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1. Introduction.

Studying the invariants of isolated hypersurface germs f : (Cn+2, 0) →
(C, 0), it is very useful to consider composed germs f = p ◦ ϕ, where ϕ :
(Cn+2, 0) → (C2, 0) has a manageable discriminant space (for example: ϕ is
an isolated complete intersection singularity, in short ICIS), and p : (C2, 0) →
(C, 0) is a curve singularity. This gives not only a very large class of examples
with powerful testing role (for example, the germs of “generalized Sebastiani–
Thom type”, where ϕ(x, y) = (g(x), h(y)) [9, 10], or the topological series
fk = pk ◦ ϕ→ f∞ = p∞ ◦ ϕ, when ϕ is an ICIS and pk → p∞ is a topological
series [10, 20] of plane singularities), but also clarifies the most general case.
To see this, complete the initial, arbitrary germ f to an ICIS (f, g) = ϕ and
take p(c, d) = c. If g is a generic linear form then we recover the classical
method of the polar curves, which is an effective inductive procedure.

In the composed case, the leading principal is the following: for a given
invariant i, find a category C(i) of supplementary structures (“of system
of coefficients”) defined either on (C2, 0) or on the local complement of an
analytic germ ∆ ⊂ (C2, 0), (which, in general, is the discriminant space of
ϕ) with the following properties:

a) ϕ defines a structure S(ϕ) in C(i), and
b) the invariant i(f) can be computed in terms of the germ p and the

structure S(ϕ).
In this way, one expects that the computation of the invariant i is reduced

to lower dimensional topology (link topology of p−1(0)∪∆) with some repre-
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sentations, or to the study of the resolution graph of some plane singularities
together with some special sheaf structures.

For example, if i(f) = ζ(f) =the zeta function of the germ f , then C(ζ)
is the category of constructible complexes, and for any complex S there is a
natural definition of i(f, S) = ζ(f, S) which satisfies the above requirements,
namely, for S(ϕ) = Rϕ∗C(Cn+2,0) one has ζ(f) = ζ(p, S(ϕ)) [10].

If i(f) = Spp(f) =the spectral pairs of the germ f (for the definition, see
[21]), then C(Spp) is the category of polarized mixed Hodge modules (for
more details, see [15]).

The main object of this note is the category C(σ) associated with the
signature σ(f) of the Milnor fiber of f .

Problem # 1. Find the category C(i) for other invariants.
For example, find a category C(i) such that any ICIS ϕ (as above) gives

an element S(ϕ) ∈ C(i). Moreover, define a “generalized Dynkin diagram”
D(p, S) for any (isolated) curve singularity p and S ∈ C(i) in such a way
that D(p, S(ϕ)) is the Dynkin diagram of f = p ◦ ϕ (provided that f has
isolated singularity).

2. Variation structures. Definitions and examples.

The needed category C(i) in the case of the (equivariant) signature is
the category of the variation structures [11, 13, 14]. Notice that, in general,
C(i) is not uniquely determined by the properties a-b given in §1. Actually,
the category of variation structures contains a huge quantity of additional
topological information. Its definition follows.

If U is a finite dimensional vector space then U∗ is its dual HomC(U,C).
There is a natural isomorphism θ : U → U∗∗ given by θ(u)(φ) = φ(u).
We denote the complex conjugation by ·. If φ ∈ HomC(U,U

′), then φ ∈
HomC(U,U

′) is defined by φ(x) := φ(x), and the dual φ∗ : U ′∗ → U∗ of φ
by φ∗(ψ) = ψ ◦ φ.

A C-linear endomorphism b : U → U∗ with b∗ ◦ θ = ϵb (ϵ = ±1) is called
ϵ-hermitian form on U . The automorphisms h : U → U with h

∗ ◦ b ◦ h = b
form the orthogonal group Aut(U ; b).
Definition. An ϵ-hermitian isometric structure of the group G is a system
I = (U ; b, ρ) such that b is an ϵ-hermitian non–degenerate form, and ρ : G→
Aut(U ; b) is a group endomorphism.
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By definition, a twisted–homeomorphism is a map V : G→ Hom(U∗, U)
with V (gh) = ρ(g) ◦ V (h) + V (g).
Definition. An ϵ–hermitian variation structure of the group G is a system
V = (U ; b, ρ, V ) such that b is an ϵ–hermitian (maybe degenerate) form, ρ
is a representation of G in Aut(U ; b), V is a twisted–homeomorphism, and
they satify the following compatibility conditions for any g ∈ G:

(i) θ−1 ◦ V (g)
∗
= −ϵV (g) ◦ ρ(g)∗, and

(ii) V (g) ◦ b = ρ(g)− I.
Definition. Two ϵ-hermitian variation structures (U ; b, ρ, V ) and (U ′; b′, ρ′, V ′)
are isomorphic (denoted by ≈) if there exists a (C–linear) isomorphism φ :
U → U ′ such that b = φ̄∗b′φ, ρ(g) = φ−1ρ(g)′φ, and V (g) = φ−1V ′(g)(φ̄∗)−1

for any g ∈ G.
HVϵ(G) denotes the semigroup of isomorphism classes. (The semigroup

structure is provided by the natural direct sum.)

Any base {ei}i of U defines a dual base {e∗i }i of U∗ by e∗j(ei) = 1 if j = i
and = 0 else. In all our matrix notations we will use the matrix representa-
tion in a convenient base and in its dual base.

Examples.
1. If b is non–degenerate then V (g) = (ρ(g) − I)b−1, i.e. the semigroup
of the non–degenerate variation structures is equivalent to the semigroup
of ϵ–hermitian isometric structures. We call these systems non–degenerate
variation systems.

In general, the variation structures substitute the isometric structures in
those cases when, from the geometric consideration, the corresponding her-
mitian form is degenerate.
2. If V (g) is an isomorphism, then ρ(g) = −ϵV (g)(θ−1 ◦ V (g)∗)−1, and b =
−V (g)−1−ϵ(θ−1 ◦ V (g)∗)−1. In particular, if G = Z, then the sub–semigroup
HV s

ϵ (Z) = {V ⊂ HVϵ(Z); V (1) isomorphism} is equivalent to the semigroup
of the sesqui-linear forms over C. We call these systems simple.
3. If Vi = (Ui; bi, ρi, Vi) (i = 1, 2) are variation structures, then V1 ⊕ V2 =
(U1 ⊕ U2; b1 ⊕ b2, ρ1 ⊕ ρ2, V1 ⊕ V2) is their direct sum in this category. The
direct sum of n copies of V is denoted by nV . If V = (U ; b, ρ, V ) then −V
denotes (U ;−b, ρ,−V ) with the same ϵ. The conjugate of V = (U ; b, ρ, V ) is
V = (U ; b, ρ, V ).
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4. An important element in HV s
ϵ (Z), provided by an isolated hypersurface

singularity f , is V(f) generated by (U ; b, ρ(1), V (1)) = (middle homology of
the Milnor fiber of f ; intersection form, monodromy, variation map). Notice
that the variation map V (1) of f can be identified with the inverse of the
Seifert form (up to a sign) [4], in particular, V (1) is an isomorphism (cf. §4).
5. Consider an isolated complete intersection singularity f : (Cn+2, 0) →
(C2, 0); (n > 0). Let ϕ : (X , 0) → (S, 0) be a “good representative” of
f with discriminant locus ∆ ⊂ S. Consider a base-point ∗ ∈ S − ∆. The
relative homology of the fiber F = ϕ−1(∗) is concentrated in U = Hn(F,C).
Identify its dual U∗ with Hn(F, ∂F ;C), and extend the real intersection form
to a hermitian form b : U → U∗. The monodromy representation ρ : G =
π1(S − ∆, ∗) → Aut(U ; b), and the variation map V : G → Hom(U∗, U)
constitute a system V(ϕ) = (U ; b, ρ, V ) which is our basic example of (−1)n–
hermitian variation structure.

In the following examples G = Z and V (1) = V, ρ(1) = h and we will
use the notation ϵ = (−1)n. We denote by Jk the k × k–Jordan block:

1 1

1
. . .
. . . 1

1

 .

6. Consider λ ∈ C∗ − S1. The ϵ–HVS V2k(λ) is defined by:

V2k
λ = (C2k;

(
0 I
ϵI 0

)
,
(
λJk 0
0 1

λ̄
J∗,−1
k

)
,
(

0 ϵ(λJk − I)
1
λ̄
J∗,−1
k − I 0

)
).

Note that V2k
λ ≈ V2k

1/λ̄ ≈ −V2k
λ .

7. We are looking for non–degenerate (k× k)–matrix b such that b̄∗ = ϵb and
J∗
kbJk = b. It is immediate that bij = 0 if i+j ≤ k and bk+1−i,i = (−1)i+1bk,1.

By [8] the isomorphism class of (b, Jk) is determined by bk,1. Since b is
non–degenerate bk,1 ̸= 0. Since for any t ∈ (0,∞) one has (U ; b, Jk, V ) ≈
(U ; t2b, Jk, t

−2V ), we can assume that bk,1 = ω ∈ S1. By the hermitian
property of b one has ω = ϵ(−1)k−1ω. This equation has two solutions.
In conclusion, there are exactly two non–degenerate forms b = bk± (up to

isomorphism) with b
∗
= ϵb and J∗

kbJk = b. Their representatives are chosen
so that (bk±)k,1 = ±i−n2−k+1; (this strange choice has a Hodge–theoretical
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motivation, cf. §4). Note that bk,1 = B(ek, e1) = B(ek, (Jk − I)k−1ek) =
B(ek, (log Jk)

k−1ek). (Here {el}l denotes the standard base of Ck.)
Let λ ∈ S1. If h = λJk, then by the above argument, there are exactly

two non–degenerate ϵ–HVS-s (up to isomorphism):

Vk
λ(±1) = (Ck; bk±, λJk, (λJk − I)(bk±)

−1)

where ω = (bk±)k,1 = ±i−n2−k+1.
If λ ̸= 1, then any HVS with h = λJk is non–degenerate. If h = Jk, then

there are some degenerate structures, too.
8. Suppose that k ≥ 2 and h = Jk but b is degenerate. Since kerb ⊂ ker(h−
I), and dimker(Jk − I) = 1, one has kerb = ker(h− I). Similarly as above,
any degenerated form b with kerb = ker(Jk − I) and b

∗
= ϵb and h

∗
bh = b

has the properties bi,j = 0 if i+ j ≤ k+1, and bk+2−i,i = (−1)ibk,2. Therefore
bk,2 ̸= 0 and in the isomorphism class of the structure there is a representative
with bk,2 = ω ∈ S1. By symmetry, ω = (−1)n+kω and b is completely
determined by bk,2 modulo an isomorphism. So, we have exactly two solutions
b̃k± (up to isomorphism) with (b̃k±)k,2 = ±(−1)n+1i−(n+1)2−k+1. Moreover, V
is completely determined by h and b (up to isomorphism). Therefore there
are exactly two degenerate structures with h = Jk and k ≥ 2:

Ṽk
1 (±1) = (Ck; b̃k±, Jk, Ṽ

k
±),

where (b̃k±)k,2 = Bk
±(ek, (log Jk)

k−2ek) = ±(−1)n+1i−(n+1)2−k+1 = ±i−n2−k+2.
In fact:

b = b̃k± =
(
0 0
0 bk−1

±

)
.

Note that the structure can also be recognized from ((Ṽ k
±)

−1)k,1 = ±i−n2−k+2.

By computation we get that Ṽ k
± is an isomorphism. In particular, the

variation structures Vk
λ(±1), where λ ∈ S1 − {1} resp. k ≥ 1, and Ṽk

1 (±1)
where k ≥ 2, are simple. They are determined by the corresponding isometric
structures (Ck; b, h).
9. Suppose that U = C and h = 1C. Then there are exactly five HVS-s (up
to isomorphism):

V1
1 (±1) = (C;±i−n2

, 1C, 0);

Ṽ1
1 (±1) = (C; 0, 1C,±in

2−1);
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and
T = (C; 0, 1C, 0).

Note that in Ṽ1
1 (±1) the variation structure is not determined by its under-

lying isometric structure.
10. In order to unify the notations of the simple structures, we introduce:
Wk

λ(±1) = Vk
λ(±1) if λ ∈ S1 − {1}, and = Ṽk

1 (±1) if λ = 1. Set s = 1 if

λ = 1 and = 0 otherwise. Then: Wk
λ(±1) = Wk

λ
(±(−1)−n2−k+1+s).

11. Consider the following matrices:

b =

 0 0 1
0 0 0
1 0 1

 h =

 1 0 0
0 1 1
0 0 1

 V =

 0 −1 0
1 0 0
0 0 0

 .
They define an indecomposable (+1)-HVS, but the automorphism h has two
Jordan blocks. Note that even the associated (degenerate) isometric struc-
ture (b, h) is indecomposable.

If Vi, (i = 1, 2) are simple ϵi–hermitian variation structures, then the
tensor product V1 ⊗ V2 defines a new simple ϵ–structure (for any ϵ). The
corresponding automorphisms are related by ⊗h = −ϵϵ1ϵ2h1⊗h2. If we want
to emphasize the sign of ϵ in the tensor product, we write V1 ⊗ε V2. For the
ring structure of HV s

ϵ (Z), see [12].

Problem # 2. Find the tensor product of two variation structures.

3. Classification.

In this section G = Z and the system V = (U ; b, h, V ) denotes h = ρ(1)
and V = V (1).

First we recall (the complex version of) Milnor’s result [8] (see also [18]):
Any isometric structure (U ; b, h) is a sum of indecomposable ones. The in-

decomposable structures are the corresponding isometric structures of Vk
λ(±1),

where λ ∈ S1; and of V2k
λ , where λ ∈ C∗ − S1.

On the other hand, the following holds:

Theorem.[11]
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a.) An ϵ–hermitian variation structure is uniquely expressible as a direct
sum V ′ ⊕ V ′′ so that h′ − I is an isomorphism (in particular, V ′ is simple
and non–degenerate), and h′′ − I is nilpotent.

b.) A simple ϵ–hermitian variation structure is uniquely expressible as a
sum of indecomposable ones up to order of summands and isomorphism. The
indecomposable structures are:

Wk
λ(±1) where k ≥ 1; λ ∈ S1; and

V2k
λ where k ≥ 1; 0 < |λ| < 1.

Remark. Part (b) of this theorem gives a classification of comlex sesquilinear
forms (with respect to complex conjugation) over finite dimensionalC–vector
spaces.

If two real non–degenerate bilinear forms are isomorphic as sesqui–linear
forms over C, then they are isomorphic as real bilinear forms. In particular,
the study of real simple variation structures is equivalent to the study of the
complex ones.

Problem # 3. Classify the variation structures for G = Z (cf. Example
11).

Any hypersurface isolated singularity gives a simple variation structure (of
G = Z) (cf. Example 4). Find natural restrictions provided by the singularity
theory, and classify variation structures with the corresponding restrictions.

Classify a class of variation structures which includes the structures given
by hypersurface singularities with one–dimensional singular locus.

Problem # 4. Let ϕ be an ICIS with two–dimensional base space (as
in the introduction). Let (U,E) → (B,∆) be an embedded resolution of its
discriminant locus. Let ∆0 be one of the irreducible components of ∆, ∆̃0 its
strict transform, and finally P = ∆̃0 ∩ E. Let UP be a small neighbourhood
of the point P in U . The variation structure V(ϕ) restricted to the subgroup
Z2 = π1(UP \E) gives a variation structure of the group G = Z2. Now, find a
natural restriction which is provided by this geometric situation and classify
variation structures of the group G with this restriction.

4. Variation structures and isolated hypersurface singularities.
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Consider an isolated hypersurface singularity f : (Cn+1, 0) → (C, 0). We
recall the definitions of the main invariants.

For ϵ sufficiently small and 0 < δ << ϵ define S1
δ = {w : ∥w| = δ} ⊂ C

and E := f−1(S1
δ ) ∩ {z : |z| ≤ ϵ} ⊂ Cn+1. Then the induced map f :

(E, ∂E) → S1
δ is a locally trivial fibration with fiber (F, ∂F ), such that f |∂E

is trivial. The (Milnor) fiber F is homotopically equivalent to a bouquet
∨
Sn

therefore its reduced (real) homology (cohomology) is concentrated in UR =
H̃n(F,R) (U∗

R = H̃n(F,R)). The characteristic map of the above fibration
at (co)homological level defines the algebraic monodromies hR : UR → UR

and TR = h∗,−1
R : U∗

R → U∗
R. The natural, real intersection form is denoted

by bR : UR → U∗
R. Fixing a trivialization of f |∂E one defines a variation

map Var : U∗
R → UR.

These invariants satisfy the relations: Var ◦bR = hR − I; h∗R ◦ bR ◦ hR =
bR; b

∗
R ◦ θ = ϵbR; and Var∗ = −ϵVar ◦ h∗R, where ϵ = (−1)n.

In particular, the complex maps b = bR ⊗ 1C, h = hR ⊗ 1C, and V =
Var⊗1C define a (−1)n–HVS on U = UR⊗C. It is denoted by V(f). (Notice
that here b is a hermitian form rather that a bilinear form.)

Recall that V is an isomorphism (cf. Example 4), therefore our varia-
tion structure is simple. The real Seifert form L can be defined as follows.
If <,> denotes the pairing between Hn(F, ∂F,R) and Hn(F,R), then for
a, b ∈ Hn(F,R) one has L(a, b) :=< V ar−1(a), b >. By our notation, <,>
identifies Hn(F, ∂F,R) with U∗, therefore V ar can be identified with the
inverse of the Seifert form (cf. [4] or [1, p. 41]).

Consider the Jordan decompositions T = TsTu and the generalized eigenspaces
U∗
λ = ker(Ts − λI). Set log Tu = N = ⊕Nλ. Let s = 0 if λ ̸= 1, and = 1 if

λ = 1.
The space U∗

λ carries a mixed Hodge structure with weight filtration cen-
tered at n+ s. For r ≥ 0, the space

Pr,λ = ker(N r+1
λ : GrWn+s+rU

∗
λ → GrWn+s−r−2U

∗
λ)

carries an induced Hodge structure of weight n+ s+ r:

Pr,λ =
⊕

a+b=n+s+r

P a,b
λ .

By the monodromy therem: a+ b = n+ s+ r ≤ 2n.
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The discrete invariants of the Hodge and the weight filtration are collected
in the Hodge numbers: hp,qλ = dimGrpFGr

W
p+qU

∗
λ , or equivalently, in the di-

mensions of the primitive spaces pa,bλ = dimP a,b
λ (r = a + b − n − s ≥ 0).

Since Nλ is a morphism of Hodge structures of type (−1,−1), one has:

pa,bλ = ha,bλ − ha+1,b+1
λ (r = a+ b− n− s ≥ 0), and

ha,bλ =
∑
l≥0

pa+l,b+l
λ (a+ b ≥ n+ s).

The connection between the topological invariant V(f) and the Hodge
theoretical invariants pa,bλ (f) is given in the following

Theorem.[11]

V(f) =
⊕
λ

⊕
2n≥a+b≥n+s

pa,bλ (f)Wr+1
λ ((−1)b)

where s = 0 if λ ̸= 1, s = 1 if λ = 1 and r = a+ b− n− s ≥ 0.
In particular, the Hodge numbers determine the real Seifert form.

This result is similar to the Hodge signature theorem in the case of smooth
projective varieties. In that classical case, the signature is given by the col-
lapsed Z2–(“even-odd”)–Hodge decomposition, where the collapse is induced
by the polarization. In our case, the real Seifert form of an isolated singular-
ity is equivalent to the collapsed mixed Hodge structure associated with the
singularity.
Example. Let f : Cn+1 → C be a quasi–homogeneous polynomial of type
(w0, . . . , wn) with isolated singularity at the origin. Let {zα| α ∈ I ⊂ Nn+1}
be a set of monomials in C[z] whose residue classes form a bases for the
Milnor algebra C[[z]]/(∂f). For α ∈ I let l(α) =

∑n
i=0(αi + 1)wi. Then:

V(f) =
⊕
α∈I

W1
exp(2πil(α))( (−1)[l(α)] ),

where [·] denotes the integral part.

Problem # 5. In the context of Problem # 4 there is a natural limit
mixed Hodge structure with the action of Z2 (via the semi–simple part of the
monodromy representation) ([19], see also [15] and [17]). Extend the above
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Theorem to this case.

In the end of this section we discuss some properties of variation structures
which are satisfied by the Seifert form of the isolated singularities.

Let #V be the number of V–components in V(f).
There are several obstructions of the decomposition of V(f). The first is

the stability of V(f) with respect to the complex conjugation:

#Wr+1
λ (±1) =

∑
(−1)b=±1

pa,bλ =
∑

(−1)a=±(−1)n+r+s

pb,a
λ

= #Wr+1
λ

(±(−1)n+r+s)

(where a+ b− n− s = r).

Now, since a ≤ n and b ≤ n, V(f) determines the numbers pa,bλ where
(a, b) = (n, n), (n, n − 1), (n − 1, n) and (n − 1, n − 1) (with a + b ≥ n + s.)
For these pairs:

pa,bλ = #Wa+b−n−s+1
λ ((−1)b).

In particular, for n = 1, the system of Hodge numbers is completely de-
termined by V(f). For n = 2, only {pa,b1 }a,b; p2,2λ ; p2,1λ ; p1,2λ ; p1,1λ and the sum
p0,2λ + p2,0λ = #V1

λ(+1) are determined by V(f).
The above relation gives:

Proposition.[11] The structures Wn+1−s
λ ((−1)n+1) do not appear in the

decomposition of V(f) for any isolated singularity f : (Cn+1, 0) → (C, 0).

This obstruction is nontrivial even for n = 1 : V2
λ(+1), λ ̸= 1 and Ṽ1

1 (+1)
can not be components of an algebraic Seifert form. Both cases (n = 1; s = 0
and s = 1) were proved by Neumann [18] using the splice geometry of curve
singularities.

Another property which is satisfied by simple variation structures pro-
vided by isolated hypersurface singularities is the following [5]:

Proposition. If f : (Cn+1, 0) → (C, 0) is an isolated singularity such
that its monodromy h has a Jordan block of size n + 1 (necessarily for an
eigenvalue ̸= 1), then h has a Jordan block of size n for the eigenvalue = 1.
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For some other (arithmetical) obstructions (in the case f : (X, x) →
(C, 0), dimX = 2) see also [16].

Problem # 6. For a fixed n, find the complete set of simple variation
structures (G = Z) which are given by isolated hypersurface singularities.

5. The Witt–group of variation structures.[14]

Definition. A hermitian variation structure is hyperbolic if there exists
a kernel K ⊂ U , i.e. a subset K such that

(a) dimK = 1
2
dimU,

(b) K ⊂ K⊥ = {x| B(x, y) = 0 for any y ∈ K},
(c) For any g ∈ G one has ρ(g)(K) ⊂ K and V (g)(K∗) ⊂ K where

K∗ = {φ ∈ U∗| φ(K) = 0}.
Examples.
1. If b is non–degenerate then V is hyperbolic if and only if the isometric struc-
ture (U ; b, ρ) is hyperbolic (i.e. there exists a ρ–invariant K with K = K⊥).
2. Consider −V = (U ;−b, ρ,−V ). Then V ⊕ (−V) is hyperbolic with kernel
K = ∆U = {(x, x)| x ∈ U}.
In particular, the semigroupWVϵ(G) = (HVϵ(G)/{hyperbolic structures},⊕)
is actually a group. It is called the Witt group of the variation structures of
G.

For any χ ∈ Hom(Zk,C∗), we define the generalized eigenspace Uχ =

{x ∈ U | (ρ(g)−χ(g))Nx = 0 for some N and any g ∈ G}. Ĝ = Hom(Zk, S1)
denotes the group of characters.

Theorem. Let G = Zk. Then:
(a) There is a direct sum decomposition:

(U ; b, ρ, V ) = (U ′; b′, ρ′, V ′)⊕
⊕
χ∈Ĝ

(Uχ; bχ, ρχ, Vχ),

where U ′ = ⊕χ̸∈ĜUχ. Moreover, (U ′; b′, ρ′, V ′) is hyperbolic.
(b) (U ; b, ρ, V ) is hyperbolic if and only if (Uχ; bχ, ρχ, Vχ) is hyperbolic for

any χ ∈ Ĝ, in particular

WVϵ(G) =
⊕
χ∈Ĝ

WVϵ(G)χ.
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Here WVϵ(G)χ is the Witt group of variation structures V with ρ(g)− χ(g)I
nilpotent for any g ∈ G.

(c)

WVϵ(Z
k)χ =

{
Z if χ ∈ Ĝ− {1}
Z2 if χ = 1.

The generators are (C;±i(1−ϵ)/2, χ,±(χ− 1)i(ϵ−1)/2) if χ ̸= 1, and (C; 0, 1, 0)
if χ = 1.

Problem # 7. Extend the above classification for more general groups.
(It would be ideal to have a classification theorem for the local fundamental
groups of complements of curve singularities p−1(0) ⊂ (C2, 0).)

6. Wall’s cocycle associated with a variation structure.[14]

Let V = (U ; b, ρ, V ) be an ϵ–hermitian variation structure of G. Then b
defines an ϵ–hermitian non–degenerate form Φ on U∗ ⊕ U by

Φ((φ, u), (ψ, v)) = ϵψ(u) + φ(v) + b(u)(v).

Any g ∈ G defines two maps sr(g), sl(g) : U
∗ ⊕ U → U∗ ⊕ U defined by

sl(g)(φ, u) = (φ, ρ(g)u− ρ(g)V (g−1)φ),

sr(g)(φ, u) = (ρ(g)
∗,−1

φ,−V (g)φ+ u).

Then sl resp. sr are representations of the group G in the orthogonal group
O(Φ) of Φ.

For any g ∈ G, define Kg = {(φ, u) ∈ U∗ ⊕ U : V (g)φ = u}. It is not
hard to verify that Kg is a Φ–kernel, i.e. Kg = K⊥

g (the latter one is the
Φ–orthogonal). Moreover, for any g and h:

sl(h)Kg = Khg and sr(h)Kg = Kgh−1 .

Any three kernels Ki; (i = 1, 2, 3) in U∗ ⊕ U define an (−ϵ)–hermitian form
[22]. We recall this costruction. Set K1 ∩ (K2+K3) = {x1 ∈ K1| there exist
x2 ∈ K2, x3 ∈ K3 with x1 + x2 + x3 = 0 }. On this space define the sesqui–
linear form Ψ(x1, x

′
1) = Φ(x1, x

′
2) (where x

′
1 + x′2 + x′3 = 0 and x′2 ∈ K2, x

′
3 ∈
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K3). Then Ψ is (−ϵ)–hermitian with kernel Ker = K1 ∩K2 +K1 ∩K3. We
define σ(V ;K1, K2, K3) as the signature of the induced nondegenerate form
on K1,2,3 = K1 ∩ (K2 + K3)/Ker multiplied by ϵ. (if there is no danger of
confusion then it is denoted by σ(K1, K2, K3)). If Ki = Kj for some pair
(i, j), then K1,2,3 = 0, hence σ(K1, K2, K3) = 0.

Lemma.
(a) σ(Kτ(1), Kτ(2), Kτ(3)) = sign(τ)σ(K1, K2, K3) for any permutation

τ ∈ S3; (here sign(τ) ∈ {±1} is the sign of τ).
(b) σ(K1, K2, K3) − σ(K0, K2, K3) + σ(K0, K1, K3) − σ(K0, K1, K2) = 0

for any kernels Ki; (i = 1, 2, 3, 4).
(c) If o ∈ O(Φ) is an orthogonal automorphism, then

σ(o(K1), o(K2), o(K3)) = σ(K1, K2, K3). In particular, σ(Khg1 , Khg2 , Khg3) =
σ(Kg1h, Kg2h, Kg3h) = σ(Kg1 , Kg2 , Kg3).

Therefore σ(V ;K1, K2, K3) defines a homogeneous cocycle of the group
G in Z (Z is considered with the trivial G–action). The corresponding non-
homogeneous cocycle is σ(g, h) = σ(Ke, Kg, Kgh) (e is the neutral element
of G). This cocycle is a coboundary if there exists a function f : G → Z
such that σ(g, h) = f(g) + f(h) − f(gh); i.e. if σ(Ke, Kg, Kh) = δ(f) =
f(g) + f(g−1h)− f(h). The semigroup morphism

c1 : HVϵ(G) → H2(G,Z), c1(V) = σ(V ; ·, ·, ·)

is not trivial in general. For example, if G is the mapping class group Γg and

V = (C2g;
(

0 I
−I 0

)
, ρ, (ρ− I)b−1)

where ρ is given by Γg → Sp(2g,C) (”passing to the homology”), then c1(V)
is the generator of H2(G,Z) = Z [6].

Remark. Set B = {z ∈ C2 : |z| ≤ 2; |z − 1| ≥ 1/2; |z + 1| ≥ 1/2}.
Let (E, ∂E)

p→ B be a C∞ fiber bundle of pair of spaces with fiber (F, ∂F )

such that the induced bundle ∂F → ∂E
p→ B is trivial. Assume that

dimF = 4k−2, (k ≥ 1). The fibration p defines a variation structure V(p) of
the free group (with two generators) G = π1(B) in a natural way (similarly
as in Example 5). By Wall’s theorem [22] (see also [7]) the signature σ(E) is
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σ(Ke, Kg, Kh), where g and h are two natural generators of G. Therefore c1,
in general, describes the signature of a fiber bundle with 2–dimensional base
space. Actually, it can be interpreted as a first Chern class [7].

Problem # 8. Find the higher dimensional analogues of c1 in H
2q(G,Z).

7. The eta–invariant of the variation structures.[14, 13]

Definition. Let V be an ϵ–hermitian variation structure. Then for any
g ∈ G, ρ(g) determines a spectral decomposition

(U ; b, ρ(g), V (g)) = ⊕χ(Uχ; bχ, ρ(g)χ, V (g)χ),

where Uχ is the generalized χ–eigenspace of ρ(g). The eta–invariant ηV(g) is
defined by the sum

∑
χ ηV(g)χ, where:

ηV(g)χ =

{
(1− 2c)signbχ if χ = e2πic, 0 < c < 1;
−sign[(1 + ρ(g)−1

χ )V (g)χ] if χ = 1.

Our η–invariant can be interpreted as the η–invariant of the signature
operator of the circle twisted with the signature bundle of a hermitian flat
bundle, in the sense of [3].

a) Wall’s cocycle via eta invariant.

Theorem. If G is a (finitely generated) abelian group then:

σ(V ;Ke, Kg, Kh) = −η(g)− η(g−1h) + η(h).

In particular δ(η) = −σ.

Problem # 9. Characterize variation structures V (or groups G) with
the property δ(η) = −σ.

b) The signature via Wall’s cocycle and eta–invariant.

Let f = p ◦ ϕ as in the introduction. Let V(ϕ) be the variation structure
associated with ϕ as in example 5.

14



Our goal is to compute σ(f). For simplicity, assume that p is reduced
and irreducible.

Consider the splice diagram Γ(p,∆) of the multilink determined by p−1(0)∪
∆ ⊂ (C2, 0), where the multiplicity of p−1(0) is 1, and the other multiplic-
ities are zero. Each node of the diagram represents a Seifert component
Σ(a1, . . . , ar;S1, . . . , Sr) with multilink (Σ;S1, . . . , Sr;m1, . . . ,mr). Notice
that the multiplicities mi can be determined from Γ(p,∆) by the correspond-
ing splicing conditions. LetMi resp. Li be the topological standard meridian
resp. longitude of the link component Si. Consider the following numbers:

qi = a1a2 · · · ar/ai, m′
i = −∑

j ̸=imjqj/ai, and ni = gcd(mi,m
′
i) > 0,

i = 1, . . . , r.
Recall that the quotient Σ/S1 = B of Σ by its free S1–action is an r–

punctured 2–sphere.

Theorem.[13] The signature σ(f) is a sum σ(f) =
∑

nodes σ(Σ, ρ) over
the nodes of Γ(p,∆), where:

(a) For a Seifert component Σ, the term σ(Σ, ρ) is the signature of a
hermitian flat bundle over the Milnor fiber of Σ (or alternatively, over the
r–punctured 2–sphere). Actually , it can be computed as a sum of Wall’s
cocycles associated with V(ϕ).

(b) If the variation structure above Σ is abelian, then:

σ(Σ, ρ) =
r∑

1=1

ni · η(Lmi/ni

i M
m′

i/ni

i ).

.
c) An application: the Yomdin’s series.

Theorem. Let f1 : (Cn+1, 0) → (C, 0) be a germ with one–dimensional
critical locus. Choose a germ f2 in such a way that the pair ϕ = (f1, f2) is
an ICIS. Then

σ(f1 + f q
2 )− σ(f1) = −qη(M)− η(L) + η(L+ qM),

where q >> 0 and L resp. M are the standard topological longitude and
meridian associated with the series {f1 + f q

2}q>>0.
(The definition of L andM is the following: let ∆0 be the image ϕ(Sing f−1(0))

of the singular locus of f−1(0). Consider the set UP \ E as in Problem # 4.
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Its fundamental group is generated by a small circle (in UP \ E) around E,
called L, and a small circle around ∆̃0, called M .)

An interesting consequence is the quasi–periodicity property (which gen-
eralizes the corresponding result for the suspension case, conjectured by
Brieskorn, Durfee and Zagier and proved by Neumann), namely, the func-
tion q → σ(f1+f

q
2 ) is a sum of a linear function and some periodic functions.

We can consider here an even more particular case: the suspension case.
Let f : (Cn, 0) → (C, 0) be an isolated singularity. Consider f1 :

(Cn+1, 0) → (C, 0) defined by f1(z, zn+1) = f(z). Set f2 = zn+1 and
ϕ = (f1, f2) as above. The singular locus of the ICIS ϕ is Σ = {z = 0}, and
the discriminant locus ∆ contains only one irreducible component ∆ = ∆0,
which is smooth. In particular, G = Z and L = 0. By the above theorem :

σ(f + zqn+1) = ηV(f)(q)− q · ηV(f)(1),

where ηV(f)(q) is the eta–invariant of the variation structure V(f) (cf. Ex-
ample 4) and q ∈ Z = G.

Problem # 10. Characterize composed germs f = p ◦ ϕ such that σ(f)
can be computed only in terms of ηV(ϕ) and p.

d) The eta–invariant and Hodge invariants.

Let s(λ) = 0 if λ ̸= 1 and s(λ) = 1 if λ = 1. Denote the dimen-
sions of the primitive spaces of the mixed Hodge structure of the germ f
by pp,qλ (f) (where r = p + q − n − s(λ) ≥ 0) (cf. §4). Consider the invari-
ant Σppλ,±(f) =

∑
(−1)qpp,qλ , where the sum is over the pairs (p, q) so that

r = p+ q − n− s(λ) satisfies (−1)r = ±1. (Recall that (r + 1) measures the
sizes of the Jordan blocks of the monodromy operator.)

Theorem.

η(V(f); a) = −
∑
λa=1
λ ̸=1

Σppλ,−(f)−
∑
λa ̸=1

or λ=1

(1− 2{ca})Σppλ,+(f).
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Problem # 11. Compute the eta–invariant of the variation structure
described in problem # 4 in terms of the natural limit mixed Hodge structure
(cf. problem # 5).
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