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1. INTRODUCTION 

LETS be an analytic germ of a hypersurface singularity. The associated monodromy action 
preserves the intersection form of its Milnor fibre. In this paper we study the corresponding 
equivariant signatures. The guiding principle is the following. Write f as a composed 
singularity f = p 0 4, where 4 (resp. p) is an isolated complete intersection (resp. curve) 
singularity; express the equivariant signature off as the equivariant signature of p with 
coefficients in a (non-degenerate) hermitian flat bundle; identify this with an index of the 
signature bundle; and when the primary invariant (Chern class) vanishes, express it in terms 
of the eta-invariant of the boundary (of the Milnor fiber of p) with coefficients in the 
corresponding signature bundle. In the realization of this program, we have two basic 
obstructions: The monodromy action of p (resp.f) is not compact (finite), and the mono- 
dromy representation of 4 (i.e. the candidate for the flat bundle), in general, is degenerate. 
This second obstruction is solved by introducing the variation map of 4. The variation 
structure (i.e. the degenerate monodromy representation together with the variation map) 
substitutes perfectly the non-degenerate representations. It turns out that the equivariant 
signature can be expressed in terms of this variation structure and the geometry of the curve 
singularity p. It has a sum decomposition, corresponding to the Jaco-Shalen-Johansson (or 
splice) decomposition of the link complement of p- ‘(0); each term is closely related to the 
Seifert geometry of the components. (The structure of the fundamental group of the Seifert 
components will remove the first obstruction too.) The primary invariant (here the first 
Chern class) vanishes when the variation structure is abelian or the intersection form of 4 is 
definite. The basic application for the first case is the topological series; the coverings 
exemplify the second case. 

The equivariant signature has been computed only for a few families of isolated 
singularities: curve singularities [ 151, quasi-homogeneous germs [20], suspensions [ 131. 
This paper gives the variable term of the composed topological series (in particular for the 
Yomdin’s series) (see Corollaries 5.4 and 5.11), and reduces the general case (see 5.1) to 
a signature computation of a non-degenerate hermitian flat bundle over the r-punctured 
2-dimensional sphere (for which there exists a clear algorithm [S]). 
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The paper is organized as follows. Section 2 contains the definition of the isometric and 
variation structures and our eta-invariants associated with them. In the next section we 
state our general results about the (equivariant) signature of hypersurface singularities. 
Their proofs can be found in section 4. The last section contains the applications, and some 
connections with the limit mixed Hodge structures. 

2. THE ETA-INVARIANT OF THE VARIATION STRUCTURES 

2.1. If U is a finite-dimensional vector space then U* is its dual Horn&, C). There is 
a natural isomorphism 8: U + U** given by 6+)((p) = q(u). We denote by: the complex 

conjugation. If cp E Horn&J, U’), then (p E Horn&J, U’) is defined by Cp(x) := q(X), and the 
dual (p* : U’* + U* of cp by cp*($) = $0 cp. 

A C-linear endomorphism b: U -+ U* with b* 00 = .sb(c = + 1) is called .s-hermitian 

form on U. The automorphisms h: U + U with h* 0 b 0 h = b form the orthogonal group 

Aut(U; b). Any h E Aut(U; b) determines a spectral decomposition (U; b, h) = @.JU,; 
b,, h,), where U, is the generalized X-eigenspace of h. 

Definition 2.2. The eta-invariant qb(h) is defined by the sum C, q*(h),, where 

‘lb(h)y = 
(1 - 2c) sign b, if 1 = eznic,O < c c 1 

- s sign[b,(h, - hi’)] if x = 1. 

By convention, the signature of a ( - l)-hermitian form b is sign b := sign(ib). In all our 
cases x lies on the unit circle S’. For the sake of exactness, we can define rlx = 0 provided 
that x $ S’. 

Notice also the similarity with the function 2(( *)): R + R, used in number theory, 
defined by 2((c)) = 0 if c E Z, and 2((c)) = 1 - 2 (c} if c $ Z ({ * > denotes the fractional part). 

The above eta-invariant is a “good object” only for non-degenerate hermitian forms 
b (i.e. when b is an isomorphism). In that case qb can be interpreted as the q-invariant of the 
signature operator of the circle twisted with the signature bundle of a hermitian flat bundle, 
in the sense of [Z] (cf. (3.4) and Lemma 4.11). 

Definition 2.3. An s-hermitian isometric structure of the group G is a system 
9 = (U; b, p) such that b is an s-hermitian non-degenerate form, and p: G + Aut(U; b) is 
a group endomorphism. Given a system 9 and an element g E G, we define the eta-invariant 

‘79(S) by ~b(kd)- 

2.4. Any representation p : G + At(U) defines a left action of G on Hom(U*, U) by 
g * cp = p(g) o cp. Then, by definition, a twisted-homeomorphism is a map V: G + Horn 

(U*, U) with V(gh) = p(g) 0 V(h) + V(g). 

Dejnition 2.5. An s-hermitian variation structure of the group G is a system 
Y = (U; b, p, V) such that b is an s-hermitian (maybe degenerate) form, p is a representation 
of G in Aut(U; b), V is a twisted-homeomorphism with respect to the left action of G via p, 
and they satisfy the following compatibility conditions for any g E G: 

(i) 8-‘0 V(g)* = - sV(g)op(g)*, and 
(ii) V(g) 0 b = p(g) - I. 

In the sequel we identify U** and U by the map 0. 
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Notice that if b is non-degenerate, then the variation structure V is completely 
determined by the underlying isometric structure 9 = (U; b, p) (use (ii)). As we will see, the 

category of variation structures substitutes perfectly the category of isometric structures in 
those cases when the geometric situation gives a degenerate hermitian form. 

Definition 2.6. Let Iv be an e-hermitian variation structure. Then for any g E G, p(g) 
determines a spectral decomposition (U; b, p(g), V(g)) = O,(U,; b,, p(g),, V(g),), where U, 
is the generalized X-eigenspace of p(g). 

The eta-invariant q+-(g) is defined by the sum &r]+-(g),, where 

%4)x = 
i 

(1 - 2c)signb, if x = elnic, 0 < c < 1 

- sign[(l + p(g);‘)V(g),] if x = 1. 

(In the last section we will use the notation q(“Y-; g) = yip-(g) too.) 

Remark 2.7. If 9’” is a variation structure with non-degenerate b, and 9 is the underlying 
isometric structure, then for any g one has: q*-(g) = q/(g). To see this, use Definition 2.5(ii) 
and the fact that for any non-degenerate b and h E Aut(U; b) one has sign[b(h 
- h-i)] = e sign[(h - h-‘)b-‘1. 

LEMMA 2.8. Let b be an .+hermitian form, p: G + Aut(U; b) a representation and 

V: G + Horn,-(U*, U) a map. Dejne U” := U* 0 U, the map p” : G --, Aut(W) by 

Pw=(yjy) ,%,) and be=(; ;). 
Then Y = (U; b, p, V) is an .+hermitian variation structure ij-and only $9’ = (Ue; b”, p’) 

is an &-hermitian isometric structure. Moreover, for any g E G one has 

C(S) = Mg). 

The proof is left to the reader. 

2.9. In the computation of the equivariant signature we will need a more complicated 
invariant too. 

Let Y be an isomorphic structure of the group G, I E S’, m E N* and o, g E G such that 
[p(o), p(g)] = 0. Let (U’; b’, p’(o), p’(g)) be the direct summand of the system (U; b, 

p(o), p(g)), where U’ is the generalized A”-eigenspace of p(o). Define A’ = dm by 

I+C n L lQ,,((~‘WJm) - II”, where 

Cb = n, m m ‘.‘(i_,)...(-!-m-n+l). 

For any real polynomial P one has P(p’(o)/Jm)*. b’ = b' . P((p’(o)/l”)-‘), hence 
A’ E Aut(U’; b’). In particular, for any s E Z one has a well-defined invariant 

~(1; 0, m; g, 4 := ~aO’(g).(WY. 

2.10. In the following we define the corresponding invariant for variation structures. 

Let Y be a variation structure of the group G, I E S’, m E N* and o, g E G such that og = go. 
Let H be the free abelian (multiplicative) group generated by o and g in G. Then Y induces 
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on the generalized I”-eigenspace U’ of p(o) an abelian variation structure y’ = (u’; 
b’, p’, v’) of the group H. Similarly as above, we define A’ = dm. 

Now assume that 1” = 1. Then 

p”(h) = (;h) ,‘;h)) 

for any h E H, and 

where B’ = 1, t I c;,&‘(o) - 1)n-i V(o). 
Let I? be the free abelian group generated by d and g. We regard H as a subgroup of 

fi by the identification (6)“’ = o. Then p’“(6) = m and p’(g) = p’“(g) define a representa- 
tion p’: g -+ Aut(U”; b”). By Lemma 2.8, p’” comes from a variation structure Y = (U’; 
b’, p, v) of the group H”, such that its restriction to H is exactly Y’ and p”(6) = A’. 

The above construction is compatible with the spectral decomposition of 9’“’ with 
respect to p’(g). Let @ &; b!!, p;, V;) be this spectral decomposition of V, @ *AL and 
@ X< the corresponding decompositions of A’ and l? 

For any s E Z define q,(& o, m; g, s) = 1, ‘I*-,~, where 

?V,x = 

1 

(1 - 2c) sign b; if 

- ssignbX[p!Jg)(nAi)s - p;(g)-‘(nA!J’] if 

- sign[l + P;(g)-‘(A;)-‘]~~(gdS) if 

Consider also 

~2 = eznic, 0 < c < 1 

~1” = 1, but 1” # 1 or x # 1 

A” = 1” = x = 1. 

rl(;l;m;s) = I ~((sc)) if I = eznic and A”’ = 1 
o if f” # 1. 

LEMMA 2.11. With the above notation, one has 

qV(I; o, m; g, s) = q&A; o, m; g, s) + sign b. ~(4 m; s). 

The proof is left to the reader. 

3. THE MAIN RESULT 

3.1. Let +:(a, 0) + (S, 0) c (C’, 0) be a “good representative” of an n-dimensional 
isolated complete intersection singularity (ICIS) with discriminant space (A, 0) c (C’, 0). 
Let * be a base point * E S - A, and G = rc,(S - A, *). The cohomological information 
about the Milnor fiber F is concentrated in the natural map H,“(F) + H”(F) (we will work 
only with complex coefficients). Denote U := H,“(F). If we identify the group H”(F) with the 
dual U* = Horn&U, C), then the above map can be identified with the hermitian intersec- 
tion form b: U + U* (i.e. b(v, w) = { v A W). Therefore, b satisfies 6* = ( - 1)“b. The mono- 
dromy representation in the orthogonal group of b is denoted by p : G + Aut(U; b). 

If b is degenerate, the isometric structure (U; b, p) is not sufficient to determine the 
signature of a total space of a fibring with fibre F and monodromy representation induced 
by p. The needed supplementary information lies in the variation map 
V: G + Homc(U*, U) (defined by a fixed trivialization of 4 IaX : 6% + (C’, 0)). It is remark- 
able that the system Y = (U; b, p, V) constitutes an ( - l)“-hermitian variation structure, in 
the sense of Definition 2.5 (see [l, p. 11, Ch. 21). 
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3.2. Let p : (C2, 0) + (C, 0) be an analytic germ so that p = pb, where I is a positive 
integer and p. is irreducible (cf. Remark 4.14). 

Our goal is to compute the equivariant signatures al(f) of the hypersurface singularity 
f=p”~:(~,O)+(C,O). 

al(f) is defined as follows. The monodromy defines a spectral decomposition 
(OzH,+ ,(F),, b,) of the pair (H,, 1(F), b), where F is the Milnor fiber of J and b is the 
(hermitian) intersection form on H,+,(F). Then a*(f) := sign(i’“+“‘bn). 

Consider the splice diagram I(p, A) of the multilink determined by p-‘(O) u A c (C’, 0), 
where the multiplicity of p- ‘(0) is I, and the other multiplicities are zero. Each node of the 
diagram represents a Seifert component &I~,. . . , a,; S1, . . . , S,) with muitilink 

(1; S1,. * . 7 s,; ml, - . . , m,). Notice that the multiplicities mi can be determined from 
I(p, A) by the corresponding splicing conditions. (For the splice geometry, see [S].) Let Mi 
(resp. Li) be the topological standard meridian (resp. longitude) of the link component Si. In 
the description of the geometry of C, the following numbers are helpful: 

fJi = a1a2,. . . a,/Ui, i = 1,. . . , r 

m = II= 1 t?liqi 

rn: = - Cj + i mjqj/ai, ni = gcd(mt, m:) > 0, i = 1, . . . , r. 

Consider a set of integers (pi)i so that II= 1 &qi = 1. In particular, /$qt G 1 (modulo ai). 
(Recall that ai,. . . , a, are pairwise coprime integers.) Let 6i be SO that fiiqi + &ai = 1 and 

Si = m;/?i + midi = (mi - jim)/fli. 

Recall that the quotient Z/S’ = B of I: by its free P-action is an r-punctured 2-sphere. 

THEOREM 3.3. By the above notations, the equivariant signature al(f) is a sum over the 
nodes of I+, A): on(f) = Col(C, p), where 

(a) For a Seifert component C(at, . . . , u,) (with m = m(E) as above) one has 

o#, P) = o#) + ( - 1)“W, PA) 

where ol(X) = sign b xi= 1 n(& m; st) (i.e. oA(IJ is o(F)-times the contribution of the Seifert 
component C in the equivariant signature al(p) of the curve singularity p); and o(B, pI) is the 
signature of ajut bundle, provided with a non-degenerate hermitian form, over the r-punctured 
2-sphere B = Z/S’. The hermitianflat bundle is well-determined by the system (U; b, p, V), the 
geometry of C, and the complex number 1 (see 4.7,4.8 and Lemma 4.9). In particular, it can be 
computed by Meyer’s method [S] (see the end of (3.4)). 

(b) Assume that the variation structure over I? is abelian (i.e. p(gh) = p(hg) and 
V(gh) = V(hg) for any pair g, h E n,(C)). Then al@:, p) depends only on the restriction of the 
variation structure over the tubular neighbourhoods of the link components {Si}t. More 
precisely, 

o,@, p) = i +(,I; L;*MP*, m; LfrMCJ1, si). (*) 
i=l 

3.4. In general, the relation (*) is not true, i.e. aA@, p) cannot be computed only by the 
“boundary information”. In order to explain this, we present in short the basic idea which 
guided us to the results of this paper. 

Assume that the flat bundle I over (B, cYB) (B as above) is given by a representation 
pB : nl (B) + 0, where 0 = O(p, q) (resp. 0 = Sp(2p, R)). Then there exists a non-flat splitting 
I = r+ 0 r- in vector bundles on which the form is, respectively, positive and negative 
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definite (resp. there exists a complex structure (r, J) on r). Let c1 be the first Chern class of 
the signature bundle sign(r) = r+ - r- (resp. sign(r) = (r, J)* - (r, J)). (For a suitable 
construction, sign(r) is flat near the boundary, therefore c1 has compact support.) Then by 
[3], a@, pe) = a@?, sign(r)) (here the first term is defined similarly as the signature in (4.4), 
and the second term is the signature of B with coefficients in the signature bundle); and by 

PI 

a@, sign(r)) = 
s 

cl - &r&W, sign(r)) 
B 

where the last term is the eta-invariant associated with the signature operator of aB and the 
signature bundle sign(r). 

If the representation is abelian, then sign(r) has a flat realization; in particular c1 = 0. In 
this case, the above formula is equivalent essentially to the formula of (*). In general, the 
obstruction for the validity of (*) lies in scl. 

On the other hand, for any non-degenerate representation pe, the signature a(& ps) can 
be computed essentially by the Wall’s formula [21] too. We identify (B, k?B) with a two- 
dimensional disc (with boundary) excepting (r - 1) open discs. This can be cut into I - 1 
pieces AI,. . . , A,_l, so that the interior of any of them is diffeomorphic to the annulus 
(z E C; 1 < IzI < 2). Since the signature o(Ai, pB[Ai) = 0, by Wall’s formula o(B, pB) is 
a sum of Wall’s_type correction terms (which can be explicitly computed by the representa- 
tion). For the details, see [8]. (In fact, this ends the computational part of our results.) 
Unfortunately, this algorithm, even in simple particular cases, can be very complicated. This 
fact emphasizes the value of (*). 

3.5. We can expect that the signature o(f) = C,an(f) has a simpler expression. Indeed, 
one has the following theorem. 

THEOREM 3.6. The signature a(f) is a sum o(f) = Cnodcso(E, p) over the nodes ofI’(p, A), 
where 

(a) For a Seijkt component X:, the term a@, p) is the signature of a hermitianjat bundle 
over the Milnorjbre of Z. Its representation is the natural restriction of pe: G + Aut(U’; b”), 
which is provided by the variation structure V as in Lemma 2.8). 

(b) If the variation structure above Z is abelian, then 

a(& p) = i ni * q,(L~l”~M~i/“i). (**I 
i=l 

In the sum Co(IZ, p), the terms corresponding to a common edge determined by neighbour- 
ing (abelian) nodes, cancel out. 

3.7. Assume in (3.4) that the representation is symmetric and definite. Then the split 
r = r+ (or r = r-) is flat; hence cl = 0. In particular, the signature can again be recovered 
from the boundary informations. Our version is the following. 

Addendum 3.8. Assume that the hermitian form b of the ICIS 4 is non-degenerate, 
symmetric and definite. Then aA@, p)’ (resp. a@, p)), f or any Seifert component E, can be 
computed by the formula (*) (resp. (* *). In particular, o depends only on the monodromy 
representation over the boundary components of p- ’ (0). 

Moreover, in this case, the result is true for arbitrary p (i.e. without the restriction p = pi). 

The particular case of (branched) coverings will be discussed in (4.16). 
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The next section contains the proof of the theorems and the addendum. In Section 5, we 

present some particular cases and corollaries. The basic example is the Yomdin’s series. For 
this, we prove a quasi-periodicity property too. In the case of variation structures given by 
hypersurface singularities, we relate the eta-invariants to the Hodge-theoretical invariants. 

4. THE PROOF OF THEOREMS 3.3,3.6 AND 3.8. 

4.1. It is convenient to replace the variation structure (U; b, p, v) of G with a non- 
degenerate representation. This can be realized geometrically as follows. Let F” be a 
2n-dimensional oriented real manifold with boundary aF = - aF (aF with inverse orienta- 
tion). Using the fixed trivialization of 41aa, we construct %“’ = X u &F” x S) with the natural 

extension 4’ : 3’ + (S, 0) such that 4’1~~ s is the second projection. We prefer to close (F, M) 
with another copy f of F with inverse orientation. In this case, the extended fibre is 
F’ = F u aF( - F). Consider the maps: 

/I1 : H”(F) + H”(Fe), induced by the map Fe + F determined by the identifications F + F 
and F + F; and 

p2 : H”(F’, F”) + H”(F”), induced by (Fe, 8) + (Fe, F”). 
Then (/Ii, /I*): U* @ U + H”(F’) is an isomorphism. By this isomorphism, the non- 

degenerate intersection form be (of Fe) on U’ = U* 0 U, and the monodromy representa- 
tion p’ : G + Aut( U’; be) of G, induced by $‘, is given by 

be = (; ‘b”). w.pe(d=(~g) pyg,) foranygEG. 

4.2. We choose an open tubular neighbourhood T of A - {0}, a base space S of 4, and 
6 > 0 so that 

is a topological locally trivial fibration (LTF) of pair of spaces. Denote 9 = p- ’ (S:) n S, 
9” = B - T, ?I = c&-‘(9), and %* = 4- ’ (9’). Then (9, 9’) + S: is a LTF with fibre 
(F,, F,‘), (q, 9.) is a LTF over (8,9*) with fibre F and (?V, g/‘) -+ S,’ is a LTF with fibre 
(E, E’). Corresponding to the extension Fe = F u ( - F), we have the corresponding spaces 
(g/‘, ?V’) and (E’, E”). The corresponding geometric monodromies of the fibrations p, p o 4, 

and p o 4” act on Fp, E, E’, and E”. The intersection forms on the generalized eigenspaces 
have the equivariant signatures al(p), ~~(4, p), aA(cje, p) (resp. cl(40e, p)). The signature of 
F is denoted by a(F). 

LEMMA 4.3. 

(1) a~@, P) = OA(~=, P) + o~(p).a(F), 
(2) 0*(4’, P) = GA(4”, P). 

Proof: (1) By Wall’s theorem [21, 83: eA(+=, p) = ~~(4, p) + aA(F”x Fp) + an(K1, Kz, K3), 
where Ki are kernels in W = H,(Z), for Z = aF, x 8F. For simplicity, we assume that 1 = 1. 
Consider the natural inclusions ki : Z + Yi (i = 1,2, 3), where Y1 = Fp x dF, Y, = aF, x F, 
and Y, = 4- ‘(dF,,). Then Ki = ker ki*, where ki* : H,(Z) + H,( Yi) is the induced map. It is 
easytoseethatK,=K,ifn22,andK,nK,+K,nKJ=K,n(Kz+K3)ifn=1. 
Therefore, in both cases a(K,, Kz, K3) = 0. 

(2) follows by Novikov additivity and by the fact that a(E’ - E”) = 0. (Actually, when 
n 2 2 then H,, ,(E’ - E”) = 0; if n = 1 then the intersection form is trivial.) 
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4.4. Consider the fibration p : 8’ + Sj with fiber Fi. The representation pe defines a flat 
bundle on 8’, respectively, on a fixed fibre Fd. The twisted cohomology group 

H’(F,‘, aF;; p’) carries a ( - I)“+ ‘-hermitian form 

H’(F;, aF,; p’) @I H’(F,, aF,; p’) --* H’(F;, aF;; p= 031 p’) + H’(F;, aF,; C) = C 

where the first map is the cup product and the second is the coefficient map induced by be. 
Since the representation is defined on the space P’, the monodromy action of p induces an 
action me on H’(F,‘, aFP*; p’). The corresponding equivariant signatures are denoted by 

oA(pe, p). By a result of Meyer [8], 0~(4’~, p) = ( - l)“a~(p’, p). 

4.5. The geometric monodromy of Fb can be obtained by pasting the monodromy maps 
on the Milnor fibres FI: of the Seifert components C along boundary circles. Therefore, by 

the Novikov additivity we have aA(pe, p) = C nodes oA(Fx, pet F,), where the last term is the 
equivariant signature of (H’(F,, aF,: pel F,); b”,, m$) (defined similarly as crA(pe, p) in (4.4)) of 
the Milnor fibre of C with the induced representation (denoted by pelF,). 

Moreover, again by the Novikov additivity, we can replace in each Seifert component 
the boundary vertices into arrowhead vertices with zero multiplicity. 

4.6. Let X(al, . . . , a,) be a Seifert component with arrowhead vertices only and multi- 
plicities (ml,. . . , m,). Define qi, mf, pi, 6i (i = 1,. . . , r) and m as in (3.2). A geometric 
realization of ZZ is 

X = (2 E P- 1 c C’: i$l aij2” = 0; i = 1,. . . , r - 2; (Uij)ij generic}. 

The P-action is given by t*(zr, . . . , z,) = (tqlzl,. . . , PzJ, q: I2 + C/S’ = B is the quotient 

map, and cp:E + S’, cp(zl, . . . , z,) = zT1. . .z?/~z?~. . . z?I defines the Milnor fibration 
with Milnor fibre Fz. The S’-action induces a regular m-fold cyclic covering Fz + B. The 
monodromy of cp is the generator 1 of the covering transformation group Z,. 

Set d = gcd(m,, . . . , m,). Then Fr has exactly d components, which are cyclically 
permuted by the monodromy. If we replace mi by mild, then Ui, qi, pi, 6i (i = 1, . . . , r) remain 
the same, but m (resp. si) will change in m/d (resp. si/d). Analysing the formula (*) with 
respect to this modification (use Lemma 2.11 and (2.9)), we deduce that we can assume 

d=l. 
Set Gx = 7cl (C, *) and H = 7rl(FX, *). Then a part of the geometry of X is summarized in 

the diagram with exact rows and columns: 

0 0 

t t 

O-H -nl(B)~Zm -0 

t = tq, TIP--i 

O-H 
‘Pt 

-Gr -Z -0 

tk, t 1-m 

Z -z 

t t 

0 0 

The m-covering induces the first row, the Milnor fibration the second row and the 
S’-action the first column; o = k,(l) corresponds to a generic P-orbit. Moreover, since 
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S’ + Z + B is topologically trivial, the exact sequence 0 + Z + Gz + x,(B) -+ 0 splits in 
Gz = Z x x1(B). In particular, o is in the centre of Gz. 

We will need an explicit description of the maps. A basic reference is [S]. Let Ti be 
a tubular neighbourhood of the special fibre Sip and choose the topological longitude Li and 
meridian Mi in Tie The quotient TJS’ can be identified with one of the boundary 
components 8iB of B. Then cp*(LTMf) = - xrn: + ymi and q*(LfMf’) = Xqi - yUi E 

nl(diB) = Z. On the other hand, c* is well-defined on the conjugacy classes [aiB] of G, and it 
is determined by these values: C*(aiB) = $i. The S’-orbit o in Ti is represented by L;‘i’kf:‘. 

The element LfiM,r’i is a lift of [JiBI, i.e. q*(LfiM;“) = lz E xl(JiB). Notice that 

lz projects in -“i, where ^i represents the monodromy transformation. Therefore, 
p*(Lf”M;di) = - si. Since Cisi = (1 - Ci/?iqi)m/njaj = 0, the map s*: n,(B) + Z given by 
s*([diB]) = - si is well-defined. 

The geometric meaning of s* is the following. A trivialization of S’ -+ X -+ B is a map 
I: B + C such that q o r = lg. The relation r(diB) = Lf’M,:di gives the correspondence 
between trivializations and sets of integers (pi)i with Cisiqi = 1. If r is given, then 
s, = cp., o I* is induced by s = cp o r. The map r* : n,(B) + Gr, r*(3) = g is characterized by: 
g is the unique element so that q.+(g) = 4 and rp(g) = s*(o). 

4.7. The representation p’IE : Gz + Aut(Ue; b’) determines a flat bundle. The induced 

flat bundle V on FZ is given by the induced representation ppI Fz. The quotient map 
determines its direct image flat bundle R”(ql F&V. The monodromy representation 
pi : nl (B) + Aut(( U’; be)em) of this bundle is the following. Set 4 E n1 (B). Let g = r*(d) be its 
lift as above. Denote n(g) = - s*(g) - m * [ - s*@)/m] and S = got-s*~~~~ml (where [.I is the 
integer part). Then 

P%)(Uo, . . . 9 %-I) = whwf-.(p)~~ . . 3 Pe(O~~~m-l,Pe(~~~O,~ * . 9 P%hn-,(~)-1). 

The monodromy rng (which commutes with im(p$)), is given by 

m?Xuo,. . . , &n-l) = wk#4n-1,~0,~ . . > hII-2). 

4.8. Using again Meyer’s result now for $J’ and q o @, we obtain the isomorphism of the 
following structures: 

(H’(Fz, ~Fz; p”lFz); &, &) N (H’(B, a& pi); &, (m&J. 

The monodromy (mi), is induced by a bundle morphism rni which is the identity on the 
base B, and commutes with pi. Therefore, the representation splits in the orthogonal sum 

O&;b)n with 

(p&:nl(B) +(U=; be)?” := {the generalized I-eigenspace of mi}. 

Hence we have the following Lemma. 

LEMMA 4.9. If1 is an eigenualue of m$, then aA(Fr, pel Fr) = a(B, (p&). For other values 
of A., both terms are zero. 

Since frI ( p) = C nodcs~l(X) [lS], we finished the proof of Theorem 3.3(a) (with the 
notation pa = (p&). 

4.10. Consider the representation (p;h. Let S: denotes the corresponding isometric 
structure on B. Notice that if pel X is abelian, then (p$h is abelian too. 
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LEMMA 4.11. (Atiyah et al. [Z] and Neumann [ 143). 
is abelian. Then 

r 

Assume that the representation pe 1 I; 

Therefore 

4.12. Let u~sn be the generalized I”-eigenspace of p’(o). Then (V’):“’ = ((x, 
(&4)-l&. * . ,fAA) -VW+ l x): x E U&j, where A = ~~. By this identi~~tion of (Undo 

with U&,, the form (be):” corresponds to me b$,,. Moreover, if 9 = I&) E Gx is a lift of 4 so 
that q,(g) = s,(4), then (P$)~@) becomes (1A)-“*‘8’*pe(g). Now, o is LFMP, and [ais] is 
lifted in Ii = @M,:“i and the proof of the theorem can be finished by a straightforward 
verification (cf. Lemma 2.11 and (2.9)). 

This ends the proof of 3.3. 

4.13. The proof of the Theorem 3.6 is similar to the one of Theorem 3.3. In this 
non-equivariant case, o(Z, p) is the signature of p” over Fi. Since F,’ n Ti consists of ni 
copies of the (mini, mf/nJ-cable of S,, the (b) part follows. 

4.14. Remark. If p is an arbitrary germ (i.e. it does not satisfy the restriction p = pb), 
then only Lemma 4.3(l) fails. More precisely, in Lemma 4.3(l) appears a Wall-type 
correction term which depends on the global variation structure (i.e. it can not be localized 
over the boundary components). 

4.15. The proof of3.8. In this case it is not necessary to replace p by pe because p is 
non-degenerate. In particular, we do not need Lemma 4.3, therefore we can work with 
arbitrary p (cf. Remark 4.14). Since p is definite, so is (p& Now apply [2] or [14]. 

4.16. Coverings. Consider a normal surface singularity (X, x) and a covering #:(X, 
x) + (t?, 0), which is branched over A. Set X* = #J - ‘(3 - A). The exact sequence associated 

with the non-ramified covering is 1 + x1(X*) --) ni(S - A) L C + 1. Let ICI be the cardi- 

nality of C, U = CYCi and b the natural hermitian form b(Caiei, 1 bjej) = Caibi. Let 
pc: C -+ Aut(U; b) be the regular representation of C. Then the representation 
p: n,(S - A) = G -+ Aut(U; b) is in fact the composition pco r. Therefore, we can apply 
Addendum 3.8. By the above discussion, r and the splice geometry of r(p, A) determine the 
equivariant signatures. 

5. APPLICATIONS 

5.1. The interested reader can apply the main theorem in the geometric cases which 
appear in [ 111. 

For example, the (equivariant) signature of a hypersurface germ with one or zero- 
dimensional singular locus can be determined as follows. Let f be as above. Take fz so that 

the pair 4 = (S, fJ forms an ICIS (take, for example, a generic linear function). Set 
p(c, d) = c, thenf = p 0 4. By our results, ol( f) can be computed by the variation structure 
of # ( = polar variation structure off) and by the splice geometry of the polar curve. 
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5.2. The basic object of this section is the variable term of the topological series. Let 

f = p o 4 be a composed singularity such that 4 is an ICIS and p = ps, where p. is an 
irreducible curve singularity. Let f’ = p’ o 4 (where p’ = (pb)” and pb is irreducible) be an 
element of the topological series of composed singularities belonging tof [11 J. By the very 
definition, the splice diagram T(p’, A) arises as splice of the diagram T(p, A) and of another 
diagram r. By the first part of the theorem, the variable term cam - aA is a sum 
Ca*(Z, p) over the nodes of r. The representations and variations over these Seifert 
components are induced by the abelian structure over the torus along with the splicing is 
done. In particular, the variable term is given by the formula from the second part of the 
theorem. In the case of the Yomdin’s series we give the explicit presentation. 

5.3. Assume thatf, is a germ with one-dimensional singular locus and the pair (fi,f2) is 
an ICIS. Let p(c, d) = c and p’(c, d) = c + d”. The number a is so large that T(p’, A), as 
a splice of T(p, A) and the Seifert diagram r = T(C; a, 1, l), satisfies the semi-algebraicity 
condition [l 1). Then the correction term an(fi +f;) - aA is given by this Seifert 
diagram T(C; a, 1, 1) with multilink structure (0, LO), and the variation structure of 4 above 

the splicing torus. 
Let 9 (resp. 4) be the longitude (resp. the meridian) of A1 = (c = 0} c A. Then the pair 

9, .& generates Z2 = x1 (splicing torus). By the splice geometry, we can make the identifica- 
tions M1 = Y, M2 = 1z2, M3 = A. Since [MJi generates H,(Z), using linking number 
argument, we get L1 = 4, L2 = YJZ”, L3 = 9. 

We list the needed invariants: 

mi ai qi ml ni /Ii bi si ,$‘M; 4 LUhM~il”~ 

i=l 0 a 1 -1 1 1 0 -1 .M 9-l 
i=2 1 1 a 0 1 0 1 1 122 IPJP 
i=3 0 1 a -a a 0 1 0 “M-’ “c’ 

and m = a, and o = YX’. 

COROLLARY 5.4. (The Yomdin’s series case). (1) Let V = (U; b, p, V) be the variation 
structure of 4 = (fi, f2). Let 2’ and A be the longitude and the meridian of {c = O}. Then 

CA(fi +fzY) - OAfi) = 

q,-(I; YAP, a; 4, - 1) + q&.; YJP, a; lzz, 1) + qV-(J; dRJP, a; A-‘, 0). 

(2) With the same notations, 

5.5. Above we used q+-(g- ‘) = - v,(g). In our expressions we preserved the multiplica- 
tive notation of Z2 = n1 (torus); by this lzZ denotes its neutral element. 

EXAMPLE 5.6. Let fi(zI, z2, z3) = z: + z$; f2(z1, z2, z3) = z3. Then (U; b) = (C; 0), 
p(.A) = lc and V(d) = - 1, and the variation structure induced on the subgroup gener- 
ated by 9 is trivial (i.e. p(3) = lc and V(9) = 0). Then V(JP) = - a. Since aA( fi) = 0 for 
any 1, one has a(z: + z: + z$) = &.#‘) - a* q(A) = 1 - a, and aA(z: + z: + z’;) = - 1 for 
any 1 with 1“ = 1 but A # 1. 

This example emphasizes the importance of the variation map: the intersection form is 
zero, the monodromy representation is trivial, and the whole contribution comes from the 
variation map. 
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5.7. The invariants in the surface case. Iffdefines an isolated singularity, we denote by 
p(A) the dimension of the generalized I-eigenspace U,(f) of the mon~romy (acting on H: 
(Milnor fibre)); p f (1) denotes the maximal dimension of a positive (resp. negative) definite 
subspace of (U,(f); b,(f)); pc(n) is the dimension of ker bn(f), Set 

PO = ClPOV.), Fu, = CAP* 6% p=Ico+p+ +P-. 

Obviously, pa(J) = 0 if A # 1; in particular, p. = ~~(1). 
Our theorems determine a(fi -t f;) and eI ( fi + f;) in terms of the invariants of fi and 

9’“. On the other hand, the invariants p and ~(1) can be computed by the zeta-function 
formula (see [ll, 18-J) as follows: 

/mfl +fl?Y) = - 1 + er(fJ f dimker((Y.k” - I)“+‘) 

where e(fi) is the Euler-characteristic of the Milnor fiber offi, e1 (fi) is the order of t - 1 in 
the zeta function of fi, and (dj, ,uTjj are the usual local invariants of Singf; ‘(0) (see (5.8)). 

Now assume that fi,f2 : (C3, 0) + (C, 0). Then p_(l) (_fi +ff) = 0 (see, for example, 
[12]). Therefore, the invariants po, p+ and g- can be computed from cr, (ri, p and p(l). In 
particular, we obtain an expression of the geometric genus p(fi +f;) by Durfee’s formula 
2p = p+ + p. [4]. Moreover, either by Laufer’s formula [7] p = KZ + s - p. + 12p, or by 
the signature formula of Durfee [4], we obtain the behaviour of the resolution invariant 

(K2 + s)(_f1 +f20) as well. (Here, for a given resolution, K denotes its canonical class and s is 
the number of irreducible exceptional divisors.) 

5.8. Localization. Since the geometric obstruction (for the triviality of the family 
fi +f$) is concentrated in the singular locus Y of fl- l(O), it is natural to express the 
correction term in local data provided by the transversal singularities. In this subsection we 
present this localization procedure in the case of the signature. 

We recall the local invariants. Let Yi,. . . , Yt be the irreducible components of 9. The 
topological degree of the restriction 419i: 9i + A, = {c = 0} is di. The singular fiber 

Fd=~-l(O,d),(O,d)ESnA~ h as exactly xi= 1 di isolated singularities. If zi E Yi - {0}, the 

local Milnor fiber of the ICIS (#-‘(&)), zi) is denoted by (Fj, aF’i). Set Ui = HZ(Fi) and 
&’ = dim Ui. The disjoint union &,, = tf f = 1 u fL= 1 Fj of the Milnor fibers of the singula~ties 

on F* is invariant under the geometric monodromies m&P&‘), (x, y E Z). The correspond- 
ing algebraic monodromies on the homology group UIoc = @ := 1 @$ 1 Ui have the form 

where M&resp. Li) are the horizontal (resp. vertical) monodromies. The horizontal mono- 
dromy twi: UI -+ Ui is, in fact, the monodromy of the transversal singularity at 
Zi E 9’i - {O}. This latter one is an isolated singularity with ( - lr-hermitian variation 
structure (Ui; bi, Mi, K). This means that Mi E Aut(Ui; bi) and Vi E Hom(U*, Vi) satisfies 
q=(-l)“+‘M,~‘V~and fibi= Mi - I. This can be considered a variation structure of 
the group Z given by pi(l) = Mi and F(l) = I$. Their direct sum (over i = 1,. . . , t; 

j=l,..., dJ is denoted by %,, = (Ui,,; k,,, pi,&@), I%,). 
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We can construct a representative of the (global) geometric monodromy m(.M), acting 
on F, which is trivial in a complement of a tubular neighbourhood of Y - (0). If 

i, : u lot --+ U (resp. i* : U* + U$,) are induced by the natural inclusion i: Floe + F, then 
V(_M) = i, 0 V,,,(A%) 0 i*. The geometric monodromy of the longitude 2 induces a non- 
trivial action on the boundary D = ui= lu$ 1 8Fi. This obstructs the splitting of the 
variation operator V(2). 

In the sequel, we replace Y by its restriction to the group Z’, generated by .M and 2’. 
Consider the spectral decomposition @X(Mj(UX; b,, px, V,) = Ozvz of V given 

by the automorphism p&M); and similarly the decompositions V,,, = OxV&,c,x and 

PI,,(~) = Q%PI~,.,(~) given by ~~~00 
Assume that 2 # 1. Then (U,; b,, p,(A), V,(A)) = Y’&,,z and p,(U) = pi&?),. Since 

b, is non-degenerate, V(2), = (pi,,@) - l), b&. In particular, the structure -y;Oc,X can 
be extended to a structure of the group Z2 by Vi&Z’)X = V(2),. So, the global variation 

term C,(a) = y~(yd”), - a+ rl(JQ - V(Y), is equal to the local variation term C,,,,,(a) 
(defined by the similar formula). 

Assume that x = 1. If the local transversal singularities are non-degenerate, then 
the variation term associated with x = 1 vanishes. In the general case, notice that the 
middle term of C,(a) is local: r&& = ~(Y’&,, r; A). Consider the spectral decomposition 
V1 = OiY1,l given by p(Y) (we do not have a local equivalent of this). Then, if 12 # 1, then 

rt(V1.1; 94’) - v(V~,~; 2) = 0. So the real obstruction in the localization procedure is 
the term q(Vr, i: Z./P) - q(V1, 1; 9). 

LEMMA 5.9. Let Y = (U; b, p, V) be a variation structure of the group G, and consider 

g, h E G so that p(g) - I and p(h) - I are nilpotent. Then there exists a0 2 0 such that ny-(hg”) 

is a constant, provided that a > ao. 

Remark 5.10. Let V be as above and g E G so that p(g) - I is nilpotent and V(g) is an 
isomorphism. Then for any Q > 0, q(g”) = q(g). But, in Lemma 5.9, in general, a0 cannot be 
equal to 0. For example, assume that V(g) is an isomorphism and q(g) # 0. Then for any 
a0 > 0 and h = g-“0, by the above remark, n(hg’) = [sign@ - ao)] *q(g). 

Proof of Lemma 5.9. Let P(z) be the polynomial 

where p(g) = I + N. Now, V(hg’) = V(h) + p(h) V(g”) = V(h) + p(h)P(a) V(g). Define 

V(h, g; z) = V(h) + p(h)P(z) V(g) and SV(h, g; z) = V(h, g; z) + ( - l),+ ’ V(h, g; z)*. Then, 
for any m E Z, the set {z[ sign SV(h, g; z) = m> is an algebraic constructible, in particular, 

P(z) = z + 

there exists a0 such that n(hg”) = sign SV(h, g; a) is constant, provided that II > ao. 

COROLLARY 5.11. There exists a, so that if a > a0 one has 

dfi +A7 -I = c cwilc.x; 9-m - a.?(%,*; 4 - ?w-1oc,x; WI 
x (WI.. # 1 

- ~~wix.1; 4 + C(“tr.1; z;P,.N (***I 

where C(YI, t; S, M) = lim,,, q(V1;. 1; ZJP’) - q(V1, 1; 2’) is a constant independent ofa. 

In particular, a(fi +f;) - a(fi +fp) can be expressed in local terms. 
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Zf the local transversal singularities are non-degenerate, then the lust two terms in the 
above formula vanish. 

Example 5.12. The constant Cr,r = C(+‘r,,; 9,&Y), in general, is not zero. Let 

~~~*~ z) = x3 + y3 + ;Ixyz (2 # 0) and fi(x, y, z) = z, Then o(fi) = 0 [6] and o(fi 
II= - 3a + 3. The transversal type is 3Ai; in particular, P&&) is the identity. 

Therefore, on the right-hand side of (***), the sum is zero, q(^L’& i; &!) = 3 and the constant 
C - 3. 1.1 - 

5.13. The (quusi-)periodicity. By the monodromy theorem (i.e. the eigenvalues are roots 
of unity), and by Lemma 5.9, we obtain the following Corollary. 

COROLLARY 5.14. a( fi + f “) 2 is a sum of a linearfunction and some periodic functions. The 
periods are given by the eigenvalues of p,,,(M). 

This corollary generalizes the corresponding result for the suspension case, conjectured 
by Brieskom, Durfee and Zagier, and proved by Neumann [13]. 

The behaviour of the equivariant signature is even more regular. Fix 1. Consider an 
integer c = ~(1, .&) > 0 so that 1’ = 1 and the semisimple part of p(M) satisfies p(&?)& = 
lU. By Corollary 5.4(l), we obtain the following result. 

COROLLARY 5.15. oi(fi + f;+“‘) = oi(fi + f$) for any n 2 0. 

Similar results are true for the equivariant Milnor numbers, too. By [ 11, 181 we get 
ul(fi + f$‘“) = uA(fi f f;) for any n 2 0. This shows that if the corresponding mono- 
dromies are diagonalizable, then the I-components of the variation structure are iso- 
morphic, provided that /1# 1: 

V(fI +f$+*% = -tr(fI +f%. 

In other words, increasing a, the A-components will not be “thicker”. The variation 
structure is growing by the appearance of new components which become more and more 
disperse. This phenomenon can be exemplified easily on the A,_ r-singularities 

z: + zs f z’;, described in Example 5.6. 
We expect that this “telescopic phenomenon” is true, in general, even at the deeper level 

of mixed Hodge structures. 

5.16. The connection with the mixed Hodge structure. Let f be an isolated singularity. 
Similarly as in (3.1), we construct its ( - I~-symmetric variation structure V(f) = 
(U; b, p, V) defined on the group Z. This is essentially given by p(l) = MI = the algebraic 
monodromy, and V( 1) = I”’ = variation map. Since V, is an isomorphism, it determines the 
whole structure. In fact, it is equivalent to the real Seifert form. 

The variation structures of 2 with V(1) isomorphism are classified 1121. In the following, 
we recall briefly the indecomposable elements for which the eigenvalues of p(l) are on the 
unit circle. 

5.17 ([12]). Let Jf : C’ -+ Ck be the k-dimensional Jordan block with diagonal en- 
tries = 1. 

For A E S” - ( 11, we have, up to isomorphism, exactly two inde~omposable ( - l)n- 
hermitian variation StrUCtUreS with p(l) = A&: 
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where b: is characterized by (bk, )ij = 0 if i + j I k, and (bk* )k,i = f i-nZ-k+l. (This sign 

convention has Hodge theoretical motivation; in fact, it is related to the polarization 

formula, see (5.21)). 
If 1 = 1, again, there are exactly two indecomposable ( - l)“-hermitian variation struc- 

tures (up to isomorphism) with p(l) = JI, and with V = V(1) isomorphism. These structures 
are degenerate with one-dimensional Ker(b). They are 

W:(kl)=(C;O,lc, +i”‘-I) ifk=l 

-/lr;(~l)=(ck;i:,&~:) ifk22 

where gk, is characterized by (g”,)i,j = 0 if i +j 5 k + 1 and (g”,)k,~ = & i-n2-k+2. 

5.18. An isometric structure consists of a non-degenerate hermitian form (U; b) 

(8* = ( - l)“b), and a representation p : G + Aut(U; 6). If G = Z then the structure (U; b, p) 
is given by the pair (b, p( 1)). In this case the indecomposable ones (with the same eigenvalue 
restriction as above) are [9]: 

I:( f 1) = (Ck; bk+) A.&) where ;1 E S’, k 2 1. 

Any isometric structure can be extended to a variation structure by V(g) = (p(g) - I)b-‘. 
(By this, I:( f 1) can be identified with W:( + l), provided that A # 1.) 

5.19. The following notation will be helpful: s(n) = 0 if 1 # 1 and = 1 if 3, = 1. The 
signatures of the corresponding forms are: 

_ 1 - 
0 W-3 f 1)) 

1 + ( l)k+l+sU) +( l)k+’ 
= f = . 2 ’ fJUk,( * 1)) L 2 

Set 3, = elnic with 0 < c I 1. Then, by a verification, 

t/(w-i( * 1); 1) = + (1 - 2c) 
1 + ( - l)k+l 

rl(G( ?I 1); 1) f (1 24 

1 + ( _ l)k+ 1 +sW 

= - 2 , . 2 

If Y = (U; b, p, V) is a variation structure of Z, and a E N*, then we define another 
structure a*Y = (U; b, a*p, a* V) of Z by a*p(l) = p(a) and a* V(1) = V(a). By these nota- 
tions, a*W:( f 1) = W:( f l), and for I # 1 one has a*Wt( + 1) = W$( + 1) if II” # 1, 
and a*W”,( f 1) = I:( f 1) if 1” = 1. Therefore, 

q(Wi( f 1); a) = 
q(W$( f 1); 1) if I = 1 or 1” # 1 

rl(W f 1); 1) if A”=1 and 1#1. 

5.20. Denote by &*“(f) (where r = p + q - n - s(A) 2 0) the dimensions of the primit- 
ive spaces of the mixed Hodge structure of the germ f [19]. Consider the invariant 

XPPI. * u-) = C( - 1)qP:9q? where the sum is over the pairs (p, q) such that r = p + 
q - n - s(A) satisfies ( - 1)’ = + 1. Obviously, this can be derived also from the spectral 
pairs. 

The definition of the spectral pairs is as follows. 
Let hFq be the Hodge numbers of f; in particular, hfVq = 1, > Op;lP+rvqf’(p + q 2 n 

+ s(l)). Then the collection of the spectral pairs Spp(f) E N[Q x N] is 

Spp(f) = 1 h~~~~~~~~+s-“-r-L21~(a, w). 
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If we forget the weight filtration, then the information of the equivariant Hedge filtration is 
codified in the spectral numbers: 

Q(f) = c a E N[Q] (the sum over the spectral pairs (a, w)). 

(For the definition of the spectral pairs and the spectral numbers, see [19, 173.) 
It is remarkable that the invariant Cppl, + is a spectral number invariant. Indeed, 

consider 

Cp,, * (f) = #{cJc is a spectral number with e-Znic = II and ( - 1)“’ = + 1) 

and W(f) = QA. -(f) - @A, +(f). Then W(f) = QP,, +(f) (see, for example, WI). 

5.22. The connection between the Hodge structure and the variation structure is given 
in the relation [12] 

Y(fh = 2nZp%?2n+r pFq( f) * w;+ 1 (( - 1)4) * 

r=p+q-n-s 

By (5.19) and (5.20) one has 

Cl(f) = 
i 

xPPk+(f) if A + 1 
CPP,,_(f) if A= 1. 

In particular, oa is a spectral number invariant for 1 # 1. 
In order to compute the eta-invariants, fix d = emznic (notice the negative sign in the 

exponent) with 0 I c < 1. Then by (5.19) and (5.20), q(V(f); 1)1 = - (1 - 2c)XppA,+(f). 

On the other hand, q(Y(f); & = ~Pf;9qt&z*W;+‘( - l)q; 1) and by (5.19), 

rt(Y(f);a)= - c QPA,-(f)- c (1-2{capPPA,+(f). 
A’=1 A’ z 1 
i.#l orA=1 

5.22. The suspension case; Let f : (C”, 0) + (C, 0) be an isolated singularity. Consider 
fi :(Cn+l, 0) -+ (C, 0) defined by fi (z, z,+ 1) = f (z). Set f2 = z, + 1 and 4 = ( fi , f2) as above. 
The singular locus of the ICIS 4 is X = {z = 01, and the discriminant locus A contains only 
one irreducible component A = A1, which is smooth. In particular, G = Z and _Y = 0. Since 
a( fi) = 0, Corollary 5.4(2), for suspensions, gives 

(This can be derived also from the Sebastiani-Thorn-type formula of the spectral pairs [ 163.) 
The term q(V(f); 1) is - x1(1 - 2c)Xp,( f), which is a spectral number invariant off: 

On the other hand, the term Cpp,, _ in q(V(f ); a can be computed only by the spectral ) 

pairs. From this reason, if the monodromy operator off has an even-dimensional Jordan 
block with eigenvalue 1 # 1, but with 1” = 1, then the correction term depends essentially 
on the block structure of the operator. 

Example 5.23. Set fk,I;m,n: (C2, 0) + (C, 0) defined by 

fL+” = ((y - x2)2 - xS’k)((y + x2)2 - x5+l )((x - y2)2 - y5+m)((x + y2)2 - y5+“). 

Then the spectral numbers off_,,_,;,,, andf_,,,:_ 1, 1 are the same, but the spectral pairs 
are different [17]. In the first case one has spectral pairs ( - :, 2) and (3, 0), and in the 
second case ( - 4, 1) and (f, l), whereas the other pairs are the same. Therefore, the 
decompositions of the variation structures (Seifert forms) are: in the first case one has 
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W’? 1 ( - l), and in the second case WL 1 ( + 1) 0 W!_ 1 ( - l), whereas the other indecom- 
posable structures are the same. Take a = 2. Then CA2 = 1,1 + 1 QJI,, _ in the first case is 

= - 1 and in the second = 0. In particular, ~(f_i,_i;~,i + z*) = o(f-i,i;-i,i + z*) + 1. 

5.24. The equivariant signature ai(f + x+ i) (A # 1) depends only on the spectrum of 
f + g+ i (see (5.21)), which can be computed by the spectrum ofJ: Therefore, aA(f + z:, i) 
(1 # 1) is independent on the block structure of the monodromy off: (In particular, for any 

a,and~#lonehasa~(f-,,-,~,,,+~“)=o~(f_~,~~_~,~+z”).) 
On the other hand, by Corollary 5.4(l), the following relation holds: 

Ol(f + z:+ 1) = - 1 QPA, -(f). 
I’=1 
A#1 

Acknowledgement. The author would like to express thanks to Professor J. Steenbrink for reading the manuscript 
and giving constructive suggestions. 

1. 

2. 

3. 

4. 
5. 

6. 
7. 

8. 

9. 
10. 

11. 
12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 
21. 

REFERENCES 

V. I. ARNOL‘D, S. M. GUSEIN-ZADE and A. N. VARCHENKO: Singularities of differentiable mappings, Vol. 2, 
Birkhauser, Boston (1988). 
M. F. ATIYAH, V. K. PATODI and I. M. SINGER: Spectral asymmetry and Riemannian geometry. LII.111, Math. 
Proc. Cambridge Philos. Sot. 77 (1975), 53-69, 78 (1975), 405432, 79 (1976) 71-99. 
X. DAI: Adiabatic limits, nonmultiphcativity of the signature, and Leray spectral sequence. J. Am. Math. Sot., 
4 (1991), 265-321. 
A. DURFEE: The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), 85-98. 
D. EISENBUD and W. NEUMANN: Three-dimensional link theory and invariants of plane curve singularities, Ann. 
of Math. Studies, Vol. 110, Princeton Univ. Press, Princeton, NJ (1985). 
H. ESNAULT: Fibre de Milnor dun cone sur une courbe plane singuliere, Invent. Math. 68 (1982), 477-496. 
H. LAUFER: On p for surface singularities, in Several complex variables, Proc. Symp. in Pure Math., Vol. 30, 
Amer. Math. Sot. Providence, RI., (1977), pp. 45-49. 
W. MEYER: Die Signatur von Localen Koeffizientensystemen und Faserbundeln. Eonner Math. Schrifen 53 
(1972). 
J. MILNOR: On isometries of inner product spaces, Invent. Math. 8 (1969), 83-97. 
A. N~METHI: The Milnor fiber and the zeta function of the singularities of typf = P(h, g). Compositio Math. 
79 (1991), 63-97. 
A. NBMETHI: The zeta function of singularities. J. Algebraic Geom. 2 (1993), l-23. 
A. N~METHI: The real Seifert form and the spectral pairs of isolated hypersurface singularities, will appear in 
Comp. Math. 
W. NEUMANN: Cyclic suspension of knots and periodicity of signature for singularities, Bull. AMS 80 (1974), 
977-981. 
W. NEUMANN: Signature related invariants of manifolds-I. Monodromy and y-invariants. Topology 18 
(1979), 147-172. 
W. NEUMANN: Splicing Algebraic Links, Adu. Stud. Pure Math., Vol. 8, Complex Analytis Singularities, 
349-361 (1986). 
J. SCHERK and J. H. M. STEENBRINK: On the mixed Hodge structure on the cohomology of the Milnor fibre. 
Math. Ann 271 (1985), 641-665. 
R. SCHRAUWEN and J. STEENBRINK and J. STEVENS: Spectral pairs and the topology of curve singularities, Proc. 
Symposia in Pure Math. 53 (1991), 305-327. 
D. SIERSMA: The monodromy of a series of hypersurface singularities, Comment. Math. Heluetici 65 (1990), 
181-197. 
J. H. M. STEENBRINK: Mixed Hodge structures on the vanishing cohomology, Nordic Summer School/NAVP 
Symposium in Math., Oslo (1976). 
J. H. M. STEENBRINK: Intersection form for quasi-homogeneous singularities, Comp. Math. 34 (1977) 211-233. 
C. T. C. WALL: Non-additivity of the signature, Invent. Math. 7 (1969), 269-274. 

IMAR 
Bucharest, Romania 


