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0. 1aRr~duetiou 

Let F + E + M be a fibration of closed oriented ma, rifolds. The? one may ask 
under what conditions the multiplicativity formula 

sign (E) = sign (M) sign (F) 

holds. This is false in general: counterexamples where first found by Atiyah [1] and 
KodaIra [Il] and generalized variously by Meyer [16, 171, Hirzebruch [9] and 
Lusztig [12]. On the other hand we showed in [21] that for a large class of structure 
groups multiplicativity does in fact hold. In the present paper we improve this result 
as follows. 

Let % be the class of all discrete groups G such that signature is multiplicative for 
any local coefficient system (hence for any fibration) with structure group G (see 
Section 1). Let WU(G) be the Witt group of finite dimensional hermitian 
representations of G over C. Using the signature theorem of Atiyah, Lusztig, 
Meyer [1, 12, 161 we show: 

Theorem 0.1. There is a natural ring homomorphkm 

&: WU(G)-d"(G;Q) 

such that G E %’ if and only if $G = 0. 

Using’properties of the Wittring WU(G) we deduce: 

heorem 0.2. % has the following sure properties. 
(i) % contains all G with He’ (G ; = 0, for instance all finite groups, free groups, 

fundamental groups of non -orientable surfaces. 
(ii) % is closed under formation of direct products, free products, direct limits. 

(iii) % is closed under formation of finite exitlensions (not necessarily 
quotients by subgroups of agate 

ments. More genercllly if 
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(iv) Xf H C G has finite index and pi  2& (H) = G (& (H) = centralizer of H in 
G) aqd if G E % then H E 5% 

In [21] we had shown using other methods that a subcilass %& % has (most of) 
these closure properties but not that % itself has them. A comparison of the 
methods is also of interest (Section 4, see also Section 5, especially Proposition 
53.2 ff). 

We obtain similar closure properties for the classes %‘+ and %L of structure 
groups for which signature is always multiplicative for symmetric respectively 
skew-symmetric real bilinear lzoefficient systems (Theorem 6.1). 

What appears to be a class,, of groups related to those discussed here has been 
described by Hirsch and Thu rston [8], but this relationship may be superficial. 

In a final section we describe applications to invariants of odd dimensional 
manifolds. 

1. Preliminaries on signature 

If M2” is a compact connected oriented manifold and I’+ M a local coefficient 
system ( = locally trivial sheaf’) over M with fiber a complex hermit& vector space? 
then cur product ; us the hermitian form combine to give a map 

B : H” (M, aM; I-)@ H” (M, aM; I-)-, H2” (Mi dM; l-g~,J) 

-*H’“(M,aM;C)=C 

which is a hermitian form for n even and. skew-hermitian for n odd. Define 

sign (Ad, f) = sign (B), 

where for n odd, sign(B) means signature of the hermitian form iB. 

One can make a similar definition if A is a real ( - I)“-symmetric biiinear 
coefficient system, since then B : H” (M, aM; A) 8 H” (M, 8M; A)-,R is sym- 
metric aild 1~s a signature ([16], but beware of the sign convention there). 
Tensoring with C and hermitianizing the form, this can be reduced to the hermitian 
case. 

If F2” + xWn+n), M2n, m + n even, is a jibration of cornpact 
oriented manifolds. F closed, and A is the local coefficient system over M with fiber the 
CUD product form on H” (F; ), then sign X = ( - 1)” sign (M, A ). 

This is proved in Meyer 1161; see also [5]. 
r --) M is a hermitian coefficient system as above. Then there is a 

the topology back into the 
of vector bundles on which the 

e. Lusz rove 
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Theorem 1.2. If M is closed then sign (M, r) = ch(f’ - f-)%(M)[M], where ch 
is chern character and 2?(M) is the unstable L-class lIxilJtanh(Xi/2), where lI(1-k xi) 
is the total Pontvyagin class p(M). 

For real coefficient systems the corresponding resuh was also proved by Meyer 
[16]. For fiber bundles Bt was proved by Atiyah [I]. 

2. Structure groups and Theorem 0.1 

After choosing a base point x E M, any local corJicient system r + M is 
classified by a homomcxphism 7rl (M, x) -+ Aut (rx ) where rx is the fiber over x. 

Definition 2.1. If f + M is a hermitian local coefficient system with fiber V such 
that the classifying map z1 (M)+ Aut (V) can be written as a composition 
7~~ (M)+ G 5 Aut (V), we say admits G as structure gaou2 with defining representa - 
tion p. We call (G, p) a structure pair for IT 

For any group G, let NJ(G) denote the’Grothendiec group of representations 
of G in finite dimensional non-degenerate hermitian vector spaces (not necessarily 
definite) w:th ring structure given by orthogonal sum and tensor product. Define a 
ring homomorphism 

as follows. Any hermitian representation p : G + Aut (V) determines a hermitian 
coefficient system I’,., + BG with fiber V. Let fP = fi @ f; be a splitting of the 
corresponding bundle into a positive and a negative definite summand and put 

& (p) = ch(l=; - i’,) E H*(BG; Q). 

Lemma 2.2. If p : G -+ Aut (V) is kyyerboiic (i.e. there exists a G -invariant 
subspace K C V with K = K’, whence dim(K) = f dim (V)) then qk (p) = 0. 

hoof. Let fp = I-‘; TV & be the above splitting of the bundle fP -+ BG defined by 
p. The G-invariant subspacz K C V efines a subbundle I? C$, and since the 
hermitian form is zero on R, we must veRn~~=Rni;,=O~Thusdim(~,‘)~ 
dim (f,, ) - dim K = 4 dim (V), and the same for dim (fp)* It follows that dim (Pz) = 
$dim(V), se, 67,” and A?; ence both isomorphic to 
fp/K. Thus q?G (p) = ch (&/K - j;,/K) = 0. 
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where WW(G) is the Witt group obtained by factoring R U(G) by the ideal generated 
by hyperbolic representations. 

Now let q& be the composition WU(G)AN*(G; 
the image is only in even cohomology. 

Theorem 2.4. Given a hermitian representation p : G + Aut (V), the following 
statements are equivalent. 

(i) &(p)=O. 
(ii) For any hermitian c&. .$icient system r -+ M over a closed manifold admitting 

(G, p) as structure pair t !nd any further hermitian system A -+ M we have 
sign (M, A @ r) = sign (M, A ) sign (r). 

(iii) For any I-‘* M as ‘r, (ii) we have sign (M, r) = sign (M)  sign (f). 

prd. (i) =+ (ii). Supyase f is as in (ii) and n1 (M)+ G is a classifying map. 
This induces a map f : M -+ BG and then r s f*&, where I’,, 3 BG 
is the coefficient system determined by p. Thus if (i) holds then ch (r’ - f-) = 
f*& (p) is contained in Ho{&&; Qj. But for any vxtor btndle E the 
zero-dimensionat component of ch(E) is (dim.E)* 1 E H*(M;Q), so 
ch (F’ - i=‘) = (dim r’ - dim P-)  1 = (sign r)  1. Thus ch ((A as)+ - (A 8 I’)-) = 
ch (_i + - /I-)*ch(I=‘-f-)=!Ign(k)*ch(A’- A-), so the multiplicativity formula 
follows from the signature Theorem 1.2. 

(ii) +J (iii) is trivial by taking A = C, the trivial coefficient system. 
(iii) * (i). Suppose (i) is false, so 3/G(p)=(sign&)*l+cr+p with 

0 # 01 E H*” (BG; Q), n > 0, and p a possibly zero sum of terms of higher degree. 
Choose a closed oriented singular manifold f : Ad*” 4 BG such that CY cf* [Ml) # 0. 
This is possible by Steenrod represeqtability of rational homology, see for instance 
Conner and Floyd [&, Theorem 15,3]. Now for r = fYrp we have 

ch (f‘ - f-) = (sign r) v 1+ f *(a,), 

since H*(M) is zero in degrees > 2~2. Also 

so by Theorem 1.2, 

sign (M, r) = ((sign r) - I+ f *(a)).Y(M)[M] 

= sign r 9 L%, (M)[M] + 2”f*(d[MI 

= sign f  sign ( 

# sign r  sign (M). 

iate corollary of t 
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2.5. If F + M is a hermitian cue bent system with definite hermitian 
e fiber, then the &uZtiplicatiuity st ment of Theorem 2.4 (iii) holds. 

Proof. Assume r is positive definite. Then f- = 0 and f’ = r is a flat bundle with 
flat hermitian metric, so by the Chern Weil description of rational chern classes (see 
for instance 118, Appendix C, Corollary 21, ch (r) E H’(M; ), as was to be proved. 

3. Proof of Theorem 0’2 

We use the description of % given by Theorem 0.1. I? i rt (i) of Theorem 0.1 is thus 
trivial. 

To prove closure of % under free products consider tht: commutative diagram 

wu(G ;F H)--“3 H*(B(G * H); 

I a  I 4 

WU(G)e WWW 2 H*(BG;Q)@H*(B 

where Q! and /3 are iuduced by the inclusions G + G * H and H + G * H. The 
maps BG --) B(G * H) ana BH + B(G * W) induce a homotopy equivalence 
BG v BH -+ B(G * H), sd -/3 is an isomorphism in positive dimensions. Hence if 
G,HE% then 

Im JIO.H C B_’ (Im & $ Im & ) C H*(B (G * H): ), so G *M E %f. 

To see closure under direct products we use the commutative diagram 

WU(G)g M-J(H) = H*(BG;Q)~IH*(EW; 

1 
d 

1 
k 

wu(G xH)L H*(B(G x1$); 

where t is the map induced by tensor product of representations and k is the 
Kinneth map given by BG x BH = B(G x ,Y). Closure under direct products 
follows if t is surjective, but t is a ism b:v [227 Theorem 4.41. 

Finally for direct limits wc use t 

WU (li y Gi ) -L H”(B(Q Gi); 
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To prove (iii) note that in the diagram induced 

WU(G)A He” (BG; 

I I 
WU(H)z H” (BH; Q), 

by H+G 

if the right vertical arrow is injective then G E % follows from H E %. In particular, 
if H + G has finite kernel and image of finite index this is so, since then BH --, BG 

is rationally a finite cover-in i: (the fiber is g(ker) X H/Im G which has the rational 
homology type of H/Im (G t). If G C H has a normal complement, then there exists 
a homomorphism H + G s Ich that the composition G CM + G is the identity, so 
the induced map in cgJhon7, ‘logy is injective. 

Finally to prove (iv), obs :rve that the condition in (iv) is equivalent to saying that 
H C G is normal and I .$ action of ,G on H by conjugation is by inner 
automorphisms of H. 

If H f G is any subgroup of finite index then we have an induction map 
WU(H)= WU(G), by mapping a hermitian representation p : H + Aut (V, b) 

to its induced representation ind (p) : G + Aut (( V, b)G’H ). Precisely, ind (p) is 
defined by choosing a set -I,. . ., r, of left coset representatives of H in G and 
putting W = r1 V$ -   @ r, V (orthogonal sum), where each ri V is just a copy of V, 
with suggestive notation. If we denote the elements of ri V by riu, v E V, then G 
acts on W by g(riU) = rj (hu), where gri = rjh with h E H. This action preserves the 
form on W and is independent (up to isomorphism) on the choice of coset 
representatives. 

The automorph’sm group of H acts in the obvious fashion on WU(H) and inner 
automorphisms act trivially. Hence if H is normal in G, then K = G/H acts on 
WU(H). By the above description of ind it is clear that the composition 

f: WU(H)= WU(G)--, WU(H) 

is the map 

f(x)= c k(x)* 
kEK 

Thus under the condition of Theorem 0.2 (iv), K acts trivially on We/(H), so f is . 
just muhiphcation by FL Hence 

is surjective, so the conclusion of the theorem fellows from the diagram 
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4. Cutting and pastiug 

Before discussing some examples to Theorem 0.1, let us consider the relationship 
to the analogous result in [21]. In that paper and in [lo] a graded sr;~up z* (X) is 
defined as the group of singular manifo ds in X modulo bordism and “cutting and 
pasting”. Equivalently, by [lo], ‘SK, (X) = 0, (X)/‘E, (X), where F, (X) is the 
subgroup of elements in (Tt, (X) representable by an (M,f) for wilich M can be 
fibered over S’. This group SK, (X) is a module over the ring %?* = z* (point), 
which is a polynomial ring Z[P] in one 4-dimensional generator P, reltressntable by 
any $-manifold of signature 1. 

Definition 4.1. Let %‘, be the class of groups G for which the rcaiuccd SK-group 
Sx* (BG) = Ker (a* (1*~?)& SK,) does not contain a free SK,-subm;odule. That 
is a* (BG) is a %*-torsion module. 

In [21] it was shown by a simple geometric argument lhat signature is multiplica- 
tive for structure groups in %, so q0 C %. In fact 

Proposition 4.2. t$& c % am-J Ce, satisfies the closure properties (i) r~o (iv) of 
Theorem 0.2. 

Proof. Most of these properties were proved in [21]. The others follow (:,ssily by 
the same methods. 

Problems. Are %& and %’ equal? 

5, Examples 

Some groups not in %: 
(i) If F is an orientable surface of genus > 1, then n,(F) f;s. %. 

[l/2]) c G c W (1,l) )E G C U(n, n), n >2, then 

These are by Meyer [ 16, 171 who constructed examples of nonmultiplicativity fos 

eorem 0.2 (I), if iA/ is a ~~~Q~ient~~~e surface t 

4e. Observe that if F is a Pi orientable surface then 
r&V) of index 2 for some nonorientable surface. 

Being in % is not in 
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Proposition 5.2. lf G has a_i,nitely generated free abelian normal subgroup with 
infinite cyclic quotient, then SK * (BG) = 0, so G E so, so G E %. 

The proof follows from the following facts: BG can be taken as a torus bundle 
over S’; a set of singular manifolds in EIG which represents adenerating set of 
H, (BG ; Q) represents a (SK, 8 @module generating set of SK * (BG) ~IQ [21, 
Lemma 71; such a generating set of singular manifolls can be chosen as a set of 
torus bundles over S’, so they represent zero in SK *(BG). 

‘Ike G of this proposition is not in the smallest class of groups satisfying 
Theorem 0.1, so those closure properties do not characterize %? or (e,. 

A direct algebraic proc3 that such G are in %’ would be of interest, since 
presumabl; this example c an be greatly generalized. 

Problem. Are polycyclic g roups always in V? Nilpotent groups*? Maybe even 
solvable groups? 

It is not generally true ;hat an extension of a %-group by a %-group is in %, for 
instance surface groups ace free extensions of free groups. 

6. Real coefkient systans 

One can define the classes %‘- and %‘+ of all structure groups for which signature 
of symmetric respectively antisymmetric coefficient systems is always multiplica- 
tive. Let !+V+ (G) and W_ (G) denote respectively the Witt groups of real symmetric 
or antisymmetric bilinear representations of G. One proves exactly as for 
Theorem 0.1 

Theorem 6.1. There are natural maps 4;: W*(G)-, fi(G;Q) such that %L = 
{G: 4;: = 0). 

In fact 4; is the composition W%(G)-+ WU(G$ I? *(G; Q), where the first 
map is hermitianization. 

Theorem 6.2. 4e_ and Ce, both satisfy all the clusure properties of Theorem 0.1 
except for product closure of CG,. We have 

GE%_ md HE%-~ GxNEK 

GE %+ and NE %‘+ and (G or HE %-) 

Further % = %+ f~ K. 

own that signatwt is mu!Gplicative if G am nilpotently on the fiber of r (“The 
of ~~~~~-~j~pot~~t fi er bundl+:s”, p~e~~~~~~. 
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Proof. That % = %+ rn %- follows f’rom 6.1 and the fact [22] that the ring 
homomorphism 

W+(G)@ W-(G)-+ WU(G) 

given by a modulo 

> 

and 

(W+(G)@ w,(H))g,(W-(G)e W-(H))-+ f’*(G;Q)&H”( 
4 

W+(GxH) P 

where the left vertical arrows are isomorphisms module torsion by the modulo 
torsion isomorphism above and the fact that WU(G X Ii)= SKJ(G)~ WU(H). If 
one observes also that $Z; is zero in dimension zero while I/?& is always non-zero in 
dimension zero, the statements on products follow easily. 

7. Manifolds with\ boundary; y&variants 

The multiplicativity t=esults for signature fail for coefkient systems over compact 
manifolds with boundary, but this failure leads in a standard way to interesting 
invariants of the boundary. 

Data. Let (G, p) be a structure pair consisting of a group G and a hermitian 
representation p : G + Aut (V, 6) which is “good” for p~ultiplic&vity of signnture, 
that is & ([p]) = 0 in g*(G; Q) (Theorem 2.3). 

If iW*” is a compact oriented manifold with boundary X2”-’ and f : kl (AM)-+ G a 
homomorphism, then f classifies a hermitian coefficient system r 3 .k 

Theorem 7.1. sign (M, r) - sign (A4l)sign (b) is an inuariant of g = f 1 X which we 
denote by y&,;.pj (X&a BY flX we mean the composition of f with the map 
r1 (X)+ mL (M) induced by the inclusion. Eqyivalently intqpret f as a msrp A4 + 
clnd then p = f ] X in the usual sense. 

roof. If (Ad’, f’) is another pair with the same dary and t 
corresponding coeficient system, then we can paste ( 
boundaries to get a closed manifold with coeffici 
additiv~ty gives 
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But on the other hand muhiplicativity of signature plus Novikov additivity gives 

sign ( Y, A ) = sign ( Y) - sign (b) 

= sign @I) - sign (b) - sign (M’)  sign (b). 

Subtracting these equations gives the desired result. 
More generally if (X, g) itself does not bound but some nonzero multiple 4 (X, g) 

does, then we can define 

One might expect that ytc P) (X, g) only depends on the composed representation 
pg : 7rl (X)-, Aut (V, b), bu’. this is false in general, as is shown by the following 
example. Let r -+ F be IS zoefficient system over an orientable surface such 
that sign (F, s)# 0. Let j 1’ C F be an embedded disc, M = cl (F - D2). Let 
p : 7~ (Ad)+ Aut (V, b) be ;he classifying map for r 1 A4. Since G = 7r1 (M) is free, 
G E %, so (G,p) is a good structure pair. If g : %rl (S’ )* G = nt (M) is induced by 
the inclusion S’ = aA C Ad. then by definition: 

ytG.p)(S’9 g) = sign (MT r 1 hf) = sign (E r) # 0, 

the second equality being 5;: Novikov additivity. But pg is the trivial representa- 
tion, since it extends over D2, so y(G,,,)(S’, g) does certainly not only depend on pg. 

On the other hand the foliowing result was proved in [20]. 

Theorem 7.2. In each of the following cases y(G,,,)(X, g) only depends on the 

representation pg of flTTr (X). 

(a) p is a definite representation. 

(b) T&e center of G has finite index in G (e.g. G finite or abeliun). 

We repeat the proof for completeness. We shall simply write yP (X, g) for 
ytG+)(X, g) if G is understood. 

Proof. (a) is clear, since in this case in the proof of 7.1 we use the multiplicativity 
result 2.4, which does not depend on G. For (b) we shall use the following lemma. 

Lemma 7.3. Given a closed oriented manifold X2”-’ and homomorphisms 

7r,(X)--!+G%&Aut(V), with G,HE%, then; 

(i) if yry (X, f) is defined, then so is yt (X, qf) and they are equal. 

(ii) If q : G - b H is injective in rational homology and yT (X, (pf) is defined, then so 

is yrs (X. f)? and they are equal. 

Pmof. (0 if yrq (X, f) is defined, that is q(X, f) = a(M, g) for some q ~0 and 
BG, then q(K, cpf) = \ (M, cpg), so yT (X, cpf) is defined and the equality 
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the condition ~j:N,(G;Q)=H,(BG;Q)+&(BG;Q)= H,,(H;Q) injective 
is to s2 (BG)@ Q a, (BE-I) @ Thus if (X, q$) 
&fined, that is qf] = in a then = 0 .a + GQ Q, .W 
-y_, (x;,$) is &f&d, It c ia eq&ftl ~0 .y; (X, pf), by- -*’ cI s ‘x;bd 1”. : ’ 1’ ‘- ’ - b 

TV return to the. proof of:-Thorem- 72;suppose we have YT~ (X)& G -f; Aut (V) 

such that the center of G has finite index in G (whence in particular “G’ E V}, and 
supp,- qe some multiple of (X, f) bounds, so +yp (X, f) isdefked. Put H = Im (p) and 
K = Im(Qf) C H CAut (V), so we have a diagram 2 

where i and j are the inclusions and 4 and cp are just pf and p with their ranges 
restricted. 

Suppose we know that i * : H, (K;Q)-, H, (H;Q) is injective. Then we can 
apply Lemma 7.3 parts (i) and (ii) successively to show that yj (X, qf) is defined and 
equals ‘yp (X, f) and that yji (X, +) is defined and equals yj (X, qf). Thus y,, (X, f) = 
yji (X, $) and since ji and + only depend on pf and not on G, the theorem is 
proved. Thus we must just show the injectivity of i,. 

Now both K and H have centers of finite index, since this property is inherited 
by subgroups and quotient groups. We first show that in the commutative diagram 

H,(Z(K)?Z(H!;Q)-~H,(Z(u);Q) 
H,(kQ) 

4 
- H,(N;Q) 

the vertical arrows are isomorphisms. Indeed, in the Lyndon spectral sequence 
E? = HP (H/Z(H); Hq (Z(H);Q)) + HP+4 (H; Q) (see e.g. MacLane [13, p. 
3511) we have EFq = 0 for p > 0, since H/Z(H) is finite and acts trivially on 
Hq (Z(H); Q). H ence H*(H;Q)-+ H*@?(H); Q) is Tan isomorphism, so the 
homology map also is. The same argument helds for Z(K) n Z(H) C K. 

Now an injection of abelian groups induces an injection in -homology (this is 
clear for finitely generated abelian groups and homology commuf~s with direct 
limits), so the top map of the square is injective, so the bottom map is too, as was to 
be shown. 

The y -invariants have many interesting applications. For instance the ~;dcuh- 

tions of Meyer [lfi, 171 of signature of coefficient systems over surfaces can be 
interpreted as giving connections between y-invariants ani classical dedekind 
sums. y Anvariants of lens spaces give gener 
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Atiyah, Patodi, and Singer. In particular ‘yp (X, g) can be defined even if the pair 
(X, a) does not bound. For G abelian we have been able to find a purely topological 
description of this. 

In the forthcoming paper [20] we show that y(~.&~, g) is a homotopy invariant 
of (X, g) if G is free abelian (this is de.finitely false if G is not free abelian, for 
instance lens spaces are classified by their y-invariants). This result is reminiscent of 
the homotopy invariance of the higher Novikov signatures and our proof in fact has 
certain (seemingly superficial) similarities with Lusztig’s proof of the latter fact [12]. 

In view of the intimate connection between y-invariants and a! Anvariants of free 
finite group actions [2O, 31, we also obtain homotopy ir,variant calculations of 
ar-invariants in many inte .res)ting cases, namely for a class of (not necessarily free) 
actions which includes ali homologically injective actions in the sense of Conner 
and Raymond [7]. The F ; yiodicity results for signature of coverings of manifolds 
with boundary announce d in [I191 are also a corollary of these calculations. 
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