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A CALCULUS FOR PLUMBING APPLIED TO

THE TOPOLOGY OF COMPLEX SURFACE SINGULARITIES

AND DEGENERATING COMPLEX CURVES

BY

WALTER D. NEUMANN1

Abstract. Any graph-manifold can be obtained by plumbing according to some

plumbing graph I\ A calculus for plumbing which includes normal forms for such

graphs is developed. This is applied to answer several questions about the topology

of normal complex surface singularities and analytic families of complex curves.

For instance it is shown that the topology of the minimal resolution of a normal

complex surface singularity is determined by the link of the singularity and even by

its fundamental group if the singularity is not a cyclic quotient singularity or a cusp

singularity.

In this paper we describe a calculus for plumbed manifolds which lets one

algorithmically determine when the oriented 3-manifolds M(TX) and A/fTj) ob-

tained by plumbing according to two graphs Tx and T2 are homeomorphic (3-mani-

folds are oriented 3-manifolds throughout this paper, and homeomorphisms of

3-manifolds are orientation preserving). We then apply the calculus to answer

several questions about the topology of isolated singularities of complex surfaces

and one-parameter families of complex curves. These results are described below.

Since the class of 3-manifolds obtainable by plumbing is precisely the class of

graph-manifolds, which were classified, with minor exceptions, by Waldhausen

[24], a calculus for plumbing is in some sense implicit in Waldhausen's work.

Moreover, it has been known for some time that the calculus can be put in a form

like the one given here, but the details have never appeared in the literature. A

related calculus for plumbing trees has been worked by Bonahon and Siebenmann

[1] in order to classify their "algebraic knots".

We describe the calculus in greater generality than is needed for the present

applications, since this involves minimal extra work, and the calculus is needed

elsewhere ([4], [14], and [15]). In particular, in an appendix we describe two

generalizations of it.

The calculus consists of a collection of moves one can do to a plumbing graph T

without altering the plumbed manifold M(T). To see these moves are sufficient, we

describe how they can be used to reduce any graph to a normal form which is
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uniquely determined by the plumbed manifold. Our normal form is not the most

elegant one possible, it is chosen the way it is (based first on predominantly

negative euler number weights and secondly on as small graphs as possible, except

that Seifert manifolds are given their natural "star-shaped" plumbing graphs) in

order to expedite the proofs. The calculus is described in §§1-7.

The applications to complex surfaces and curves are proved in §§8-10. We first

describe our results for singularities. Let p be an isolated normal singularity of a

complex surface V. The boundary M3 = M3(V,p) of a closed regular neighbor-

hood of p in V is a closed orientable 3-manifold called the link of the singularity

(V,p). We say briefly: M3 is a singularity link.

Theorem 1. Singularity links are irreducible 3-manifolds.

This answers affirmatively Problem 3.28 of [10]. Our results also imply that the

only non-sufficiently-large singularity links are the obvious ones: Seifert fibrations

over S2 with at most three exceptional fibers.

The following theorem answers affirmatively a question which I heard from A.

Durfee, though it has apparently been asked by others too. It supports the

conjecture that any deformation of a hypersurface singularity (V,p) which pre-

serves its Milnor number arises from a deformation of the resolution.

Theorem 2. The topology of the minimal good resolution of the singularity ( V, p) is

determined by the (oriented homeomorphism type of the) link M3.

Using the next theorem, we get a much stronger result, as described in the

subsequent corollary.

Theorem 3. If M3 is a singularity link then - M3 (M3 with reversed orientation)

is also a singularity link if and only if M3 is either a lens space L(p, q) with p > 1 or

a torus bundle over the circle whose monodromy has trace > 3. This holds if and only

if the resolution graph is respectively a straight line graph or a cyclic graph.

Corollary 4. If M3 is a singularity link of the singularity ( V, p) and M3 is not as

described in Theorem 3, then M3, and hence also the topology of the minimal good

resolution of (V, p), is determined by ttx(M3).

Note that Theorem 3 also implies that a singularity link M3 has an orientation

reversing homeomorphism, that is M3 at -M3, only if M3 is as in Theorem 3. The

singularity links of Theorem 3 do not all satisfy M3 at -M3; those that do are

easily determined using §7 of this paper.

The next theorem answers a question of Wagreich [23]. It is practically, but not

quite, a corollary of Theorem 3.

Theorem 5. If the Seifert manifold M is a singularity link then its resolution graph

is star-shaped.

The following corollary follows from [16, Theorem 5.2].

Corollary 6. The Seifert manifold M is a singularity link if and only if it has a

Seifert fibration with orientable base such that the euler number of this fibration in the

sense of [16] is negative.
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A consequence of Theorem 5 is that, if the singularity link M of (V,p) is a

Seifert manifold, then the analytic structure of (V,p) can be altered until (V,p)

admits a C*-action. (V,p) itself need not admit such an action, in fact examples

are known which show that this alteration of analytic structure cannot always be

done by an analytic deformation.

Using different methods we show that very few singularity links can be fibered

over the circle:

Theorem 7. The singularity link M3 fibers over Sx if and only if M3 is a torus

bundle whose monodromy A G SL(2, Z) satisfies either trace(/4) > 3 or A is con-

jugate to Cb i) witfl b > 0.

We obtain similar results for 1-parameter degenerating families of closed com-

plex curves. We can write such a family as w: W -» D, where W is a nonsingular

complex surface, D is an open disc about the origin in C, tt is a proper holomorphic

map whose only singular value is 0 G D. Thus away from tt ~ '(0), tt is topologically

a fibration with a fiber a closed orientable real surface F. We say the family is good

if the only singularities of the singular fiber tt~x(0) are normal crossings. This can

always be achieved by blowing up in W. A minimal good family is a good family

which does not result from blowing up a simpler good family. If 5' C D is a small

circle about the origin, then M = tt~x(Sx) is the boundary of a regular neighbor-

hood of tt~x(0), and is called the link of the family.

The collection of data consisting of the genera of the irreducible components of

tt~x(0), their intersection behavior and their multiplicities, is called the numerical

type of the family. It is well known that the numerical type determines both the

topology of the pair (W,tt~'(0)) and the euler number of the nonsingular fiber F.

In particular it determines the link M, though it does not necessarily determine the

topology of the fibration tt\M: M-» Sx.

Theorem 8. // M is the link of a minimal good family as above, then M determines

the topology of the pair (W, tt" '(0)). Moreover M together with the euler number of a

nonsingular fiber F determines the numerical type of the family.

Theorem 9. Both M and — M are links of families of curves if and only if M is a

Seifert manifold with orientable base and the euler number of the Seifert fibration in

the sense of [16] is zero.

Corollary 10. If M is a link of a family of curves which is not as in Theorem 9,

then 77,(M) determines (the oriented homeomorphism type of) M, and hence the

topology of (W,tt~'(0)).

It is very plausible that the link M of tt: W^ D together with the fibration tt\M:

M —> Sx determines tt: W-» D up to homeomorphism (that is, the monodromy of

tt determines the topological type of tt), but I do not have a complete proof of this.

Theorem 9 implies that a link M of a family which satisfies M at -M must be

Seifert fibered with euler number zero. The Seifert fibrations with M at -M are

determined in [16]; see also §7 below.
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Two simple but amusing corollaries of Theorems 3 and 9 above are the

following.

Corollary 11. A complex surface V is topologically the suspension of a closed

3-manifold, if and only if it is homeomorphic to an Inoue surface [8].

Added in proof. "Homeomorphic" can be replaced here by "analytically

isomorphic", by recent work of I. Nakamura.

Corollary 12. If a complex surface fibers over CPX with exactly two singular

fibers then the geometric monodromy has finite order.

Indeed, in Corollary 11 the two singularities of V must have links of torus bundle

M3 and — A/3 respectively, with M3 as in Theorem 3, since the lens space case

would lead, by a branched covering, to a complex structure on 54, which is

impossible. For any torus bundle M3 as in Theorem 3, Inoue gave a complex

structure on the suspension of M3. Similarly, Corollary 12 follows from Theorem 9

and the fact that any fibration of a Seifert manifold as in Theorem 9 over S' has

finite monodromy [2]. A set of examples for Corollary 12, which gives all homeo-

morphsm types of such examples with minimal good singular fibers, is given by

taking fiber products F xz/n CPX, where (F, Z/n) is a Z/n-action on a complex

curve, and resolving the singularities, which are cyclic quotient singularities.

1. Plumbing 3-manifolds. In order to describe the calculus expediently, we will

need a somewhat more general concept of plumbing than is usually considered in

the literature. First some terminology.

If F is a compact surface g(F) will be its genus, with the convention that

g(F) < 0 if F is nonorientable. Thus g(RP2) = g(Mb) = -1, g(kl) = -2, and so

on, where Mb is the Mobius band and kl is the klein bottle.

If A = (ac bd) G SL(2, Z), we denote also by A the diffeomorphism of the torus

T2 = Sx X Sx given by A: S1 X Sx-> Sx X Sx,A(tx, t2) = (txat2, tcx4).

A connected closed plumbing graph is a finite connected graph T whose vertices

and edges are assigned weights as follows:

(i) each vertex i carries two integer weights e, and g,;

(ii) each edge of T is assigned a sign + or —.

We allow T to have multiple edges and loops-that is several edges from one

vertex to another or edges connecting a vertex to itself.

Given such a plumbing graph T, the plumbed 3-manifold M(T) is constructed as

follows. For any vertex i of T with weights g, and e,, let dt be the degree of the

vertex, that is the number of incident edges at this vertex (with loops at the vertex

counted twice). Let Ft be a compact surface of genus g, with dt boundary

components. Let £, -^ Ftbe a circle bundle with oriented total space £„ with a

chosen trivialization of EftFj, and with euler number e, (this is the cross-section

obstruction, and is well defined once the trivialization £,-|3i*j- is chosen). If g, > 0

we choose an orientation on Ft and the trivialization of E^dF, is assumed compati-

ble with this orientation. M(T) is pasted together from the Ej as follows: whenever

vertices i andj are connected by a ( + )-edge in T, we paste a boundary component
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Sx X Sx of Ej to a boundary component Sx x Sx of Ej by the map J = do):

Sx X Sx -h> Sx X Sx; for a (-)-edge we do similarly using -J = (_? ~l0): Sl X

Sx —> Sx X Sx. Thus base and fiber coordinates are exchanged in the pasting and

for a ( —)-edge the orientations of both are also reversed. The pasting maps reverse

orientation, so M(T) inherits compatible orientations from all its pieces Et.

We shall also allow disconnected plumbing graphs, with the following conven-

tion: if T = T, + T2 is the disjoint union of plumbing graphs Tx and T2, then M(Y)

is the connected sum M(T) = M(TX)#M(T2). Finally, to avoid trivial special cases,

it is convenient to allow the empty graph, with the convention that A/(0) = S3.

We also wish to describe manifolds with boundary by plumbing. This is done by

assigning to each vertex i an additional integral weight r, > 0, and when plumbing,

we remove r, open discs from the base space F, of the bundle Et being plumbed,

creating rt additional torus boundary components on F„ to which we paste nothing

during plumbing, so they remain as boundary components of the plumbed mam-

fold M(T).

Notation. We write the weights as a vertex i as

enclosing in square brackets the weights which refer to the topology of the base Ft

of the bundle being plumbed. If r, is zero we may omit it: if both g, and r, are zero

we may omit both. If r, ^ 0 then the cross-section obstruction e, vanishes and

should be omitted, but for convenience we notice the convention: if an et-weight is

written at a vertex with r, =£ 0 it should be disregarded.

Thus a typical plumbing graph might look like the following

[0,2] [-1] -

which is "shorthand" for

[0,2] [-1,0] [0,0]^-S

When drawing subgraphs of T, we always show all edges at the vertices drawn.

The notation

— ^-«i ed
•       ^Z^»- >

is meant to suggest that, in addition to the edge from / toy, vertex i may have any

number (possibly zero) of additional incident edges.
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Terminology. A closed plumbing graph T is one with all r, equal to zero, so M(T) is

a closed manif old. An orientable plumbing graph is one with all g, > 0.

Mx at M2 will always mean A/, is diffeomorphic to M2 preserving orientation. M

with reversed orientation is denoted — M and M, + M2 means disjoint union.

2. The calculus. We shall need the following semigroup structure on Z. If F, is a

surface of genus g, for i = 1, 2, then we denote gi#g2 = g(Fx#F2). Thus

gi#8i = 8i + Si if g,g2 > 0,

= -2g,+g2      ifg,>0,g2<0,

= gi-2g2        ifg,<0,g2>0.

Proposition 2.1. Applying any of the operations R0 to R8 listed below to a

plumbing graph T does not change the oriented diffeomorphism type of M(T). The

same holds for the inverse operations.

R0. (a) If i is a vertex with g, > 0, reverse the signs on all edges other than loops at

this vertex.

(b) If i is a vertex with g, < 0, reverse the sign on any edge at this vertex.

In view of R0, if T* is the subgraph of T defined by all vertices with g, > 0, then

the signs on edges are only relevant on cycles of T*. We shall therefore often omit

the edge signs of T which are not on cycles of T*. In fact the information contained

in the edge signs of T is completely coded by the homeomorphism er: HX(T*) -^

Z/2 which assigns to any cycle of T* the number modulo 2 of (— )-edges on that

cycle. Later we shall work with er, but for the moment edge-signs are more

convenient.

Rl (blowing down). In any of the following four situations, replace the graph on the

left by the one on the right. Here e = ± 1, and e0, e, and e2 are edge signs and are

related by e0 = -ee,e2.

r0 +. —       r0

' '     CSi^i^ '*       [gi,^]

_ei  ei   e   e2 ed    , e±-e     eo    ere

J>-•-■<•  —-  p>--<r-
el

Cgi»ri3     e2 '^^LgJ^l-
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Recall that omitted g, and r, weights are by definition zero. The first case above

means any isolated vertex of T with weights e = ± 1, g = 0, r =0 can be deleted.

R2 (RP2-absorption). Here 8X = ± 1, 82 = ± I, and 8 = (8X + 8J/2.

e >»2&i
-r^i_b^ l   _„   -^i

Csi'ri] N.262 "S"T^#-1,P1]

By blowing up (the inverse operation to Rl) and blowing down one sees that the

three cases of R2 are mutually equivalent. Indeed

1

<-2 ~y »2±2 >» ±2 >•  ±2

R3 (0-chain absorption). Here the edge-signs e'( are given by ej = -eee, if the edge in

question is not a loop, and e- = e, // it is a loop.

e -     e !i- ei+ei    ei^-""

£>-"C^   —'    I^<^;:

R4 (unoriented handle absorption).

e. e e,

[Si.^]  e [gjt-2,1^]

R5 (oriented handle absorption).

6i ~ . ei

R6 (splitting). If any component of T has the form

0 e.    // •

r t^^
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where each Tj is connected and, for eachj, Tj is joined to vertex i by kj edges, replace

T0 by the disjoint union ofTx,..., Ts, and k copies of

0,

and rt copies of

[0,1],

where

k = 2g + t   (kj - 1),       g> 0.
7 = 1

- -g + 2  (kj - 1),      g < o.

R7 (Seifert graph exchange). If any component of T is one of the graphs on the left

of the following list, replace it by the corresponding graph on the right.

-iO —* y^

°<D+ —> l^
ii  -2

io —► yf
1-3       •  -2

n  -2

-1 <o-» .  .  1  .  .
_2     -2     -2     -2     -2

°<o->       .  .  . I .  . .
_2     -2     -2     -2     -2     -2     -2

J  -2
"\_y " »       »       >-•-•in*

_2    -2    -2    -2    -2    -2    -2    -2

R8 (annulus absorption).

T>*-■   —*      C^*
"      [g^]     [0,1] - [gi,ri+l]
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The inverse moves to R1-R8 will be called: blowing up, RP2-extrusion, 0-chain

extrusion, unoriented handle extrusion, oriented handle extrusion, connecting, cyclic

graph exchange, annulus extrusion.

Most of the proof of 2.1 is already in the literature, so we just sketch it. R0(a)

arises by reversing base and fiber orientations of the bundle F, being plumbed.

R0(b) arises because if F, has nonorientable base F„ then the boundary compo-

nents of F, do not carry any natural orientation. Rl is proved in special cases by

Von Randow [22]; see also Scharf [21] and Neumann and Weintraub [17]. The

general case can be proved the same way; for instance, it is an easy consequence of

Lemma 5.4 below. Alternatively, note that once R2, R4, R5, and R8 are proved, by

extruding handles and RP2's and annuli, Rl can be reduced to the case g, = gj =

rt = Tj: = 0 already in the literature. Similar remarks apply to R3 and R6. In fact

R3 is a trivial computation, as are also R5, R6 and R8, so only R2 and R7 need

discussion.

For R2 we observe that the manifold determined by the graph

[0,1]^-^ _2

can also be described as the total space X of the S'-bundle with orientable total

space over the Mobius band Mb [24, §3]. A quick way of seeing this is to think of X

as the unit tangent bundle of Mb. The standard circle action on Mb thus lifts to X,

giving X a Seifert fibration with two 2-fold exceptional fibers. This Seifert manifold

structure leads in a standard way (see [7], [16], [22], or §5 below) to a plumbing

graph, which is easily checked to be the above one. Thus R2 (for 8X = 1, 82 = -1)

is clear once one verifies that the pasting map is correct, which can also be seen

from the above description. As pointed out earlier, the other cases of R2 reduce to

this case by blowing up and blowing down.

Before we prove R7 we need some notation. If A G SL(2, Z), let T(A) be the

F2-bundle over Sx with monodromy A. That is, T(A) is obtained from [0, 1] X T2

by identifying the two ends via the map A: {1} X T2 —> {0} X T2. Now the graphs

on the left in R7 are all special cases of the cyclic plumbing graphs for torus

bundles over Sx, which we discuss in §6, and by the computation of that section,

they lead to the torus bundles T(A) with

H+-l ;)•  (-0, J).  (:! ;)■
1 i      o )'   li     o J'     I l      o )

respectively. These A are of finite order 6, 4, 3, 3, 4, 6 respectively, so the

corresponding T(A) is always a Seifert manifold. The corresponding Seifert in-

variants can easily be computed in each case (see for instance [18]; note that the /'th

example in the list is always the (7 — i)th example with reversed orientation, so one

need only compute three cases). The result is the following list (using unnormalized

Seifert invariants, as in [13] or [16]).
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(0;(1, 1),(2, -1),(3, -1),(6, -1)),

(0;(1, 1),(2, -1),(4, -1),(4, -1)),

(0;(1, 1),(3, -1),(3, -1),(3, -1)),

(0;(1, -1), (3,1), (3,1), (3,1)),

(0; (1, - 1), (2, 1), (4, 1), (4, 1)),

(0; (1, - 1), (2, 1), (3, 1), (6, 1)).

But by the standard description of Seifert manifolds by plumbing (due to von

Randow [22], but with other orientation conventions; for a description in terms of

unnormalized Seifert invariants see [16]) the plumbing graphs on the right in R7

also give this list of Seifert manifolds.

There is of course a great danger of orientation conventions being incompatible

somewhere in this proof. If they were so, they would lead to a consistent orienta-

tion error in all six examples. We thus need an "orientation safe" method to check

at least one of the examples. Such a method is provided by Kirby's link calculus

[11]. In general the manifold M(T) with T the cyclic graph

e* ^ - -

/+ ^
e2  < v

+ I

X '
& ■ -_s

can also be given by surgery on the framed link

e2      "^^\

In particular, the first graph on the left in R7, after blowing up once, becomes

+

+

giving the framed link
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Similarly the graph

y-i

ii -6

corresponds to the framed link

It is now an easy exercise in the link calculus to see both these links can be reduced

to the 0-framed trefoil

verifying this case. The other cases could of course be verified by the same method,

but except for the sixth one this seems less easy.

Warning. The reason we first blew up the first graph is that the framed link

corresponding directly to the graph

O
is not, as one might at first expect,

but is

-2 (C^u)°
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The reason should be clear. With this special case in mind, it is now clear how one

can translate any closed plumbing graph T with all g, = 0 into a link diagram.

( —)-edges in T translate to linking of the following type:

By first doing handle and RP2-extrusions, any closed plumbing graph can be

reduced to a graph of this type and then translated into a link diagram. This gives

an alternate approach to proving 2.1, at least in the closed case, and was the

approach used in [17].

3. Sufficiency of the calculus.

Theorem 3.1. // T, and T2 are two plumbing graphs and M(TX) at MQ?^, then Tx

and T2 are related by operations R0-R8 and their inverses.

To apply this theorem in practice it is usually easiest to use the first step of its

proof, namely the reduction to normal form described in §4. Before describing this

we give some corollaries of the theorem and its proof, which give improved

versions of the calculus for special classes of graphs.

Theorem 3.2. For each of the following classes of plumbing graphs Theorem 3.1

holds using just the operations listed and their inverses, and staying within the given

class of graphs (undefined operations are defined below).

(i) Orientable plumbing graphs (all gt > 0): R0(a), R0(b)', Rl, R3, R5, R6, R7,

R8, R2/4.
(ii) Spherical plumbing graphs (all g, = 0): Same as (i), but omit R5.

(iii) Orientable plumbing graphs with no cycles, so edge signs are irrelevant and can

be omitted: Rl, R3, R6, R8.

(iv) Star-shaped plumbing graphs for Seifert manifolds: Rl.

(v) In Theorem 3.1 and each of the above cases, if only closed plumbing graphs are

considered, then R8 can be omitted.

The undefined operations above are:

R0(b)'. At a vertex where RP2-absorption would be applicable, change the sign

of any incident edge.

R2/4. An unoriented handle absorption followed by two RF2-extrusions.

The classes of graphs described in (i) and (ii) are natural classes of plumbing

graphs which still give all possible graph-manifolds. The third class is definitely

restrictive, but still includes all graph-manifolds which are rational homology

spheres. An application of this is given in [15]. The fourth case of the theorem was

stated without proof in [16]. As claimed there, it can easily be seen directly.

The following trivial proposition complements the calculus. If T is a plumbing

graph, let - T be the same graph with the signs of all euler number weights and all

edges reversed.
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Proposition 3.3. -M(T) at M(-T).

4. Normal form.

Definition. Two plumbing graphs Fx and T2 are isomorphic, written r( at T2, if

there exists a graph isomorphism r, —» T2 which respects vertex weights and such

that the induced diagram

hx(t*)    -»    /f,(r2*)

er, N S er2

Z/2

commutes, where er is the homomorphism defined just after RO in §2.

Definition. A chain of length k in a plumbing graph T is any portion of T of the

form (after reindexing vertices)

el             e2                                       ek

-•-•— -- -•-       (k>0)

or

el             e2 ek
-•-•-                     --—•

Here the only edges incident to vertices 1, . . . , k are those shown and these edges

have arbitrary signs. Recall that by convention our notation indicates that g, = rt

= 0 for i = I, . . . , k. The chain is maximal if it can be included in no larger chain.

The following definition of normal form is based on the following three princi-

ples.

(i) Euler number weights should be negative wherever possible.

(ii) Seifert manifolds over orientable surfaces should have their "natural" star-

shaped plumbing graphs.

(iii) Plumbing graphs should be as small as possible, subject to (i) and (ii).

This preamble hopefully makes the following definition less horrifying.

Definition. T is in normal form if the following six conditions hold.

Nl. None of operations R1-R8 can be applied to T, except that T may have

components of the form

% el -1^ -2
~~ —<_

with k > 1 and e, < -2 for i = 1, . . . , k.

N2. The weights e, on all chains of T satisfy e, < -2 (this condition includes

much of Nl).

N3. No portion of T has the form

Jt -2

^^^« -2
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unless it is in a component of T of the form

<-2

with k > 1 and et < -2 for / = 1, . . . , k.

N4. No portion of T has the form

ei °

i Z^-^*~-*
Cglfr±] [-1]

unless vertex / is an interior vertex of a chain.

N5. No component of T has the form

ek e;L e

•- -•-• ,     k>0  .

[-1]

N6. No component of T is isomorphic to one of the following graphs:

-2     +     -2     + +     "2

;2   ♦   ;2   * +   -2

-1             -2                                        -2             -1
•-•- «-•

[-1] [-1]

1 1
e »

C-lj        [-1]

0               e               0
•-•-•

[-1] [-1]

0

[-2]

C-1,1]
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Theorem 4.1. Any plumbing graph can be reduced to normal form using only

operations R1-R8 and their inverses.

Proof. We give an algorithm to do what is required. After step /' conditions N1

to N/ are satisfied.

Step 1. Apply operations N1-N8 to T until no more are applicable. This process

clearly terminates.

Step 2a. Suppose we have a maximal chain

el             e2                                      ek

-•-•- -•-       (k>l)

embedded in T as follows:

._e0 el e2 ek ek+l_

r-~>«-•-•- -•-•<-"   :
[g0'r0] Csk+l'rk+l]  *

where we are omitting the edge signs for convenience. Here the vertices labelled 0

and k + 1 may coincide; however we assume for the moment that the chain is not

part of a cyclic component

el e2 ek

of T. Because of step 1 we know |e-| > 2 for i = \, . . . , k. We convert this chain

into one, all of whose weights are < -2, as follows.

Let i < k be the largest index with e, > 2. By doing (e, — 1) (—l)-blow-ups

directly to the left of this vertex we obtain the following situation (the effect on the

omitted edge signs is understood):

•i-1-1       "2                                   -2              -1               *           ei+l
.-•-«- ____«-•-•-•-

>-v-'

et-l

(with the obvious interpretation of what this means if /' = 1 or k). Now blow down

the 1-weighted vertex to get

•i-1-1        ~2                                "2        ei+l-1
--•-•-•- -•-•-

V-„-'

e±-l

If e,_, t6 2 we now have a chain like the one we started with, but with less positive

weights. If e,_i « • • • = ej_J = 2 this will be true after doingy blow-downs to get

•i-j.a-1    -2-J -2 -2        ei+1-l
• • • -• •
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In any case we now repeat the process until eventually our chain has the desired

form.

The same procedure can be applied to a chain of the type

el e2 ek

Step 2b. To achieve condition N2 of the definition of normal form it only

remains to describe how to deal with cyclic components

el e2 ek

of T. The procedure of step 2a still works in this case to produce a cycle with all

weights < -2 except possibly when ex = 2. Since we can cyclically permute the

indices, the only case we must deal with is therefore the case that ex = e2 = • • • =

ek = 2. In this case the procedure of step 2 results in the graph

-k     +     0 -k 0

+

and we then apply a handle absorption (R4 or R5) to reduce this to

-k -k
• or •

[-2] [1]

respectively.

Step 2c. Step 2a may have made additional Rf2-absorptions possible. If so, do

them.

Step 3. Given a portion of T as in condition N3, apply the following operation,

followed by the procedure of step 2 if e > -2.

e.^ e     .•* ~ e± e+1 0

"r^>»-<T       —*    D^3*-"-"
Csi'ri] ^N»-2 '*     [Si»riJ E-1^

This is a 0-chain extrusion to get

ei e+1 0 -1    s* ~2

r>—•—•—<

followed by an RP2-absorption.
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Step 4. Given a portion of T as in N4, apply the following operation (an

RP2-extrusion followed by a 0-chain absorption).

ei ° - ei"1^-x* ~2

[g-p^]      [-1] - '     [g^r^]^, -2

Step 5. Replace any component of T isomorphic to a graph on the left below by

the corresponding graph on the right.

e, e, e efc e,      e     -1/"* ~2        f   e£ -2  ,

[-1] ^s.-2        l '

ek e,     -2 -2    -1 e, e,+l      b/* _2       j e,£ -3  ,

*"-*t^3-a,—*-i^\.2    ""•
b ' -2

'    -3    -2 -2    -3

-2 -2       -1 «-»-' '

-v-       [-1]
b _4

i • b «0     .

C"1] -2 -2

• • e =C
\

Each of these is an RF2-extrusion followed by blow-downs and the procedure of

step 2a if necessary, except that the final case involves a splitting operation instead.

Step 6. Replace any component of T isomorphic to a graph on the left below by

the corresponding graph on the right.
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-2     -2 -2 e
*■-•—-■*      (e vertices)    -> •
^^ +  ^/ [+1]

—2     —2            —2 ^
+      +    + (e vertices)    -> •

-1    -2 -2    -1 -2*\e-T^-2

cST^pSTi       -   _2.X._2   "**

O        e        O ~2*v\ e-2^*-2
•-•-• -> ^^^

C2] -2^^-2

-2 -2
• -> •-•-•

[-1,1] [0,1]

The first two of these are most easily explained from right to left; they are then a

handle extrusion followed by the procedure of step 2. The third to sixth are two

RP2-extrusions followed by blow-downs and 0-chain absorptions where necessary.

The last is an RP2-extrusion followed by an annulus absorption.

This completes the proof of Theorem 4.1. The next theorem completes the

description of the calculus.

Theorem 4.2. If M(TX) at M(T2) and Tx and T2 are in normal form then Tx at T2.

In view of uniqueness of prime decomposition for 3-manifolds the following

theorem reduces everything to the case of connected plumbing graphs.

Theorem 4.3. // T is a connected normal form plumbing graph then M(T) is prime

(that is, it cannot be written as a nontrivial connected sum).

We shall prove the above two theorems in the next two sections. The following is

a useful corollary of Theorem 4.3.
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Corollary 4.4. If T is a connected graph which admits no blowing down, no

0-chain absorption and no splitting, then either M(T) is prime or

0

r =    *
[-1]

andM(T)atRP3#RP3.

Proof. If we use the above algorithm to reduce T to normal form, the only way

T can become disconnected is via the last case of step 5, if

0

r=    *    .

Theorem 3.1 is an immediate corollary of Theorems 4.1 and 4.2. Theorem 3.2

can be proved similarly by giving a suitable normal form for graphs in each of the

four special classes described there. An inelegant but adequate method is as

follows. Define a graph T to be in O-normal form if it results from a graph in

normal form by doing |g,| RF2-extrusions at each vertex with g, < 0. T is in

S-normal form if it results from a graph in 0-normal form by doing g, oriented

handle extrusions at each vertex with g, > 0. Clearly a graph in normal form

determines a unique graph in 0-normal form or .S-normal form and vice versa.

Thus Theorem 4.2 applies also to these normal forms. Now 0-normal form is

suitable for classes (i), (iii) and (iv) of Theorem 3.2 and S-normal form is suitable

for (ii) (and also (i)). Thus to prove 3.2 it suffices to show that for each case one

can reduce within the relevant class to the relevant normal form using the given

operations. This easy verification is left to the reader.

5. Reduced graphs. We shall prove Theorems 4.2 and 4.3 simultaneously, using

Waldhausen's classification [24] of graph manifolds. We thus assume throughout

this section: r is a connected plumbing graph in normal form.

There are two cases that do not fit conveniently into Waldhausen's classification

and will be discussed in detail in the next section. These are the cases of a straight

line graph or a cyclic graph, that is a graph of the form

el       e2                           ek

•-•-       -•        ,       k £ 0,

or

el A e2 _, L ek

»*   «      --     "-^        .       k*!  •

We will thus exclude these cases much of the time in this section.

Now recall that each edge o of T corresponds to an embedded torus T0 c A/(r)

and that the collection of all these tori cuts Af(r) open into a disjoint union of

circle bundles over compact surfaces. Such a collection of tori is called a graph
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structure on M(T) by Waldhausen. We want a subcollection which is still a graph

structure and which is reduced in Waldhausen's sense, which we explain later.

Theorem 5.1. Assume T is a connected normal form plumbing graph which is not a

straight line graph. Let S be a subset of the set of edges of T which contains precisely

one edge of each maximal chain ofT. Then {Ta\o G S} is a reduced graph structure

on M(T).

We shall define reduced graph structure once we are ready to prove the theorem,

but first we need some preparatory notation and computations.

If b,,..., bk are real numbers, we denote

[bx,...,bk] = bx-—       i
°2- ''.  _J_

K

and

*.•«-(-*, :)••■(-'■ i>

For k = 0 we also define A( ) = (0 ̂ ) = J.

Lemma 5.2. Define recursively P_x = 0, PQ = 1, P,+ 1 = bi+xPt - Pt_x; Q_x =

-hQo = 0,Qi+x = bi+xQi-Qi_x.
(i)[bx,...,bk]= Pk/Qkand

*.«-(-t   -I}
(ii) // bt > 2 for all i then Pj+X > P, + 1 and Qi+X > Qt + 1, so in particular

P,> i + ] and Qt > i for all i.

(iii) If moreover some bt > 2, then Pk > Pk _, + 1.

Proof. The proof is a trivial induction.

Returning to Theorem 5.1, we first show that the set of tori in question is a graph

structure for M(T).

Suppose we have (after suitably reindexing vertices) a maximal chain of length k

embedded in T as follows:

-._      en el e2 ek em    _...

Xz^z*—-—•—-—•—     —•—-—•^cri
"'  [en.rn] tgm,rm]  -

For the moment assume m ¥= n. The bundle of euler number e, over S2 can be

pasted together from two trivial bundles over £>2 as follows:

D2 X Sx \jHi D2 X Sx,       Ht = (~le     °\sx X SX^SX X Sx.
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The -1 in the upper left of //, reflects the fact that the base circle Sx X {1}

inherits opposite orientations from each side. The bundle over the twice punctured

S2, needed for plumbing, is thus A X Sx UHi A X Sx where A at I x Sx is an

annulus. The plumbing according to the above portion of T thus gives the pasting

(with/ -O):

En U±J(A X SxUHiA X Sx)u±J... U±J(A X SxuHtA X Sx) u ±J Em,

where F„ and Em are the bundles corresponding to vertices n and m. Since

A X Sx ^ I x T2 is a collar, this is equivalent to the pasting

(*) EnucFm,       C = (- \)CB,   B = JHkJ ■ ■ ■ JHXJ,

where c is the number of (—)-edges on the chain.

A similar analysis applies if n = m. Also similarly a chain

..._en el ek

"'       [Sn'rn]

in T leads to the pasting

(**) En uB Sx X D2,       B as in (*) above.

The initial factor J in B in this case arises because we wrote En u Sx X D2 instead

of E„ u D2 X Sx.

The statement that the set in Theorem 5.1 is a graph structure is now clear. To

show it is reduced we need some more computations.

Lemma 5.3. The matrix B of (*) and (**) above satisfies:

(i) In the terminology of Lemma 5.2 with bt = —et,

B = A(bx,...,bk)J=(     Qk _Pk    );
\        tJAr- 1 rk-\l

(ii) if k > Othen Pk ¥= 0;

(iii) if k > 1 then Pk_x¥=0and Pk > 2.

Proof, (i) is immediate, since

and (ii) and (iii) follow from 5.2(h) since <b, > 2 by definition of normal form.

We shall need two special cases of the above. Let X be the oriented total space of

an S'-bundle over the Mobius band and parametrize dX = Sx X Sx so the first

factor is the boundary of a section of X and the second factor is a fiber. Consider a

chain in T of the form

_en 81 e2 ek ek+l

;~^^5»-•-•- -• •

''     ten'rn] [-i;l
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Lemma 5.4. (i) This chain yields the pasting En \jD X with

where bt = -e^for i = I, . . ., k + I.

(ii) In this situation Pk + X¥= 0.

Proof. For part (i) apply a 0-chain extrusion to get

*^°n el ek+l ° °

: j^s» •- -• • •

"'     £gn,rn] [-1]

and apply the computation preceding Lemma 5.2. For part (ii) observe that bt > 2

for i = 1, . . . , k, by definition of normal form. If k > 1 then Pk + X = bk+xPk —

Pk-\, which cannot be zero by Lemma 5.2(h). If k = 0 then Pk+X = bk+x = bx,

which is not zero by condition N4 for normal form.

Now suppose T has the form

e             el ek ek+l

•-• • •

[-1] [-1]

Lemma 5.5. (i) This Tyields M(T) = X u E X with

E = D(-\       0 \     /     Qk + ePk Pk\

\-e     -\)     \Qk + l + ePk+x     Pk+X)

with D as in the previous lemma.

(ii) In this situation Qk+X + ePk+x ^ 0.

Proof. Part (i) is a similar argument to 5.4(i). For part (ii) first note that Pk + X

and Qk+X are coprime, since det D = -1. Assume

(A) Qk+i+ePk + x = 0.

Then since Pk + X ¥" 0 by 5.4(h), we must have Pk + X = ± 1, that is

(B) Pk+l=bk + xPk- Pk_x= ±1.

There are now three possibilities.

Case 1. If k > 1 then 5.2(h) and (B) imply bx = • • • = bk = 2 and bk + x = 1.

This gives Pk+X = Qk+X = 1, so e = -1 by (A). T is thus the third graph excluded

by condition N6 for normal form.

Case 2. If k = 1 then Pk = bx > 2 and Pk_x = 1. Thus, by (B), either b2 = 0, or

bx = 2 and b2 = I. If b2 = 0 then Qk + X = 0 so (A) gives e = 0, so T is the fifth

graph excluded by N6. If bx = 2 and 62 = 1 then as in case 1 we get a special case

of the third graph excluded by N6.

Case 3. If k = 0 then Pk + X = bx, so bx = ± 1. Since <2* + i = Si = L (A) gives

£ = ± 1, so T is either the fourth graph excluded by N6 or a special case of the

third graph excluded by N6.
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Thus none of these can occur, so the proof is complete.

We are now finally ready to define "reduced graph structure" and complete the

proof of Theorem 5.1. Let T be the union of the Ta, a G S, and let M0 be M(T) cut

open along T. We think of Af = M(T) as pasted together from the components of

M0. Thus to any fixed Ta, a G S, we have components Af, and M2 of A/0, which

may coincide, which in Af are pasted along Tg. Waldhausen defines a reduced graph

structure to be one in which none of the following ten situations occurs, with

indices as written or transposed. For each one we give in parentheses the reason

why it does not occur in our case.

Wl. Af, ¥= M2 and Mx at A X Sx where A is the annulus. (T admits no annulus

absorptions and S1 contains just one edge of any maximal chain.)

W2. Fiber of Mx homologous in Ta to a fiber of M2 (Lemma 5.2 (ii)).

W3. Mx at Sx X D2 and a meridian {p} X Sx c 3A/, = Ta has intersection num-

ber ± 1 in Ta with a fiber of M2 (Pk > 2 in 5.3(iii)).

W4. Af, at Sx X D2 and a meridian {p) X Sx C 9Af, = Ta is homologous in Ta

to a fiber of M2 (Pk_x^0in 5.3(iii)).

W5. Af, at X (the S'-bundle over the Mobius band) and the homology class ju, in

3Af, = Ta of the boundary of a section of Mx is homologous to a fiber of M2 in Ta

(Lemma 5.4(h)).

W6. Af, at X and M2 at X and ju, is homologous to y^ where ju, is defined as in W5

(Lemma 5.5(h)).

W7. Cutting M only along Ta splits it into the graph manifold given by

0^.-2

[0 ,1 ]o^^^ _ 2

and a piece which is not a solid torus, and Ta, i = 1,2, are included in the graph

structure (condition N3 in the definition of normal form).

W8. A/, = M2 = A X Sx = / X Sx X Sx and the pasting map Sx X Sx -+Sx X

S' is given by a matrix of trace ±2. (T would be a cyclic plumbing graph; we show

the relevant trace has absolute value > 3 in the next section.)

W9. Af, = D2 X Sx and M2 = D2 X Sx. (T would be a straight line graph,

excluded by hypothesis.)

W10. M = M0 is an Sx-bundle over S2 or RP2. (A bundle over S2 is a special

case of a straight line graph; bundles over RP2 are excluded by condition N5 of

normal form.)

This completes the proof of Theorem 5.1. Theorem 4.3 now also follows, since by

Waldhausen [24] a manifold possessing a reduced graph structure is irreducible,

hence prime, while the straight line graphs excluded in Theorem 5.1 yield lens

spaces which are also prime.

Remark. W9 and W10 above are slightly unfortunate. Suppose one replaces

them by:

W9'. M, = D2 X Sx and M2 = D2 X Sx and M can also be expressed as a circle

bundle over S2.
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One obtains a perfectly good modified definition of reduced graph structure, and

straight line graphs and lens spaces no longer play a special role anywhere in this

section. We will follow Waldhausen's convention however.

Following Waldhausen, we call a manifold with a chosen reduced graph struc-

ture a reduced graph manifold. To any reduced graph manifold Af, other than a

torus bundle over Sx with graph structure consisting of a single fiber (which we call

the canonical graph structure on a torus bundle), Waldhausen associates a weighted

graph G, which completely codes the topology of the reduced graph manifold. We

shall compute this graph G, which we call the W-graph corresponding to T, for the

graph structure on Af(r) of Theorem 5.1.

We must first describe Waldhausen's graphs. Thus let Af be a reduced graph

manifold as above and let {Ta, o G S) be its reduced graph structure. Let Af0 be

M cut open along all the Ta.

The U'-graph G has one vertex i to each component Af, of Af0 and one edge a for

each Ta of the graph structure, this edge connecting the vertices i andy correspond-

ing to the components Af, and Af, of Af0 which glue along Ta (i and j may

coincide). Furthermore G has the following additional structure:

(i) Each vertex i with Ms ai Sx X D2 carries a weight (g,, rt, st), where g, and /•,

have the same meaning (genus and number of "free" boundary components) as in

r, and 5, is a cross-section obstruction, which we describe below, which vanishes if

/-, 7^ 0. Vertices with Af, at Sx X D2 are left unweighted.

(ii) Each edge o is arbitrarily assigned a direction. Moreover this edge a carries a

weight (a„, Ba) satisfying

( gcd(a0, B„) =1,        0 < B„ < a„;

[ 0 < Ba,   if a is incident on an unweighted vertex.

(Waldhausen requires an edge incident on an unweighted vertex to be directed

toward this vertex. This is unnecessary, so we drop this requirement.)

(iii) If G* is the full subgraph of G on the weighted vertices with g, > 0, then a

homomorphism eG: HX(G*) —»Z/2 is given.

We first describe the weights (ac, Ba). First, for each vertex i we choose fiber

orientations in each boundary component of Af, such that these fiber orientations

are mutually compatible if Af, has orientable base. If o is an edge directed from

vertex /' to vertex j, let {ju.a+, v*} be the following basis of Hx(Ta). If Af, 3^ S1 X

D2, choose /t0+ as the class of a fiber of A/}. If Af. =s S1 X Z)2, choose u0+ as the

class of a meridian {1} X Sx of Sx X D2. We shall choose v* so that v*', /x0+ form

an oriented basis of Hx(Ta) with Ta oriented as part of 3A/,. Thus v* is so far only

determined up to adding multiples of ju.„+. We define a basis {n~, v~) of Hx(Ta)

the same way, using Af, instead of Af,.

An easy computation (see [24]) shows that we can choose v* and v~ so that the

following relations hold:

/C = e0(a0p~ + Ban~),        ii.; = ea(aava+ + B^a+),

£„ = ± 1,    0 < Ba < aa,    0 < B'a < at,,    BaB'a at \ mod (aj,
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and v; and v* are then well defined. The reducedness criteria imply 0 < Ba < aa if

i orj is an unweighted vertex.

Next the weights 51, are given as follows. If / is a vertex with Af, ai Sx X D2 and

r, = 0, then the v* of adjacent edges define a section on 3Af, and we put s, equal to

the cross-section obstruction to extending this section over Af,.

Finally if G* is the subgraph in (iii) above, define eG: HX(G*) -> Z/2 by putting

e(C) equal to the number modulo 2 of negative e0 with a G C, for any cycle C of

G*.

If a is any edge of G, we consider the graph obtained by reversing the direction

of a and replacing Ba by B'a to be equivalent to G. As Waldhausen shows, G is then

determined (up to equivalence) by, and determines, the reduced graph manifold Af

(that is Af plus its reduced graph structure). Of course the reducedness criteria

impose some restrictions on the form of a If-graph G. We shall not list them, since

it is a simple exercise for the reader, and they are also listed by Waldhausen.

Now let T be a connected normal form plumbing graph which is not a straight

line graph or a cyclic graph (as remarked earlier, the exclusion of straight line

graphs can be avoided). Let {Ta, o G S1} be the reduced graph structure on

Af = M(T) of Theorem 5.1. We describe how to obtain the corresponding W-graph

G.

Step 1. Replace any maximal chain in T,

._en el ek

r>—-—     —-
or

-_      n 1 km      _,-

!>•——--   —•—<d

with k > 0 (in the second case n and m may coincide) by a directed weighted edge

j^>*->-•

or

[gn,rQ] Cgm,rm]       ~

respectively, where (a, B) = (p,p - q) and (p, q) is determined by the continued

fractionp/q = [bx, . . . , bk], bt = -<?,.



324 W. D. NEUMANN

Step 2. Replace each maximal chain of length 0 in T,

"r^-<a
'        [Sn'rn] t6m»rm]      -

(n and m may coincide) by an oriented weighted edge

-^*n   (1,0)   e">-:-

-  tgn.rn]      Csm,rm] ^-

Step 3. We wish to assign weights (g„ jj,, /-,•) to those vertices which should have

them. Only 5, needs determining, and that only when r, =^= 0. We then put s, = e, +

c, where c, is the degree of vertex i in the subgraph G0 of G obtained by deleting the

edges described in step 2 (that is the (1, 0)-weighted edges).

Step 4. eG: HX(G*) ■-* Z/2 is the homomorphism induced in the obvious way

from er: 7F,(r*) -> Z/2.

Theorem 5.6. The above G is the desired W-graph for our graph structure on

M(T). T can be recovered from G.

Proof. That T can be recovered from G is clear, since a rational number

p/q > 1 has a unique continued fraction expansion p/q = [bx, . . . ,bk] with

bt > 2.
To see that G is correctly described, observe first that the pieces being pasted

together in plumbing come with trivializations of the bundle structures on their

boundaries. For any edge a of G this determines candidates for the bases {/x^, v^}

which we need to compute (aa, Ba). In most cases these candidates are incorrect

and we must adjust v* by a multiple of ju^ to correct them. This corresponds to a

change of boundary trivializations which will lead to the adjustment of the

cross-section obstructions described in step 3. We shall denote the uncorrected

bases coming from our given trivializations by {ju/, A,*}.

The computations for the two types of chain in step 1 are essentially identical, so

we just consider a chain of the second type. By Lemmas 5.2 and 5.3 this chain leads

to the pasting M = (. . . u F„) u c (Fm U • • • ) where C: Sx X Sx-* Sx X Sx

has matrix

C = (-0C(_^       J^),        p/q=[bx,...,bk],    qp'-pq'=\.

and c is the number of ( —)-edges of the chain. Our notation is not meant to

suggest that n and m must be distinct vertices. Thus, putting e = (— l)c, we get

C(tf, t~"i) = (1, t), or in other words ju^ = e(/>A<T - WT)- Now K = K ~ lK

for some / G Z, and this gives fia+ = e(pva~ + (Ip - q)^) = e(«afa" + &/*„")• To

satisfy 0 < Ba < aa we must thus have / = 1, giving

v; = K ~ M.T,    («„> &) = (p,p - q),    ea = e.
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The same computation with the chain reversed shows v* = X* — ju,0+. These

changes of trivialization in 3F„ and 3Fm have the effect of adding 1 to the

cross-section obstructions en and em (or adding 2 to e„ if n = m). That the

adjustment is by +1 rather than — 1 can be computed directly, but is seen more

easily by running through the same argument with a reducible chain

. •» "I

t>-'
'       [Sn'rn]

Thus step 1 is proved. Step 2 is trivial and the corresponding ea is just the

corresponding edge sign. Moreover step 2 leads to no cross-section adjustment, so

step 3 is proved. Collecting the above information on the signs ea proves step 4.

The following graph G will be important below:

(g,r,s) +     ,        ~*-r~

If g > 0 and r = 0 then G describes the natural graph structure on the closed

Seifert manifold with orientable base with Seifert invariants (g; — s;

(ax, Bx), . . . , (am, Bm)). For general g and r it still describes the natural graph

structure on an oriented Seifert manifold, with possibly nonorientable base, whose

Seifert invariants can be written, with a minor alteration of standard notation, as

((g, r); ~*; («i» /?i)> • • • > («m> Pm))- We thus call any graph G as above a Seifert

manifold graph, and the corresponding graph structure is called a Seifert graph

structure. We call the corresponding plumbing graph star-shaped.

We are now ready to prove Theorem 4.2. Let V be a plumbing graph in normal

form, which by 4.3 we can assume to be connected. If V is a straight line graph or a

cyclic graph we shall show in the next section that Af(r) is then respectively a lens

space L(p, q) (we include the cases L(\, 0) = S3 and L(0, 1) = S1 X S2) or a

torus bundle T(A) with |trace A\> 3 and that the straight line or cyclic graph T is

determined by M(T). We thus exclude these special cases for now and must thus

show that, with this exclusion:

(i) Af(r) is neither a lens space nor a torus bundle T(A) with |trace A\ > 3;

(ii) the IP-graph G constructed above is determined by (the oriented homeomor-

phism type of) Af(r).

Theorem 4.2 then follows from Theorem 5.6.

We first show (ii). Call two graph structures on Af equivalent if they are related

by an orientation preserving homeomorphism of Af. Waldhausen [24, Theorem 8.1]
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shows that if Af has two inequivalent reduced graph structures then one of the

following four cases applies:

1. Each graph structure is described by a Seifert manifold graph with g = 0,

r = 0, m < 3 org = -1, r = 0, m < 1.

2. Af is a torus bundle T(A) and one graph structure is the canonical graph

structure (that is a fiber, so | trace A | ^= 2 by reducedness) and the other a Seifert

graph structure with g = 0, r = 0, m < 3.

3. The two graph structures are given by the IP-graphs

(2,1)               (2,1)
•—^-•->—• and •

(0,1,0) (-1,1,0)

4. The two graph structures are given by the IP-graphs

(2,0\ /VA)

p^ and •

(2  11 st >v (2 11 (-2,0,0)k     £^( "2,0,2 )Xl

Now by condition N5 for normal form, the reduced graph structure we have

constructed is never a Seifert graph structure with g = -1, r = 0 and m < 1. Also

by Orlik, Vogt and Zieschang [20] the Seifert invariants of a closed Seifert manifold

Af with orientable base are uniquely determined by Af, unless Af is a lens space and

m < 2. Thus nonuniqueness of type 1 cannot occur for our reduced graph struc-

ture. Case 2 cannot occur by our exclusion of cyclic graphs. Cases 3 and 4 cannot

occur, since by condition N6 for normal form we always take the left-hand graph

structure in these cases.

Thus (ii) is proved. To prove (i), suppose first that Af(r) is a torus bundle T(A)

with |trace A\ > 3. Since such a torus bundle also has its canonical graph structure,

this could only happen if nonuniqueness of type 2 above applied. But the only

torus bundles which admit a Seifert manifold structure are those with |trace A\ < 2

(see for instance Orlik [18]), so this cannot happen. Thus suppose Af(r) were a lens

space. Then Af(T) =£ S1 X S2 since Waldhausen shows that reduced graph mam-

folds are irreducible. Thus Af(r) = L(p, q) with p ^ 0, so in particular Af(F) is not

sufficiently large. But Waldhausen's Lemma 7.3 then implies that the IP-graph G

corresponding to T must be a Seifert manifold graph. On the other hand, by the

classification of Seifert manifolds ([19], [20], see also [16] where a minor gap is

corrected), the only Seifert manifold structures on lens spaces are those with g = 0,

r = 0, m < 2, which do not yield reduced graph structures, or those given by the

IP-graphs

(<x,l)                                                             (ot,a-l)
•-.-^-» and •-^—•

(-1,0,0) (-1,0,1)
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which yield respectively L(4a, 2a — 1) and L(4a, 2a + 1). Since graphs of the

latter type are excluded by condition N5 of normal form, the proof is complete.

The following corollary will be useful later.

Corollary 5.7. Suppose T is a connected normal form plumbing graph and M(T)

is a Seifert manifold which is not a lens space. Then T is the natural star-shaped

plumbing graph

ell e12 ^s-l

/*2\ 62s2

I"-    ^-^     " . . ,  e.,^-2 for all i,J.
\    . x°

r \   • • •

\8ml       ' *     emsn,

of a Seifert manifold structure on M. Moreover, if M(T) admits a Seifert structure

with orientable base, then T corresponds to this Seifert structure. The Seifert in-

variants are ((g, r); -e - m; (a„ /?,), . . . , (am, Bm)) with a,/(a, - #) =

[-en,..., -eis].

Proof. If Af(r) is a Seifert manifold with Seifert invariants as described above,

then it has a plumbing graph as above. Either this plumbing graph is in normal

form, in which case it is T by uniqueness; this is always so if g > 0. Otherwise it is

not in normal form, in which case, step 5 or one of the last two cases of step 6 of

reduction to normal form replaces T by the graph for a different Seifert structure

on Af(r) which has orientable base.

6. Lens space and torus bundles. The part of 4.2 remaining to be proved is

included in the following theorem.

Theorem 6.1. The following normal form plumbing graphs give all lens spaces and

all torus bundles. In each case the graph T is the unique normal form plumbing graph

for the corresponding manifold.

I. T = 0; AffT) = S3 = 1(1, 0).

II.

r- ° •

M(T) = Sx X S2= L(0, 1).

III.

k > 1, 6, > 2 for all i; M(T) = L(p, q) withp/q = [bx, . . ., bk].
IV.

-h.   -fe   _^k
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b, > 2 for all i, b, > 3 for some i; M(T) = T(A), A = A(bx, ..., bk), trace A > 3.

V.

-*>!    -b2 -bk

fy > 2 for all i, 6, > 3 for some i; M(T) = T(A), A = -A(bx, . . . , bk), trace A

< -3.

VI. T one of the Seifert manifold graphs on the right in R7 of §2; M(T) = T(A)

with A as described in §2, |trace A\ < 2.

VII.

-b
r= *

Af(D= 7^M=(i?).
VIII.

-A

r=    •
[-2]

6^0;Af(r)= 7X^4),^ =-({,?)•
IX.

_2^X-2

Af(T) = T(A), A = -(I °).

Proof. We first check that Af(r) is correctly described for each of the above T.

If

-bx          -b2                                -bk
l      = > > — -•

with no condition on the Z>„ then the computation preceding Lemma 5.3 shows

M(Y) = Sx X D2UBSX X D2 with B = A(bx, . . . , bk) J = (_« _;,) with p/q =

[bx, . . . , bk] andp'q - pq' = 1, which is a standard description of L(p, q). Thus I,

II, and III are verified.

If

r   =     "h       ~fe _~K

with no condition on the bt, then a similar computation shows Af(F) = T(A) with

A = ± y4(6„ . . ., bk). Thus, cases IV and V are clear, while cases VI-IX also

follow, since those graphs are equivalent by a handle extrusion to suitable (nonnor-

mal form) cyclic graphs. The statements about trace(/l) in cases IV and V follow

from Lemma 5.1 and a trivial induction.
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We have already seen in §5 that a normal form plumbing graph for a lens space

L(p, q) must be a straight line graph V. The uniqueness statement for T is proved

in [7]. In fact if 0 < q <p and 0 < q' <p, then L(p, q) at L(p, q') if and only if

q = q' or qq' = 1 (modp), and in [7] it is shown that if p/q = [bx, . . . , bk] is the

unique continued fraction with bt > 2, tnenp/q' = [bk, . . . , bx] is the correspond-

ing one for p/q' with qq' = 1 (modp).

To see the corresponding statements for the torus bundle cases, we need the

following well-known and easy lemma.

Lemma 6.2. T(A) at T(B) if and only if A is conjugate in SL(2, Z) to B or

JB-xJ-x,whereJ = Cxb.

Now the matrices A occurring in cases IV-IX of 6.1 include all conjugacy classes

of matrices with |trace A\ < 2, and the uniqueness of T in these cases was proved

in §5. Thus only cases IV and V need proof. Since the classification of conjugacy

classes of A G SL(2, Z) with traceL4) < 0 is equivalent to the classification for

traced) > 0 (by multiplying by - 1), cases IV and V are equivalent to each other,

so we need only consider case IV. A trivial computation shows

A(bk,...,bx) = jA(bx,...,bkyxj-x,

so the following proposition completes the proof of 6.1. Define an oriented cycle to

be a tuple ((bx, . . . , bk)) of integers bt > 2 with some bt > 3, where we consider

two cycles to be the same if they are related by a cyclic permutation of the indices.

For A G SL(2, Z) let (A) be its conjugacy class.

Proposition 6.3. The mapping ((bx, . . . , bk))\-+(A(bx, . . . , bk)) is a bijection

from the set of oriented cycles to the set of conjugacy classes of A El SL(2, Z) with

trace A > 3.

Proof. See [6] or [9]. For completeness we describe how to find the cycle

((&,, . . . , bk)), given A. If one has never seen it, it is a pleasant exercise to fill in the

proof oneself. Given A G SL(2, Z) with t = trace(/l) > 3 we consider the Mobius

transformation on R u (oo) given by

x h> aX + C A = (a     b)
bx + d' \c     d)

(note the transposition). Let co G R be the stable fixed point of this map. Direct

computation shows

to = ((a - d + Vt2-4 )/2b.

Since to is a quadratic irrationality, its infinite continued fraction expansion (with

minus signs, as in §5) to = [a0, ax, . . . ], a, > 2 for i > 1, is ultimately periodic. Let

(c,, . . . , cs) be a primitive (that is shortest) period, and put B = A(cx, . . ., cs). If

t0 = trace(5), then the desired cycle is

(bx, . . . ,bk) = (c„ ..., c,, c„ .... c„ ...,  . . .,cs)

(n repeats), where n is found from the relation trace(j3") = trace A, or equivalently

(' + V?^4 )/2 -[(<0 +V£T4 )/2]".
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7. Orientation reversal. Let T be a connected normal form plumbing graph. We

wish to describe the normal form plumbing graph for — Af(T). We must recall

some notation.

If i is a vertex of T which is not on a chain of T, then i corresponds to a vertex of

the corresponding IP-graph G and we define an integer c, as in step 3 preceding

Theorem 5.6, that is, c, is the degree of vertex / in the subgraph G0 of G obtained

by deleting (1, 0)-weigh ted edges. Equivalently, c, is the number of maximal chains

of positive length in T which have vertex / as an endpoint, with chains which both

begin and end at i counted twice.

Theorem 7.1. If T is a connected normal form plumbing graph which is not a cyclic

or straight line graph, then the normal form plumbing graph V for — M(T) is obtained

from T as follows:

(1) If i is a vertex which is not on a chain and r, = 0, replace ei by — e, — c,.

(2) Replace any maximal chain

-b1 -b? -b,

or

~bl "b2 "bk

of T by the chain

-c, -c2 -c.
• • -•-

or

-C-, -Cq -c.

where the c, are determined as follows. If

(bx, . . . ,bk) = I 2,_. . ._, 2, mx + 3, 2, ._. 1, 2, m2 + 3, . . . , ms + 3, 2^_^_£ j

with «, > 0 and mt > 0, then

(c„ . . . , c,)

= (n0 + 2, 2^...,_2, n, + 3, 2^.....,J, . . •, n,_, + 3, 2, .... 2, ns + l\
\ m, m2 m,

(3) Via the obvious identification HX(T*) = HX((T')*), the homomorphism er:

H\((J")*) -* Z/2 is given as er = eT + e0, where e0 assigns to any cycle of (T')* the

number modulo 2 of maximal chains on this cycle.

Moreover, if G and G' are the W-graphs corresponding to T and T', so G' describes

— M(T), then G' is obtained from G as follows:

(V) For any vertex i with r, = 0 replace s, by — st + c,.

(2') Edge weights (1, 0) are unchanged, otherwise replace (a, B) by (a, a — B).

(3') e: HX(G*) -* Z/2 is replaced by e + e0, where e0 assigns to any cycle of G* its

length modulo 2.
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Proof. Suppose we have a chain

~^®n "bl "b2 "bk em        _
r^>«-•-•-     -•-"^Cj

'     Csn'rn:i tgm.rJ   *~

in T, where for the moment we assume n ¥= m, k > 1, and we disregard edge signs.

In the graph — T (see Proposition 3.3) this becomes

,^^n bi _Ji_~!^r-

''   [Sn»rn] [Sm'rm]

Using the notation of (2) above, we abbreviate the relevant information as

l-e„, 2,._. .,2, m, 4- 3.m, + 3, 2, ..^,2, -e„\,
^ n0 ns '

which we abbreviate further as ( — e„, nQ- 2, mx + 3, . . . , ms + 3, ns • 2, —em).

Now alter this by blowing up and blowing down as follows. After (s + 1)

(— l)-blow-ups we have (with a suitable reinterpretation if some n, = 0)

(-e„, (n0 - 1)- 2, 1, -1, m, +2, . . ., (ns_x - 1) • 2,

1, -l,ms + 2, (ns- 1)- 2, 1,-1, -em - 1).

Now do n0 + nx + ■ ■ ■ + ns (+ l)-blow-downs to get

(~e„ - 1, -n0 - 1, mx + 1, -/?, - 1, . . .,

-«,_, ~l,ma + 1, -ns - 1, -em - 1).

Next, doing m, (- l)-blow-ups directly to the left of (w, + 1) for each i gives (again

with suitable interpretation if some mt = 0)

(-e„- 1, -nQ- 2, (mx - 1)- (-2), -1, 1, -«, - 2, . . .,

(m,-l)-(-2), -1, 1, -ns-\, -em-\),

after which blowing down the s (+ l)'s gives

(-e„ - 1, -n0-2,mx- (-2), -«, -3, ..., -ns_x - 3,

ms(~2), -ns - 2, -em - 1)

= (-<?„ - 1, -c„ -c2, . . . , -c„ -em - 1).

If k = 0, then much more trivially, the final result is ( — en, em) in the above

shorthand. A similar analysis applies if n = m and for maximal chains of the

second type, so parts (1) and (2) of the theorem follow.

Now let us consider the effect on edge signs of the above reduction. Our initial

chain had n0 + 1 + nx + 1 + • • • + ns — 2 n,- + s vertices, hence 2 «,- + j + 1

edges, so the replacement of T by — T reverses (2 «,- + j + 1) edge signs on this

chain. Now a (— l)-blow-up or blow-down does not alter the number of ( —)-edges

modulo 2 on the chain while a ( + l)-blow-down alters this number by 1. Since our

process involved 2 «, (+ l)-blow-ups and s (+ l)-blow-downs, the total number of
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(—)-edges of the chain has been altered by (2 n,,4- s + 1) + 2 n, + s = 1 (mod 2).

Hence (3) follows.

The statements about G' can be verified directly from the description of a

IP-graph in terms of the graph structure, but follow more easily by applying

Theorem 5.6 to V. Namely, since st = e, + c„ j, gets replaced in G' by ( — e, — c,)

+ c, = -e, = -st + c„ proving (1'). Statement (3') is immediate from (3) and

Theorem 5.6. Statement (2') follows from 5.6 and the following lemma.

Lemma 7.2. If p/q = [bx, . . . , bk] with bt > 2, then p/(p - q) = [c„ . . . , c,],

with c, as in Theorem 7.1 (2).

This can be proved directly, but we sketch an alternative method. The following

relations are easily verified for continued fractions:

[ ~xx, — x2, . . . , — xkj = —\_xx, . . . , xkj,

[xx + n,x2, . . . , xk] =[x„ . . . ,xk] + n,

[Xx, . . . , Xj, Xi+X, . . . , XfcJ  = [X,, . . . , Xj ± 1,  ±1, xi+x ± 1, . . . , Xkj,

[±l,xx,...,xk]=±l- l/[xx,...,xk].

The only nontrivial one is the third, which is a trivial verification when i = 1 and

k = 2, and follows in general from this case, since [xx, . . . , x„ [xj+x, . . ., xk]] =

[xx, . . . , x^ xi+x, . . . , xk]. Lemma 7.2 now follows rapidly by analyzing the effect

of the moves used in the proof of part (1) of 7.1 above to reduce (bx, . . ., bk) to

(-c„ . . . , -c,).

Theorem 7.3. For straight line and cyclic graphs T in normal form, the normal

form graph F for — M(T) is as follows. If

r m  -ji_ ->

then

r'=    -^i _-J?

with Ci, ..., c, as in Theorem 7.1. If

r m   -bi_    _^

then

r-=    -Ji_      _^t

where, if

((bx, ...,bk)) = ((m, + 3, 2^...,2, m2 + 3,...,ms + 3, 2,.,.L2),
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then

((dx, ...,dk)) = ((«, + 3, 2^...,_2, ns_x + 3, ...,«,+ 3, 2i...,_2)).

Proof. For T a straight line graph this is Lemma 7.2. For cyclic T the proof is

essentially the same computation as for part (1) of 7.1.

8. Resolution of singularities and their normal form graph. Let (V, p) be the germ

of an isolated normal complex surface singularity. We denote its link (the boundary

of a regular neighborhood of p in V) by Af3 = M(V,p). Let tt: F—» V be the

minimal good resolution of (V,p). That is, it is a proper holomorphic map such

that:

(i) tt\ V — tt~x(p) —» V — p is biholomorphic.

(ii) All singularities of the exceptional divisor K = tt~ x(p) are normal crossings.

(iii) (Minimality) If a nonsingular irreducible component Kt of K has genus 0

and self-intersection number Kt- Kt, = -1, then it has at least three intersection

points with the rest of K.

If (iii) were contravened, one could blow down the corresponding Kt, keeping the

resolution good. Topologically, statement (ii) says that K is the union K = Kx

U • ■ • UKk of immersed closed connected real surfaces K] having transverse

self-intersections and transverse mutual intersections, and no three-fold intersec-

tions.

The topology of the resolution can be coded in the dual graph A = A( V, p) (see

for instance [7]). The vertices of A are labelled 1, . . . , k and are each weighted by

the integers e, = e(v(K$) (the euler number of the normal bundle of Kt in V) and

g, = g(Kf) (the genus of A!,). A has an edge from /' toy for each intersection point of

Kj and Kj and an edge from i to i (that is a loop at /') for each self-intersection point

ofKj.

We can consider A as a plumbing graph with all r, weights zero and all edge signs

equal to +. The graph A determines the local topology of the resolution. Indeed if

P(A) is the 4-manifold obtained by plumbing disc bundles according to A (as in [7]

for example), so 3P(A) = Af(A) is the 3-manifold obtained by plumbing in the

sense of this paper, then P(A) is diffeomorphic to a regular neighborhood of

K = tt~x(p) in V and Af(A) is diffeomorphic to the link Af = M(V,p).

Denote by S(&) the intersection matrix (A, • Kj). Thus S(A) = (aiJ)iJ_x       k, with

atj = e, + 2 • (number of loops at / in A),    i = j,

= number of edges from / toy in A,   i ^j.

It is well known that an oriented closed plumbing graph A (as defined in §3) is

the dual graph of some (not necessarily minimal) good resolution of a singularity if

and only if the edge signs are all + and S'(A) is negative definite (Grauert [5]).

Minimality of the resolution is equivalent to saying that A admits no (— l)-blowing

down in the sense of plumbing graphs (see §4).

S(A) represents the intersection form on H2(P(A)) with respect to the basis

represented by the Kt c P(A). If A,, is the full subgraph on some subset of the
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vertex set of A, then 5(Aq) represents the restriction of the intersection form to the

corresponding subspace of H2(P(A)), so it is also negative definite. In particular, all

the e, weights of A are negative. Moreover, we have the following lemma.

Lemma 8.1. If A is the dual graph of a minimal good resolution, then in any piece of

A of the form

<-2 -2

we have e < -2, and if

A ej e_2 ®k

or

- ■ :>-»--- ~<

then et < -2 for all i, and some e, < -3.

Proof. This is immediate from the above comments. Since

-2 -1 -2

-2 -2 -2

and

>-*- ■•<:

have indefinite forms.

Theorem 8.2. The normal form Y ofa resolution graph A is obtained as follows:

then

n b+1 c+1
x     - •-•

[-1] [-1]
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(2)//

A  .     %_V V *<^* ̂

then T = A.

(3) In all other cases T is obtained from A by applying the following operations to A

wherever possible:

._   e., e y^~ -^ e4    e+1    0
r^i-<     —>   H>^^—• • e--5

■^iZl) >»-2 '*    [g±] [-1]

j^>*-*      *    -*C *      U^"-*        1 b maximal.

Moreover, T has the following properties:

(i) A11 edge signs are +.

(ii) All genus weights satisfy g, > -1.

(iii) Any vertex i with g, = -1 has degree 1; moreover it has euler number weight

e, > 0, awe/ //*e, = 0, f/ie/i //ie maximal chain ending at i has length > 1.

(iv) A is uniquely determined by T.

Proof. The proof that (l)-(3) reduce A to normal form is immediate from

Lemma 8.1 and the definition of normal form. Note that (1) is given by two

applications of (3); we have made a special case of (1) because it is the only case

that an application of (3) can turn a chain of nonzero length ending in a vertex

with g, = -1 into a chain of zero length. With this remark, statement (iii) about T

becomes clear, while (i), (ii) and (iv) were already clear.

Corollary 8.3. If the singularity link M is a lens space, a torus bundle or a Seifert

manifold, then the resolution graph A is already in normal form, so A = T. All possible

singularity links of these types are given by the following list:

(1) Af = L(p, q),p > 1; T as in Theorem 6.1, III.

(2) Af = T(A), trace A > 3; T as in Theorem 6.1, IV.

(3) Af = T(A), A conjugate to ({,?), b > 0; T as in Theorem 6.1, VII.

(4) Af Seifert fibered with Seifert invariant (g; b; (a„ /?,), . . . , (am, Bm)) with

g > 0andm>3ifg = 0,and e(M) = -b - 2 /5,/a, < 0; T as in Corollary 5.7.

Proof. For lens spaces and torus bundles this corollary is immediate by

checking through the cases of Theorem 6.1, using negative definiteness of the

intersection form S(T). For Seifert manifolds the fact that A = T is by Corollary

5.7, while the statement about which Seifert manifolds occur is then the content of

Theorem 5.2 of [16]. The number e(M) is the euler number of a Seifert fibration,
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introduced in [16]. It is defined also for Seifert fibrations on lens spaces, but is an

invariant of Af alone if Af is not a lens space, since then the Seifert fibration is

unique up to homeomorphism.

9. Proofs of Theorems 1 to 7. By Theorems 8.2 and 5.1, any singularity link which

is not a lens space has a reduced graph structure, and is thus irreducible by

Waldhausen [24]. Since lens spaces L(p, q) with p J= 0 are also irreducible, Theo-

rem 1 of the introduction follows.

Theorem 2 is immediate from Theorems 8.2 and 4.2, while Theorem 5 and

Corollary 6 are included in Corollary 8.3, plus the fact that any lens space L(p, q)

with p > 1 admits a Seifert fibration with negative euler number (for instance (0;

(h[p/g]),(g,p-g[P/q]))).
For Theorem 3, note first that the "if" statement is trivial by Corollary 8.3, since

— L(p, q) = L(p,p — q) and — T(A) = T(A ~x). To see the converse suppose Af

is a singularity link which is not a lens space or a torus bundle T(A) with

traee(A) > 3 and suppose — Af is also a singularity link. Then Af cannot be a

Seifert manifold, since otherwise e(— M) = -e(M) would be positive, contradicting

Corollary 8.3 (that e(— M) = -e(M) is proved in [16], but also follows easily from

Theorem 7.1). We shall reduce the general case to this case to obtain the desired

contradiction.

Let A be the resolution graph for Af and T its normal form, and let A' and T' be

the same for - Af. By part 1 of Theorem 7.1 and statement (iii) in Theorem 8.2 we

see T can have no vertex i with g, = -1. By symmetry the same holds for T'. Thus

8.2 implies that T = A and T' = A'. Moreover, the fact that er and er are trivial

implies, by part (3) of 7.1, that each cycle of T is composed of an even number of

maximal chains (and the same for V). In particular T has no maximal chain which

begins and ends at the same vertex. Now let i be any vertex of T which is not on a

maximal chain. This exists, since by our exclusions, T is not a straight line or cyclic

plumbing graph. Consider the set of vertices of T consisting of vertex /' together

with all vertices on maximal chains which begin at i. Let T0 be the full subgraph of

T on this set, so T0 is a star-shaped plumbing graph and M(T^) is a Seifert

manifold. Let T'0 be constructed similarly in T' starting from the vertex correspond-

ing to i in I". By Theorem 7.1 one sees that T'0 is precisely the normal form graph

for - Af(r0). But by the comments preceding Lemma 8.1 the intersection forms

S(r0) and S(T'0) are both negative definite. Thus both Af(ro) and -Af(ro) are

singularity links, contradicting the case already proven.

Corollary 4 now follows, since by Waldhausen [25] a sufficiently large 3-mani-

fold is determined up to orientation by its fundamental group and by Orlik, Vogt

and Zieschang [20] the same holds for closed Seifert manifolds with orientable base

which are not lens spaces. As remarked in §5 these two cases cover all possibilities

by Waldhausen [24, Lemma 7.3].

By Corollary 8.3 the only part of Theorem 7 needing proof is that if Af is a

singularity link which fibers over 5' then Af is a torus bundle. This is immediate

from the classification in [14] of fibrations of graph manifolds, but is in fact much

easier.  Let A be an orientable closed plumbing graph with 5(A) nonsingular
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(certainly true for our resolution graph) and let/: Af(A) -» S' be a fibration, whose

fiber F we can assume with no loss of generality to be connected. Now in general

H'(Af(A), Z)atH '(A; Z) © Ker S(A) (see [7] or [21]), so in our case

HX(M(A);Z) = HX(A;Z).

Since HX(M(A); Z) = [Af(A), Sx], this tells us that any map Af(A)^5* is homo-

topic to one which is induced in the natural way from a map A —> S'. In particular

/is homotopic to a map g: Af(A) -» 5' such that for some regular value/? G S1' the

inverse image g~x(p) is a disjoint union of tori. It follows that the genus of the

fiber F of / is at most 1, so in Theorem 7, Af can only be a torus bundle or an

•S2-bundle. Irreducibility of Af eliminates fiber S2, so the theorem follows.

10. Degenerating curves. Let tt: W —> D be a minimal good degenerating family

of curves, as defined in the introduction. The singular fiber K = tt~x(0) can be

written as the union K = Kx u • • • U Kk of its irreducible components, and,

exactly as in §8, the topology of the pair (IP, K) can be coded in the dual graph A.

We can however put extra information into A, namely the multiplicities w, of the

components Kj. For the topologist these can be defined as follows. Note that

H2( W; Z) is freely generated by the homology classes [A,-] of the K{. Thus if F is a

nonsingular fiber we have a homology relation

[F] = mx[Kx] + ■ ■ ■ +mk[Kk],

which defines the m,. It is easily seen that m, > 0 for all /'. Note that the

intersection numbers [F] • [K,] are all zero. This is equivalent to the statement

S(A)(mx, . . . , mk)' = 0, where 5(A) is the intersection matrix, defined as in §8. It is

easy to see that this equation can be solved for the e, weights, given the abstract

graph T and the mt weights, so the w,'s determine the e,'s. By Winters [26], the

existence of w, > 0 such that the above equation holds is equivalent to A being the

dual graph for a degenerating family of curves.

By a full subgraph \ of A we mean a subgraph which includes every edge of A

whose endpoints are in Aq. Exactly the same proof as Mumford's proof that the

intersection form for a resolution of a singularity is negative definite (see for

instance [7]) proves the following well-known lemma.

Lemma 10.1. If Ag is a connected full subgraph of A and Aq ̂ = A then S(Aq) is

negative definite. Hence S(A) is negative semidefinite, so (mx, . . . , mk) is determined

up to a positive multiple by S(A).

Moreover it is well known that the euler number x(F) of the nonsingular fiber is

given by

X(F) = 2 m,(2 - 2gj - dj)
i = i

where d, is the degree of vertex i (for a purely topological proof for arbitrary

plumbed manifolds, see [14]). Thus A and x(F) together determine the m,.
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Theorem 10.2. If A is the dual graph of a minimal good degenerating family then

its normal form Y is obtained as follows.

(1)//

-2^       Zx      ^-2

then

[-2]

(2) If

-2 -2 -2
A  =       >.^     > .__—» ( b    vertices)

f/ie/i

r       bi ■    •
[i]

(3) Same as />art (3) of Theorem 8.2.

Moreover, statements (i)-(iv) of Theorem 8.2 still hold except that in statement (ii)

an exception must be made for the graph in (1) above.

Proof. Lemma 10.1 implies that the first statement of Lemma 8.1 still applies in

the present situation. Moreover, by [16], the star-shaped graph T of a Seifert

manifold M can have degenerate intersection form S(T) if and only if e(Af) = 0, so

graphs as in Theorem 8.2(2) cannot occur. Thus the proof of 10.2 is exactly like the

proof of 8.2.

Corollary 10.3. The torus bundles which are links of degenerating families are

those of cases VII and VIII of Theorem 6.1 with b < 0 (in which case A is given by

cases (1) and (2) of 10.2 above) and those of 'VI and IX in Theorem 6.1 (in which case

A = F). The Seifert manifolds M which are links of degenerating families are precisely

those with e(M) = 0, and A = T for these.

Proof. The statement about torus bundles (which is a result of Kodaira [12]) is

proved exactly as in Corollary 8.3, by checking cases in 6.1. For Seifert manifolds

the proof is implicit in the proof of Theorem 5.2 of [16], so we omit it.

The proofs of Theorem 8 and 9 and Corollary 10 of the introduction are now

exactly like the proofs of the corresponding statements for singularity links. The

only difference is that in proving Theorem 9 we assume Af is not a Seifert manifold

and construct the subgraphs T0 of T and T'0 of T' as in the proof of Theorem 3, and

it is Lemma 10.1 which gives the desired contradiction, since ro and T'0 are proper

subgraphs of T and V.
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Appendix. Boundary framed graph manifolds and graph manifolds with meridians.

1. Boundary framed graph manifolds. The boundary of a graph manifold (i.e.

plumbed manifold) Af3 consists of tori. In many applications one has not just a

graph manifold, but a graph manifold Af3 plus a specific diffeomorphism of each

boundary component with Sx X S1. We call such a collection of diffeomorphisms

a boundary framing on Af3. We wish to modify our classification to classify

boundary framed graph manifolds.

A first attempt is as follows: as we described plumbing, the euler number weight

e, at a vertex with r, ^ 0 is irrelevant and should be omitted or disregarded;

however if we retain this weight, then it determines specific framings of the

corresponding boundary components of Af(r); thus one might try to work simply

with plumbing graphs in which all vertices have euler number weights. However it

is then hard to keep track of orientations at boundary components when applying

moves of the plumbing calculus.

We therefore make the following definition: a decorated plumbing graph T is a

plumbing graph in the usual sense with the following modifications:

(i) Some vertices of degree 0 or 1 in T are left unweighted. They are called

boundary vertices, and are drawn in the graph as arrow heads (this is to conform

with standard notation in resolution of singularities).

(ii) The r, weight at any weighted vertex is zero, hence omitted. Thus a typical

such graph might look like:

*^^-l^^[2]\^

(where the genus at a vertex without genus weight is as usual understood to be

zero).

We interpret the boundary vertices (arrowheads) as vertices with euler number

and genus weights zero and r-weight equal to 1. Thus the above graph T should be

considered a shorthand for

0

•"[-1] TJ^X"1

[0,1] ^\°

[0,1]

By our above remarks, with this interpretation, T determines a well-defined

boundary framed graph manifold. The graph A. consisting of a single arrowhead is

also permitted, and represents a solid torus with obvious boundary framing.

The calculus for plumbing must be slightly modified for boundary framed

plumbing via decorated plumbing graphs.
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R0 (altering edge weights) stays the same, except that it may of course not be

applied to boundary vertices of T. Thus the information contained in the edge

weights is completely coded by a homomorphism er: HX(T**, B) —> Z/2 defined as

in §2, where T** is the full subgraph of T defined by all vertices i with g, > 0 and

all boundary vertices, and B is the set of boundary vertices. (Alternatively one

could use the homomorphism er: HX(T*) —> Z/2 of §2 plus a map B —> {+ 1, — 1),

the latter well defined up to multiplication by — 1.)

R0-R7 stay the same except that moves which would alter the implied zero euler

weight at boundary vertices are not permitted. That is, one cannot blow up or

down or absorb a zero chain directly adjacent to a boundary vertex. The final

reduction move R8 is deleted.

The definition of normal form stays the same except that vertices adjacent to

boundary vertices are never considered as vertices on a chain in T (and may thus

have arbitrary euler weights), and a graph of the form

e,k el e

[-1]

is not considered to be in normal form, while a graph of the form

<_^-!fci-~-^-<^"

with e, < -2 for 1 < / < k — 1 is considered to be in normal form (this modifies

N3).

We call the resulting normal form F-normal form. The calculus for decorated

plumbing graphs described above is called the F-calculus.

Theorem. Any decorated plumbing graph can be reduced to a unique decorated

plumbing graph in F-normal form by the F-calculus. Any boundary framed graph

manifold has the form M(T)for a unique decorated plumbing graph in F-normal form

(up to isomorphism).

The proof is just like the proof for graph manifolds without boundary framings

and therefore omitted.

2. Graph manifolds with meridians. In applications in algebraic geometry one

usually has graph manifolds with something slightly less than a boundary framing,

namely on each boundary component T one just has a fibration tt: T —» S1 given.

Equivalently (by taking fibers of tt) an isotopy class of oriented simple closed

curves on T (called meridians) is given. The way this arises is as follows. Let N3 be

a closed graph manifold and let K c N3 be a union of disjoint oriented embedded

circles, such that the result Af3 of removing a small tubular neighborhood of K is

still a graph manifold. Then Af3 comes equipped with meridians in its boundary

(namely meridians of the removed solid tori). Conversely any graph manifold Af3

with chosen meridians in its boundary (briefly: graph manifold with meridians)
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determines a unique way of pasting solid tori into the boundary components and

hence determines a pair (N, K) as above.

A decorated plumbing graph T determines a graph manifold with meridians as

follows: We now interpret a boundary vertex as a shorthand for a vertex with

genus weight zero, /--weight equal to 1, but unspecified (arbitrary) euler weight. Thus

the isotopy class of a fiber of the corresponding bundle being plumbed is well

defined and gives us our meridians, but the isotopy class of a section to the bundle

at the boundary is no longer well defined, since it depends on the euler number.

The manifold TV3 obtained by pasting solid tori onto Af(r) as described above is

given by the graph T' obtained by deleting the boundary vertices from T.

The calculus for plumbing graph manifolds with meridians (the M-calculus for

short) is exactly the same as the F-calculus except that vertices adjacent to

boundary vertices lose their special role. Thus we may blow up or blow down next

to boundary vertices and no longer forbid 0-chain absorptions and extrusions of

the following type:

-._^1        el 0 ..      ei

'       te±l '    [g±]

The normal form in this case (called M-normal form) is like F-normal form

except that, again, vertices next to boundary vertices lose their special role. Thus in

the situation

ei ei

t>-►-►'      [g±]

vertex j is considered as part of a chain, so we must have e, < -2 for normal form.

There is one exception to this: If vertex i is not on a chain (i.e. it has degree > 3 or

g, ¥= 0) we do allow e, = 0 in normal form, and moreover in this case e, is

irrelevant and should be disregarded or set equal to zero.

Theorem. Any decorated plumbing graph can be reduced by the M-calculus to a

unique graph in M-normal form. Any graph manifold with meridians is of the form

M(T) for a unique (up to isomorphism) decorated plumbing graph T in M-normal

form.

Again we omit the proof

3. An example: toral links. The graph

-2            -3            -3
i-i •-»-•

-2 ii.-•-►

-2 n



342 W. D. NEUMANN

is in F-normal form (the (—l)-weighted vertex cannot be blown down since it is

adjacent to a boundary vertex), so it is the normal form graph for a graph manifold

with boundary framing.

If we consider it as the graph of a graph manifold with meridians, then the

(— 1)-weigh ted vertex can be blown down, and the Af-normal form is

-2 -3 -3

r        '-T-•i2 -

-i,i-►

-2 4

Finally if we forget all boundary structure, the normal form is

-2            -3            -3

p •-T-•

i [0,1]

-2 11

Observe that if one deletes the boundary vertex in T2 then the resulting graph

blows down completely, so it represents S3. Thus T2 can be considered to represent

a knot in S3. The knot in question is in fact

Moreover, the graph T, thus represents a framing of this knot K (in fact it is the

framing in which a longitude links K with linking number 27 in S3).

More generally if V is any plumbing graph with Af(F) = S3 and T is T'

decorated with arrows at some vertices, then T represents a link K c S3 such that

the complement of a tubular neighborhood is a graph manifold. Thus Af-normal

form of such graphs T classify such links. This is studied in detail in [4]. A special

case is iterated torus links, which include all links of plane curve singularities.

These are studied in [3]. The explicit example above is of this type. (F-normal

forms of such graphs classify framings on such links, but framings on links can be

dealt with more easily.)

4. Waldhausen's graphs. One can also define IP-graphs for boundary framed

graph manifolds and graph manifolds with meridians and the analog of Theorem

5.6 then holds.
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For boundary framed graph manifolds the relevant graphs are like

Waldhausen's, but decorated with arrows attached at some vertices. The arrows

carry no weights. In the situation

the vertex shown is allowed to have a weight of the form (0, 0, s) (such a weight on

a vertex of degree 2 is disallowed otherwise by the reduction criteria).

For graph manifolds with meridians the graphs are as above, but arrows also

carry weights (a, B), with (0, 1) permitted, and vertices of degree two never have

weight (0, 0, s).

In both cases the homomorphism eG: HX(G*) —> Z/2 must be modified to a

homomorphism HX(G**, B)^> Z/2, analogously to the case of plumbing graphs.

The translation of Theorem 5.6 to these situations is clear, and is left to the

reader.
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