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Homology spheres and the u-invariant appear to play a crucial role in many
problems in low dimensional topology. For example, the existence of a 3-dimension-
al homology sphere T of u-invariant 8 for which T#YT bounds an acyclic 4-
manifold would imply triangulability of all manifolds of dimension 2 6. As Casson
has remarked, if T has p-invariant 8 and admits an orientation reversing homeo-
morphism, then I would satisfy this criterion.

As another example, the intersection form of a simply connected almost paral-
lelizable 4-manifold is even. No such closed 4-manifold with non-trivial definite
form is known. A reasonable and popular procedure to collect empirical data towards
the existence or non-existence of such manifolds is to study 4-manifolds with (Z/2)-
homology sphere boundaries, since pasting along such boundaries preserves evenness
of forms.

In this paper we have compiled some results and computations in these areas
for the special case of Seifert 3-manifolds and other plumbed manifolds. For ex-
ample, we classify in section 8 those Seifert manifolds which admit orientation re-
versing homeomorphisms. No rational homology spheres other than lens spaces are
among then.

Section 1 reviews the fundamentals of Seifert manifolds in a more convenient
version than the usual one.

We show in sections 2, 3, and 4 that the class of Seifert manifolds which are
homology spheres coincides precisely with a natural subclass of the class of
Brieskorn complete intersections (studied in section 2) and also with a natural sub-
class of the class of homogeneous spaces discussed in section 3. Thus Seifert homo-
logy spheres arise as links of isolated complex surface singularities with c*-

action. We show, in fact, in section 5 that almost every Seifert manifold arises
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this way, namely precisely those which do not fiber equivariantly over S1 . We do
this by describing a “canonical plumbing diagram' for such Seifert manifolds. We
give a table of Seifert homology spheres with small invariants which can be made to
bound even definite 4-manifolds by these methods.

In sections 6 and 7 we give various useful algorithms for computing uW-~invari-
ants for Seifert (Z/2)-homology spheres and other plumbed manifolds. A table is

included.

1. Fundamentals

In this paper, with the exception of §8, "Seifert manifold" will always mean
an oriented closed connected 3-manifold admitting a fixed point free action of Sl.
Such a manifold is equivariantly classified by its '"Seifert invariants" [S],[OR].
We shall use non-normalized Seifert invariants in this paper (see [N1]) since they

are more convenient for calculations. They are described as follows.

Let M3 - M3/S1 = F be the Seifert fibration. Let O 0 be a non-

17 c++: O

empty collection of disjoint orbits in M, including all singular orbits. Let

17 "r Os and

- MO/S1 = F0 is an Sl-bundle over a con~

T Ts be disjoint invariant tubular neighborhoods of O

10 -0

M, =M - int(T1 U... U Ts) . Since M

0 0

nected surface with boundary, it admits a section R CM Let Ri =R N BTi‘

0°
After choosing orientation conventions, R, 1s a curve in BTi which is homologous
in Ti to some multiple Bioi of the central curve. Let o be the order of the

isotropy subgroup Z/a/.l ot S1 at the orbit Oi' Let g be the genus of the sur-

face F, Then the unnormalized Seifert invariant is the collection of numbers

(85 (a,B)seee s (ag,B)) -

They satisfy g 2z 0, o z1, ng(Oi,Bi) =1.

The Seifert invariant is not unique: we can add or remove principal orbits
from our collection of orbits Oi and we can choose different sections R C'MO.
The following theorem is easily proved ([N1]).

Theorem 1.1. Let M and M’ be two Seifert manifolds with associated Seifert in-
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variants (g (ozl,ﬁl),... ,(ozs,Bs)) and (g'; (ozl',Bl'),... ,(at',Bé)) respectively.

Then M and M’ are orientation preservingly homeomorphic by a fiber preserving

homeomorphism if and only if, after reindexing the Seifert pairs if necessary, there

exists a2 k such that
(1) o =o for i=1,...,k and ai=ajl=1 for i,j >k.

(i1) eizei’ (mod o) for i=1, ..., k.

(110 =5 (B /) = T ) (8!/a)) .

Remark. It is easy to check that (i), (ii), (iii) above are equivalent to:
(g',(on.’,BJ.’),j=l,...,t) can be obtained from (g,(ai,Bi),i =1l,...,5) by a sequence of
the following moves:

a) permute the indices;

b) add or delete a Seifert pair (1,0) ;

c) replace (al,Bl), (az,Bz) by (a1,81+ma1) , (az,ez-maz) for some m€Z.

Definition. Denote the number -Zi=1 (Bi/o(i) , which is an invariant of the Seifert
manifold by (iii), by e®) , cailed the Euler number of M. We assume we have
chosen our orientation conventions earlier, at the point where we were not specific
about them, so that e(M) 1is the usual Euler number if M is an Sl-bundle.

Note that reversing the orientation of M, either by reversing the orientation
of the fibers or of the base (it does not matter which, since M admits an orien-
tation preserving self-homeomorphism mapping fibers to fibers and reversing orien-
tation both on fibers and base), replaces the Seifert invariant (8;(ai,8i)) by
(g,(ai,-Bi)) . Hence e(-M) = -e(M) .

The Euler number has a delightful naturality property, which is invaluable for

computations, as we shall see later.

Theorem 1.2. Let M and M’ be Seifert manifolds with base spaces F and F’,

o
-

et f£:M -M’' be an orientation preserving fiber preserving homeomorphism.

an

=

et the degree of the induced map on a typical fiber be n and the degree of the

Hhl
]

induced map - F' be m. Then e) = (m/n)eM’) .

Here is the idea behind the theorem. If M - F and M’ - F’' were genuine
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Sl-bundles, the theorem would be an easy cohomology calculation, since e() =
{cM),[F]) where cM) € HZ(F;Z) = [F,K(Z,2)] = [F,BSI] is given by the classifying
map F - BSl of the bundle. Although M - F 1is not a genuine bundle, we can make
it into a genuine bundle by replacing the fibers by the 'rationalized circle" S](.0) .
This replaces BSl by BS]('O) = K(®,2) , so the argument sketched above then goes
through. To make this argument precise, it is easiest to observel) that we do not
have to '"localize all the way to Q". Let a be a positive integer divisible by
all the ai's occurring in M or M’. Factor by the (Z/a)-action inside the Sl-

action to get a diagram of maps

M £ 5 M’
m !
£
M/ (z/a) a > M’/ (z]a)

We need that £ can be made (Z/a)-equivariant, but this is easily done. Now
M/(Z/a) and M’/(Z/a) are both genuine Sl-bundles, so the theorem is true for
fa . If we show it is true for T and w', then it follows for f£. But for =

and m’' it follows from the following lemma (due to Seifert [S1).

Lemma 1.3. If M has Seifert invariants (g;(ai,ei)) then M/(Z/a) has Seifert

invariants (g;(ai,Bi)) where -éi/ai is aBi/ai expressed in lowest terms.

L]

Proof. The section R CMO M - int(Tl U... U Ts) used to compute the (ai,Bi)
projects down to a section R CMO/ (Z/a) , which, when used to compute the Seifert
invariant of M/(Z/a) , yields the lemma.

Theorem 1.1 says that a Seifert manifold M is determined by knowledge of its
Euler number e(M) and by knowledge of the pairs (ai,Bi mod ai) . But (ai,
Bi(mod ai)) is equivalent to knowing the "slice type'" of the corresponding orbit,

that is, the equivalence class of the representation of the isotropy subgroup in

the normal plane to the orbit. Thus if M -~ M’ is a branched covering of Seifert

This observation is due to Howard Rees.
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manifolds, coming maybe from factoring by a group action, then eM) and e®M’)
determine each other by Theorem 1.2 while the slice types of M can generally be
computed from those for M’ and vice versa by elementary local computations.

In the following, we shall often write M = M(g; (ai,Bi),i=1,...,m) as an

abbreviation for '™ has Seifert invariant (g (ai,Bi) i=1,...,m)'"

2. Examples; Brieskorn Complete Intersections

Let a1, ceey 2 be integers, a; 2 1. Then if A = (aij) is a sufficiently

general (n-2)X n - matrix of complex numbers, the variety

2
+eerta, 2z n=0,i=1,...,n-2]

Vy(a loy 12y in®n

Lreeeaa) = (zee™

is a complex surface which is non-singular except perhaps at the origin and

3 ~ 2n-1
by (al,...,an) = VA(al,...,an) ns

is a smooth 3-manifold which does not depend on A up to diffeomorphism. A is
in fact sufficiently general if (and if all a; z 2 also only if) every (n-2) X (n-2)

subdeterminant of A is nonzero, by Hamm [Ha]. We assume A satisfies this from

now on.
q
o 1 %
VA(al,...,an) has a C -action by t(zl,...,zn) = (t Zyseesst zn) for
* *
t € C , where qJ. = (lem ai)/aj . S1 C C acts fixed point freely on Z(al,...,an),

50 Z(al,...,an) is a Seifert manifold.

Theorem 2.1, T = Z(al,...,an) has Seifert invariants (g ;sl(tl,Bl),...,sn(tn,Bn)),

where sj(tj,Bj) means (tj,Bj) repeated sj times and
£ = lem, (a,) /1cmiaéj (a)
sj =-[(i#j(ai)/lcmi#j(ai)

g = %(2+(n—2)ﬂi(ai)/lcm(ai) '2 )

. 5.
J 1]

and the PB4 and the Euler number e(f) are determined (up to equivalence of Seifert
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invariants) by

B, —
~e (L) = sj Ej =l| (ai)/(lcm ai)z.

Note that the latter equation can be rewritten (by dividing through by its

right hand side)
E:quj =1, where qj = lcm(ai)/aj'

But clearly t; divides qj if i # j and is prime to qj if i =3j. Thus
modulo tj the equation becomes quj = 1 (mod tj) and hence determines Bj(modtj),

as claimed in the theorem.

Proof of theorem. First note that the only points of T = Z:%a

1,...,an) with non-
trivial isotropy are points with some coordinate zero. The condition on the coef-
ficient matrix A implies that v, n {zi =z = 0} = {0} for i # j, so we need
only consider =z € 23 with one coordinate zero, say z, = 0. At such a point

the isotropy subgroup has order ngi#j(qi) = tj. An easy counting argument (see
[N1]) can be used to see that 23 ﬂ{zj = 0} consists of exactly sj orbits, but

this follows also from the later discussion.

Observe that we can write
£3 (.. a) = (V,(ap,..,8) - (OD/R,

%
where FS_C C* is in the Cc-action. Denote (VA - {0])/C* = Z/S1 by P(al,...,an).

Consider the diagram

V(@ 50 ) - ) —2 5 V, (1.0, - (0]
/R /R

+ +
T (ap,e..,a) -2 5yl
/st /s1
P(a,. 7 ,a) % s p,M.
2 2
with horizontal arrows induced by @(zl,...,zn) = (zl,...,zn ). We intend to apply
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Theorem 1.2 to the map ¢ to compute e(ZT).
*
Note that & and ¢ are equivariant if we let C and S1 act non-effec-

R a a
tively on VA(l,...,l) and X(1,...,1) by t(zl,...,zn) = (t zl,...,t zn) , a-=

lcm(ai). Thus ¢ has degree a on a typical fiber.
To determine the degree of 5, note that the group H = (Z/al)X... X(Z/an)

acts on each space on the left of the diagram by letting Z/aj act by multiplication

by e in the j-th coordinate. The map & can be identified with the orbit

map VA(al,...,an)-{O] - (VA(al,...,an)-{O])/H , and similarly for ¢ and .
Considering S1 and H both as subgroups of Diff(Z(al,...,an)) by these actions,

denote H0 = S1 fTH. Now on the one hand, HO is isomorphic to the non-effec-

tivity kernel of S1 acting on T(a ,an)/H =%(1,...,1), so H, T z/a, while

1
1
on the other hand H0 is the non-effectivity kernel of H acting on Z(al,...,an)/s

0

= P(al,...,an) , so the orbit map ; of this action has degree }H/Hol = H(ai)/a.

Now VA(l,...,l) c ™ is a linear subspace and hence Z(l,...,1) - P(l,...,1)
is the usual Hopf map S3 - CPl. Thus e(Z(1l,...,1)) = -1, so by Theorem 1.2,
e(Z(al,...,an)) = -H(ai)/az.

Finally to compute g , note that the subspace zj =0 of P(l,...,l1) is a
single point and that these points are precisely the points where branching of &
occurs. The argument we used to show 5 itself has degree Hai/lcm a; applies
with one coordinate less to show that 5 restricted the subspaces zy = 0 of
P(al,...,an) and P(l,...,1) has degree Hi#jai/lcmi#jai = 8;, so P(al""’an)
contains exactly sj points with zj = 0 (proving, by the way, that Z(al,...,an) N
{zj =0} consists of sj orbits, as promised earlier). The standard formula for

euler characteristic of a branched cover thus gives

X(P(al,...,an))

(]T(ai)/a)x(P(l,...,l)> + ZJ. (s, -l ra)
(2-n)”i(ai)/a +Z s

ity

yielding the value for g claimed in the theorem.

Remark. One can also give a very elementary computation of the Seifert pairs
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(tj,Bj) and the Euler number e(X) by observing that if the BJ_ are chosen to
satisfy ZBJ_qJ. =1, then
iej o
R={z€ZX|z,=r.e .>0,,B.6. 20 (mod 27

(2€xfzy=xse Lry>0,) B8 =0 )

1 . . p
is a section to the S -action in the complement of the exceptional orbits which
yields, via the definition of the Seifert invariant, the values (tJ_,BJ_) for the
Seifert pairs. However, one still needs a computation like the above proof to de-

termine g.

A completely analogous proof to the above shows more generally

Theorem 2.2. Let iy eees B dl’ ooy dn-2 be positive integers and gcd(di) =1.
Let
n i’l dian
V= {z€C lailzl +ess vtz =0,i=1,...,0-2)

with sufficiently general coefficients aij , and let T =V N SZn-l . Then ¥ is

a Seifert manifold with invariant (g ; dsj (tJ,,BJ.) ,j=1,...,n) where tj and sj

are as in Theorem 2.1, d = Hdi B

g=1- %[Zsj i (Edi>ﬂ-aj/lcm aj:l ’

and e(¥Y) and the BJ, are given by

B.
-e (D) =Z dsj—t—j1 = dﬂ_ai/(lcm ai)2 .

The only alteration necessary in the previous proof is that now P(l,...,1) is
replaced by a complete intersection of n-2 hypersurfaces of degrees di in CPn_l,
so it has Euler characteristic d(n - Zdi) (by the adjunction formula for instance),
and by similar reasoning zj = 0 now determines exactly d points in P(l,...,L1),
instead of just 1.

Bibliographic notes: A general program for computing the Seifert invariant of

*
the link of an isolated surface singularity with C -action was given by Orlik and
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Wagreich [0W],[0]. The method used here is, however, based on the case n = 3 of
Theorem 2.1 done by Neumann [N1]. Brieskorn complete intersections of the type in

Theorem 2.2 were first introduced by Randell [Ran].

3. Homogeneous Spaces

Using similar methods to the preceding section, one can describe the Seifert
invariants of those Seifert manifolds which are homogeneous spaces H\G , where I
is a discrete subgroup of a Lie group G with compact quotient. This was done by
Raymond and Vasquez [RV]. We describe the result for G = PSL(2;R) , the universal

T~
cover of PSL(2,R).

Theorem 3.1. M((g),(ai,ﬁi),i= l,...,s) has the form T\G 4if and only if there

exists a divisor gq £ L as(g-i-s-Z- Zl/ai) prime to each o such that

Biq = -1 mod @ for each i and
e(M) = -L(g+s-2 -Z 1a.) .
q i

In this case 1 is a subgroup of index q in the group T = Tr-lQ , where T:G -

PSL(2,R) 1is the covering, and Q = m(T) is a Fuchsian group with signature (g;

al,...,as) .

Remark 3.2. There are precisely qu subgroups 1fICTr-]'(Q) of index q with
m(M) = Q. They are all related by automorphisms of Tr_l(Q) . This gives a classi-

fication of discrete subgroups T C G with H\G compact.

Example 3.3. It is easy to apply this to Theorem 2.1 to see that Z(al,...,an) has
the form T\G. In this case T is the commutator subgroup of T = Tr_l(Q) , where
Q € PSL(2,R) 1is a Fuchsian group of signature (0 ; @y ,an) . This can be shown
by explicit computation of Seifert invariants, which was how we originally did it.
Using automorphic forms, one can prove a stronger version of the same result ([N2]).
This has been done independently by I. Dolga\éev. The case n = 3 was done by

J. Milnor [M],and F. Klein [K] for G = SU(2). More generally, the manifold of

Theorem 2.2 has the form *H\G if and only if
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a-tWotema[ya-ayia], @-Ma),

is a positive integer and is prime to aj = lem ai/ lcmi#jai for each j. This

holds for,example, if d divides Zdj .

4, Homology Spheres

Theorem 4.1. If the Seifert manifold M = M(g; (ai,Bi),i=l,...,m) is a Z-homo-

logy sphere, then g = 0 and the o are pairwise coprime. Furthermore, to given

pairwise coprime % there is exactly one Z-homology sphere as above, up to orien-

tation. It is diffeomorphic to the Brieskorn complete intersection manifold

Z(al,...,am) , and hence also to a homogeneous space H\G as in Example 3.3.

Remark. It follows that the subgroups N C G of Example 3.3 corresponding to
pairwise coprime exponents a;, ..., a are the only discrete I C G with H\G

compact for which T is perfect (i.e., [W,N] =10).

Proof of theorem. The first two sentences of the theorem are due to Seifert [S].

Namely, if M 1is as above, then by abelianizing the standard presentation of
Trl(M) , Seifert showed Hl(M) o Z2g @ Cok(A) , where A :2® 5 z® is a map with

matrix

m
+ A . .
=t cee cee = 4, .. t
But det A izlﬁial @ o =to amZ (Bi/ai) . The condition that M

is a homology sphere is thus: g = 0 and o e amZ (B;/a)) = t1. By reversing

orientation if necessary, we can assume -

a et amz (B;/a) = +L.

This equation implies that the o are pairwise coprime. Further, by considering
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it modulo % , we see it determines BJ. modulo aJ, for each j. It also deter-

mines eM) as
e@) = -Z Blog = =l/ay = o .

It thus determines M completely for given al, ey am.

Comparing with Theorem 2.1 proves the second statement. Alternatively,a simple
proof of 2.1 for this case is given by observing that by Hamm [Ha], Z(al,...,am)
is a homology sphere for o pairwise coprime and its Sl action clearly has iso-
tropy Z/al, ceey Z/am.

One can get a simple proof of Example 3.3 for this case also by applying

part (iii) of the following lemma.

Lemma 4.2. If @ -ee, @ are pairwise coprime and M =M(0,(ai,8i),i=l,...,m) ,
then eM) = c/al. RN R for some ¢ prime to Gy oeees O and

(i) M 1is uniquely determined up to orientation by |c\ ; denote it Mc;

(ii) Hl(Mc) =Z/|c|, generated by the class of a principal orbit;

(iii) Mc covers Md if and only if d divides c¢; in particular M1=

Z(al,...,an) is the maximal abelian cover of Mc for any ¢ > 0.

Proof. Up to and including part (i), this is the same proof as the previous theorem.
Parts (ii) and (iii) then follow by observing that Z/c C Sl acts freely on Ml )
so M, must be Ml/(Z/c) by Lemma 1.3.

Similar statements hold for g # 0. We leave their formulation and proof to

the reader.

5. Seifert Manifolds via Plumbing

Von Randow's algorithm ([vR], see Orlik [0] or Hirzebruch, Neumann, Koh [HNK]
for a description in terms of our present orientation conventions) expressing a
Seifert manifold via plumbing extends with no change to unnormalized Seifert invari-

ants, yielding the result:

Theorem 5.1. Let M3 = OP(T") be the result of plumbing according to the following
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weighted tree

b12 bl,sl
o « 5 a —bo
b22 2,s

P2

Then M3 E'M((g),(l,b),(ai,ﬁi),i =1,...,m) , where ai/Bi is the continued fraction

ai/Bi b],_1 - 1/(bi2- 1/(bi3- vee = 1/bisz...)

= [b ,b, 1] (notation).

i1’ is;
The [g] above means that the corresponding bundle being plumbed is the bundle
of Euler number -b over a surface of genus g ; all the other bundles are bundles
of Euler number bij over the sphere S2 . We omit the [g] if g = 0. We are
using the notation P(I') for the four-manifold obtained by plumbing disc bundles
according to ' and 3dP(I) for its boundary obtained by plumbing circle bundles.
By von Randow [vR], in any plumbing graph I we can '"blow down' vertices cor-
responding to a bundle of Euler number ¢ = ¥1 over 32 having at most two ad-
jacent vertices by removing that vertex and replacing the weights bi of the neigh-

boring vertices of T by bi - € ., This does not change OP(I') . For example,

if we start with
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and then by iteratively blowing down -1's we can finally get to

Thus BP(E8) = oP(I) =%(2,3,5) , where the last equality uses Theorem 2,1. It is
not hard to show that any two plumbing graphs as in 5.1 for the same Seifert mani-
fold are related by a sequence of blowings up and blowings down.

If T 1is an arbitrary plumbing graph with vertices Vis eees Y, with Euler
number weights bl’ ey br and arbitrary genus weights, then the four manifold
P(T') obtained by plumbing disc bundles according to T has intersection form (see

for instance, [HNK])

AT = (aij) with

%y T 1 if 1 #3j and v, and vy are connected in T,

=b, if i=3j,

1

0 otherwise.

We call T positive definite, negative definite, or even according to whether

A(T) has these properties,
Note that if T is positive definite, then blowing up or down +1 vertices

does not change this property; similarly, for negative definiteness and -1 ver-

tices.

Theorem 5.2. Let M be an arbitrary Seifert manifold. Then M can be written as

M T 2P(T) as in Theorem 5.1 with T definite if and only if e() # 0. In this

case [' 1s positive definite or negative definite according as e(M) >0 or

e(M) <0, and T is unique after blowing down all +1 wvertices, respectively all

-1 vertices, which can be blown down in von Randow's sense.

Proof. Let I be a graph as in Theorem 5.1. Then a simple induction shows A(T)

can be diagonalized as
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di e e en
tag(e) ey, ’Cl,sl’CZZ’ ’°2,sz’ ’cm,sm)

with
= [b

13 ij’bi,j+1""’bi,si

1.

Thus T can be positive definite if and only if e(M) > 0, and similarly for
negative definite, Assume now e(M) > 0, by reversing the orientation of M 1if
necessary. Normalize the Seifert invariant of M to satisfy 0 < B, < o for

1

i=1, ..., m. Then ai/Bi can be uniquely expanded as acontinued fraction

o /8, = [b

i >
i il""’bis] with bi' 2 2.

]
A simple induction then shows cij >0 for all i,j, so A(I) is positive de-
finite.

Conversely, suppose A(I) is positive definite, and by blowing down 1f neces-
sary, assume no bij equals 1. Then bij 2 2 for all 1,j (since bij >0
by positive definiteness). This forces 0 < Bi < @ for the Seifert invariants,
so the Seifert invariants are in normalized form, hence unique, and the bij are

then uniquely determined by the above comments.

Corollary 5.3. Let M be a Seifert manifold with eM) # 0. Then by reversing

orientation if necessary we can assume e(M) < 0, and M is then the link of an

*
isolated surface singularity with C -action, and the ''canonical negative definite

graph T for M'" given by the above theorem is the dual graph of a resolution of

this singularity.

Proof. One can do plumbing holomorphically to obtain P(I') as a complex manifold
with holomorphic C*-action and then apply Grauert [G] to blow down the central con-
figuration of curves in P(') . That one can blow down equivariantly follows by
functoriality of Grauert's theorem. Since the complex structure one puts on P(I)
is in general far from unique, one, of course, gets a whole family of possible sin-

gularities. One can also prove this corollary directly via the injective holomor-

*
phic C -actions of Conner and Raymond [CR1l], by showing that they can be compacti-
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fied by a single singular point to give a complex affine variety, if the Euler num-

ber is negative.

Remark. The resolution given by the above corollary is the minimal "good" resolution
of the singularity. In some cases, one can blow down further. For example, Theo-
rem 2.1 shows that the link X(2,11,19) of the singularity of V(2,11,19) =

€C3 2 11, 19 _ . . .
{z /214—22 4—23 =0} 1is the Seifert manifold M(0;(1,1),(2,-1),(11,-2),(19,-6))

so Corollary 5.3 gives the graph

-2

as the dual graph of the minimal good resolution. Blowing down (in the sense of
complex manifolds; we cannot do it in the sense of plumbing graphs, since the (-1)-

vertex has three neighbors) can be done twice, giving the result

where the heavy line means a tangency of intersection number 2 between the cor-
responding curves of the resolution. Since X(2,11,19) is the boundary of a regu-
lar neighborhood of the corresponding configuration of curves, this shows that
¥(2,11,19) bounds a simply connected four manifold Y with negative definite in-
tersection form of signature -8 (which must hence be equivalent to the standard
E8 form, by the classification of such forms, but this can easily be seen directly).
It is of interest to know which homology spheres bound simply connected manifolds
with even definite intersection forms. For Seifert homology spheres, the minimal reso-
lution of the corresponding singularity will sometimes provide a positive answer. For
example, the minimal good resolution for ¥(2,4k-1,8k-3), or what is the same, the

canonical plumbing diagram, has even form of signature -8k . It is, in fact, the

bilinear form commonly denoted r8k' ¥(2,8k-5,12k-7) is another example giving
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even forms of signature -8k.

The following table gives all X(p,q,r) with p <q < r pairwise coprime,
p=2 and <20, or p=5 and q £ 10, for which the minimal resolution gives
what we want. Omitted weights are =-2. Double lines represent curves of the re-
solution intersecting tangentially with intersection number 2. ‘Iriangles represent

three curves intersecting transversally in one point.

TABLE
(p,9.x) signature resolution graph
2,3,5 -8 -— I
2,7,13 -16 — . -4
2,11, 17 -16 . I .
2,11, 19 -8 -4
2,11,21 -24 L [ -6
2,13,21 -8 “h
2,15, 29 -32 — -8
2,19, 29 -24 o I -6
2,19,37 ~40 N [ . -lo
3,4,7 - 8 \ -4
3,5,13 -8

.,

3,7,17 -8 4
4,5,19 -24 ._4._.3_4
4,7,9 -16 RN

. -4
4,7 ,27 32 — e

-4
5,7 ,27 -8 /\ &,
5’9’13 -8 a—_.:b;es—‘
-4

5,9,31 -8 o -6
5,9,43 -24 . RD-S

One can simplify the algorithm provided by Theorems 2.1 and 5.1 for finding a
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plumbing diagram for Z(al,...,an) by observing that if
[bl,...,bs] =p/q, b, =22
then

(b_sb_ys--e5by1 = /g’

7

with 0<qgsp, 0<q’'=p, qq9' =1 (mod p). We thus get the

Algorithm 5.4. If 8y veey a = are pairwise coprime integers with aJ. = 2, de-
fine Cys vens C by
c, = ~a, . a a (mod a, 0<c,<a,.
j 1 i n P i
Expand aj/cj as a continued fraction
= >
aJ/cJ. [d 174527 ’dJ;Sj] s dJl z 2
Then
_dl s d d
R - -
L A ¥ 11
~-b
T = - - .
- - - e
-d
™80 _dmZ _dml

is the canonical (in the sense of 5.2 and 5.3) plumbing graph for Z(al,...,an) B

where b is best determined in practice by estimating it via the equation

b =Zj 1/[dj,sj""’dj2’dj1] + l/a1 va. @

We leave the proof to the reader as well as the generalization to non~coprime

6. up-Invariant for Seifert Manifolds

We first give a slightly generalized version of the usual definition of wp-in-
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variant. If X4 is any oriented four-manifold, a class d EHZ(X;Z) will be called

a spherical integral Wu class if it satisfies:

a) d can be represented by a smoothly embedded sphere;
b) The mod 2 reduction w of d satisfies x°x =x-w for all

x € HZ(X;Z/Z) (dot is intersection number).

Theorem 6.1. Let M3 be a (Z/2)-homology sphere. Let X4 be a 4-manifold with
a spherical integral Wu _class d, such that EBX4 =M3 . Then

uM) = sign X - d°d (mod 16)
is an invariant of M.

Proof. If X' ,d’ 1is another such pair and Y = XU (-x') pasted along the boundary
M, then the Meyer Vietoris sequence shows HZ(Y;Z/Z) ':HZ(X;Z/Z) ® HZ(X';Z/Z) and
dY =d+ d’ is a spherical integral Wu class for Y. By a theorem of Kervaire

and Milnor [KM], sign(Y) - d,-d is divisible by 16. Since sign(Y) =

Y Y
sign (X) - sign (X') and dy-dgy=d-d - d’-d’, the theorem follows. Note that

if d = 0 the theorem reduces to the usual definition of y-invariant, and as is

well known, such an X always exists.

Theorem 6.2, M = M(g; (ozi,Bi),i= ly...,m) is a (Z/2)-homology sphere if and only
if g =0 and either:
(1) all the o, are odd and ZBi is odd; or

(ii) exactly one of the o is even, say o -

In these cases the u-invariant is given respectively by

(1) w00 =TT (e(oy,8,) +sign §) + sign eGN) (mod 16)

(ii)  wan Z:Llc(ai- B.,) + sign eQ) (mod 16)

where c(p,q) is the function introduced in [N1]described below, e(M) = -Z Bi/ai )

and in case (i1) we have chosen the Seifert invariant so that (a/i - Bi) is odd for

all i (possible, by replacing Bi by Bi'."ai if necessary for each i > 1, and

then adjusting Bl s0 e(M) is unchanged).
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Here c(p,q) is defined for coprime integer pairs (p,q) with p odd. It is

uniquely determined by the recursions

clp,¥1) =
c(p,~q) = c(-p,q) = -c(p,q)
c(p,ptq) = c(p,q) + sign(q(p+a))
c(p¥2q,9) = c(p,q) -

These recursion formulae, in fact, give the fastest computation of c¢(p,q) in prac-
tice, but various other descriptions of c¢(p,q) are known. Before proving the

above theorem, we describe some of them.

Proposition 6.3. If p,q >0 then

(1) ec(p,q) = u(L(q,p)) (mod 16) , q odd;

(i1) c(p,q) a(L(q,p),T) , where « 1is the Browder Livesay invariant and T

is the involution on L(q,p) with orbit space L(2q,p) ;

(1i1) c(p,@) = T(-1)F # (0<k<q|i<kp/g<i+l],

- 1}“ (D) (P41

=1 (-1 @P-1)

=d-l- 4N, 4 odd,

where N = #{lsis—"-<pi<q(mod q)} .

q-l}q-l
p,q 2|2

Proof. (i) is the special case of Theorem 6.2 with M =M(0; (p,q)) = L(q,p) for

q odd. Equation (ii) is a way c(p,q) originally came up in [N1]. This function

was renamed t(q;p) and generalized by Hirzebruch and Zagier ([H1], [HZ], especially
pp. 245-246) and (iii) is a selection of the many formulae for t(q;p) given there.

The last formula is especially interesting, since by Gauss, (-l)Np)q = (g—) is

the quadratic residue symbol, so the last formula implies
cp,q) =1 - 2(§) +q (mod 8), q odd.

This was first observed by Hirzebruch [HNK].
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We have appended, at the end of this section 6, a table from [N-1] for c(p,q) .

A1l values for p £ 27 and q £ 26 are given.

Proof of Theorem 6.2. Firstly, as in the proof of Theorem 4.1, one sees that M =

M(g; (@,8,)) 1is a (Z/2)-homology sphere if and only if g =0 and

ZBial a/i a0 is odd. This implies the first statement of the theorem.
To see the formulae for w®M) , we filrst consider case (ii). That is, we as-
sume M = M(0; (ai,Bi),i=l,...,m) with o even, o odd for i > 1. As al-

ready remarked, we can also assume Bi is even for 1 > 1, by replacing Bi by

Bit o 1if necessary.

Lemma 6.3. If p and q are coprime integers, then p/q has a continued fraction

expansion

p/q = [bl,bz,... ,bS]

(see Theorem 5.1) with each bi even if and only if exactly one of p and q is

even. There is then a unique such expansion satisfying in addition: ibii z 2 for
i>1.

The proof of this lemma is an easy induction which we omit.

Applying this lemma and Theorem 5.1, we can express M3 = 3P(T) , where T is

a weighted tree

b
. 18y
T =
. e e s
ml m2 bm,s

with all weights even, 1bij bil""’bi,si]

each 1., 1Ifwe take X =P(I'), so M = 3X, then the definition of u®) re-

I%Z for j > 1, and ai/Bi=[ for

duces to u(M) = sign (X) (mod 16) . Using the diagonalization of the intersection

matrix A(T) of X = P(I') described in the proof of Theorem 5.2, we see

sign X =Zu(ai,ﬁi) + sign eM)



183

where p(x,,8;) =#(j[l<j§si,bij>0] - #(j11<j§si,bij<o] + sign(e,/8,) . The

following recursion formulae follow directly from this definition of w(e,B) :

w(o,B) is defined if o+ 8 is odd and ged(w,B) = 1;
(o, B = -pla,-B) ;
w(2ba- B8,

p(B,)

w(a,B) + sign b if [af > [8];

-u(a,B) + sign(B/a) 1if [of > [B

.

If we define c’(p,q) = p(q,q-p) , then it is easy to deduce that ¢’ satisfies the
recursion formulae defining c¢, so c’(p,q) = c(p,q) . Thus ulq,q-p) = c(p,q) ,
so u(w,B) = c(a-B,o) , completing the proof of the formula for case (ii).

The proof in case (i) can be done similarly, although in this case M cannot
be written as OPI' where T has only even weights, which complicates this approach

slightly. A more interesting proof uses the following theorem.

Theorem 6.4. Let M3 be a (Z/2)-homology sphere and T:M - M a free orientation

. . . 4
preserving involution. Suppose M = ox and

a) T extends to T':X - X;
b) T’ acts trivially on H,(X,Q) and H,(X;2/2);

c) the 2-dimensional part F of Fix(T’) 1is oriented and is homologous to

a smoothly embedded 2-sphere.

Then

aM,T) = uM) (mod 16)

where o(M,T) is the Browder Livesay invariant.

Proof. By Hirzebruch [H2] (see also [HJ] and [AS])
oM,T) = sign(X,T’) - [F]+ [F]

where [F] EHZ(X;Z) is the represented homology class. Since T’ acts trivially

on HZ(X;Q) , we have sign(X,T’) = sign X. We must thus only show that [F‘]2 €

HZ(X;Z/Z) satisfies [F]2 «x = x+x for all x EHZ(X;Z/Z) . But x =T’scx by
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assumption (b), and [F‘]2 *x =x*T'x, since if we represent x by a cycle C, then
the intersection points of C and T'C pair off under T', and thus contribute
nothing to x *T’x, unless they lie in F N C.

To apply this theorem to case (i) in Theorem 6.2, observe that in this case the
involution T contained in the Sl-action on M 1is a free involution, and if we
write X = OP(T) as in Theorem 5.1, then T extends to T':X - X since the
whole Sl-action extends. Condition (b) is satisfied since T’ is homotopic to the
identity, and (c) is satisfied since Fix(T’) is a union of disjoint spheres (the
zero-sections of some of the bundles being plumbed). Thus u®M™) = o(M,T) (mod 16) .

But oM,T) was computed in [N] as

aM,T) =Z (c(ai,ei) +sign Bi) + sign eM)

whenever M = M(g,(ai,Bi)) with all the o odd, so the proof is completed.
If M is a Z-homology sphere, other formulae for (M) are known, in view of

the fact that M & z3 (ozl,...,an) up to orientation.

Theorem 6.5. M = 23 (a

. fs : s 5
1,...,an) with o pairwise coprime embeds in S as a

fibered knot, the signature of whose fiber V is

[t}

sign(V) Z resnij/a((tan h az)n_zcot hz l
15 j<2« k
j odd

[}

t(al,az,a3) of [HZ] if n = 3.
In particular, uM) = sign(V) (mod 16) .

Proof. If ZS (al,...,an) is defined just like 23 (al,...,an) but using (n-3)
instead of (n-2) equations, then by Hamm [Ha], there is a "Milnor fibration" of

the complement of 23 in ZS , whose fiber V has the above signature (see also
Hirzebruch [H3]). Furthermore, if ¥y eery O are pairwise coprime, then ZS is
5 o SS .

a homotopy sphere, so I V is stably parallelizable, so its intersection

form is even, so WM) = sign(V) (mod 16) if u®) 1is defined (e.g., o pair-
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wise coprime).
For n =3 the function in the above theorem was denoted t(al’aé’aﬁ) and

studied and tabulated by Hirzebruch and Zagier ([HZ], table on page 118).

TABLE OF c(p,q)

a\p 1 35 7 9 11 13 15 17 19 21 23 25
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
3 2 -2 2 -2 2 -2 2 -2 2
4 3 1 -1 -3 3 1 -1 -3 3 1 -1 -3 3
5 4 0 0 -4 & 0 0 -4 4 0

6 5 1 -1 -5 5 1 -1 -5 5
7 6 2 2 -2 =2 -6 6 2 2 -2 =2
8 7 1 -1 1 -1 1 -1 -7 7 1 -1 1 -1
9 8 0 0 0 0 -8 8 0 0
10 9 3 3 1 -1 -3 -3 -9 9 3

11 10 2 2 -2 2 -2 2 -2 -2 -10 10 2
12 11 3 1 1 -1 -1 -3 -11 11
13 12 4 0 0 & 0 0 -4 0 0 <4 =12
14 13 3 1 -3 -1 1 -1 1 3 -1 -3
15 14 2 2 2 -2 =2 -2

16 15 5 3 1 -1 5 3 1 -1 -3 -5 1 -1
17 6 4 4 4 0 -4 0 0 0 0 & 0
18 17 1 -1 -1 1 1 -1 -1 1
19 18 6 2 2 2 2 6 -2 2 -2 2 -6
20 19 5 1 3 1 -5 -1 1 -1 1

21 20 4 0 0 4 0 0 -4
22 21 7 5 3 5 1 7 1 3 1 -1 -3
23 22 6 2 2 -2 2 -2 -6 2 2 2 -2
24 23 3 s 1 -1 3 -3 1 -1
25 26 8 0 0 0 0 8 0 0 0

26 25 7 5 3 103 3 -7 3 5 -1 1

27

-1
-2
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7. p=Invariant for Plumbed Manifolds

Theorem 6,1 enables us to give an algorithm to compute w(M) for an arbitrary
(z/2)-homology sphere obtained by plumbing. Note that a necessary condition that
M = dP(I") be a (Z/2)-sphere is that T be a tree and all the genus weights van-

ish.

Theorem 7.1.

2
(1) Let M = 3P(I) be the result of plumbing bundles over S according to a

tree I'. Then M is a (Z/2)-sphere if an ly if T can be reduced to a col-

d on
lection of isolated points with odd weights by a sequence of moves of type 1 and

2 below. M 1is not a (Z/2)-sphere if and only if [ can be so reduced to a col-

lection of isolated points with at least one even weight.

Let @

where bi and b, are the weights of vertices 1 and j.

Move 1. If b, 1is even, replace T by the disjoint union [’ of rl’ ,TS.

Move 2. If b, 1is odd, replace T' by

(i1) f M =03P(I") 1is a (Z/2)-sphere, define a subset s(I') of the vertices

f T inductively as follows:

a) f T is a set of isolated points with odd weights, put S(ro) equal to

—_ 0 25 2=
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b) If S(T'') is known and T reduces to [’ by Move 1 above, put

s(M) =sT) U1},

s’y ,

according as the pumber of points in S(I'’) adjacent to vertex j 4is con-.

gruent to bj -1 or bj modulo 2.

¢) If T reduces to T

1

by Move 2, put

S(Iy =sCH U (L) if j ¢sT),

sThH if j €s(T’.

Then

p®) = sign A(T) - Z bi (mod 16),
iesD

where A(T) is the matrix of the graph.

Proof. Hl(BP(f)) T coka (D)) , so M =03P({) 1is a (Z/2)-sphere if and only if
det A(T) 1is odd. But it is easily verified that Moves 1 and 2 do not change

det A(T) (mod 2) , so the first part of the theorem follows. For the second part,
let X = P(I) and let (eiii a vertex of T} be the standard basis of HZ(P(T);Z)

represented by the zero-sections of the plumbed bundles. Then a simple induction

shows that d = I e, 1s a spherical integral Wu class for X and that d.d-=
ies(MH *
z b, . Since sign X = sign A(T') , the theorem follows.
. i
ies
Problem 7.2. If M is a (Z/2)-homology 3-sphere with a free orientation pre-

serving involution, is it true that pM) = oM,T) (mod 16) ?

The answer is "'yes'" for Seifert Z-homology spheres, and more generally for
Seifert (Z/2)-spheres M(O;ai,Bi)) with pairwise distinct Seifert pairs (ai,Bi mod ai).

In these cases we shall show in a later paper that any free involution must be in
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1 ; . .
the S’ -action, putting us into the situation of the proof of part (i) of Theorem

6.2.

8. Orientation Reversing Maps

It turns out that many properties of a Seifert manifold are determined by its

Euler number e(M) .

Theorem 8.1. If eM) # 0, then ap am\e(M)\ = order of torsion of Hl(M;Z).

If e(M) =0, then M fibers equivariantly over the circle. f M 1is not a prin-

cipal circle bundle over a torus, then M fibers over the circle if and only if the

fibering is equivariant.

This is due to Orlik, Vogt and Zieschang [0VZ] and Orlik and Raymond in certain
exceptional cases. The fibering, if it exists, is far from unique. These fiberings
have been constructed explicitly from the viewpoint of homologically injective ac~
tions by Conner and Raymond [CR2]. That these fiberings are Sl-equivariant fol-
lows most easily from this viewpoint. The principal circle bundles over the torus
are the only Seifert fiberings which fiber over the circle but fail to fiber equi-~
variantly. (A1l but the 3-torus has eM) # 0.) The Sl-equivariant fiberings
are also constructed explicitly from a plumbing viewpoint by Neumann in [N3].

The present investigation arose from the next

Theorem 8.2. If the Seifert manifold M 1is not a lens space, then the following

statements are equivalent:

(1) M admits a free orientation reversing involution

(ii) M admits an orientation reversing involution

(iii) M admits an orientation reversing homeomorphism

(iv) M admits an orientation reversing self-homotopy equivalence

(v) M fibers over st and admits an orientation reversing free involution

which commutes with the Sl-action.

Proof. Clearly (v)=>(i)==(ii)==(iii)==)(iv). We show (iv):=$xv). We suppose

first that M has infinite fundamental group. We assume M 1is not the 3-torus,
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Then by [W] if M 1is sufficiently large or by [OVZ] or [CR3], in general, any homo-
topy equivalence M - -M 1is homotopic to a fiber preserving homeomorphism, so

e(M) = e(~M) = -e(M) . Hence, eM) = 0. Therefore, M fibers over Sl equi-
variantly. In fact, since M has Seifert invariants (g (ai,Bi)) then -M has
Seifert invariants (g;(ai,-Bi)). This easily yields that the Seifert invariants

of M must be expressible as

M= (g; (Z’bl)"“’(Z’bs)’(ai’ﬁi)’(ai’_Bi))

v

for some s,k =0, oli>2, i=1, ..., k. Now e) = 0 implies %Zbi=0

and since the bi are odd, this implies s is even. Thus, the Seifert invariants

for M are equivalent to
(vi) (g5 (o,8;),(0,-8),i=1,...,0) .

Therefore, M 1is the orientation double covering fixed-point free Sl-manifold by
Seifert [S;p. 198]. This completes the proof if ni(M) is infinite.

Our attack for the finite fundamental groups must be different. Each Seifert
manifold with finite non-abelian fundamental group appears as 33/G where G 1is a
finite subgroup of S0(4) which acts freely on 33 , that is, a spherical space
form. The 2-Sylow subgroups of these manifolds are either cyclic of order at
least 4 or a generalized quaternionic group. The 2-Sylow subgroups are all con-
jugate and in the cyclic case, there is a unique subgroup of order 4. The gen-
eralized quaternionic groups have a characteristic subgroup of order 4 , namely the
second term of the upper central series. The quaternion group itself has a unique
conjugacy class of elements of order 4. In any case, we may pass to the unique
covering space corresponding to the subgroup of order 4 since this is determined
up to conjugacy.

This must be a lens space L(4,1) or L(4,3). Whether it is L(4,1) or
L(4,3) will be determined by the orientation of M. Now any self homotopy equi-
valence f of M must preserve the unique conjugacy class of our subgroup of

~
order 4. Hence, f may be lifted to a self homotopy equivalence f£:L(4,a)-L(4,a).
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(o]
If f reverses orientation, then £ must do the same. But, L(4,a) , a=1, or
3 admits no orientation reversing self-homotopy equivalence since -1 1is not a
square modulo 4. Hence, M could not possess an orientation reversing self-

homotopy equivalence. This completes the proof of Theorem 8.2,

Remarks 8.3. It has been recently shown by C.B. Thomas, [T] that if M 1is a
closed 3-manifold whose universal covering is the 3-sphere, then ﬁl(M) must be
one of the fundamental groups of Seifert manifolds with finite fundamental group.
Since it is also known that any free Z/4 action on the 3-sphere [Ri] yields a
lens space, we may conclude that the argument above also shows that such manifolds

admit no orientation reversing self-homotopy equivalences. Of course, no examples

of closed 3-manifolds with finite fundamental group which fail to be Seifert mani-
folds are known at this time and so this remark may be redundant.
Qur arguments extend to the other types of oriented Seifert 3-manifolds which

have not been considered elsewhere in this paper. We describe this situation now.

8.4. The Closed Case

We assume that M 1is a closed oriented Seifert 3-manifold with a non-orient-
able decomposition space. The fibering mapping is not the orbit mapping of an Sl-
action and its type is distinct from the Seifert manifolds considered elsewhere in

. . . . 1 .
this paper. With a few exceptions, none of these manifolds support an S -action.

They do support '"local S0(2)—~ actions". The Seifert invariants are written
On k ; (01’31))

where the On refers to orientable total space and non-orientable base. They are
exactly similar to the invariants for oriented Seifert fiberings with orientable
decomposition space except that k represents the non-orientable genus of the de-
composition space, and so, k = 1. Just as before the unnormalized representation
is not unique.

We first observe that there is a double covering M’ of M which is an ori-

ented Seifert manifold with orientable decomposition space and whose unnormalized
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invariants are

(g=k-]‘ ; (al’el)’(al’el)"..’(aS’BS)’(aS’BS)) .

One can easily deduce from this that the naturality properties of e(M) =
-ZBi/ai extend to the case of non-orientable decomposition space as long as the
total space M 1is kept orientable. But it is also easy to reduce considerations
to the case of orientable decomposition space, which is the method we shall follow.

Assume, now, that if k = 1, then there areat least 2 singular fibers, if
k = 2, then there is at least one singular fiber, and if k=1, s =2, then
((al’Bl)’(aé’BZ)] # {(2,1),(2,-1)}. We shall treat these presently avoided cases
separately.

Under the hypothesis on the invariants, the element of the fundamental group re-
presented by an ordinary fiber generates an infinite cyclic characteristic subgroup
of ﬁl(M) and nl(M') is the centralizer of this cyclic subgroup. It is easy to
check that every automorphism of nl(M) induces an automorphism of the subgroup
nl(M') . Consequently, we may lift any self-homotopy equivalence h on M to a
self-homotopy equivalence h’ on M’. h will be orientation reversing if and
only if h’ is orientation reversing. Therefore, we know that M’ must be of the
type exhibited in (vi) of Theorem 8.2. Consequently, the Seifert invariants of M

must b

(Onk 5 (o ,8;) 5 (0 ,=B;)) -

We now wish to show that each such M actually admits an orientation reversing
involution, From p. 198 of [S], observe that as long as the non-orientable genus k
of M 1is even, M 1is an orientable double covering of Seifert manifolds of type
(N,n,ITI) and (N,n,III) using Seifert's terminology. For all k > 1, M 1is also
an orientable double covering of certain non-orientable 3-manifolds closely re-
lated to the classical Seifert 3-manifolds. These manifolds described by Orlik
and Raymond admit "local S0(2)-actions'. Although they are not classical Seifert

3-manifolds, they would be considered as injective Seifert 3-manifolds from the
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point of view of Conner and Raymond. We see from the table on page 155 of [OR] that
each M (type n, = On) 1is a double covering of a non-orientable local S0(2)-
manifold, provided that k > 1. For k = 1, none of the tabulated double coverings
will work. However, there exists an involution on RPZ so that an isolated point
and orientation reversing circle appear as the fixed point set. This involution is
embedded in the effective S0(2)-action on RPZ . With this involution, one may de-
fine an involution on M where k =1 and the Seifert invariants satisfy the ne-
cessary conditions for an orientation reversing homeomorphism. First, one removes
the tubular neighborhoods of the singular fibers. The resulting circle bundle with
structure group 0(2) 1is the restriction to the deleted RPZ of the associated
sphere bundle S(6©1) where &6 1is the line bundle det (TRPZ) and 1 denotes
the trivial line bundle. It makes sense, since the bundle has a section, to flip

in the 1-direction. This carries the bundle over the region away from a Mobius
band into itself by a rotation in D2 and a flip in Sl. This can be extended to
the deleted tubular neighborhoods. The involution has 2 isolated fixed points

and so the orbit space is not a manifold. (No free involution presumably exists in
case k = 1. The argument to check that no free involution exists is rather com-
plicated and the details have not been checked.)

We turn now to the omitted cases., M = (Onl; (2,1),(2,-1)) has an involution as
described above. M = (On2; (1,8)) can also be regarded as a torus bundle over the
circle with monodromy (:]é_g ), B€zZ. If B # 0, then the fundamental group
of the torus fiber is a characteristic subgroup. The outer automorphism group of
Hl(M) is calculated in Conner and Raymond [CR4;6.14]. It is readily seen from this
calculation that if 8 # 0, M admits no orientation reversing self-homotopy equi-
valence. For B =0, M can be identified with (g=0,(2,1)(2,-1),(2,1),(2,-1))
which does admit an orientation reversing free involution.

The remaining cases to treat are M = M(Onl ;(o&,Bl))- If (Oi;Bl) = (1,0,
then M is RP3 # RPB which certainly has an orientation reversing homeomorphism.
If B4 0, then M =M(0Onl;(w,B)) also has a Seifert fibering with orientable

base as M = (0;(2,1)(2,-1),(o,B)) . If B = £l this is the lens space #L (4a,2a+1)
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and if \Bl > 1 it is a nonabelian spherical space form. (This corrects a state-
ment in [OR].) 1In either case it admits no orientation reversing equivalence.

We may now summarize our result for the closed case as follows:

Theorem 8.5. The following are equivalent for M = M(Onk ;(ai’Bi)) not a lens

space:

(i) M admits an orientation reversing self-homotopy equivalence,

(ii1) M admits an orientation reversing homeomorphism,

(iii) M admits an orientation reversing involution,

(iv) The Seifert invariants may be written as

(Onk; (aJ,BJ);(aJ;‘BJ)) .

Moreover, if k > 1, the orientation reversing involution can be chosen to be

free.

8.6. M _Compact But Not Closed

For this case we assume M # 0. Let h denote the number of boundary compo-

nents. Then the Seifert invariants for M are given by

((g,h) ; (ai’Bi))

(On(k;h) H (ai’Bi)) >

where we may assume that all o >1, 0< Bi < o and i=0,1,2,..., m.
Similar to our procedure in 8.4, we assume that if g =0, h=1, then m>1,
and if k=1, h=1, then m# 0. We wish to consider only self-homotopy equi-
valences that preserve the '"peripheral structure”. Then, in order that f:M - M

be such an orientation reversing self-homotopy equivalence, it must follow that
((ai’Bi)} = ((al’Bl)’(al’al_ Bl)""’(at’ﬁt)’(at’at_ Bt)]

As before, involutions can be constructed on each of these manifolds. However, when
the Euler characteristic of the decomposition space is odd, we cannot expect to find

free involutions in general.
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Added in Proof. The reason given in 8.2 for the quaternion group is incorrect. The

result is still valid since the quaternion group can be embedded in SU(2) . Con-

sequently, the covering space associated to each subgroup of order 4 1is the lens

space L(4,3) , or equivalently, the lens space L(4,1)

of SU(2) 1is used.

if the opposite orientation

The rest of the argument proceeds as before.
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