ~ 1 and 11 (+ 1 ) cannot
be components of an algebraic Seifert form. Both cases ( n = 1; s = 0 and s = 1)
were proved by Neumann [7] using the splice geometry of curve singularities.

6.15. EXAMPLE. Let us describe the possible decomposition when n = 1:

By the notation of (4.4): hll = n(1), h1,103BB = n(2)03BB - n(1)’ hl,l + h1,0 + h0,1 =
n(1)03BB, (l) h1,003BB - h0,103BB. Therefore, n(1)03BB, n(2)03BB, (l) determine V(f). This is
Neumann’s characterization of the real Seifert form in terms of the characteristic

polynomials A and A’ and the equivariant signatures 03C303BB.
If n = 2 then the Hodge numbers hp,q03BB ( p + q  3) and h1,103BB are determined by

the real Seifert form, in particular, by the numbers {n(1)03BB, n(2) n(3)03BB, 03C3(1)03BB, 03C3(2)03BB}.
(But the number h0,203BB is not.)

In general, the obstruction (6.14) implies 03C3(n+1)03BB = (-1)nn(n+1)03BB, therefore the
real Seifert form is determined by n. (1  k  n + 1) and 03C3(k)03BB (1  k  n). (cf.
4.5)
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