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MANIFOLD CUTTING AND PASTING GROUPS

WaLTER D. NEUMANNT

(Received 24 July 1974: revised 6 November 1974)

Some calculations are made of the group SK,(X) of closed oriented singular n -manifolds in X
modulo cutting and pasting. In particular SK»(X) is completely calculated in terms of m(X)and
it is shown that the SK-groups of a space with trivial respectively finite fundamental group are
trivial or torsion respectively for n# 6. Applications to existence of open book decompositions
up to bordism and to signature of fibre bundles are discussed.

§1. INTRODUCTION

Given a closed oriented manifold M" and a closed oriented submanifold W" ™' C M" of
codimension 1, one can cut M open along W to obtain a manifold M’ whose boundary is the
disjoint union W +(—=W) of two (oppositely oriented) copies of W. By pasting these copies
together in a new way (respecting orientation) one obtains a new closed oriented manifold N".
which is said to have been obtained by cutting and pasting or briefly by SK (= “Schneiden und
Kleben™) from M.

More generally one can cut and paste singular manifolds in a space X (that is pairs (M. f)
consisting of a closed oriented manifold M and a map f: M — X) by allowing a homotopy of the
map f after cutting M open and before pasting together in the new way. For instance for X = BG.
a classifving space. this is equivalent via the classification of bundles with the natural definition of
cutting and pasting of bundles with a fixed fibre and structure group G over closed oriented
manifolds.

In the following we always assume for convenience that X is path connected. Let SK.(X)be
the set of equivalence classes of non-empty oriented singular n-manifolds in X modulo the
relation generated by cutting and pasting. In [8] it is shown that SK. (X)is a group (with operation
induced by disjoint union) and it is calculated in many cases. In particular for n odd (except
maybe n = 5) SK.(X) is always zero.: and the groups SK, = SK,.(x) of the trivial space are

SK.skﬂ =0= SK4k~31

4k +2] :

SKu-2= Z. basis [S
SKus=2DZ, basis [S**, [PC* ™.

In fact euler characteristic and Hirzebruch signature give injective homomorphisms SKu-21—Z,
SK..«—~Z & Z onto subgroups of index 2 (to make all this work also in dimension zero it is
convenient to allow the single point to exist with two orientations).

Define a reduced SK-group SK .(X) as the kernel of the map SK.(X)~ SK, induced by the
map X —x. Any map *—> X induces a natural splitting (since X is path connected)

SK,.(X) = SK.(X) P SK..

Since we know the group SK.,, we just need to investigate the reduced group. Our main results
are:

TreoREM 1. If X is simply connected than SK.(X)=0 for n#6. If X has finite fundamental
group then SK.(X) is torsion for n#6.
This pLN)bably also holds for n = 6. On the other hand the following theorem and corollary show
that SK.(X) can be large.

+Partially supported by the Sonderforschungshereich Theoretische Mathematik 40 in Bonn.
This depended on an existence statement for open book decompositions in the odd-dimensional non-simply connected
case made in a preprint. but not in the published version of [15]. Though the statement vn open books is probably true. vne

can use [16] instead for this.
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TheoREM 2. SKA(X) = Ho(m( X): Z)/I. where I is the subgroup generated by all images
Im(HAA:2Z)— Hom(X): Z))

where A C w(X) either runs through all abelian subgroups of m(X) or just through all two
generator abelian subgroups.

CoROLLARY 3. Every finitely generated abelian group occurs as SK . of a finite 2-dimensional
complex.

Theorems 1 and 2 will be proved in §3 and the above corollary is deduced in §4. These
theorems led to the conjecture mentioned in [8] that SK, {X) always only depends on 7(X). We
give examples disproving this conjecture in §5, where the SK-groups of certain products of
surfaces are calculated in full using the fact that obstructions to multiplicativity of signature for
fibre bundles lie in the SK-groups. In fact SK, (X) does only depend on the **n-homotopy type”
of X (Theorem 9 below) but this is the best possible result by example 3 in §5.

Our results allow us to give many cases in which signature is muitiplicative for fibre bundles
(Theorem 12).

Maybe more interesting than the cases in which we have calculated SK (X)) are the cases in
which we have not. For instance:

ProBLEM. Does non-zero torsion actually occur in the second part of Theorem 1 with
dimension n >27?

A positive answer would imply that the open book theorem[15] already fails in the
corresponding dimension if one only requires finite, rather than trivial fundamental group (for
otherwise the proof of the first part of Theorem 1 would extend). Note that for n = 2 such torsion
does occur (by §4), so one can even ask more specifically: does this torsion maybe stay non-trivial
when muitiplied by powers of PC*?

§2. GENERAL SK-THEORY

In this section we collect some general facts about SK. Let SK, (X) be SK..(X) factored by
the bordism relations, that is

SK.,(X): = SK,.(X)/I,(X)

where [,(X) is the subgroup generated by all elements having a representative which bounds in
X. The following lemma is Theorem 1.3b of [8] and is also clear from the calculation of SK,
mentioned above.
LeEmMmA 4, -S_IZ' is the polynomial algebra Z[x] on a single 4-dimensional generator
(representable for instance by PC?. An isomorphism SKu. =Z is given by signature of manlfolds
TueoreM 5. SK..(X) can be identified with the reduced SK- -group Ker(SK. (X)—>SK } and
hence is equal to

SK .(X) ={[M, f] € SK.(X)Isign M = 0}.

Proof. The statement that the reduced SK-group is equal to the reduced SK-group is
equivalent to saying that the kerne! I, (X) of SK.(X)— SK.(X) is independent of X, and this is
just Theorem 1.1 of [8] (in fact I,(X) = Z or 0 according as n is even or odd, generated by the
class [S"] of S$” mapping by the constant map to X). Since SK.(X)— SK, is the signature map
by Lemma 4, the second statement follows.

THEOREM 6. The kernel F,(X) of the natural epimorphism (1, (X)— SK.(X) consists of those
bordism classes containing a representative (M. f) such that M can be fibered over S'. This is the
same as those bordism classes containing a representative (M, f) such that M has an open book
decomposition (with possibly empty binding . definition below).

Proof. The first statement is just Theorem 1.2 of {8]. For the second recall that an open book
decomposition{15] can be thought of as a smooth map g: M — D? having zero as a regular value
and such that g: M —g~'(0)> S' defined by g(x)=g(x)/lg(x)| is a fibration. g7'(0) is the
“binding” of the open book and the closures of the §7'(¢), t € S', are the “pages”. For such an
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M it was shown in [8] Theorem 6.4 (by cutting M open along the union of two pages and then
flattening the cut open M into one page of itself) that (M, f) is always in the kernel F,(X) for any
. M- X. Onthe other hand every element of F,(X) canbe represented by an (M. f) with M and
open book (with empty binding) by the first statement of the theorem.
Another general fact that we shall need later is that product of singular manifolds induces

pairings
SKn (X) ® SKm ( Y) - SKn-Hn (X X Y)
SK.(X) Q@ SKn(Y) = SKuom (X X Y).

In particular SK.(X) and hence also SK.(X) are modules over the polynomial algebra

3K, =ZI[PC)

Given a closed oriented manifold M", let 6(M) € H, (M) denote the fundamental homology
class.

LemMa 7. Suppose (M, f), i € I are singular manifolds in X such that the elements
(f)0(M:) form a modulo torsion generating set of H (X) (that is H (X) factored by the
generated subgroup is torsion). Then the [M. f.] form a modulo torsion S—K*-module generating
set of SK(X). The same holds without the “modulo torsion™ qualifications if H (X) is free.

Proof. With S—K*(X) and ?IZ* replaced by Q,(X) and O, this is shown by a standard argument
using the modulo torsion triviality of the bordism spectral sequence (see [4] Theorem 18.1). But
since ST(*(X) is a quotient of O,(X), the lemma follows.

We similarly have a weak sort of Kiinneth formula:

LEMMA 8. S—K*(X)®§I—(*(Y)—>‘§_IZ*(XX Y) is modulo torsion surjective and is genuinely
surjective if one of X and Y has free homology.

Indeed. the corresponding statement again holds with ER* replaced by €, (actually with
surjective replaced by isomorphic, see [4]), and hence certainly holds for SK,.

The next theorem was promised in the introduction. Recall that an n-equivalence X =Y of
connected spaces is a map which induces isomorphisms m:(X) - m(Y) for0=i=<n-1andan
epimorphism for i = n.

THEOREM 9. Any n-equivalence X — 'Y induces isomorphisms SK,(X)—= SK,(Y) for g =n.
(Note that this is one dimension better than one might first expect.)

Proof. Since any mapping of a g-complex to Y lifts to X for g = n [13; Cor. 7.6.23], this holds
in particular for g-manifolds, so SK,(X)~ SK,(Y) is surjective. It is injective because the
homotopy involved in cutting and pasting a singular manifold in Y is a homotopy of a g-manifold
having (without loss of generality) no connected component with empty boundary. Thus itisa
homotopy of a homotopy-(q — 1)-complex, so it lifts (up to homotopy) to X

§3. PROOFS OF THEOREMS 1 AND 2

First suppose X is simply connected. By Theorem 5 SK.(X) can be considered to be the
subgroup of SK.(X) represented by manifolds of zero signature, so choose any [M,f] €
SK,(X) with sign{M)=0. Since m(X)={1} we can do surgery on M (n> 1) to kill the
fundamental group, so without loss of generality (M) = {1} with respect to any base point if
n> 1. For n > 1 we can clearly also then assume M is connected, by taking connected sum of the
components if necessary. But now M has an open book decomposition for n = 7 by [15], for
n =35by(l1],forn =3by(2],andforn = 2 and 1 trivially, so in these cases [M, f1=0 by Theorem
6.1f n = 4 or 6 it is not known to date if M has an open book decomposition, but for n = 4 we can
get around this. Namely we can first assume (in addition to m(M) = 7o(M) = {1}) that M has odd

intersection form, since otherwise we achieve this by taking the connected sum with the total
0

space S of the non-trivial S? bundle over S°. which has intersection form ((]) _1>. Here X of
course should be mapped by a constant map to X so the class in SK, (X) is unchanged. Since odd
unimodular forms of signature zero are classified by their rank alone (see for instance([7]
Theorem 4.6), the intersection form of M is equivalent to the intersection form of
T e (STXSH # - % ($*x 8% (k summands) for some k. On the other hand, by [14], simply
connected 4-manifolds are classified up to connected sum with copies of S*x S” by their
intersection forms alone, so by taking connected sum with further copies of S§?x S?if necessary,
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we can actually assume M itself is the above k-fold connected sum. But both £ and S* + S fibre
over S” and hence have open book decompositions by pulling back the open book decomposition
of S°. Thus the above connected sum has an open book decomposition so [M, f] =0 also in this
case. Theorem 1 is thus proved for ,(X) = {1}.

To prove the second part of Theorem 1 let Y = X be any finite covering~of spaces. Then
H. (Y)— H_(X) is modulo torsion surjective, so by Lemma 7, §f<(Y)—> SK(X) is modulo
torsion surjective. In particular if X has finite fundamental group and Y is its universal cover,
then since .97(,.(Y) =0 for n # 6 it follows that S7<,, (X) is zero modulo torsion for n # 6, as was
to be shown.

To prove Theorem 2 observe that for any space K the bordism spectral sequence shows that
Q,(K)= Hy(K), so Theorems 6 and 5 give an exact sequence

0 F(K)— Hy(K)— SKA(K)—0,

where F»(K) is now the subgroup of H:(K) generated by all classes representable by the torus
T2 — Sl X Sl.

Now if X is any path connected space, let K = K(, 1) be an Eilenberg Maclane space with
7 = m(X) and let ¢: X - K be a map inducing an isomorphism of the fundamental groups. ¢ is
certainly a 2-equivalence, so it induces an isomorphism SK »(X)— SK «(K) by Theorem 9. It thus
just remains to show that the subgroup F:»(K) of HXK) = H(r; Z) is the subgroup described in
each of the two ways of Theorem 2. Fi(K) is generated by the elements x which can be
represented by a map f: T’ K. Since T" is a K(Z @ Z, 1), this map f is represented by a
homomorphism g: Z § Z - m, so x is in the image of g,: Ho(Z P Z;Z)— Hx(m; Z) and is hence
certainly in the image of H:(A;Z)— H.(w;Z) where A is the 2-generator abelian subgroup
g(Z @ Z) of m Conversely let x be in the image of i,: Hio(A:Z)- Hx(m;Z), where A is any
abelian subgroup (not necessarily 2-generated) of 7. We must show that x is in the subgroup of
H(7:Z) = Hy(K) generated by mappings of T" to K. It clearly suffices to show that Hx(A; Z)
itself is generated by maps T*— K (A, 1). If A is finitely generated, and hence a product of cyclic
groups, this follows from the Kiinneth formula. The general case follows by a direct limit
argument.

§4. SOME EXAMPLES
We must give examples to prove Corollary 3. First note the following:
Lemwma 10. §<*(X vY)= §f(*(X) ) ﬁ(*(Y) for well pointed spaces X and Y (for instance
CW complexes).
Proof. The map X + Y- X v Y (where + denotes disjoint union) induces

SK (X)@ SK (Y)>SK (X v Y)

which is injective because the maps X v Y~ X and X v Y- Y induce a left inverse, and is
surjective because

QX)BAY)»0 XV Y)

is surjective (actually an isomorphism, by the Mayer Vietoris sequence).
In view of this lemma, to prove Corollary 3 it suffices to find a finite 2-complex K with

SK«K)=2Z|m

for each cyclic group Z/m of infinite (m = 0) or finite order (prime power orders would suffice).
This is done in the following examples.
Example 1 (m = 0). Let K be an orientable surface of genus at least 2. Then K is a K (w, 1) and
7 = m(K) contains no noncyclic abelian subgroup, so by Theorems 2 and 5 (see also [8; Theorem
2.97) . L
SK:(K)=SKyK)=HAK;Z)=2.

A e R B W



MANIFOLD CUTTING AND PASTING GROUPS 241

Example 2. For any m we shall construct a finite group G with SKx(K (G, 1)) = Z/m. As our
9-complex K we can then take the 2-skeleton of K (G, 1), which still has fundamental group G. I
am grateful to P. M. Neumann for suggesting the group G used here.

Let X be the abelian group (Z/m)* with generators x,, .. ., X, say. Then the exterior square
A2X is isomorphic to (Z/m )* with generators x; » x;, 4= i >j = L. Define a multiplicative group

structure on

s? fibre
- POsition
0 in thig

'S, Then
module
U cover,

H=Xx\X

by
ows that oo

(E ax, y) (E bixi, z) = (E (@ +b)x, y + 2+, abxi A x,-).

i>]

The group laws are easily checked and one calculates that the commutator of two elements
he torus " p=(x,v)and k =(w,z)in H is

ace with [hk]=h""k""hk =(0,x n w).

1ps. ¢ is

3. It thus Thus the commutator subgroup of H is

cribed in

L can be H' =[H H]={0}xA’X C H.

ted by a

is hence Observe that H' is in the center of H; in fact H' actually is the center, but we shall not need this.
ubgroup Let us abbreviate the element (0, x; A x;) € H' by y;. Then since H' is central, the cyclic
4 is any subgroup generated by yasya is normal in H so we can define

group of

1(A:2) G = Hl{(yaya) = X X (\*X /(x4 A X3+ X2 A X0)).

of cyclic

ect limit This has commutator subgroup

G = H’/y43y2| = AZX/(X.a A X3t X2 A xl) = (Z/m)s,
with quotient G/G' = X. Let B be the quotient X/(xs, xs) and

instance
m:G->B=ZImPZ/m

E the natural projection. We plan to show that the induced map HAG)— Hx(B)=Z/m can be
identified with the map H:(G)- SKoK(G, 1)). Here and in the following coefficients for
homology are always Z.

Crant 1. For any abelian A C G the image w(A) C B has order dividing m.

Proof. Since m(A) is generated by two elements, we lose no generality in supposing that A is
enerated by two elements h = (x, [y]) and k = (w, [z]) say in G = X X A’X|(x4 A X5+ X2 A X1). By
ssumption. their commutator (0, [x A w]) is zero, and since X4 A X3+ X2 A X, and its non-zero
multiples are indecomposible, x A w must be zero already in A*X. Thus the image of x A w in
A’B =Z/m is zero. but this image is 7(h) A w(k), so it follows that 7(h) and (k) generate a
subgroup of B of index divisible by m, hence of order dividing m. Every subgroup of order

e, and is

¢ with dividing m actually occurs, but we do not need this, so we omit the (easy) proof.
Ciant 2. If I C HoG) is as in Theorem 2 then I C Ker (). that is, wy(I) =0, where .
HG)— H«B) is the map induced by .
Proof. Since I is generated by all images Im (H:(A)-> HAG)) with A C G abelian, w(I) is
1 suffice)- generated by all images Im (Hx(m(A)) = Hx(B)) with w(A) as in Claim 1. Since for abelian groups
the homology functor H. and exterior square A’ coincide, we are just looking at
(,1)and Im(\°7(4)— A2B) = Im (A*r: A’A — A’B), which we have seen above is always zero.
Theorem By Claim 2 7, induces a homomorphism

7' SKA(K(G, 1)) = H{G)/I > H«B)=Z[m.



st i —

i R T

242 WALTER D. NEUMANN

Crav 3. This @' is an isomorphism.

Proof. We must show that 7, is surjective and that Ker(w,) C I (we already know
I C Ker (,)). For this we look at the exact sequence 0> G’'—> G - X -0, and consider its
Lyndon spectral sequence {E}.,= H,(X; Ho(G")) > H,.,(G)} (see for instance[10]). Since the
extension is central, X acts trivially on H (G"), so the E? term is

qg=2| HAG")=AG’

g=1| H(GY=G'" H(X)®Q H(G")

q=0 z HX)=X H{X)=X\X
p=0 p=1 p=2

Now d» E3o—~Ej;, is (up to sign) the natural map HiAX)=AX->H\(G)=G =
A’X /(x4 A X3+ X2 A x1) (this is maybe most easily seen by using naturality and comparing with the
spectral sequence of 1> F3— F,—>Z*— 1, where F. is the free group on two generators).

It follows that the E™ term has the form

qg=2| AG'[(D .

q=1 0 (X & GHID

q=0 z X (X4 A X3+ X2 A X1)
p=0 p=1 p=2

Using the map of exact sequences

0-G ->G-X-0

yol=
0-» 0> B->B-0

to compare the above spectral sequence with the (trivial) spectral sequence of 00— B - B >0
we see that 7, Ho(G)— Hx(B) is surjective and has kernel given by the terms Eg. = A’G'/(?)
and E7,=(X® G"/(?). The former is just Im (H:(A)—> Hx(G)) with A = G' and the latter is
generated by all Im H2(A) - Ho(G)) with A = (x;, yu) C G, so Ker (m,) C I, as was to be shown.

The following remarks may give more insight into the above example. First one can check that
the group G above has a presentation

G = (xy, X2, X3, XalX™ =[x, %17 =[x, [x5, X 1] = [Xa, X5][x2, X:] = 1),

The relations [x;, ;]™ = | are actually redundant, since modulo relations of the form [x, [y, z1]
they are equivalent to [x™, x;]1=1 (see for instance {5; p. 150].

On the other hand, given a free presentation | - R - F - G — 1 of any group G one has the
Hopf description

HAG)=R N [F FJ[R, F]

of Hy(G). If G is abelian on two generators one can choose F = (x, y) free on two generators and
then H(G) is generated by the class of the relation [x, y] € R. It follows by the naturality of the
above equation that for arbitrary G the subgroup I C Hx(G) of Theorem 2 is the subgroup of
R N [F, F]/[R, F] generated by those relations which are commutators; that is

I'=(R N {lx yllx,y € FY/[R, F],

where (...) here means ‘‘group generated by”. We hence have

ProposiTioN, SK+(K(G, 1))=R N [F, FI{R N {[x, yI}).

For instance in the above example SK.(K(G. 1)) is generated by the relation [xs, xs][Xz Xil-
One might expect the relation [x, x;]™ also to give a non-trivial element of SK.(BG), but the
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argument above showing that this relation is redundant also shows that it is in (R N {[x, yI,
hence represents zero in SKABG).

§5. MULTIPLICATIVITY OF SIGNATURE
Let F™ - E* — M" be a fibration of closed oriented manifolds (m -~ n = 4k). It is known that
under certain conditions, for instance if (M) is finite, then

sign E = sign F. sign M,

however this equality does not always hold[3,6,9, 11].
In discussing the validity of the above equality no generality is lost by assuming sign M =0

above (since otherwise we can instead consider the disjoint union E + (F x ~M) as a bundle over

M'=M +-M). Let BG be any classifying space for the bundle and f: M —> BG a classifying
map, so E = f*(EG X gF).
TueoreM 11, If F™ — E - M" is a fibration as above with sign M =0 and sign E# 0 then

() [M, f] generates a free ﬁ*-submodule of §T<*(BG);
(i) [M,id] generates a free ﬁ—(*-submodule of ﬁ(*(M).

Proof. If ¢ + m =0 modulo 4 then ¢: SK ,(BG)—Z defined by ¢[N*. g] = sign g*(EG x cF)
is a homomorphism which takes the value sign (PC* x E)=sign E#0 on the element
[PCTIIM.f1E€ SK .+, (BG). This element hence has infinite order in SK, «(BG), proving (i).
Statement (i) is immediate from (i) and the fact that [M, f] is the image f, [\/[ id] under the map
f SK .(M)- SK .(BG).

Remark. We can strengthen the above theorem to replace G in (i) by its discrete quotient
G/G, by considering the local coefficient system over M with fibre H*(F) (which has structure

- group G/G,) instead of the actual bundle. Alternatively one can consider the structure group of

this coefficient system to be (M) or the image of m(M) in G/G, and can replace G in (i) by
either of these groups. By calculating SR*(BH) modulo torsion for the following discrete groups
‘we obtain the consequence:

Tueorev 12. If G/Go is in the class of discrete groups H generated from the class of groups for
‘which H (BH;Z) is torsion in even dimensions (e.g. finite groups and the infinite cyclic group) by
forming cartesian and free products and finite extension groups (not necessarily normal), then
any fibration with structure group G has multiplicative signature. The same holds for a fibration
F— E > M with m(M) or Im (m(M)—> G/Gy) in the above class.

Proof. By Theorem 11 and the remarks preceding and succeeding it. it suffices to show that
SK*(BH) is torsion for all the groups in question. This follows immediately from the facts that
the classifying space of a cartesian respectively free product of discrete groups is the cartesian
product respectively wedge of the classifying spaces, together with Lemmas 7, 8, 10, and the
covering space argument in the proof of Theorem 1. A similar theorem can also be obtained using
‘Atiyah’s signature formula for fibrations[3] (see [12] for a detailed discussion).

Another consequence of Theorem 11 is the following calculation of SK for certain products
of surfaces, giving us examples promised in the introduction. This calculation can in fact easily be
extended to any product of closed orientable surfaces, since factors of genus =<1 contribute
nothing to the calculation, by Lemma 8.

ProposiTION. Let X = Fyx Fyx ... X F, be the product of r surfaces each having sufficiently
large genus (see below ; genus =2 is in fact sufficient). Then SK*(X) is thefree SK ,.-module on
the 2" — | generators [Fi, j1) where I runs through the non-empty subsets of {1, . r} Fr=11F,
and j; is the inclusion of Fi in X. il

Proof. That the above elements generate §7<*(X) follows for r =1 from Lemma 7 and then
for r > 1 by induction using Lemma 8. We must thus only show that they are linearly independant
over SK,.

We assume the genus of each F, is sufficiently large that a bundle E; - F exists with E; a
Compact manifold of non-zero signature (genus 2 suffices by {11}, using a local coefficient system
Instead of a bundle). For each subset I C {I,.... r} let

E-X=Fx...xF
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be the bundle with total space

E1=‘];1;Ei><HF[.

P&l
Let
or: SK (X)»Z

be the homomorphism ¢;{M, f]=sign f*(E;). If we make Z into an E—K*-module via
sign: S_K*—>Z, then ¢; is ﬁ(,k-linear. If one orders the subsets of {1,.. ., r} in some fashion such
that the subsets of size one come first, then those of size two, etcetera, then the matrix
(or[Fo, BIIL T C{1,..., r})is lower triangular with non-zero diagonal terms so it follows that the
elements {Fy, j,] are linearly independant over S_K*, as was to be shown.

We can now easily give an example to show that SK., (X) does not only depend on (X)), in
contrast to what was conjectured in [8].

ExampLE 3. Let X be as in the above proposition, r > 1, and let Y be X minus one point. Then
ﬁ(*( Y) is freely generated over SK, by 2" -2 elements, namely the same elements as for X,
omitting the element [F, ji] with I ={1,..., r}. That these elements are generators follows from
Lemma 7 and the fact that anything involving odd-dimensional homology of Y is zero in ﬁ(*(Y).
since circles always represent zero and the odd homology of Y all arises from products involving
circles. They are independant since they are mapped to independant elements of ST(,JX) by the
inclusion of Y in X.

One can even obtain a counterexample to the abovementioned conjecture in which Y is also a
closed manifold as follows:

ExampLe 4. For any finitely generated group 7. we can find a manifold Y" (any n > 5) having
an open book decomposition and with fundamental group w. Then [Y,id] =0 in SK.(Y), so by
Lemma 7 it follows that any element of SK,(Y) is modulo torsion a linear combination (over
§I_(*) of lower dimensional elements. This property distinguishes the SK groups of any such Y
from those of the X in the proposition above. The manifold Y is constructed by taking a closed
regular neighbourhood V"' of any 2-complex K CR"™', n >§, with 7,(K) = m, and putting
Y =(VxS'") U (3V x D pasted at the boundary.

Observe that the Example 3 actually shows that SK,.(X) does not in general only depend on
the (n —1)-homotopy type of X, so Theorem 9 is the best possible result.
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