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0. Intreductiion

Let F — E — M be a fibration of closed oriented manifolds. Then one may ask
under what conditions the multiplicativity formula '

sign (E) = sign (M) sign (F)

holds. This is false in general: counterexamples where fivst found by Atiyah [1] and
Kodaira [11] and generalized variously by Meyer [16, 17], Hirzebruch [9] and
Lusztig [12]. On the other hand we showed in [21] that for a large class of structure
groups multiplicativity does in fact hold. In the present paper we improve this result
as follows.

Let € be the class of all discrete groups G such that signature is muitiplicative for
any lccal coefficient system (hence for any fibration) with structure group G (see
Section 1). Let WU(G) be the Witt group of finite dimensional hermitian
representations of G over C. Using the signature thearem of Atiyah, Lusztig,
Meyer [1, 12, 16] we show: ‘

Theorem 0.1. There is a natural ring homomorphism
o : WU(G)— H(G;Q)
such that G € % if and only if Y = 0.
Using ‘properties of the Witt ring WU(G) we deduce:

~ Theorem 0.2. % has the following closure properties.

(i) € contains all G with H* (G ; Q) = 0, for instance all finite groups, free groups,
fundamental groups of non-orientable surfaces.

(ii) € is closed under formation of direct products, free products, direct limits.

(iii) € is closed under formation of finite extensions (not necessarily normal),
quotients by subgroups of finite index, taking subgroups which possess nyrmal
complements. More generally if HE % and H— G is a homomorphism which
induces an injection H* (G ;Q)— H"(H;Q) then « €<¢.
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20 W.D. Neumann

(iv) If H CG has finite index and H - Zg (H) = G (Z,; (H) = centralizer of H in
G) and if G € € then HE €.

In [21] we had shown using other methods that a subclass 4, C € has (most of)
these closure properties but not that € itself has them. A comparison of the
methods is also of interest (Section 4, see also Section 5, especially Proposition
5.2 f).

We obtain similar closure prog:rties for the classes €. and €- of structure
groups for which signature is always multiplicative for symmetric respectively
skew-symmetric real bilinear coefficient systems (Theorem 6.1).

What appears to be a class of groups related to those discussed here has been
describ=d by Hirsch and Thurston [8], but this relationship may be superficial.

In a final section we desciibe applications to invariants of odd dimensional
manifolds.

1. Preliminaries on signature

If M*" is a compact connected oriented manifold and I'— M a local coefficient
system ( = locally trivial sheaf’ over M with fiber a complex hermitian vector space,
then cup product 1 us the hermitian form combine to give a map

B:H"(M,oM;T)o H" (M,dM;T')— H>* (M, iM;I'gx ")
— H*"(M,M;C)=C
which is a hermitian form for n even and skew-hermitian for n odd. Define
sign (M, I') = sign (B),

where for n odd, sign (B) means signature of the hermitian form iB.

One can make a similar definition if A is a real (—1)"-symmetric biiinear
coefficient system, since then B:H"(M,dM;A) @ H"(M,dM; A)—R is sym-
metric aad has a signature ([16], but beware of the sign convention there).

Tensoring with C and hermitianizing the form, this can be reduced to the hermitian
case.

Theorem 1.1. If F*" — X*™*™— M, m +n even, is a fibration of compact
oriented manifolds, F closed, and A is the local coefficient system over M with fiber the
cup product form on H™ (F;R), then sign X = (—1)" sign(M, A).

This is proved in Meyer [16]; see also [5].

Suppose now I' — M is a hermitian coefficient system as above. Then there is a
corresponding vector bundle I — M (by “puttmg the topology back into the fibers
of I'") which can be split as a sun I = I"* @ I"~ of vector bundles on which the
hermitian form is respectively positive and negative definite. Lusztig [12] proved
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Theorem 1.2. If M is closed then sign(M,I')=ch(I’** — [")¥(M)[M], where ch
is chern character and £ (M) is the unstable L -class I1x; {tanh (x;/2), where I[T(1+ x,)
is the total Pontryagin class p(M).

For real coefficient systems the corresponding result was also proved by Meyer
[16]. For fiber bundles it was proved by Atiyah [1].

2. Structure groups and Theorem 0.1

After cnoosing a base point x € M, any local cocificient system I'—>M is
classified by a homomorphism 7, (M, x)— Aut(I; ) where I, is the fiber over x.

Definition 2.1. If I'— M is a hermitian local coefficient system with fiber V such
that the classifying map =,(M)— Aut(V) can be written as a composition
m(M)— G = Aut(V), we say admits G as structure group with defining representa-
tion p. We call (G, p) a structure pair for I.

For any group G, let RU(G) denote the Grothendieck group of representations
of G in finite dimensional non-degenerate hermitian vector spaces (not necessarily
definite) with ring structure given by orthogonal sum and tensor product. Define a
ring homomorphism

¥s : RU(G)—>H*(BG;Q)= H*(G; Q)

as follows. Any hermitian representation p : G — Aut(V) determines a hermitian
coefficient system I', — BG with fiber V. Let [, = ; oI, be a splitting of the
corresponding bundle into a positive and a negative definite summand and put

Yo (p) = ch(F; - F;) € H*(BG; Q).

Lemma 2.2. If p:G — Aut(V) is hyperbolic (i.e. there exists a G-invariant
subspace K C V with K = K*, whence dim(K)=3dim(V)) then ¢ (p)=0.

Proof. Let I, = I'; @ T, be the above splitting of the bundle I, — BG defined by
p. The G-invariant subspace K CV defines a subbundle K cr., and since the
hermitian form is zero on K, we must have K NI’ = K NI, = 0. Thus dim (I} ) <
dim (I, )~ dim K = 1dim (V), and the same for dim (I*; ). It follows that dim (I';) =
1dim(V), so I} and I, are both complements of K, hence both isomorphic to
I,/K. Thus g5 (p)=ch(l,/K ~,/K)=0.

Corollary 2.3. ¢ induces a map (also called Y )
¥ : WU(G)— H¥(G;Q),
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where WU (G) is the Witt group obtained by factoring RU(G) by the ideal generated
by hyperbolic representations.

Now let ¢ be the composition WU (G)ia-) H*(G;Q)— H*(G;Q). Note that
the image is only in even cohomnlogy.

Theorem 2.4. Given a hermitian representation p : G — Aut(V), the following
statements are equivalent.

(i) ¥a (p)=0.

(ii) For any hermitian cc.. maem sysiem I" — M over a closed manifold admiiiing
e e s el moans Keioal. o | AL rs A RA L.

{G,p } as Jsiruciure pair nd any juriner ne mitian system A — M we have
sign (M, A @ I') = sign (M, »)sign(I").
(iti) For any ' - M as r (ii) we have sign(M, I') = sign(M) -sign(I").

Preof. (i) = (ii). Suppose I is as in (ii) and 7,(M)— G is a ciassifying map.
This induces a map f:M—>BG and then I'=f*l,, where I,—BG
is the coefficient system determined by p. Thus if (i) holds then ch(I'*-I'")=
nnnnnnn A i LIVAL. N Dt for anu v .otar hiondla B sha

I lPG \P) ID \,uuuuucu 1k} Fys \IV.! ’ ‘l}* UL (A S auy AAT AW Y UullulU g = (835
zero-dxmensxcnai component of ch(E) is (dim E)- 1€ HM ,Q) s
chi(A@l -(Ael))=
mul

=]

-1
eh(ﬁ_ i ) ch.(l"’- F- )= ugn_(;r) ch(.A <2 i- ), so
follows from the signature Theorem 1.2.

(ii) = (iii) is trivial by taking A = C, the trivial coefficient system.

(iii) => (i). Suppose (i) is false, so o (p)=(signl,)-1+a+B with
0#a € H* (BG;Q), n >0, and B a possibly zero sum of terms of higher degree.
Choose a closed oriented singular manifold f : M** — BG such that a(f, [M]) # 0.
This is possible by Steenrod representability of rational homoiogy, see for instance
Conner and Floyd [6, Theorem 15,3]. Now for I" = f*I’, we have

R

he multiplicativity form

ch(I*—T)=(signT) 1+ f*(a),
since H*(M) is zero in degrees >2n. Also
EM)=2" 1+ + L (M),
so by Theorem 1.2,
sign(M, ") = ((signT") - 1 + f*(a))2(M){M]
=sign "+ Ly, (M)[M] + 2°f*(«) [M]
=sign [ -sign(M}+2" - a(f, [M])
#sign T -sign(M).
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Corollary 2.5. If I'— M is a hermitian coefficient system with definite hermitian
form on the fiber, then the multiplicativity statement of Theorem 2.4 (iii) holds.

Proof. Assume I' is positive definite. Then I'~ = 0 and I** = I' is a flat bundle with
flat hermitian metric, so by the Chern Weil descriptien of rational chern: classes (see
for instance [18, Appendix C, Corollary 2], ch () € H°(M; Q), as was to be proved.

3. Proof of Theorem 0.2

We use the description of € given by Theorem C.1. P:rt (i) of Theorem 0.1 is thus
trivial.

To prove closure of € under free products consider the commutative diagram

WU(G * H)—— H*(B(G * H); Q)
a 8
¢ By 1

WU(G)e WU(H)— H*(BG;Q)e H*(BH; Q)

where a and B are induced by the inclusions G— G *H and H— G *H. The
maps BG — B(G *H) at@ BH — B(G * H) induce a homotopy equivalence
BG v BH — B(G *H), so B is an isomorphism in positive dimensions. Hence if
G,H € € then

Imy.u CB ' (ImyYsdImyy ) CH(B(G*H):Q), so G*xHE®.
To see closure under direct products we use the commutative diagram
WU(G)& WU(H)—=> H*(BG; Q)@ H*(BH; Q)
: 1k
WU(G x H)—— H*(B(G x H);Q)
where ¢ is the map induced by tensor product of representatiorss and k is the
Kiinneth map given by BG x BH = B(G x H). Closure under direct products

follows if ¢ is surjective, but t is actually an isomorphism by [22, Theorem 4.4].
Finally for direct limits we use the diagram

WU (iim G.)—— H*(B(lim G:); Q)
lim WU(G,) === lim H*(BG:; Q)

and observe that the right vertical arrow is an isomorphism since our coefficients
are a field, sc closure of € under lim follows.
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To prove (iii) note that in the diagram induced by H— G

WU(G)—> H* (BG;Q)

WU(H)-5 H* (BH;Q),

if the right vertical arrow is injective then G € € follows from H € €. In particular,
it H— G has finite kernel and image of finite index this is so, since then BH — BG
is rationally a finite coverin z (the fiber is B (ker) X H/Im G which has the rational
homology type of H/Im (G ). If G CH has a normal complement, then there exists
a homomorphism H — G ¢ ich that the composition G CM — G is the identity, so
the induced map in cohor. logy is injective.

Finally to prove (iv}), obs :rve that the condition in (iv) is equivalent to saying that
HCG is normal and ..c action of G on H by conjugation is by inner
automorphisms of H.

If HCG is any subgroup of finite index then we have an induction map
WU(H )l‘; WU(G), by mapping a hermitian representation p : H — Aut(V, b)
to its induced representation ind(p): G — Aut((V, h)°""). Precisely, ind(p) is
defined by choosing a set -,...,r, of left coset representatives of H in G and
putting W =r,V@---@r,V (orthogonal sum), where each r; V is just a copy of V,
with suggestive notation. If we denote the elements of 'V by riv, v € V, then G
acts on W by g(r.v) = r; (hv), where gr. = r;h with h € H. This action preserves the
form on W and is independent (up to isomorphism) on the choice of coset
representatives.

The automorphism group of H acts in the obvious fashion on WU (H) and inner
automorphisms act trivially. Hence if H is normal in G, then K = G/H acts on
WU (H). By the above description of ind it 1s clear that the composition

ind

f: WUH)—> WU(G)— WU(H)

is the map

fx)= 2, k(x).

keEK

Thus under the condition of Theorem 0.2 (iv), K acts trivially on WU (H), so f is
iust multiplication by n. Hence ’

WU(G)®Q— WUH)®Q

is surjective, so the conclusion of the theorem fcllows from the diagram

WU(G)Q—~% H*(G;Q)
|

WU(H)QQQ*&:H*(H%Q)-
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4. Cutting and pasting

Before discussing some examples to Theorem 0.1, let us consider the reiatlonshlp
to the analogous result in [21]. In that paper and in [10] a graded group SK, (X)is
defined as the group of singular manifolds in X modulo bordism and *“cutting and
pasting”. Equivalently, by [10], SK, (X)= . (X)iF.(X), where F,(X) is the
subgroup of elements in {2, (X) representable by an (M, f) for wiich M can be
fibered over S'. This group SK , (X) is a module over the ring SK, = SK, (point),
which is a polynomial ring Z[P] in ore 4-dimensional generatcr P, representable by
any 4-manifold of signature 1.

Deﬁmtlon 4.1. Let €, be the class of groups G for which the re-fuced SK-group
SK. (BG) Ker(SK (LG)— SK, ) does not contain a iree SK -subm odule. That
is SK +(BG) is a SK,-torsion module.

In [21] it was shown by a simple geometric argument *hat signature is multiplica-
tive for structure groups in 4o, so €, C 4. In fact

Proposition 4.2. 4,C € and €, satisfies the closure properties (i) o (iv) of
Thecrem 0.2.

Proof. Most of these properties were proved in [21]. The others follow casily by
the same methods.

Problems. Are €, and € equal?

5. Examples

Some groups not in €:

(i) If F is an orientable surface of genus > 1, then =(F) & €.

@) I SP(2,Z{12]))cGcU((1,1) or Sp(2n,Z)CGC U(n,n), n>2, then
GEZ 4.

These are by Meyer [16, 17] who constructed examples of nonmultiplicativity for
such groups.

In contract, by Theorem 0.2 (i), if N is a nonorientable surface then =, (N)€ €
and also Sp(2,Z) € €. Obhserve that if F is au orientable surface then = (F)C
m1(N) of index 2 for some nonorientable surface.

Corellary 5.1. Being in € is not inherited by normal subgroups of finite index.

Less obvious ‘s the following example.
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Proposition 5.2. If G has a finitely generated free abelian noimal subgroup with
infinite cyclic quotient, then SK ,(BG)=0, so G € €,, so G € €.

The proof follows from the following facts: BG can be taken as a torus bundle
over §'; a set of singular manifolds in BG which represents a generatmg set of
H,(BG; Q) represents a (SK,,,@ Q)-module generating set of SK (BG)®Q [21,
Lemma 7]; such a generating set of singular manifolds can be chosen as a set of
torus bundles over S', so they represent zero in SK =,,(BG)

Thke G of this proposition is not in the smallest class of groups satisfying
Theorem 0.1, so those closure properties do not characterize € or %..

A direct algebraic procf that such G are in € would be of interest, since
presumabl this example can be greatly generalized.

Problem. Are polycyclic ¢ roups always in €7 Nilpotent groups*? Maybe even
solvable groups?

It is not generally true :hat an extension of a €-group by a €-group is in €, for
instance surface groups ace free extensions of free groups.

6. Real coefficient systems

One can define the classes €- and €. of all structure groups for which signature
of symmetric respectively antisymmetric coefficient systems is always multiplica-
tive. Let W, (G) and W_(G) denote respectively the Witt groups of real symmetric
or antisymmetric bilinear representations of G. One proves exactly as for
Theorem 0.1

Theorem 6.1. There are natural maps §5: W.(G)— H(G;Q) such that €.=
{G: iz =0}

- b
In fact ¢ is the composition W.(G)-» WU(G)— H *(G;Q), where the first
map is hermitianization.

Theorem 6.2. €_ and €. both satisfy all the closure properties of Theorem 0.1
except for product closure of €.. We have
GE¥4_ and HEE <> GXHE4$-

GEY., and HE¥., and (GorHE¥ )<>GxHE®T..
rurther € = €.N%6_.

*J. Roitberg has shown that signaturc is muliiplicative if G acts nilpotently on the fiber of I' (“The
signature of quasi-nilpotent fiber bundl:s”, preprint).
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Proof. That € =4.N¥%_ follows from 6.1 and the' fact [22] that the ring
homomorphism

W.(G)e W-(G)— WU(G)

given by hermitianiza:ion is a modulo torsion isomorphism. The closure properties
are proved exactly as for €. For the statements about products we use the diagrams

(WAG)a W_(H))e(W-(G)® W.(H)) > H*G; Q)@ F*(H;Q)
W_(G xH) — HEYGXxH;Q)
and '
(W.(G)® W+(H))?(W~(G)® W_(H))— H*(G;Q)%H*(H;Q)
W.(G x H) —  H*G xH;Q)

where the left vertical arrows are isomorphisms modiile torsion by the modulo
torsion isomorphism above and the fact that WU (G x H)= WU(G)® WU (H). If
one observes also that Y is zero in dimension zero whiie ¥ is always non-zero in
dimension zero, the statements on products follow easiiy.

7. Manifolds with boundary; y-invariants

The multiplicativity results for signature fail for coefficient systems over compact
manifolds with boundary, but this failure leads in a standard way to interesting
invariants of the toundary.

Data. Let (G,p) be a structure pair consisting of a group GG and a hermitian
representation p : G — Aut(V, b) which is “good” for nuultiplice*ivity of signature,
that is ¢ ([p]) =0 in H*(G;Q) (Theorem 2.3). »

If M*" is a compact oriented manifold with boundary X** ' and f: mi(M)—> G a
homomorphism, then f classifies a hermitian coefficient system I' — M.

Theorem 7.1. sign (M, I')— sign (M)sign (b) is an invariant of g = f | X which we
denote by y@,)(X,g). By f f X we mean the composition of f with the map
m(X)— m. (M) induced by the inclusion. Equivalently interpret f as a map M — BG
and then g = f | X in the usual sense.

Proof. If (M/',f’) is another pair with the same boundary and I''— M’ the
corresponding coefficient system, then we can paste (M,I") to (— M',I'’) aiong
boundaries to get a closed manifold with coefficient system (Y, 4). Novikov
additivity gives

sign(Y,A)=sign(M, ')~ sign (M’,F’)u
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But on the other hand muliiplicativity of signature plus Novikov additivity gives
sign (Y, A) = sign(Y)-sign(b) ,
= sign (M) - sign (b) — sign (M) - sign (b).

Subtracting these equations gives the desired result.
More generally if (X, g) itself does not bound but some nonzero multiple (X, g)
does, then we can define

Yo (X, 8) =2V, (9(X, 8))

One might expect that vy , (X, g) only depends on the composed representation
pg : mi(X)— Aut(V, b), bu. this is false in general, as is shown by the following
example. Let I'—=F be ¢ -oefficient system over an crientable surface such
that sign(F,I')#0. Let :)*CF be an embedded disc, M =cl(F — D?). Let
p:m(M)— Aut(V, b) be :he classifying map for I' I M. Since G = m,(M) is free,
G € 4, so (G, p) is a good structure pair. If g : 7,(S')— G = 7, (M) is induced by
the inclusion §'= oM C M. then by definition:

Yieor(S',g) = sign (M, I" | M) =sign(F, ") # 0,

the second equality being »+ Novikov additivity. But pg is the trivial representa-
tion, since it extends over D?, 50 v, (S, g) does certainly not only depend on pg.
On the other hand the foliowing result was proved in [20].

Theorem 7.2. In each of the following cases y,(X,g) only depends on the
representation pg of mwi(X).

(a) p is a definite representation.

(b) The center of G has finite index in G (e.g. G finite or abelian).

We repeat the proof for completeness. We shall simply write vy, (X, g) for
Yo (X, g) if G is understood. ’

Proof. (a) is clear, since in this case in the proof of 7.1 we use the multiplicativity
result 2.4, which does not depend on G. For (b) we shall use the following lemma.

Lemma 7.3. Given a closed oriented manifold X*"~' and homomorphisms
m(X)> G5 H S Aut(V), with G, H € €, then:

(i) If v.. (X.f) is defined, then so is v,(X, of) and they are equal.

(i1) If ¢ : G —> H is injective in rational homology and vy. (X, ¢f) is defined, then so
is v.. (X.f), and they are equal.

Preof. (i) If v, (X,f) is defined, that is q(X,f)=d(M, g) for some q >0 and
g : M — BG, then q(X, of)=. ‘M, 0g), s0 v, (X, ¢f) is defined and the equality
Yo (X, f) = v. (X, ¢f ) is clear frcm the definition.

(11) The modulo torsion triviality of the bordism spectral sequence implies that
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the condition ¢;: H,(G;Q)= H,(BG;Q)—H,(BG;Q)= H,(H;Q) injective
is equivalent to 2 (BG)@Q—)O (BH)@Q injective. Thus if ¥, (X, ¢f) .is
0. ‘ ( n [X,f]=0 in 2 ,(BG)@Q S0

m 7. ¢ X)—->G—->Aut(V)

such that ihe center of G- has ,,mte mdex inG: (whence in particular -G € %), and

suppm se some muitiple of (X, f) bounds, so vy, (X, f) is-defined. Put H=1Im (p) and
= Im(gof)CH CAut(V), so we have a diagram :

‘ m(X)—-—-> K
i,
G— H.

’ Alilt](Vj

where i and j are the inclusions and ¢ and ¢ are just pf and p with their ranges
restricted.

Suppose we know that i, :H,(K; Q)——)H (H;Q) is injective. Then we can
apply Lemma 7.3 parts (i) and (ii) successively to show that vy; (X, ¢f) is defined and
equals v, (X, f) and that v; (X, ¢) is defined and equals y; (X, ¢f). Thus v, (X, f) =
v: (X, ¢) and since ji and ¢ only depend on pf and pot on G, the theorem is
proved. Thus we must just show the injectivity of i,.

Now both K and H have centers of finite index, since this property is mherlted
by subgroups and quotient groups. We first show that in the commutative diagram

H (Z(K)QZ(H3 Q)->H, (Z(Hl) ;Q)
H (K Q) — _ H,(H;Q)

the vertical arrows are isomorphisms. Indeed, in the Lyndon spectral sequence
E¥=H’(H/Z(H); H* (Z(H);Q)) = H**"(H;Q) (see e.g. MacLane [13, p.
351)) we have E§?=0 for p >0, since H/Z(H) is finite and acts trivially on
H*(Z(H);Q). Hence H*(H;Q)—> H*(ZH);Q) is .an isomorphism, sc the
homology map also is. The same argument helds for Z(K)N Z{H)CK.

Now an injection of abelian groups induces an injection in Q-homology (this is
clear for finitely generated abelian groups and homology commutes with direct
limits), so the top map of the square is injective, so-the bottom map 1s t00, as was to
be shown. -

The y-invariants have many interesting applications. For instance the calcula-
tions of Meyer [16, 17] of signature of coefficient systems over surfaces can be
interpreted as giving connections between y-invariants and classical dedekind
sums. y-invariants of lens spaces give generalized dedekind sums and enable one to
prove topologically, number theoretic results about such suns [20].

For p definite, these invariants have come up a alytically in recent work of
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Atiyah, Patodi, and Singer. In particular v, (X, g) can be defined even if the pair
(X, g) does not bound. For G abelian we have been atle to find a purely topological
description of this.

In the forthcoming paper [20] we show that y,,(X, g) is a homotopy invariant
of (X, g) if G is free abeiian (this is definitely faise if G is not free abelian, for
instance lens spaces are classified by their y-invariants). This result is reminiscent of
the homotopy invariance of the higher Novikov signatures and our proof in fact has
certain (seemingly superficial) similarities with Lusztig’s proof of the latter fact [12).

In view of the intiinate connection between y-invariants and « -invariants of free

finite g.roun actions [20, 3], we also obtain homotopy invariant l‘aL !...!.3 1s of
a-invariants in many inte vesting cases, namely for a class of (not necessarily free)

111G V-J i

actions which includes al" homologically m]ectlve actions in the sense of Conner
and Raymond [7]. The f:riodicity results for signature of coverings of manifolds
with boundary announce d in [19] are also a corollary of these calculations.
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