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HOMOTOPY INVARIANCE
OF ATIYAH INVARIANTS

WALTER D. NEUMANN

In the following, all manifolds are understood to be smooth, compact, and
oriented. The invariants to be discussed are
(D). The a-invariants a(M2+1, g) of a smooth group action on a closed odd

dimensional manifold M?2#—1, These were introduced by Ativah and Singer [2] and
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have been extensively studied since then; see for instance Hirzebruch and Zagier
[6] and the literature quoted there. '

(IT). Certain y-invariants y(X?7-1, p) associated to a representation p: 7;(X) —
U(m) of the fundamental group of a closed odd dimensional manifold X2#—1, These
invariants arise for instance in Atiyah, Singer and Patodi [1] via the theory of
spectral asymmetry. They came up in a different context in [8] and [11].

(III). A “monodromy” ;¥ associated to a manifold X?—!and a map X — S1;
# = (H, S, t) is an isometric structure, that is it consists of a vector space H plus 2
symmetric or skew-symmetric bilinear form S on H and an isometry ¢: (H, S) —
(H, S). If X - 8! is a fibration with fiber F2»2, then (H, S) = H»! (F; Q) with
the cup product form S(x, y) = {x U y, [F]) and ¢ is the monodromy of the fibra-
tion.

The latter invariant will be, by its very definition, a homotopy invariant. On the
other hand, if the representation p: zy(X) - U(m) in (II) factors over a free abelian
group (p = m(X) - Zs » U(m)), then y(X, p) is calculable in terms of the mono-
dromy invariants, and is hence also 2 homotopy invariant. Finally, in view of the
intimate relationship between o- and v-mvanantq we obtain also homotopy
invariant calculatlons of a-invariants in certam situations.

There seems to be a certain analogy of the homotopy invariance proved here with
the homotopy invariance of higher Novikov signatures proved by Farrel and
Hsiang [7] and Lusztig [9]. This analogy deepens a feeling the author has often had,

AMS (MOS) subject classifications (1970). Primary 57A65, 57D20, 57E15, 58G10.
@© 1978, American Mathematical Society

181



182 WALTER D, NEUMANN

that so-called “peripheral invariants”, such as the a- and y-invariants of odd
dimensional manifolds, are connected in some deeper way than has yet been dis-
covered to characteristic class and surgery type invariants.

The present paper is a fairly exact version of the talk given at Stanford; in parti-
cular no proofs are included. Some proofs appeared in the preliminary manuscript
[11] (see also [13]). Complete proofs and further applications and examples will
appear in the final version of [11].

1. a-invariants of group actions. Let N2» be a closed manifold with a smooth G-
action and ge G. Then the Atiyah-Singer fixed point theorem [2] calculates the
equivariant signature sign(¥, g) as a polynomial in the characteristic classes of the

fixed point set N# and its normal bundle y(N%):

sign(N, g) = f( Nz, y(Ne)).
=3 OJ S\ 5~

\=* 7

If N has boundary Mzﬂ—l, this equation is no longer valid, but a standard argument
shows that if g has no fixed points in M, then the “error”

a(M, g) = sign(N, g) — f(Ne, y(Ne))

is an invariant of (M, g). More generally, given (M, G) and g € G acting without
fixed points on M, some disjoint multiple g(M, g) bounds, and one may define
a(M, g) = a(q(M, g))/q. Denote by a(M, G) the (partially defined) map G —» C
whose value for ge G is a(M, g).

DEFINITION, Let G act effectively on-a manifold M. We say an element ge G of
finite order k is S'-induced if there exists an equivariant map (M, g) — (S!, e?*i¢/¥)
for some g prime to k. In particular g acts freely.

We say G acts h-injectively on M if a dense set of elements of G are S!-induced.

ExAMPLES. (i) One can show that a homologically injective action in the sense of
Conner and Raymond [3] is A-injective.

(ii) If G is connected and acts on M then the following conditions are equivalent:

(a) (M, G) is h-injective;

(b) some nonirivial g € G is S*-induced;

(c) some finite covering of G has the form H x S! and the induced S'-action on
M is homologically injective.

(iii) If G is finite, any free orientation preserving action on a surface is h-injective.
Very many free actions on Seifert spaces are (in a sense that can be made precise).

TueEOREM 1. If G acts h-injectively on M27~1 then a(M, G) is a homotopy invariant of
(M, G). |

Our results in fact give a reasonably calculable intrinsic description of a(M, G)
for h-injective actions. _ '

ExAMPLE. Given a cyclic action (N?*2, ZJk) we can form the S1-manifold M =
N X gz S1. The Sl-action on M is h-injective; in fact by Conner and Raymond
[3], this construction gives all homologically injective S!-actions. For ¢ € S! =
{te C| [t] = 1} our calculation gives the formula (# even)

[RD/2] 4 4 g+ 4 ... 4 R -1

a(M,t)=-—2q§1 a, 1+14+ - + tF-1 !
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where ¢'/k’ is g/k in lowest terms and g, is the integer )

=

where g is a generator of the Zjk-action on N. If one compares this with Ossa’s
calculation [14] of the a-invariant of S!-actions on 3-manifolds, one obtains some
interesting identitics between rational functions.

A similar result holds if » is odd.

REMARK. For non-h-injective actions the a-invariant is in general not homotopy
invariant, as can be seen for instance by the standard free cyclic actions on the
3-sphere; see the remark at the end of §2.

2. r-invariants. Given a compact connected manifold Y?» and a unitary represen-
tation p: 7,(¥) — U(m) of its fundamental group, there is an induced local coeffi-
cient system (= locally trivial sheaf) I' — Y with fiber (C, h), where A is the stand-
ard hermitian metric on C. These metrics on the fibers of I" fit together to give a
bilinear map of sheaves b: I' x I' = C, where C also denotes the trivial sheaf over
Y with fiber C. Define a cup product form on H*(Y, 8Y; I") by

Sy.r: H(Y, 0Y; I @ H(Y, 0Y; I » H™™(Y, 3¥; I’ ® I') » H™(Y, 3Y; C) =C,

where the first map is cup product and the second is the coefficient map induced by
b. This Sy r is a (in general not nondegenerate) hermitian or skew-hermitian form,
according as n is even or odd. Define sign(Y, p) = sign(Sy,), where, if Sy is
skew-hermitian we mean signature of the hermitian form +iSy .

Let X25~1 = 5 and denote the composed representation z;(X) — z(¥) - U(m)
also by p. Then

7(X, o) = sign(¥, p) — n-sign(¥)

is an invariant of (X, p). If (X, p) does not bound, but some disjoint multiple g(X, p)
does, we can define y(X, p) = T(q(X p))/q
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in [1]. In particular it can be defined even if. no multiple of (X, p) bounds. If
Im(p: z; (X) - U(m)) is abelian I can give a purely topological description of the
invariant also in this case, but in general this appears to be still an open problem.

One can also carry through the above definition permitting indefinite unitary
representations p: 7,(X) — U(p, g), where U(p, g) is the group of isometries of
Cr+e with the indefinite hermitian form of type (p, ¢). 7(X, p) is then only well
defined under suitable additional assumpuons for instance if one restricts Im(p) to
be abelian (or more generally to be b central extension of a finite group), see [13].
The results to be described hold also for this more general definition.

THEOREM 2. If the representation p: wy(X) — U(m) factors over a free abelian
group, m(X) - 25 — U(m), then y(X, p) is a homotopy invariant.

In view of the following relationship between - and r-invariants, Theorem 1 is in
fact an easy consequence of this Theorem 2.

THEOREM 3. Let G be a finite group acting freely on M2, Then the covering
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M=l — M|G = X1 s classified by a homomorphism f: 7;(X) - G. Let p;:
G- Un),i=1, -, r, be all irreducible representations of G. Then

a(M, g) = Z‘. trace(p{€))r(X, p,f),

J—-.l.

(X, o:f) = [GI x (trace(p (g™1) — n)a(M, g).

Thus to calculate a{M?2=-1, G) for general G one can look at the g € G of finite
order which act freely and compute a(M, g) for these via the y-invariant. Then try
to extend to arbitrary g € G using the continuity properties of a(M, G). If G acts
freely or if G is connected this works and gives a complete calculation of a(M, G) in
terms of y-invariants.

Theorem 3 is a quite easy character computation and was proved in [1] and [11].

ReMARK. Some condition is necessary in Theorems 1 and 2 to conclude homo-
topy invariance. For example the lens spaces L(7, 1) and L(7, 2) are homotopy
equivalent. The r-invariants of L(7, 1) with respect to the six nontrivial irreducible
representations ZJ7 — U(1) are respectively: —3/7, —13/7, —17/7, —17/7, —13/17,
—3/7, while for L(7, 2) they are: 1/7, —3/7, —5/7, —5/7, —3/7, 1/1. In fact, 3-
dimensional lens spaces are classified up to diffeomorphism by their y-invariants;
equivalently free linear cyclic actions on $® are classified up to equivariant diffeo-
morphism by their a-invariants.

r-invariants of lens spaces in any dimension were compietely caiculated in [1i].
They are generalized Dedekind sums (see also [15]).

3. Monodromy. Suppose we are given a closed manifold X2#~1 and a homomor-
phism f;: 7;(X) — Z. Since S! is a K(Z, 1), we can represent f; by a unique map
f: X — S§! up to homotopy. If this map f can be chosen as a fibration with fiber
F?n2 say, then one has the monodromy transformation H»~1(F) — H»~1(F) which
preserves the cup product form. It is this monodromy that we wish to generalize to
the case that f: X — S! is not a fibration.

Let X —» X be the infinite cyclic covering classified by the homomorphism fy:
7(X) — Z. Equivalently X is the pullback

—r R
i’fsl

If t & S!is a regular value of fand N = f~(¢), then X can be constructed by cutting
X open along N and pasting infinitely many copies of the resulting manifold with
boundary together end to end.

Let f € H,, »(X) be the homology class represented by one copy of N in X.
Equivalently, f is the image of 1 € Z in the composition Z = H(R) — Hl(X ) =
H,, ,(X) induced by the proper map f: X — R and Poincaré duality, so f only
depends on the homotopy class of . .

Define a bilinear form :

St X, Q) @ HY(X;0) » @, Su(x, ») = <x U »

This form is degenerate in general, but it induces a nondegenerate form .5 on
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H = HYX; Q)/Rad S,, where Rad S, = {xe H*¥X; Q)| Sy(x, y) = 0 for all
»} -

LEMMA 4. (H, S) is a finite dimensional vector space with nondegenerate (— 1)7~1-
symmetric form. The covering transformation X — X induces an isometry t: H —» H.

DEeFINITION. The (— 1)*1-symmetric isometric structure s#(X, f) = (H, S, t) will
be called the (middle-dimensional) monodromy of (X, f).

We have defined the monodromy over Q. We could equally well have used other
coefficients. If K is a field of characteristic 0 then using universal coefficient the-
orems it is easy to see #°K(X, f) = #%X, f) ® K, where the superscript indicates
coefficients, so #9(X, f) contains the most information (it is however false that
X, f) equals H#%(X, ) ® Q; in fact the precise relation between the ;#?(X, f)
for different coefficient rings R remains unclear in general).

#(X, f) = #%X, f) is a very rich invariant. Not only is the set of isometric
structures over Q extremely abundant, but every isometric structure occurs as
monodromy, at least in the skew-symmetric case. In fact:

THEOREM 5. For any skew-symmetric isometric structure ;# = (H, S, 1) over Q
there exists a 3-manifold M3 and a map f: M3 — S such that ;¥ (M3, ) = #.

The relation between the monodromy and our previous invariants is given in the
simplest case by the following theorem.

THEOREM 6. Given p: (X)) — U(m) such that p = tfy for some fy: m\(X) — Z and
7: Z - U(m), then v(X, p) only depends on #®(X, f).

Here is a precise description of the dependence in the antisymmetric case (that is
n even); the result in the symmetric case is similar. Let S, be the (— 1)¢~1-symmetric
bilinear form given by the g x g matrix

1
/ - )
0 1
S0 |
(=T

and let ¢, be the isometry of S, having matrix of the form

11= *
14 .
0 13
\ 1y
(¢, is uniquely determined by this). Define
H S_-q = (Rq, Sq: itq)’ q <ven,
o S )
=(ra(_g, o) £t @) godd,
#p= (R (] o) @5 (5 ambllet), 1=et0<t<m

For any isometric structure ;¢ = (H, S, f) define — o to mean (H, — S, ).
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By Milnor [10], any skew-symmetric isometric structure # over R is an ortho-
gonal sum of an s#, = (H,, S, ty) such that ¢, has no eigenvalue of unit length and
a sum of isometric structures of the form + #¥, 1 = ¢, 0 < § £ =, defined as
above.

For A € U(m) define an invariant y(3#, A) by requiring y{ — 3¢, A) = —r(3¥, A)
and y(of @ ', A) = y(#, A) + 7(o#' A), and putting

7(#g, A) =0, o as above;
r(#@, A) = — (—1)y/2.rank(4 ~ I), q even,

=0, q odd;
7(3#'9, A) = (—1)3/2.corank(4 + I), q even,

=0, q odd;

(#D, A) = corank (4 — AI) + corank (A4 — I), q even,
7 =
=2 2, d(¢, 6)-corank(4 — e*¥l), q odd;

—0=¢<2r—8

where

dig, ) =0 if -0 < ¢ <0,
=1 ifg=4046,
=2 if0<¢<2zm—0.

THEOREM 6%. In Theorem 6 y(X, p) = r(#E(X, f), o(1)).

THEOREM 7. If o: m(X) — U(m) factors as p = tgy, where gy (X)) - Z5 and
7: Z* = U(m), then (X, p) can be calculated via a limiting process from the mono-
dromies #(X, hg) where h runs through all maps h: Zs — Z. Alternatively one can
give an explicit calculation in terms of finitely many monodromies of X calculated
with suitable local coefficients on X.

4. Application to signature defect. The a- and y-invariants arise naturally as
correction terms to multiplicativity of signature of branched coverings and cover-
ings of bounded manifolds; see for instance Hirzebruch [5].

EXAMPLE. Let N* — Y4 be a d-fold covering of oriented manifolds with bound-
aries M4l = gN — X%~1 = gY. Then the error to multiplicativity of signature,
namely sign(N) — d-sign(Y), is an invariant of M — X which is denoted ““signature
defect”:

def(M - X) = sign(N) — d-sign(Y).

In fact if z;(M) < =;(X) is the induced inclusion of fundamental groups and H
w1(M) is a normal subgroup of z;(X) of finite index (H exists), and if p;: =,(X)/H —
Umn),i=1, ..., r, are all the irreducible representations of z;(X)/H and m; is the
dimension of the trivial component of p,|(z;(M)/H) for each i, then

def(M — X) = 3 mir(X, o).

For a proof see [11, Chapter II].
One obtains similar results for branched coverings by cutting out the branch
locus and considering the resulting unbranched covering of manifolds with bound-

ary.
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Our calculations lead to the following periodicity result for the ““signature defect”
def(M - X).

THEOREM 8. Let M1, r = 1, 2, .., be a family of closed manifolds, and whenever

r divides s let an { {s clr\-fn'lrl evelie coverine M — M_ he alvnn such that all the ohvipus
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diagrams commute. Then def(M, — M,) is a linear plus an almost periodic function

of s.

By an almost periodic function is meant the restriction of a linear combination of
periodic functions R — R. If the periods in question are rationally dependent then
this linear combination is itself periodic. In fact in the above theorem the coverings
M, - M, can all be pulled back from the standard coverings of S? via a suitable
map M; — $! and the periods in question are the numbers 1/g, where €274, 0 <
g £ 1, runs through the eigenvalues of unit length of the monodromy of this map.

As a corollary one obtains the periodicity statement for signature of cyclic
suspension of knots announced in [12]. This result has also been shown subse-
quently (for fibered knots, but the proof works for arbitrary knots) by Durfee and
Kauffman [4] and by Cappell and Shaneson (unpublished) using an alternative
method.

REMARK. def(M — X) also arises as the error to multiplicativity for coverings of
the Atiyah-Patodi y-invariant of a riemmanian manifold and of the Atiyah-Kreck
d-invariant of a framed manifold, so in particular we get similar “linear plus almost
periodic” statements for these invariants, see [11].
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