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SIGNATURE RELATED INVARIANTS OF MANIFOLDS—I.
MONODROMY AND v-INVARIANTS

WALTER D. NEUMANN
(Received 3 April 1978)

IF X* ' 1s A smooth closed oriented manifold and «: 7 (X)— U{l) is a unitary
representation, then Atiyah, Singer, and Patodi[2] defined an invariant y(X, &) via the
theory of spectral asymmetry (these denoted p,(X); but their sign conventions differ
from ours, see Section 1). In fact y(X, a) measures the alteration or “‘defect” of the
n-invariant of a Riemannian manifold X when “‘twisted” by such a representation a.
This invariant had arisen also another way—as a signature defect—for instance in
[12], [13}, [7]. in the case that a multiple gX bounds an oriented Y*" admitting a
representation a: 7 (Y)— U(!) extending «. Namely in this case

X, a)= %(sign(Y, a)~—[sign(Y)),

where sign (Y, a) is signature of Y with local coefficients.

Our main result is an intrinsic homotopy invariant computation of y(X, «) in the
case where a factors over a free abelian group; a: m(X)—Z°* - U(!). The calculation
is in terms of a certain linking form in homology of infinite cyclic covers of X, which
we call “monodromy” of X. The invariant y(X, @) is not a homotopy invariant in
general, as computations for lens spaces easily show.

In Part II we will describe applications to a homotopy invariant calculation of
«a-invariants of certain group actions, signature defect of coverings, invariants of
knots, etc.

The results of this paper were first announced at the Oberwolfach topology
meeting of 1974 (see also [12-15]). The proofs have been considerably simplified since
then, yielding also some improvement in the results. The research was supported in
part by the National Science Foundation.

In the following, all manifolds are assumed smooth, compact and oriented.
Smoothness is for convenience only and could be dispensed with. If X is not
connected, (X) will mean the free product of the fundamental groups of the
components of X.

This paper is organized as follows. In §1 we define the y-invariant and recall some
of its properties.

In §2 we define, for a closed manifold X**~' plus a given homotopy class
f€[X,S'], a homotopy invariant isometric structure (X, f) = (H, b, t) consisting of
a finite dimensional complex vector space H with a (—1)"'-hermitian form b and an
isometry t: H - H. We call #(X, f) the monodromy of (X, f), since if f: X > S'is a
fibration with fiber F say, then #(X, f) = (H,_|(F; C), b, t), where br is the (- 1)""-
hermitian intersection form on H, (F;C) and t: H, ((F;C)-» H,_,(F;C) is the
monodromy of the fibration. Note that [X, S'] = Hom (7{(X).Z) = H(X;Z), so we
can consider f interchangeably also as a homomorphism #7¢(X)—Z or as a
cohomology class in H'(X;Z).

The monodromy is in fact equivalent to the homology linking form on the
CJ-torsion of H,_(X; C), where X is the infinite cyclic cover of X classified by f and
CJ is the group algebra over C of the infinite cyclic group. We use initially, however,
a less abstract and hence more convenient definition of #(X, f) and postpone its
description as a linking form to the final section (§11).

If B: m(X)— U(r) is a unitary representation, we can also define monodromy with
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coeflicients in the corresponding local coefficient system, and we denote it
#UX, B), f).

In §3 we define, to any isometric structure ¥ = (H, b, t), an invariant A (%) € R and
state our main result. In the simplest case it is as follows. Note that a unitary
representation v: Z — U(l) determines an isometric structure #(+) = (C', h, 7(1)) where
h is the standard hermitian metric and vice versa. We use the notation ¥&+ for

HRQH(1)=(HRC, bQh, t@7(1)).

THEOREM 1. (i) If the representation a: m\(X)-> U(l) factors as o = 1°f, with
fem(X)~>Z and 7: Z—- U(l), then

V(X @) = MH(X, )@ ) = | - AMH(X, ).

(ii) More generally, if B: m((X)— U(r) is a further representation, then with ¥ =
HUX,B), 1)

VX, aRB)—1 - y(X,B)=A(HR1)— 1 A(X).

Part (ii) of this theorem allows us to give an inductive computation of y(X, a) if
is any unitary representation which factors over a free abelian group.

We have described the result for unitary representations «: m(X)— U({), but, in
fact, the signature defect definition of (X, a) extends under suitable restrictions to
indefinite hermitian representations a: 7(X)- U(l, m) and Theorem 1 holds in this
more general situation. The precise statement is given in Theorem 3.2.

§§4-9 give the proof. §§4 and S are technical, giving an alternative definition of
monodromy via “isometric relations”. §6 collects some properties of Wall’s non-
additivity formula for signature[21] which are of interest in their own right. These are
then used in §7 to give an initial computation of the vy-invariant in terms of
monodromy in the bounding case. §8 completes the proof in the bounding case and
finally in §9 the general case is deduced by a simple bordism argument.

In §8 we also prove the following result, which was, in fact, the original starting
point of this research.

Proposition 2. If g: Y > S' is a fibration of the compact manifold-with-boun-
dary Y*" over S', then

sign(Y) = A(H(3Y, glay)).

This is true also with local coefficients (Proposition 8.5). Note that in this proposition
¥ = H(3Y, g|dy) is the usual middle dimensional monodromy of the fibration 3Y —
S'. The fact that this fibration bounds as a fibration implies that ¥ = (H, b, t) is
“null-bordant”, that is, % has a “invariant kernel” K C H with K = K*=tK. For
null-bordant # the invariant A(3) has a particularly simple description: A(¥) =
—sign (b‘|H)), where H, is the (¢ —1)-primary part of H and b’ is the (maybe
degenerate) form b'(x, y) = b((t — t Yx, y).

Throughout the paper we use monodromy with coefficients in C, but it can be
defined with any coefficients, and an easy universal coefficients argument shows that
¥(X, f) is the hermitianization #%(X, f)® C of the rational monodromy of (X, f).

In §10 we describe how our results extend to compute certain torsion invariants of
X in terms of rational monodromy. The rational monodromy is in fact a very rich
invariant—in an appendix we show that every skew-symmetric isometric structure
over Q occurs as ¥%X?, f) for a suitable 3-manifold X.

Finally, in §11 we prove the promised description of monodromy (over any field F
of coeflicients) as a homology linking form on the FJ-torsion of H,_(X; F), where X
is the infinite cyclic cover of X classified by f. This section is of interest in its own
right and is in a sense a generalization of a duality theorem of Milnor{10] which
applied to infinite cyclic covers X with H«(X; F) finitely generated over F. The
linking form we obtain is equivalent to the linking form discussed by Blanchfield{3], in
that it determines and is determined by the latter.

It is worth mentioning that the homotopy invariance of y(X, a) when « factors
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over a free abelian group, though somewhat surprising, is not hard to prove, at least in
the bounding case, if one does not want an explicit formula. Namely, it suffices to
show that in this case v(X, a) can be defined in the category PD of Poincaré
complexes. In the bounding case this just depends on the multiplicativity formula for
twisted signature: sign(Y, a) =sign(Y), where Y* is a closed Poincaré complex
and a: m(Y)—> U(l). This formula is certainly false in general, but if « factors

through a free abelian group a: m(Y)—f> Z° — U{{), then it is true. Indeed, we need
only check it for generators of Qf°(BZ°)®Q, since sign (Y, 7f)~!sign(Y) is a
bordism invariant of (Y, f), but by the results of Quinn{{9] and Farrel and Hsiang{6] such
generators may be taken as manifolds, and for manifolds we know the desired
multiplicativity formula. This argument also applies to a which factor over free
groups, for example.

§1. DEFINITION OF vy

To define the y-invariant also for indefinite hermitian representations, we must
first introduce some terminology.

In the following U, V, W will always denote finite dimensional complex hermitian
vector spaces. The hermitian form, which is assumed non-degenerate, will be denoted
hy, hy or hy. If G is a discrete group and 7: G — Aut (U) is a hermitian representation
of G, we shall use the notations sign(7) and sign (U) interchangeable to mean
sign (hy).

If : G > Aut (U) is a hermitian representation, then we call (G, 7) a good structure
pair if a certain characteristic class ch (1) € H*(G; Q) vanishes (see [13], where ch (1)
is denoted Yg(7)).ch () is defined as follows: 7 classifies a flat hermitian bundle
E - BG which can be split as the sum E = E* E~ of a positive definite and a
negative definite bundle (no longer flat in general) and we put ch(r)=
ch(E*)—ch (E7), considered as an element of H*(BG; Q) = H*(G; Q).

It is shown in [13] that (G, 7) is good if u is definite, and for arbitrary 7 so long as
G belongs to a large class € of groups defined in [13] which includes all finite groups,
all abelian groups, and is closed under cartesian product free product direct limits
finite extensions, and quotienting by finite normal subgroups, among other things.
Furthermore, it follows easily from the deﬁmtlon that, if (G, 7) and (H, u) are good,
then so is (G X H, 7@ u).

Now suppose we have a closed manifold X>" ! and a hermitian representation
a: m(X)— Aut (U). Suppose further that some multiple g(X, o) bounds a (Y*", &) say
(by this we mean, of course, that 3Y** = gX and that for each component X of 3Y
the composition 7 (X)— 7 (Y)—> Aut (U) equals «). Let I'> Y be the local coefficient
system classified by &. Then cup product, the hermitian form '@z’ - C and evalua-
tion on the fundamental class {Y, 3Y], together define a form

byr: HY(Y,3Y; DR H"(Y,dY ;N> H™(Y,3Y;TRN—->H™(Y,a3Y;C)-~C,

which is hermitian or skew hermitian according as n is even or odd. Denote by
sign (Y, I') or sign (Y, &) the signature of this form, where, if by is skew hermitian we
mean signature of the hermitian form ibyr.

The invariant we wish to define is

¥(X, &) =~ (sign (Y. &) = sign (&) sign (V)
If hy is indefinite we need the following condition to ensure that y(X, a) is well
defined (independent of the choice of Y and &), see [13].

ASSUMPTION. We assume that o factors through some good structure pair (G, 1);
that is a = tog for some g: w(X)— G. Further, we assume that a admits a similar
factorization @ = vog extending the factorization of a. In particular, some multiple of
(X, g) must bound for y(X, a) to be defined.

In general ¥(X, a) will depend on the choice of factorization of « through a good
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structure pair (G, 7), but if we restrict a to be definite or G to be finite or abelian (or
more generally G to be a central extension of a finite group) then y(X,a) only
depends on (X, «) ([13] Theorem 7.2). Since this includes the cases of most interest to
us here, we will continue to suppress the factorization of « from our notation for the
y-invariant.

More generally, in the above situation suppose B: m(X)— Aut(V) is a further
hermitian representation and suppose 8 also extends to a representation B:m(Y)—
Aut (V). Then we can define

waﬁhM=56®MK5®E%1@M®Q@(KBD

and this is well defined so long as e satisfies the assumption above; no condition on B.
The proof is the same as for the previously mentioned special case, proved in [13].

LemMa 1.1. If B also factors through a good structure pair (H, n) as B = noh say,
then

y((X, B), o) = ¥(X, « ® B) — sign (a) y(X, B)

if the right side is defined (that is, if some multiple of (X, (g, h): m(X)—» G X H)
bounds, a multiple of (X, h) then bounds, too).

Proof. The right side of the equation, if defined, is well defined, since (G X H,
@ ) is good. By definition the equations says

sign (Y, & ® B) — sign (&) sign (Y, B) = (sign (Y, & ® B) — sign (& ® B) sign Y)
— sign @(sign (Y, B) ~ sign (B) sign Y),
which holds, since sign (@ ® B) = sign (&) sign (B).

Now suppose it is not necessarily true that a multiple of (X, «) bounds, but that
a: mi(X)— Aut{(U) is a unitary representation, t.e. the form hg is positive definite.
Then y(X, a) can be defined up to sign as the invariant p,(X) of Atiyah, Patodi and
Singer[2]. We choose our sign conventions so that y(X, a) agrees with the previous
definition if (X, a) bounds; this agrees with the sign conventions of [13], [14], {7] and
via Theorem 3 of [14], relating ¥- and «a-invariants, it agrees with the usual sign
conventions for the «-invariant. For our purposes, all we shall need about this
invariant are the following properties.

THEOREM 1.2, (i) If ai: mi(X)—-> U(l) for i =1, 2 then v(X;+ X;, a+ a)) = y(X,,
ay) + y(X;, az), where X+ X, means disjoint union and a,+ «, is the representation
T X+ X,) = m (X)) * 7w (X)) = U(l) induced by ) on 7 (X)) and «; on m(X,).

(i) y(- X, a) = —vy(X, a), where — X is X with reversed orientation.

(iii) If a multiple of (X, @) bounds then v(X, a) agrees with the previous definition
as a signature defect.

(iv) y(X, a;P az) = y(X, a)) + v(X, az) for any two unitary representations ca; and
[+ 4] Of 7T|(X)

(v) If N*™ is closed and &: w(N)~ U(r) is a unitary representation then y(N*™ x
X1 5Qa)=(—1)"" sign (N, 8) - v(X, a).

(vi) If 7: w(S")=Z~ U(1) is the representation t(1) = ¢*™) with 0= a =<1, then

¥(S',1)=0 a=0
=1-2a, O<a<l.

Proof. With the sign conventions of [2], properties (1), (ii) and (iv) are trivial, (v) is
an easy computation from the definition in [2] and (iii) and (vi) are proved in [2]. Thus
up to sign the theorem is correct. That the signs are correct can be seen by comparing
with the signature defect definition (there seems to be a sign confusion in the
derivation of (vi) in [2]; our sign convention gives v(S', v) the value —p(S"), where
p.(S") is computed to conform with the equation at the top of p. 412 rather than with
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equation (2.11) on p. 411 of [2]. This leads to the value claimed here). Note that in (v),
sign (N, 8) = r - sign (N), for instance by [9] or [13].

Remark. For unitary representations for which Im () is a central extension of a
finite group (e.g. Im(a) finite or abelian) it is not hard to show that the above
properties determine the vy-invariant uniquely (in fact (vi) can be weakened to:
¥(S', 7) is continuous on some open set of r € Hom (Z, U(1))). One can also show by
direct topological arguments that for such a an invariant exists satisfying the above
properties, but this is rather harder. This was the method used in the original version
of this work to define y(X, «).

More generally, if « and B are two unitary representations of 7(X), we define
v((X, B), a) by the equation of Lemma 1.1: y((X, B), a) =
y(X, a @ B) —sign (a) - v(X, B).

§2. MONODROMY

Suppose we have a closed manifold X**™! and a homomorphism f. 7m(X)—Z.
Since S'is a K(Z, 1) we can represent f, by a unique map f: X - S' up to homotopy.
We may assume [ is smooth.

Let X > X be the infinite cyclic covering classified by f,. Equivalently X is the
pullback

_ 7
X—R

It

If pE€ S'is a regular value of f and N = f7'(p), then X can be constructed by
cutting X open along N and pasting infinitely many copies of the resulting manifold
with boundary together end to end (see §5).

Let fEHz,. AX) be the homology class represented by one copy of N in X.
Equivalently f is the image of 1€ Z in the composition Z= H/\(R)— H. (X)~
H,,_ 2(X) induced by the proper map f. X >R and Poincaré duality. Thus f only
depends on the homotopy class of f, since a homotopy of f induces a proper
homotopy of f.

Define a hermitian or skew hermitian form

bo: H™'(X;C)Xx H* (X ; C)=>C, bo(x, y) = (x U y, f),

where we are using hermitian cup product x Uy =(—1)*"y Ux. This form is
degenerate in general, but it induces a non-degenerate form b on

H = H"'(X; C)/Rad (by),
where )

Rad (bo) = {x € H" (X ; C)|by(x, y) =0 for all y}.

LemMa 2.1. (H, b) is a finite dzmens:onal vector space with (— 1)""'-hermitian form.
The covering transformation T: X - X induces an isometry t: H - H.

Definition. The (—1)""'-hermitian isometric structure (X, fl=(H, b, t) WIll be
called the (middle dimensional) monodromy of (X, f) over C.

Proof of Lemma. The finite dimensionality of H is all that needs a proof. The
inclusion N C X induces a map i*: H"'(X)— H"'(N) which is an isometry with
respect to the form b, on H"'(X) and the cup product form by on H"" Y(N), since
(xUy, fY=(xUy, i«[N])=(i*xUi* y, [N]). Thus if we factor out degeneracy of
these forms from each side of the map i*: H"'(X)—Imi*, the induced map
H = H"(X)/Rad (by) > Im i*/Rad (by Im i*), being a surjective isometry of non-
degenerate (*1)-hermitian spaces, is an isomorphism. Since Im i* is finite dimen-
sional, this proves the lemma.
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If A-»X*" is a hermitian coefficient system classified by a representation
B: m(X)— Aut (V) say, then A lifts to a coefficient system A —> X and we can repeat
the definition of #(X, f) using coefficients in A to define ¥#((X, A), f). We also denote
this #((X, B), ).

ProposiTioN 2.2, If a: m(X)—> Aut (U) factors as a = tof. with f,. m(X)—>1Z
and 7: Z— Aut(U), then (X, a), f)= (X, )R 1. More generally, if B: m(X)—
Aut(V) is a further hermitian representation, then

HU(X, a®@B).f)=X(X,B), N

Proof. Recall that # & r means # @ (U, hy, v(1)). If T - X is the coefficient
system classified by « then T is the pullback under f: X - S' of the coefficient system
over S' classified by r. Hence I' - X is the pullback of a coefficient system over R and
is thus trivial. Hence H*'(X, T® A)= H"'(X,A)® U and the proposition now
follows directly from the definition of Z((X, a & B), f)-

We close this section with a brief digression. We can think of f€[X,S']=
H'(X, Z) as a cohomology class and form the first higher Novikov signature
sign (f) = (Lo X) U £, [X]),
where L.(X) is the Hirzebruch L-class. If % =(H, b, t) is an isometric structure
denote sign () = sign (b).

ProrosiTiON 2.3. Sign (¥#(X, f)) = sign (f) = sign (N), where N2 C X**™' is any
submanifold dual to f, as above.

Proof. The first equality is precisely how Novikov[17] proved the homotopy
invariance of sign (f). It can be seen as follows (which is essentially Novikov’s proof).
It will follow from our discussion that if a multiple of (X,f) bounds then
sign (¥ (X, ) =0. Thus sign (#(X, f)) is a bordism invariant of (X, f). So is sign (f),
so one must only compare the values of these two invariants on generators of
Q,,-1(SY), which is a trivial calculation. The second equality follows the same way, or
alternatively directly from the Hirzebruch index theorem.

§3. A(¥) AND THE MAIN THEOREM

To any (= 1)-hermitian isometric structure & = (H, b, t) we shall define an invariant
A(9) € R with the following properties

A~ ) =—A(%), where —H=(H,—b,1t),
A D H) = A(3) + A (3.

LEmMMA 3.1. For z€C let H, C H be the (t— z)-primary part of H, that is
={x € H|(t — z)*x =0 for some k}. Then H, L H,, lf z# w™'. In particular H, L H,, if
lz] =1 and z# w.

Proof. Since (t™'—2)|H, is an 1somorphlsm if z# w™', this follows from the
equation 0 = B((t — 2)*x, y) = b(x, (t7'- Z)*y) for x € H, and y € H.,.

Since H splits as the direct sum of the H, the above lemma shows that #
decomposes as the orthogonal sum

X = XD lz@x #.,

where ¥, = (H,, b|H,, t|H,) for |[z] = 1 is the part of # belonging to the eigenvalue z
and ¥, has no eigenvalues on the unit circle.

Definition. Let # = (H, b, t) be e-hermitian (¢ = = 1) and define

A(F) = A(,),
(%) ...%. (s¢.)
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where .
A(H.)=€-sign(P.)-(1-2a), z=¢e", 0<a<l,

= —sign (b’|H}), z=1,

where b' is the (usually degenerate) (—e)-hermitian form b'(x, v) = b((t — t ™ )x, y).
(Recall that we define signature of a skew hermitian form A to be signature of the
hermitian form ih.)

With the notation of §1, we can now state our main theorem, generalizing Theorem
1 of the introduction.

THEOREM 3.2. Let X! be closed and f: X*"'—> S' be given. Suppose also we have
two hermitian representations . Z —» Aut (U) and B: w((X)—> Aut (V) and let a = 7°f 4
mi(X)— Aut (U). Then with ¥ = ¥((X, B), f),

Y((X, B), @) = A(FH Q1) —sign(U) - AMK),
if the left side of this equation is defined.

In particular, if 8: m(X)— U(1) is the trivial representation, this becomes the
equation y(X, a) = A(H(X, /)R 7)—sign (1) - A(F(X, f)), which can be considered to
be an extension of the definition of y(X, «) to the non-unitary non-bounding case for
a which factor over a cyclic group (if a factors over a finite cyclic group, y(X, a) is
defined, since a multiple of (X, «) bounds). It is plausible that the definition can be
further extended to any a which factors over an abelian group in such a way that
Theorem 3.2 remains true if one interprets y((X, B), a) by the equation of Lemma 1.1.

Before we start on the proof of 3.2 we describe how this Theorem (or rather the
special case: Theorem 1 of the introduction) permits calculation of v(X, a) for any
a: m(X)— U(l) which factors over a free abelian group.

THEOREM 3.3. If a: m((X)— U(l) factors over Z°, say a = 7°f, with fu. m(X)>Z°
and 7:Z° - U(l), then v(X, «) is a homotopy invariant, computable via monodromy of
X.

Proof. It suffices to prove this if 7 is irreducible, since a unitary representation is a
sum of irreducibles and y(X, a\P a3) = v(X, a;) + y(X, a3). But any irreducible uni-
tary representation v of Z° is an exterior tensor product r=7,&® - -& 7, where
7 Z— U(1) is an irreducible representation of the ith factor Z of Z°. Put «; = 1;°f,, so

=, Q- - X a, Then

X, i@ Ray) =_};(Y(X, a1Q Qe —v(X, Q- R ai-)

=2‘] YK, @ - - R aasy), ).

Since each term on the right is computable via monodromy by Theorem 3.2 (or
Theorem 1), we are done.

An alternative approach to the above theorem might be to use the fact that
representations 7: Z* —~ U({) which factor through Z are dense in all such represen-
tations and use a suitable continuity property of the invariant (X, a). Such an
approach would allow one to deal also with the indefinite case. However y(X, a) does
not have very nice continuity properties—the best we know is the following theorem,
which allows one to use this approach on an open dense set of representations.

THEOREM 3.4. If f4 w(X)—Z° is given, such that a multiple of (X, f,) bounds, then
v(X, 7of4) is locally constant on an open dense set of € Hom (Z°, Aut (U)).

In fact Z° can be replaced in this theorem by any group in the class € mentioned
in §1. We just sketch the proof. Assume for convenience that (X, f,) itself, rather than
just a multiple of (X,f,, bounds (Y, g.. Then (X, rof.) =sign(Y,
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rog,) —sign () sign (Y) is the signature of a hermitian form which varies algebraic-
ally with + € Hom (Z°, Aut (U)), by first triangulating Y and then using Ranicki and
Sullivan’s “‘semi-local intersection matrix”’ [20] (which generalizes to manifolds with
boundary and local coefficients) to compute the relevant signatures. The theorem

follows from this.
Note that in the non-bounding case Theorem 3.4 fails already for X = S', by

Theorem (1.2)(vi).

§4. ISOMETRIC RELATIONS ON HERMITIAN SPACES
This section contains technical results on relations on hermitian vector spaces
which we will use to give an alternate description of the monodromy #(X>""', f). We
are interested in additive relations between two vector spaces V and W, that is
subspaces R C VX W. In analogy with composition of functions we define the
composition of relations R, C VX W and R, C U X V in the usual backward way as

RieRy={(x,2)EU X W|3yeEV with (x,y)€R, and (y,z)E R}
For R C V x W we also make the usual definitions (A C V):
R'={(y,x)E W x V|(x,y) ER},
RA={(ye W|3xE A with (x,y)ER}.

The following lemma lets one interpret an additive relation R C VX W as the
graph of an isomorphism from a subquotient of V to a subquotient of W.

LemMA 4.1. R C V x W is an additive relation if and only if there exist subspaces
AC A CVand BC B'C Wand an isomorphism ¢: A'/A > B’|B such that

R={(x,y) C A'xB'|¢[x]=[y]}

In particular A = R™H0}, A’= R™'W, B = R{0}, B’ = RV these are called respectively
the kernel, domain, indeterminacy and image of R.

Proof. If R is an additive relation and we define A, A', B, B’ as in the lemma then
R can clearly be interpreted as the graph of a linear map A — B/B’ with kernel A’. The
converse 1s trivial.

Definition. If (W, b) is a finite dimensional non-degenerate (* 1)-hermitian space
then an isometric relation on W will mean an additive relation R C W x(— W)
satisfying R = R* (equivalently R C R* and dim R = dim W). Here — W is W with
hermitian form — b.

For example the graph R(f) ={(x, f(x))|x € W} of a linear map f: W—> W is an
isometric relation if and only if f is an isometry. More generally

LEmMMA 4.2. R C W X (~ W) is an isometric relation if and only if in Lemma 4.1 we
have A'= A*, B'=B* and ¢ is an isometry A*|A > B*/B (since A = Rad (b|A*), b
induces a non-degenerate form on A*/A and similarly on B*/B).

Proof. If A, B and ¢: A*/A—> B*/B are as in the lemma and R ={(x, y)€ A* x
B*|¢[x] =[yl}, then a trivial calculations shows R C R* and dim R = dim W, so R is
an isometric relation. Conversely if R is an isometric relation then orthogonal
complement of the equation A x {0} = (W x{0}) N R gives A* X W =(W +{0h)*+ R* =
({0} x W)+ R =A"X W, whence A*= A’. Similarly B*= B’ and an easy calculation
shows that ¢ is an isometry.

LEMMA 4.3. If R, and R, are isometric relations on W then so is R|°R,.
Proof. Certainly R,°R, C (R,°R,)*, so we must show that dim (R;°R;) = dim W.

Let K={(x,y,2) € Wx Wx Wl(x, y) €ER, and (y, z) € R}}. There are two short exact

sequences « 8
0- R|-l{0} M Rz{o}—) K— R] ° R}"’Oy
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given by a(y)=(0, y,0) and B(x, y, z) =(x, z) and

8
0> K - Ryx Ry — R,™'W + RyW -0,

with maps y{(x, y, z) = ((x, y), (¥, 2)) and 8((x, y), (w, 2)) = y — w. These give dimension
equations which combine to give

dim (R|°R2) =2dim W —dim (R|_l{0} n Rz{o}) —dim (Rl_l W+ Rz W)

But (R7'W+R,W) = (R, D" N(R,W) =R, {0} R,{0} by Lemma 4.2, so the
dimension equation becomes dim (R,°R,) =2 dim W —dim W =dim W, as required.

Remark. Lemmas 4.2 and 4.3 hold more generally for relations between two
hermitian spaces, R C V X (= W), with R = R*. We shall not need this and in any case
the proofs are the same. Similarly everything holds equally well for non-degenerate
finite-dimensional bilinear or sesquilinear spaces over any field.

{0}C R{O}C RO} C ---C RO} C - -,
WORWORWD---DRWD . -

Since W is finite dimensional these sequences stabilize after a certain time, that is
R{0} = R™[0} and R'W = R™W for j sufficiently large.

LemMmA 4.4, If R is an’isometric relation then R'{0} = (R'W)* and R7{0} = (R™'W)*
forj=0,1,2,..., 00,

Proof. This is immediate by 4.2, since R’ and R are isometric relations by 4.3.

Taking the graph of an isometry allows one to consider an isometric structure as
an isometric relation. We now describe conversely how to derive an isometric
structure from an arbitrary isometric relation.

LeEMMA aND DEFINITION 4.5. Let R be an isometric relation and put B = R™{0}, so
B*=R*”W and there is an induced non-degenerate form (also denoted by b) on
H = B*/B. Then

S=[(BxXB+R)N(B*XBY]/BXxB C Hx(—H)

is the graph of an isometry t: H - H. We denote the isometric structure (H, b, t) by
H(R).

Proof. Note that the modular law _
XCZ22(X+Y)NZ=X+(YN2),

holds for subspaces of a vector space, so in such a situation we can and will omit
parentheses. In particular for subspaces of a hermitian space it follows that

XCX'>(X+YNXY=X+YNX™-
Applying this to ,
So=(B x B)+ R N(B*x BY,

considered as a subspace of W x (— W), shows S, = Sy*, whence also S = S*, so0 S is
an isometric relation.

Next we observe that if (x, y) € S, then certainly (x, y)E(BX B)+ R, so if xE B
then y € RB. But RB = RR™{0} = R*{0}= B, so we have shown S,B C B. Hence
S{0} = {0}. Thus by Lemma 4.2, SH = {0}* = H and S is the graph of an isometry from
a subquotient of H onto the whole of H. For dimensional reasons it follows that S is
the graph of an isometry ¢t: H - H.

The next lemma, which gives a more symmetric description of (R), will be
needed to determine the topological meaning of this isometric structure.
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LEMMA 4.6. Let R be an isometric relation on (W, b) and put A =R™{0} and
B=R*0} and C=A*NB* and D=Rad (b|C)=CNC*. Put H=C/D and S, =
[(DxD)+ RN(CxC)IDxD C Hyx{(—H,). Then the pair (H,, S)) is isomorphic to
the pair (H, S) of Lemma 4.5 and thus also defines #(R).

Proof. We first show that the inclusion i: C— B* induces an epimorphism

€ —— B*/B, in other words that C + B = B*. Choose q such that RIW = R*W = B*
and R™*W = R™W = A*, whence also R%{0} = B and R™%{0} = A. Given any y € B* =
R*W, we can find x € R*W with y € R{x}. Then x € R4y} C R™IW = R™>W, so we
can find z € R¥x} with z € R™W. By construction z—yER¥ x—x}=8B and z €
R{x}NR™W C B*NA*=C_, so y€ B+ C. Thus we have shown B* C B+ C. The
other inclusion is trivial. i

Now the epimorphism C —> B*/B preserves hermitian forms, and since B*/B is
non-degenerate, wi induces an isometry

#: C/Rad (b|C) > B*/B.

It remains to show that (¢ X ¢$)(S1) = S. First note that if x € C then there exists y € C
with (x, ¥) € R. Hence for [x] € H, there exists [y] € H, with ([x].[¥])) € S, so
dim S, =dim H,; = dim H. On the other hand dim $ = dim H, since S is the graph of a
map H — H, so dim S, =dim S. Thus it suffices to prove (¢ X ¢)(S;) C S, which is
trivial.

§5. MONODROMY VIA ISOMETRIC RELATIONS

Let X! be a closed manifold and f: X - S' a map, given up to homotopy. For
some smooth representative ¢ and some regular value p € S' of this f put N = f'(p)
(equivalently N>"2C X*' is any submanifold representing the Poincaré dual of
fEIX,S'1=H'(X;Z)). Let X’ be X cut open along N, so the boundary of X'
consists of two copies N* and N~ of N.

The infinite cyclic cover X of X, used in the definition of monodromy, can be
constructed by taking Z copies ..., X, X4, X1,... of X’ and pasting them together
by pasting N;* to N, for each i € Z (Fig. 1). The covering transformation 7T': X-X
is the map which moves the picture one step to the right.

X, X, X; X,

'
«

1

~

!

v

1

i

NGNS NSsNG  NsNT NDeN;

Fig. 1.

Now let A— X be any hermitian coefficient system over X. Then we have induced
coefficient systems over X’, N and X, and in this section homology and cohomology
are to be taken with coeflicients in the corresponding local system, and cup product
and intersection forms are the induced (* 1)-hermitian forms on these (co)-homology
groups. To simplify notation, we will not write out the coefficients explicitly, and
therefore also write #(X, f) for #((X, A), f) and so on.

As oriented manifolds 4X'=N"+(—-N*)=N+(—~N), where —N is N with
reversed orientation. Let W = H,_;(N) with (+1)-hermitian intersection form. Let

R =Ker (H,.1(8X") > H\ (X)) C Hani(0X') = WD (= W).
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The Poincaré duality diagram
Ho(X", 3X") ———> Hyy(3X") ——> H,((X)
L= s L~
(Hae (X ))* > (ot 3X W* ——— (HL (X", 4X"))%,
where vertical arrows are given by intersection forms, shows that R = Ker i, = R*, so
R is an isometric relation on W.

ProposiTiON 5.1. In the notation of Lemma 4.5, the monodromy ¥(X, f) satisfies
(X, fy=H(R).

Proof. Let i: N C X be the inclusion of one copy of N in X, and i*: H*(X)>
H""'(N) the induced map in cohomology. We need the following lemma.

LemMMmA 5.2 If #(X,f)=(H,b,t), then H =Im (i*)/Rad (by|Im (i*)), where by is
the cup product form on H* \(N). Under this isomorphism b is the form induced by by
and t is the unique homomorphism such that

H*'(X) T, Im (i*)/Rad

Il
H" (X)) ——— Im (i*)/Rad

commutes, where Rad = Rad (by|Im (i*)), 7: Im (i*)—Im (i*)/Rad is the projection,
and T* is the map in cohomology induced by the covering transformation.

Proof. Except for the statement about ¢, this is precisely the proof of Lemma 2.1.
The commutative square involving t is by definition; it defines ¢ uniquely by
surjectivity of the horizontal arrows.

We shall translate this lemma by Poincaré duality into homology, which then easily
gives the proposition.

Let H$(X) denote homology with closed supports defined by allowing infinite but
locally finite singular chains. Alternatively we can use Borel-Moore homology (4],
which agrees with the above for “good” spaces (e.g. manifolds) by Olk[18]. Closed
but not necessarily compact submanifolds of X represent cycles in such a theory.
There is a Poincaré duality isomorphism

NIX): H3(X) > Hpo1-o(X).
The map i*: H"(N)— H"'(X) is Poincaré dual to the map
8: Hi(X)— H,(N)

defined by intersecting cycles in X with N. The dualized version of Lemma 5.2 is as
follows.

Lemma 53, #(X, f)=(Im 6/Rad(byIm 8), b, t'), where b} denotes both the
homology intersection form on H,_,(N) and the induced form on Im 8/Rad (b{Im §)
and t' is defined as follows: t'(§) = v if and only if £ and n can be represented by
cycles x and y in N such that cycles i, x and T,i,y are homologous in the portion of X
lying between N and TN.

Proof. Except for the characterization of t', this is just the dualized version of
Lemma 5.2. To prove the statement about ¢’ first note that the equation T*a N [X]=
Ti'(a N T«[ X)) =Ti'(a N [X]) shows that T* is Poincaré dual to T3': HHX)—
H{(X). Thus by Lemma 5.2 the map t’ corresponding to ¢ is characterized by

commutativity of the diagram
s

HJ(X)—— Im §/Rad (b {{Im &)

!

H(X) — > Im 5/Rad (b}{Im 8).
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where #:Im&->Im6/Rad (bi{Im 8) is the projection. Now suppose & mn&E
Im S/Rad (bN{Im 8) can be represented by cycles x and y as described in the lemma.
Let ¢; and ¢, € ZX(X) be cycles with closed support in X intersecting N in i,x and
i»y (possible, since [x], [y] € Im §). Let c¢,” be the part of ¢, ‘"to the left of N in X
and ¢, be the part of ¢, “‘to the right of N in X" and let d be a homology from i,x to
T.i.y. Then ¢ = ¢, Ud U T.c." is a cycle in ZS(X) with 8[c] = [x] and 8T:'[c] =[y],
whence t(§) = t'w[x] = t'm8[c] = w6T3'[c] = w[y]=n, as was to be shown. Con-
versely, given £ and  with t'§ = n, one can find acycle c € ZNX) with #8[c] = ¢ and
78T %'[c]=n and one can further assume that ¢ intersects N C X and TN C X
incycles i.x and T.i.y. Then x and y represent ¢ and 7 and i..x is homologous to T.i.y by
the portion of ¢ lying between N and TN in X. This completes the proof.

We can now complete the proof of Proposition 5.1. Using the picture of X of Fig.
1, observe that Im 8 is represented by those classes in N = Nj say which bound
infinitely far to the left and right in X. Observe also that (x, y) € R if and only if x, as a
class in the left boundary N~ of X’, is homologous in X’ to y considered as a class in
the right boundary N* of X’. Thus Im & is simply R*W N R™W, which is C in the
notation of Lemma 4.6, and Proposmon 5.1 follows directly from a comparison of
Lemma 5.3 and Lemma 4.6.

§6. WALL NON-ADDITIVITY

We shall need some properties of an invariant introduced by Wall{21]. We work
with complex hermitian spaces rather than bilinear spaces as in [21], but this makes no
significant difference.

Let W be a non-degenerate e-hermitian space, ¢ = =1 and let A,, A,, A; be three
kernels, that is A; C W and A; = A}. On the subspace

AIN(A+AY={x,EA|TIx;EA, and x;E A; with x;+x,+x3=0}
define a sesquilinear form w by
wixy, yi) = hilx, y2), yity:+y;=0, ¥ €EA;

It is easily verified that w is well defined and (- e€)-hermitian. Also Rad(w)=
(A/N A+ (A, NA;), so w induces a non-degenerate form, also denoted w, on
(AN (A + ANIAINAY+ (AN Aj)).

Definition. Sign(W; A,, A,, A;) =sign w. Recall that if w is skew hermitian this
means sign (iw).

It is not hard to see that (A, N{A>+ A;)/((A,N Ay + (A, N Aj)) is unaltered up to
isometry by even permutations of A,, A,, A; while odd permutations reverse the sign
of w (see Wall[21]). Thus sign(W; A,, A,, A,) is an alternating function of its last
three arguments.

The reason for introducing this invariant is the following theorem.

THEOREM 6.1 (Wall[21)). Let the oriented manifold Y*" be the union of two pieces
Y. and Y_, pasted along a common zero-codimensional submanifold M, of their
boundaries. Put M, =3Y,—Int(My), M_=3Y_—Int (M) and let N be the common
boundary N = oM. = oM, = dM,, oriented as boundary of M.. Let A—>Y be a
hermitian local coefficient system and denote the restriction to any subspace of Y also
by A. Put

W = H,_(N: A) with (x1)-hermitian intersection form,
A, =ker (H,_(N; A)—> H,-(M_; A)),

2= ker (H,_i(N; A) > H, (My; A)),
Aj = ker (Hao(N; Ay = Hoo (Mo A)).

Then A; = A} for each i and
sign (Y, A) = sign (Y., A) +sign (Y_, A) —sign (W; Ay, Ay, Ay).
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N
Fig. la.

Proof. Wall's proof for trivial local coefficients extends word for word to the
present situation, see Meyer([9].

We shall need the following properties of Wall’s invariant.
LemMaA 6.2(i). If D C AN A,N A; then
sign(W; A, A,, A3) =sign(D*/D; A\/D, A,/D, A/ D).
(i) If DC A, N A,, then
sign (W; Ay, A,, Ay) =sign(W; A, Ay, D+ A;N DY)
(see the remark at the beginning of the proof of Lemma 4.5).
Proof.(1)). If D C A;N A,MN Asthen At C D*, so A; C D*foreach i The projection
D*— D*/D restricts to an epimorphism
AL N{A;+ A3)> A /DN (A,/D+ A;lD),

which preserves Wall’s form, so after factoring radicals on both sides it becomes an
isometry, proving (i).

(i1). Since DC A; for i=1, 2, A, C D* for i=1, 2, so A N(A,+A;)=
AIN(A+A)N D =A N (A+A N DY=A N(A:+(D+A;NDY). If y +
y2+y;=0 with y; € A, then y,+y, € D*, s0 y; € D*, s0o y; € D+ Ay N D*. Thus

Wall’s form on the above group is the same whether dpﬁnpd using A;, A,, Asor A, A,

T avly 13 LT SaQnAt WAt intl ULIINTR Usilig 2y

D+ A; N D4, proving (n)

Another property we shall need is the following pleasing ““cocycle property”.

ProrosiTioNn 6.3. If A, i=0, 1, 2, 3, are four kernels in W then
sign(W; Ay, Ay, As) —sign (W: Ao, Ay, A3) +sign (W A, A, A3) —sign (W; A, Ay, A))
=0.

Proof. Assume W is hermitian by multiplying Ay by i if necessary. Since W
contains a kernel, it has zero signature, so W = EQ@ (— E) where E = C" with standard
hermitian metric for some n. Any A C E(—E) with A= A* is the graph A = R(f)
of an isometry f € Aut(E)= U(n). Let A; = R(f)), i =0, 1, 2, 3. Consider four copies

of the annulus Y, = {x € R¥1 =|x|=2},i =0, 1,2, 3. On Y, consider the local coefficient
system A; - Y; with fiber E defined by the following picture (Fig. 2, indices modulo 4).

fin f

Fig. 2.

That is, A; is classified by the representation ;(Y;) = Z —» Aut (E) = U(n) which takes
1EZto f7'fi,, € U(n). Now we can paste these four annuli together as in Fig. 3 to get
a four-punctured sphere Y with a coefficient system A — Y. Denote A restricted to
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Fig. 3.

any subset of ¥ now also by A. Since Y is obtained by pasting Y,U Y, to Y,U Y,
along a closed boundary component Novikov additivity (or the case N =6 of
Theorem 6.1) gives

sign (Y, A) =sign(Y,U Y, A) +sign (Y, U Y3, A).
Similarly
sign (Y, A) = sign (Y, U Y,, A) +sign (Y3 U Yy, A),
and subtracting these equations gives
sign (YU Yy, A) —sign (Y, U Y3, A)+sign (YU Yo, A) —sign (Yo, U Y, A) =0
On the other hand Theorem 6.1 gives (indices modulo 4)
sign (Y; U Y., A) =sign (Y, A) +sign (Yi,,, A) —sign (W; A;, Air, Aisa)
and inserting this into the previous equation proves the proposition.

The following consequence of the cocycle formula, invoiving a special case of
Wall’s invariant, is basic for later calculations.

Definition. If # =(H, b, t) is a (x1)-hermitian isometric structure and K C H
satisfies K = K* (so sign () = 0), denote

sign (¥, K):=sign(HP (- H), A(H), KP K, R(1)),
where A(H) = {(x,x) € H@ (— H)} and R(¢) ={(x, tx) € H@ — H} is the graph of t.

LEMMA 6.5. Let # = (H, b,t) and ¥’ = (H, b, t") be two isometric structures on the
same hermitian space (H,b). Let K, C G, i =1, 2 satisfy K;= Ki* and t't"'K; = K..
Then

sign (¥, K) — sign (', K;) = sign (¥, K,) — sign (¥, K3).
Proof. The equation to be proved can be rewritten
sign (¥, K) — sign (¥, K,) = sign (¥, K,) — sign (', K»)
or in other words
sign(H@(—H); AH, KB K|, R(t)) —sign (HP (- H); AH, K,P K,, R(1))
=sign (HP(—~H); AH, K;P K,, R(t")) —sign (H @ (- H); AH, K. K», R(t).

Using the cocycle formula (6.3) with Aq=AH, A, = K,B K,, A,=K,H K, Ay=R(1),
the left side of this equation can be rewritten

sign (H@B (— H); KiD Ky, K:D K,, R(1)) —sign (H @ (- H); AH, K, P K, K- P K.

Similarly the right side can be rewritten as the same thing with ¢t replaced by t', so the
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equation to be proved becomes
sign (HP (- H): Ki© K, K:D K, R(t)) = sign (HB (- H); KD Ky, K8 Kz, R()).

But id@(¢t't™"): HH(—H) HP (- H) is an isometry which takes K, B K, to K, D K|,
K. K: to K, K> and R(t) to R(t'), so this last equality is proved.

§7. COMPUTATION IN THE BOUNDING CASE

Let X*"~' be a closed manifold and suppose f: X - S' and B: m(X)— Aut (V) are
given. In this section and the next we shall prove the bounding case of Theorem 3.2. It
clearly suffices to do this if (X, B, f) itself bounds, rather than just a disjoint multiple,
so suppose we have a Y*" with 3Y = X and maps g: Y > S'and B: m(Y)— Aut (V)
extending f and 8.

ProposiTioN 7.1 (i). In the above situation if % = ¥((X, B),f) = (H, b, t) then there
exists a K C H with K = K*.
(i) If 1 Z>Aut(U) and a = 7of .. 7(X)— Aut (U) then for any K as in (i) above

YUX, B), a) =sign (¥R, KRQU)—sign(¥R7, KQ U),
where 0: Z— Aut (U) is the trivial representation.

Proof. Let p € S' be a regular value of g: Y > S' and put V=¢7!(p), N=4V =
f'(p). Let Y’ be Y cut open along V, X’ be X cut open along N.

Let A— Y be some hermitian coefficient system, to be specified later and in the
following, homology is always to be taken with coefficients in A or in the induced
system on Y’, X', V, etc. As in §5 we suppress the coefficients in our notation, so we
will just write sign(Y) for sign(Y,A), sign(Y’) for sign(Y’',A), #(X, f) for
FHX, A), f), and so on.

As in 85, let W=H, (N), so H,,0X)=W®P(-W) and R-=
Ker (H,-1(dX")— H,.(X") C W (— W) is an isometric relation. Also put

L=Ker(H,.(N)>H, (V)) C W.
Lemma 7.2, Sign(Y) =sign(Y") ~sign (WP (- W); AW, LB L, R).

Proof. The boundary of Y’ can be decomposedas dY'= V- U X’ U V* where V-
and V* are copies of V. By thickening V slightly in Y we canwrite Y = Y’ U (V x I),
where we are pasting V¥ C Y to Vx{I} C VxlTand V" C Y'to Vx{0} C VX
(Fig. 4). Wall's formula 6.1 gives sign (Y) = sign (Y') + sign (V x I) —sign (W p W AW,
L& L, R), which proves the lemma since sign (V x I)=0.

VxI

Fig. 4.

LeEMMA 7.3. By altering g in its homotopy class if necessary (and hence altering
also V and Y'), we can arrange that R°0OC L C R*W.

Proof. Adding a collar Y xI to Y along its boundary does not alter the
diffeomorphism type of Y, so we may work with Y, = Y U ,y.qdY x I instead of Y.
For some large integer k let

g:9Y XI—>S' g'(x,r) =e*g(x).

Then g'|3Y x {0} =g|aY, so g and g’ fit together to give a map g.: Y,—S'. Let
Vi=g(p). Then V,=(X'"UX'U---UX")U V (k copies of X’) where the copies of
X' wind around 3Y x I = X x I parallel to the outer boundary and spiralling inwards.

TOP Vol. 18, No. 2—E
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Y

Fig. 5.

Let L, = Ker (H,-(dV,)=> H,- (V). Then clearly L, = R*L, so R¥0 C L, C R*W. But
for k sufficiently large R*0 = R*0 and R*W = R*W by the remarks preceding Lemma
4.4, so Lemma 7.3 is proved.

For any subspace B C W let AB ={(x,x)} € W (- W)|x € B}
LemMa 7.4. If B = R*0, whence B* = R*W, then
AB+RN(AB)'=(B@B)+ RN (B B)“.

Proof. By the remarks at the beginning of the proof of lemma 4.5, it is irrelevant
how we bracket the above expressions. We shall show inductively that for any
isometric relation R one has

(*) AR*0+ R N(AR*0)* = (R0 R*0) + R N (R*W @ R*W).

For k large this is the formula of the lemma.

Let R =AR0+R N (ARO)'. Since 0 ROC R, we have ARO+R=
ARO+(0EP RO+ R=(ROP RO+R. Now (ARO)={(x,y)x—y € (RO)* = RW}.
Thus R/ ={(x,y) E(ROP RO+R|x—y € RW} and this equals {(x,y) €
(RO RO)+ R|x € RW} since (x,y) € (ROD R0)+ R implies y € RW. On the
other hand (ROPRO+RNRWEBRW)={(x,y)E(ROPRO)+R|x ERW, yE
RW}={(x, y)E(R0D R0)+ Rjx € RW}, so (*) is proved for k = 1.

Assume (*) is proved for k and denote the relation defined in (*) by R.. Then
RO ={y € R*W|3x € R*0, (x,y)E R}=R*"'0NR*W = R*'0. Thus on the one
hand - (R = AR*'0+ R, N(AR**'0)* = AR**'0+ AR*0+ R N (AR*0)* N (AR**'0)* =
AR¥'0+ RN (AR*'0)* and on the other hand (R,),=(R*'0PR*'0)+R, N
(R'W B R*'W) = (R*'OP R*'0)+ RN(R*'WDR*'W). Thus (*) follows for
k + 1, completing the proof.

Now with B = R™0 as above, write H = B*/B with induced hermitian form de-
noted b and write S=({(B & B)+ R N (B*§ B*)/(B & B). By 5.1 and 4.5, S is the
graph of an isometry t: H—H and (H, b, t) = #(X, f). By Lemma 7.3 we may assume
B C L,sodenote K=L/B C H. Then K = K*, so (7.1)(i) is proved. We shall prove
(7.1)(1i) first for this particular choice of K and then deduce it for arbitrary K C H with
K =K-"

LEMMA 7.5 Sign (WP (- W), AW, LP L, R) =sign (¥, K) with I = #(X, f)=(H,
b, t) and K = L/B C H as above.

Proof. Using first lemma (6.2)(ii) with D = AB, then Lemma 7.4, then (6.2)(ii)
with D = B B, then (6.2)(i) with D = B¢D B, we get the sequence of equalities:
sign(WR(—W); AW, LAL,R)=sign(WEH(-W);AW,LPL,AB+RN(AB)")

=sign(WR(-W); AW, LHL,(BGB)+ RN(B*PHBY))
=sign(WPH(- W), (BAB)+AWN(B*®BYH, LHL,(BHB)+RN(B*PHBY
=sign(HP(—H);AH, KBS K, S).
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Since S is the graph of t: H — H, the latter is by definition sign (¥, K). proving the
lemma.

Putting (7.2), (7.3), (7.5) together we have shown:
CoroLLARY 7.6. Sign (Y) = sign (Y") —sign (¥, K).
Now let us recall the local coefficients we have been suppressing. If A is the
coefficient system classified by 8: 7 (Y)— Aut (V), then (7.6) says
sign (Y, A) =sign(Y’, A) - sign (¥((X, B), f). K).
If r: Z— Aut(U) is as in Proposition 7.1 and ' > Y is the coefficient system classified

by a = 7og,, then using AQT in place of A replaces (X, B),f) by (X, B)./ )R~
and replaces K by K'® U (see Proposition 2.3). Thus with # = Z((X, B). f)

sign (Y, AQD) =sign(Y , AQ) —sign (¥R 7, KQU).
Simiiarly, if 6: Z— Aut(U) is the trivial representation, then using U also to denote
the trivial coefficient system with fiber U

sign{(Y,AQU)=sign(Y , AQU)—sign(¥# R4 KK U).

Now ' Y pulls back from a coefficient system over S' via the map g: Y = S', so
I''Y’ pulls back from a system over the interval and is hence trivial. Thus
sign (Y, A®T) =sign (Y',T® U), so subtracting the above two equations gives

sign (Y, AQT) —sign(Y,AQ U) =sign(¥ R, KQU)~sign(RQr, KK U).

But a trivial Kunneth formula computation shows sign(Y,AQU)=
sign (U) sign (Y, A), so the left side above is by definition v((X, 8), a), so (7.1)(ii) is
proved for this choice of K.

Now #R8=(HRU, bQhy, tRid) and ¥Qr=(HQQU, bQhy, tQ (1)) and
RN R id)™ = id® (1) maps K U toitself forany K C H. Lemma (6.4) is thus
applicable and shows that sign (¥ ® 6, K ® U) —sign (¥ @ 7, K & U) is independent
of the choice of K C H with K = K*.

§8. COMPLETION OF PROOF IN THE BOUNDING CASE

To complete the proof of (3.2) in the bounding case we must show, in view of
Proposition 7.1:

ProposiTioN 8.1. If % =(H, b, t) is an isometric structure with sign (%) =0, so
K C H exists with K = K* then for any representation 7: Z— Aut(U) and for some
such K (and hence also for any such K)

sign(HX R 6, KRQU)—sign(RQr, KQU)=A(HQr)—sign(U)AF).
Lemma 8.2. Let % = (H, b, t) be e-hermitian and let K C H satisfy K = K*. Then

sign (¥, K) = sign (b'|(1 - 1)"'K),

where b': H x H—C is the (possibly degenerate) (—e€)-hermitian form b'(x,y) =
b((t—t7)x, y).

Proof. sign (¥, K) =sign(H@(—H); AH, KB K, R(¢)). It is convenient to cal-
culate this as sign (H @ (— H); A, Ai, As) with A, = R(1), A, =AH, A;= K@ K. Then

AN(A+ A)={(x,tx)}x =a+b,tx=a+c,b and c€ K}
={(x, tx)|x — tx € K}
=(1-#)"'K.

If (y,ty)E AN(A,+ A;) then (y,ty)+(—y,—y)+(0,y—ty)=0 with (y,ty)€ A,,
(—y,—y) € A;,(0,t —ty) € A;. Thusdenotingthe formon H ép (— H) also by b, Wall's
form on A /N(A;+ Ay is given by w((x, tx), (y,ty))=b((x tx), (—y,~y)=
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b(x, —y)— b(tx,—y) = b(tx — x, y). So, interpreted as a form on (1 — ) 'K, w is given

by w(x,y)=b{{t—1x,y). For x,y €(1-1)"'K we have b((1-1t)x, (1-1)y)=0, so

b((1-0)x, y)=b((1-0)x,ty),s0 b'(x, )= b((t =t x, y) = b({(t — Dx, y) + b((1 -t )x,

y)=wix, y)+ b((t — Dx, ty) = w(x, y)+ b((t - 1)x, y) = 2w(x, y). Thus p'j(1-t)"'K =

2w, s0 sign (¥, K) = sign (w) = sign (b*|(1 — )"'K). :
We shall need the following well known lemma.

Lemma 8.3. If (W, h) is a possibly degenerate hermitian space and A C W satisfies
A’ C A, then sign (h) = sign (h|A).

Proof. Since Rad(h)= W' C A*, we can factor throughout by Rad(h) and
assume h is non-degenerate. Let A’= A/A* with induced non-degenerate form A’ and
w: A-— A’ the projection. L ={(a, ma) € W& (- A)la € A} satisfies L C L* and
dim L = ;dim (W@ (- A")) so L =L* so sign (W@(—A"))=0. That is, sign(h)—
sign (h') =0, but sign (h') = sign (h|A), so the lemma is proven.

Lemma 8.4. If % =(H, b, t) has an invariant kernel, that is, there exists K C H
with K = K* = tK, then for any such K, sign (¥, K) = — A(3¥¢).

Proof. Let
' %= 3&0)%{%] %z

be the decomposition of & according to eigenvalues as in §3. An easy computation
(see for instance [16}) shows that K decomposes correspondingly as K«»@'@ K.,
2|=1

where each summand is an invariant kerne! of the corresponding summand of .

For z#1, (1~1t) is an isomorphism on H. so (1-t)"'K,= K, and since (t—
t™)K. C K., it follows that b*[(1—1)"'K. =0, so sign (. K.)=0 by 8.2. The same
argument shows sign (¥, Kg) = 0. We have thus shown

sign (3¢, K) = sign (5¢,, K)).

On the other hand, since 9, has a kernel for each z, sign (3.) = 0, so the definition
of A(%) shows that
A(FE) = A (3¢).

We must thus show that sign (¥, K,) = — A(¥)), in other words that
sign (b*)(1—¢t)"'K}) = sign (b'|H)).

We shall work in H|, and for any A C H, we use the notation A" or A* for
orthogonal complement of A in H, with respect to the form b’ or b respectively. By
Lemma 8.3 it suffices to show

((t=1D'Kp* C (¢ - DK,
Now
(t-D'K)"={x€H|b((t—t"y,x)=0 forall xe(—-1)"K}
=((t =™t - DK

But t—t'=¢tt+1)t=1), so (t—tH-D'K,=t7'¢+Dt-Dt~1)"'K, =
t7'¢+ K, NIm @ ~-1) = K,NnIm(¢—1), since t7'(t + 1) is an isomorphism on H,
and maps K, to K, and Im (¢t —1) to Im (£ —1). On the other hand (Im(t — 1))! =
{xeH|b((t -y, x)=0 for all yEH}={x€H/b(y,(t"'~1Dx)=0 for all y}=
{xjt7'-Dx =0}=Ker(t'—1)= Ker (¢ — 1). Thus

((t-D'K)* =K NIm@¢ - D) =K, +Im (¢ = 1)*
=K, +Ker(¢t—-1C (t—- 1)K,
as we wished to prove.

We are now ready to prove Proposition 8.1. First observe that it suffices to prove it



SIGNATURE RELATED INVARIANTS OF MANIFOLDS—I 165

for hermitian %, for if & = (H, b, t) is skew hermitian then replacing # by (H, —ib, t)
multiplies the hermitian form b‘ of Lemma 8.2 by —i and hence does not change its
signature, so the left side of equation (8.1) stays unchanged, while the right side stays
unchanged by definition of A ().

Observe next that the equation to be proved can be written

al(¥,r)=0,
where

a(H, 7)=sign(H R0, KQ@U)—sign(XQRQr, KQU)-AMHRQ7)+ A(H R 9).

Indeed, A(¥H & 8) = sign (U)A(5), since ¥ @ 6 1s just isomorphic to the sum of suitably
many copies of % and — %.

Let WU (Z) denote the Witt group of hermitian representations of Z, that is the
semigroup of hermitian representations of Z with direct sum as addition, factored by
the sub-semigroup of hermitian representations 7: Z— Aut (U) having an invariant
kernel (that is, a subspace L C U with L=L* and r(Z)L = L). Since hermitian
representations of Z correspond one to one with hermitian isometric structures,
WU(Z) is also the Witt group of hermitian isometric structures. Let WU ~(Z) be the
“reduced Witt group”, that is, the subgroup represented by isometric structures ¥
with sign (%) = 0.

If % has an invariant kernel K, then K@ U is an invariant kernel for both ¥®
and ¥X 6, so a(¥,r)=0 follows directly from Lemma 84. If 7 Z— Aut(U)
has an invariant kernel L, then sign(¥®6, KQU)-sign(¥RXm, KQU) =
sign (RO, HRL)—sign(X R, HR L) by Lemma (6.4), so again a(¥, r)=0 by
Lemma 8.4. Thus a can be considered as a homomorphism

a: WU (Z)yx WU(Z)->R

and to show this homorphism is trivial we need only check it on generators.

By [16], WU (Z) is (freely) generated by irreducible representations 7: Z - U(1).
Hence WU7(Z), as a Witt group of isometric structures, is generated by isometric
structures of the form

2=y G 9 zes-n

It thus remains to prove a(,7)=0 for # and r as above. If 7 is the trivial
representation @ then the statement is trivial, so assume 7(1) = w = ¥ and z = e?™®
with 0 <a, b <1.

Now % ® 0= % and 3 ® = = (C*, D 2 sousing K = i(x,m) € c,
direct computation using Lemma 8.2 shows
sign (¥ 6, K)y=0
sign(?t’®7,K)=+l, a+b<l,
=0, a+b-=1,
=-1, a+b>1.
On the other hand the definition of A gives
AMHRO)=1-2b
AMIHERr)=(1-2(a+b))—(1-2a), a+b<l,
=—(1-2a), at+b=1,
=(1-2(a+b-1)~(1-2a), a+b>1

A trivial computation thus shows a (%, 7) = 0, completing the proof of (8.1) and hence
also of Theorem 3.2 in the bounding case.
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Before completing the proof of 3.2 in the non-bounding case we note a further
consequence of our computations, which was announced in the introduction.

ProposiTION 8.5. Let Y™ be a compact manifold with 3Y = X and suppose g:
Y - S' is a fibration. Then for any coefficient system A— Y we have sign(Y,A)=
A(S((X, A), g|X)). In particular, sign (Y, A) only depends on ¥((X, A|X), g|X).

Proof. In the notation of §7 we can choose V as a fiber of g: Y — S' and then
Y'= V x I, so Lemmas 7.2 and 7.5 show

sign (Y, A) =sign(V x I, A|V x I) —sign (¥, K)
= —sign (¥, K),

with % = #((X,A), g|X). But K is clearly an invariant kernel of &, so
—sign (¥, K) = A(3) by Lemma 8.4.

§9. COMPLETION OF THE PROOF IN GENERAL

It remains to prove Theorem 3.2 in the case that (X**", B, f) does not bound. For
the vy-invariant to be defined, all representatives in question must be unitary, so
Theorem 3.2 becomes Theorem 1 of the introduction.

Since a unitary representation of Z decomposes as a sum of one-dimensional
representations, it suffices to prove Theorem | when 7 is an irreducible representation
7: Z— U(1). We first check two special cases.

(i) If f: X > S'is homotopically trivial then (X, B), f) = 0 and « = 7o f, is trivial,
so Theorem | becomes trivial.

(i) Let X=N"7xS" and let #: X->N and p: X—S' be the projections.
Assume B = p o, for some representation w: m(N)- U(r) and let « = rop, with 7
as above. Then if % = #((X, B), p) we have

(N xS, a®B)=(=1)""sign (N, p)y(S', 1) = M(HQ ),

the first equation by Theorem (1.2)(v) and the second by direct computation from the
definition of A(# P 7) and Theorem (1.2)(vi). Since this equation also holds for trivial
7, Theorem 1 follows in this case.

Finally suppose (X, B, f) is arbitrary. Assume f: X - S'is smooth and let g € S'
be a regular value and denote f~'(q) = N. We shall construct a bordism of (X, B, f) to
something simpler.

Let go=fxid: X x[0,2]— S'x[0,2]. Then (q, 1) is a regular value of g, so for a
sufficiently small disc D about (g, 1) € S'x[0,2] we have go '(D)=N X D. Let M =
X x[0,2]- g0 'Unt D). Let gy: (S'x[0,2])—Int(D)— S' be a map with g|S'x{0} =
ids; gi|S'x {2} = ¢, a constant map; g,|dD: 3D~ S' an isomorphism. Let g: M - S'
be g = g,°(go|M). Then the boundary of (M, g) is the disjoint union

M, g)=(X,f)+(—X,c)+ (N xS8',p).

Furthermore the representation B: w(X)— U(r) induces representations on the
fundamental groups of X %[0, 2], hence M, hence on each component of dM. We
denote these representations also by B.

Now Theorem 1 is true for (M, B, g)=(X, B, f)+(- X, B, c)+(N xS', 8, p),
since this is the bounding case already proven. It is true for (~ X, 8, ¢) and (N x S', 8,
p) since these are cases (i) and (ii) discussed above. It follows that it is true for (X, 3,
f), as was to be proven.

§10. INVARIANTS OF RATIONAL MONODROMY

One can define monodromy equally well using other coefficients instead of C.
Using rational coefficients the monodromy #%X* ', f) is a (—1)"'-symmetric
isometric structure over Q. A simple universal coefficient argument shows that the
complex monodromy (X, f) is the hermitianization #%X, f)®C of the rational
monodromy. This of course restricts the possibilities for #(X, f), but as we show in
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an appendix, it is the only restriction, at least for n even: every skew—symmetric
isometric structure over Q occurs as monodromy.

Most of the discussion of this paper holds with rational (or other) coefficients if
one replaces signature of forms by “Witt invariant” of forms throughout. This leads
to torsion invariants analogous to y-invariants and computations of these via rational
monodromy. We describe this in the interesting special case that the representation a:
7(X) - Aut (U) involved, is a non-singular integral bilinear representation.

Let W.(Z) and W.(Q) denote the Witt groups of non-singular (*1)-symmetric
bilinear spaces over Z and Q. Let W.(Q/Z) denote the Witt group of non-singular
(= 1)-symmetric bilinear forms T X T = Q/Z on finite abelian groups T. There is a split
exact sequence due to Knebusch and Milnor ([8], [11], see also [16] or [1} for an
exposition closest to the present one).

8
0> W.(2Z)-> W.(Q - W.(Q/Z)~0.

Further, W.(Z) = Z by signature of forms. Alsb the natural maps W.(F,) - W.(Q/Z),
where F, is the finite prime field, induce an isomorphism

EP W.(F,) = W.(Q/Z).

By Witt[27], W.(F,) is Z/2, Z]2Z/2, or Z[/4, according as p=2, p=4k+1, p=
4k — 1.

The groups W_(Z) and W_(Q) are trivial, while W_(Q/Z) is Z/2, given by the
non-trivial form on T =Z/2. Note that if W, denotes W. W_, then W,{(Q) and
W(Q/Z) are modules over W(Z).

Now let X* ! be a closed oriented manifold and a: m,(X)— Aut (A) a represen-
tation, where A is a (—1)"-symmetric non-singular bilinear space over Z. Then if
A— X is the corresponding coefficient system, a linking form can be defined on the
torsion subgroup of H,.(X; A) in just the same way as for trivial coefficients. We
denote the Witt class of this linking form by (X, a) € W .(Q/Z).

If, in the above situation, X*"™' = Y*" and a extends to a: m(Y)— Aut (A), then
the intersection form Sy; is a symmetric form over Q, so it defines an element
W(Y, o) € W.(Q). Alexander, Hamrick and Vick[1] showed (for trivial «, but their
proof extends to local coefficients with no change):

THEOREM 10.1. SW(Y, o) = - l(X, @) € W.(Q/Z).
Thus if we denote
yUX, @)= W(Y,a)— W(A)- W(Y) € W.(Q),

then the free part of v%, being given by signature, is just our previous y-invariant,
while the torsion part 8y X, a) is given by

8YUX, @) = W(A) - I(X) - I(X, ),

and is thus defined even if (X, a).does not bound.

The analogue of Proposition 7.1 holds (with the same proof as before) for y¢, by
replacing signature by Witt invariant throughout. This gives a computation of y%(X, )
in terms of monodromy in the bounding case. For the torsion part of ¥ this
computation can be extended to the non-bounding case by the argument of §9. This is
an easy calculation and yields the result:

THeEOREM 10.2. (i) Suppose a above factors through Z, say a =T1of, with f.
m(X)—>Z and 1: Z—> Aut (A). Let ¥ = XUX, f), but if n is odd add sufficiently many
copies of the trivial isometric structure (Q, (x1), id) to 3 to make sign (¥) =0, so we
can find K C H with K = K*. Then for any such K

X, a)— W(A)- I(X)=8(W(HRQ7, KR A) - W(H R0, KK A))+sign (¥K) - I(7),

where: 6: Z - Aut(A) is the trivial fepresentation; W(%, K) is defined just like
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sign (; K) but using Witt invariant rather than signature; and [(7) is the class in
W.(Q/Z) of the following form & on the torsion of A/(=(1)— 1)A:

¢(a, b)= éhA(x, by(mod 1) ifg-a=(r(1)~1)x,q EZ.

Here h, is the given form on A.

(i) If B: w(X)— Aut(B) is a further non-singular integral bilinear representation,
then the same formula gives I(X, a @ B)— W(A) - (X, B) on replacing %X, f) by
HU(X, B), f) above.

It would be more satisfactory to have a formula more like the one of Theorem 3.2,
but we have not been able to find a suitable substitute for the algebraic invariant A (%)
of Theorem 3.2. :

§11. MONODROMY AS A LINKING FORM
Let X™ be a closed oriented manifold and X — X an infinite cyclic covering
classified by an element f&€ Hom (7(X),Z)=H'X,Z). For any field F of
coefficients, H4(X; F) is a finitely generated module over the group ring FJ of the
(multiplicative) infinite cyclic group J. Let Tor H(X) denote the FJ-torsion sub-
module of H.(X). FJ is a principal ideal domain, so

Tor H.(X) = FIl($)D - - - D Fil(¢y),

for some ¢,,..., ¢ € FJ-{0}. Each FJ/(¢) is finite dimensional over F, so
Tor H«(X) is also.

THeOREM 11.1. (i) There exists a natural non-degenerate F-bilinear graded-svm-
metric linking form

S:Tor Hy(X)x Tor H,__o(X)— F.

(i) The action of J on Tor H«(X) is by isometries of this form. Ifm=2n-1Iis
odd then (Tor H,_((X), S, t) is the monodromy #F(X, f) over F, where t €] is the
generator.

Miinor{10] proved an analogous statement to (i) above in cohomology in case
H . (X)=Tor H«(X). In this case there is in fact a duality isomorphism Hq()?)—z
H™'79(X) (see Milnor loc. cit.: this follows from the long exact sequence in our proof
of (i) below, the analogous one in cohomology and Poincaré duality) and our
statement is ““dual” to his. In the more general situation of the above theorem one can
also translate to cohomology, but not at all so pleasantly.

Before giving proofs we describe the linking pairing S. If P is an integral domain,
let QP denote its quotient field. For any space X the short exact sequence 0—» P —
QP — QP/P - 0 induces a long exact sequence

s
©+=> Ho(X; QP/P) >H,((X; P)> H,-(X; QP)—> - - -
and it is easy to see that

Im§=Tor H.(X;P)={xE H, ((X;P)lpx=0
forsome O0#p &€ P}.

If X™ is a closed oriented manifold one therefore obtains a linking form
L:Tor H(X; P)x Tor H,_;-(X; P)— QP/P,

by L(x,y)=x-8""y, where the dot denotes the intersection pairing H,(X; P)X
H,._,(X; QP/P)— QP[P (defined in the usual way either via intersection of cycles or
as Poincaré dual of the cup product pairing H™ (X ; P)x H%(X; QP/P)— QP/P).
For P=2Z this is a well known description of the classical linking form on
Tor H«(X; Z).

Now if X —> X is the above infinite cyclic covering then we may take the



SIGNATURE RELATED INVARIANTS OF MANIFOLDS—I 169

corresponding local coefficient system FJ over X as our coefficients P. On P = FJ
and on any other ring or module constructed from J we have an involution called
conjugation induced by the automorphism t+t~' on J. If we base the intersection
form H(X; P)X H,._o(X, QP/[P)-> QP/P on the hermitian coefficient map P X
QP/P - QP/P, (a, b)— (ab), then the resulting linking form

L:Tor H(X; P)X Tor Hu_q-1(X; P)~ QP/P

is graded hermitian. Since P = FJ and H «(X; FJ) = H.(X; F), this linking form can
be written

L:Tor Hy(X; F)x Tor Hp_q-(X; F)—> QFJ/FJ.

This pairing is discussed in greater generality by Blanchfield [3].

Now let FJ, denote the ring of formal Laurent series 2...at' (¢, € F, n€Z).
Every element x# 0 of FJ is invertible in FJ,, so there is a natural embedding i.:
QFJ - FJ,. For x € QFJ define tr(x) = (i.(x))o — (i:(2))g, Where the subscript 0 means
coefficient of t° in the Laurent series and x denotes conjugation. Clearly, tr(x) =0 if
x € FJ, so tr induces a map

tr: QFJ/FJ - F.
Define
S: Tor Hy(X; F)xTor H,_,_(X; F)> F

by S(x, y) = tr(L(x, y)).

Remark. It is not hard to show that tr satisfies the equation [x]=
(i7" j=0tr(t7x) - '] for all [x] € QFJ/FJ (and is in fact uniquely determined by this).
In particular the form L can be recovered from S by L(x,y) = [i+"2,-205(t“’x, y) - t].

Proof of Theorem 11.1. We shall first prove the theorem using a differently
defined form S’ and then show that S’ = S.

We can construct the infinite cyclic covering X from its classifying element
fe H'(X; Z) by cutting X open along a submanifold N™™' € X dual to f to obtain a
manifold X’ with X' = N +(— N) and then pasting infinitely many copies X}, i € Z,
of X" together end to end (see §5). Let X, = U »X%and X_ = U,;0X 5 s0 X = X_ U X..

Let F[J] be the FJ/-module of Laurent series a =37 _.a¢’, a;€ F. Then FJ, =
{a € F[J]|la; =0 for i sufficiently small} and FJ_={a & F{J]|a; =0 for i sufficiently
large} are submodules and FJ_N FJ, = FJ. There is a short exact sequence

0> FI>FI.@FI.->F[J]-0

given by maps x—(x,—x) and (x,y)— x +y. Considering these modules as local
coefficient modules over X, we get a long exact homology sequence

iand j*I(X; Fi.) & Hj+|(X; Fl)— Hj+1(Xl FUJD

8 .-
This sequence can be rewritten
_ - s e _ B

where H.(X) is usual homology (that is with compact supports), H$(X) is homology
with closed supports (based on infinite but locally finite chains), H«*(X) is homology
with supports in {t‘)_(-llg € Z} (based on locally finite chains ¢ which are supported in
some t*X,), and Hx(X) is homology with supports in {t*X_|k € Z}. Indeed, if we
assume X triangulated and work simplicially, then the chain complexes defining
H(X; F[J)]) and HE(X), H«(X; FJ,) and H%(X) and so on, are identical, but we
can also work in any other theory that allows closed supports—sheaf theoretic,
singular, Cech-type, etc., see for instance Olk[18] for a comparison of these theories.
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Looking at the connecting homomorphism 8’ on the chain level we see that it is
equal to the composition
8 Hit(X)— H{(N)- H(X),

where the first map intersects cycles in X with N and the second is induced by the
inclusion N C X.

Define a pairing So: H(X)x HS_(X)~> F by So(x,y)=8x -y, where the dot
represents the usual intersection pairing Hj(X)x HZ_(X)— F. By the description of
8’ above, S, is graded symmetric. Also, since the above intersection pairing is
non-singular, the radical of Sy is precisely Ker §', so S, induces a non-singular form S’
on H§'(X)/Ker 8 =1Im§".

To complete the proof of part (i) of the theorem for S’ we must show Im§' =
Tor H«(X). By our description of &' above, Im &' has finite dimension over F, so
Im &' C Tor H«(X). On the other hand suppose x € H,.(X) is a FJ-torsion element,
say a-x=0 with a € FJ. Let a. be the map H.(X)— Hi(X). Since Hx(X) is a
module over FJ, and a is invertible in FJ,, it follows from a - a.(x)=a.{a-x)=0
that a.(x) = 0. Similarly a_(x) =0, so a(x) = (a.{x), —a_(x)) =0, so x € Ker a = Im §".
Thus Tor H«(X) C Im §’, as was to be shown.

The first statement of part (ii) of the theorem is clear, while the second follows
immediately on observing that the form S, above is the Poincaré dual of the form S,
we used to define monodromy (see §§2 and 5). Thus the theorem is proved for S".

Finally we show that S’ = S. Note that 5§’ can be described as the form

S": Tor H(X; FI)xTor H,_;_(X; FI)= F

given by S'(x, y)=x-(8")""y, where the dot is the intersection pairing H;(X; FJ) X
H,_ (X, F[J))> F induced by the coefficient pairing : FJ X F[J]- F given by
Y(Sat, Sht’)=3ab. Observe that = tr'c¢ where ¢: FJ x F[J] is ¢(a, b)=ab
and tr'; F[J1— F is tr'(c) = ¢y = coeflicient of t° in ¢. Thus if we use the intersection
pairing H{(X; FJ)x H,_(X; F[J])— F[J] defined by the coefficient pairing ¢, we
obtain a form

L’: Tor H(X; FJYx Tor Hy_;-(X; FI)—> F(J]

by the formula L'(x, y)=x-(8")"',and S"=tr'o L’

Now we have natural embeddings i,: QFJ — FJ, and i-: QFJ — FJ_ (i, has been
defined; i_ is defined analogously or alternatively by i.(x)=i.(x)). The map
i.P(~i): QFJ - FJ.® FJ. induces an inclusion of short exact sequences

0~ FJ — QFJ - QFJ|FJ >0

I ! l
0->FJ->FI,6pFJ_ - F[J]->0

which takes the definition of L to the definition of L’ and takes tr: QFJ/FJ - F to tr':
F[J]— F and hence shows S=troL =tr'eL’'= 5" as desired.
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APPENDIX. REALIZING RATIONAL MONODROMY

Let & = (H, b, t) be an arbitrary skew-symmetric isometric structure over Q. We
shall construct a 3-manifold X> and a map f: X>— S' such that X3, f) = #. In fact
the corresponding infinite cyclic cover X will have finitely generated homology over
Q, so XX, f) can be identified either with the linking form of §11 on H(X; Q) or
with Milnor’s cup product form on H'(X, Q)[10).

By taking the cartesian product of the example with P, C, we obtain examples in
any dimension 4k +3. A similar realizibility theorem in dimensions 4k +1 seems
plausible, but would be much harder to prove.

Recall that every skew-symmetric bilinear space over Q is isomorphic to (Q*", b)
_? é) We shall in fact show
the following, where the last statement is included to expedite the proof.

for some n, where b is the form given by the matrix (

ProposiTioN. If % = (Q™, b, t) is a skew-symmetric isometric structure then there
exists a closed oriented X* and f € [ X3, S'] such that %X, f) = ¥. Further, this can
be done such that there exists an embedded surface N C X of genus n dual to f.

Proof. We consider the set S C Aut(Q*, b)= Sp(2n; Q) of all ¢t which can be
realized as in the theorem. We first show that S is a subgroup. Indeed suppose ¢, and
t, are realized respectively by (X, f) and (X, f,) and let N C X,;, N C X, be
embeddings of the surface of genus g dual to f, and f, respectively. Let X be X; cut
open along N, so X = N; U (= N;") is the union of two copies N;” and N;* of N for
i=1,2 Let X=X;U(-X3 pasted by pasting N,* to N,* and N,” and let f:
X — S' be the obvious map. It then follows easily from Proposition 5.1 that (X, f)
realizes t,t,7!, so t1;,7' € S, so S is a subgroup.

We now list some realizable. matrices in Sp(2n; Q). Note that a matrix ('3 g) is
in Sp(2n; Q) if and only if A"'B=(A"'B) and D = (A")"".

Case 1. t € Sp(2n, Q) is integral, that is t € Sp(2n, Z) = Aut (H(N; Z), Sy)..In this
case we can take X — S' as a fibration with fiber N, since, as is well known, every
t € Sp(2n, Z) is realizable by a diffeomorphism of N.

Case 2. t = (g (A(,))Q,) with A diagonal. We need only realize the case

1 0

, qE€Z-{0},
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since every diagonal matrix is a product of such matrices and their inverses. An
example will suffice to show how this is done. Suppose therefore that

1 0 0
A={0 -2 0].
0 0 1

Let Y be the solid pretzel of genus n =3 and j: Y — Y the embedding indicated in the
following picture:

&)
Fig. 6.

Let X'=Y —j(int Y) and use j|dY to paste the two boundary components of X’
together to get X. Choose f[X, S'] dual to the homology class of N =3Y C X.

A 0
Case 3. t = (0 (AD)"! ’
the matrix with a 1 in the (i, j) position and zeroes elsewhere. This A is a product of
integral and diagonal matrices as follows, so case 3 follows from cases | and 2.

) with A elementary; that is A = I + (p/q)E;, where Ej; is

‘q .1 "1/q
0 W o "1/ \o 1

Case 4. As Case 3 but A€ GL(n,Q) arbitrary. Since GL(n Q) is generated by
elementary and diagonal matrices, this case follows from Cases 2 and 3.

_(I B
CaseS.t—(O I

be expressed as a product of diagonal and integral matrices similarly to case 3.

Since(l B')(I Bz)—(I B'+Bz) we can then generate an (1 B)
o 1) /)"0 1 ) n then g Yo 1/

A B
Case 6. Any t—(o (%))

matrices from Cases 4 and 5.

). Then B = B'. In the cases B = bE; or B = b(E; + E;), t can

)ESp(Zn, Q) is now realizable as a product of

Conclusion. Let T C Sp(2n, Q) be the subgroup of matrices as in case 6. We claim
Sp(2n,Z) - T = Sp(2n, Q), completing the proof, in view of cases 1 and 6.

Indeed, let % ={K C QK = K*}. Then Sp(2n, Q) acts transitively on ¥ with iso-
tropy subgroup T (see below), so ¥ = Sp(2n, Q)/ T. But also Sp(2n, Z) acts transitively on
K with subgroup T N Sp(2n,Z), so the inclusion.of Sp(2n,Z)— Sp(2n, Q) induces
a bijection Sp(2n,Z)/T N Sp(2n, Z)~ Sp(2n, Q)/ T, which proves our claim.

To see that Sp(2n,Z) acts transitively on ¥, note that Sp(2n, Z) certainly acts
transitively on the set of simplectic bases of Z*" and ¥ is an equivariant quotient of
this set. Since Sp(2n,Z) acts transitively, Sp(2n, Q) does so too. The isotropy
subgroups are evidently as claimed. :



