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$1. Introduction

The Witt theory of bilinear representations of a group G
has arisen as the natural domain for certain interesting invar-
iants in the topology of manifolds. For this reason it has
recently been studied for finite G by various people, especially
P. Conner and his students, by A. Bak [B] . ané by A. Dress [D] ,
and for arbitrary G by the author [N1] . The theory is still
very tractable for infinite G , as I hopes this paper shows.
This is an expanded version of the first chapter of the unpub-
lished notes [N1] . The expansion is by some material of chapter
3 of those notes and by the extension of many results from cyclic
to arbitrary abelian groups.

4 A bilinear representation of a group G over a field F
is a representation G —» AUt (V,b) into the automorphism group
of a non-singular bilinear space over F . This representation is
called hyperbolic i{f a G-invariant subspace K<V exists which
i{s its own orthogonal complement. The semigroup with respect to
orthogonal sum of all symmetric or antisymmetric bilsinear repre-
sentations of G modulo the ideal of hyperbolic ones is a group
w+(c;r) respectively W_{(G;F) . Similarly, one defines a Witt
group WU(G;F) of hermitian representations over a field F
with involution, and these groups can also be defined over a ring
rather than a field.

Sections 2 and 3 introduce the basic tools - the main one

being that Witt rings over fields are generated by irreducible

representations with invariant bilinear or hermitian forms. In
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section 4 we calculate the Witt ring WU(G) = WU(G;C) of lerm-

itian representations over € . This is a very pleasant functor

of G . It i{s always free as a group and for compact Lie groups

1t is the usual representation ring. It satisfies the Kiinneth
formula WU(GxH) = WU(G) & WU(H) , a fact which has useful topo-
logical implications [N2]. This formula hinges on the fact that

an irreducible representation over € of GxH splits as a

tensor product of irreducible representations of G and H and

vice versa, a fact which is well known for finite groups, for
which 1t ig usuvally proved using character theory. The proof we
give seems more natural. The same results hold on replacing

by any algebraically closed field E with non~trivial involution.

This 1s a less general statement than may appear at first sight,

4

nce by Artin-Schreler, E  is then the algebraic closure of its
fixed field K

which is real closed, and it is well known that

such fields behave almost exactly like R and

In section 5 we calculate Wt(G;R) . Again the results hold

true for any real closed field. The main result is that the

natural ring homomorphism W (GiR) —> WU(G) (W, = W+GBW_) is
a modulo 2 {somorphism; more precisely, its kernel and cokernel

have exponent 2 and are described quite explicitly.

WU(G) and wz(G:R) are calculated completely for abelian

G ., for instance WU(G) 15 the group ring 2z({&] of the Pontrya-

gin dual of G .

The next section discusses Wt(G;A) for a dedekind domain

A . This is defined using non-singular bilinear representations

{n projective A-modules, and is difficult to handle since it is

#o lunger genexzied by irreducible representations. The larger
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group Wﬂ'd'(G;A) + defined using non-degenerate forms, is much
easier - it is generated by irreducible representations and is

a natural direct summand of wt(G;F) where F is the quotient
field of A . We prove an equivariant version of an exact sequence

of Knebusch [Kn] and Milnor {MH] :
0 —> W (GA—> Wl 9" (Gra) —> [] W, (GiAl)
¥

which relates w‘(G;A) to easier groups. For finite G this
has alsc been proved by Dress [D] ; in this case w:'d‘(c;a) -
W (G:F) .

In sections 7 and 8 we restrict G to be abelian and show
how to reduce the theory to the Witt theory of hermitian forms
(no group acting) over suitable fields. This enables us to obtain
"complete® results over finite fields and complete results modulo
torsion over algebraic number fields and their dedekind domains.
We also say something about torsion in the latter case - it is
always 2-primary of exponent £8 ( £4 in the antisymmetric and
hermitian cases) and we obtaln upper and lower bounds on the
amount of torsion. For instance there is always infinite torsion
if G has an infinite cyclic quotient, an example of importance.

in topology (see Appendix) is
W (1) =~ 278 (2/4 @ (2/2)" .

On the other hand Alexander et al. [ACHV] have shown that

w‘(Z/p;Z) is torsion free if p 1is an odd prime. One can deduce

that W¢(Gtr) is torsion free for any abelian p-group G , finite

or not, 80 infiniteness of G is not sufficient to imply infinite

torsion.

§
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An interesting consequence of these calculations is that

the Kinneth formula (A = T or @ , R = 7[%] )
W, (GXH;AJOR = W (GiA)® W (H;R) @ R

holds for abelian G and H . The same holds true for finite G
and H by Dress (D] . I do not know if this holds in general.
A positive answer would be of topological interest.

In section 9 we generalize the definition of character of

a representation to give a ring homomorphism
G
X : WU({G) —2 € '

1f G is a compact Lie group, sO as already mentioned WU{G)

is isomorphic to the representation ring, this is the usual char-
acter and is hence injective. It is also injective for abellan

G , but fails to be so for the free group of rank 2 .

In section 10 we describe the behavior of Witt rings for
direct limits of groups.

An appendix describes briefly some directions of topological
application,

There is some relationship between the theory discussed here
and the algebraic L-theory built up in the series of papers of
c.T.C. Wall ([W2] and the literature therein quoted). The major
difference is that L-theory uses G-modules which are projective
over the group ring. All the same, there are intimate connections
between the theories, particularly for finite G , and therefore
inevitably also some intersection with Wall's results. We have

not gone into these connections, 5ee wall (loc. cit.) or bress [Dl.

I would like to express my appreciation to the various ‘
people, especially M. Kreck and F. na?mond, who by their interest
and otherwise convinced me of the desirability of rewriting these
results for a wider audience, and also to the many people who
in conversations or by their comments on the original version
have contributed to this paper.

I am grateful to the referee for pointing out that the
following important reference had eluded my attention:

A. Fr6hlich, Orthogonal and symplectic representations
of groups, Proc. London Math. Soc. 24(1972), 470-506.
This reference includes, among other things, some of the results
of §§2-6.

As the referee also points out, in §1 the result (7.2) {where
W1t€ groups are tensored with R = 7{1/2]) is relatively easy to
prove, while results given less prominence lie deeper. Indeed (7.2}
follows from (7.14), and (7.14) on tensoring with R reduces to
the simple statement WU(E)®R = WU(EQR) @R , which also holds in

the nonabeltian case, see for instance {w2]) and the papers leading

up to it.




2. Wittt ringsof bilinear representations over fields

In this section we discuss the general theory of the Witt
zing of bLilinear representations of an arbitrary group over a
field. In the next sections we shall show how these results
extend to Dedekind domains and to sesquilinear representations.

If F is a field and € = 31 , an €~bilinear space V
over F 1is a finitely generated vector space V over F
together with a non-singular F-valued € ~symmetric bilinear form
<u,v> on V . Non-sinqular (or non-degenerate) means that the
correlation

b: V- v" = Hom(V,F)

defined by b(v)(w) = <v,w> is an isomorphism, and €-symmetric
15 eguivalent to saying that b : v v* equals ¢eb after
identifying V™" with V in the usual way. The group of iso-
metries -of V (that is, F-linear automorphisms t of V
satisfying «<tu,tv> = <u,v> , or equivalently t*bt = b) will
be denoted by Aut{V,b) . If F has a topology then Aut(V,b)
will inherit a topology.

If G 1is an arbitrary (not necessarily finite, not neces-
sarily discrete) group, let RG(G:F) be the Grothendieck group
of isomorphism classes of representations of G 4in €-bilinear
spaces over F , with orthogonal sum giving the group structure.

R_,(G:EW @ R+1(G;F) 1s actually a (2/2)-graded ring with
product

€

induced by tensor product of representatives (for reasons that

R, (GiF) @ R, (GiF) ~> R_ .
2 1

(G:F)
2

are clear later one actually takes the negative of this map when

61 = Gz = =1}).
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are clear later, one actually takes the negative of this map

when 61 = €, = -1},

2

Terminology. We shall use the bilinear form «<,» and its
correlation b interchangeably, writing b{v,w) instead of
<V,w> . G-representation module, G-module, G-space, etc. always
mean a vector space V with a G-action given by a representation
G —» GL(V) . G-maps are linear maps compatible with G-actions.
The adjective "invariant" always means G-invariant. We abbreviate
the subscripts +1 and -1 to + and - , writing for instance
R+(G;F) instead of R+1(G;F) .

When we talk of irreducible or indecomposable representations,
it is always forgetting bilinear forms. Thus irreducible means
having no non-trivial proper subrepresentation and indecomposable
means not decomposable as a non-trivial direct sum (not necessar-
ily orthogonal sum). Although we allow G to be infinite, the
usual theorems about uniqueness up to isomorphism of the irredu-
cible constituents and indecomposable components. of a representa-
tion still hold, since they are just special cases of the Jordan-
HO8lder theorem and the Remak-Krull-Schmidt theorem for groups
with operators and involve no restrictions on the size of the set
of operators. However, it is not true in general that indecompos-
able representations are irreducible, even for bilinear represen-
tations; an example is the representation I B 4 Sp(Rl) given
by 9(1) - (é :) € Sp(Rz) . This causes difficulties in the study
of Rc(G;F) , however we shall see that modulo hyperbolic repre-

sentations these difficulties vanish and the theory becomes quite
tractable.



A bilinear representation G - Aut(V,b} {s called hyper-

holic if V contains an invarjant kernel, that is a subspace X

L
with K = K and CK = ¥, Since for any subspace K<V one has

. < 1
dim K + dim K7 = dim V, it is sufficient to require K ck® and

2{dim K} = dim V. The hyperbolic representations generate a sub-

group T < RQ(G;F) and we define the Witt group as

W (GiF) = R (G;F) /T, .
In fact I_® I_ 1s clearly an ideal in R _(G;F) & R_(G;F) , 8O
W, (G;F) ® W_{G;F)

inherits an (2/2)-graded ring structure.

Remark. If p: G —» Aut{V,b)

is a bilinear representation,
then the representation obtained by reversing the sign of b
represents the negative element in we(G;F), since

(v,bY & (V,-b)

{{v,v)|veVlc

is an invariant kernel. We will therefore denote

this representation by TP - It follows that every element of

w%(G;F) is represented by an actual representation, rather than

a difference of representations.

Lemma 2.1, If a bilinear representation e: G —>Aut(V,b)

represents_zero in We(G:F), then

P is hyperbolic.

P .
roof. By definition of We(GiF) there exists a hyperbolic

representation T : G —> Aut(W,b'} such that r ®T is hyper-

bolic, Let LcW and He V@® W be invariant kernels for T

and e ®T ; we claim that K = p1((V ® L) NH ¢V 4is an invar-

fant kernel for e - We can write K in the form

K=¢veV | awelL such that (v,w) ¢ H} ,
which makes {t clear that Keckt « Thus we must only show that

dim K = (dim V)/2. Let dim V = 2r and dim W = 23, Since the

kernel of Pyt (VOL) nH —» K s ({01 & L} n H#, wé have
dim K = dim({Vv e® L) 0 H) - dim(({0)y ® L) A 1) .

. * + . ’
Oon the other hand, ({(ve L) nH) = (V@ LY + 1t = ({0} &L) +H,
sO

dim(V@ L) n H = 2(r+s) - dim( ({0} & L) + H) ’
and inserting in the first equation gives
dim K = 2(r+s) - (dim( ({0} ® L)} + H)} + dwm(({0) & L) n H))
= 2(r+s) - (dim({0} ® L) + dim H)
= 2(r+s) - (str+s) = r ’
as was to be shown.
Recall that for a degenerate form b(,) on V, the radical
{s the subspace {v € V | b(v,w) =0 for all w € vV} . We

formulate the next lemma so that it holds for more general rings

{see section 6).

Lemma 2.2. Given a biline&r representation ? : G —YAut(V,b’

and an invariant subspace L eV with L © L*', then the

K
bilinear form on V restricts to a degenerate form on L with
radical LLL (of course in cur present gituation L*L = L) and

L
thus b induces a non-singular form on A !.."'/L'L . Let

f': G —>Aut{V',b'} be the representation induced by e - Then

Proof. Let =V' be V' with the negative form and

(18 L*-avv' the projection. The orthogonal sum V @ (-¥'}) has

an invariant subspace K = {{x, w(x}} | x € L'} which certainly
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catisfles K K. But dim K = 2dim(V @ (-V')), so in W (G;F)

we have (V ]+ (-?‘J = 0 , as was to be proved.

Corollary 2.3.

sentations.

we(G:F) is _generated by irreducible repre-

Proof. If @: G ~>Aut(V,b) is any representation, we
wish to write it, modulo the equivalence relation in W (G;F),
as an orthogonal sum of irreducible representations. Let W c V
be an trreducible G~subspace. If the form on W is degenerate
it 18 actuvally zero (as otherwise the radical would be a pProper
non-trivial G-subspace, contradicting irreducibility), so by
Lemma 2.2 we can replace V by HJYW. If the formon W {is
non-degenerate then V sgplits orthogonally as V=W & W

(this uses that F is a field). Thus the cerollary follows by

induction on dimension.

Now for any irreducible representation f: G —¥GL(V)
(no bilinear form) let
W (GiF, ) = (IT] € W (GiF) | every irreducible
constituent of T 4is isomorphic to P

after forgetting bilinear form} .

Theormm 2._4. WE(G;F) - ? We(G;F, ‘:) 48 a group, sum

over all isomorphism classes of finite dimensional representations
of G. W.{G;F, f) + 0 1Af and onily if e admits a non-trivial

invariant é-symmetric form.

Proof. By corollary 2.3 we know that W (GiF) = SW(G:F. ),
¢

80 we must just show this sum is direct. Suppose we have an
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irreducible representation I G — GL(VO), and x € we(G;F,/4) n

« Z v,
pfu
represented by a representation

{(G;F, F))' We must show that x = 0. Now x can be

MO oo ®p: GC—ICL(V @ 0. BV ) = GL(vg)

together with a bilinear form bo on Uo = Vg and also by some

representation

F1 ... B Fm: G -—9GL(V1 ® ... 8 Vm) ' ((310/-4. (Ji irred.)

together with some bilinear form b1 on U1 - v1 @...e;vm. The
G-module U = Uo 2] U1 with form (bo,—b1) represents xX-x = 0O
in W, (G;F), 8o it is hyperbolic by Lemma 2.1. Let K €U be
an invariant kernel, and put Ko =K DN (Uo ® 0, K1 =K N
({o} ® UI)' Now K @& K, <K and K/ (K & K,) maps injectively
into both UO/Ko and U1/K1 by the maps K/(K, @ K,) ~—>
(Uo + U1)/(K° + K,)-"é Uj/Kj' J = 0,1. Thus any irreducible
constituent of K/(Ko <] Kl) must be simultaneously of type M
and of type Py for some 4, which is impossible. Thus
K/(Ko 2] Kl) =0, 80 K = Ko -] K1. It follows that Kj is an
invariant kernel in Uj for J =0,1, so ¥ =0 as was to
be shown. '

It remains to show that wé(G;F,F }) ¢« 0 4f and only if
admits a non~trivial € -symmetric invariant form. The “"only {f"
is trivial by corollary 2:3, and the "4{f* is clear by observing

that ? together with such a form must represent a norizero

element of we(G;F). by Lemma 2.1 and irreducibility of e -

Y
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3. wWitt rings of hermitian representations

Given a field F together with an involutory automorphism

x % on F, then for €=*1 an €-hermitian space over F

is a finitely generated vector space Vv over F plus a non-

singular F-valued € -hermitian form b{u,v) on V. That is,
b{u,v) 1s linear in the first variable and satisfies the identity

b{v,u) = €b(u,v). Non-singular means as usual that the correla-

tion (also denoted by b)
b :Vv—>V*= Hom(V,F)

{(where V is V with conjugate F-structure), defined by

b(v){w) = b(v,w), is an isomorphism, and € -hermitian is equivalent

to saying that B': VE* 5 V¥ equals eb after identifying

v** with V.

The Grothendieck group RUe(G;F) and Witt group WUG(G;F)
of & -hermitian representations of a group G are defined pre-
cisely as in the bilinear case (which is the special case that
the involution is trivial). Now suppose the involution is non-
rrivial. Then it has at least one eigenvalue -1 (as & linear
mapping over the fixed field K < F),

with A= =X .

so there exists AEF

Then any € -hermitian form bé(u,v) determines

a (- €)-hermitian form b_ (u,v) by b_(u,v) = b Aun,v). Hence

we get natural isomorphisms (after choosing X ):
RU _(G;F) & RU_(G:;F)
WU+(G;F) T Wu_(G:F)

so we shall drop the index and only consider the greups

RU{G:F)

WU(G; F)

g e
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of hermitian representations of G.
The discussion of the prev ious section extends without
change to the hermitian case, so in part;cular we get (with the

obvious definitions):

Theorem 3.1.

WU(G;F) = @wu(s;p,()) as a group, sum
r

over all isomorphism classes of irreducible finite dimensional

repregsentations (@ of G. NU(G;F.() « 0 if and only if e

admits an invariant non-trivial hermitian form.
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§4. Hermitian representations over algebraically closed fields

Until further notice our field is always ¢ with conjuga-

tion as involution. We abbreviate WU(G;C}] by WU(G). We intend

to prove the following results; in remark 4.8 we describe how

they generalize to arbitrary algebraically closed fields.

Theorem 4.1, If P G —>»GL(V) 4is any irreducible repre-~

Sentation over € then

admits an invariant

WU(G: p) =7 if P
hermitian form (which is_then unique up to sign,

Ehism) and wu(g; P) = 0 otherwise,

modulo G~isomor-

With Theorem 3.1 this gives immediately

Corollary 4.2, WU(G)

is a free abelian group, with one

generator to each isomorphism class of irreducible representations

?: G — GL(V)

which admits an invariant hermitian form.

Since any representation of a& compact Lie group admits a

hermitian metric, we get:

Corollary 4.3. For a compact Lie group WU(G)

is canont-~

cally isomorphic to the usual representation ring R{G).

We shall also prove the following result. '

Theorem 4.4. For any two groups G and g the natural map

WU(G) @ WO(H) —> WU(G % H)

?

induced by tensor product of Iepresentations, is a ring isomorphign

The most important tool will be the classical Schur lemma,
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which is well~known for compact G but sti{ll holds for any G:

Lemma 4.5. (Schur's lemma) Let G —-»GL(V) and G —> GL{(W)

be irreducible complex representations. Then

Hom, (V,W) = 0 if VvV FW as G-spaces,

mn

= ¢ if V=W as G-spaces.

Proof. Any non-trivial linear G-map U ~—»W must have kernel

zero and image W by irreducibility of V and W and is hence

an isomorphism. If V & W, without loss of generality V = ¥,

and for any isomorphism ¢t V=V and any eigenvalue A of P

the G-map p - A(1d)

is a non-isomorphism, hence zero, so

¥ = A(id), proving that Hom (V,V) & c.

Proposition 4.6. Let P: G —¥GL(V}) be any irreducible

representation over €. Then V admits an invariant non~sinqular

hermitian form b(,)

if and only if V € V* (as G-representation

modules). In this case the form is unique up to multiplication

by non-zero reals and there are exactly the two forms &b

G-isomorphism.

up to

Proof. The "only 1f" is clear since the correlation
- ~ ST
b: V- y* gives an isomorphism. Conversely suppose V &V as
- - A
G-modules and let c¢: V~>»V™* be an isomorphism. Then T*%: vV

is also an isomorphism, 80 by Schur's lemma €T« Ac for some

A€C. Conjugate dual of this equation gives c = ASY so
A . 1 Any other G-isomorphism b: V—>V* 1s of the form
b= HC and the condition that b defines a hermitian form,

namely b = 'E‘, can be written Hc = /'D\ c, which is equivalent



aeni ndd

P

N R

-~ 16 -

2
to (/L u® = A, which can be solved for M since AL =1,

Furthermore the solution M and hence also the hermitian form

is unique up to multiplication by nonzero reals. Finally G-auto-

morvhisms of V multiply the form by positive reals (since such

an automorphism is o-id with x€ € - {0} and b( av,xw) =
% b{v,w), so there are exactly the two forms b up to
G-isomorphism.

Proof of 4.1. To prove Theorem 4.1. it only remains to prove

that 1f €: G —»Ahut{V,b) is an irreducible hermitian represen-
tation, then [f] has infinite order in WU(G). Suppose we

have a finite orthogonal sum W =V @® ... ® V = nV which is hyper-
bolic, say K<SW 48 an invariant kernel. Now the complex vector
space W' = HomG(V,w) has dimension n by Schur's lemma; in
fact the n naturxl inclusions ik: VIW=nv, k= 1,...,n ,
form a €-basis. W' has a hermitian form b' as follows: choose
a véeVvV with blv,v) ¢+ 0, say blv,v) = A, and for f,g € w'
put b'(f,q) = )\_1bw(f(v),g(v)). This is independent of the

choice of v, 1in fact with respect to the above basis of W'

this form has matrix

and is thus definite. On the other hand K' = HomG(V,K) c W' s
a nontrivial subspace on which the form is identically zero,

which is a contradiction which proves the theorem.

L R
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To prove theorem 4.4 we shall need the following proposition,
which again is well-known for finite groups, but still holds in

our present situation.

Proposition 4.7. Any irreducible representation (.» : GXH —

GL(V) of GXH 4is isomorphic to the tensor product ot of

unique (up to isomorphism) irreducible representations

T: G —PGL{W), T':H —>GCL(W'). If P admits a hermitian

form, then so do T &8nd —<T' and (J = t'('Qg'c' as hermitian

representations.

Proof. Consider V as a G-representation module by
restricting (’ , and let WcV be any irreducible G-subspace.
We show first that V splits as a G-space as the sum
V= w1 8 ... ® ws of isomorphic copies of W. For suppose we
have already W, ® ... @ W, < V. Either this is an equality and
we are done, or by frreducibility of (’ there exists an h € H
with hw ¢ W, ® ... ®W and then by irreducibility of the
G-module W ¥ hW it follows that (W, @ ... ® W) N k¥ = 0, so0

w.l ® oo0 D wk ® hw =« V., We can then put hW = W and continue

k+1
inductively.

Define W' = Hom,(W,V)}. This space inherits an H-stracture
from V and Schur's lemma shows it has dimension s. The eval-

uation map

W e Homc(w,v) —y v

is obviously epimorphic, hence tsomorphic, since the dimensions

of both sides are equal. It hus gives the required tensor product

representation of (3 , and it follows that W' = Homc(w,v) must
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be irreducible, as otherwise ¢ would not be. In fact @' is

an irreducible H-constituent of Vv, and v clearly splits as

an H-module into isomorphic copies of W'. Thus T and T

are uniquely determined up to isomorphism.

Now suppose V has a (GXH)-invariant hermitian form £,

Then V=V* ag (Gx H)-modules, so certainly V & V™ as

G-modules. Thus the irreducible G-constituent #* of V* ig

isomorphic to some irreducible G-constituent of V, hence

isomorphic to W, so w admits an invariant hermitian form b
by proposition 4.6. Similarly W' admits an invariant hermitian
form b' and by the uniqueness statement of 4.6 we can adjust

b' by a non-zero factor so that £ = b ®b'.

Proof of theorem 4.4.
WU(G) & WU({H) —> WU(G % H)

and theorem 3.1,

The surjectivity of the map

is immediate from proposition 4.7
and injectivity follows too if we show that
2 tensor product Ta@&T'; GXH —> GL{(Waw')

of irreducible
representations T and !

is irreducible. But suppose we

have an irreducible constituent of T@7T', By proposition 4.7

it has the form ¥ @ ¥' for some irreducible representations

¥ and y' of g and H. By comparing the irreducible

constituents of ¥@y%'|G and TO®T'|G we see that ¥ = T

Similarly ' & 7', so Yey' = tTer'.

Remark 4.8. The above results extend as follows to any

algebraically closed Field E with non-trivial involution. Let

K be the fixed field of the involution. Then {E:X] = 2, 3o

by Artin-Schreier (gee for tinstance [J])) K is real closed,

P
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E = K(J =1) and the {nvolution {s V-1 = -J=1. All the

above proofs thus go through with absolutely no change.

Theorem. All the results of this section hold as stated

f ¢ 4is replaced by an arxbitrary algebraically closed field

with non-trivial involution.

Example: G abelian. Then any irreducible representation

of G is 1-dimensional, that is,it is a homomorphism
G > GL{1,E} = g* .

A hermitian form b on E has the form b{x,y) = AxY¥ for

5

some }\ in the fixed field K of the involution, and a linear

map /4 € GL(1,E) = ¥ pregserves this form if and only {if
>\(/ux)(/7-§') = Axy for all x and y, that is M= T
Thus the set of all irreducible representations of G which

preserve some hermitian form is precisely

3= Hom(G,U{1,E)} < Hom(G,GL(1,E)) '

where

u(1,m={,ues'|/»/h'=11 .

Hence, by the above theorem,

Theorem 4,9. If G 4is abelian and E is as above, then

WU(G:E) = #{G)]

A
where the right side means the group ring of G. This is a ring

isomorphism.
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In the special case E = @€ , we have U(1,E) = S1
’
circle group, and 8

is the usual Pontryagin dual of G.

1

example for G = 7 , so
’

G =S5

WU(Z) = 2[51 1

the

For
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5. wt(c) : Bilinear representations over R

We shall abbreviate w+(G;1R) by w+_(c;) in this section.
Given a (+1)-symmetric buir-\ear real G—m;dule v, we can extend
the form to a {(+1)-hermitian form on VXC and then in the non<
hermitian case multiply the form by +{ to make 1t hermitian.

This defines a map
¢: W (G) ® W_{G) —> WUu(G)

{which is a ring homomorphism if one takes the sign convention

of the footnote on page 2).

Theorem 5.1. ¢ is an isomorphism modulo torsion of

exponent 2 (that is Ker¢ and Cok¢) are torsion gqroups of

exponent 2).

This theorem follows easily from the detailed calculations
of w+(c) below (see corollary 5.5), however it can be deduced

with much less work as follows. We just sketch the proof.

Proof. There are maps \|)+= WU(G) =7 W {G) by forgetting
complex structure on a hemitia; G-module an:l taking real or
imaginary part of the hermitian form. If we write y’l = \‘U+ - \‘g_s
WU(G) —> W_(G) @ W_(G) , then the following facts are clear

{at least up to sign, but the signs are easily checked):

a) V¥ ¢ = multiplication by 2 ;

b} Pylx) =% + x for all x € Wu(G) :

c) @\Il_(x) =% - x for all x € WO(G) .
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a) implies that the kernel of 4) and the cokernel of y

2, and b) and c) imply that ®Y s also mules-
pPlication by 2, 8o the cokernel of ¢

have exponent 2,

have exponent

and the kernel of w

Since WU(G) 1is free as an abelian group, theorem 5.1

implies that W, (G) and w_(G) only have torsion of exponent 2.

To obtain a more detailed description of these groups, we need

the real versions of Schur's lemma and proposition 4.6. These

are as follows.

Lemma 5.2

(Schur's lemma). If G D GL(V) and G — GL (W)

are_jrreducible representations over

R then

HomG(V,w) = 0

1f v¥w, 1 vay

(without loss of generality V = W}, one

of the following three cases occurs, where U

always denotes an

irreducible G-module over @ :

vehc?u;

V@ c=~vei, uvq,;

I. End (V) R and

II. EndG(V) ¥ ¢ and

IIT. End (V) ®H and Vace=ved, vayg.,
Proof. Any G-map

V=W must be an isomorphism or zero

by 1rreduc1b111ty of V and w, proving the firgt statement

and showing that EndG(V) must be a division algebra over R.

Now it 1s easy to gee that one of the following three possibilities

holds: V®C irreducible, vac SUeU with Us0, vecs
U U with y & U, where U 1is irreducible over ¢,

that EndG(V) @C= EndG(V @C)

‘Using

+ it follows that EndG(V) is

respectively 1, 2 or ¢ dimensional over R, and hence must be

respectively R, € or M,
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proposition 4.6 must be replaced by:

Let e t G —?GL(V) be any irreducible

Proposition 5.3.

representation over R,

Then V admits an {nvariant non-singular

bilinear form b if and only if v &v™ as G-modules. The

possibilities are then given by the following table (roman number-

ing as in Schur's lemma):

Case Forms on V Fnrmg_?zomzrp:TS;c
Symmetric lAntisymmetric l Symmetric Antisymmetric
Ia (®~{0))-family - ‘ b, b -
Ib L - (R-{0))-fami 1y - b, -b
I1 a (®-{0)) ~family (®-{0})-family by, -b, by, b,
I b, (¢-{o}h)-family - b(& -b) -
II b_ - (c-(0))-family - b( -b)
III a m-{o})~family (IRJ-(O})~fmnily b, -b, b, (= ~b,)
I b | ®-(0)-family | (R-(0))-family by (= -by) by b,
Remark. Note that in the (b)~cases any symmetric form which

occurs has signature zero (since it is isomorphic to its own
negative). In particular these cases do not occur for compact
or abelian Lie groups, since V then actually has an invariant
positive definite form. It is not hard to find examples for all
the (b)-cases with G free of rank 2. As is well known, the
cases (a) all occur already for finite groups.

Before proving the above proposition, let us deduce the

structure of ®_(G). This is described completely by theorem 2.4

together with the following theorem.
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Theor . . ) .
Theorem 5.4. Let p: G ->GL(V) be an irreducible corollary 5.5. Ker ¢ = Torsion(W (G) ® w_(G)) and
repre t : i
sentation over R . Then with the classification of the oker ¢ = €D (#/2) , sum over all tsomorphism classes of real
previous e
proposition we have rreducible representations of type fIa, YITa, IIIb.
of type: 1a b I1a
IIb
+ 1b_ iIla IIIb proof of proposition 5.3. We interpret a bilinecar form on
w {G; =
+ ()) 7 o z 2/2 0o z 2/2 * as a G-map b: v-—>v¥*. If V 1ig irreducible, b must be
w_(G; e) = o) 7 7 o 2/2 2/2 2 n isomorphism or zero, so as a form b is non-singular or

.ero. Note that 4f b & O then by replacing b by either b+b"

P * -

roof. The cases wé(c, F) =0 or /2 are immediate sr b-b" if necessary (one of which will be non-zero) we can
L3 }

from the previous proposition, so all that remains to be checked > o that b= £b wi €= 2l We will assune b hes

is that 1
n the remaining cases £ together with an invariant seen thus chosen.

€ -bi .‘
linear form b (which by assumption satisfies b # -b) Conside.t the map v(P. EndG(V) -%EndG(V) given by

represent B :
nts an element of infinite order in we(G). But we have ((’(f) b £'b. The following properties are easy

2lrea2dy remarked )
¥ rked that the only torsion in NG(G) has order 2, 1) @ 1is an R-algebra anti-isomorphism of EndG(V) = R,
and {f D
P f were hyperbolic then any invariant kernel ¢, or H ;
XcV@®V woul
d be the grouph of an isomorphism (V,b) £ (V,-b) ii) (Pz = id ;
F]

contradicting the assumption,
uy BN e e@mM N1, for M Endg(V)-(0) = hut(Vh:
Since we sghall not need it, w
- s Wwe leave to the interested iv) Iu*(b)\),“ =b ?(f‘))‘/‘ for )"Iu € hutg(V) -
er the details of the calculation of the map d): W (G)® W_(« v
+ -

wWU(G). rm on V must have the form

Since any invariant bilinear fo

bh with )€ Autg(V), property 1ii) implies that the set
(- € )-symmetric invariant

The result is that it is trivial on torsion, and on the

free part it splits according to types I, II, III as a sum of
maps of the form: of all €& -symmetric, respectively

forms on V 1is

I. - 7 with matrix +(1)
(LM | )\"ce()\) = 1} respec. (bX | )‘_1‘?0" - -1} ,

. 207 5707 wienmatrtx #(}] 7))
-4+
while {v) says that the set of forms equivalent to a given form

IIT. Z - 7 with matrix +(2)

bX by G-automorphisms of V 1is

b | A = So(/“))\/” for some u € Rut V) .
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Case I: End.(V) € R. Then (p= 4. Thus the only forms on V
are bX, A €® -{0), and the forms equivalent to a given bA
are b)\/xz + MER -{0)] . Thus we get Ia or Ib .according as

b 1s symmetric or antisymmetric.

Case II: Endg(V) % €. Then cp = conjugation or ¢ = id. 1f
¢ = conjugation then by the above the € -symmetric forms are
all bA with M€ R -{0} and the (-¢&)-symmetric forms are
all bA with A € iR ~{0)}. The forms equivalent to a given
bA are all b)\f/u with 4 € € ~{0}, that is all bAr with

r € R*. Thus we get case Ila., If = id then every bA '

Nee-~{0}, is € ~symmetric, but they are all equivalent to b
since b) = /u'b/u with Ve )\‘/2. Thus we get the two cases
IIv according as

€ = +1 or £ = -1,

Case IXI: EndG(V) ¥ #. There are again two possibilities for (,0 P
namely @ has 3 or 1 eigenvalues equal to -1 (just 2 such
elgenvalues cannot occur for an anti-isomorphism). In the first
case it is usual conjugation (p()\) = 'X and in the second case
1t 18 @ (A) = « VX« for some « € R(1,3,k) -{0}. In the
latter case, replacing b by b« replaces ('0 by conjugation,

so we can assume { 4is conjugation. Then
{ € -symmetric forms} = {b A | ATV = 11 = (b [Aer -{01},
{(- € )-symmetric forms} = (bA | A™VA w-1}= {bX |A€R(L,.k)-{0}}.

The forms equivalent to b are all bF/u with u €H -{0},

which is all br with r € R*. The forms equivalent to bi are

all b,?x,« with  m€ 6 -{0) which is easily checked to be all

b» with X€ R(1,3,k)=(0}. Thus we get case IIla or IIIb
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according as € = +1 or € = -1,

Example 5.6 : G eabelian. The irreducible representations
of G are all of dimension £ 2. The 1~dimensional ones which

admit an invariant form are just the homomorphisms
G = {#1) =R = GLU1,R) .

Each of these is of type Ia and thus gives a Z-summand of
w+(G). The two~dimensional representations which admit an invar-
iant form are all obtained by forgetting complex structure from

a representation

p: 6 —> v cc%=cn(1,6)  with p o) ¢ (1)

and are all of type 1Ila. Each thus gives a Z-summand both in
w+(G) and W_(G). Note that (7 and (’7 both give the same
real representation, so to obtain unique representatives one
must choose one representation from each complex conjugate pair.

In pérticular, w+(c) ® W_(G) is torsion free if G 1is abelian.

Remark 5.7. The rerults of this section hold as stated for
any real-closed field K. One must replace R, €, H# throughout
the proofs by K, 1its algebraic closure E, nn.d the quaternionic

algebra H(K) over X, see remark 4.8.
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§6. Dedekind domains

Let A be any Dedekind domain (for instance 7, which is
the example of most interest to us here). An € -bilinear space
over A is a finitely generated projective A-module V together
with a non-singular € -symmetric bilinear form on V. It is now
important to distinguish between non-singular, which means that
the correlation b: V —>V* = Hom(V,A) 1is an isomorphism, and
non~-deqenerate, which only means that b is Injective. We can
define representations of groups in € ~-bilinear spaces over A
in the obvious way and thus again define a Grothendieck group
Rt(G;A) and a Witt group w+(G;A). The following lemma is impor-

tant to extend some of our earlier results.

wersma 6.1, Let Q: G —% aut{V,b) be an €& ~bilinear
representation, and X ¢V an fnvariant submodule. The following
statements are equivalent, where v-yK® is the composition

»
v > vri, gt .

1) K = K- 1
1) 0O =YK=V = kY is exact;
1i4) K=X> and K cV is a direct summand;
iv) 0 —» K =V —»K*—> 0 is exact;

v) K = L‘L where L © V has rank %rank V and L c L¢ .

Proof, Ker(V —K%)  equals x+ by definition, so 4) =>iil.
Now K, as a submodule gf a finitely generated projective module
over a Dedekind domain, is projective, so k¥ is projective, soO
Im(v—> k%) is projective, so the inclusion K c V splits, proving

11) =» 114). Certainly 1ii) = iv) =1} , 8o it remains to prove

- Wl”

1) ©>v). The direction 1) = v) is trivial, taking X = L,
and v) => 1) follows by observing that K and K7 are direct

L i
summands of V of equal rank and K < K, so K =K.

Tt follows that lemmas 2.1 and 2.2 extend without change.
To see this for 2.2 we must check that {f L <V satisfies
L c LL , then the induced form on LL/LLL {s non-singular. Inm

other words that the last map of the sequence
i 1
0 —> 1** —> Lt —> Hom(Lt/LT T, R)

is an epimorphism. If ¢ € Hom(LL/L*L,A) , interpret f as a

map Ll-—)A vanishing on LLJ' and extend it to a map g: v —¥A
{possible since LL cV 1is a direct summand by an argument in

the proof of lemma 6.1). Now g = b(v) for some v € V and since
b(v) vanishes on LlL . V£ LJL‘ - L* , as was to be shown.

Unfortunately the proofs of 2.3 and hence also of 2.4 do not

extend. We shall see later that 2.4 can be replaced in the

‘arithmetic case by the statement:

proposition 6.2. 1f F, the field of fractions of A, {8

an algebraic number field and we sum over any set of representa-

tives of isomorphism classes over F of irreducible representa-

tions over A, then the natural map

Qe) W lGiA, ) — W (GiR)

i{s injective with torsion cokernel of exponent < 4.

More important for the calculation of we(G:A) will be the

results:
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Proposition 6.3. If F {s the field of fractions of A,

then the natural map W (G:A) ——)Wé(G;P) is injective.

.

Proof. If x € W_(G;A) 1is represented by the bilinear
G-space V over A, then the image x' ¢ we(G;F) is represented
by V®F . If x' =0 “then V ®,F has an invariant kernel K
by lemma 2.1 and intersecting this with the lattice V c V ®AF
gives an invariant kernel in V, 80 x = 0 (see {OM], §81

for a discussion of lattices in F-vector spaces).

- The same discussion goes through for the Witt geoup

Wg'd'(G;A) of non-degenerate (instead of non-sinqular) bilinear

€ ~symmetric representations of G over A, so the natural map

Wz'd'(G;A) -—)we(G:F) is also injective. In this case the image
is easlly described. A representation G -——)'GL(F“) is said to
be defined over A 4f there exists an invariant A-lattice of
rank n 1in F". Such representations with invariant bilinear

forms generate a subgroup of we(G;F) which we shall call
We(G;F,A).

Proposgition 6.4. we(G;F,A) is _the image of the injection

W:'d'(G;A) —> W (G;F). As a group

W_(G:F,A) = EFBWG(G;F.(’) ,

sum over all irreducible representations P which are defined

over A,

Proof. Suppose (7 : G -—)Aut(Fn,b) admits an invariant.
A-lattice V < F"' of rank n. Then b(V®V) c F is a finitely

generated A-submodule, hence a fractional ideal, so by multiplying
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V by a suitable a € A we can assume that b(V&V) ¢ A , implying

the first statement of the proposition. The second follows from
theorem 2.4 and the fact that a subrepresentation of a represen-
tation defined over A 1is again defined over A (by intersecting

the invariant A-lattice with the subrepresentation module).

We can now improve the statement of proposition 6.3,

Theorem 6.5. There is an exact segquence

0 =3 W_(G:A) —> W_(G:F,A) 2 D w (Giaryp)
e Y €

sum over all maximal ideals Jf’ f A,

Proof. The proof is very similar to the case when there is
no G (see Knebusch [Kn]; Knebusch and Scharlau [KnS]; Fr8hlich
{F]; Husemoller and Milnor [MH]), so we just sketch a proof
briefly with A = ¥ to simplify notation (in this case the map
d i3 natural, but in general it depends on choices of embeddings
A/x < F/A).

Given a finitely generated Z-torsion module T (i.e. a
finite group), a bilinear formon T 4is a map b: T®T — Q/T ,
and € -symmetric and non-singular are defined in the natural way.
Hyperbolic means there exists a KcT .(not necessarily a direct
summand) with X = K (equivalently: K ¢ KT and 1K} = %[T[ Y.
Let WE_(G:T - tor) denote the Witt group of representations of
G 1in non-singular € -symmetric bilinear torsion modules modulo
hyperbolic representations.

Lemmas 2.1 and 2.2 and corollary 2.3 carry over to the torsion

situation without change using essentially the same proofs.
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we first define a map ao: WE(G;Q,Z) r%We(G:'X -tor) as
Ffollowsg=z given a bilinear representation @ ¢ [ aut(@”,b)
which is defined over g, choose an invariant z-lattice
ve @ of rank n satisfying b(v®V) ¢ T and put LA
fw € o™ | blv,w) € 7 for all v € V} . Then V' {s also an
fnvartant Z-lattice of rank n and V& vyt , so T = v'/v
{s = torsion module. Furthexmore b induces a non-singular
G~t{mwarfant bilinear form c: *®T —> 0/% Dby cl{miv), ni{w}) =
bBlw,w) mod T , where T: V' —T 45 the projection. of course
(T,c) depends on the choice of V., but we shall see that its
Witt class does not.

Firast observe that if F above is hyperbolic with invar-
yanz kernal K e o" then L = m(XKHh v'y €¢T 4is an jnvariant
kernel in T. Indeed L C Lt 1is trivial; to show et
suppose we have mri{x) € Ll, that is b(x,v") € g for all
v € K V', Since KB v' is a direct summand in V', the
map Ipfx,~): KNV — 3 extends to a map v'—> 7, Since V
and V' are dually paired by b, this latter map has the form
b&xon—» for some X € V. Then X=X, €K nvV' and 7r(x-xo] =
T (x), so wx) € L as was to be shown.

For any ¢ and any two bilipear torsion G-modules T‘
and TZ constructed as above using different qhoices of V,
the difference T, -] (—Tz) is constructible from p & -p and

is hence hyperbolic. Thus we have obtained a well-defined map
boz WE(G;O,T) —> we(c;z' -tor} .
we claim

Y
o —> W (Gi7) —Ls w (6103 =25 W, (G;7 -tor)
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i{s cxact. Indeed Im i < Ker 3, . Now supposc f: G -3 nue (@, by
satisfies BO( Pl = 0., Let V < Qn , V' and (T = v/v,c)
be as above. As mentioned before, lemma 2.1 holds for (T.C),
that is we can find~an i{nvariant kernel L T , s8Y L = K/V.
Then K + V is self-dual under b , sO (K+V,b) represents
an element of W {G,?) whose image is [f 1.

To complete the proof of theorem 6.5 we must show that the

natural map

B w (Gia/p) —> W (GiT ~tor)
P

js an isomorphism. (For general pedekind domains this maps depends
on a choice of identification of the ¢ -torsion in F/A .,

namely ‘y-1/A , with A/y , so it is not natural). Injectivity
is trivial. Surjectivity follows from corollary 2.3, which we

have already remarked to hold in the torsion situation, on obse}v-

ing that an {rreducible torsion G-module T is actually a

{7/p)-module for some p since if we choose p such that

pT ¢ T then pT = {0} by irreducibility of T.

Corollary 6.6. If F is an algebraic number field then

WE(G:A) ——?We(G:F,A) i injective with cokernel of exponent £ 4.

Proof. It suffices to show that We(G;A/y } always has

exponent £ 4. But we(G;A/¥ ) is a we(A/yr)-module, and
we(Aly) has exponent £ 4 since A/¥ is a finite field

(see proposition 7.9).
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Theorem 6.7. For any irreducible representation F of G

over A there {s an exact sequence

O —FH(CiA, p) —» W (GiFs o) —> (D) W (Gid/gp s p")
W

where the sum is over all maximal ideals 1{ © A and irredycible

components ?' of e reduced modulc g{ .

This is proved exactly as theorem 6.5.
If F is an algebraic number field it follows as in corol-
lary 6.6 that wG(G;A, () — wé(G;F,p } is injective with

cokernel of exponent & 4 , 80 combining this with 6.4 pro?es
proposition 6.2.

Remark 6.8. For G finlte, W (GIF,A) = WG(G:F): 80

KE(G:A, -—> we(G;F) is_a modulo torsion isomorphism for P an

algebraic number field. Furthermore, the map

W (GiF) —> _Li.l_wetc;m .

sum over all real embeddings 4{: F -—>»R , 15 a modulo torsion

isomorphism (Dress [D] ).

In the next aection we shall extend this remark‘}:rbitrary abelian
groups.
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§7. Abelian G

Throughout this section we assume G is abélian. We shall
reduce the calculation of the Witt groups of G over a field
F to the Witt groups of hermitian forms over certain finite
extensions of F. The main application of this reduction will
be the following results, which describe such Witt groups over
finite fields and up to torsion over algebraic number fields
and number rings. In the next section we say something abaut
the torsion.

In view of theorems 2.4 and 3.1 , the case of a finite

field is completely déscribed by the following theorem.

Theorem 7.1. If G 4is abeljan, F is finite, and e is

an_irreducible representation of G over F which admits an

invariant bilinear form, then
We(GiF, p) = Wg(F) 1f 2(p(G)) = (O} ,
- 2/2 i 2( p(G)) & {O} .

we(F) is described in theorem 7.9. If F has a non-trivial

involution and e is an irreducible representation which

admits an invariant hermitian form then

WU(G;F, ) = 2/2 .

To describe the situation for algebraic number fields we

need some notation. Let 6 c € be the field of algebraic numbers

and 00 =0 AR,

Theorem 7.2, Let G be finitely generated abelian, F an

algebralc number field, and R = 2[%] . Then the natural map

e
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> |1 W_(G:Q,) ® R .

we(G;P) ® R
i

sum over all real embeddings 4i: F——>5° , is an isomorphism.

If F has a non-trivial involution then the natural map

WU(G:F) ® R —> |l wowcdy @r
i

sum over all involution-preserving embeddings 1i: F-)6 , 18 an

isomorphism.

Note that w*(G;EO) and WU(G:Q) have been calculated in

n —
theorem 4.9 and example 5.6. Let G6 - Hom(G,S1 n Q).

Corollary 7.3. If G 4is finitely generated, then

1l riGg .

i

n

W,(G;F) ® R
W (GiF) ® R & {xtx | x € W,(G:F) 8 R}
w@ner ¥ 1lwdg |

_ i

gum over the gsame { as in 7.2. In particular

[}

A
1f Ac P is a Dedekind domain with quotient field F we
can describe the image of the injection w%(G;A)-—a W,}G;F) up
A - . - -
to torsion. Let GK - Hom(G,S1 N A, where A c @ is the
integral closure of A. If A 18 the ring of integers of F,

then R =% , the ring of algebraic integers.
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Corollary 7.4. XIf A is as above and G is finitely

generated then
. A
wecin) @r = 1Ir[GED .
i

sum over all real embeddings 4{: F ——>5° . 1f A has a non-

trivial involution, the corresponding result holds for WU{G:;A).

We shall describe how the above results generalize to the

case of infinitely generated G at the end of this section.

The reduction to hermitian forms.

Let e G —>GL(V) be an irreducible representation over
the field F. Then p(G) generates a subalgebra F{ F) of
End (V) which is commutative since G 1is commutative and is
simple because e is irreducible. By the classification of
simple algebras over a field {Wedderburn's theorem, see for
instance [OM] §52}, F(f } is a finite extension field of F.

e induces & homomorphism

("G""F((”

into the multiplicative group of F(e) . and the image generates

F(c) as an F-vector-space., V can be considered as an F( f)'

vector-space and, as such, it has dimension t by irreducibilicy.

More generally, any representation module W of G over F
which is G-isomorphic to a sum V & ... ® V (we shall call such

a G-module a f -space) is in a natural way an F(F)~vector-

gspace and any F( e ) -yector-space can be interpteted as a (-\-space.




Theorem 7.5. Suppose f’ above admits an invariant bilinear

form and E=F((:). Then

a). The involution e(c) - C(G’ ' p(g)v—’e(g)" .

extends to a unigue involution ¢ E —3E .

b). There exists a non-trivial F-linear map So: E—-SF

with SO(;) = ({)(x) for all x € E .

cy. If W 1is an E-vector-space and b: WXW —»E an

& ~hermitian form on W , then bF: WxW —>F defined

by

bulx.y) =  @(b(x,y))

1s a G-invariant € -bilinear form on W considered

as_a (@ -space. Conversely, every G-invariant ¢ -bilin-

ear form on W arises in this way from a unique b .

bP is non-degenerate if and only if b 1is, and is

hyperbolic if and only if b {is.

Theorem 7.6. 1If (3 admits an invariant bilinear form then

"E(G;F'(’) bl "UE(E) ’ (E = P((J)) '

= WU(E) 1f (G} does not have ex-
ponent 2 ,

= W, (F) if (G) has exponent 2 .

Proofs. We first deduce theorem 7.6 from 7.5. By 2.3,
WE(G:F, (:) can be regarded as the Witt group of G-invariant
€ -bilinear forms on ( -spaces. Thus the first line of 7.6
follows from 7.5 c). Now if some element of P(G) has order >2,

then the involution on E is nonetrivial, so we can drép the

subscript & by section 3. If every element of (>(G) has
order < 2 then the involution on E is trivial. Also E = F

since (>(G) generates E and the only elements of order <2

in E are #1 (since x2-1 = 0 has at most two solutions in

a field).

Proof of 7.5 a) . An invariant bilinear form b on V

can be thought of as a G-isomorphism i
b: vV —»vT
80 it induces a map
End(b) : End(V) —> End(v®) , £+ bfb | .
Let
D : End(V) — End(V%)

be the multiplicative anti-isomorphism D(f) = £¥ . we clatm

that
-1
e elg) —> elg) e(e

-1
End(v) D_*End(b} . praw)

commutes. Indeed commutativity means D-1° End (b} ( (s(g)) = ()(g)-1

which is equivalent; to End{b){ (:(_q)) = D{ (:(q)-i) ¢+ OF

be@bd ! = (p@™)® , or (@%b og) = b, which is the ,

equation expressing that b is an invariant form.
D-1° End(b)IE is an anti-isomorphism, hence an automorphism
since E 1is commutative, so it 18 the required extension. Since

(:(G) generates E it is the only extension.
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ad b} : Yf E/F s a secparable extension we can simply
take ? = trE/F here. In general we are looking for anmy non-
trivial F-linear ? : E—rF with kernel containing A =
{x-% | x € E} . It thus suffices to show that A 1is a proper
F-sub-vector-space of E . But A s tﬁe image of the F-linear
map E —E , x —» x-X , which has non-trivial kernel, so

dim A < dimFE .

ad ¢) : If b: WXW —>E is & -hermitian, then bp{x,y) =
P b(x,y) 1is clearly F-bilinear and & -symmetric, and it is
also G-invariant since b { plglx, plgly) = ¢bl plg)x, f(g)Y) =
?( f(g) e(g)b(x,y)) = @blx,y) = bo(x,y) . To see that b

is nqn-degenerate if b is, observe that the F-linear map
?,: HomE(w,E) _> HomF(w,F)

defined by ?xf L ?f is injective, hence an F-isomorphism

for dimensional reasons. The diagram

W o————> HomE(w,E)

!I K2

W ———————) Hom, (W, F)

is commutative by definition, so bF is an isomorphism if b is.

Conversely, suppose bF {s given. Then the above diagram

defines a unique F-bilinear b: WXW -—>»E which satisfies
bF(x,y) = 97b(x,y) and which is E-linear in the second variable.
On the other hand, the fact that ?(g) is a bF—isometry
implies the identity

bF(ex'Y) = bF(x,Ey)
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for any e € ¢{(G) , hence for any e ¢ E . The same identity

'thﬁs holds for b , so since bix,y) 18 E-linear in y . 1t

is E-linear in x . Thus b'({x,y) = €(bly,x)) also satisftes
the properties which defined b uniquely, so it equais b .
Thus b {8 e—hermltian.

Finally it is clear that a kernel KcW for b 1is an
invariant kernel for bP and vice versa (since by one-one-ness
of the correspondence, b|K 1is trivial if and onty if bF‘K =

(blK)F is), 80 b is hyperbolic if and only if b is.
In exactly the same way one proves

Theorem 7.7. If F is a field with a non-trivial inwvolution

and Q: G —»GL(V) is an _irreducible representation over F

which admits an invariant herm;tian form, then

WU(G;F, (’) = WU(G;E) ’

where E is the subfield of End(V) generated by P(G)

toqether with the unique involution T+ E —»E which simultan-

eously extends the given {nvolution on F and the involution

pla) — e(q)" on (G) .

Thus to calculate the Witt groups of bilinear and hermitian
representations of abelian groups we must know the ordinary Witt
groups we(y) and WU(E) of bilinear spaces over F and
hermitian spaces over finite extensions of F . We first summar-
{ze some known results about We(F) . Good general references

for these are Milnor and Husemoller {MH] or Scharlau's appendix

to [HNK} and the literature quoted there.
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The standard proof that an anti-symmetric form has a sym=-

plectic basis shows:

Theorem 7.8. W_(F) = 0 if char(F) « 2 ; gclearly

W_(F) =W (F) if char(F) =2 .
For finite fields we have

Theorem 7.9. If F 4{s finite then

‘W, (F) ¥ 2/2 ©¥/2 ( char(F) & 1 mod 4 )
* 274 ( char(F) & 3 mod 4 )
= Z/2 ( char(F) = 2 ).

See for instance Witt [Wi] or Milnor-Husemoller [MH] .

Foz algebraic number fields we have the Hasse-Minkowskt

theorem:

Theorem 7.10. If F {8 an alqebraic number field and &
its ring of integers then the natural map

loc : W (F) ———)'!Tw+(r,x)
» .
i3 injective, where 1{ ranges over all finite and 1nf;n1;g
real prime places of F . If a is an _infinite real prime,

then F? =R, BO H+(P1,) =T, given by signature of forms.
If 8's is a finite prime then

W (Py) =W (O/yp) @ W (O/p)

= (Finite 2~-group of exponent <£8)
Af char(O/y) =2 .

The image of 1loc can be determined. loc 48 an isomorphism
after tensoring with R = l[%] .

if chat(@/y) ¥2 ,
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For F = @ we can be much more precise.

Theorem 7.11. w (e =20 _L_l_ w (z/py .
P=2,3,¢..
This is a strengthening of theorem 6.5 with G = {1} ,
A= T, The map w+(Q)——4 Z is signature of forms and the
maps W _(Q) ——->w+(2’/p) are as in 6.5.
For these last two theorems see the literature already

quoted and Knebusch [K}.

The Witt theory of hermitian forms is much tidier, as the
prime 2 no longer plays a special role.
Any hermitian form over a field E can be diagonalized

as <a,, ... a2 with a, € K, the fixed field of the involu-
1 n

i
tion. Mﬁltiplying a basis element of the hermitian space by

e € ¥ multiplies the .corresponding a

i by ee = N (e} .,

E/K
80 the a; are just determined up to norms and can be considered

as elements of the norm class group K'/N (E¥) . Let us denote

E/K
the Witt class of a unary form <a)> by ([a) . The following

simple lemma is useful.

Lemma 7.12. {(a) + [b] =0 4in WU(E) if and only if

-ab’ ®
ab € Nesg (B .

Proof. Since by lemma 2.1 , [a] + [b] = O 4if and only 1f
{a,b> 1s hermitian, the proof is a trivial calculation. This
lemma in fact gives a sufficient set of relations for the Witt

group in terms of the generators f{a)} , a € K*/N (%) , but

E/K
we will not need this.
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proof. Since for finite fields

v . EY—3y K is onto,

RE/K

diagonal form <1, -+« & 1>

alone. In particular any binary form

z/2 . generated by the unary form 1

Theorem 7.1 is thus proven by theorems 7.6,

For an algebraic

£ is a quadratic extension of the fixed field K

ution, say E = K{(vya) .

Theorem 7.14. f E = K(Va)

If = is a finite field then

is a findte ToF-T = —

and the {nvolution is

T

WU(E) = /2 -

X ¢ E the norm map

any hermitian form is equivalent to a

and 1s thus classified by 1its rank

is hyperbolic, sO WU(E) =

7.7, and 7.13 .

number field the gituation is as follows.

of the invol-

Jar—>-Ja .

{s as above, then the canonical

map
loc : WU(E) —

ranges over

Ewu(ey )

all {infinite and_finite)

is injective, where fy

prime pléces of K

Furthermore
WU(Ey) « 7 ('y
e Z/4 (9
= 7/2 8 %/2 (y

with generators respectivelys: <1 ;

There are only a finite even number

for which V2 ¢ K and E
txy (2md Ey

=='x,¥(ﬁ) ).

infinite)

* .
finite, -1 *“a,/x,(z Y )

prefiadub Sttty

finite, -1 € N (E®) )
E’/K¥

Ay ;<12 4 <9 . gEN (E9)
0 ’ 14 Ey/xx
of primes of the first LWo

types. An element of

7 % ... % T x(T/4) % ..o %

(2/4) x (7/2 @ Z/2) X oo
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is in the image of 1loc (f and only {f 1t has the form

(Sye won 4S,0tqs oo gt A el oo
with
i
) 8y = ... m sp st ... tq = r (mod 2) ;
11) Only finitely many Rl ¢ O ;
i)
2.,‘1 = r(p+q)/2 + (%sr +f|tj)/2 {mod 2) .
Proof. Let (V.b(,)) be a hermitian space of rank r ovef
E . .

.
By lemma 2.1 we can assume that vV does not represent zero,

that is b{x,x) « O whenever x « O . Note that q: V—>K

given by g(x) = b(x,x) is a quadratic form of rank

2r over

K and ' '
is isomorphic to q @ (~aq ) for a suitable quadratic

1
form q

over K . At any prime - with VA € Ky o+ 4 thus
becomes hyperbolic on localizing. Suppose (V,b} , and hence. g

. r
is hyperbolic also at every prime Ay with V2 ¢ K Then

q represents zero at every prime, so by [oM] theorem 66.1
. [
q already represented zero before localization, contradicting

the assumption. This proves the injectivity of loc

The calecul
ation of WU(Ey } s detailed in {Ke]. We need

the description to discuss the image of loc . An infinite

prime with JVa ¢ K

i . 4 ¢ gy must clearly be real, so K, =R,
= and

¥ B WU(Er) 18 the Witt group of hermitian forms

over €, This is 7,

generated by the unary form <1> ,

with
isomorphism given by signature. For a finite prime the norm

class group K.Y /N %
. ) E,/K’(E ) is /2 (a hermitian space V over

is
p in fact determined up to equivalence by its rank and its
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determinant det(V) € K, /NE?/Ky(Ex) ). Choose g€ ‘x; not
" a norm. Then the unary forms <12 and <g> clearly generate
WU(E 4 ) By lemma 7.12 one has relations {11 + (1] =
{g) + (g1 # 0, (1] + gl e0, if -1 is not a norm, and
relations (11 + (1] = (g} + (g} =0 . [1}+ fgl + 0, 1f =1
i1s a norm. Thus in the first case WU(Ey) = T/4 , generated
by (1] = -{g) = =[-1} , and in the second case
W\!(Eg) = 7/2 ® 2/2 , denerated by {1} anda (gl .

Index the primes 40 for which 2 ¢ Ky according to
the three cases (real; finite, =1 not a norm; finite, -1 {8
a norm) as

Yqr one s yp; y;. coe ,-y('{; y:. see t '},f;' vee

Note that the primes yi’ ’ 'yf; are just the primes 'se for
which -1 4is not a norm, so there are a finite even number of
them by Hilbert reciprocity (see e.g. 0'Meara [OM] ). For any
hermitian space V ove; E of rank r , denote by dy = 1

the determinant of V at the prime 42 . that is

a - (det V,a)

¥ g4

by definition of the Hilbert symbol. Let

€ ’

l-n—ayuz , so 4, = (-n7% .

¥ ¥

The above calculation shows that the Witt class of V at x is

determined by the signature s, of V at Y for ¥ = }?1

by tjer+2f, (mod 4) for Y= ¥y » end by rimod 2) and
[

'Qk = 11‘ for 36 = ¥k . The invariants satisfy the necessary

.
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conditions:
o fa1y(F-8)/2
a) sinr(modZ). dy (-1 i for y=}ei;
b} ty = r (mod 2), dy = (—1-)(r'tj)/2 for y = )C'j i

¢} Only finitely many d, ¢ 1, TId, = &1 (Hilbert reciprocit
¥ y ¥

d) sisr .

By Landherr [La] these conditions also suffice for existence of

a hermitian space. In the Wittt group d) 1is irrelevant, since it

can always be satisfied by adding hyperbolic forms, and a}, b), ¢

easily translate to the conditions in the theorem, completing

the proof.

Corollary 7.15. With notation as above,

[a)
wu(g) = €§§ 7 e D am

1=1 k=1

(p 2 1)

o
T 2/4 @ @D (2/2) =0, - ’ ¥ :
D = P 1€ Ng g (ED )
-
¢ D =0, - *
© (p=0, =1 € Np W (E¥) ) .

Here p 1is the number of embeddings K <R which do not extend

to E . Any hermitian space over E of rank r = 1 actually

B

represents an element of the maximal order o, 4, 2 {in each of

the above three cases.

Proof. The first statement follows from the theorem by
observing that if p *+ O then condition 4) implies that any

torsion element is (Z/2)-torsion and if p = 0 1t implies that
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any element which is zero on the first (7/4)-component of

TTWU(E7 Yy is a (%/2)-torsion element. Further, 1f p =0,
¥ !

then @ = 0 says that -1 ta a norm of E/K at every prime,

which ts equivalent to saying that -1 is a norm of E/K , by

the Hasse norm theorem (see [OM], 65:23).

The second statement of the corollary follows directly

from statement 7.13 1).

»

We now come to the proof of theorem 7.2. We shall just

consider the case w+(G;F) , the antisymmetric and hermitian

cases being completely analogous. We assume until further

notice that B is finitely generated.

Let £: G — GL(V) be an irreducible representation over

F . For each real embedding 4i: F — Bo , we can consider the
(1)

induced representation e @FQO over 50 . Denote c =
¢ @48, and vit) = v @G, and let
(Ly (1) (1) (1)
' ()‘ ® ... 8@ Cx{1y+1(4) di.mvj 2 , 3% k()

(1) (1) (1) (1)
vt - vt e i@ Vi ) AR Yy 1, 32 k(1)

be the splitting of this representation into irreducible represen-

(4 is completely decomposable by lemma 7.17

tations over @, (ve
below). In view of theorem 2.4 , theorem 7.2 follows from the

following proposition.

Propogition 7.16.

the

a). For a fixed real embedding i and fixed c
(1)

C3

representations are all distinct.
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b). For a fixed rea)l embedding i , every irreducible

representation T of G over 6; occurs as_a
(1)

Fj for some unique F and _some 3§ .

c). The natural map (R = 7[%])
w (G:F,p)® R —> |1 _]_Lw+(c:5.f(“)®n

T o' 13
is an fisomorphism.
Proof.

We first need a preparatory lemma. Let E = F(Pl

and let £ € E be a primitive element for the extension
Let m(t)

E/F .

be the minimal polynomial for §£

over F and denote

(1)
by m {(t) the image of m(t) under the real embedding

f( N

i+ F— Q@ . Note that we can think of £ as for

some p in the group ring FlG] .

i
Lemma 7.17, m( )(t) splits as follows into a product of

Qo 3

irreducible polynomials over

1 1) (1)
m t - . .
(t} m, (t) s mk(1)+1(1)(t) s

(1}

where deg mj (t) = 2 or 1 according as 3 € k(1) of § > k(1)
If

(1) i

Vj = (xev()lm;“(i)-x=0}
then

vl o] oyt )
3 3

and this gives the splitting of f(i) into its irreducible

L
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components. If one writes m(i,(t) = m;i)(t)-qgi)(t) , then

v(i’ is generated as a G-module over 3; by an element of

3
the form q(i)( £).x for some x € Vti)

(1)(t) are

and g

Proof. Observe that since m;i’(t)

coprime in Eo[t] . there exist pdlynomials a(t) and b(t)

in T lt] such that a(t)- m‘“(t) + b(t)- q(“(t) -1 . Let
vg“ be defined as in the lemma. Observe that
vith n > vt oo,
k¢j

since if x 4s in this intersection then x 1is annihilated

both by m;L)(ﬁ ) and qgi)( £) and hence by a(f§ )‘mgi)

e (i)

(§) +

(£) =1 . Hence
() J_l_v§“ e vit)

Next observe that

(1) 1) (1)

(f)V = vy ;

indeed the inclusion from left to right is trivial, and if

(1)

x € vy7 then x = (a(f)'m(“(fl + b($§ )V-q;“(ﬁ))x-

(i)

ot cgrvtt ¢ oy,

(2) dim vg"’ 31 .

Furthermore, if we tensor V with @ 4nstead of a; and split

in the same way, then v:?'“ with 3 € k(1) splits into two

qy (£)b(E)x € q(i)( £)- vit) | Since, by irreducibility of p,
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non-trivial summands, so

aim v;“ > 2 for j € k(i) .

Comparing dimensions in (1) now shows

(=2 for <k
dim v
3 =1 for 3§ > k(i) .,

v(i) - J_L Vfi) .
3 3

Now think of £ as ¢(p) for some n € FIG] , the
group ring of G over F . Since the minimal polynomial of
I (7 ) acting on V(i) is mji)(t) , of degree equal to the
dimension of V;i) B V;i) must be irreducible. In particular
V;i) is generated as a G-module over 60 by a single non-trivial
element, which by (2) above has the form qgi)(f }*x for some
x € V(i) - This completes the proof of the lemma. It also proves
7.16 a) , namely the representatlons P ;i) are distinguished,
for fixed {4 and varying 3j , by the minimal polynomials
mgi)(t) of the element £ = p{7) . and are hence distinct.

To prove 7.16 b) , suppose T : G —» GL(W) is an irredu-
cible representation ¢ er 5; . Let Er be the subalgebra of
GL(W) generated by T(G}) . Then, since ET is a finite
extension field of 5; ' Er = 6; or 6'. Let E be the subfield
of Er generated by t(8) and 4(Ff) . This is a finite
extension of F since G 4is finitely generated. Let V be E

considered as F-vector-space. Since E acts on V ¢+ 80 does

G via T: G—E, 80 V 1is a G-module over F and {s
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]
v}

certainly irreducible. The inclusion V £ E < ET induces a map

Ve —>E, TW

which 18 G-eqguivariant and hence shows that T is a component
of V GFEO . To see uniqueness of this irreducible G-module
Vv over F , observe that applying the construction just given
to one of the components e ;i) of b(i’ in a) Jjust gives
d back again.

Finally we come to the proof of 7.16 ¢} . First suppose
that P admits no invariant form, so W_(G:F, Py =0. Then
it is easily seen that none of the f;i) admits an invariant
form, so the theorem is trivial. Suppose therefore that e admits
an invariant form. If P(G) has exponent 2 , then the result
is immediate from theorems 7.6 and 7.10 , SO assume f(G) does
not have exponent 2 , Thus E = F{ P) has the non-trivial
involution of theorem 7.5. Let X be the fixed field of this
involution,

If ¥4 is a real prime of K with E2 =« ¢ , then the
corresponding embedding

i, E —> Eﬂ = C

factors as

Since the inclusion © < € induces an isomorphism WU(f) — WU(C),

we may reformulate as much of theorem 7.14 as we need here as

follows:

FETA B Lot

- 53 -

S i, -
WUE)® R ——¥ 3 J|woimy ®r

¥

sum over all real primes ¥ of K with B'y =€, {s an

isomorphism (R = 2[%]).

Observe that the real primes Y of K with Ey = C

are clasgsified as follows by the m(i)(t) e 3 € k(L) : the

3

corresponding embedding 1; t E—>0Q maps § onto a complen
i !
root of m! )(t) where 1§ = 1;} F, so iy (€) 15 a root ar

one of the mgi)(t) 3 conversely, given mgl)(t): mapping §

to a root of this polynomial defines a complex embedding

] -
i? t E—~—Q as desired. Denote the x corresponding in thia
(1) (1)
way to m t N .
y § (e by P j

Consider the diagram
. 211
WU(E) @ R ——— Y 3§ i l Wu(Q) ® R
sg(l)'
3

W (GiF, p) @ R —_—-)'HT W (e pith) @
£3
where we need only sum over the e (1) with § <€ k(1)

3
i
the other e ; ) admit no invariant bilinear form (if they a4,

then f(G) would have had exponent

s Sinoe

2 ) and thus give zero

summands. Here the vertical arrows are given by theorem 7.6 ang

are hence isomorphisms. To prove 7.16 c} , it suffices therefore

to prove commutativity of this diagram,

Suppose we have a hermitian space over E . Without losas

of generality assume {t is the unary space <k> with k € K*
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By theorem 7.5, the corresponding bilinear G-space over F {is

given by the F-bilinear form
b{x,y) = trE/P(kxy)

on E . The (J;“

component of g4 . @Foo is the subspace
generated by qgi)(ﬁ)x for sujitable x (lemma 7.17); x = 1
leads to a non-zero element and is hence suitable. We must thus

. p(i) ry
calculate tr(k~q§“(6)~q§.“(§)) , where tr: etV @ is

trp p®1idg . If k 15 the element iaags € K with a € F .

2,

then

— < (1)
trtkeql€)qlg)) =~ 5 (Za, 2% a(Ma(X), @ =a5'h) .
A

sum over all roots of m(“(t) ¢ by definition of trace. But

G({A) = 0 unless A 1is one of the two roots e and /E say

of m;i)(t) r SO

er(k-q(§)-q0€)) = alplalu)(Sa  p® + Za_a%)

QU Ly (k) + 100D o (g =gy

— ! ! y
' 'q‘/‘)q(/"”iy.(k) +1¥(k))

2q(/u)q(/.¢)1f¥_ (x) .

Since 2q(/4)q(/4) € 6; + the corresponding hermitian form over
T 4is equivalent to (i..')c (x))> , proving commutativity of the
diagram and completing the proof of 7.16.

It remains only to prove corollary 7.4. Let A and F be

as in that corollary. By corollary 6.6 we know that the inclusion

)
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Wy(GiA) ~———3 W, (G;iF,A)

becomes an isomorphism on tensoring with R . Thus we must

determine the image of the injection
A
We(GiF,A} ® R ——> W_(G;F) ® R = lxl R(Gg) .

Now from the above analysis it is clear that the image is

contained in I I R[&K] , since 1f F + G ~» GL(V}) is an irredu-
i

cible representation which is defined over A , then each

element of e(a) has monic minimal polynomial in A[t] , so

the roots are all in A » but these roots determine the represen-

tations into which P splits on tensoring with 56 « To see

that the image is exactly l| R[&R] + Observe that, for fixed
real embedding 1 , an element of R[éhl defines a representation

T: G —GL(W) over 6 ¢+ which, under the procedure of the

proof of 7.16 b) , leads to a representation which is defined

over A .

To close this section we describe how theorem 7.2 and its

corollaries must be modified {f G 4is not finitely generated.

Define a representation P: G —»GL{V) over ©. or § to have

finite type if the Q-subalgebra of GL(V) generated by e(G)

is finite dimensional over @ . Denote by

wo(c:a) .

6,. =
o wu® (G D)

the Witt groups of representations of finite type. Similarly if

S; is any subgroup of the circle group S1 < €, define a

homomorphism £: G ——)S; to have finite type if f(G) generates




e

_..56_

a fintte extension of @ in € . pefine

6; = {f € Hom(G,S;) | £ has finite typel} .

Theorem 7.18. Theorem 7.2, corollary 7.3, and corollary 7.4

are correct for any abelian G if we replace WG(G:QO) by
- - o - A '\9
Wo(e:B,) o wolei®) by wo(e:® . R[Gg] by R[]+ an
A A0
r[G5] by R3] -
proof. The finite type condition is precisely what is

needed to make 7.16 b) go through, otherwise everything is

unchanged,
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$8. Torsion in Witt aroups of abelian groups

We first summarize the immediate consequences of the analy-
sis of the previous section for torsion in Witt groups of abelian

groups over algebraic number fields.

Theorem 8.1. If G 4is abelian then the Witt groups

WE(G:F) s WU(G;F) over alaebraic number fields have only

2-primary torsion of exponent < 8 .

If G/2G is finitely generated, the B-torsion is finite.

If further G is finite of J-1 € F , then respectively only

finite or no 4-torsion occurs (if € = 1 we must add the ¢ondi-

tion G/2G = 0O).

B-torsion only occurs in the symmetric case, and then only

if W+(F) hag B8-torsion (e.a. not for F =@ ).

Proof. The only way 8-torsion arises {s in the summands
W (G:F, p) with 2( p(G)) = [0} ., 1in which case W_(GiF,p) =
w+(F) (theorems. 7.6, 7.7, 7.8, 7.10, 7.14). This proves the
statements on B8-torsion. If G {8 finite it has on}y finitely
many irreducible representations over F , and each one only
gives finite 4-torsion by 7.8, 7.14. 1If V=1 ¢ F, then -1
is a norm of E/K 4{n theorem 7,14, so 4-torsion can only occur

in the summands W, (G;F, ) with 2( p(G)) =[of.

If G 1is a non-torsion abelian group, then the groups
we(G;A) over a Dedekind domain A in an algebraic number field

will in general still have infinite torsion, We consider here

the case G =7 .,

Note that if G more generally has a quotient
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equal to % , then the induced map W, {Z;A) —>» W (G:iA) 1s

injective, so our results extend to such G .

Theorem 8.2. Let A be a Dedekind domain in_an algebraic

nunber field F . If J-1 ¢ A then W (7:A) has infinite

2-torsion _and infinite 4~torsion. If J-1 € oA, then We(Z;A)

still has infinite 2-torsion {(but zero 4- and 8-torsion by

8.1 {f € = ~-1). In particular

We(mim) = 70 (2721 ® (W4 .

Proof. A bilinear representation e: T —?Aut{V,b) of

# 1is determined by the triple (V,b, P(1))

e .

consisting of the

bilinear space (V,b) plus an isometry Such a triple

is called an isometric structure, and it is convenient to talk

in terms of this equivalent notion when considering bilinear

reprekentations of . If e is 1rreducible and m(t) is

the minimal polynomial of F(l) , then m(t) 1is irreducible

and the field F({( f) of section 7 is

F(e ) = Flt)/(m(t)) .

Lemma 8.3.

o t
1t 0

be the class of the bilinear antisymmetric repre-

(1). Let X € sp(2,A) = Aut(a?,(_ ) ) and let

(X1 € w_(2:1)

2
sentation of ¥ generated by X . Let s = ¢tr(X) , D = g°~4

Then the order of ([X] is

1 if D is a square in F ,

o0 {f it is false that D 0 ,
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2 if -1 is a norm of F(/DI/F ,

4 if DM» O and D 1is not a norm of F(VD)/F

Here D 0 means D totally positive, that is D > 0 {n each
real embedding of F .

(11). If s ¢ O, the same holds for the order of [(xX®X) ¢

w+(z;n) .

Remark. If A = Z in the above lemma, then elementary

number theory says that -1 {s a norm of Q(VD)/Q , D = 52-4>().

if and only if each prime of the form 4k+3 occurring in s-2
or g+2 occurs to an even power. Thus [X]

1€ [ <2,

has infinite order
is trivial {ff |s] = 2 ,

}sl = 3,6,7,11,15,18,27,.34,38,39,43,47, ... ,

has order 2 {ff

and has order 4
otherwise.

Proof of lemma. Since we(i;A)-—a'we(z;F) is injective,
we may work in we(Z;F) . To prove (i} , observe that the

minimal polynomial of X 1is m(t) = tz—st+1 » which has roots

(s£JD)/2 . Thus the field F(p) = Flt)/(m(t)) 1is F(/D) if

D is not a square, and the lemma follows from the last sentence

of corollary 7.15. If D 1is a square, then m(t) 1s reducible,

80 the representation is reducible. Any non-trivial invariant

subspace is self-orthogonal, hence an invariant kernel, so

[X] =0 in W_(Z;F)

Statement (ii) of the lemma is now trivial if D is a

square in F , 50 assume this 18 not the case. Then the charac-

teristic polynomial of X®X {s (t-/Jz)(t —Fz)(t-nz . where




R

- 6Q -

2

u= (s5+ID)/2 m(t) = ti-stse1 . Since M’ still

F(J/D)

is irreducible, so it corresponds to a summand C

is a root of

-2
generates over F , the factor m1(t) = (t-yuz)(t -;l )

of X&X and

we have a splitting (over F} X®X = C @& D . Thus [X®X]) =

{c} + (D} in W (T:;F) . and since (C) and [D] correspond

to different minimal polynomials, they are independent in

w*(z;P) (theorem 2.4). Now [X®X] can have at most the stated

order in W+(2;F) by part (1), but it has at least this order,

since [C] does, by the same argument as in part ().

Proof of 8.2. To find an element of order 2 in WE(W;A)

1
o)

which is a

we can for instance in lemma 8.3 choose X = (51 ) € sp(2,A)

2

with s =r“42 , r € A . Then D-rz(r2+4) ’

ren-cgquare for most values of r and is totally positive. Also

-1 4is a norm of F(JD)/F , namely =-1 = N(r/2 + JD/2r) . Thus

[X] has order 2 4if D is a non-square. The [X) obtained

in this way for varying T have different minimal polynomials,
so they are independent in We(T;A) .
Then V-1 ¢ F , so -1

square in F for infinitely many ¥

Now suppase -1 ¢ A . is a non-

({OM ; 65:15]). Choose

such a '52 which is not dyadic, that is, it does not divide

{(2) , and choose s € A satiefying

g-2 Ey-yz , 8=2 %) 0 .

For given 4 one can find infinitely many such s ([OM ; 33:51).

For each such s , D = s2-4 will be in Y- yz and be totally
positive, Also -1

is not a norm of F(ﬁ) , Ssince if it were,
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then we would have x2—Dy2 = -1 for some X,y € Fx and by

considering divisibility by ¢ we would see that actually

would thus give xz = -1 in

X,y € A¥ . Reducing modulo -

I\y/,e - A/}g , contradicting the choice of ¥ . Thus X € Sp{2,A
with tr(X) = s as above gives elements of order 4 in

we(z;A) by lemma B.3. For varying s we again get infinitely

many independent elements, since they belong to different minimal

polynomials.

The analysis of the last two sections also easily gives

finiteness results for torsion 1n we(G;A) .

Theorem 8.4. If A is a Dedekind domain in an algebraic

number field F which is inteqral at all but finitely many

primes of F (e.g. A = ring of integers of F ),

then for any

irreducible representation P: G —>GL(V) over F which is

defined over A , {s finitely generated, hence has

We (GiA, p)
£inite torsion.

Proof. Assume first that A is the ring of integers of F.
We assume also that Z(Im(e 1) ¢« {0} , the proof is analogous
if 2(Im(p)) = (o} .

Let E = P(e) and let A(r) be the subring of E
generated by A and Im{ e) . Vv 1is a i-dimensional E-vector-
space, and any E-~linear isomorphism E % Vv identifies A(P )
as a G-invariant A-lattice in V .

Now A(e } ¢ A, the integral closure of A in E , and

since A(c )

and A are both A-lattices in E , the index
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(S:A((:)] = D 4s finite. Let ¥ be a prime ideal in A which

does not divide D and which is unramified for E/F . Then
A/A,P = A((J)/A((J)y '

so the decomposition of A/A as a product of finite fields:

X/Ky = A/§g1 X ees % A/jgs ¢

corresponding to the decomposition
A = L2 ZIERRI
of '};}? into primes in E , can be written as
A(p)/M())}? = (A/qe)((_’1)7< x(A/'y)(f;s) '

and gives simultaneously the decomposition of the representation

f’_ = Q mod ¥ ) over A/g@ into its irreducible components

N AT

The involution on E induces involutions on everything we
have considered, in particular it permutes the '}01 and the P PR
For each ¥1 s let ’}g; be the unique prime of the fixed field

K ¢ E 1lying under ';qi « We must consider three possible cases.

Case 1. If the involution exchanges ?i and ng (i+3) .
then 1t exchanges (A/w)( Ei) and (A/y )(Fj) s so it is not
definable of (A/9p)( Fi) or (A/g)( Ej) alone. Thus by theorem

7.5, (31 and Fj admit no invariant form, so W_(GiA/y, f,) =

trivial iavolution on

for finitely many nj’ and |
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. - 4 ’ ’ i
WE(G.A/?. pj) = {0} . Further Y, = Vj » SO P splits

completely in E/K , so Ky' -=E1e . Note that E:y = E ¢ in
i 1

TN £1
80 this means that these primes

are disregarded in that theorem.

Case 2,
=258 <.

the notation of theorem 7.14,

The involution maps Yi onto itself and induces the

A/wi - (A/’g)(;i) + This can only happen

Case3 . The involution maps }éi onto itself and is

non-trivial on _A’Vx = (A/p)( f;i) » Then by corollary 7.6

W (GiA/ 90, £y) S WULA/P) () = WUlR/g2) .

Further )21 1s the unique prime of E lyinag over ’g’i and is
by assumption unramified. In this case we can define a map
(the "second residue class form")

3 WU, ) —> WU(R/ )
¥y ¥

exactly as in the bilinear case (theorem 6.5 with G = {(1h.

Since ¥,/ P, 1is unramified, -1 1is a norm of E /Ky o+ SO

LIRS

WU(E,, ) = /2 & 2/2 (theorem 7.14). Also WU(—A/'p_i) = 2/2
i1

’
theorem 7.13) and an easy calculation shows that © is the map

’
d(r,1) =1 € 772 , notation as in 7.14.

Thus by summing over the primes '}P of F considered

above and the factors ]e1 of ¥ in E of case 3 (respectively

the corresponding Fi ) we have a commutative diagram
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W G, e ) —--———?_--—} _l_L _j:L NE(G:I\/x‘Tp , ‘Ei)
|~ Y P,
\('1
WU (E) X
l loc ,
TT TT wote, ) 2y || ] wudrgp
1
LR ¥ Py

with O and loc as in 6.7 2nd 7.14. By 7.14 1), d
restricted to the image of loc has xernel #/2 , 8o since
we have only disregarded finitely many relevant primes, 3/'100
has finitely generated kernel. Hence $ has finitely generated
kernel, but W (GiA,p) < Ker( %) by theorem 6.7 , soO the
proof is complete in this case.

r= A is not the ring of integers of F put is still
integral at all but finitely many primes of F ., then the same
argument goes through, omitting these finitely many additional

primes of F .

Corollary 8.5, If A is as in the above theorem and G

is finite, then WG(G;A) is finitely generated.

A. Bak has informed me that this corollary holds for any

finite G ; abelianness is not necessary.

proof. Consider the diagram {theorems 6.2, 6.4, 6.6, 6.7}

(V]

0 —> v @ap) — 1% GFRe) —> L1 U Un vy, 73

e l ¢ £ v
0 ey W (GR) ) W (GEN) —) 1 v g,
g

g e
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¥

where the V in the bottom line run through all f{rreducible

representations over A/gg , and for each () and ¥ , the
éﬁ in the top line run through the irreduciblé conponents of

{ 4 mod Y } . The right vertical arrow in general has a kernel,
since it may happen that ét - (5)?. for e=f f. But for
any fixed pair ¢ ,»P_‘ this can only happen for finitely many
4 ., and since there are only finitely many F and each
summand on the right is finite, the kernel of the right vertical

map is finite. This hence also holds for the cokernel of the

left vertical map, so the corollary follows from the previous

‘theorem.
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§9. Characters of hermitian representations

In this section we generalize the usual character of a
representation to a Witt ring invariant of hermitian representa-
tions. This generalization, though very natural, has some
rather unsatisfactory aspects, the main one being that for non-
compact non-abelian groups representations are in general no
longer distinguished by their characters.

Before we define character in general, we first consider
two examples. We only consider hermitian representations over €

for the moment.

Fvample 9.1. G a compact Lie group. By corollary 4.3

there is a natural isomorphism

¢ : R(G) "——> WU(G)
from the complex representation ring, by putting a positive
definite hermitian metric on any complex representation. The
can be described as follows: givenva hermitian

inverse of ?

representation e of G, e can be split as the orthogonal
sum €+'0 c— of & positive and a negative definite representar

tion and we have
?'1[(:1 = [(=+1-[(>"~]€R(c) .

For any { f) € WU(G) we can define the character X%: G-

X‘,(g) -
trace €+(g) - trace e-(g) » To extend the definition of

of e to be the character of ?-1[ e] ¢+ that ts,

character to arbitrary G we need another example.

¢
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G =12, cyclic of infinite order. As we

Example 9.2,

saw in theorem 4.9 and subsequent remarks, WU(Z) |is isomorphic
to the group ring

wu(z) = z(sh .

where the isomorphism takes the element /u € s! [ 2[51] to

the positive definite representation

¥ — y(n es' , T a

Observe that any x € WU(Z) can be written x = [ P+) +{ F_)
+ -

where e and P are a positive definite and negative
definite representation respectively (this is true for any G

all of whose irreducible hermitian representations are definite).

We can thus define the character Xx: G—C as X - X. .
S ¢
+ -
that is XX(Q) = trace P (g} - trace e (g) .
More generally for arbitrary G and x € WU{G) we define

the character

Xx: G —m<¢

by setting Xx(g) equal to Xy(g) where y 1is the restriction

of x to any cyclic subgroup of ¢ containing g .

Theorem 9.3. As a map from WU(G) to GG X

e

is a ring
homomorphism. It is injective for compact Lie qroups and for

abelian groups, but is not injective for instance for free groups

on_two or more generators.
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rroof. The condition that X is a ring homomorphism is

that X xmy(g)

it also holds for arbitrary G .

Xx(g) Xy(q) . Since this holds for G cyclic
The injectivity of X 1is
standard for compact Lie groups, since then X can be interpre-
ted as the usual character on R(G) (example 9.1). For G =17
injectivity follows from the easily checked orthogonality relation
1. C =T

N
1 -1 .
lim ﬁ =Z-'N X(’(n) Xt(n)

N n . p# T

for any two irreducible hermitian representations F and T

of T . For arbitrary finitely generated abelian groups a similar
orthogonality relation holds; alternatively observe that if X
is injective for groups G and H , then it is injective for

GXE by the commutativity of

X.® X
WU(G) ® WU(H) G~ H _y cfgct
XGxH GXH

WU (G x H)

and the injectivity of the right vertical arrow. Finally for
arbitrary abelian groups injectivity followsvby a direct limit
argument; in fact we show in § 10 that for a direct limit of
groups G, the natural map WU(IEP G*) f—>££? WU(Gu) is injec-
tive, so if character is injective for each G_ it also is

injective for the direct limit.

— ?;g! 3&1

-—» € 1is given by
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The following remarks yield any number of irreducible

representations of free groups G with X = O.

(‘)

Since an irreducible representation is non-zero in WU(G) , this

¢ G —> u(1,1

shows non-injectivity of X .

9.4. Direct calculation shows that the character X : U(1,1)

X(A) = = Jdet A - Im Jitr Al -2, so

X(A) = 0 4if and only if |tr Al 2 2 .

9.5. The obvious action of SL(2,%2) on ¢2

preserves the

i

O) of signature O ,

hermitian form (fi and thus gives a

representation SL(2,3) — U(1,1} .

9.6. An element A € SL{2,7) - {#I} has |tr Al 2 2 {if
and only if it has f{nfinite order (proof: caiculate the eigen-
values).

9.7. SL(2,7)/(£I) = PSL(2,7) € (2/2) » (7/3) contains any

number of free subgroups by the Kurosh subgroup theorem (in fact

any subgroup of finite index 6k {5 free of rank (k+1) ). Any

such subgroup lifts to SL(2,?) since it is free,
9.8. Remarks 9.5 and 9.7 give faithful representations

e: G —U(1,1) of free groups. By 9.4 and 9.6 these representas

tions satisfy x(,e o .

which has a faithful reducible 2-dimensional representation

They are irreducible, since a group

must clearly be soluble of solubility length 2 , which a free

group of rank 2 2

is not.
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The final statement of the above theorem says that characters
are in general insufficient for the Witt theory of herhitian
representations. Nevertheless the theorem tells us that in many
interesting cases they actually do distinguish elements of the
Witt group, and in any case they are a convenlent numerical
invariant of hermitian representations.

Via the ring homomorphisms (where Wy = W; @w_)

, X
Wy(GiZ) > W, (Gi@) —> W (G:R) 2, e X o8 '

character is also defined for integral, rational and real bilinear

representations and distinguishes Witt classes up to torsion at
least for G finite and G abelian (see 6.8, 7.2, 7.4). We

stili uenote character by X in each case. Note that

X : W, (6R) &W_(6:R) — € =rCa (1R)C

preserves the direct splitting, that is, character of an € -symme-
tric bilinear representation is real or pure imaginary according

as &€ = 41 or € = -3y
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§10. Direct limits

We have once or twice indicated the following fact, which

we will now prove.

Theorem 10.1. 1f£ G = {ip G, is_the direct limit of

groups G.g s then the natural map

i: we(c;;p) - ](.im Wé(G.‘;F)

is injective. The same holds for WU(G:F) f F has an involu-

tion and for Witt rings over Dedekind domains.

It is not hard to find examples to show that this map is in

general not surjective, even for abelian groups.

Proof. Let f ¢+ G —>Aut(V,b) be a bilinear representation
over F and suppose {if f) = 0 . Let 77;": we(G;F) — W (G iF)
be the map induced by the natural map 7, G, —>G . The condi-
tion 4f f] = 0 1s equivalent to requiring 7tf[ F] = 0 for
each o« , 1i.e. (r-m] = 0 4n WE(Q£’F) for each o . Denote
by K, the set of ordered bases (a1, «-+ s35.) of V such
that X = (a1, cas ,an) is an invariant kernel for P (that
is K = K+ and e s (G K =K ). K, is by assumption non-empty
and it is clearly an algebraic variety in vzn . Also {f °tSF
then J<R > Jﬂ, . Now by compactness of the Zariski topology on
vZn . the intersection K = (\](‘ is non-empty (since each
fiplte subintersection {is non:;mpty). An element of X vyields

an invariant kernel for F ¢+ Proving the theorem in this case.
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The hermitian case is the same proof.

1f we replace F by a Dedekind domain A then we have a Appendix: some topology

commuting square, where F is now the field of fractions of KA :

We describe b!iefly a dlrectlon of topological application
. H _a_.—-—) im W G ; A) v of Wittt tings .

l, l . Let H2n be a compact oriented manifold, possibly with

| boundary. The cup product form
W (G;F) ————> lim W _(G_;F) .
€ — [

Syt BP0, D7) x KM, M) —> 7
The vertical arrows are injective by proposition 6.3, and the

R defined b S, (x,y) = X v is zero on Ker(H“(M, _IM;Z) —>
bottom arrow has just been shown to be injective, SO the top Y mixey %4 y

: n n _
v H"(M;3)) and induces a (-1) '-symmetric non-degenerate form on
arrow is injective also. g

H = Im(i"(M, M;7) ~—> H"(M;Z))/Torsion

| If G is an arbltrary group acting on M , then G acts on H

preserving this form, so we get an elément

w(M,G) € W (GiQ:T) e = (-1

in the notation of proposition 6.4. Actually G acts from the

right on H and we must convert to a left action by convening

that g € G act by g-' on H . This is equivalent to trans=-

posing the action via the form on H , and hence also equivalent

via Poincaré-Lefschetz duality to the usual left action on homology

with intersection form.

The properties of the Witt invariant are as follows.
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Al. If M {s closed. Then the cup product form is non~

singular, so w{M,G) 4is in the subgroup W (G:2) = W _(G;0Q,2) .

A2. Bordism invariance. If M 1is a G-equivariant oriented

boundary then w(M,G) =.0.

A3. Novikov_ additivity. If M= M1 u M2 pasted G-equivar-

lantly along boundary components then w(M,G} = wiM,,G) + w(M,,G)

Ad4. Product formulas. If G acts on M, and M,

M2 we have w(M1 x MZ'G) =

then

with the diaqonal action on M

1

. w(Mz,G) . If G, acts on M, and G, on M, , then

wiM,.G) 1 2

w(M1 x MZ’G1 x Gz) = t(w(M,,G1) ] w(Mz,Gz)) + where t: W (G1;Q) ®

W o(G,;0) —> Wt(G1 X G,:;Q) is the natural map.

‘'he usual proofs of A2 and A3 for signature also work
here. A4 1is an easy application of the Kinneth formula for a
product. These properties show that the invariant w defines a
ring homomorphism from the "equivariant bordism group” Jlf to

W.(G:%) (and also from the equivariant "cutting and pasting

G

group® SK! to wl(G;Z)).

Remark. The class of w{M,G) in W,(G;Q,Z)/w‘(G;Z) is a
Novikov additive invariant which vanishes for closed manifolds.
It follows that it is an invariant of the boundary; call 1t
2(3M,6) . In the proof of theorem 6.5, a natural injection
w‘(c:o.r)/wﬁ(c;r)-—a WelG;T - torsion) was constructed, so we

can think of { dM,G) as an element of W, (G;T - torsion). For

N
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trivial G , Alexander, Hamrick and Vick [ARV] have identified

-f(3M) as the class of the linking form on the torsion of

H (3M;?) , so in particular f{(N) 4s also defined for n2N"1

which do not bound. Their proof also works in the present situation.

Note that the class of JQ(N,G) 4n Cok(W,(G;Q,7) —>
W (G;7 - torsion)) 1s a bordism invariant of (Nzn-i,G) . This

may be guite an interesting tnvariant.

The standard definition of equivariant signature for Lie

group actions can be extended to arbitrary groups.

2n

Definition. Given M with G-action as above, define the

equivariant signature as

sign(M,G) := Xw(M,G)

and for g € G

sign(M,g) := X w{M,G) (g)

This can be described directly as follows. Let (H®C,b)
be the hermitianized, symmetrized (by multiplication by +i ({f
n  is odd) cup product pairing for M . ‘Then g 1induces a
Z-action on (H®C,b) , and up to hyperbolic hermitian 2-modules,
H®C splits as a sum v' @ V' of a positive and a negative

definite hermitian Z-module. Then
sign(M,q) = trace(glv+) - trace(g|Vv") .

This makes {t clear that if g 1is contained in a compact Lie
group of transformations of M {equivalently g preserves some

Riemannian metric on M}, then sign{M,g) agrees with Atiyah

e e gt £ s g
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and §inger‘s definition in [AS] . Note that sign(M,g) is real
or‘pure imaginary according as n is -even or odd.

For finité or agelian G , all we are doing by looking at
sign(M,G) ‘

rather than w{M,G) 1is throwing away torsion informa-

tion (theorem 9.3). However, example 9.8 can be thought of as
1

: 1
giving examples of a linear action of a free group G on S§'X S

for which sign(s'x §',G) = 0 although w(s'x s’

,G) 1is of
infinite order.

One can easily find examples of T-actions on closed mani-
folds with non-trivial equivariaét signature but for which no
non-trivial element has a fixed point. Thus in contrast to the
situation for compact Lie groups {Atiyah-Singer-Lefschetz fixed~
point theorem [AS) ), the equivariant signature cannot be
completely calculated in terms of the fixed-point behavior. There
is however reason to hope that interesting partial results exist.

In the case of smooth orientation-preserving actions of 7
on closed orieﬁted manifolds, M. Kreck [Kr] has obtained complete
results on the bordism group {2 : , n24 , in terms of the Witt
invariant. 2 : is of course nothing more than the bordism group
Zln of orientation-preserving diffeomorphisms of closed manifolds.
The following simple theorem was proved in {N1] . We repeat it

here, since it has been quoted by M. Kreck ({(loc. cit.).

Theorem AS5. The map w: £&2n~—> we(w;z) y €= (-1)n : is

surjective for each n>0 .,

Proof. For n = 1 this follows from the fact (Nielsen

theorem plus for example Magnus, Karras, Solitar [MKS, section 3.71)
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that the map
Diff+(Fg)/Diffo(Fg) —> Sp(2qg:7)

is surjective. Here F is the orientable surface of genus g .,

lef+(Fg) 1ts orientable diffeomorphism group and Diffo(Fg)

the component of unity. Sp(2g9;7) 1is the automorphism group of

H1(Fg;?) with intersection form.

For n = 2 , suppose we have a symmetric non-singular

isometric structure
2

(H,b,t) over Z . By adding the hyperbolic

structure (77, (:; ?), id) {f necessary we can assume the

bilinear space (H,b)

is indefinite and odd, so it is classified

by its rank and signature alone (Serre [S]) , so it is isomorphic

to the cup product form on some manifold of the form

4 2 2

Me el ... shcplar —aplak ... m-cP & (s2x s%) . By wall w1},

any isometry of (H,b) is realizable by a diffeomorphism of MA.

For n>2 use the fact w(NxM,id xf) = sign(N) - w(M, £}

’

which follows from A4 above, This completes the proof.

M. Xreck has in fact shown that the following maps are iso-
morphisms for k21 :

By —> W mn e N, 8N, .

Buesr = Qg @ gyn o

By, En e, en, . .

~

!14k+4 *

A -y
4k+3 Jl4k+3 ®
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Here W;(z;z) is the reduced group Ker (w*(T:Z)——i w (=12,

iy
n

4k+1 15 the kernel of the Stiefel-Whitney number WoWapoq!

R d
4k+1.-’ 2/2 ., and ‘124k+4 is the kernel of sign: J74k+4 - 7.
The map l\n - Jln is just forgetting the %Z-action, and
Zln“9.f2n+1 is the map which assigns to a 3Z-action on M the
mapping torus Me = MxI)/( (x,D=(£(x)},0) ) of the generator

of the #-action.

In low dimensions the calculation is still open. All that
is known {s that infinite 2/2-torsion still occurs in Az .

2

Indeed, let B = (§ }) ana A_=22« LT . Then A
defines a linear automorohism of the torus T2 = S1n s1 and the
Witt invariants all have order 2 and are independent by 8.3.
Cr the cther hand Bt induces an Ar-equivariant orientation-
reversing diffeomorphism of T2 + B8O [I‘Z,At] = -[’rz,ht] in A

and we have infinitely many independent 2-torsion elements.

2

An application of the theory of Witt rings to signature of
fiber bundles is described in {N2] .

Another direction of application is to knot theory. If € = %1
and A {s an integral h-square matrix with det(A) # 0 and

det(A+'€At) = +1 , then

1.8 = (@ eat, - eaat)™h)

is an isometric structure and hence defines an element of we(z;o).
Let Ce be the subgroup of WE(T:Q) generated by such elements.
Then Levine [Le2] showed that Ce is isomorphic to the bordiam

group {lLel] of spherical knots ipn S”“'E ¢+ 4k+6 >5 , and that

©0 o0 el
like W _(%:;Q) , has the form 2 & (2/4) @ (%/2) ,

also [Ke] for a discussion of these results.
Of interest also is the subgroup Fe determined
A with det(d) = %1 since this is i{isomorphic to
the subgroup of the knot bordism group generated by fibered
knots. Using the argument of lemma 8.3 (namely corollary 7.15)
it is easy to check that F has infinitely generated free part
and has infinite torsion. With a bit more work using the same
methods one can show that F_, has the form Twe (2/4) 63(2/2)°°

this is presumably true for



- 81 -
- 80 -

e ismen in
References i {xr} M. Kreck: bordiamusgruppen Vop Dif fecmorph .

. Math.
preparation {Announcement to appear in Bull. Amer

(ACHV] J.P. Alexander, P.E. Conner, G.C. Hamrick, J.W. Vick: Soc. B3(1976)}.

| { rormen ibar einem
Witt classes of integral representations of an abelian {ral W. Landherr: Rquivalenz Hermitescher

p-group, Bull. Amer. Math. Soc. §9(1974), 1179-1182.

¢ % . iv.
beliebigen algebraischen zahlkdrper, Abh. Math. Sem Un

[AHV]  J.P. Alexander, G.C. Hamrick, J.W. Vick: Bilinear forms Hamburg 11(1935), 245-248.
and cyclic group actions, Bull. Amer. Math. Soc. 80(1974), ; {Let] J. Levine: Knot cobordism in codimension 2 , Comm. Haeh:
730-734. Helv. 44(1969), 229-244.
{rns} M.F. Atiyah, I.M. Singer: The index of elliptic operators i {Le2] J. Levine: Invariants of knot cobordism, Inventicnes
III, Ann. of Math. 87(1968), 546-604. Math. B(1963), 38-110.
(B} A. Bak: Unpublished manuscript. E mks] W. Magnus, A. Karras, D. Solirar: Combinsforial S
[p} A.W.M. Dress: Induction and structure theorems for ortho- | theory, (Interscience, New York, 1966)
gonal represcntations of finite groups, Ann. of Math. {r1] J. Milnor, D. Husemoller: Symmetric bilincar forms, Ergeb.
102(1975), 291-326. der Math. Nr. 73 (Springer, Berlin, Heidelberg, New York
$38] A. FrBhlich: On the X-theory of unimodular forms over i 1973)
rings of algebraic integers, Preprint 1971. ; ) W.D., Neumann: Signature—related invariants of manifolds,
[HNK] F. Hirzebruch, W.D. Neumann, S.S. Koﬁ: Differentiable ; (mimeographed notes, Donn, 1974)
manifolds and quadratic forms, Lecture Notes in Pure § w21 W.D. Neumann: Signature of fiber bundles, (in preparation.
and Applied Mathematics Nr, 4 (M. Dekker, New York 1971). % sece also [N1, ch. 21 ).
{3} N. Jacobsen: Lectures in abstract algebra Vol, 3 , (Van % fom] O0.T. O'Meara: Introduction to quadratic_fcrms, Die Grund-
Nostrand, Princeton 1951). % lehren d. Math, Wiss. Rr.117 (Berlin,Heidelberg, M.Y. 1973}
\
{Ke} M.A. Fervaire: Knot cobordism in codimension 2 , Manifolds =~ | {s) J.P. Serre: Cours d'Arithmetique, (Presses Univ. de France,
Amsterdam 1970, Springer Lecture Notes 197(1971), 83-105. Paris, 1970).
[Kn) M~ Knebusch: Grothendieck- und Wittringe von nichtausge- [w1] C.T.C. Wall: Diffeomorphisms of 4-manifolds, J. Lendon
arteten symmetrischen Bilinearformen, Sitzungsbericht Math- Soc. 22(1964)' 1317140
der Heidelberger Akad. der Wiss. (1965/70), 3. Abh. [w2} C.T.C. wall: Classification of hermitian forms: VI Croup
[KnS] M. Xnebusch, W. Scharlau: Quadratische Formen und Quadra- rings, hnn. of Math. 10319763, 1780-
tische Re¥1prozit§tsgesetze Uber algebraischen Zahlkdrpern,

[wi) E. Witt: Theorie der guadratischen Formen in beliebigen
Math. 2. 121(1971), 346-368.

Ksrpern, J. Reine und Angew. Math. 1726{%927), 31-44.




