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ON BILINEAR FORMS REPRESENTED BY TREES

WALTER D. NEUMANN

To Father, with love.

The adjacency matrix of a weighted graph determines an integral bilinear form. The trees
with unimodular adjacency matrices are described with special emphasis on the definite
and semideftnite cases, since they arise as configuration graphs of good divisors in compact
complex surfaces.

A weighted forest is a finite forest (finite simple graph with no cycles) with an
integer weight ev assigned to each vertex v; its connected components are weighted
trees. Associated with a weighted forest F is a symmetric bilinear form Ar on the free
Z-module freely generated by the vertices of V:

( ev if v = w,

Ar(v, w) = < 1 if v is connected to w by an edge,

V 0 otherwise.

We write det F := det A?. Our aim is to describe the weighted trees F with det F =
±1, which we call unimodular trees. A famous example of such a tree is

Eg = o—o—o—o—9—o—o (all vertices weighted —2).

Although the unimodular case is our primary interest, some of our results apply
with no restriction on |det F|.

There are certain elementary operations that one can do to a weighted forest with-
out changing |det F|, and we first describe the classification of weighted forests mod-
ulo the equivalence relation generated by these operations. Denote by (p+F, p_F) :=
(p+(Ar), p_(Ar)) the index of the bilinear form Ar (number of positive, respectively
negative, entries in a diagonalisation of the form over R). Then in each equivalence
class of weighted forests there is a "normal form" characterised by the fact that it has
the smallest p+ amongst all forests in the equivalence class and is, in addition, the
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smallest forest with this property. We compute the minimal p+ for any equivalence

class of unimodular forests (in [3] the ones with p+ — 0 were characterised). This allows

a fairly practical description of the unimodular trees and forests having any prescribed

p+ . We carry this out for p+ = 0, 1.

Our title is "bilinear forms represented by trees," but it will be clear by now that

we are emphasising the trees more than the forms. Indefinite unimodular symmetric

forms A over Z are easily classified (they are diagonalisable if odd—that is A(x, x)

is odd for some x—and equivalent to an orthogonal sum of copies of I I and

•-fc-AiSg otherwise, see for example [11]), so only in the definite case is the form per se

interesting. In the final section we discuss briefly the classification of negative definite
forms represented by trees, but we cannot say much. The following conjecture from [8]
indicates our degree of ignorance.

CONJECTURE. If the form Ar represented by a tree F is equivalent over Z to the

form diag( —1, — 1 , . . . , —1), then some vertex of V has weight —1.

If —F denotes the reversal of sign of all weights of F, then the form A-r is
equivalent to — A^ (use a basis transformation that just reverses the signs of basis
elements at alternate vertices of F). Thus 1 could be replaced by —1 in the above
conjecture and positive definite forests become negative definite on reversing the signs
of all weights. The negative definite bias of this paper follows that of the weighted graphs
that arise in algebraic geometry: negative definite graphs arise as resolution diagrams
for complex surface singularities; graphs with p+ = 1 arise as configuration diagrams
of divisors in compact complex surfaces. Such a weighted graph is a unimodular tree if
and only if the 3-dirnensional link of the corresponding gepmetric object is a homology
sphere. There has been recent interest in this geometric situation, for example [10, 6,
8].

The material on classification (Sections 1 and 3) is in the literature (in part just
implicitly—[5, 12, 3]), but the existing proofs have topological ingredients. For the
most part we only sketch how one may replace these proofs by purely combinatorial
proofs, but we have tried to make the paper otherwise self-contained and readable
without topological background.

1. OPERATIONS ON TREES AND FORESTS.

First some terminology. If F is a weighted tree, the valency of a vertex of F is
the number of edges at that vertex; a node is a vertex of valency ^ 3. If the nodes are
removed from F, then F falls into connected components which are called the chains of

F; they consist of strings of vertices of valency 1 or 2 connected by edges. An isolated
vertex (valency 0) is also a chain.
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The following operations replace a tree F by a smaller tree or forest without chang-
ing |det Ai\. The first operation, blowing down, eliminates a (±l)-weighted vertex of
valency ^ 2, reducing the number of vertices by 1; the second and third operations,
0-absorplion and splitting, eliminate a O-weighted vertex of valency 2 or 1, reducing
the number of vertices by 2. The pictures are meant to suggest unspecified numbers of
additional edges, maybe zero, meeting the iudicated o-weighted and 6-weighted vertices.

e-Blowdown (e — ±1)

a e k_^-r- '" a — e b—t ---"

a —e

0- Absorption

Splitting (tliis replaces a tree by a forest of k ^ 0 trees)

Any of these operations can be performed on a forest by acting on a component tree
of the forest. The inverse operations are called e-blowup, 0-extrusion, and connecting,
respectively.

PROPOSITION 1.1. The above operations have the following effect on Ar

{-l)-blowdown : det F -> -det F,(p+r,p_F) -»(p+F,p_F - 1)

(+l)-blowdown : del F -» +det F,(p+r,p_F) -»(p+F - l,p_F)

Q-absorption :1
\ detr--detr,(p+r>p_r)-.(P+r-ilp_r-i).

splitting : J
PROOF: It is easily verified that the effect on Ap of the inverse operations is to

/ 6 1 \
add orthogonally the matrix (1), (—1) or I 1 respectively, and then perform a

simple basis change. U
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We shall call two trees or forests equivalent if they are related by a sequence of the
above operations and their inverses. We call them strictly equivalent if they are related
by (—l)-blowup and ( — 1)-blow down operations only. Thus equivalent forests have the
same |det F| and strictly equivalent ones have the same p+F also.

We shall say F satisfies the negative chains condition if
(NCC) any vertex on a chain (that is of valency ^ 2) has negative weight.

and we say F is in normal form if
(M1N) Any vertex on a chain has weight $J —1,
that is the negative chains condition holds and no blowdown is possible.

THEOREM 1.2. Among the F in a given equivalence class there is a minimal value

for p+F. The F in the equivalence class which attain this minimal value of p+ satisfy

the negative chains condition and are strictly equivalent to each other. Among these

F with minimal p+ there is a unique smallest, characterised by the fact that it is in

normal form.

COROLLARY 1.3. If F has minimal p + in its equivalence class, it is obtained from

its normal form by repeated (-l)-blowups.

PROOF: If F satisfies negative chains but is not in normal form then it admits a
( — 1)-blowdown, and by iterating we must reach the normal form. D

PROOF OF THEOREM 1.2: Suppose F does not have negative chains. Then there
is a weight b ^ 0 on some chain, so by performing b ( —l)-blowups next to this weight
we can create a weight 0 and by then performing a 0-absorption or splitting we get an
equivalent forest with smaller p + . Thus a forest with minimal p + in its equivalence
class has negative chains.

The theorem now follows from the topological results of [5] as follows. In [5] it is
shown that if A/(F) is the oriented 3-manifold constructed by "plumbing according to
F " then

(1) equivalent weighted forests give the same M(F);
(2) there is a unique Fo in normal form with M(F0) = A/(F);
(3) Fo can be obtained from F by repeated operations of the following types:

( —l)-blowup, ( — 1)-blowdown, ((-l)-blowdown, 0-absorption and split-

ting.

Note that, by Proposition 1.1, no operation in (3) increases p+ , so p+Fo ^ P+F. More-
over, if p+Fo = P+F then no (+1)-blowdown, 0-absorplion or splitting was involved,
so Fy is strictly equivalent to F . Tliis proves the theorem. U

One can give a combinatorial proof of the theorem by replacing M(F) by a com-

binatorial object which satisfies (1), (2) and (3) above. We will not give this proof
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in detail—it is a bit tedious—but we describe a suitable combinatorial object
called a W-graph (these are basicly the graphs Waldhauseii originally used lo classify
"graph-manifolds" in [13]). A W-graph is a forest A with no vertex of valency 0 or 2,
and with the following extra structure

(a) A has an integer weight at each node;
(b) associated with each directed edge e of A is a coprime integer pair (pe, qe)

such that if e' is the same edge oppositely directed then p e = pei and
qeqei = 1( mod p e ) ;

(c) the weights (pc,qe) satisfy 0 < qK < p e ,
(d) if e is not an edge connecting two nodes then pe > 1.

The W-graph associated with a normal form forest F can be constructed as follows.
The underlying graph of W(F) is obtained by replacing each maximal chain of F by a
single edge. Weights at nodes are unchanged. Given a maximal chain

in F , the corresponding edge of W(F) directed from left to right is given the weight

(p,q) with p/q = [&i,... ,bk] in lowest terms, where

1
1

'•• -
1

h

• > [ ] =
1

o1

Even if F is not in normal form, the above procedure might give a VK-graph, in
which case it is the correct W-graph, but in general the resulting graph will violate one
or both of conditions (c) and (d) and the correct VT-graph is obtained by a suitable
"reduction" procedure. We shall not need this reduction procedure and its details are
not hard lo work out, so we just sketch them. The main ingredients are: for an edge
starling from a node v whose qe does not satisfy (c), [?epej is subtracted from the
weight at v and then qe is reduced mod p e ; edges with pe = 0 or 1 are collapsed in
a similar way to the blowdown, absorption and splitting operations for weighted trees;
if the edge e has pe = 0 one must first add the number [0,&i,. . . ,&fc_i], which is an
integer, to the weight of an adjacent node. (It is helpful—but not essential—to work
out how to deal with vertices of valency 2 in an "unreduced" W-graph. The original
weighted tree can then be thought of as an unreduced W-graph with weight (1,0) on
every edge.)

For unimodular forests there is a much more convenient classifying object than the
H'-graph. We will describe this in Section 3.
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2. D E T E R M I N A N T S AND CONTINUED FRACTION.

A rooted tree is a tree with a particular root vertex picked out. Suppose F is a
rooted weighted tree whose root v has valency d. If we delete v and its adjacent edges,
we obtain a forest F which is the disjoint union of trees F 1 , . . . , F < j , each of which
is rooted by taking the vertex of I \ adjacent to v as the root. We can repeat: let
= d —
F = U Vi, et cetera. Define the continued fraction of F to be

( i )

where we put x/0 = oo for any i £ Q .

PROPOSITION 2.1. If the weight at the root vertex v is b then

(2) det F = Wet F - ^ [ det F; f j det F;- j ,

so

(3)

PROOF: Equation (2) is an elementary computation: expand the determinant of
Ap according to the row corresponding to v. Equation (3) follows by dividing by
det F = Yl det F,-. This equation plus induction implies

(3) ' ' _ L

which justifies the name "continued fraction." U

COROLLARY 2.2. If gcd(det F,det F) = 1 tiien gcd(det Fi,det F )̂ = 1 for all i
and gcd(det F;, det F,) = 1 for all i ^ j .

PROOF: This is immediate from equation (2), since det F = J~J det F^. ' U
i

For each vertex u of F, let Fu be the full subtree on vertices w such that the
direct path from w to the root v passes through u. We take u as the root of F u . In
particular, Fo = F. These subtrees are the ones obtained by taking components of F,

F, F, el cetera, so applying Corollary 2.2 repeatedly gives:
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COROLLARY 2.3. If gcd(det I \de t T) = 1 then gcd(det r u , d e t Tu) = 1 for all

vertices u of V, so det F u and det F u are numerator and denominator of cf F u up to

sign. U

Note that a unimodular tree certainly satisfies gcd(det F,det F) = 1. The stan-
dard compulation of the index of a form in terms of sign changes of its major subde-
terminants shows:

COROLLARY 2.4. If T is unimodular then p±T and p_F are respectively the
number of positive and negative cf Fu as u ranges over the vertices of T (oo is counted
as both positive and negative for this).

If no cf Fu = oo occurs then tills Corollary can also be seen by noting that if one
diagonalises Ap, starting from the leaves and working back to the root, the diagonal
entries are the cf F u .

3. SPLICE DIAGRAMS

A splice diagram is a forest weighted in the following manner

— each node has a weight +1 or —1 (which we often just write as " + " or

)>
— at each node there is an integer weight associated with each edge incident

at the node;
— at each node these "edge weights" are pairwise coprime.

The following is an example of a splice diagram.

(1)

Two splice diagrams are called equivalent if one results from the other by a sequence of
operations or inverses of operations of the following types

— simidtaneously change the signs of an even number of weights (sign weight
and edge weights) at any given node;

— if an edge from a node to a leaf (a vertex of valency 1) has edge weight
1, then delete it and its leaf;

— if an edge from a node to a leaf has edge weight 0, then delete the node,
all edges incident on the node, and the leaf;

— replace any vertex of valency 2 and its two adjacent edges by a single
edge.

— discard any component with 2 or less vertices;
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— given an edge connecting two nodes of a splice diagram with weights as

follows (e and e' are the vertex weights);

(2) - - • — a*. <xk+l

such that ee'aocti — 0:2 • • • ctm — 0, replace the edge by a single node

with 8 = e

The above number ee'aoai — c«2 • • • am is called the edge determinant for the given

edge.

We shall say a splice diagram is reduced if none of the above operations except the
first (allowable sign changes) is applicable and is in normal form if it is reduced and,
moreover, all edge weights are non-negative and the vertex weight adjacent to any 0
edge weight is + 1 - It is easy to see that any splice diagram is equivalent to a unique
normal form splice diagram. For example, the splice diagram (1) above has normal
form

Suppose now that F is a unimodular tree. We form a connected splice diagram
A = A(F) from F as follows. The underlying tree of A is obtained by replacing each
maximal chain in F by a single edge. Given a node v of F of valency d, weight the d

edges of A around v by the determinants det ( - F i ) , . . . ,det ( - F j ) , where the F< are
the components of the result of deleting v and its incident edges from F. Finally all
nodes are given the weight det (—F), which is ±1 by assumption. For a unimodular
forest F we form A(F) by applying this procedure component by component to F.

THEOREM 3.1. [3, Chapter V]. The above construction F i-> A(F) defines a bi-

jection between unimodular forests up to equivalence and splice diagrams up to equiv-

alence. If V is in normal form then the resulting splice diagram A is reduced.

PROOF: This is proved in [3], but a combinatorial proof is not hard, so we sketch
the main ingredients. Firstly, A(F) is indeed a splice diagram because the edge weights
at a node are pairwise coprime by Corollary 2.2. It is an easy verification to see that
the allowable operations to change F within its equivalence class translate to allowable
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operations for A(F) , so that F i-» A(F) gives a well-defined map of sets of equivalence
classes.

Now suppose that F is in normal form, or even just "reduced" in the sense that it
admits no blowdown, O-absorption, or splitting operation. Then a computation which
we omit shows that A(F) is reduced. The main ingredient in this computation is that
the edge determinant of an internal edge or the edge weight of an extremal edge of A(F)
is, up to sign, the numerator of the continued fraction of the corresponding chain in F
(this is the pe-weight on the edge of the corresponding W-graph). Its absolute value
therefore exceeds the length of the corresponding chain in F .

It remains to describe how to reconstruct a unimodular weighted forest from a splice
diagram. We describe this in detail since we need it later. It is enough to construct a
unimodular weighted tree F(A) from a given connected normal form splice diagram A.
We shall do this by "splicing together" pieces corresponding to simpler sub-diagrams
of A , starting with splice diagrams with a single node. We cannot assume that these
sub-diagrams are in normal form in that they may have extremal edges with edge weight
0 or 1. If

(1) A -

where e — ± 1 is the vertex weight and a; ^ 0 for each i , then

T(A) =

(2)
- b k 2 -"*•

with weights determined as follows. Assume first that no a,- is 0. Then there are
unique integers /3i for i = 1 , . . . , n and 6 G Z satisfying

(3) i<xi • • • a.i • • • an - -e • a n , 0 ^ /?< < a*.

This determines b, and the b{j are determined by

(4) [6,! , . . . ,biti] - -r1 with bij ^ 2 for all i, j .
Pi
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Note that these equations come directly from Proposition 2.1. However, in practice
it is easier to compute the ingredients of (2) as follows. It is not hard to verify that

(5) e =[i>i,bi,i,...,bii],

with

(6) bi=^-^-a"].

The bij are easily determined from (5) and (6), the /?,• then from (4) or from

/?;<*! • • • &i • • • a n = —e ( mod a{), and then finally b is the nearest integer to £) Pil<*\ •

If some oti in (1) is 0 then the other a.j all equal 1.. We put F(A) = o o,

which is as in (2) with 6 = 0 and with empty chains for the 1-weighted edges of A.
(Even when no ctj is zero the chain in F(A) corresponding to a 1-weighted edge of A
is empty.)

Now suppose

(7) A =

is a splice diagram such that

(8)
 Ai = E H and

are splice diagrams for which we have already constructed weighted trees

(9) r(Aj) = [q] Ic.bl and T(A2) = £

Consider F(Ai) and F(A2) as rooted trees, with the (—61)- and (—Ci)-weighted
vertices as roots. We have cf F(Ai) = l/(—bo) and cfF(A2) = l/(—Co) for some
b0,c0 € Z. We put

(!0) T(A) = [fTI z£_z££_^£_^£ [ftl.

In this way we can construct F(A) inductively for any normal form splice diagram. We

call this procedure of putting F(A) together out of simpler trees splicing.

Remarks , (i) It is not hard to check that the above numbers bg and Co are the same
as the numbers appearing in (6), so they do not need to be re-calculated.

(ii) The pictures in (9) and (10) are slightly misleading if the indicated edge of

Ai has edge weight 1, since then the appropriate chain of F(Ai) is empty and the
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(-61)-weighted vertex is the "central vertex" in (2), usually of valency > 1. The same
remark holds for A 2 •

We must show that our construction gives a unimodular weighted tree F with
A(F) = A. This involves computation of determinants of subtrees, for which we may
use continued fractions of subtrees, as in Section 2. It thus suffices to observe that,
when computing the continued fraction of a subtree which contains the right half of
F(A) with respect to a root vertex to the left of the (—6U)-weighted vertex, the part to
the right of the (—2>i)-weighted vertex contributes nothing, since

c f ( - ^ i _ ^ _ ^ L . . . - j r g ) - i - b o . - c o . - i ] = 00.

and similarly with right and left exchanged. This observation also shows that F(A)
does not depend on the order in which we "splice together" its pieces.

We have seen that A(F(A)) is equal to A if A is in normal form. The combinato-
rial proof of Theorem 3.1 is complete if we show that a unimodular weighted tree F in
normal form is determined by its splice diagram A = A(F). Given A, Proposition 2.1
determines the continued fractions of the extremal chains of F and hence determines
these chains. With slightly more effort a similar argument shows that once all but one
chain at a given node of F have been determined, the weight at that node and the last
chain at that node are also determined. Thus, inductively, F is determined. U

Note that the weighted tree F(A) that we construct above is usually not in normal
form, since the weights —60 a«d — Co introduced in the splicing step need not be < —2.
In particular, F(A) will usually not have minimal p+ in its equivalence class. However,
it is easy to determine p+F(A), and in the next section we shall use this to deduce the
minimal p+ for the equivalence class.

LEMMA 3.2. Let A be a connected normal form splice diagram and let v be the

number of nodes of A which either have vertex weight —1 or which have an adjacent

edge weight 0. Let cr be the number of edges of A connecting two nodes. Then

p+F(A) = i/ + cr.

PROOF: We apply Corollary 2.4. Suppose first that A is as in (1) so F = F(A) is

as in (2). if some a; is 0 then F = o o which has p + = 1 as claimed. Otherwise

we take the central vertex v of F as root vertex and then the cf F u appearing in

Corollary 2.4 are all negative except maybe cf Fo = cf F — — e/(a i • • • a n ) . Thus the

Lemma holds in this case. On the other hand, if F is obtained by splicing Fi and 1\

as in the proof of Theorem 3.1, then, as observed there, the relevant set of continued

fractions cf Fu for F consists of the sets for V\ and F2 and an additional 0 and 00,

so p+F = ;»+Fi + pf.F2 + 1. The lemma follows. D
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We shall need the following lemma later. It follows directly from the construction
of A ( r ) .

LEMMA 3.3. For any unimodular forest F, the normal form splice diagrams for

F and —F differ only in the signs of the vertex weights of the vertices which have no

adjacent zero edge weight. D

4. MINIMAL p+ AND DEFINITE UNIMODULAR TREES

Let A be a connected normal form splice diagram. Let Ao be the full subtree on
the set of (—l)-weighted nodes and So the number of components of Ao . Let Si be the
number of edges with negative edge determinant connecting two (+l)-weighted nodes.

THEOREM 4.1. The normal form unimodular tree F with splice diagram A has

p+F = So + 6i, so any weighted tree in the equivalence class has p+ at least this large.

PROOF: The normal form tree F is obtained by reducing the tree F(A) described
in the previous section. Lemma 3.2 tells us p+ before reduction, so we must compute
how much this reduction decreases p+ . We shall call our weighted tree F at every stage
of the process.

Let

(1)

be a maximal chain connecting two nodes of F, with notation as in the previous section.
The only way this part of F may not be in normal form is that one or both of — bu and
—c0 may exceed —2. Let the corresponding edge of A be

(2) - - - a r a'.

and write 0 — ai • • • ar, 0' — a\ • • • a',, so the edge determinant is det = ee'aa' — 00'.

Note that the description of &o and c<> in the previous section implies that sign60 = signe
unless a0 = 0, iu which case 60 = 0, and similarly for Co. We must distinguish several
cases. In cases 1 to 4 we assume that none of a, a ' , 0, 0' is zero, so b0 and Co are
non-zero.

C a s e 1 . e =e' - + 1 , d e t > 0 . S i n c e [bo,...,bk] - 0/a a n d [cv,...,ct] - 0'/a', t h e

inequality det > 0 is equivalent to

(3) [6o,...,6*l[co>...,ci]<l-
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This implies that at least one of b0 and c0 equals 1, say b0 = 1. Then we can perform

a (—l)-blowdown to get

(4) J> ° ° °

Now \bx -I,b2,...,bk] = 0/{a-0) and [c0 - 1, cu ... ,c,} = {/3'-a')/a', and
the inequality 0/a • (3'/a' < 1 is equivalent to 0/(a-0) • (0' - a)/a! < 1. Thus
the analogue of inequality (3) holds for this new chain (4) and either Co — 1 = 0 or
we can repeat the argument. After finitely many repetitions we must create a weight
0, and a 0-absorptioii then completes the reduction. Since we have performed several
( —l)-blowdowns followed by a 0-absorption, the effect on p+ is to decrease it by 1.

Case 2. e = e' = + 1 , det < 0. In this case inequality (3) is reversed and implies that
at least one of b0 and c0 exceeds 1. A (—l)-blowdown may be possible, but it cannot
create a 0 weight; moreover, the analogue of the reverse inequality to (3) then still
holds for the result. Inductively, the same is true for any further (—l)-blowdowns that
become possible. Thus reduction is completed after finitely many ( —l)-blowdowns, and
p+ is not affected.

The remaining cases are easier since the reduction can be described explicitly in
each one.

Case 3. e and e' have opposite signs, say —e — e' — -t-1. Then det < 0. In this case
&o is negative and we can perform the reduction by doing |60| (—l)-blowups next to
the (—60)-weighted vertex followed by a 0-absorption to reach

^ - ^ - ^ — tojfc —&2 —toj—1 —2 —2 — C o — 1 — c

with |6U| — 1 vertices weighted (—2) in the middle. The effect on p+ is to reduce it by
1.

Case 4. e = e1 — —1. We proceed as in Case 3 to obtain (5). At this point Co + 1 is

non-positive so we do |co| — 1 ( —l)-blowups next to it followed by a 0-absorption to

complete the reduction. The effect on p+ is to reduce it by 2.

The final cases are those in which at least one of a , a ' , 0, /?' is zero. With no

loss of generality it is one of a and 0. Note that a — D cannot occur with 0' — 0 since

det ^ 0 .

Case 5. a = 0, e' = + 1 . Then det < 0. Also e — +1 by definition of normal form.
In this case the chain (1) is
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0 - c 0

(6)

and a 0-absorplion possibly followed by some (-l)-blowdowns does the reduction; p +

is reduced by 1.

C a s e 6. a = 0, e' = — 1. The relevant chain is (6) with — Co positive, so we need a

0-absorplion followed by the procedure of Case 3, reducing p+ by 2,

C a s e 7. a — 0, a ' — 0. Two 0-absorptions suffice, reducing p+ by 2.

C a s e 8. /? = 0. In this case the chain (1) is

(7) ,P°
so a single 0-absorplion suffices, reducing p+ by 1.

Now, for i = ] , . . . , 8, let C< denote the number of edges of A that are in Case i.
Then by Lemma 3.2 and the above, the normal form T has p+ equal to

(8) p+ = v -f p — C\ — C3 — 2C4 — Ct — 2Ca — 2C7 — Cs-

But Cs + Ct + 2C7 is the number of nodes with an adjacent 0-weight, so v —

(C$ + Ce + 2C7) is the number of (—l)-weighled nodes. Since Ct is the number of
edges connecting two (—l)-weighted nodes, v — (Ct + Ce + 2C7) — C4 is the number of
components of the full subgraph on the ( — 1)-weighted nodes, that is

(9) S0 = i/-Ct-Cs-C6- 2C7.

On the other hand, the number of edges with negative edge determinant connecting two
( + 1)-weighted nodes (recall that nodes with an adjacent 0-weight are (+l)-weighted
by the definition of normal form) is

/ -• f\\ C «« f~i /^ /~* f~i /^i

Combining (8), (9), and (10) proves the theorem. D

COROLLARY 4.2. [3, Theorem 9.4]. A normal form unimodular tree is negative

definite if and only if its splice diagram has only positive edge weights, vertex weights,

and edge determinants. Every negative definite unimodular tree is obtained from a

normal form one by repeated (-l)-bluwups.

PROOF: By Theorem 4.1, all vertex weights are +1 and all edge determinants are
positive. The edge weights are non-negative by definition of normal form and no edge
has a zero edge-weight since it woidd then have negative edge determinant. The second
sentence follows from Corollary 1.3. U
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5. SEMI-DEFINITE UNIMODULAR TREES

As remarked in the introduction, both negative defuiite and negative semi-definite

unimodular trees are of geometric interest. We described the definite ones above, and we

describe the semi-definite ones (p+ = 1) here. The discussion is a model for describing

the unimodidar trees with any prescribed p+ .

Suppose F is a negative semi-definite unimodular tree. Let Fo be the corresponding

normal form weighted forest (it may not be a tree). Then p+F0 < p+F = 1, so p+Fo = 0

or 1.

Case 1. p.|.Fo = 1. This is the more interesting case, being the only one that can
occur for configuration diagrams of divisors in compact complex surfaces ([6, Theorem
5.3], [7]). It is also the simpler case—F is obtained from Fo by repeated ( — l)-blowups
by Corollary 1.3. In particular, Fu is a tree. By Theorem 4.1 there are two basic
possibilities for the normal form splice diagram A

— all vertex weights equal +1 and exactly one edge determinant is negative;

— the full subgraph A<) on the ( — 1)-weighted nodes is connected and
nonempty and no edge connecting nodes outside Ao has negative edge
determinant.

A slightly surprising example is that the second of these possibilities holds when Fo

is the normal form for a positive definite unimodular tree F i . Indeed, A is obtained
from the normal form splice diagram for the negative definite tree —Fi by changing all
vertex weights to —1 (Lemma 3.3).

Case 2. p+Fo = 0. We could give as precise a description of F as in Case 1, but it
is more complicated and not worth the effort. Instead we just describe F up to strict
equivalence (repeated (—l)-blowups and -blowdowns).

PROPOSITION 5.2. F is strictly equivalent either to the result of performing a 0-
extrusion (reverse of a 0-absorption) on Fo (so Fo is a treej or the result of performing

a single connecting operation on a forest strictly equivalent to Fo .

The second case of this proposition is a bit unsatisfactory—even up to strict equiv-
alence, given Fo, there are infinitely many possibilities for F . The reader can easily
create many examples like the following one, formed by connecting two non-reduced
negative definite trees. This example has Fo = 0.

•?

- 3 o

PROOF OF 5.2: We may assume F admits no (—l)-blowdowns. Then, since F is
not in normal form, it has a non-negative weight on some chain. By performing (—1)-
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blowups next to this weight we can make it equal to 0 and O-absorplion or splitting
then turns F into a tree with minimal p+, which can therefore be reduced to Fo by
( —l)-blowdowns. Thus F resulted from Fo by ( —l)-blowups followed by a connecting
operation or 0-extrusion followed by (-l)-blowdowns, if the operation creating the 0
weight was a connecting operation we are done. If it was a 0-extrusion then the result
follows from the following lemma. D

LEMMA 5.3. Any sequence of ( — l)-blowup and -blowdown operations followed by

a 0-extrusion on one chain of a weighted graph can be replaced by a 0-extrusion followed

by (-l)-blowups and blowdowns.

PROOF: It is enough to show that a single ( —l)-blowup or -blowdown opera-
tion followed by an adjacent 0-extrusion can be replaced by a 0-extrusion followed
by ( —l)-blowups and -blowdowns. Note first that by a ( —l)-blowup followed by a
( — 1)-blowdown we can change

x o y x—I —l —I y

so by a sequence of (—l)-blowups and blowdowiis we can do

x 0 y _^

(1) ° ° ° " '
for any c. We can replace a (—l)-blowup followed by a 0-extrusion

a 6 n—1 - 1 6 — 1
o o —• o o o —•

as follows

X

in do

x—c 0

0-extrusion

a — 1 — c

a - 1 0
o o—

—1

y + c

0 c

0

0

- 1

—1

y + i

i) - 1

6 - 1
0

a - 1 0 1 b
o o o o
(U

A (—l)-blowdown followed by a 0-extrusion

a — 1 b a+1 b+1 a + 1 1-c 0 6+c

can be replaced by

a —1 6 a + 1 o — l — l b
O——O——O — • O O O O O —¥

q + 1 1 0 6 (1) q + 1 1—c 0 b+c
O C3 O O —¥ O O O O

D
The arguments in the proof of 5.2 and 5.3 can be applied iteratively to prove the

following Proposition, which helps describe trees with larger p+ up to strict equivalence.
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PROPOSITION 5.4. It Fj and F2 are equivalent trees which differ only in one chain
and which have the same p+ then they are strictly equivalent. 0

6. NEGATIVE DEFINITE UNIMODULAR FORMS REPRESENTED BY TREES

In this section "form" will always mean unimodular symmetric bilinear form over
Z. As pointed out in the Introduction, the classification of indefinite forms is very
simple, so only in the defiuite case is the form represented by a unimodular tree of
intrinsic interest. A nice introduction to the classification is in Serre's book [11], from
which much of the following information is taken.

A negative definite form decomposes uniquely as an orthogonal sum of irreducible
ones. The number of isomorphism classes of irreducible ones in dimension n is grows
extremely fast with n. The same is true for even definite forms (a form A is even if
A(x,x) is always even), except that they only occur in dimensions n divisible by 8.
For example there are over 80,000,000 even negative definite forms in dimension 32.
However, for small n the classification is tractable, for example, Kneser [4] classified
definite forms up to n = 16 (there is one irreducible even form An in each dimension
•n = 8, 16 and one irreducible odd form 0 n in each dimension n = 1, 12, 14, 15, 16),
Niemeier [9] classified the even definite forms with n = 24 (there are 24, of which 2
are reducible), and Conway and Sloaiie [1, 2] have continued Kneser's classification to
n = 23.

It is not hard to represent all the negative definite forms up to rank 16 by trees
except for As © Ag, which is probably not so representable, thought it can of course
be represented by a two component forest. 1 do not know how many of Niemeier's 24
forms are representable—the famous Leech lattice, which is one of them, is not.

An ad hoc study of the unimodular forms represented by trees turns up interesting
patterns. We restrict to the simplest kind of definite unimodular tree, namely the
normal form tree T(p,q,r) whose splice diagram is

A(p,<7,r) = o—P

This tree has the shape

which we also write as r ( 6 ; 6 n , . . . , &i«, ;&21> • • •) ̂ 2«3i &3i> • • • >&3»3)- We shall denote the
corresponding form by A(p,q,r).
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There are many periodic families, for example

A(p,q,r+ npq) ^ A(p,q,r) © n ( - l ) (n > 0),

A{2,4n - l,4n + 1) =* A8 © (n - 1)(-1) (n ^ 1),

A(2n - 1,2n, 2n + 1) = (2n + 1)(-1> (n ^ 2),

A{6n - 5,6n - 3,6n - 2) ̂  (3n + 1)(-1) (n ^ 2),

v4(6n-2,6n-l,6n + l)S(3n + 2)(-l) (n > 1),

A(6n-l,6n + l,6n-|-2)S A 8 e(3n- 1)(-1> (n ^ 1),

>l(6n + 2,6n + 3,6n + 5) = A8 © (3ra)(-l) (n ^ 0),

- l , 4n + l,4n + 3 )S0 1 2 ©(n - l ) ( - l ) (n ^ 1)

- 3 , 4 n - l , 4 n + l ) S ( n + 4)(-l) (n ^ 2),

et cetera, where "(—1) is the rank n diagonal form. There are also interesting sequences
of examples, such as the following sequences of even forms of rank 8n

,4(2,4n - l ,8n - 3); A(2,8n - 5,12n - 7); 4(2Ti,4n - l ,4n + 1); A{4n - l ,4n ,8n - 1).

In addition, forms with related properties sometimes seem to be assembled out
of similar building blocks. This phenomemon is clearly visible in the following list of
trees of type T(2,p,q) with form isomorphic to A$ © n(—1) for some n . It includes
all examples with p < 31 which are not a consequence of one of the first two periodic
families mentioned above, plus an example with p — 33.

l,19) = r(2;2;6,2;4,2,2,2,2,2)

F(2,13,21) = T(2; 2; 4,2,2,2; 6, 2,2,2)

r(2,19,27) - r(2;2;2,2,7;2,2,2,2,4,2)

T(2,21,29) = r(2; 2; 2,2,2,2,5; 2,2,6,2)

r(2,19,33) = r(2;2;10,2;3,3,2,2,2,2,2)

r(2,23,37) = T(2; 2; 3,3,2,2,2; 10,2,2,2)

T(2,23,39) = T(2; 2; 5,3,2; 4,3,2,2,2,2)

r(2,25,4J) = r(2;2;4,3,2,2; 5,3,2,2,2)

F(2, 25,43) = T(2; 2; 3, 5,2; 8, 2, 2,2,2,2)

T(2,29,47) = T(2; 2; 8,2,2,2; 3,5,2,2,2)

T(2,27,35) - T(2; 2; 6,2,3; 4,2,2,2,2,3)

r(2,29,37) = r(2;2;4,2,2,2,3; 6,2,2,3)

F(2,27,47) = T(2; 2; 14,2; 3,2,3,2,2,2,2,2)

T(2,33,53) = r(2;2; 14,2,2,2;3,2,3,2,2,2)
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The phenomenon is visible as far as we have computed also for the T(2,p, q) representing

A © n ( - 1 ) for A = ©i2 and for A = A16, but not for A = ( - 1 ) .

Another example of the phenomenon is Yainada and Matsumoto's surprising con-

struction, in terms of certain basic building blocks, of all trees of type T(2,p,q) which

have even forms ([14]).
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