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Chapter II. Signature of hermitian coefficient systems;

y—invariant.

1. Signature of hermitian coefficient systems.

Let M2n be a closed oriented manifold and r - M a local

coefficient system (= locally trivial sheaf) over M with fiber
a complex hermitian vector space (V,b). The hermitian structure

can be interpreted as a map (also denoted by b) of sheaves

b: T"@ ' » C (the constant sheaf)

R
whose restriction to a fiber is the given (not necessarily definite)

hermitian form. This map induces a coefficient homomorphism
bx: H¥(M; T ©p ) » H*(M;C)

and using the cup product map

2n

i (M, 1) @ H'(M,T) » HOM, T @

rD)
we thus get a pairing

B: H'(M;T) ® H'(M,T) » C
defined by B(x,y) = b, (x Uy)[M] ([M] 1is the homology fundamen-

tal class) which is hermitian for n even and skew hermitian for

n odd.
Definition. Define the signature of (M,I) as sign(M,TI) :=
sign(B).

Here if B is skew hermitian, sign(B) means the number of
occurences of -i minus the number of occurences of +i in a

diagonalization of B, that is signature of the hermitian form iB.



One can make the same definition in the case of non-empty

boundary, using the cup product pairing on the relative group
B: H (M,oM;T) ® u™(M,3M;T) > ¢.

This form is in general degenerate, with degeneracy (or "radical"™)

equal to
rad(B) := {x|B(x,y)=0 for all v} = Ker(Hn(M,aM;F)-+Hn(M;F)),

by Poincaré-Lefschetz duality (for duality with local coefficients
see for instance [ ]). Thus one can also consider B as a non-
degenerate form on Hn(M,DM;F)/rad(B) = Im(Hn(M,aM;T)-+Hn(M;F)).
Either way sign(B) is defined and we call it sign(M,I).

If I 1is the trivial coefficient system € with standard
hermitian form b(z,w) = zw, then sign(M,€) is the usual signa-

ture sign(M), which is zero if n is odd.



2. Real bilinear coefficient systems.

One can make the same definition as above if we are given a
local coefficient system A of real vector spaces with symmetric
or antisymmetric bilinear form instead of a complex hermitian

system. In order that the induced form
n n
B: H'(M,0M;A) @ H (M,3M;1) -~ R

be symmetric, so its signature sign (M, A) is defined, the form
b: A ® A R must be (-1)n—symmetric.

This can be reduced to the hermitian case as follows. Let
bt (A ®C) ® (L ®¢C) » C Dbe the (-1)?-hermitian extension of
b and take T = A ® € with hermitian form bC if n 1is even
and —ibc if n is odd. The effect of this on the symmetric cup
product form B 1is to hermitianize it, and then multiply it by
-i if n 1is odd (making it skew hermitian). This does not alter
signature, so sign(M,[l) = sign(M, 7).

There is thus no loss in just considering hermitian coeffi-
cient systems (at least for signature questions) so we shall do

this. Note that real coefficient systems are what more usually

arise "in nature", for instance by the following well known theorem.

2 2 2n .
Theorem 2.1. If F“m - x“(m b M™", mtn even, 1s a

fibration of closed oriented manifolds and A 1S the correspon-
ding local coefficient system over M with fiber the cup product

from an H™(F;R), then sign X = (—1)n sign(M,A) .

Proof. This is essentially Chern, Hirzebruch, Serre [ 1

and follows by observing that sign X and (-1)" sign(M,p) are

00

respectively the signatures of the cup product forms on the E

and E? terms of the Serre spectral sequence and are hence equal.




See also Meyer [ 1.

With dimensions other than in the above theorem the signature

of the total space X 1is always zero, by the same argument.



3. Basic properties of signature.

In this section we collect for easy reference the most

important standard properties of signature of coefficient systems.

3.1. Elementary properties. Let -T be T with negative

hermitian form and -M be M with orientation reversed. Then
sign{M,T) = =-sign(-M,T) = -sign{(M,~-T),
sign(M, T, ® T',) = sign(M,T,) *+ sign(M,T,).

These properties imply that for a trivial hermitian coefficient

system V with fiber V

sign(M,r®V) = sign(M,T).sign(V).
3.2. Bordism invariance. If (Mzn,r) = a(X2n+1,F') with
X compact and oriented then sign(M,T) = O.
3.3. Novikov additivity. If (M,T) = (My,T1) U (Mz,T2)

pasted along boundary components of M, and M, then

sign{M,T) = sign(M,,TI,) + sign(M,,T,) .

3.4. Product formula. If Ty -1, and T, - M, are hermi-

tian coefficient systems then

sign(M; xM,, T xT) = sign(M,,r;) sign{M,,T,)

The standard proofs of these facts (see for instance [ ] for
3.2 and 3.4 and [ ] and [ ] for 3.3) carry over to the case with
coefficient systems, see Meyer [ ] for details. 3.2 and 3.4 also

follow from the signature theorem below. Note that 3.2 and 3.3



imply the stronger

3.2' Bordism invariance. If M has boundary then sign(M,T)

is an invariant of bordism modulo boundary (i.e. keeping the boundary
fixed).

Indeed, a bordism modulo boundary from say M to N can be
re-interpreted as a zero-bordism of MU (-N). In fact 3.2' also
implies 3.2 and 3.3, since (MU (-N)) x[0,1] can be interpreted as
a modulo boundary bordism from M to N+ (MU (-N)).

To formulate the next theorem we need some preparation. If
' * M is a hermitian coefficient system then T determines a
hermitian vector bundle f +> M (plus a flat structure on T
which we shall not need) by "putting the topology back into the

fibres of TI". This is possible by local triviality of T. This

bundle can be split as the sum
r =171

of a positive definite and a negative definite hermitian bundle; =

for instance, after choosing a metric (,) on f, the hermitian
form b is given by b(x,y) = (x,By) for some hermitian’operator
B and one takes f+ and T as the sum of the positive respec-—

~ -

tively negative eigenspaces of B. These bundles f+ and T

are unique up to isomorphism, for given another such splitting

r = fT B f: then both f+ and fT are complements of T
and hence isomorphic to f/f° and similarly for I and f:.
Theorem 3.5. ([ ], Signature theorem). If M2r1 is a closed

oriented manifold then sign(M,T) = ch(f+—f—)‘ﬁ(M)[M]. Here ch
is chern character and L(M) 1is the unstable L-class given by
n n

Tj-xi/tanh(xi/Z) where TTY1+xi) is the total Pontrjagin class

1 1

p(M) of M.



For real coefficient systems this theorem is also proved by
Meyer [ ]. In this case the result can be reformulated as follows.
If A - M2n is a real coefficient system with (—1)n—symmetric
nondegenerate bilinear form b then b determines a splitting
of the associated vector bundle A= K+ & K— for n even and a

~

complex structure on A for n odd as follows: with respect to
a euclidian metric on A one has b(x,y) = (x,Ay) with A (—1)n—
symmetric, and one can normalize so that A% = (—1)nI. Then the

eigenspaces of A give the above splitting for n even and A

determines a complex structure for n odd. An easy calculation

(see Atiyah Singer [ ] pp.579-580) shows in the latter case that
if T = A®C with hermitian form —ibc as in section 2, then
fi = (K, ¥A). Thus the above theorem becomes

Ch(K+—K_){L(M)[M] (n even),

Corollary 3.6. sign(M,A)

~

ch(A,-A)~(A,+A)) L(M)[M] (n odd).

This formula was proved directly for fiber bundles by Atiyah

in [ ],which gives an alternative proof of 2.1.

Remark 1. Due to the sign (-1)"™ in Theorem 2.1 there is an

apparant sign discrepancy with Atiyah [ ], which is however re-

solved by observing that the complex structure he uses is (A, -A)
by [ ] p.574. Also our A is A—1 of Meyer [ 1, introducing
a sign disgcrepancy which is resolved by observing that his sign

convention for sign(M,A) is different from ours if A 1is anti-

symmetric.




.- :)b —

Remark 2. As pointed out by Meyer [ 1, one can replace L
n
by Hirzebruch's stable L-class L =!1lxi/tanh(xi) in the above

(2)

if one simultaniously replaces ch by ch = ch ¢ y? to re-

absorb the powers of 2 which this introduces.

Remark 3. It is interesting to ask in what categories the

signature theorem 3.5 is still valid. Putting X = B(U(p,q) )

in the equality QEO(X) ® Q = QESTOP(X) ® @ shows that it is still

discrete

valid in TOP. It is probably still valid for % ~homology mani-
folds, though present knowledge (c.£. [ 1, [ 1) of this cate-
gory seems not yet quite enough to prove it. For @-homology mani-
folds it is not even known yet if signature is multiplicative for

finite coverings, a fact which would follow from 3.5.



4. Multiplicativity of signature.

In this section M always denotes a closed connected orien-

ted manifold. We are interested in the

Problem. Given a hermitian local coefficient system T » M,

under what conditions does the equality

?
(4.1) sign(M,T) = sign(M).sign T

hold ? Here sign(I') means signature of a fiber of T.

This formula is false in general: for a coefficient system
coming from a fibration F > X » M it is the equation sign(X) =
sign(M), sign(F), to which counterexamples were found by Atiyah
[ ] and Kodaira [ ] and generalized variously by Hirzebruch [ ]
and Meyer [ 1. Further counterexamples to 4.1 not necessarily
coming from a fibration were given by Lusztig [ ] and Meyer [ .
on the other hand we showed in [ ] that for a large class of
structure groups 4.1 is in fact true. We shall prove this here in
a stronger form, but we must first recall what a "structure group”
for T is.

After choosing a base point xe M, any local coefficient

system I -+ M is classified by a homomorphism 1, (M,x) - Aut(rx)

where FX is the fiber over X.

Definition. If T - M 1is a hermitian local coefficient

system with fiber V such that the classifying map m;(M) - Aut(V)

can be written as a composition w;(M) - G R Aut(V), we say T

admits G as structure group with defining representation op.

We call (G,p) a structure pair for T.




We plan to prove the following theorems

Theorem 4.2. Let [ be the class of all groups G such

that the multiplicativity formula 4.1 holds for any hermitian
coefficient system T + M which admits G as structure group.

Then

(1) & is closed under formation of direct products, free

products, direct limits.

(ii) ¢ contains all groups with HeV(BG;Q) = 0, 1in parti-
cular all finite groups and the infinite cyclic group

are in &. More generally:

(i) If H€ & and H »> G 1is a group homomorphism for which
H*(BG;Q) -~ H*(BH;@) 1is injective in even dimensions
then G € & . 1In particular & is closed under forma-
tion of finite (not necessarily normal) extensions and

quotient by finite normal subgroups.

Theorem 4.3. For any I » M with structure group G € G

and for any further hermitian coefficient system A -+ M the
following generalization of 4.1 holds: sign(M,A®T) = sign(M,A)

sign T.

We shall prove these theorems later, we first need some pre-

parations.

For any group G, recall that RU(G) denotes the Grothendieck
group of representations of G in finite dimensional non-degene-

rate hermitian vector spaces (Chapter I, section 4) with ring



structure given by orthogonal sum and tensor product. Define a

ring homomorphism

Y

Gt RU(G) - H*(BG:Q)

as follows. Any hermitian repfesentation p: G - Aut(V) deter-

mines a hermitian ccefficient system Fp + BG with fiber V.

-~ ~+ N e
Let Fp = Fp ® Fp be a splitting of the corresponding bundle

into a positive and a negative definite summand and put

~ o~
¥.(p) = ch(I -T ) € H*(BG;Q).
g'P o g (BG;Q

Lemma 4.4. If p: G ~ Aut (V) is hyperbolic (i.e. there

exists a G-invariant subspace KcV with K = Kl, whence
dim(K)= dim(V)/2) then WG(p) = 0.
~ ~4 ~
Proof. Let Fp = Fp ® Fp be the above splitting of the

bundle fp*ﬂ3d€fﬂ@dlﬁ’ p. The G-invariant subspace KcV defines

~

a subbundle Rc:fp, and since the hermitian form is zero on K,

we must have Rfo; = Rrﬁfp = 0. Thus dim(f;) < dim(fp) - dim K

dim(Vv) /2, and the same for dim(f;). It follows that dim(fg)

dim(V) /2, so f: and T are both complements of R, hence
both isomorphic to fp/ﬁ; Thus WG(p) = ch(fp/K - fp/K) = Q.
Corollary_gég. WG induces a map (also called WG)

Y WU (G) - H*(BG; Q),

G:
where WU(G) is the Witt group obtained by factoring RU(G) by

the ideal generated by hyperbolic representations.

The motivation for introducing this natural transformation

¥y is the following theorem.




Theorem 4.@. Given a hermitian representation g: G + Aut(V),

the following statements are equivalent.
(1) ¥;(p) ¢ H"(BG;Q)

(ii) For any hermitian coefficient system T > M over a
closed manifold admitting (G,p) as structure pair and

any further hermitian system A > M we have

sign(M,A&®T) = sign(M, A)sign(T).
(iii) For any I » M as in (ii) we have sign(M,T) = sign (M). sign¢
Proof. (i) = (ii). Suppose T is as in (ii) and 7,(M) -G

is a classifying map. This induces a map f: M - BG and then

r = f*Fp , Wwhere Fp - BG is the coefficient system determined
by p. Thus if (i) holds then ch(FT-7") = £xv.(p) is contained
in H°(M;Q). But for any vector bundle E the zero-dimensional
component of ch(E) is (dim E).71 €H’(M;Q), so ch(f+-f—) =
(@iml"-aimI7) .1 = (signl).1. Thus ch((keF)* - (i ©r)7) =
ch(x+—ﬂﬁ).ch(F+—f—) = sign(Tl). ch(ﬂ+-x_), sO the multiplicativity
formula follows from the signature theorem 3.5.

(ii) => (iid) is trivial by taking A = €, the trivial coefficient
system.

(iii) => (i). Suppose (i) is false, so WG(p) = (sigan).1 +o0+ R

with 0 % o € Hzn(BG;Q), n>0, and B8 a possibly zero sum of

terms of higher degree. Choose a closed oriented singular manifold
f: M2n > BG such that o (f,[M]) # 0. This is possible by Steenrod
representability of rational homology, see for instance Conner and

Floyd [ ,theorem 15,3], Now for T = £*T | we have

ch(I™-T7) = (signl).1 + £*(a),
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since H*(M) is zero in degrees >2n. Also

_ ,n
L) =221 + ...+ IZn(M) '

so by theorem 3.5
sign(M,T) = ((signT).1 + £*(a)) L (1) [M]
= signl.L, (M) [M] + 2 E ¥ (o) [M]

n

= signl' . sign(M) + 2 . a(f, [M])

# signl.sign(M). Q.E.D.

Corollary 4.7. The class (> of theorem 4.2 is just the

class of all G for which ImY, < HY (BG;Q) .

Note that theorem 4.3 is a consequence of the equivalence
(ii) <=> (iil) in theorem 4.6. We are also now ready to prove 4.2.

To prove closure of ¢ under free products consider the

commutative diagram

WU (G * H) — Y 5 H*(B(G % H);0Q)
g E
WG e wom —8Y o u*(Bc;Q) & H*(BH;Q),

where o and g are induced by the inclusions G -+ G xH and
H > G+*H. The maps BG » B(G*H) and BH - B(G x H) induce a
homotopy equivalence BGv BH > B(G «H), so B is an isomorphism
in positive dimensions. Hence if G, HE€ C then

-1 0 * . *
Im Yo, =B (Im¥, & In yy,) = H°(B(G*H);@), so G*HE G.

To see closure under direct products we use the commutative

diagram



WU(G) @ WU(H) ' > H*¥(BG;Q) & H*(BH;Q)
¢ [k
WU (G x H) Y > H* (B(G x H) ;@)

where t 1is the map induced by tensor product of representations
and k is the Kiinneth map given by BGxBH = B(GXx H). Closure
under direct products follows if t 1is surjective, but t 1is
actually an isomorphism by theorem 4.4 of chapter I.

Finally for direct limits we use the diagram

WU (lim G.) Y, H*(B(lim G.);Q)
> i 5 i
l l%m vy L
1im WU(G.) —_— 1im H*(BG.;Q)
- i - i

and observe that the right vertical arrow is an isomorphism since
our coefficients are a field, so closure of G under 1lim

>
follows.

To prove (iii) note that in the diagram induced by H -+ G

WU (G) T~ u*V(BG;0)

| |

WU (H) Y s 5%V(Bc;0),

if the right vertical arrow is injective then GEg€ & follows

" from H €& . In particular, if H - G has finite kernel and image
of finite index this is so, since then BH » BG 1is rationally a
finite covering (the fiber is B(ker) x H/ImG which has the rational
homology type of H/ImG). As remarked in the theorem, (ii) is a
special case of (iﬁ) (take H = 1).

Another corollary of 4.6 is

Corollary 4.8. If T » M 1is a hermitian coefficient system

with definite hermitian form on the fiber, then the multiplicativity

statement 4.6 iii) holds.
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Proof. Assume T 1is positive definite. Then T =0 and

¥ = r is a flat bundle with flat hermitian metric, so by the
Chern Weil description of rational chern classes (see for instance

[ , appendix C, corollary 21]), ch(T) €eH%Y(M;®), as was to be

proved.

Before discussing some examples to theorem 4.2, let us con-

sider the relationship to the analogous result in [ 1. In that

paper and in [ ] a graded group SK,(X) 1is defined as the group
of singular manifolds in X modulo bordism and "cutting and

pasting". Equivalently (by [ 1), §§n(X) = o (X)/F_(X), where

Fn(X) is the subgroup of elements in Qn(X) representable by an

(M,f) for which M can be fibered over S'. This group SK,, (X)
is a module over the ring §E* = gﬁ*(point), which is a polynomial
ring % [P] in one 4-dimensional generator P, representable by

any 4-manifold of signature 1.

Definition. Let &, be the class of groups G for which

the reduced SK-group 5%*(BG) = Ker (8K, (BG) > SK,) does not
contain a free §§*—submodule. That 1is §k*(BG) is a §§*—torsion
" module.

In [ ] it was shown by a simple geometric argument that

signature -is multiplicative for structure groups in 5’0, SO
€, «c&. 1In fact
Proposition 4.9. &, c& and &, satisfies properties

(i), (ii), (iii) of theorem 4.2.
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Except for closure under direct limits, (i) and (ii) were
proved in [ 1. Closure under direct limits and (iii) are proved
similarly using in particular lemma 7 of [ ].

This proposition suggests the immediate

problem. Is Gp =C 2

Examples 4.10. By 4.8, the class G of all groups G

def

for which WU(G) is generated by definite hermitian representa-

tions (equivalently: irreducible hermitian representations are
definite, by 2.3 in chapter I) is a subclass of & . This class
(;def contains all finite and abelian groups and is closed under

direct products, formation of arbitrary quotient groups but not

under free products.

Examples 4.1l. Some groups obviously in > are free groups,

abelian groups, SL(2,%Z) (since H*(SL(2,Z); @) = 0), etc.
Some groups not in [» are fundamental groups of‘surfaces of
genus >1, SL(2,%Z [%]), etc., since these groups occur as struc-
ture groups with non-multiplicative signature (see [ ] and
example 5.6).

Less obvious is the following example

Example 4.12. If G has a finitely generated free abelian

normal subgroup with infinite cyclic quotient, then §k*(BG) = 0,

so G €b,, so GeC.

The proof follows from the following two facts and is left

to the reader: BG can be taken as a torus bundle over sl;



a set of singular manifolds in BG which represents a generating
set of H,(BG;Q) represents a SK,-module generating set of
SK, (BG) wup to torsion (lemma 7 of [ 1). A direct algebraic proof

that these groups are in > would be of interest.

Remark. This last example can be used to show that the

of ) and & in theorem

closure properties (i), (ii), (iii), o
4.2 are not enough to generate Ly or ¢ out of the trivial

group (and hence not enough to prove Co = & ).
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5. Definition of Y-invariants.

In this scetion we define certain "y-invariants" of odd
dimensional manifolds. Later we will show how they are related
to the g-invariant for group actions and also give a useful homo-
topy invariant description in some cases.

We have seen (4.2, 4.6, 4.8) that under certain conditions
signature of a hermitian coefficient system is multiplicative.
These multiplicativity results fail for manifolds with boundary,
however the error to multiplicativity turns out to be an invariant
of the boundary. This is the invariant we wish to define and
study. Suppose theorefore that we have the following data.

2n-1

pata 5.1. Let X be a closed oriented manifold and

f: m(X) -G a homomorphism to a group G. This homomorphism 1is
induced by a f(unique up to homotopy preserving base points) map
X » BG, which we also denote by f. We assume some multiple of

(x,f) bounds in BG.

pefini;iggﬁi;g. Given the above data and any hermitian re-

presentation o of G. Choose (M,g) with »3(M,g) = g(X,£),

the union of g copies of (X,f), and put

(sign(M,g*Fp) - sign(M).sign(p))

Q-

Yp(xlf) L=

where Fp + BG 1is the hermitian coefficient system defined by op.
In general Yp(er) will not be well defined, but in the situa-

tion of theorem 4.6 it is:

Theorem 5.3. If V¥.(p) =0, for instance if G€ & or o

is a definite representation, then Yp(X,f) is well defined

(independant of the choice of (M,g)) .



- 67 -

Proof. This is a standard argument. Namely suppose r(X,f)

bounds a different pair (M;,g9,). Then r(M,g) and qg(M,,q,)
have the same boundary, namely qr(X,f), so we can paste to get

a closed singular manifold in BG,

N = (rM U g(-M,)) -—2=9Uds BG.

Multiplicativity 4.6 tells us that
sign(N,h* Fp) = sign(N). sign(p) .
On the other hand we can rewrite this equation using Novikov
additivity 3.3 as
r.sign@dﬂfrp)-q.sign(Ml,gf?p) = (r.signM - g.sign M;)sign p.
Dividing by gqr and rearranging gives the required result:

(sign(Ml,gTFp)—sign(Mllsiqn(P)L

1 , . . 1
— n{M, g*I )-sign(M). n = —
q(Slg (M, g p) gn(M).sign(p)) =2

One might expect that in the above situation Yp(X2H_1,f)
only depends on the representation pf of 7;(X) and not on G.
Though this is true for the cases of most interest to us,as the

following theorem shows, we shall later show it is false in general.

Theorem 5.4. If one of conditions a), b) Dbelow holds then
yp(x,f) only depends in the representation pf of mq (x) and

not on G. We then often write y(x,pf) for yp(x,f).
a) p 1is a definite representation.

b) The center of G has finite index in G (e.g. G

abelian or finite).



Proof. a) is clear, since in this case in the proof of 5.3
we use the multiplicativity result 4.8, which does not depend on

G. For b) we shall use the following lemma.

2n-1

gggggzézé Given a closed oriented manifold X and
homomorphisms 1 (X) £ ¢ ¥wu I aut(v), with G, He &, then

(i) If YT@(X'f) is defined, then so 1is YT(X,wf), and

they are equal.

(ii) If : G » H 1is injective in rational homology and

then so is Y. (X,f), and they are equal.

YT(X,wf)‘ is defined, 0
Proof (1) If er(x,f) is defined, that is qg(X,£f) = o(M,qg)

for some q>0 and g: M » BG, then g(X,vf) = 3(M,9g), so

YT(X,wf) is defined and the equality Yrm(x’f) = YT(X,@f) is

clear from the definition.

(ii) The modulo torsion triviality of the bordism spectral

sequence implies that the condition @,: Hye(G; Q) = H4(BG;Q) ~

Hy(H; @) injective is equivalent to Q4(BG) ® Q -

I

Hy (BH; Q)

Q4 (BH) ® © injective. Thus if YT(X,wf) is defined, that is

[X,0f] = 0 in 0,(BH) ® @, then [X,f] = 0 in Q. (BG) ® @, so

v, ) is defined. It is egual to v _(X,wr) Dby (i).

s

To return to the proof of 5.4, suppose we have i (X) £ G %

Aut (V) such that the center of G has finite index in G

(whence in particular Ge (), and suppose some multiple of

(X,f) bounds, so Yp(X,f) is defined. Put H = Im(p) and

K = Im(pf) €« H € Aut(V), so we have a diagram




Aut (V)

where i and Jj are the inclusions and ¢ and ¢ are just opf
and p with their ranges restricted.

Suppose we know that i,: H,(K;Q) - H,(H,Q) is injective.
Then we can apply lemma 5.5 parts (i) and (ii) successively to
show that yj(X,mf) is defined and equals Yp(er) and that

(X,p)

(X,y) 1is defined and equals Yj(X,wf). Thus yp(X,f) = Y51

in
and since 3Jji and ¢ only depend on pf and not on G, the

theorem is proved. Thus we must just show the injectivity of i

-
Now both K and H have centers of finite index, since
this property is inherited by subgroups and quotient groups. We
first show that in the commutative diagram
Hy (Z(K) N Z(H);Q) > H,(Z(H);Q)

Hy (K, Q) =  Hy (H; Q)

the vertical arrows are isomorphisms. Indeed, in the Lyndon
+.

spectral sequence E?q = HP(H/Z(H); Hq(Z(H);@)) => Hp q(H;Q)
(see e.g. MacLane [ ] p.351) we have Ef’q =0 for p>0, since

H/Z{(H) 4is finite and acts trivially on Hq(Z(H);Q). Hence
H* (H;Q) >~ H*(Z(H);Q) 1is an isomorphism, so the homology map also
is. The same argument holds for Z(K) n Z(H) < K.

Now an injection of abelian groups induces an injection in
QP-homology (this is clear for finitely generated abelian groups
and homology commutes with direct limits), so the top map of the

square is injective, so the bottom map is too, as was to be shown.
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The following example shows that some condition is necessary

for theorem 5.4.

Example 5.6. We shall give an example with X = S! and G
a free group and yO(X,f) # 0 although of 1is trivial. Let
' F be a hermitian coefficient systém with non-zero signature
over a closed surface F (exists by [ 1,0 1,0 1), and let
m=F - D? for some embedding D? < F. Then sign(M,T|M)) =
sign(F,T') by Novikov additivity. If we put G = m; (M) then G
is free so Ge . Let p: G > Aut(V) be a classifying homomor-
phism for T|M and let ¢ m1(S!') + G be induced by S! = j3M <M.
Then we can use M to calculate yp(Sl,f), So by definition
Y, (8, £) = sign(M,T[M) - sign M signT = sign(M,T|M) = sign(F,T) 0.
But  pof is clearly trivial, since it classifies T|9M = T'|sD2.

To give a numerical example we can use the example of Meyer

[ ,p.55] which gives:
G =<ai,az2,b1,b2 > (free on 4 generators) ;

£: m(SY) > G defined by

1,.-1

£(1) = [a;,b;] [a,,b,] (la,b] =aba 'b ');
- ~ 2 0 Li_\‘ .
p: G » Aut(C Py ) defined bv
=5 i o =d =1 , _ o, -4
ST ey 500y wlea) = G Ty ey = (33 D),
-5 =1

pib2) = (5975 500 -

Then pf  is trivial but yp(sl,f) = 4.

To close this section we mention for later reference some
simple properties of the Y-invariants.

Suppose we have G e (& and in“1 —£%>BG representing

torsion in Q,(BG), so yp(va) is defined for any hermitian




representation p of G. Then:

P — £
5.7. Additivity. T @ T(X,f) YO(X,L) + YT(X,f).

5.8. Multiplicativity. ‘Given HE€ & with hermitian repre-

sentation <t and M2m _E* BH, then YpéoT(X>(M’ fxg) =

sign(M,g*FT).Yp(X,f). In particular (taking H = {1}):
Yp(X><M, fopr,) = sign(M).Yp(X,f).

5.9. Bordism invariance mod 7% . (yp(X,f) modulo Z) € Q/7Z

is a bordism invariant of (X,f) in Q,(BG).

The proofs are trivial from the definition of y; for 5.8

one must use the multiplicativity of signature 3.4.




6. Extending the definition of .

1) X2n—1

For G € C; and f: ~ BG we have so far only defined
the invariant yp(X,f) it [X,f] Ean_1(BG) is torsion. If G

is finite this is an empty condition and in some other cases
(Theorem 5.4) we can weaken it somewhat, but in general it is a
genuine restriction. We shall show that in some cases the defini-
tion of vy admits a natural extension. The basic principal is as

follows.

Definition 6.1. Suppose we have a (2, ®Q)-module basis

{[Yi,gi]l ie€1} of 2,4q(BG) €@, where I is some index set.
Suppose further some number ?p(Yi,gi) is given for each 1.
Then for any (X2n_1,f), some multiple g(X,f) is bordant moduloc

torsion to a disjoint union 23M1><(Yi,gi) (only finitely many
1

Mif#O) and we define

- 1 . ) -
YQ(X,f) ='§{YD[(X,f)-Féﬂ-Mi)><(Yi,gi)] +m551gn(Mi)yp(Yi,giﬁ.

Here the disjoint union (X,f)‘+§S(—Mi)x (Yi’gi) represents tor-
1

sion in §,(BG), soO Y, of it is defined.

Tn ooher words we dorine - by vregquiring Fhat it extend '
and still be additive with respect to disjoint union and have the
multiplicative property fp(Mx (X,f)) = sign(M),;p(X,f). We must
check that the above ?D(X,f) is well defined, that is, if some
multiple q'(X,f) is bordant modulo torsion to a different dis-

joint union Zp%f((Yi’gi)’ then using this union gives the same
i

h Recall that we use the map X - BG and the homomorphism

mi(X) = G, which induce each other, completely interchangably.



value ﬁm:}p(x,f). But we can assume g = g', and then Mi is
bordant modulo torsion to Mi for each i (since the [Yi,gi]

are a (0, ®Q)-module basis), so sign(Mi) = sign(Mi) and the
well-definition boils down to showing Yp((Mi+(—Mi)) X(Yi,gi))==0.
But more generally: yp(M (Y,g)) =0 if M is a boundary modulo

torsion follows directly from the definition of yp and the mul-

tiplicativity formula 3.4.

From now on we always assume our representation p is unitary
(= positive definite hermitian). We intend to give a "good" defini-
tion of ?p(X,f) whenever G has center of finite index, but we
first lock at the following simple case, which in fact is the only

case we will need later.

§peci§}HE§§§1 G = Z. Then BG = S! and Qodd(BG)éaQ is
the free ({i, ®Q)-module on the one generator [S',id]. 1In this
case we have the suggestive Proposition which will be proved in

chapter III.

Proposition 6.2 If ly: Z = U(1) 1is the unitary represen-
tation 1,.{(1) = <0L“) cu(n), -hen
(st, LO) = ] - =, 0<0<2n
= 0, 8 = 0,
1
where 6/7 must be rational for Y(S,Te) to be defined.
We are here using the notation yp(X,f) = y(X,ef), allowable

by theorem 5.4. The footnote on the previous page is relevant

here.



In view of this proposition, the following definition is

natural.
Definition 6.3. We define for p irreducible
y (st,id) =1 - % it p =1, 0<p<27
=0 if P = Tg-

More generally any unitary representation p: Z - U(n) 1is a sum
of representations of type T, and we define ?p(Sl,id) to be

the corresponding sum of numbers 1-¢/1 or O.

Theorem 6.4. Use definitions 6.1 and 6.3 to define

p(

tion p of Z . That is

§ X2n_1,f) for any f: X » BZ= S! and any unitary representa-

?p(x,f) = Yp[(X,f)-&(—M) x(sl,id)]+—sign(M).§p(sl,id),

where M is such that M x (S!',id) 1is bordant modulo torsion to
(X,f). Then ?p(X,f) = v(X,pf) whenever the latter is defined
(so we also write vy(X,pf)).

This follows directly from the definitions since vy(X,pf)
is defined only if Im(,f) is finite or if  (X,[) was already
derlned.

We now look at the more general case.

G__has center of finite index.

Lemma 6.5. In this case ,(BG)®Q has a (Q,®Q)-module

basis of elements of the form [Tk,g], where g: Tk = B(de - BG

is the map induced by an inclusion Zk'—+ Z(G) < G.



Proof. By the triviality of the bordism special sequence
tensored with @ it suffices to show that H_(BG) ®® has a basis
of elements of the form U[Tk,g] where y: Q. (BG) - H,(BG) |is
the natural map (namely U[Tk4g]:=g*[Tk] where [Tk] is the
fundamental homology class). This is certainly true for G fini-
tely generated abelian, hence also for a direct limit of such
groups, that is arbitrary abelian. Hence it is also true if G

has center of finite index, since then the inclusion Z(G) <G

induces an isomorphism in rational homology by the proof of 5.5.

Thus to carry out Definition 6.1 we must define ;(Tk,pg)
for unitary representations pg of Zk:. For k = 1 this has

been done above. In general we make the following definition.

Definition 6.6. Define «—(p(Tk,g) =0 for k>1 and

yp(Sl,g) to be y(S!,pg) as defined above.

This is reasonable in view of the following lemma.

Lemma 6.7. If Y(Tk,p) is defined, where p 1is a unitary
L
representation f % and 't 1, then y(Tk,p) = 0.
Proof. If y(Tk,p) is defined it is because Imp is finite.

Without loss of generality o 1is irreducible, hence 1-dimensional,
so Imp is cyclic, so after a change of coordinates in Tk the
pair (Tk,p) has the form Tk_1><(Sl,p). since T ! bounds,

this has zero y-invariant by the multiplicativity formula 3.4.



Theorem 6.8. If we choose a basis for Qodd(BG)é?Q by

lemma 6.5 and then use Definitions 6.1 and 6.6 to define ?p(x,f)
for arbitrary f: in—] + BG and any unitary representation of
G then ;p(X,f) is independant of the choice of basis of
Qodd(BG)QﬁQ and agrees with vy (X,pf) whenever the latter is

defined.

Proof. We shall just sketch the proof. First observe that

the fact that ?p(X,f) = y(X,ef) if the latter is defined follows
directly from the definitions. The independence of ?p(X,f) from
the choice of basis in Lemma 6.5 boils down to showing that if

the disjoint unions

A = Z Ml X (Tkllgl) and B = Z N. x (Tkj,g)
1€1I j€J J J

are representations, with respect to different bases, of the same

element in Q2D_1(BG)¢EQ, then

k=
Jlgj)-

- ks . -
i)Yp(T l,gi)- EZSlgn(Nj)yp(T

(6.9) ¥, (AT(-B)) = 2. sign(M z
je

iel
First observe that this equation is defined in a finitely
generated subgroup of Z(G), so we can assume without loss of
generality that G is finitelv generated abelian. We can also
assume That o tg irreducible.
We first prove equality (6.9) for G = %Z and A==(Sl,161) +
). For the left side of (6.9) we

(st ) and B = (8!

"To, "To,+0,
must calculate the signature of the local coefficient system over

D(3) (3-fold punctured S?) indicated in the following picture




—

0s 0, <2m |
L"l

: C_, O \Wo Ve lb<am.

This can be calculated as in Meyer [ ] and turns out to be 0
if either 6, or 6, 1is zero and otherwise +1 1if 0, + 06, < 2w,
0 if 6, + 6, = 2n, -1 1if ©; 4+ 0, >2n. This agrees with the

right side of (6.9) and thus proves this case.

Next, we prove the equality for A = q(Tk,g) and B =(Tk,gw),

where (: Tk > Tk is a g-fold covering in one s' -factor and the

identity on the remaining factor Tk—1. This is done by using

D(g+1) « 71, where D(g+1) 1is the (g+1)-fold punctured S?2,
as an explicit bordism between A and B. If k> 1 there is
nothing to prove, as everything involved is zero. If k = 1 the
calculation can be carried out by chopping D(g+1) along circles
into g-1 D(3)'s and arguing inductively. This case thus reduces
to the case already considered.

Since any covering o: Tk - Tk is a composition of coverings
of the type just considered, cquality (6.9) follows inductively

k,gw), where : Tk > Tk is any q-fold

for A = q(T¥,9q) and B = (T
covering. This allows us, in the general case of finitely generated
abelian G, to go down to any subgroup of finite index in G and
hence to assume G 1s free, say G = zt .

We now have two ways of completing the proof. We can analyze

the bordisms involved in changing a basis of Qodd(B(Zr)) ®Q;



by putting any basis change together out of elementary basis
changes one can again reduce calculations to the case of local
coefficient systems over D(3), which has already been dealt
with. An alternative method is to observe that the set of irredu-
cible unitary representations of G = zZ" has a natural topology
as (U(1))r = (s')Y and we already know equation (6.9) holds for
p 1n the dense subset ((D/ZZ)r < (s')T. But the right side of
(6.9) has the continuity property (as a function of o € (u(1))H)
that its value at a point of discontinuity is the "average over
nearby values", since ?(S‘,Te) has this property. The same
continuity property follows for the left side of (6.9) from our
later homotopy invariant calculation of the y-invariant for G
free abelian, so (6.9) holds in general.

This completes the sketch of proof. This proof is unsatis-
factory in being more complicated that I feel should be necessary.

The best proof would presumable be to identify §p directly with

certain analytic invariants which Atiyah has recently defined.
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Chapter III. Equivariant signature and the o—invariant

1. Witt invariant and equivariant signature

Let M2n be a compact oriented manifold and G a group

(finite or not) acting on (M,&M) by orientation preserving
diffeomorphisms, homeomorphisms, homotopy equivalences, or even

just homology equivalences. Then G acts on

Tm (H™ (M, 8M; Z) — H (M; %)) /Torsion

o
il

preserving the cup product form, which is non-degenerate on H.
We thus have a non-degenerate (-1)n—symmetric bilinear reproesoci-
tation of G over Z which defines an element w(M,G) in the

Witt group of such representations, that is
w(M,G) €W (G;Q,Z) e = (-1

in the notation of I.7.4. Actually G acts from the right (i.e.
contravariantly) ocn H and we must convert this to a left action

by convenina that g€G act by g on H. This is equivalent
to transposing the action via the form on H, and hence also
equivalent via Poincaré-Lefschetz duality to the wusual left

action on homology with intersection form.
The properties of the Witt invariant are as follows.

1.1. If M is closed. Then the cup product form is non-

singular, so w(M,G) 1is in the subgroup WE(G;Z)C:WE(G;Q,ZJ,

1.2. Bordism invariance. If M is a G-equivariant oriented

boundary then w(M,G) = 0.
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1.3. Novikov additivity. If M = M, UM, pasted G-equivariant-

ly along boundary components then w(M,G) = w(M1,G)-+w(M2,G).

1.4. Product formulas. If G acts on My and M, then

with the diagonal action on M, xM, we have w(M1:<M2,G) =
w(MT,G) 'w(M2,G). If Gy acts on M, and G, on Mo, then
w(M1><M2,G1><G2) = t(w(Mq,G1)<8w(M2,G2)), where t: W,(G;;Q) ®

W*(G2;®)~+W*(G1 XGZ;Q) is the natural map.

The usual proofs of 1.2 and 1.3 for signature also work here,
In 1.4 is an easy application of the Kiinneth formula for a pro-
duct. These properties show that the invariant w defines a ring
homomorphism from the "equivariant bordism group” Qg to
W, (G;7Z) (and also from the equivariant "cutting and pasting

group” SKE to Wy (G;Z)).

Digression 1.5. The class of w(M,G) 1in We (G0, ) /Wy (G ZZ)

is a Novikov additive invariant which vanishes for closed manifolds.
Tt follows that it is an invariant of the boundary; call it

9 (8M,G). In the proof of theorem 6.5 of chapter I, a natural in-
jection N*(G;Q,%)/W*(G;Z)-+W*(G;Z—torsion) was constructed, so
we can think of 2(8M,G) as an element of Wy (G; Z~-torsion). For
trivial G, Alexander Hamrick and Wick [ ] have identified -2(&M)
as the class of the linking form on the torsion of H*(SM;Z), so

N2n—1

in particular ¢(N) is also defined for which do not

bound, and is a homotopy invariant. Their proof also works in the
present situation.
Note that the class of £(N,G) in Cok(W,(G;D,Z)~ W, (G;Z-tor))

2n-—1
[

is a homotopy invariant bordism invariant of (N G). This

may be quite aninteresting invariant.
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To return to the more mundane invariants we are interested

in at the moment, recall the character map X: W*(G;Q)-+¢G

of section 8 in chapter T.

Definiti . Given M2n with G-action as above define the

equivariant signature as

sign(M,G) := xw(M,G)

and for gE€G

sign(M,g) xw(M,G) (g)

This can be described directly as follows: Let (H®C,Db)
be the hermitianized, symmetrized (by multiplication by +i 1if
n is odd) cup product pairing for M. Then g induces a Z-
action on (H®€,b), and up to hyperbolic hermitian Z-modules,
H®C splits as a sum V+€BV— of a positive and a negative de-

finite hermitian Z-module. Then
sign(M,g) = trace(g|V+)-trace(glV—).

This makes it clear that if g s contained in a compact Lie
group of transformations of M (equivalently g preserves some
Riemannian metric on M), then sign(M,g) agrees with Atiyah
and Singer's definition in [ ]. Note that sign(M,g) 1is real
or pure imaginary according as n 1is even or odd.

For finite or abelian G, all we are doing by looking at
sign(M,G) rather than w(M,G) is throwing away torsion information
(theorem I.8.3). However, example I.8.8 can be thought of as giv-

ing examples of a linear action of a free group G on S1><S1

1

for which sign(S1 xS',G) = 0 although w(sS x S1,G) is of in-

finite order.
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2. The oa-invariant

In this section we return completely to the "classical" case

by assuming that g: M->M always preserves some riemannian metric.

Atiyah and Singer [ ] showed
Theorem 2.1. Suppose M is closed. Then with g as above
Sign(M,q) = As (M9, wmMF)

where AS(Mg,ng) is a complicated expression in characteristic
classes of the fixpoint set M9 and its normal bundle. In par-

ticular if MI = ¢ then sign(M,g) = 0.

That g preserve a riemannian metric is of absolute import-
ance here, as we shall see in section 3.

Now sign(M,g)-—AS(Mg,ng) is a Novikov additive invariant
for manifolds with fixpoint free boundary which vanishes for closed

manifolds, so by the usual argument (see proof of II.5.3) it is

an invariant of the boundary (8M,g). This invariant is called
@ (8M,g)., More generally:
R o 2n-1 . .. . - . 1.
Derinition. it (N ! 1) is fivpolnt Ifree and some multiple
m(N,g) bounds, say m(N,g) = d(Mzn,g) then we put
1 .
a(N,g) = —(sign(M,g) - as 9, wm9))

which is real or pure imaginary according as n is even or odd.

A multiple of (N,g) bounds for instance if g 1s con-
tained in a finite group acting freely on N oOr in a compact

connected Lie group acting without fixed points (see t 1,0 .
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The following example will be needed in

1

Example 2.2. Let S act on the sphere

sections 3 and 4.

1 = (zed? Nzi=1)

a
1 n .
by X(z1,...,zn) = (A 24 ;A zn), where the a; are coprime
integers. Then as M2n we can take the disc D2n. Then
sign(D2n,A) = 0, so
2n-1 ., _ . . . .
a(s ,A) = -AS (isolated fixed point with
rotation numbers a1,...,an)
a.
n i
- 7 A + 1
i=1 %
A -1
See for instance ,
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3. Bordism of diffeomorphisms and examples

This section is something of a digression. We use the Witt
invariant and eguivariant signature to deduce some facts about
the bordism group O (Z) of smooth Z-actions on manifolds.
This is of course nothing more than the bordism group of self-
diffeomorphisms of oriented manifolds, denoted A, in [ 1.

In odd dimensions the group 0&(%), m#* 3, has recently

been determined by M.Kreck [ 1. The result is that the map

A
G () - Q@9

m +1

[M,f] — [M] & [Mapping torus of f£],

A
is an isomorphism, where Qm+1 is the kernel of signature on

Qm+1‘ For even m this map is still epic, but the kernel is
infinitely generated, by Winkelnkemper [ ] and Medrano [ 1

This also follows from the following result.

Theorem 3.1. The map w: O, (@)~ W (Z;Z), ¢ = -7, is
surjective for each n> 0.

Proor. For n =1 this follows zrom the fTact (Nielsen theorem
plus for example Magnus, Karras, Solitar [ , section 3.71])

that the map

lef+(Fg)/D1ffo(Fg) - Sp(2g;2)

is surjective. Here Fg is the orientable surface of genus g,
Diff+(Fg) its orientable diffeomorphism group and DiffO(Fg)
the component of unity. Sp(29;%Z) is the automorphism group of

H1(Fg;z) with intersection form.
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For n = 2, suppose we have a symmetric non-singular iso-

metric structure (H,b,t) over Z. By adding the hyperbolic

structure (Zz, (1; ?),id) if necessary we can assume the bi-

linear space (H,b) is indefinite and odd, so it is classified
by its rank and signature alone (Serre [ 1),so it is isomorphic

to the cup product form on some manifold of the form

u? =a:p2# ...umpzw—@qu...#—cpzw(szxsz). By wall [ 1 ,

any isometry of (H,b) 1is realizable by a diffeomorphism of M4.
For n>2 use the fact w(NxM,id xf) = sign(N).w(M, £f),

which fcllows from 1.4 above. This completes the proof.

bllary 3.2. ﬁzn(zﬂ ® @ is infinitely generated for any

n>0 and this fact is detected by eguivariant signature.

Indeed (92n(ZZ) ® 0 surjects onto We (%Z; 7Z) ® § which is

calculated in Theorem I.7.16. By section I.8, equivariant signa-

ture detects all of W (Z;Z) ®Q.

8(
Next, we give examples to show that, in contrast to
theorem 2.1, a fixed point free diffeomorphism f: M»M may have

sign(M,£) + 0.
’ D1y -
Consider the s' action on s Voot Example 2.2, given
by nonzero coprime integers a,,a,,...,a, and choose integers

p, and p, prime to all the a,. For tE€ [0,1] = T 1let

xt = exp(2ﬂi(t/po-+(1—t)4%))€ S1 and consider the diffeomorphism

g: 5201 1o, g2, (x,t) — (A,_*%X, (t2+t)/2) .

t

Then A, = g|82n—1><{i} generates a free ZZ/pi action for

SZn-1

i = 0,1. Choose m>0 such that the disjoint union m( ,Z/pi)

bounds a free (Z/pi)—manifold Mi for i = 0,1 (possible

since @ B(%Z/p;) is torsion) and let g;: M;-M, denote the
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generator of this action. We can paste along boundaries to get

M2n = MOUm(szn'1 xI) U -M,

with diffeomorphism £ = gongth1: M->M.

gégggingég. Then £f: M2n_}M2n above has the properties:
(1) f is fixed point free;
Zp&ﬁ
{(ii) If n>1 then f£ is 4isotopic to the
identity.
(iii) If Aj = eXp(Zﬂi/pj) for 3 = 0,1 then
a; a;
n k1 + 1 n Xo + 1
sign(M,f) = m(N = - 0 3 )
1AL =1 1T A71-1
1 o}

Proot. We leave (i) and (ii) as exercises; for (ii) one

2PoP1 - 2n-1 2n-1

must only show g xI~>8S x I is isotopic to the

identity keeping bhoundary fixed, which follows from ﬂ1(SO(hﬂ)==Z/2.

To prove (iii) note that sign(S2n—1><I,g) = 0, so by

Novikov additivity sign(M,t) = sign(Mo,gO)-—sign(M1,g1). But

N
sign(M.,g.) = m((t(S“rl ],k,)) by definition of the «-invariant,
5 I ; Y

so apply example 2.2.

Remark. If one chooses M and M, above with zero euler
characteristics (which is possible if n>1) then one can
modify the above £ isotopically along a suitable vector field

so that no nonzero power of £ has a fixed point ! Another

technique to get examples is to choose a manifold M2n with

periodic diffeomorphism f£ such that both M and every component
of the fixed point set have zero euler characteristic. Then one
can again alter f isotopically along a suitable vector field

so that no non-zero power of f has a fixed point.
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Finally we give examples to show

Proposition 3.4. Oén(ﬂ) contains infinite (Z/2)-torsion

for each n> 0.

Proof. For any A€Sp(2,%Z) = SL(2,Z) let [AleW_(Z;Z2)

denote the class of A as an antisymmetric isometric structure

Denote by £,: T2—*T2 the corresponding linear automorphism of

A
the torus. Then clearly w(T ,fA) = [A].

Now if a = trA and D = a2—4 then the minimal polynomial
of A 1is m(t) = t2-at-+1 which has roots (atVD)/2. Thus
the field Qltl/m(t) is @©(VD) and by Corollary I.7.13 and the

remark following it we have

Lemma 3.5. If AESp(2,%Z) and a = trA and D = a2-4
then the order of w(T2,fA) = [A] in W_(%;Z) 1is:

o if D<@,

1 if D=0,

2 if D>0 and -1 1is a norm of Q(VD),

4 if D>0 and -1 is not a norm of Q(VD).

Remark. Elementary number theory implies that -1 1is not a
norm of ©(Va?=4), lal >2, if the prime decomposition of a+2

or of a-2 contains a prime of the form 4k+3 to an odd power.
Otherwise, namely for lal = 3,6,7,11,15,18,27,34,38,39,43,47,...,

-1 is a norm.

Now put B_ = (£ 1) and A_ = B? = (r2+1 Ty f r=1,2,3
P r 10 r r r 1 or TS
Then [Tz,fA ] € 02(2) has order at least 2, since [Ar] does,
Y .
by the lemma. But B_ induces an fA -equivariant orientation

r
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reversing diffeomorphism of T2, so [TZ,fA] = —[Tz,fA] , SO
r r
[T2,fA ] has order 2. Further, the [Ar] are independent ele-

r
ments of W (Z;Z) by Theorem I.7.2, since they have different

minimal polynomials, so the [Tz,fA ] are independent in 02(2).
r

To deal with CQ(ZZ) we need a lemma.

Lemma_3.6. If A,BESp(2,7%) with trA = a#$t2 and

tr B = b+ t2 and either a or b nonzero then [A®B]+0 in

W, (Z;7Z)
Proof. If the minimal polynomials of A and B are
£2 _at+1 = (t=1) (t=2"") and t2-bt+1 = (t-p) (t-p” '), then

our assumptions imply that either Apéen or A1f4 ¢ 9, say
Au €9Q. The minimal polynomial m(t) for A®B 1is either irre-

ducible, in which case the Remark following I.7.13 shows

[A®B] + 0, or its prime decomposition is
[(t—ku)(t—A—1u_1)].[(t—Au_1)(t—X—1U)]
or
e (=27 e ™ e,

in which case the first factor is the minimal polynomial of a 2-
dimensional summand C of A®B which satisfies [C] #0 by
the Remark already mentioned and is independent of the other

summand (s} by Theorem I.7.Z2.

2

Now if [T°,f has order 2, then for any B with tr B+ 2

A]
the element [T2 xTz,fo fB]e 04(Z) has clearly order at most 2,

hence order exactly 2 by Lemma 3.6. Thus using the previously

2

found [T",f, ]1E€ GE(ZH of order 2 we can easily find infinite-

A

r
ly many elements in UA(ZH of order 2.

Finally use the fact that w(NxM,id x f) = sign(N)w(M,f) to

chnw t+hat ﬁ { 773 AAnFaine infFinita TetkArveinn alemn FAr ancr nws 9
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4. Relation between the a-invariant and y-invariant

Suppose we are given a-finite normal covering

2n-1 2n-1

N — X

of closed oriented manifolds. Then if G 1is the group of covering

transformations, we can think of the situation in two ways:

(i) G acts freely on N with orbit space X, so the

a-invariants a(N,g) are defined for g€ G-{1}.

(ii) The covering is classified by a map f:ﬂ1(X)-*G,
so the y-invariants vy (X,pf) are defined for any

hermitian representation ¢ of G.

Since G is finite, any hermitian representation is an orthogonal

sum of irreducible representations, each of which then has de-

finite hermitian form (see I.3.6). It hence suffices to calculate
Y(X,pf) djust for irreducible unitary representations 0 of G.
Let

oj: G - U(nj) i =0,...,r

be a complete set of representatives for the irreducible unitary

representations of G, and let Xj be the character Xp (so

J
xj(g) = trace pi(g)) for each j. Assume Pot G~+U(1) 1is the
trivial representation (so n, = 1.

Epeorem 4.1. In the above situation the a-invariants and

y-invariants determine each other as follows:
r
a(N,g) = ] x5(9).v(X,0.£), (g*1),

Y(X,0,6) = —— T (X(g
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Proof. By multiplying by a positive integer if necessary,

2n-1

we can assume N equivariantly bounds a free G-manifold M2n,

so by definition

a(N,g) = sign(M,q)

Also, if M/G =Y and g: HT(Y)‘*G classifies the covering

M-~Y, then by definition

y(X,pjf) = sign(Y,Fj)-nj.sign(M),

where Fj-+Y is the unitary local coefficient system classified
by pjg. Now if I ~+Y 1is the coefficient system classified by
the regular representation p: G+U(IGlI) of G, then we have a

G-isomorphism

Ima™ (M, N;e) ~HY(M;¢)) S Im(E™(Y,x;T) »HY(Y;T))
which preserves the hermitianized cup product forms (if n 1is
odd we multiply the skew hermitian cup product by i to make it

hermitian). But the regular representation p of G splits as

the orthogonal sum

so the coefficient system T 1is the orthogonal sum

r = nOFO <] ® anr
Thus, setting Hj = Im(Hn(Y,X;Fj)—+Hn(Y;Fj)) for j = 0,...,r
we have
Im(H® (M, N;¢) ~H(M;€)) = n H_ & ® n_H
et ’ oo e rr:*

+ —
Let Hj = HjéaHj be a G-invariant orthogonal splitting into posi-

tive and negative define subspaces. Observe that the irreducible
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components of the G—-action on Hj are all of type pj, since

this is true on the chain level and taking homology does not

alter this. Hence tr(ng?) = xj(g).(dim H?)/nj, so
+ —
a(N,g) = sign(M,g) = tr(glH ) - tr(glH )
r + _
= ¥ n.(tr(glH.) - tr(glH.))
3 3 3
j=0
r + _
= ¥ y.(g)(dim H, -dim H.)
j=0 ] ] J
r
= X Xj(g).sign(Y,F.).
j=o )
r
Now using the fact that z Xj(g).nj = (0 for g=%1, this becomes
j=o
r
a(N,g) = i Xj(g).(sign(Y,Fj)-nj.sign(Y,Fo))

r
= I X (g).(sign(Y,Fj)-nj.sign Y)

r

as was to be proved. To prove the second formula, insert the above

formula for «(N,g) into it and then apply the orthogonality re-

lation £ ¥.(g ).x.(g) = &..1Gl and its special case
g 't J 1]
r x.(g) = 8 _.I1GlI
o

g ] ]

gxaqgkg 4.2. (Lens spaces). If we take the action of S1 on
Szn‘"1 with rotation numbers aqy.--sap and if d 1is an integer
prime to the a,, then Z/d CS1 acts freely on S2n—1 with
orbit space the lens space L(d;a1,...,ar). Example 2.2 and

Theorem 4.1 give



a a
n
= .-_1' ]— )\ +1 ¢ o 0 )\ +1
Y(L(d,a,], lan)/pj) - d g (>\ 1)< a1 > < an ) ’
A=1 A -1 A -1
PN
where p. 1is the representation which maps the generator of z/d

to (ezﬂij/d) €U(1). As a special case of this we have

Proposition 4.3. v(S',74) = 1—%,

(0<H<m). Here
i6

1

Tht ﬂ1(S ) »U(1) 1is the representation T6(1) = (e”"), and in

order that Y(S1,re) be defined, we must have 6/m rational.

pProof. If 6 = 2mj/d, then (51,Te) = (L(d;1)pj) in the
above notation, so (with sums over all X #1 with xd = 1):
sty = raTion ) =2t Z(x‘j—w)(’”—1>
Yis Tl =g LY -1 T d ]
j At
= lrod-neh
- ; T eIy +1) (A +1)
=] ] 3-1
= 5 LA +2) + + 21+ 1)
- oo o244 (@-1)) = F@-29)
d d
8

Eéﬁmﬁ%fzﬁgﬁngg' If we plug the above formula for Y(S1,Te)
into the formula 4.1 for af(S ,)), where X 1is a d-th root of
unity we get

A+1 - .k 2k
—(X:T) = z A (1.-7T)

Inserting this into the above formula for y(L(d;a1,...,an),Dj)

gives, after a trivial simplification:



-03-

Proposition 4.4. Y(L(d;a1,...,an),pj)==60(d;a1,...,an)-Gj(d;a1,...,an),
where 6j(d;a1,...,an) is @efined by
2k 2k
S ldjag,ceea) = =2 (=gt stz =)
O<k1,...,kn<d

d|(a1k1+...+ankn—3)

These 6j(d;a1,...,an) generalize the "generalized Dedekind

sums" 6(d;a1,...,an) of Zagier [ 1,0 1,[ 1, which are the

particular case j = 0. They have the obvious symmetry property

),

—— —— n -
Sy(diag,..-ay) = (=178 _y(diaq, ... a

as can be seen by replacing each ki by d—ki in the sum. In

particular Go(d;a1,...,an) =0 if n 1is odd. By a similar ar-
gument
d-1
z §.(d;a,,...,a.) =0 .
520 ] 1 n
There is also a recursion formula
d-1 2%
Sj(d;a1,...,an,a) = 6j(d;a1,...,an) + Q;O u Gjﬂﬂﬁdﬁﬁ,..”an)
Zagier [ ] showed that the denominator of 6O(d;a1,...,an) (n
even) divides
(527
My = nf p " , k = n/2
p prime
p odd

which is the denominator of the Hirzebruch Lk—polynomial. His
argument was  purely number-theoretic. At least for d an odd
prime power (but presumably for all d) the denominator of

6j(d;a1,...,an) divides
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g.c.a@. T ] » P77 ,a"

p prime

This follows for d an odd prime power from Proposition 4.4,
the modulo 7 bordism invariance property II.5.9, and the fact
that the above number is in this case the exponent of the bordism
group ﬁzn_1(B(E/d)) by [ ,§371.

For G finite acting freely on N with orbit space X the
. . . . 2ni/ Gl
invariants Yp(X,f)(mod 7Z) and the invariants a{N,qg) (mod Z(e ))

are both bordism invariants in Q*(BG) and determine each other.

They have been given an interpretation as K-theoretic characteristic

numbers by Knapp [ ] (see also Wilson [ 1).
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5. Signature defect for coverings

If M'->M is a d-fold covering (not necessarily normal)
of closed oriented 2n-manifolds then signM' = d.signM. If M
and M have boundaries this is no longer true in general but the
usual argument shows that the difference signM' —d.signM is

an invariant of ©6&M' - 8M, which we call the signature defect.

More generally:

nition. Let X'+ X be a d-fold covering (not necessari-

Defl
ly normal) of closed oriented (2n-1)-manifolds. Then some multiple
q(X' »~X) bounds a covering M' +M of oriented 2n-manifolds and

we define the signature defect

def (X' » X) = %(signbv - d.sign M}.

That some multiple of X' -X bounds, even for non-normal
coverings, follows from Lemma 5.1 below. If n is odd then tri-
vially def(Xx'-X) = 0, but the discussion of this section is

still of interest.

If X' ~+X 1is a normal covering with covering transformation
group G and classifying map f: X~ BG, thencki(X'+X)=ypOLf),
where p: G~U(|G|) 1is the regular representation, because we
can assume M'~+M is also normal and then H*(M',8M';C) =
H{M, 6M;T), where I 1is the corresponding coefficient system.

To generalize this to any covering, we need the following standard

result of covering theory.

N/H +N/G, where G 1is a finite group acting freely on N and
HcG is a subgroup. The covering is normal if and only if HecG

is . a normal subgroup.
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Proof. If X'~»X 1is classified by the subgroup A(:ﬂ1(X)

of finite index, let B be the intersection of all conjugates
of A, of which there are finitely many, so B still has
finite index. B <classifies a normal covering N-X with
covering transformation group G = n1(X)/B and if we put

H = A/B, then X' = N/H. The second statement is clear.

heorem 5.2. Let X' = N/H->N/G = %271 pe as above. Let

=]

f: X+ BG classify the covering N->X. Let Py G»+U(nj),

j =0,...,r, be the list of irreducible representations of G
n.

as in theorem 4.1 (p_ = trivial). Let Fixpj{chm J denote

the trivial component of ijH. Then

r
def (X' »X) = ) (dimFixp.|H).v(x,0.£).
521 3 3
r
Corollary 5.3. a) def(N~-N/G) = ] njy(x,pjf) ,
J=1
b) def (N/H>N/G) = —— §  a(N,q) ,
fHI g€G-H
c) def (N> N/G) = - E a(N,qg) .
geG-{11}
Proof. In the corollary, a) is the special case H = 1

of 5.2, b) follows by applying 4.1 to 5.2, and c), which is
awell known formula (see for instance [ 1 ,[ 1), 1is a special
case of b).

However, we shall prove 5.2 by first proving the corollary
and then deducing 5.2 from it.

Note that in 5.2 and 5.3a) it is irrelevant whether we sum
j =0 or j=1, since y(X,pof) = 0. We have already observed

that def(N->N/G) = y(X,pt) where p 1is the regular represen-
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sentation of GC. But the regular representation splits as the

® ... @mrpr, which proves a). To prove c}),

orthogonal sum o

n
o O

evaluate its right side using the first formula of 4.1 and the
relation L Xj(g) = 0, j*0, mentioned in the proof of 4.1.
Finally b) follows by taking formula c) for the coverings N-N/H

and N-N/G and applying the following lemma.

Lemma 5.4. If N-oX'->X are finite coverings of degree h

and d respectively, then

def (X' »X) = L(def (N-X) - def(N-X')).
This lemma follows by observing that for suitable an—+M'-+M,
def (N> X) = %(signY -hd.signM), def (N-»X') = %(sign Y -h.sign M),
and def (X' ->X) = %(signM' - d.signM).

To prove Theorem 5.2, wWe now insert the first formula of

4.1 into 5.3)b, giving

r
-1
def (N/H-N/G) = — | L x4(9) .y (N/G,o4E) .
il g€g-n =17
Reversing the order of summation and using T ¥x.{(g) = 0 for
geaG J
j*0 gives
-1 L
def (N/H-N/G) = — } )} xs(h).y(N/G,p.f).
lHl 521 hé€H J J
The fact that z xj(h) = IHI.dhnFix(ple) shows that the
h€H

above equation is just what we wished to prove.

S2n—1

Example 5.5. def( »~L(d;a .,an)) = 6(d;a1,...,an),

17

.,an) is Zagier's generalized

where 6(d;a1,...,an) = GO(d;a1,..

Dedekind sum (see Proposition 4.4).
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This follows by applying 5.2 to Proposition 4.4. Alternative-
ly plugging 2.2 into 5.3c) gives one of Zagier's formulas [ 1
for the Dedekind sum. The above example was much of Zagier's

motivation for introducing the generalized Dedekind sums.

Corollary 5.6. If v %221 ig a4 normal covering with

soluble covering transformation group G and n 1is even, then
the denominator of def (X' -X) divides the denominator i,

k = n/2 of the Hirzebruch Lk—polynomial.

Proof. The claim is true for Szn_1-+L(d;a1,...,an) by

Zagier's number-theoretic determination [ ] of the denominator
of generalized Dedekind sums (see §4). It is therefore true for
any‘normal covering X'-»X of prime degree d, since

def (X' »X) is a bordism invariant modulo integers and the rele-
vant bordism group 5*(B(Z/d)) is generated as an Q,—modulo
by lens spaces ([ 1,836). Now any normal covering X' ->X with
soluble covering transformation group is a composition
X'-+X1-+...-+X of normal coverings of prime degree, so the

result follows by repeated application of lemma 5.4.

The denominator i arises purely number-theoretically in

1)

this proof. It would be interesting to understand topologically
why just this denominator occurs. Such an understanding would

hopefully also include a proof of the following conjecture.

Conjecture. Corollary 5.6 is true for arbitrary finite

coverings.

1) A topological proof of Zagier's result on the denominator of

generalized Dedekind sums has been found by Knapp [ 1.
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We can prove this conjecture for 3-manifolds by reinter-
preting the signature defect def (X' »X) as the covering defect
for a certain invariant of—Atiyah and Kreck (see [ ]). This
X2n—1

goes as follows. If is a framed manifold with framing

f say, then some multiple of (X,f) bounds a framed manifold

(Mzn,f), say q(X,f) = 6(M,f), and Atiyah and Kreck define an

invariant &(X,f) = %sign (M). Now we clearly have

Proposition 5.7. If X'>»>¥X is a d-fold covering and

(X',f') 1is the pullback of a framing (X,f) of X, then
def (X' »>X) = 6(X',£') -d.6(X,£f).

Thus the above conjecture follows for 3-manifolds by ob-
serving that every 3-manifold is stably parallelizable, 1i.e.
can be framed, by [ 1, and Kreck has shown [ ] that for framed

(4k-1)-manifolds the denominator of 5(X,f) always divides Hy -

Remark. def (X' - X) 1is also the covering defect for the

Atiyah-Patodi invariant of a riemanian manifold

C(SM,w) = signt - 7 L0, {w & metric on &M),

where ™M is a riemannian 2n-manifold with riemannian metric w
equal to the product metric on a collar d&Mx([0,1]« M of the
boundary, and L{(w) is the signature form associated with this
metric (see [ 1).

Indeed, the integral behaves multiplicatively for coverings,
'since it is locally defined, so it cancels out when one takes

the covering defect.
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