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Splicing Algebraic
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g1 oduction

Tn this paper we give an introduction (o the terminology of splicing
(sec “Three-dimensional Tink theory and invaciants of plane curve singu-
by Fisenbud and Neumann, [EN]) and then describe how fo
conpute & normal form representation of the real monodromy und Seifert
m for the link of a plane curve singulurity from this point of view (it
wvas done i a resolution iagram for the Singularily in [NJ]h It has been
vonjectured that this might be 4 complete invariant for the topology of an
solated complex hypersurfuce singularity in aay dimension; he originalor
now deries esponsibility and will remin unnamed, but the conjectare is
still wnresoived.  Many of the required invariants are computed in [EN]
and we just review thess compu The fins four sections and
Theorem 5.1 arc survey and review: the main new rasult is the computa-
tion af u.: equivariant signatures of the monodromy via splicing in
Theorer This computation u,-.-lw: also to ! graph links.

ik e s F:
sphere and X i
germ of a normal
is HYV.F. pi 2 ¥ L)=(C.0) be the
erm of wn anulytic map. We may assume (V. p) s
ambient (C*,0) and Uhen by intersecting (V.S Q) with a
small sphere wbout 0 € C°, we abtain the jiak (Z, K{ ) wl
such a link an afgebraic graph Jink: if (V, p)=(C", 0), it & just n.e link of
a plane curve singulurity. We make a0 reducedness assumption on 3
thus cach branch of £-*(0), and socrespundiagly each compoacnt of K(f).
carsies a posifive inleger multiplicity; in the terminology of [EN), (T, K())
35t maulifink. A link is the special case of a multlini with all multiplicic
ties cqual to |

The snvarisats we are interested in are invariants of the Milaor
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fibration
SISl E=K(DH—>S"

Namely, lel F be a fiber of this fibrstion and f: F—F the goometnc
monodromy. We will compute the decamposition of the non-symmetric
isometric structure. (£1(F; C), hy, L), where 1 s the sesquilineari
Seifert finking form, 3 a sum of irreducibles. This is eq\nulcnl ©
computing the corresponding decompatition over cal irreducible
isomesric structure is determined by its mmphxlﬁelnnn. which is cither
irreducible and mlmmphlc to its conjugate or is the sum of two mutually
conjugate irreduc

§2. Splicng

Given links (3, K*) and (3", K) and components $°C K’ and !
K% the spice (£, K)= (3" Kad% K)o consructed ws follows. 3
is obtained by nulmg together nis of upﬂl nlb«hr neighbor-
hoods 5% S and £y e M(S") of 8 and

=L

and vice versa.

matching meridian of 8" to longitude of S
K=(K'= )L (K"~5")
is the union of the components of K” and K other than §5” and 5
“Any algoheaic graph link can be teprescnted as the result of spli
ether certasn simple buidling blocks. The basic building biock s the
Seifert link (X -+ @y - - US). Here tknand a, -
b ) i he unigue b
of

ane of
complete intersection lurfﬁu: siagularity (V(e,.

Vo, - a)={z e C|azf +- - +aa

(@) being any sufficiendly general cocficient mateix.  That i

P /CARENA B ( CRERP A To )

5, is the intersoction of (e, - - -, @) with the hyperplane
We symbolize the link (¥(a,, -, @ SiU - L37 by the splce
diagram

Splicing Alyebraic Links 8t

A disgram such as

P

symbolizes the result of splicing the two Seifert links represented by the
dingrams

2
S 53
el Ny

in the abvious way. One may iterate: for instance, splici ddi-
tionul Seifert link could give Tk

are redundunt in & splice diagram and should be omitisd; for example,
the following two splice diagrams mean the same thing.

o |[s Saboisl 248
i 1
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Tn [EN] it is shown that a link. is an algebrasc grlph Link if and only
if it can be represented by a splice diagrum safisfying the following condi-
tion; moreover, the diagram is then unique.

For any edge

g

one has @@ a B

3. Plane curve singularities and Puiseax data

For a plane curve singularity the splice disgram is a quite direct
coding of the Puiseux datu for the singularity. ~IF we have a siagle branch
Jfix. y)=0 whose Puiseux cxpunsion (written in Newton form) is

P R PR RS,

the corresponding splice diagrant is

with
"=
and, for i1,
=G TP

The case of two branches will sufice W describe the sicuation for
more than one branch.  Suppose the branches have expansions

Gk
@t - A

g

Splicing Algebraic Links m

with mcuynoomnnnm that is xs.y.a 7 1= 4l and a,
1, -, n but not for i=nt 1. 1 g._,p, 4,.,r,.|h=lpl-==dnmm

Otherwiss, by exchanging the branches it sy, e Bt i
and the splice diagram is then

§4. Linking nunbers asd multilinks

As mentioned in the introduction, we wish to allow link components
ofu ik (3, K) o cry ineges mbiplictes We vl such malplc-
ties as labels at the arrowheads of the corresponding splice diagram.  For
exumple

)
S
P
N
o
symbolizes the link of the map f: (V(2, 3, 5Lu)—(c 0. fiz. 3 2) =212}

Given o multlink (%, K), there is an assaci oy
e H(X—K; Z) whose value on uny numubn um C is the linking
number of C with the Imk K, taking multiplicities into account. The class
m ties: the multiplicity of a link component § s
m(M), wheee Mis s mcr jan nf S If (X, K) was just a link ruther than
4 multilink, we consider all multiplicities 10 be 1, 50 the multiplicity coho-
‘mology class i is still defined.

B
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There is a simple method 10 compute the Tinking numbers of com-
ponents of a graph Tink: join the corresponding arrowheads in the splice
Giagram by 2 simple path and take the product of all weights adjacent to,
but ot on, this path. . the linking number of the two
components of the link given by the following diagram is i8=2.3 3.

2 o,

Non-arrowhead vertices of a splice diagram can be thought o correspond
10 fibers of the Seifert fibered structures of the splice companent picses of
DK, and mutual linking numbers can be computed in u similar way for
hem. For example, if (£, K) is the mulilink (ink with maltiplicities)
with diggram:

and C is a nonsingular fiber in the Seifert structure for the left hand picse,
then the tolal linking aumber m(C) of G with K is computed us follows:

|
|

@ T
K138

+

This toesl Jinking mumber, which is defined at any vertex u of the disgram,
will be called the mudiipiicity 1, a the verex v, und will be important in
‘what follows.
Tf the fink or multilink (X, K) is the resull of splicing, (¥, K)

(2, Kby (7, K™), then the multiplicity class m for (. X) restricts lo

cohomology classes m’ and ne” on 3'— K and " K* which give (3", K')
und (37, K”) the structure of multilinks. How 1o compute the relevant
multiplicities for these “splice summands" is best illustrated in an example.

Splicing Algebraic Links s

‘The plane curve link with diagram
..

S

We sce that to any interior edge e of the splice diagram (edge connoting
two nodes) can be associated two numbers (e.g. 2 and 5 for the lelt
interior edge of the ahove example) which are the multiplicities for the
link companents used 1o splice at that edge. Denote by d, the ged. of
these two numbers associated (o the edge e. For a node v, denote by d,
the ged. of all link component multiplicities for the Seifert multilink
splico component corresponding to the node v (this can alsa be computed
48 the g.cd. of the d,’s at all adjacent interior edges and the link com-
ponent multiplicities at all adjacent arr vertices to ). Finally,
denote by d the go.d. of all link co citios of (£, K) (this is
the number of components of the Milnor fiber F).  We shall noed thess
‘numbers below.

§5 Invariants
Tel (. X) be an algebraic graph muldlink with Milnor fibration
Py e Let £ be the fiber and : F-»F be the monodromy. The

e
algebraic monodromy h,: H(F)-»H(F) has only 1 | and 22 blocks

s Jordn normal form and the cigenvalues are roots of wnity. Let N
be a common. mltiple of the onders of the cigenvalues, $0 (35— 1'=0.
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Denote hy 4(r) and &) the characteristic polynomials of A, and
| Ker i 1) respoctively, so the rools of 4(¢) are the cigenvalues of
and the roots of ') are the eigeavalus belonging to 2x 2 blocks of the
Jordan normal form.  The following combines special cases of Theorems
113 and 14.1 of [EN].

Theorem 5.1, Let 3, be the degree of vertex 0 in the splice diagram
(number of incident edges) and et d and the 1. d, and d, be as in Section 4.
Thea

A= F =D T (=1,
product over all non arrowhead vertices, and
F = =D [[ =1 (-

products respectisely over all interior edges and wll nodes of the splice
diagram.

Now let H H(F: C) and let H={[; H; he the splitting of 1 accord-
into te cipmass of byt <. Let L be the sesquilincarized Seifore
form or 1 is the skew hermitien intersection form on
H, 50 l.\ is an hermi form.

sign (15| H).

We shall describe how (o compule o7 in Theorem 5.3 below.

Denote by m; and aij the multiplicity of 4 as a root of 4(t) and 4'(1)
respectively, 50 nm,—2m3 and it are the nambor of 1 1 and 2x2 Jordan
locks for the eigenvalue £ respectively.

Denote the components of K by S,, i=1, -+, For ¢ach S, denoto
by m, its multiplicity and by  ils linking number with the rest of K
{taking multiplisities of the other components of K info account). Then
(e 1) reprasets the homology class of the intersestion £71 7, of F with
the boundary 7, of a tubular neighborbood N(S.), 50 d,=gcd (m,, 1) is
the number of components of F1\7,. It follows easily that if H'—
Im (2, @F: €)—~H,(F: C)) then the characteristic polynomial of h, |1 is

a0 = fl e

e e tipaaior 2 s ek,

The follow ved, in slightly different formalation, in
N3] (there was u mul)nnl in the relevant Table | of the paper; the bottom
right entry should resd 1 for 2= — | and O ¢ls")

Spiicing Algebraic Links w

Thearem 5.2. indecompasable summands of the above (H, h,. L),
vvith their multiplicities. are all given in the /nllmrux lst,

Summaid, ‘comment

Fii=(C, (), 0). ml, %1
JONCEDY A1 el

(€. (2), i —1) (m,—ne,—2n+07)2, A%l

H:=(C, (), £01 - D) (m—m=2m—0)i2, 3#1

oo (9,12 %51

Tt remaing (o compute the o7,

For xa R let {x] be the fractional
part of x and

‘Theorem S.3. o; is the sum of the values of o over the Seffert
i sl componts of (5. K). For the Seifert mulilink with
fugritm

(m)

Pt D10 for =K1, s0 -
liplicity of the central node. Choose Miegers f, j=1, -, m,
1 (modulo ) for each j and put .n=lm,—.!m:m
. with pig in lowesz terms, then

e ok

o if ¢ does not divide m,
PR
Lf pien radvidesm. <o nssme
Proof. signatures a; are the equivariant signatures of h: FsF,
s».n signuturss are discussed in [N1 for example; they are defined for

orientation preserving ymorphism of an even dimensional
manifold and they satfy Novikov ity (udiliviy with Tepect 1o
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punicg. along boundary componeats). In [EN] it s shown that the

odromy 4: F—+F can be obtained by pasting along boundary circles

m.mm.lmmy ‘maps on the Milpor fibers of the splice componeats. The
first statement of Theorem 5.3 thus follows.

Let (2, K) be the Seifert multlink described in the theor

will use the analytic description of it from Section 2; S= 118"

V=lze Ctlanr s +aer

=2},

for some cocfficient matrix (a,,), and K is the fink for the map f: ¥-+C
given

. where a—a - -,
equivariant with mlpm 1o this §* mmn on X Kand the noneﬂuuvn
S-action on * given by 1.5=1". o particular, the orbits of the '
aum on T are transverse to the Milnor fiber F and a general orbit inter-

Fin m points. Also, h can be described s the exp (2wiim)-map of
the Saction, %0 it has order m. ~; is thus zero if 4 is not & m-th root of
Sty A s ik 2o cap Qi) and @ iR

Denote by Vo 3 snall Simariant ubular neihborbood of S
ZN{z=0} and deine J,=3—int(N,L---UN,) and F=FA2, F
results from F by the Nﬂ\nvﬂ M some disks and annuli, which support
no signature, Thus the o; ure the cquivariant signuturcs of k=1 £,
hy gencrates » free Zjm-action on F, 50 A, i§ 4 covering transformation
Tor some m-{0ld eyclc cover Fy—F”. Ll : 7, (F')—Zim be the classifying
‘map for this covering. Let p,: Zim—U(1) he the n:pmnnulinn which
iakesthe gencrato 10 () UL1) 0d pul gm iy T [APS) and N1
it was shown that on p|2F" and thut a circle S'CaF"
on which p takes | ¢ ",(('7 10 exp (2visig) contributes 2((s'q)) to this
signature. ~ Thus, if we show that  takes the cluss of the jth boundary
component of £ to s, € Zim, with 5, as in the Theorem, we will have

for simplicity of notation. A small Z{e-invariant
transverse disk to the orbit 5, XTiz,~0] can be parametrized in the
foem

{2, 2400, - 22 2 1)

with ¢ small and z(z). -, z,(:) appronimately constunt, The ubular
neighborhood N, can lh‘:n ht chosen as

Spicing ATgebraic Links £
N [(rrrez, 1z f2), -

We can trivialize the §'-sction an N, by the map g: §'X 5=+, given by
&5, D—p{symenn.

g (e)[e<l, e 5.

e, shimcdtmpuinig =), |
-

Indeed, it is an clementary computation to check that this map is bijoctive
and it clearly takes rolation of the second factor of 5°x 5* 10 our given
5" action on @,. The composition we g: §*x §'~»S" is, up to an almost
constant factor, (5, 1)-»s

and

Thus g '(F71N.)= (o 2)"(1) is equivariantly the pull back of the stand-
ard Zjm cover of §' by the degree s, map S'-»S. This is what we
needed

§6. Geooral graph links

As described in [EM . !nhn: Sompoaet of & general (possibly non-
algebraic) graph mul be fert multilinks
but with the unmhlmn of e ambient ‘homolagy lphn! I revensed,
indicated by weighting the corresponding vertex of the splice diagram with
‘may have some noo-positive link component muldiplicities; and
1y be an additional type of wm componeni—n uaknotted circle in

s l\hts several disjoint meri Tepresented by the splice diagram
GGAT
Ll g
N

Such a multilink may not be fibered, but the signatures o] are still defined
(see for instance [G] for & survey of various equivalent definitions in the
literature) and Theorem 5.3 still applies ta compute hem: the anly uhlnp
is that the 3, must be multiplied by —1 if 71 is negative and the o7

zero if m is zer0. The proof is an easy extension of the above um
Note however that Theorem 5.2 and the formula for £(t) of Theoret
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5.1 failin general for non-algebraic multilinks, although the formula for
(¢} is still valid (it is the Alexander polynomial in the non-fibered case)
see [EN] for details,

§7. Fxwmples
40+ =0,
T ok S o s L B N mmn,.wm)
L v ¢ 77
B I O S I ¥
| [
[0} [
The splice components are:
o
e L) i ©

g f

o
“Thus, by Theorem 5.1
A== 1)
P Y

=1 = = 1P

(= 1P 4 1.

The two spcs comporents a¢ omorpi, 0 bey contribute sualy to
the equivariant , @y h
B=—1, A=—1; then s, ~4. Theorem 5.3 thus pvey that
each splice componont A Ll s signature o, for 3
&, - expl2niflO):

o i O SR O SR B L

Gel 01 0 0 0-1 0-1
and we see by Thearem 5.2 that.
by, D)= — BDAAYSARIE - IS~ BYBL

A similur (ype of example i the family found by Marie-Clite Griema:
r=gets and ps<gr and ged (pe. gf)=ged (2. 5)=god (pf; 4e)
w (f, 36)=1, then the plans curve singularity links
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(e Ly N+ ) =0,
(7 4y Y a7+ ) =0,
have the same 4if) and 4}, a8 Theorem 5.1 shaws. But computer
iments indicate that they | hed

by
2,1) then the two

signatures, for cxample if (7, 4,7 5. & N=(5,
links have splice diagrams

2 0.3 08 i
— ot Mol 7
1 1

.

By Theorem 5.3 their signatures differ at exp (2eiki36) for k=11, 13, 17,
19,23, 35,
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