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Casson invariant of links of singularities 

WALTER NEUMANN AND JONATHAN WAHL 

Let X be the link of a normal complete intersection surface singularity and let 
F be the associated Milnor fiber. Thus, X is a closed oriented 3-manifold and F is 
a compact, simply-connected, parallelizable 4-manifold with boundary X. Assume 

is a homology 3-sphere; then the Casson invariant ,~(~) has been defined (e.g., 
[A] or [F-S]) as minus one-half the "number"  of non-trivial SU(2)- 
representations of ~rl(X ), where "number"  is given by an appropriate algebraic 
count. 

C O N J E C T U R E .  The Casson invariant ~(~,) equals ~ sign (F). 

This has been proved by Fintushel and Stern in [F-S] for the Brieskorn sphere 
~Y(p, q, r), which is the link of the singularity at 0 of the hypersurface 
xP+yq+zr=O in C 3. Namely, the number of SU(2) representations of 
srl(~Y(p, q, r)) is ~N(p, q, r), where N(p, q, r) is the number of integer lattice 
points in the interior of  the tetrahedron with vertices (p,  0, 0), (0, q, 0), (0, 0, r), 
(p, q, r) (this has been observed by several people in one form or another; it 
essentially goes back to Greenberg [G]). On the other hand, -N(p ,  q, r) is easily 
equated with Brieskorn's formula for sign (F) ([B]). Thus the core of Fintushel 
and Stern's result is that in this case the "algebraic count" of SU(2)- 
representations is the actual count. 

In this paper we use their result to 
(a) compute the Casson invariant for arbitrary graph manifold homology 

spheres (Remark 1.14), 
(b) confirm the above Conjecture for weighted homogeneous surface sin- 

gularities (Proposition 1.1), 
(c) confirm the Conjecture for links of hypersurface singularities given by an 

equation of the form f(x, y) + z n = 0 (Proposition 2.5), 
(d) confirm the Conjecture for a family of complete intersection singularities 

in C 4. 

It is tempting to make the same conjecture for any smoothing of a Gorenstein 
surface singularity with homology sphere link (see w but incredibly, we know of 
no examples of such singularities which are not complete intersections! 
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The caiculational methods we use here do not hint at the general reason why 
the Conjecture should be true, but we give some speculation in w Aside from 
the above evidence, we note that the Casson invariant must be ~ the signature of 
s o m e  simply-connected spin 4-manifold which bounds X (see w it is thus natural 
to try the Milnor fiber. 

The main work in every case is computing sign (F). Along the way we classify 
homology sphere cyclic branched covers of graph links (Theorem 2.4), and 
generalize signature formulae of Shinohara (Theorem 2.14) and Hirzebruch 
(Proposition 1.12) and a result of Mordeil (Remark 1.16). 

(Added February 1989). After writing this paper we learned that Fukuhara, 
Matsumoto and Sakamoto have independently proved Proposition 1.1 by 
essentially the same method, see [F-M-S].  In addition, K. Walker in [W] has 
extended the definition of the Casson invariant to rational homology spheres (see 
also Boyer and Lines [B-L], who describe the same extension for homology lens 
spaces); it would be interesting to know to what extent the above conjecture 
generalizes. 

w Seifert fibered homology spheres 

Let al . . . . .  an be pairwise coprime positive integers. The Seifert fibered 
homology sphere X(al . . . . .  an) is the link of the singularity of f-~(0),  where 
f :C"--~ C "-2 is a map of the form f ( z l ,  . �9 �9 , zn )  = ( • 7  b , . j zT ' ,  . . . .  E 7  b n - 2 j z T ' )  

with sufficiently general coefficient matrix (bq). Every weighted homogeneous 
surface singularity with homology sphere link is equivalent to one of these ([N2]). 

Let o ( a l ,  . �9 �9 , an )  denote the signature sign ( f - ~ ( 6 ) )  of a nonsingular fiber of 
f. Let Z(al . . . . .  an) denote the Casson invariant of Z'(a~ . . . . .  an). 

PROPOSITION 1.1. ~.(al . . . . .  an) = ~r(al . . . . .  a,)  

P r o o f .  This was proved for n = 3 by Fintushel and Stern [F-S]. The general 
case is a trivial induction using the following lemma. [] 

LEMMA 1.2. F o r  a n y  1 < j < n - 1, 

(1.3) X ( a l  . . . . .  aN) = Z ( a i ,  �9 �9 �9 , a t ,  a j+l  �9 �9 �9 a , )  + )~(a l"  �9 �9 a t ,  aj+l . . . . .  a,),  

(1.4) a ( a l  . . . . .  a n ) = c r ( a l  . . . . .  a t , a j + l " ' ' a n ) +  o ( a l " ' ' a i , a t + l , .  . . , a n ) .  

P r o o f .  To prove (1.3) we use the s p l i c e  d i a g r a m s  of [E-N] and [Si]; they will 
also be useful later. The homology sphere ~(al  . . . . .  aN) is obtainable from 
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~,(al . . . . .  aj, aj+l...a,,) and Z ( a l . . . a  i, aj+l . . . . .  an) by splicing along ap- 
propriate singular f ibers -  see [E-N,  Lemma 8.4]: specifically, the splice diagram 
for ~'(al . . . . .  an): 

is equivalent to 

which is the splice of 

at+ I "" 'an 
a . ~ 3  

a I l l . a  I 

) 

ai+ l-"--~> 

. . )  a ; ' l ' " a ~  a l . - - a  j 

�9 and ( 

) 
Therefore, (1.3) is immediate from the additivity of the Casson invariant under 
splicing, proved independently by Akbulut  & McCarthy, Boyer  & Nicas, and 
Fukuhara & Maruyama (according to [B-N]).  

To prove (1.4) we need the following. Put N = al �9 �9 �9 an and b," = N/a,,. 

L E M M A  1.5. 

1(1 )n (1.6) o(al . . . . .  a , ) = - l + ~ - ~  - ( n - 2 ) N 2 +  v=l ~ b2 +~=1 

where, for coprime integers a and b with a > O, 

d ( a ; b ) = l ~  ~ + l ~ b + l  
a "=1~ 1 ~b 1 

~1 

R E M A R K  1.7. For n = 3 this lemma is in the work of Hirzebruch and Zagier 
([H1] and [H-Z]) ,  and also Mordell [Mo] (given that - o ( a l ,  az, a3) is the 
number of lattice points in a tetrahedron as described above), d(a; b) is a version 
of the Dedekind sums discussed there (d(a; b ) =  1/a def (a; b, 1) in Hirzebruch's 
terminology). 

We first show how this lemma implies (1.4). 
Applying the lemma to (a, b, 1) and noting that o(a, b, 1 ) =  d(1; ab)= 0, we 

get: 

l + a a + b  2 
0 = - 1 +  3ab +d(a;b)+d(b;a) ,  
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s o  

l + a 2 + b  2 
(1.8) d ( a ; b ) + d ( b ; a ) = l  

3ab ' 

which is the Dedekind reciprocity formula (cf. [H1] and [H-Z]). Now if we apply 
(1.6) to expand the right side of (1.4) we obtain, with A = a ~ - - - a j  and 
n = a j +  1 �9 �9 �9 an: 

- 1 + ~ - ~  a - ( j - a ) u 2 +  b2+A 2 + d ( B ; A ) +  ~'~ d(av;bv) 
v = l  v = [  

'( ) + - i + ~  I-(n-j-I)N~+ ~ b~+B ~ + d ( A ; B ) +  
v = / + l  v = j + l  

= - 1 + ~  1 - ( . - 2 ) N 2 +  + d(a~;b~) 
v = l  

1 
+ - 1  + ~ ( 1  + A  z + B 2) + d(A; B) + d(B;A).  

d(av; b,,) 

By (1.6) and (1.8), this equals the left side of (1.4). [] 

Proof of Lemma 1.5: We use Hirzebruch's formula ([H2]): 

o(a, . . . . .  an) = -  ~ res~ii/2N((tanhNz) ~ 2co thz f i co thb~z )  dz. 
1 ~ j  < 2 N  v = 1 

j o d d  

Making the substitution w = exp (2z), this becomes 

{{W N -  l~n-2w + 1 f l  (W by + 1]~ dw 
o(a, . . . . .  an) = - ~ resr \\w-~-+-i+ l /  7 - 1  ~=~ \w~- -  lee 2--~ 

~ N = - - I  

Note that 

[ ( w U - 1 ]  n - 2 w + l  ~ {wb~+l]] dw 
~o := \\w-VT]-+l ! w 1 ,,=, - \w by - 1 / / 2 w  

has poles only at 0, o% and at certain 2N-th roots of unity. Thus, by the residue 

theorem, 

o(a ,  . . . . .  an) = res0 ~ + res~ o~ + E res~ ~ = - �89  - ~ + E res~ ~o. 
U v =  1 ~N = 1 

Now the only poles at N-th roots of unity are a triple pole at 1 and simple poles at 
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each a~-th root of unity other than 1. Thus 

(1.9) 

But 

(1.10) 

a ( a ~ , . . . , a , ) = - l + r e s ~ t o +  ~ ~ resCto. 
v = l  ~aV=l 

(w +l))dw 
{(WN--I]"-2W+ I [I  \ w b . _ I / /  2W res~ ~0 = ~] res~ \\w--W--+---~+ 1/ w -- 1 ~=l 

~av= 1 ~ v =  1 

( (WN--I~-2r162 { w b " + l ~ d w  
= ~"~=~ r e s ~ \ \ ~ r  C w - - l ( r  1 \ w b , _ I / / Z w  

= ~ l ( N ) " - 2 ~ + l ~ b ~ + l  1~ 2 

r176 _ _  r l C b ~ - - l , , ~ b  u 

1 ~ + l ~ b ' + l  
=a--~ ~ .~=, ~--1 ~ - d(a~; b~). 

(Here the second line is the substitution w ~  Cw and the next line follows by 
removing all factors ( w - 1 )  and then evaluating at w - - 1 . )  To compute the 
residue of o~ at 1 we need the third term in the Laurent  expansion of co in terms 
of (w - 1), since 1 is a triple pole. We can compute this by taking the first three 
terms of the expansion for each factor of ~o and multiplying. We omit the details 
of this elementary computation,  which gives the answer 

1( 
(1.11) res jw=~--~ 1 - ( n - 2 ) N 2 +  bZ~. 

v = l  

Inserting (1.10) and (1.11) into (1.9) proves the lemma. [] 

One can perform the analogous computation to Lemma 1.5 also when the 
ai are not coprime. It is a digression and the computational details are similar, so 
we just describe the final result. Let  now N = l c m  (a~ . . . . .  an), and denote 
by = N/av, t~ = N/ lcm (aj . . . .  , t~ . . . . . .  an), and sv = al �9 �9 �9 ~v �9 �9 �9 a,/ 
lcm (al . . . . .  t~, . . . , an). Then 

PROPOSITION 1.12. The signature of the 2 complex dimensional smooth 
Brieskorn complete intersection with exponents al . . . . .  a, is 

(1.13) 
ha( ) 

[Ii=l i ~ b 2 + o(aj . . . . .  a , ) = - l  + ~  1 - ( n - 2 ) N  2+v=1 sv d(tv; bv). 
v = l  

[] 
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This formula involves several topological ingredients: by [N-R] ,  X ( a ~ , . . . ,  a~) is 
Seifert fibered with exactly s~ multiple fibers of multiplicity t~ for each v with 
t~ > 1, these are the only multiple fibers, and the Seifert invariant of each 
t~-multiple fiber is (t~,/3~) with b~fl~ ~ 1 (modulo t~); moreover, the euler number 
of this Seifert fibering is (II7=~ ai)/N ~. (With the information that the euler 
characteristic of the base surface is - (n-2) (H~ '_~ a~)/N+ En_lS~, this deter- 
mines the topology of Z(a~ . . . . .  a,,) completely.) However,  easy examples show 
that o(a~ . . . . .  an) is not always a topological invariant of Y_,(al . . . . .  a,,). 

R E M A R K S  1.14. As described in [E-N] and [Si], any graph manifold 
homology sphere can be obtained by iteratively splicing Seifert fibered homology 
spheres along fibers. Since ~, is additive under splicing, the formula of Lemma 1.5 
for a(al . . . . .  an), together with Proposition 1.1, give an efficient computation of 
the Casson invariant for any graph manifold homology sphere. 

1.15. Don Zagier pointed out that Lemma 1.5 also enables quick proofs or 
generalizations of some of the results of [H-Z]  about d(a;b) and a(a, b, c) 
(there called t(a, b, c)). For instance, we have already deduced Dedekind 
reciprocity. By applying reciprocity to one term of (1.3) we get 

n--1 ) n -1  
1 ( _ ( n _ 2 ) N 2 +  ~, 2 a 2 + E d(av;bv) d(b , ;a , )  bv-  a ( a l , . . . ,  an) = 

v=l  v=l  1( by an\ = - ~  ( n - 2 ) N - , . . ,  v=, ~ + b-~ } + ~lv=, d(a,,;bv)-d(b,,;a,,),  

SO 
1 ~,~,~ 

o ( a , , . . ,  an - l , a ,+b , )=cr (a ,  . . . .  a , ) - g  ( n - 2 ) b  2 -  + 1  
~ v=l  a 2  

showing that o(a~ . . . . .  a,-1, a) is a linear-plus-periodic function of a. This 
periodicity of signatures has been discussed by several people (see [ H - Z ]  for 
references). Interpreted as a periodicity for the Casson invariant, it is just an 
instance of Casson's surgery formula, since X(al . . . . .  an-~, a, + bn) is obtained 
by ( -1 ) -Dehn  surgery on the degree an fiber in the Seifert fibering of 

X(at . . . . .  a,). 
1.16. For n = 3 formula (1.13) generalizes Mordell's result [Mo] (cf. Remark 

1.7), since o(al, a2, a3) is a lattice point count by [B], even if the ai are not 

coprime. 

w Some hypersurfaces 

Let g(x, y, z) =f(x ,  y) + z" define an analytic map g:(C 3, 0)----~ (~, 0) with an 
isolated singularity at 0 and let X be the link of the singularity at 0 of V = g-~(0). 
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PROPOSITION 2.1. 27 is a homology sphere if  and only i f  the plane curve 
f (x, y)  = 0 has only one branch at 0 and n is prime to each entry o f  each essential 
Pulseux pair for this plane curve. In fact, if the splice diagram for the plane curve 
singularity is 

(2.2) 

I 

then the condition is that n be prime to each p~ and qi, and the splice diagram for 27 
is then 

(2.3) 
q ,  _ _  ~ 

( !  c l  

The "Newton-Puiseux pairs" (Pi, q~) are related to the standard Puiseux pairs 
(hi, mi) by the recursion pi = ni, ql = ml ,  qi = m~ - mi-lni ,  for i > 1 ( [E -N  p. 
49]). It follows that n is prime to each p~ and q~ if and only if it is prime to each m~ 
and n,, so it does not matter which version of the Puiseux pairs is referred to in 
the first sentence of the Proposition. 

The above notation means that the link ~ = (S 3, L) of the singularity at 0 of 

f ( x , y ) = O  is the knot ~(Pl ,  q~;P2, q 2 ; - . .  ;Pr, qr) obtained by iterative (p~, q~) 
cabling starting from the unknot (7. 

Proof of  3.1. Let (S3, L)  be the link for f ( x , y ) = O .  The link 27 for 
f ( x ,  y) + z n = 0 is the n-fold cyclic branched cover of S 3 along L. By P. A. Smith 
theory, for any prime p dividing n, the ~/p-act ion contained in the ~_/n covering 
transformation group on the homology sphere Z must have connected fixed point 
set. But the fixed point set is L, so L is connected and the plane curve has just 
one branch at 0. 

Now suppose (S 3, L) is the knot  ~7(pl, q~;P2, q 2 ; . . - ; P r ,  qr) with splice 
diagram F o f  (2.2) above. Let  27 be the n-fold cyclic cover of S 3 along L. We want 
to see that 27 is a homology sphere if and only if n is prime to the p~ and q~. We 
first consider the case r = 1. Then F is the splice diagram for the (Pl,  ql)  torus 
knot, which is the link of the singularity x p~ + yqi = 0. Hence 2? is the link of the 
surface singularity x p~ +yq~ + Z  n ----0, that is, 27 is the Brieskorn manifold 
27(Pl, ql, n). This is a homology sphere if and only if Pl ,  q~, and n are pairwise 
coprime ([B]; more generally, the 3-dimensional link 2'(al . . . .  , an) of a 
Brieskorn complete intersection is a homology sphere if and only if the a i are 
pairwise c o p r i m e -  this follows from [N-R,  Theorem 2.1]). 

Now for general r let k-< r and consider the link (S 3, L0 tA L1) with splice 
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diagram 
q~ 1 LI~ ~ !, ~ L1. Pkl 

The ambient sphere S 3 of the link (S 3, L) is obtained from the ambient sphere S~ 
by replacing tubular neighborhoods of the link components Lo and L 1 by suitable 
homology solid tori No and N1 (NI is a genuine solid torus, but this is irrelevant).  
Any homology solid torus N has a degree 1 map to a true solid torus, by 
collapsing the complement  of a collar neighborhood of ON to a circle. We can 
thus construct a degree 1 map f : S  3--, S~ which collapses N0 and N1 to circles and 
is a homeomorphism from S 3 - (N 0 t3 N1) to S 3 - (Lo LI L1). 

Now suppose n is prime to Pi for i = k + 1, �9 �9 �9 r. Then n is prime to the 
linking number  Pk+, �9 �9 "Pr of a meridian of L~ with L, so the n-fold cyclic cover 
of the exterior of L in S 3 induces the n-fold cyclic cover on the exterior of L~ in 
S~,. Thus, taking n-fold cyclic branched covers of f:S3---,S~, we get a map 

f:X---~X(pk, qk, n) which is a homeomorphism over the complement  of two 
circles (the degree qk and degree n fibers in the Seifert fibering of X(pk, qk, n)). 
Since f has degree 1, it is surjective on homology. Thus, if X is a homology sphere 
then X(p~, qk, n) is a homology sphere, and hence n is prime to Pk and qk. By 
induction, if X is a homology sphere then n is prime to each pi and qi. 

On the other hand, if n is prime to each p, and q~, then the above argument  
identifies X inductively as the result of splicing together homology spheres 
X(pi, q~, n) according to the splice diagram (2.3), so X is a homology sphere. [] 

Remark. The same argument applies more generally. Suppose (S, L) is a 
graph knot in a homology sphere given by a splice diagram F. Every internal 
edge of F has two weights and every external edge has one. Call a weight on an 
edge of F "nea r"  or " fa r"  according as it is on the end of the edge nearest  to or 
furthest from the arrowhead of F (thus the weight on an external edge is near,  
except for the edge with the arrowhead). 

T H E O R E M  2.4. The n-fold cyclic cover orS branched along L is a homology 
sphere X if and only if n is prime to all near weights in F, and r is then given by 
the splice diagram obtained from F by multiplying each far weight by n. [] 

This theorem can be applied iteratively to complete intersection singularities 
nl __ given by systems of equations of the form f~(zl . . . . .  z ,§247 i= 

1 . . . . .  k, and allows us to compute the Casson invariant when the link is a 

homology sphere. Unfortunately,  except when k = 1 we have been able to 
compute the signature of the Milnor fiber in only very few cases; these cases 

confirm the Conjecture of the Introduction. 
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PROPOSITION 2.5. Let g(x, y, z ) = f ( x , y ) + z  n define an analytic map 
g : (C  3, 0)----~ (C, 0) with an isolated singularity at 0 and let the link X at 0 of  
V = g - ~ ( 0 )  be a homology sphere with splice diagram (2.3) above. Then the 
signature o f  the Milnor fiber F for g and the Casson invariant ;~(X) are: 

sign (F) = ~ a(Pv, qv, n); 
v = l  

)~(X) = ~ sign (F). 

Proof. The formula for A(X) follows from the formula for sign (F), the 
additivity of A under splicing, and Proposition 1.1, so we must just prove the 
formula for sign (F). 

We must remind the reader of a general construction. If ~ = (S 3, L) is a knot, 
then the n-cyclic suspension L ~ [n] is defined as a special case of the knot 
product of [K-N];  it is a knot ~ |  5, X) in the 5-sphere and X is the 
n-fold cyclic cover of S 3 branched along L. Moreover ,  if 5~ is the link of a plane 
curve singularity given at 0 e C 2 by f ( x ,  y) = 0 say, then ~ | [n] is the link of the 
singularity at 0 e C 3 o f f ( x ,  y)  + z n = 0. Thus Proposition 2.5 follows by induction 
from the more general: 

PROPOSITION 2.6. Let 58 be a knot in S 3 and 5C(p, q) the (p, q)-cable on 

~.  Suppose gcd (n, p)  = d (d = 1 in the application to Proposition 2.5). Then 

(2.7) sign (Le(p, q) | [n]) = d sign ( S f |  In~d]) + o(p ,  q, n), 

where sign (K)  means signature of  a Seifert surface of  the knot Y( in S 5. 

Proof. First some notation�9 If A is an r x r matrix over C, let A (p) denote  the 
rp x rp matrix (A* means transpose): [A m 

A ( p )  = A A �9 �9 �9 
�9 . . . , 

A A . . .  

For p > 0 let Ap be the (p - 1) x (p - 1) matrix 

"1 - 1  

0 1 

Ap= o o 
�9 

0 0 

. ~ ~ 0 ~ 

- 1  . . .  0 

1 . . .  0 , 

: " .  : 

0 . . .  1 

and let Ap,q = - A p  | Aq. 
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Let A be a Seifert form of ~.  Then it is well known (see e.g. [E-N sect. 15]) 
that ~ ( p ,  q) has Seifert form A (p)@AR,q. Moreover, by [K-N], ~ |  [n] has 
Seifert form A @ A,. In particular, Ap,q is the Seifert form of the (p, q) torus 
knot and Ap.q @ A,, is the Seifert form of the link of the Brieskorn singularity 
x p + yq + Z n = 0. Since the intersection form on the fiber of a fibered knot in S 5 is 
the symmetrized Seifert form, the equation (2.7) to be proved is: 

sign+((A ~p) ~) Ap,q) ~ A,,) = d sign+(A | A . , )  + o (p ,  q, n) ,  

where sign+(A) means s ign (A+A*)  and n ' = n / d .  Since a ( p , q , n ) =  

sign (Ap, o | A . ) ,  this simplifies to: 

(2.8) sign+(A r | A,,) = d sign+(A | A~.). 

This equation should have a more elementary proof than what follows, but we 
have not found one (except when n = 2). Our proof will use the decomposition of 
the above signatures into "equivariant signatures" (for a fibered knot this is the 
decomposition according to eigenvalues of the monodromy). There are many 
different versions of the equivariant signatures in the literature and results 
equivalent to our formula (2.10) below have been proved geometrically by 
Litherland [L] and using the Blanchfield pairing by Kearton [K]. However, it is 
more transparant (and slightly more general) to give a direct algebraic approach 
here than to extract what we need from their results. 

We shall work over C and consider our matrices to represent sesquilinear 
forms over C. Thus for a general sesquilinear form, sign + (A) means sign (A + 
A*), where A* now means conjugate transpose. If A is a Seifert form of a knot in 
S 3, then S = A - A *  is the intersection form of the fiber and is thus also 
non-singular. We shall only consider forms A which satisfy: 

(2.9) S = A - A* is non-singular. 

Note that by a simple change of basis, A (p)  c a n  be put in the form 

- A  - S  

0 S 

A (p)  ~ 0 

0 

. ~ , O ~  

- S  . . .  0 

0 S . . .  0 , 
. . , .  : 

0 0 . . .  S 
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and is then easily seen to satisfy (2.9) also. Define the algebraic bordism group 
C_(C) as the group generated by isomorphism classes of sesquilinear forms A as 
above, with orthogonal sum as addition, modulo the relations that a form A on a 
space V represents 0 if V contains a subspace W with 2 dim (W) = dim (V) and 
W = I W  N W l (since the form A may not be symmetric, W has two orthogonal 
complements with respect to A, a left complement ~W and a right complement 
W0. 

We recall briefly the computation of C_(C). It is easy to see that up to 
algebraic bordism A can be assumed non-singular, and then the sesquilinear space 
(V, A) determines and is determined by the isometric structure (V, iS, H) where 
H = A - I A  * is an isometry for the hermitian form iS and H has no eigenvalue 1 (if 
A is the Seifert form of a fibered knot then H is the algebraic monodromy of the 
knot). It follows easily that C_(C) equals the Witt group of such hermitian 
isometric structures, and by Milnor [M], this is just the free group on the classes 
of 1-dimensional structures (C, (1), e i2~ with 0 < 0 < :r. The sesquilinear space 
corresponding to this (C, (1), e i2~ is easily seen to be equivalent to (C, (e~~ 

Note that both sides of equation (2.8) are invariants of the algebraic bordism 
class of A. We must thus just verify (2.8) for the generators of C_(C). Thus let 
A = (e =i') with 0 < t < 1. Then 

[ e~'it e-'~it "'" e - ~ # ] e ~ t  e~"t 
A(.) = . " . . e -nit 

e:r i t  e : r i t  . . . e ~it  J 

If fl = e anit/p, ~ = e 2~'i/p, and B = (bjk) is the matrix bjk = ( r  then one 
verifies that B*A(P)B = diag (rle ~it/p, r2e '~i(*+~)/p . . . . .  rpe~(t+(P-l))/P), where the r i 
are positive reals. (The columns of B are the eigenvectors for the corresponding 
monodromy matrix.) Thus 

(2.10) A ( p ) ~  (~ (expzci( t+j) /p)  
j = o , . . . , p - 1  

Similarly one shows that 

A,,--k=l.~ _t ( e x p z r i ( k - ~ ) )  ' 

Thus 

(2.11) A 0) | A,, @ 
j=0,. . . ,p-1 
k = l , . . . , n - - 1  
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Now sign+(e i~ equals the sign of the real part  of e i~ which is +1,  - 1 ,  or 0 
according as 0/ : r  + �89 2) is between 0 and 1, between 1 and 2, or integral. 
Thus 

(2.12) sign+(A~P)|  = ~, ((p +/-" + ~)), 
j=o,...,p- 1 P 
k = l  . . . . .  n - - 1  

with 

1 if O < a < l ,  

( ( a ) ) :=  0 if a = 1, 

- 1  if l < a < 2 .  

As a function of t, (2.12) defines a step function with discontinuities only at 

t j k P '  values of t where j and k exist with - + - + -  in Z. Putting = p / d ,  this means 
p p n 

which has solutions only when 

t = - -  - -  

1 2 n ' - i  
n ~ ,  ~ �9 . . , n t 

and has exactly d solutions with 0-< j < p and 0 < k < n for each such t. Thus the 

step function decreases by 2d at each discontinuity 

1 2 n ' - i  
n t ' / , / t  ~ " " " ~ r / r  

On the other hand, it just changes sign under the transformation t ~-~ 1 - t (use the 
change of indices k~-~n - k ,  j~-~p - 1 - j ) .  It follows that the function is 

(2.13) sign+(A (p) @ A, )  = df , , ( t ) ,  



70 WALTER NEUMANN AND JONATHAN WAHL 

where 

n ' - l - 2 [ n ' t J  if n ' t ~ Z  

f,,(t) = k 
- - .  n' 1 - 2 k + 1  if t = n ,  

In particular, replacing p and n by 1 and n'  in (2.13) we get 

sign + (A | An,) =f~,(t), 

and with (2.13) this completes the proof of (2.8). [] 

The above proof works with no essential change for arbitrary companions, 
giving: 

T H E O R E M  2.14. Let k be a knot in the standard solid torus T in S 3 and let 
~ (k )  denote the companion to ~ = (S 3, L) constructed by replacing a tubular 
neighborhood of L by the solid torus containing k (this is the same as splicing ~ to 
the link (S 3, K U k) along K, where K is the core circle of the complementary solid 
torus S 3 - int T). Let p be the winding number of k in T, that/s p = link (k, K), 
and d = g c d  (p, n). Then 

sign ( ~ ( k ) @  [n] )=  d sign ( ~  @ [ d ] ) +  sign ((S 3, k ) @  [n]). 

Note that ~ | [1] is the unknot,  which has signature 0. For n = 2, sign ( ~  | 
[2]) is the standard knot signature, and Theorem 2.14 becomes a theorem of 
Shinohara [Sh], also proved by Kearton [K]. 

w Speculation and questions for Gorenstein singularities 

Let (X, o) be a germ of a normal complex surface singularity, with X 
contractible, so aX = 2" is the link. Choose a "good resolution" (~', E)---~ (X, o), 
that is one for which the exceptional curve E = U E i is a union of smooth curves 
intersecting transversally. X retracts onto E. The resolution dual graph of E 
determines the graph manifold 2", and 2" determines the dual graph for the unique 
minimal good resolution [N]. _r is a homology sphere if and only if all Ei are 
rational, the graph has no loops, and det (Ei �9 Ei) = + 1. A resolution graph allows 
one to define the rational number c2(.~ ") + Ca(.~') ( [L-W],  w which is both a 
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resolution invariant and a topological invariant of X. The geometric genus 
pg = dim H1(~7~ -) is an analytic invariant, not determined by the graph alone. X 
is called Gorenstein if there exists a nowhere vanishing holomorphic 2-form on 
X -  {o}; complete intersection singularities are Gorenstein. 

A smoothing of (X, o) is a deformation of X whose typical fiber F (the Milnor 
fiber) is smooth. F is a compact real 4-manifold with boundary X (see [L-W] for 
discussion and references). If X is Gorenstein, then F has first betti number 0, is 
parallelizable, and has Milnor number ~ = dim H2(F) given by 

1 + la = 12pg(X) + (c~(f() + c2(X)). 

If all Ei are rational and the graph has no loops then the intersection pairing on 
H2(F) is non-degenerate with/t+ = 2pg(X). Thus the signature of the Milnor fiber 
satisfies 

(3.1) -s ign (F) =/a - 4pg = 8pg + (c~(f() + c2(fO - 1). 

(For the Milnor fiber associated to the Brieskorn sphere X(p,  q, r), the first 
equality can be shown to yield Brieskorn's formula for the signature by using a 
formula for pg as a number of lattice points.) Therefore, given a link X, one may 
have many different Gorenstein (X, o) with link X, but if X is smoothable then 
the invariants sign (F), /a, and pg(X) determine each other. 

Assume from now on that X is a homology sphere. A complete intersection 
singularity has essentially only one smoothing. Moreover, F is a simple-connected 
(by the Lefschetz theorems) spin manifold whose boundary is X. Such manifolds 
can be used to define interesting invariants of X such as the Rokhlin invariant (the 
mod 2 reduction of the signature of F divided by 8). By surgery, one can always 
construct a simply-connected spin 4-manifold with boundary X, whose signature 
divided by 8 is exactly the Casson invariant of X. The Conjecture of the 
Introduction is that for a homology sphere link of a complete intersection 
singularity, the Milnor fiber is such a 4-manifold. 

A general Gorenstein (X, o) may not be smoothable, or, if it is, it might have 
many different smoothings. These phenomena are "explained" in many cases by 
[L-W, 4.16]. A smoothing component of (X, o) is an irreducible component of 
the base space of the semi-universal deformation over which the smoothing takes 
place. According to [L-W], there is a map from the set of smoothing components 
of (X, o) into a finite set 5e(X), computed directly from (X, o), which is 
frequently bijective. One can check easily that when 3 X =  X is a homology 
sphere, then 5e(X) has at most one element. It also follows from [L-W] that in 
this case a Milnor fiber F must have vanishing first integral homology; we do not 
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know if it need be simply-connected. The only general classes we know of 
Gorenstein singularities with unique smoothing and simple-connected Milnor 
fiber are complete intersections and (possibly) Gorenstein singularities in C s. 
These considerations, the Conjecture of the Introduction, and a dearth of 
examples make natural the following 

QUESTION 3.2. Let (X, o) be a Gorenstein surface singularity whose link ,~ 
is a homology sphere. 

(a) Is (X, o) a complete intersection? 
(b) Is pg(X) uniquely determined by N? 
(c) Do all such (X, o) fit into one equisingular (simultaneous resolution) 

family? 

Note that the Conjecture of the Introduction would imply (b), at least for 
complete intersections. 

PROPOSITION 3.3. Let (X, o) be a weighted homogeneous singularity whose 
link ,~ is a homology sphere. Then 

(i) (X, o) is isomorphic to a Brieskorn complete intersection with link 

,~(al . . . . .  an). 
(ii) I f  (Y, o) is a Gorenstein singularity with the same link and same pg, then 

(Y, o) is an equisingular deformation of (X, o), hence a complete intersection with 
diffeomorphic Milnor fiber. 

Proof. Statement (i) is found in [N2]; it is this surprising fact which motivates 
Question 3.2. For (ii) consider the filtration of the local ring of Y by order of 
vanishing along the central curve of the minimal good resolution. Then the 
associated graded ring is the graded ring of (X, o), and the degeneration of Y to 
the spectrum of this graded ring is, by the condition of pg, equisingular. [] 

Why might some form of the Conjecture be true? According to C. Taubes (cf. 
[A]), there is a gauge-theoretic definition of the Casson invariant which makes it 
similar to some of Donaldson's invariants for differentiable structures on 
4-manifolds. From the Donaldson point of view and via the Taubes grafting 
construction, a smooth M frequently occurs as the boundary (or part of it) of a 
certain compact moduli space M (of self-dual or anti-self-dual connections). In 
algebraic geometry, it sometimes turns out that M is also a moduli space of 
certain vector bundles. We ask if F has some natural C ~ interpretation with 
respect to some metric on the link 2~. 
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QUESTION 3.4. Is there an appropriate space of self-dual or anti-self-dual 
connections modulo gauge equivalence, on a manifold built simply from 2~ (e.g. 

x ~) ,  which gives rise to the Milnor fiber F? Does the Milnor fiber parametrize 
vector bundles of a certain type ? 

We point out that for the Brieskorn complete intersection singularities, the 
Milnor fiber F admits a natural compactification as a smooth projective algebraic 
variety X, where D = X - F  is a normal crossings divisor. Perhaps one should 
consider bundles on X - D with certain conditions along D. 

QUESTION 3.5 (Atiyah). Is there a Milnor fiber description of the Floer 
homology of the link? For Z,(p, q, r), is it related to the action of complex 
conjugation on the homology of the Milnor fiber of  x e + yq + z r = 1? 

w Another class of examples 

The homology spheres which are links of surface singularities are classified in 
[E-N],  but we do not know in general which of them are links of complete 
intersection (or just Gorenstein) singularities. The simplest case is the Seifert 
fibered case, which has been discussed (they are links of complete intersection 
singularities). The next simplest case is as follows: if p, q, r are relatively prime 
integers ---1, as are p ' ,  q ' ,  r ' ,  then the homology sphere with splice diagram 

p~ r r' p '  q] o] (4.11 

obtained by splicing 
p r r '  P '  

, )  ( ~ 4 -  q , '  ' ( '  

( , , ) 

is the link of a singularity if and only if rr' > pp'qq'.  Only in a few cases do we 
know if this singularity can be chosen Gorenstein or complete intersection. We 

denote this homology sphere .~(p, q, r; p ' ,  q', r'). 

E X A M P L E  4.2. (cf. Proposition 2.1): If r = q'  then this homology sphere is 

the link of a hypersurface singularity z r = f ( x , y ) ,  where f ( x , y ) = O  is an 
irreducible plane curve singularity with two Newton-Puiseux pairs (p,  q) and 
(p ' ,  r ' )  (they automatically satisfy the Puiseux inequality r ' >  pp'q.)  
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By addivity of the Casson invariant under splicing one has 

(4.3) ~.(Z'(p, q, r ;p ' ,  q' ,  r ' ) )  = ;~(p, q, r) + ;t(p', q' ,  r'), 

and the last two integers are computed as in section 1 via [F-S]. Even if one can 
find a Gorenstein singularity with this link, it is in general very ditficult to 
compute pg, hence the signature of the Milnor fiber F. 

PROPOSITION 4.4. For each integer n >- 1, consider the complete intersection 
singularity ( Xn, o) = ( X,  o) in C 4 defined by 

X n : U n + l  .~- vny 

yn = 1jn+l + UnX. 

Then 
(i) (X, o)  has an isolated singularity at o with minimal good resolution dual 

graph 
- 2  - 2  
c ~ C> 
"~_ ....... y �9 

n - I  

- 1  - ( 2 n 2  + 2 n  + I) - 1  - 2  - 2  

n - - I  

( ! 

- ( n  + I) - ( n  + 1) 

(ii) The link o f  (X, o) is a homology sphere o f  type 

Z,= Z(n ,  n + 1, n2 + n  + 1;n, n + 1, n2 + n + 1). 

(iii) The geometric genus of  X is 

pg = ~ n ( n  - 1)2(7n + 4). 

(iv) The Conjecture is true for these examples; in fact: 

sign (F) = ~.(2:) = - ~ ( n  - 1)n(n + 1)(n + 2). 

Proof. A long direct argument shows the singularity is isolated. To resolve, 
we can project to the (u, v)-plane and blow up the discriminant curve; 
equivalently, we blow up C 4 along the plane u = v  = 0 ,  take the proper  
transform, and normalize. 

On the first patch we adjoin v /u  = w, yielding equations 

X n ~ U n + l  .~- wnuny 

yn = w n + l u n + l  d -  u n x .  
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Normalizing, we let x '  = x/u,  y' = y/u,  obtaining 

x '"  = u(1 + w"y') 

y'" = y(x '  + w"+ l). 

Since 1 + w"y' is non-zero at every point above 0 e C 4, we may invert it in a 
neighborhood and write u = ax '~, where a is a unit; this gives 

y ' "  = ax ' " (x '  + w"+l). 

Letting z '  = y ' / x '  and normalizing again, we obtain as proper transform of X the 

surface 

z '~ = a(x' + w"+l). 

This is a non-singular surface, so (X, o) has been resolved on this patch. The 
exceptional fiber is given by x ' = 0 ,  hence is an irreducible curve with one 
singular point, analytically equivalent to z n = w ~§ Reversing the roles of u and 
v gives the second patch, so by symmetry we have a resolution ()(, E)---~ (X, o), 
where E is an irreducible curve with two singular points as above. 

By pulling back a function like f = x + u from C 4 to ,(', checking its zero-locus 
(f)0, and noting that (f)0" E = 0, we deduce that E .  E = -1 .  Resolving further 
the two singular points of E gives the minimal good resolution of (i). Statement 
(ii) then follows by the dictionary between splice diagrams and resolution 

diagrams [E-N].  
Using the minimal good resolution (or the minimal resolution) one now 

readily calculates that 

(4.5) clZ()[ ") + cz(X) = 2 - ( 2 n  2 - 2n - 1) 2. 

The calculation o f  pg(X) will take some work. Consider the 1-parameter 

deformation (~, o ) - ~  T of (X, o) with fiber (Xt, o) given by 

x" = u ~§ + v~y + tg(u,  v )  

y" = v '~§ + u"x + th (u ,  v ) ,  
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where g, h are homogeneous polynomials of degree n + 1 in u and v. We claim 
that for general g and h and small Itl, this family admits a simultaneous 
resolution, inducing a deformation of (,(', E)  so that the general fiber has one 
smooth exceptional curve. Resolve as above by blowing up the u = v = 0 plane in 
a family, obtaining equations 

x ' "  = u(1 + w"y' + tg(1, w)) = uA 

y'" = y ( x '  + w "+~ + th(1, w)) = uB. 

It is easy to see that for general g, h, there are only finitely many t for which both 
A and B vanish for some point with x ' = y '  = 0. If A is non-zero, as above one 
can localize appropriately, and write u = ax 'n for some unit c~; normalizing gives 
the smooth surface 

z '"  = Ol(X' + w "+1 + th(1, w)). 

Further, for general h, the exceptional curve x '  = 0 is smooth for small non-zero 
Itl. This is the desired simultaneous resolution. It follows that pg(X)  = pg(X,) for 
all t. 

We next assert that (Xt, o) for t 4= 0 occurs among the non-negative weight 
deformations of the weighted homogeneous singularity (Y, o): 

z7 = g(u, v) 

z7 = h(u, v) .  

For, letting z~ = t-~/nx, z2 = t-Vny, we may write X, as 

z]' = g ( u ,  v) + t - lu  ~+l + t-l+~/nVnZz 

Z'~ = h(u, v)  + t-~v ~+1 + t-l+ll~unz~. 

The weights of the variables zl, z2, u, v in the equations for (Y, o) are n + 1, 
n + 1, n, n, respectively, and each equation has weight n(n + 1), which is less 
than or equal to the weights of the terms u n§ vnz2, v ~+~, and U~Zl, added in the 
equations for X,. In particular, pg(X,) = pg(Y).  The latter may be computed for a 
weighted homogeneous complete intersection as follows. Let the variables have 
weights wi (i = 1 . . . . .  4) and the equations have weights d j ( j=  1, 2). Let  
s = ~ w i -  ~ d r ( - s  is the weight of  a nowhere-zero holomorphic 2-form on 
Y -  {o}). Let the graded ring of (Y, o) be A = ~ A i .  Then 

p g ( Y ) =  ~ dimAi. 
O<_i<--s 
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A monomial basis for A is given by {z'(zt~u~'v ~ ] tr, f l - - - n - 1 } ;  counting the 
number of monomiais of weight -<s is a lengthy but straightforward exercise and 
gives the formula for pg(Y), and hence p~(X), asserted in (iii). (One can also 
compute pg(Y) using the Greuel-Hamm formula for/~.) 

Combining this expression for pg(X) and formula (4.5) for c2()() + c2(.~') with 
the signature formula (3.1) gives the signature expression in (iv) of the theorem. 
It remains to compute the Casson invariant of X. By (4.3) it is 2~.(n, n + 1, n 2 + 
n + 1). One may compute X(n, n + 1, n 2 + n + 1) by w Alternatively, it is ~ the 
signature of the Milnor fiber of the Brieskorn hypersurface singularity 

X n + y,,+I + Zn2+n+l = 0 .  

A resolution dual diagram is 

- 2  - 2  - 1  - ( n  2 + n + l  ) 

11 n - 1  

( 

-(n + 1) 

This gives c~ + c2 - 1 = - n ( n  - 1)(n 2 - n - 2). Of course, /~ = (n - 1)n2(n + 1). 
- 3 (n  1)n(n + 1)(n +2) .  Two Thus, by (3.1), the signature of the Milnor fiber is 1 _ 

times -~ of this is then the Casson invariant of our original link, completing the 

proof. [] 
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