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INTRODUCTION

The influence of a great teacher and a superb mathematician is

measured by his published work, the published works of his students,

and, perhaps foremost, the mathematical environment he fostered and

helped to maintain. In this last regard Ralph Fox's life was particularly

striking: the tradition of topology at Princeton owes much to his lively

and highly imaginative presence. Ralph Fox had well defined tastes in

mathematics. Although he was not generally sympathetic toward topo­

logical abstractions, when questions requiring geometric intuition or

algebraic manipulations arose, it was his insights and guidance that

stimulated deepened understanding and provoked the development of

countless theorems.

This volume is a most appropriate memorial for Ralph Fox. The con­

tributors are his friends, colleagues, and students, and the papers lie in

a comfortable neighborhood of his strongest interests. Indeed, all the

papers rely on his work either directly, by citing his own results and his

clarifications of the work of others, or indirectly, by ac know ledging his

gentle guidance ihto and through the corpus of mathematics.

The reader may gain an appreciation of the range of Fox's own work

from the following bibliography of papers published during the thirty-six

years of his mathematical life.

L. Neuwirth

PRINCETON, NEW JERSEY

OCTOBER 1974
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Knots and Links



SYMMETRIC FlEERED LINKS

Deborah L. Goldsmith

O. Introduction

The main points of this paper are a construction for fibered links, and

a description of some interplay between major problems in the topology of

3-manifolds; these latter are, notably, the Smith problem (can a knot be

the fixed point set of a periodic homeomorphism of S3), the problem of

which knots are determined by their complement in the 3-sphere, and

whether a s imply connected manifold is obtainable from S3 by surgery on

a knot.

There are three sections. In the first, symmetry of links is defined,

and a method for constructing fibered links is presented. It is shown how

this method can sometimes be used to recognize that a symmetric link is

fibered; then it reveals all information pertaining to the fibration, such as

the genus of the fiber and the monodromy. By way of illustration, an

analysis is made of the figure-8 knot and the Boromean rings, which, it

turns out, are symmetric and fibered, and related to each other in an

interesting way.

In Section II it is explained how to pass back and forth between dif­

ferent ways of presenting 3-manifolds.

Finally, the material developed in the first two sections is used to

establish the interconnections referred to earlier. It is proved that com­

pletely symmetric fibered links which have repeated symmetries of order 2

(e. g., the figure-8 knot) are characterized by their complement in the

3-sphere.

I would like to thank Louis Kauffman and John W. Milnor for conversa-

lions.
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I. Symmetric fibered links

§l. Links with rotational symmetry

By a rotation of S3 we mean an orientation preserving homeomorphism

of S3 onto itself which has an unknotted simple closed curve A for

fixed point set, called the axis of the rotation. If the rotation has finite

period n, then the orbit space of its action on S3 is again the 3-sphere,

and the projection map p: S3 .... S3 to the orbit space is the n-fold cyclic

branched cover of S3 along peA).

An oriented link L C S3 has a symmetry of order n if there is a rota­

tion of S3 with period n and axis A, where An L ~ ep, which leaves

L invariant. We will sometimes refer to the rotation as the symmetry,

and to its axis as the axis of symmetry of L.

The oriented link L c: S3 is said to be completely symmetric relative

to an oriented link Lo' if there exists a sequence of oriented links

Lo' L 1 ,", L n = L beginning with Lo and ending with L n ~ L, such

that for each i 1= 0, the link L i has a symmetry of order ni > 1 with

axis of symmetry Ai and projection Pi: S3 .... S3 to the orbit space of the

symmetry, and L i_ 1 "'" p/L i). If Lo is the trivial knot, then L is

called a completely symmetric link. The number n is the complexity of

the sequence. Abusing this terminology, we will sometimes refer to a

completely symmetric link L of complexity n (relative to Lo) to indi­

cate the existence of such a sequence of complexity n.

Figure 1 depicts a completely symmetric link L of complexity 3,

having a symmetry of order 3.

{'~

~~cfdu~C2 \\ ~
~')YJ

LJ L~
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§2. Symmetric fibered links

An oriented link L C S3 is fibered if the complement S3 - L is a

surface bundle over the circle whose fiber F over 1 (SI is the interior

of a compact, oriented surface F with JF ~ L.

Such a link L is a generalized axis for a link L'c S3 - L if L'

intersects each fiber of the bundle S3 - L transversely in n points. In

the classical case (which this generalizes) a link L'c R3 is said to have

the z-axis for an axis if each component L'i has a parametrization L'i(e)

by which, for each angle 00' the point L'i(eO) lies inside the half-plane

e", 00 given by its equation in polar coordinates for R3. We will define

L to be an axis for L'C S3 if L is a generalized axis for L' and L

is an unknotted simple closed curve.

We wish to investigate sufficient conditions under which symmetric

links are fibered.

LEMMA 1 (A construction). Let L' be a fibered link in the 3-sphere and

suppose p: S3 --> S3 is a branched covering of S3 by S3, whose branch

set is a link Be S3 - L'. l£ L' is a generalized axis for B, then

L = p-l(L') is a fibered link.

Proof. The complement S3 - L' fibers over the circle with fibers Fs'

s ( SI, the interior of compact, oriented surfaces Fs such that JFs = L'.

Let Fs = p-l (Fs ) be the inverse image of the surface Fs under the

branched covering projection. Then aFs = Land Fs - L, s ( SI, is a

locally trivial bundle over SI by virtue of the homotopy lifting property

of the covering space p: S3 - (L U P-1 (B)) -, S3 - (L'U B). Thus S3 - L

fibers over SI with fiber, the interior of the surface Fl'

REMARK. An exact calculation of genus (F1) follows easily from the

equation X(F1 _p-l(B)) = nx(F1 -B) for the Euler characteristic of the

covering space F1 - p.-l(B) ., F1 - B. For example, if p: S3 --> S3 is a

regular branched covering, L has only one component and k is the
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number of points in the intersection B n F
1

of B with the surface F
1

,

we can derive the inequality: genus (F1) ~ n genus (F1 ) + ~ + n(ki2~.

From this it follows that if k> 1, or genus (F1 ) > 0, then genus (F1 ) > 0

and L is knotted.

Recall that a completely symmetric link L C S3 (relative to L o) is

given by a sequence of links Lo' L 1 ,.··, L n = L such that for each i 1= 0,

the link L i has a symmetry of order ni with axis of symmetry Ai' and

such that Pi: S3 --+ S3 is the projection to the orbit space of the symmetry.

THEOREM 1. Let L C S3 be a completely symmetric link relative to the

libered link L o' defined by the sequence of links L o' L 1 ,. .. , L n = L. If

for each i I- 0, the projection Pi(Li) of the link L i is a generalized

axis for the projection Pi(A i) of its axis of symmetry, then L is a non­

trivial fibered link.

Proof. Apply Lemma 1 repeatedly to the branched coverings Pi: S3 --+ S3

branched alol'g the trivial knot Pi(A i) having Pi(Li) "'" L i_ 1 for general­

ized axis.

The completely symmetric links L which are obtained from a sequence

L o' L 1 ,.··, L n = L satisfying the conditions of the theorem, where Lo is

the trivial knot, are called completely symmetric fibered links.

EXAMPLES. In Figure 2 we see a proof that the figure-8 knot L is a

completely symmetric fibered knot of complexity 1, with a symmetry of

order 2. It is fibered because p(A) is the braid a2" l al closed about

the axis p(L). The shaded disk F with JF = La intersects p(A) in

three points; hence the shaded surface F= p-l(F), which is the closed

fiber of the fibration of S3 - Lover Sl, is the 2-fold cyclic branched

cover of the disk F branching along the points F n p(A), and has

genus 1.

In Figure 3, it is shown that the Boromean rings L is a completely

symmetric fibered link of complexity 1, with a symmetry of order 3.
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F

tJ~is A
of sr'",etnt

3- fold 1p ,,'" breuded Covet'

f(L) lL)

l~ l~

piAl@?) f{LJ lAlCf{(2 r{LJ6)

4.xis A

Fig. 2. Fig. 3.

This link is fibered because p(A) is the braid a2
1a1 closed about the

axis p(L). The surface F = p-l(F) which is the closed fiber of the

fibration of S3 - Lover SI is not shaded, but is precisely the surface

obtained by Seifert's algorithm (se~ f12]). It is a particular 3-fold cyclic

brunched cover of the disk F (shaded) branching along the three points

F n p(A), ;1 nd hus v,enus I.
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Bor(J/f7ean r"",s ~ Cdinf"Jt.~ S3"""t.tric.~W
lmk

Fig. 4.

Finally, we see from Figure 4 that these two examples are special

cases of a class of completely symmetric fibered links of complexity 1

with a symmetry of order n, obtained by closing the braid bn, where

b -1
= a2 a l ·

II. Presentations of 3-manifolds

There are three well-known constructions for a 3-manifold M: 1\1 may

be obtained from a Heegaard diagram, or as the result of branched covering

or performing "surgery" on another 3-manifold. A specific construction

may be called a presentation; and just as group presentations determine

the group, but not vice-versa, so M has many Heegaard, branched covering

and surgery presentations which determine it up to homeomorphism.

Insight is gained by changing from one to another of the three types of

presentations for M, and methods for doing this have been evolved by

various people; in particular, given a Heegaard diagram for M, it is known

how to derive a surgery presentation ((9]) and in some cases, how to

present M as a double branched cover of S3 along a link ([2]). This

section deals with the remaining case, that of relating surgery and branched

covering constructions.

§l. The operation of surgery

Let C be a closed, oriented I-dimensional submanifold of the oriented

3-manifold M, consisting of the oriented simple closed curves c l ,"', ck'

An oriented 3-manifold N is said to be obtained from M by surgery on

C if N is the result of removing the interior of disjoint, closed tubular
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neighborhoods T i of the ci's and regluing the closed neighborhoods by

orientation preserving self-homeomorphisms cPi: aTi ... aTi of their

boundary. It is not hard to see that N is determined up to homeomorphism

by the homology classes of the image curves cPi(mi) in HI (aT i; Z),

where mi is a meridian on aTi (i.e., mi is an oriented simple closed

curve on aT i which s pans a disk in T i and links ci with linking

number +1 in T i)' If Yi is the homology class in HI (aT i; Z) repre­

sented by cPi(m i), then let M(C;YI'''''Yk) denote the manifold N ob­

tained according to the above surgery procedure.

When it is possible to find a longitude Ei on aT i (i.e., an oriented

simple closed curve on aT i which is homologous to c i in T i and links

ci with linking number zero in M), then Yi will usually be expressed as

a linear combination rmi + s Ei , r, s (Z, of these two generators for

HI (aTi ; Z), where the symbols mi and Ci serve dually to denote both

the simple closed curve and its homology class. An easy fact is that for

a knot C in the homology 3-sphere M, M(C; rm + s E) is again a homology

sphere exactly when r = ± 1.

§2. Surgery on the trivial knot in S3

An important feature of the trivial knot C c: S3 is that any 3-manifold

S\C; m+ kE), k (Z, obtained from S3 by surgery on C is again S3. To

see this, decompose S3 into two solid tori sharing a common boundary,

the tubular neighborhood T I of C, and the complementary solid torus

T2' Let 1>: T2 ... T2 be a homeomorphism which carries m to the curve
~ 3 3

m j- k E; then cP extends to a homeomorphism cP: S -> S (C;, + k E).

Now suppose B c: S3 is some link disjoint from C. The link

Be S3(C; m+ kE)" is generally different from the link Be S3. Specifically,

B is transformed by the surgery to its inverse image cP-I(B) under the

identification cP: S3 ... S3(C; m+ k E). The alteration may be described in

the following way:

Let B be transverse to some cross-sectional disk of T 2 having E

for boundary. Cut S3 and B open along this disk, and label the two
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copies the negative side and the positive side of the disk, according as

the meridian m enters that side or leaves it. Now twist the negative

side k full rotations in the direction of - e, and reglue it to the positive

side. The resulting link is <,6-1 (B).

For example, if B is the n-stringed braid b (Bn closed about the

axis C, where Bn is the braid group on n-strings, and if c is an

appropriate generator of center (B n), then Be S3(C; m+ke) is the

closed braid b· c k. Figure 5 illustrates this phenomenon. In Figure 6 it

is shown how to change a crossing of a link B by doing surgery on an

unknotted simple closed curve C in the complement of B.

Fig. Sa.

Fig. Sb.

Fig. 6.
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83. The branched covering operation

For our purposes, a map f: N -> M between the 3-manifolds Nand M

is a branched covering map with branch set Be: M, if there are triangula­

tions of Nand M for which f is a simplicial map where no simplex is

mapped degenerately by f, and if B is a pure I-dimensional subcomplex

of M such that the restriction

fl N_f- 1(B): N_f- 1 (B) ,M-B

is a covering (see [5]). The foldedness of the branched covering f is

defined to be the index of the covering fiN - f- 1 (B).

We will only consider the case where the branch set Be M is a

I-dimensional submanifold, and the folded ness of f is a finite number, n.

Then f and N are determined by a representation 771(M-B). S(n) of

the fundamental group of the complement of B in M to the symmetric

group on n numbers (see [4]). Given this representation, the manifold N

is constructed by forming the covering space f': N' • M - B corresponding

to the subgroup of 77 1 (M-B) represented onto permutations which fix 1,

und then completing to f: N -> M by filling in the tubular neighborhood of

B and extending f' to f.

A regular branched covering is one for which f': N' ) M - B is a regu­

lar covering, or in other words, one for which the subgroup of 77 1 (M-B)

in question is normal. Among these are the cyclic branched coverings,

given by representations 77 1 (M-B) -> Zn onto the cyclic group of order n,

such that the projection f: N -> M is one-to-one over the branch set. Since

I. n is abelian, these all factor through the first homology group

77 1(M-B) -> HI (M-Bj Z) -, Zn .

Does there always exist an n-fold cyclic branched covering N -> M

with a given branch set Be M? The simplest case to consider is the

one in which M is a homology 3-sphere. Here HI (M-B; Z) ~ Z Ell Z Ell .. • Ell Z

is generated by meridians lying on tubes about each of the components of
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the branch set. Clearly all representations of HI (M-B; Z) onto Zn

which come from cyclic branched coverings are obtained by linearly ex­

tending arbitrary assignments of these meridians to ± 1. This guarantees

the existence of many n-fold cyclic branched coverings of M branched

along B, except in the case n = 2, or in case B has one component,

when there is only one.

Should M not be a homology sphere, an n-fold cyclic covering with

branch set B will exist if each component of B belongs to the n-torsion

of HI (M; Z), but this condition is not always necessary.

§4. Commuting the two operations

If one has in hand a branched covering space, and a surgery to be per­

formed on the base manifold, one may ask whether the surgery can be

lifted to the covering manifold in such a way that the surgered manifold

upstairs naturally branched covers the surgered manifold downstairs. The

answer to this is very interesting, because it shows one how to change

the order in which the two operations are performed, without changing the

resulting 3-manifold.

Let f: N -> M be an n-fold branched covering of the oriented 3-manifold

M along Be M given by a representation ep:"1 (M-B) .... S(n), and let

M(C; YI "", Yk) be obtained from M by surgery on C C M, where

C n B = ep. Note that the manifold N - f-I (C) is a branched covering

space of M- C branched along B C M- C, and is given by the representa-

tion

where i:"1 (M - [C U Bj) .... "I (M-B) is induced by inclusion. Now let the

components of f-I(T i) be the solid tori Tij , j = 1,· .. ,ni , i=l,···,k;

on the boundary of each tube choose a single oriented, simple closed

curve in the inverse image of a representative of Yi' and denote its

homology class in HI (aT ij; Z) by Yij'
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THEOREM 2. Suppose Yi ,"', Yi are precisely the classes among
1 I'

YI ,''', Yk which have a representative all of whose lifts are closed curves;
I'

let B' = C - U c·. Then f: N -, M induces a branched covering
j = 1 Ij

of the surgered manifolds, branched along BUB' C M(C; YI'''', Yk)' The

associated representation is r/>': 771(M(C; YI ,''', Yk) - [B U B']) .... Sen),

defined by the commutative diagram

and off of a tubular neighborhood f- I (UT.) of the surgered set, the maps
1

f and f' agree.

Proof. One need only observe that the representation r/> does indeed

factor through 771(M(C; YI ,"', Yk)-lB U B']) because of the hypothesis

that there exist representatives of Yi ,"', Yi all of whose lifts are closed
1 I'

curves.

The meaning of this theorem should be made apparent by what follows.

EXAMPLE. It is known that the dodecahedral space is obtained from S3

by surgery on the trefoil knot K; in fact, it is the manifold S3(K; m- n.
We will use this to conclude that it is also the 3-fold cyclic branched

cover of S3 along the (2,5) torus knot, as well as the 2-fold cyclic

branched cover of S3 along the (3,5) torus knot (see [6]). These pre­

sentations are probably familiar to those who like to think of this homology

sphere as the intersection of the algebraic variety IXfC3 :xi+xi+x~=OI

with the 3-sphere IXfC3 : Ixl ~ 11.

According to Figure 7, the trefoil knot K is the inverse image of the

circle C under the 3-fold cyclic hr;lllched cover of S3 along the trivial
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knot B. By Theorem 2, S3(K; m-£) is the 3-fold cyclic branched cover

of S3(C; m-3£) branched along Be S3(C; m-3£). Since C is the trivial

knot, S3(C; m-3£) is the 3-sphere, and Be S3(C; m-3£) is the (2,5)

torus knot, as in Figure Sa. We deduce that the dodecahedral space is

the 3-fold cyclic branched cover of S3 along the (2,5) torus knot.

A similar argument is applied to Figure 8, in which the trefoil knot is

depicted as the inverse image of a circle C under the double branched

cover of S3 along the trivial knot B. By Theorem 2, the space

S3(K;m_£) is then the 2-fold cyclic branched cover of S3(C;m-2£)

along Be S3(C; m-2£), which according to Figure Sb is the (3,5) torus

3-foId c~cllt lp bl'a.rK-hed c.~e ... elF S~
a./oT19 B

B

c

Fig. 7.

c

Fig. 8.
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knot. Hence the dodecahedral space is the 2-fold cyclic branched cover

of S3 along the (3,5) torus knot.

The following definition seems natural at this point:

DEFINITION. Let L be a link in a 3-manifold M which is left invariant

by the action of a group G on M. Then any surgery M(L;Yl,""Yk) in

which the collection IY1'"'' Ykl of homology classes is left invariant by

G, is said to be equivariant with respect to G.

The manifold obtained by equivariant surgery naturally inherits the

action of the group G.

THEOREM 3 (An algorithm). Every n-fold cyclic branched cover of S3

branched along a knot K may be obtained from S3 by equivariant surgery

on a link L with a symmetry of order n.

Proof. The algorithm proceeds as follows.

Step 1. Choose a knot projection for K. In the projection encircle

the crossings which, if simultaneously reversed, cause K to become the

trivial knot K'.

Step 2. Lift these disjoint circles into the complement S3 - K of the

knot, so that each one has linking number zero with K.

Step 3. Reverse the encircled crossings. Then orient each curve ci

so that the result of the surgery S3(ci; m + P.) is to reverse that crossing

back to its original position (see Figure 6).
k

Step 4. Let C = . U c i be the union of the oriented circles in S3- K',
3 3 1=1 3

:md let p: S .... S be the n-fold cyclic branched cover of S along the

trivial knot K'. Then if L = p-l(C), it follows from Theorem 2 that the

n-fold cyclic branched cover of S3 along K is the manifold

S3(L;rlml+rl, .. ·,rkmk+rk) obtained from S3 by equivariant surgery on

the link L, which has a symmetry of order n.

Ex AMPLE (Another presentation of the dodecahedral space). In Figure 9,

I(,t p: S3 > S3 be the S-fold eye I i(' bra nehed cover of S3 a long the
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step.:!.

K

K

Fig. 9.

1<'

~~
C

trivial knot K'. Then if L ~ p-I(C) as in step 4 of Figure 9, the 5-fold

cyclic branched cover of S3 along the (2,3) torus knot K is the mani­

fold S3(L;m I -rl'· .. ,ms-rs ) obtained from S3 by equivariant surgery

on the link L.

III. Applications

We will now derive properties of the special knots constructed in

Section I. Recall that a knot K is characterized by its complement if no

surgery S3(K; m+ k r), k (Z and k -t 0, is again S3. A knot K is said

to have property P if and only if no surgery S3(K; m + kP), k (Z and
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k -J- 0, is a simply connected manifold. A fake 3-sphere is a homotopy

3-sphere which is not homeomorphic to S3.

17

THEOREM 4. Let K be a completely symmetric fibered knot defined by

the sequence of knots Ko' K1 ,"', Kn = K, such that each Ki , i -J- 0, is

symmetric of order ni = 2. Then K is characterized by its complement.

THEOREM 5. Let K be a completely symmetric fibered knot of com­

plexity 1, defined by the sequence Ko' K1 = K, where K is symmetric

of order n 1 = n. If K is not characterized by its complement, then there

;s a transformation of S3 which is periodic of period n, having knotted

fixed point set. If a fake 3-sphere is obtained from S3 by surgery on K,

then there is a periodic transformation of this homotopy sphere of period n,

having knotted fixed point set.

THEOREM 6. Let K be a completely symmetric fibered knot. Then if

K does not have property P, there exists a non-trivial knot K'( S3

such that for some n> 1, the n-fold cyclic branched cover of S3

hranched along K' is simply connected.

It should be pointed out that the property of a knot being characterized

by its complement is considerably weaker than property P. For example,

it is immediate from Theorem 4 that the figure-8 knot is characterized by

its complement, while the proof that it has property P is known to be

difficult (see f71).
The following lemmas will be used to prove Theorems 4-6.

LEMMA 2. The special genus of the torus link of type (n, nk), k -J- 0, IS

hounded below by
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n2 !kl_4
4

Ikl (n2 _1)
4

(n-l) ( Ikl(n+l)- 2)
4

if n even

if n odd, k even

if n odd, k odd .

Proof. The special genus of an oriented link L is defined here to be the

infimum of all geni of connected, oriented surfaces F locally flatly em­

bedded in 0 4 , whose oriented boundary JF is the link L C a04
• This

*special genus, which will be denoted g (L), satisfies an inequality

ia (L)I s:. 2g*(L) + Il(L) - 1/(L)

where a(L) is the signature, 11(L) is the number of components and

1/(L) is the nullity of the link L (see l8] or [10)). The lemma will be

proved by calculating a(L), Il(L) and 1/(L), where L is the torus link

of type (n, nk), k > a (see [6]); then the result will automatically follow

for torus links of type (n, nk), k < 0, since these are mirror images of

the above.

In what follows, assume k> O.

(i)

2_n2 k
a(L) = 2 if n even

if n odd .

The signature a(L) is the signature of any 4-manifold which is the

double branched cover of 0 4 along a spanning surface F of L having

the properties described above (see [8]). The intersection of the algebraic

variety !XfC 3 : xr + x~k + x~ = 81, for small 8, with the 4-ball

!XfC 3 : Ixl s:. I! is such a 4-manifold. Its signature is calculated by

Hirzebruch (l3J) to be at - a-, where
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i i2 !.<1+ =ti!(i1,i2 ):0<i1 <n, 0<i2 <nkl such that 0< 1. ~ (mod 2)(J - t-n nk 2

(1-= til (i1 ,i2 ):0< i1 < n, 0< i2 < nkl such that
i1 i2 !. < 0 (mod 2).-l<n -t -t

nk 2

In other words, if we consider the lattice points {(i ' ~~): 0 < i1 < n, 0 < i2 < nk}

in the interior of the unit square of the xy-plane, and divide the unit square

(0,0

(0, I~)

( ii)

(.-!i) \)
(I) ,)

(I, Y.t)

X
(~,O) 0)0)

Fig. 10.

7J(L) n-1

n

1

into positive and negative regions

as in Figure 10, then a+ is the

total number of points interior to

the positive regions, a- is the

number of points interior to the

negative region, and their differ­

ence af- - a- is given by the

formulae in (i).

if n even

if n odd, k even

if n odd, k odd .

The nullity of a link L is defined to be one more than the ran\< of the

first homology group H1(M; H) of the double branched cover M of S3

branched along L; it follows that ll(L) is independent of the orientation

of L. The result in (ii) can be easily obtained from any of the known

methods for calculating nullities (see [11]).

( iii) Il(L) = n .

Substituting these quantities into the inequality gives the desired

lower bounds for g*(L). Note that except for the (2, ±2) torus links,

nOlle of the non-trivial torus links of type (n,nk) has special genus O.
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In the next few paragraphs, Bn denotes the braid group on n strings;

a single letter will be used to signify both an equivalence class of braids,

and a representative of that equivalence class; and the notation b will

stand for the closure of the braid b Ci.e., the link obtained by identifying

the endpoints of b).

LEMMA 3. If b f BnCn :::: 3) is a braid with n strings which closes to

the trivial knot, and c f Bn is a generator of the center of the braid

group B n, then the braid b· c k , k (Z and k -J- 0, closes to a non­

trivial knot.

Proof. First observe that if bl and b2 are n-stranded braids which

have identical permutations and which close to a simple closed curve such
* - * - Ithat g Cb l )= gl and g Cb 2)= g2' then the closed braid bl ·b2 is a

link of n components whose special genus g*Cb l l 'b2)< gl + g2' This

is illustrated schematically by Figure 11. Imagine that the two abutting

cubes are 4-dimensional cubes 11 and Ii, that their boundaries are S3,

and that the closed braid b/i = 1,2) is positioned in It as shown, with

the intersection bl n b2 consisting of n arcs. Span each closed braid

bi by a connected, oriented, locally flatly embedded surface of genus gi

in the cube It. The union of the two surfaces is then a surface in 14
=

11 U Ii, whose boundary in the 3-sphere aI4 is the closed braid bl l
. b2

Fi I

/' III /
/II /II I

/I I II " II I .I

ll~~
- --1/

-. - . -7
I --

~,.

Fig. 11.
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The boundary bi
l . b2 has n components because the braid bi

l . b
2

with n strings has the trivial permutation; hence attaching the two sur­

faces at n places along their boundaries does not increase the genus

beyond the sum gl + g2' The conclusion that g*(bi
l . b2)::; gl t- g2 is

immediate.

Now suppose the conclusion of the lemma is false; i.e., for some

braid b f B n and k f Z, k f. 0, both band b· c k close to a trivial

knot. Applying the result with b I '= band b2 -- b· c k, we reach a con­

tradiction of Lemma 2, which is that g*(c k) <; 0 + 0, where c k is the

torus link of type (n, nk) n 2' 3. Therefore Lemma 3 must be true.

Now for the proofs of the theorems:

Proof of Theorem 4. Let K' ~ Pn(K) and B oc Pn(A n). Then K is the

inverse image p;;-l (K') of the completely symmetric fibered knot K'

under a 2-fold cyclic branched cover Pn: S3 -, S3 branched along the un­

knotted simple closed curve B having K' for generalized axis. The

knot K' "'" Kn_ I also has repeated symmetries of order 2, and its com­

plexity is one less than that of K. Suppose K is not characterized by

its complement. Then a 3-sphere S3(K; m -+ H), k f. Z and k I- 0, may

be obtained from S3 by surgery on K. According to Theorem 2, this

.1-sphere is the 2-fold cyclic branched cover of S3(K'; m + 2k E) branched

along Be S3(K'; m+2H). By Waldhausen (l131), S3(K'; m+2H) must be

S3 and Be S3(K; m + 2H) must be unknotted.

We will proceed by induction on the complexity of K. If K has com­

plexity 1, then B is some braid b f. Bn closed about the axis K'.

Since K' is unknotted, S3(K'; m+ 2k r) is again S3, and Be S3(K'; m j 2k r)

is the closed braid b· c 2k in S3, for some generator c of cen'ter (Bn)

(recall Section II, §2). This simple closed curve is knotted, by Lemma 3,

which is a contradiction.

Next suppose that every knot of complexity n < N meeting the re­

quirements of the lemma is characterized by its complement, and let K
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have complexity N. From the induction hypothesis it follows that K' is

characterized by its complement, and that S3(K'; m+ 2k E) cannot be S3,

which is a contradiction.

Hence K must have been characterized by its complement.

Proof of Theorem 5. Let B = PI (AI) and K' = PI (K). Then PI: S3 -, S3

is an n-fold cyclic branched cover of S3 along the trivial knot B, such

that B is a braid b (Bn closed about the axis K', and K = p-1 (K').

If K is not characterized by its complement in S3, then S3(K; m+ k E)

is the 3-sphere for some k (Z, k -J- O. It follows from Theorem 2 that

S3 is the n-fold cyclic branched cover of S3(K; m t- nk E) branched along

B C S3(K'; m f nH). Now since K' "" Ko is unknotted, the manifold

S3(K'; m+ nk E) is S3 and the simple closed curve B ( S3(K'; m t nk E) is

the closed braid b· c nk , for some generator c of the center of the braid

group Bn. This closed braid is knotted by Lemma 3!

Similarly, if a fake 3-sphere S3(K; m -r- kf) may be obtained from S3

as the result of surgery on K, then this homotopy 3-sphere is the n-fold

cyclic branched cover of the 3-sphere along the knot b. c nk .

Proof of Theorem 6. The knot K is defined by a sequence Ko,K l ,. .. ,Kj =

Let K'i_l = Pi(Ki) and Bi_ l = Pi(A i). Then there are nefold cyclic

branched coverings Pi: S3 --> S3 branched along the unknotted simple

closed curves Bi having K'i for generalized axis, 0 < i:S j, such that

K· = P-I' l(K'. 1)' If K does not have property P, then a homotopy
1 1-

sphere S3(K; m j H), k (Z and k -J- 0, may be obtained from S3 by

surgery on K. This homotopy sphere is the nrfold cyclic branched

cover of S3(K'j_l;mt-n jH) branched along Bj_ l C S3(K'j_l;mtniH).

It is easy to show that the manifold S3(K'j_l; m+ njH) "" S3(Kj_ l ; m+ njk

is simply connected, and so on, down to S3(K l ; m+ nj'" n3n2 kE). Now

S3(K l ;m+nj".n2 H) is the nl-fold cyclic branched cover of the manifold

S3(K'0; m+ nj'" n2 nl H) branched along Bo C S3(K'0; m+ nj'" n2 nl H).

Let Bo be the braid b (Bn closed about the axis K'o' Then the
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homotopy sphere S3(K l ;m+nj ... n3n2 kP) is the nl-fold cyclic branched

3 n
J
.••• n

2
n l k

cover of S' branched along the knot b· c , where, as usual,

c is some generator of center (Bn).
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KNOT MODULES

Jerome Levine

Among the more interesting invariants of a locally flat knot of codimen­

sion two are those derived from the homology (with local coefficients) of

the complement X. Since, by Alexander duality, X is a homology circle,

one can consider the universal abelian covering X .... X and the homology

groups Hqc)h, which we denote by Aq , are modules over A = 2[t, t- I ].

There is also product structure which will be brought in later.

The modules IAql have been the subject of much study. In the classi­

cal case of one-dimensional knots the Alexander matrix (see [F 1) gives a

presentation of AI. The knot polynomials and elementary ideals are then

derived from the Alexander matrix but depend only on AI. These considera·

t ions generalize to higher dimens ions (see [L 11). The Qlt, t -1 J-modu1es

IAq 0z Ql are completely characterized in [L 1] - this is a relatively simple

task since Qft, t- I ] is a principal ideal domain. We will be concerned

here with the integral problem.

There is quite a bit already known; we refer the reader to [Kl, [S], [G],

IKe], [T 1]. It is the purpose of this note to announce an almost complete

algebraic characterization of the IAql - except for the case q = 1.

In addition we will derive a large array of invariants of a more tractable

nature from the lAql and try to give an exact description of their range.

Some of these invariants are already known, but many are new. Finally,

we will be able to show that these invariants completely determine Aq ,

under certain restrictions. In this case the invariants consist of ideals,

ideal classes and Hermitian forms over certain rings of algebraic integers.
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§1. Module properties of IAql

It is well-known that Aq is finitely generated, as A-module, and

multiplication by the element t - 1 (A defines an automorphism of A
q

(see e.g. lK]). But the deepest property is that of duality. This has been

observed in many ways, but I would like to present a new formulation

which seems like the most suitable.

The duality theorem of [Mi] yields the isomorphism:

(1)

In this equation, n is the dimension of the knot (a homotopy sphere which
2 * - -is a smooth submanifold of Sn-t ) and H

7T
(X, aX) is the homology of the

cochain complex HomjC*CX,aX),A). C*CX) and c*(X,aX) are con­

sidered as left A-modules and the right action of A on A puts the
* - - --structure of a right A-module on H
7T

(X, aX). Hq(X) denotes the right

A-module defined from the original left 1\ structure by the usual means:

aA = Xa, where A f A, a f Hq(X) and A, X is the anti-automorphism of

A defined by f(t) .... f(t -1). Now (1) represents an isomorphism of right

A-modules.

We now use the universal coefficient spectral sequence (see e.g. lM;
* - - - -

p. 323]) to reduce H
7T

(X, aX) to information about H*(X, aX). Since A

has global dimension 2 and the IAq I are A-torsion modules, the spectral

sequence collapses to a set of short exact sequences. Using (1) and the

trivial nature of ax, we derive the following exact sequences for 0< qS n:

(2)

and

Aq = 0, for q > n .

To properly interpret (2) we define T q to be the Z-torsion submodule

of Aq , and Fq ~ Aq/Tq' It is not hard to show that Tq is finite (see
2

[Kl). It can then be shown that ExtA (Ai' A) is a Z-tors ion module and
1

depends only on T i , while Ext;\ (Ai' A) IS Z-torsion free and depends

on F j • As a result, (2) can be rewritten:



(3)

(4)
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2
T q :::::: ExtA (T ,A) for o< q <- n, T ~ 0 for q:2: nn-q q

Fq
1

:::::: ExtA (Fn+1_ q , A) for 0< q :; n, F 'c 0 for q> n .q

27

.',2. Product structure on IAql

The chains of X admit an intersection pairing with values in A (see

IMi], [B]) which satisfies the Hermitian property: a',B = (_1)q(n+2-q) ,B'a,
- -

when a (Cq(X), ~ (Cn+2_ q(X). This induces a Hermitian pairing in the

usual way on H*(X), but, since Aq is A-torsion, this pairing is trivial.

One can then define a linking pairing: Aq x An+1 _ q -> Q(A)/A where

()(J\) is the quotient field of /\., in a manner entirely analogous to the

us ual linking pairing in the Z-torsion part of the homology of a manifold.

This is just the Blanchfield pairing (see [B], [Ke], [T 2]). Under the
1

canonical isomorphism Hom/\. (A, Q(/\.)/A) :::::: ExtA (A, A), for any A-torsion

lIIodule A, the isomorphism (4) is adjoint to the Blanchfield pairing

(which vanishes on Z-torsion). The Hermitian property of this pairing

yields the following strengthening of (4);

(4)' If n = 2q-l, the isomorphism of (4) corresponds to a pairing

< ,>: Fq x Fq -> Q(/\.)/A satisfying the Hermitian property:

<a,,B> = (_l)qtl <,B,a> .

One can define a more obscure linking pairing on the Z-torsion:

1,!:TqxTn_q->Q/Z, which is Z-linear, (_l)q(n-q) symmetric and

;Idmits t as an isometry i.e. fta, t,B1 = fa, ,B]. In the case of a fibered

knot (see [S]) T q is the Z-torsion subgroup of Hq(F), where F is the

fiber, and [,] coincides with the usual linking pairing on H*(F). This
2

pa iring relates to (3) as follows. It can be shown that ExtA(T, A) ::::::

lIomiT, Q/Z), canonically, as A-modules, for any finite A-module T.

II turns out that, under this isomorphism, the isomorphism of (3) is adjoint

I () I. I. The symmetry of f, J yields a strengthening of (3):

(.I)' If n ~ 2q, the isomorphism of (3) corresponds to a Z-linear pairing

1.I:TqxTq ,Q/Z satisfying the symmetry property [a,,B!c(-l)q[,B,a]



28 JEROME LEVINE

§3. Obstructions to smoothness of 3-dimensional knots

If <,>AqxAq -> Q(A)/A is the pairing of (4)', when q is even,

Trotter defines an associated unimodular, even, integral quadratic form A

(see [T 2]). The signature a(A) is a multiple of 8. A smooth, or even

PL locally flat, knot bounds a submanifold M of Sn+2 and it is not

hard to see that a(A) is the signature of M. We conclude from Rohlin's

theorem:

(5) If n = 3, the quadratic form associated to the pairing <, > of (4)'

has signature == 0 mod 16, when the knot is smooth or PL locally

flat.

There do exist topological locally flat knots for which a(A) 1= 0 mod 16

(see [es] or [Ka]).

§4. Realization Theorem: We now present our main geometric result.

THEOREM. Suppose that IF
q

, Tql is a family of finitely generated

A-modules on each of which t-1 is an automorphism. Suppose, further­

more, that Fq is Z-torsion free, T q is finite and they satisfy (3), (3)',

(4) and (4)', for a certain n 2: 1, and (5) if n = 3. We also

assume T 1 ~ O.

Then there exists a smooth n-dimensional knot in (n+2)-sp3ce with

F ,T and the p3irings <, > of (3)' and L, J of (4)' as the associated
q q

knot moduies and linking p3irings.

REMARKS:

(i) One can realize many T 1 f- 0 using the twist-spinning construc­

tion of Zeeman [Z].

(ii) In the case n = 3, I do not know which (F2, <, » not satisfying

(5) can be realized by topological knots.

(iii) In the case n = 2q-1, q 2: 2, the isotopy class of the knot is

completely determined by (Fq' < , » when X is (q-l)-connected

(see [Ke I or [L 21 and [T 21).
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Ker pi+l TO)

Ker pi '

(iv) This theorem includes previous results of [Kl, [G], [Kel In par­

ticular, it is interesting to compare the middle-dimensional results'

of [K] and [G], which are stated in terms of presentations of Fq
or T q .

:;5. Algebraic study of lTq !
We now turn to the algebraic consideration of the modules Fq , Tq and

pairings <, > [, 1 We will attempt to extract reasonable invariants, de­

termine the range of these invariants and, in some cases, use the invariants

to classify.

Let T be a finite A-module. We may, without loss of generality,

<lssume T is p-primary for some prime number p. Consider the associated

modules:

These are modules over the principal ideal domain Ap = Z/(p)[t, t-1l

PROPOSITION.

0) There is a natural exact sequence of Ap-module:

(ii) Given any finite collection lTi , Til of Ap-modules together with

exact sequences: 0 --> T i+1 -> T i --> T i
-> T1+1

--> 0, there exists a

finite p-primary A-module T such that T(n ~ T i , T(i) ~ T i

and the exact sequence of (i) corresponds to the given one.

The modules T (i)' TO) are described entirely by polynomial in­

variants in Ap. These include the local Alexander polynomials con-

s idered in [K] and [G]. The proposition makes it a straightforward matter

10 write down the range of these invariants for Tq if q < } n.

When n· 2q, there is more to be said. For example, let 1\ =

T(i/p T(i f I)' The pairing I, I of (:1)' yields a non-singular
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(-I)q-symmetric pairing L\ x ~i .... Z/(p), for which the action of is an

isometry. Conversely, given L\l with such pairings, there exists T

with a pairing I, I inducing the given ones. Now it is not too difficult

to determine those Ap-modules /\ which admit such pairings. It is

interesting that one obtains different answers for q even and odd and,

therefore, the possible T q , for n-dimensional knots where n -= 2q, are

not identical.

Of course, the polynomial invariants derived here do not classify the

module T q' in general.

§6. Algebraic study of IFql

Let F be a finitely generated A-module which is Z-torsion-free.

Let ¢ f A be an irreducible polynomial and define:

F(¢, i) = Ker ¢i/Ker ¢i-l; then F(¢, i) IS a A/(¢ )-module .

Multiplication by ¢ induces a monomorphism: ¢: F(¢>, i) .... F(¢, i-I).

Suppose R = A/(¢) is a Dedekind domain (for example, if ¢ is quadratic

this will happen when the discriminant of ¢> is square-free) (see also

(T 1]). Then the IF(¢, i)l or, even better, the quotients F(¢>, i-I)/¢>F(¢,i

yield invariants of F in the form of ideals in R, ideal classes, and

ranks. These include all the rational invariants (L 1] and the ideal class

invariants of lFSJ, and the ideals are certainly related to the elementary

ideals of F in A (see IF]). Furthermore, it is not difficult to determine

the range of these invariants, for q < ~ (n 1- 1), by constructing F to

realize any collection of IF(¢, i)l.

The effects of the duality relations (4), (4)' on these invariants seems

complicated, in general. This is also true of the question of classifica­

tion. Both of these problems are made manageable by imposing a

"homogeneity" restriction on F.

Suppose F is ¢>-primary Le. ¢rF c, 0, for some r. Then we may

consider F as a module over A/(¢r) ~ S. Let So be the localization

of S at the prime (¢)-So is a principal ideal domain. Then
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F; F 0 S SO (because F is Z-torsion free). Now F 0 So ""'. L Fi , where
1 <r

Fj is a free So/(¢i)-module. We say F is homogeneous of degree d if

Fj - 0 for all i 1= d. (I'd like to thank David Eisenbud for this formulation

of homogeneity.)

I 'I<OPOSITION.

(i) If F is homogeneous of degree d, then the isomorphism class

of F is determined by the isomorphism class of the nested

sequence of R-modules:

F(¢, d) .... F(¢, d-1) ....... -) F(¢,l)

All the F(¢, i) are R-torsion free modules of the same rank.

(ii) Given any sequence: Bd ) Bd_
1

........... B
1

of R-torsion free

modules of the same rank, there is a homogeneous ¢-primary

A-module F of degree d, whose associated sequence

F(¢, d) ....... -) F(¢, 1) is isomorphic to the given one.

We are still assuming R is Dedekind. If the class number of R is

zero, i.e. it is a principal ideal domain, the classification of the nested

sequence IF(¢, i)! can be formulated in terms of row-equivalence of

matrices over R. If the rank of the F(¢,i) is one, the IF(¢,i)1 are

just a sequence of ideals in R, determined up to scalar multiplication.

Note that So = Q[t, t- 11I(¢r) and so the condition of homogeneity

can be formulated in terms of the polynomial invariants of [L 1].

Of course these results extend to sums of homogeneous modules.

Suppose n = 2q-1, and F has a pairing <, > as in (4)'. If ¢ is

relatively prime to ¢, then <, > pairs the ¢-primary component of F

to the ¢-primary component (when F is the sum of its ¢-primary com­

ponents, over all ¢). No further restriction is imposed on the ¢-primary

component by the existence of <, >.



32 JEROME LEVINE

If ¢, ¢ are associate elements of A we may assume ¢ = ¢ (see

[L 1]). F(¢,1) inherits a (-1)q+l-Hermitian non-degenerate pairing from

< ,> which we denote by:

<, >': F(¢, 1) x F(¢, 1) -> So/(¢) = Q(R)

the quotient field of R.

PROPOSITION. Suppose F is homogeneous ¢-primary of degree d,

where ¢ = ¢. Then

(i) F(¢, i) is dua I to F(¢, d-i-t 1) under <, >', i.e. < F(¢, i),

F(¢,d-i+l» C R and the induced pairing <, >. : F(¢,i)x
1

F(¢,d-i+1) -> R is non-singular.

(ii) The injections ¢: F(¢, i+1) .. F(¢, i) and F(¢,d-i+1) ->F(¢,d-i)

are adjoint with respect to <, >i and <, >i+l.

(iii) The isomorphism class of (F, < ,» is determined by that of the

system (IF(¢, i)l, <, >').

(iv) Given <, >' on F(¢, 1) satisfying (i), (ii), there exists <, >

on F inducing it.

Thus the isomorphism classes of such (F, <, » correspond to the

isomorphism classes of torsion-free R-modules B equipped with a non­

degenerate (non-singular, if d is odd) (-1)q+l-Hermitian pairing and a

sequence· of submodules of equal rank: Bd C Bd _ 1 C··· C Bc = B, where

d = 2c-1 or 2c-2, by setting B i = F(¢, i).

A solution of the local classification problem i.e. over the completions

of R, can be derived from fJ].
The simplest case is rank one. The IBil are fractional ideals of R;

the (-1)q+l-Hermitian pairing corresponds to a non-zero A f Q(R) such

that A = (_1)q+l X and:

R if dodd,
ABB

C R if d even.
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Vquivalence becomes IBi,AI- IIlBi,A/llill, for any non-zero 11 (Q(R)

kompare [T 1]). For example, if ef> is quadratic we may write ef> = at2 +

(1-2a)t + a, for an integer a; R is Dedekind if and only if 4a-1 is

·;quare-free. The class number of R is a divisor of the class number of

Ihe ring of algebraic integers Ro in the algebraic number fi~ld generated

loy a root of ef>. Condition (*) is never satisfied if q is even and dodd.

()Iherwise such a A exists for any B.

If a = pm, for some prime p, the computations become reasonable.

For example, the class number of R is 11m times the class number of

I~(), and for q and d odd, for each B, there are two (for m odd) or

lour (for m even) inequivalent Hermitian forms. If d is even, there are

dn infinite number of inequivalent forms. We record here the non-trivial

class numbers of R for pm ~ 125:

class number

2

3

4

I \RANDEIS UNIVERSITY

pm

13, 23, 29, 31, 47, 49, 64,67, 121

53, 71, 83

73,89 .
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THE THIRD HOMOTOPY GROUP
OF SOME HIGHER DIMENSIONAL KNOTS

S. J. Lomonaco, Jr.

O. Introduction

In 1962 Fox [1] posed the problem of computing the second homotopy

I',roup of the complement S4 - k(S2) of a (4,2)-knot as a Z77
1

-module.

Although Epstein [3] had previously shown that 772 as an abelian group

(without Z771 -action) was algebraically uninteresting, Fox pointed out that

Ihis might not be the case when the action of 77 1 on 772 is considered.

Since then some progress has been made. In [6, 7, 8] a presentation of

Ihe second homotopy group of an arbitrary spun knot [5] was calculated as

;1 Z771 -module and found to be algebraically non-trivial. In particular,

THEOREM O. IE k(S2) C s4 IS a 2-sphere formed by spinning an arc a

about the standard 2-sphere S2 and (x .. , x . r ... r ) is a presenta­
l' 'n' l' 'm

lion of 77 1 (S4 - k(S2», then

(x 1 .... ,xn : ~ i (Jr/Jxi) Xi ~ 0 (O:S j :s m»)

is a presentation of 772 (S4 - k(S2» as a Z771 -module, where ro =

rO(x 1 , .. ·,xn) is the image of the generator of 771 (S2 -a) under the inclu­

sion map and the symbols Jr;lJxi denote the images of Fox's derivatives

19J in 77
1

(S4 _ k(S2». .

Little appears to be known about the higher dimensional homotopy

groups. In this paper a procedure is given for computing a presentation of

77.1 of a spun knot as a Z77 1-modu!e. Specifically,

\e;
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THEOREM 1. Let (S4, k(S2)) be defined as in Theorem 0 above. Then

773(S4 - k(S2)) is isomorphic as a Z771 -module to 1'(77
2

(S4 - k(S2)), where

!' denotes a functor defined by]. H. C. Whitehead [10, 11] and later

generalized by Eilenberg and MacLane [12, 13]. Hence, 77
3

as a

Z77 1 -module is determined by 771 and 77
2

,

COROLLARY 2. If 772 I- 0, then 77 3 of a spun knot as a group (i.e.,

without Z77 1 -structure) is free abelian of infinite rank. Otherwise, 77
3

= O.

THEOREM 3. Let k(S2) C S4 be a 2-sphere formed by spinning an arc a

about the standard 2-sphere S2 and (x 1 , .. ·,xn :r1 , .. ·,rm) beapresenta­

tion of 771 (S4 - k(S2)). Let ra = ra(x 1,", xn) be the image of the genera­

tor of 77 1 (S2 - k(S2)) under the inclusion map and Xi and eJr/eJxj be as

in Theorem O. Then as a Z77 1 -module, 773(S4 - k(S2)) is generated by the

symbols

(1 <: i, j <: n; g f 77 1 )

subject to the relations

2y(X.) = [X" X.J
1 1 1

y (L ~~1 (eJrkIcJXj)Xj) = 0

[Xi,g L .(eJrklcJxi)Xj] = 0
J

[Xi,gXj] = g[Xj,g-lXil

1 ~ i, j ::: n

0< k < m

g ( 77 1

where [Xi' gX) is the Whitehead product of Xi and gX j and y(X i ) is

represented by the composition of the Hopf map S3 --+ S2 with a representa­

tive of Xi'

Applications of the above theorem to specific examples can be found

in the last section of this paper.
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I would like to thank Richard Goldstein for his helpful comments

oIllling the preparation of this paper and also Peter Kahn for suggesting

II,,· above more general formulation of Theorem O.
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I~I'.MARK. The methods of this paper may easily be extended to p-spun

I. Definition of a Spun Knot

Let S2 be a standard 2-sphere in the 3-sphere S3 and let a be a

1'"lyhedral arc with endpoints lying on S2 and with interior lying entirely

W II hin one of the two components of S3 - S2. (See Figure 1.)

If a is spun about S2 holding S2 fixed, a knotted 2-sphere k(S2)

III S4 is generated [5]. If one would like to think of the spinning as

I.lking place in time, then at time 0, the arc a would appear on the

1'I',hl of the 2-sphere as indicated in the figure. It would then immediately

"dnish into another 3-dimensional hyperplane and after rotating through

ISO" suddenly reappear inside S2 as indicated by the dotted arc on the

l..rt of Figure 1. Again it would disappear into another 3-dimensional

hy perplane and rotate through the remaining 1800 until it suddenly re­

''i'peared on the right closing up the knotted 2-sphere k(S2).

II. 773 = r(772 )

The complement X ~ S4 - k(S2) of an arbitrary spun knot (S4, k(S2»

wi 11 not be examined in more detail. Let Xo = S3 - k(S2) be the

I-dimensional cross-section shown in Figure 1, and Xl- and X_ denote

I he closures of the two components of X - Xo' Let p: X .... X be the

universal covering of X and Xi = p-l(Xi) for i = +, 0, and

Since 77 1(X) .... 771 (X) are all onto, it follows from the homotopy

~;l'quence of the fibration

thaI Xi is connected and
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Figure 1. Spun 2-spherc
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IS exact for i=+, 0, and -. Moreover,since 77 I (X±)-->77 I (X) is an

isomorphism onto [5], it follows that X± are simply connected, and hence

:Ire the universal covers of Xi' Thus,

I ,1£MMA. The lift Xo of Xo to the universal cover of X is connected
-

,I/ld 77
1

(Xo) is the kernel of 77
1

(Xo) --> 77
1

(X). Moreover, the lifts X± of

X I are the universal covers of Xi'

Since X I and X both collapse to the right half of Xo via a deforma-

lIon arising from the spinning, Hurewicz's theorem coupled with the

'!sphericity of knots [4] yields that Hn(X±) = 0 for n:::: 1. Hence, from
- - -

lite Mayer-Vietoris sequence for the triad (X; Xc' X_), we have
- -

II n(X) ::.: Hn_ 1(X O) for n:::: 2. Thus,

I,EMMA.
-

H2 (X) ::.: HI (Xo) and

-
Hn(X) = 0 for n> 2 .

-
Proof. Since X collapses to a 3-dimensional CW-complex [81, the last

- -
p:trt of this lemma is obviously true for n> 3. H3(X)::.: H2(X O) can be

"hown to be equal to zero by an analysis of the following decomposition

(If Xo'
+ 2

Let Xo denote the closure of the two components of Xo - S Then

Xo X~ U Xo and XOO = X~ n Xo is S2 minus the two endpoints of a.

lienee, Xoo is a homotopy I-sphere and 77 1 (X oo) is infinite cyclic.

Since 77 1(X~) --> 771(X) is an isomorphism onto [51, it follows from the

homotopy sequence of the fibration

-+
that Xo are simply connected. Applying the asphericity of knots [4], we

-+
h:tve that H2(XO) ,= O. After inspecting the Mayer-Vietoris sequence for

tIll' triad (X o; X~, Xo)' we have
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- -
H2(X O) "" HI (X OO)

Since the image of a generator of 771 (X OO ) in 771 (X) has a linking number

of ±1 with respect to k(S2), 771 (X OO)'771 (X) is a monomorphism. Thus,

from the homotopy sequence of the fibration

- - -
we have that X oo is simply connected. Hence, H3(X) "" H2(X O) "" HI (X oo
= O.

With the above lemma and J. H. C. Whitehead's Certain Exact Sequence

[10, 11], we have

for n ~ 3 .

Hence, r~(X) = I '(77iX)), where I' is an algebraic functor defined by

J. H. C. Whitehead [lo, 11] and later generalized by Eilenberg and MacLane

[12, 131. This formula gives an effective procedure for computing 77/X).

In summary, we have

THEOREM 1. 77 3 (S4 - k(S2)) "" I'(772(X)). Hence, the third homotopy group

of a spun knot as a Z771 -module is determined by the first and second

homotopy groups. As an abelian group, it is determined solely by 772 ,

From [3], 772(X), if non-zero, is free abelian of infinite rank. Since

r never decreases the rank of a free abelian group, we have

COROLLARY 2. The third homotopy group of a spun knot as a group is

free abelian of infinite rank if the second homotopy group is non-zero.

Otherw ise, it is zero.

III. Whitehead's Functor

A more detailed understanding of J. H. C. Whitehead's functor r
[10, 11] is needed to compute a presentation of 77/X). Very briefly, I'

is defined as follows. (For more details see [10, 111.)
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Let A be an additive abelian group. Then rCA) is an additive

abelian group generated by the symbols

subject to the relations

y(-a) = yea)

y(a+b+c) - y(b+c) - y(c+a) - y(a+b)
+y(a)+y(b)+y(c)=O.

Define [a, bJ by

yea + b) = yea) + y(b) t- [a, b] .

Then, la, b] is a measure of how close y is to a homomorphism.

The following relations are consequences of (1) and (2).

yeO) = 0

2y(a) = [a, a]

[a, b + cJ = [a, b] t- [a, cJ

[a, bl = lb, aJ

y(na) = n2 y(a) .

A proof of the following theorem can be found in [10, 111.

41

(1)

(2)

THEOREM. If A is an additive abelian group with generators ai and

("(·lations bj , then 1'(A) is an additive abelian group with generators

.wd relations

01 U !la., b·l = 01
I J
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wy(a) ~ y(wa)

Finally, if A admits a group of operators W, then so does I'(A),

according to the rule

for w f Wand a f A.

IV. Computation of "iS4 - k(S2»

From Section II, "3(X) "" 1("2(X», and from Section III, "3(X) is

generated by

and l(~,Clll: /:' (X)'
r",,, f"2

In [10,11] J. H. C. Whitehead demonstrates that [~, CJ is the Whitehead

product of ~ and ~' and that y(~) is represented by the composition

of the Hopf map S3 .... S2 with a representative of f Hence, we have

THEOREM 3. Let k(S2) C S4 be a 2-sphere formed by spinning an arc a

about the standard 2-sphere S2 and (x 1 , .. ,xn :r1 ,,,·,rm) a presentation

of "1 (S4 - k(S2 ». Let r0 ~ rO(x1 ,", xn) be the image of the generator of

"1 (S2 - k(S2» under the inclusion map and Xi and ar/axj be as in

Theorem O. Then as a Z"l-module, "3(S4 - k(S2» is generated by the

symbols

(l :S i, j :S n; g ( "1)

subject to the relations

2y(X i) = [Xi,X i]

y (~~ (ark/aXj)Xj) = 0
J=l

[Xi' g ~. (ark/axi) Xj] = 0
J

[Xi' gXj] = g[Xi , g-l Xj ] ,

1 :S i, j :S n

g f "1

where [Xi' gX i] is the Whitehead product of Xi and gXj and y(X i) is

represented by the composition of the Hopf map S3 -> S2 with a repre­

sentative of Xi'
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V. Examples

EXAMPLE 1. If the trefoil is spun about S2, then

7T
I

(S4 - k(S2)) c_ la, b : baba-Ib-Ia- I :

7T2(S4_ k(S2)) = IB: (l-at-ba)B= 0 I

2y(B) = [B, BJ

(l-a+ba)y(B) = -IB, baB]

43

7T 3 (S4 - k(S2)) = y(B), [B,gB l,(g (7TI) :

[B,gB] - [B,gaB] I [B,gbaB I= 0

[B,gBl = gfB,g-lB]

where [B, gB] is the Whitehead product of Band gB and y(B) =

(Hopf map)o 8. (See Figure 2.)

EXAMPLE 2. If the square knot is spun about S2, then

4 2 I b b b -Ib-I -I -I -I -II
7T I (S - k(S )) ~ a, ,c: a a a, caca c a ~

7T2(S4 _k(S2)) = jB,C : (l-atba)B = 0 ~ (l-a+ca)CI

2y(B) = [B,Bl, 2y(C) = [c,cl

(l-a+ba)y(B) = - fB,baBl
y(B)

(l-a+ca)y(C) -c - IC,caC]
y(C)

[
[B,gB] - IB,gaBI + [B,gbaB] = 0

B,gB] :

[
. IC,gBI - IC,gaB] + IC,gbaB] = 0

C,gC] .

[
. IB,gCl - [B,gaCJ + [B,gcaC] = 0

B,gC]
[c,gCI - [C,gaCl f- fC,gcacJ O~ 0

[C,gBl I I
[B,gB] = g[B,g- B], [C,gC] = g[C,g- C]

[B,gCJ = glC,g-1 BJ

where g ranges over 7T I .

('OMMUNICATIONS RESEARCH DIVISION
INSTITUTE FOR DEFENSE ANALYSES
"I-?INCETON, NEW JERSEY

AND
STATE lJNIVEI,SITY OF NEW Y()I~K
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< S

Figure 2. Spun Trefoil
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OCTAHEDRAL KNOT COVERS

Kenneth A. Perko, Jr.

One of Fox's continuing interests was the investigation of noncyc1ic

('overing spaces of knots, i.e., those which belong to a homomorphism of

I he knot group onto a noncyclic group of permutations [2]. Unfortunately,

niteria for the existence of such coverings are still rather rare [7, Ch. VI;

10\' With the help of his suggestions on Lemma 1, we derive (geometri­

('ally) a necessary and sufficient condition for a knot group to have a

l'ppresentation on the symmetric group of degree four. ..

THEOREM. A knot group admits a homomorphism onto S4 if and only if

il admits one onto S3'

"Only if" follows trivially from the homomorphism C. of S4 on S3

outained by factoring the former over its normal subgroup is omorphic to

the four group [4]. To prove sufficiency, we show that any homomorphism

Ii of a knot group on S3 may be lifted to an H on S4 such that He= h.

There are two types of H: those which send all meridians to elements of

ppriod 2 (simple H), and those which send them to elements of period 4

(locally cyclic H). Let M3 be the branched 3-fold (dihedral) covering

~;pace of S3 associated with an arbitrary h [2, §§4-S],

LEMMA 1. h lifts to a simple H if and only if Hi (M
3

; 2) maps homo­

l1Iorphicallyonto 2 2 ,

LEMMA 2. h lifls to a locally cyclic H whenever some odd multiple of

I!I" hrnnch curve of index 2 ill M\ is slronp,ly homologous 10 zero.
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If the condition of Lemma 2 is not satisfied, then that of Lemma 1 is

satisfied by mapping this branch curve to the generator of 2 2 , This

proves the theorem, modulo the lemmas.

Proof of Lemma 1. Let i symbolize Ok) and -i symbolize (i4) where

li,j,kl=II,2,3L Then c:..maps ±i to i. h may be thought of as an

assignment f of symbols i = 1,2,3 to segments of a knot diagram

(x, y, z at each crossing) such that f(x) + fez) '" 2f(y) mod 3, where y

is the overpass [2, §ll Consider, at each crossing, the cellular decom­

position of M3 discussed in [8]. (Cf. l7, Ch. nIl.) Let x,y,z represent

also the 2-cells which lie beneath corresponding segments and are visible

on the right from the (i+l)th (mod 3) copy of S3. Branch relations for

HI (M3; 2) insure that the other 2-cells adjoining the branch curve of

index 2 are homologous to -x, -y, -z. At a crossing where f(x) ~ fey)

the Wirtinger-1ike homology relation is x-2y t z -- 0, while at a crossing

where f(x) 1= fey) it is x + Y+ Z - O. This may be verified by examining

the various possibilities. Clearly HI (M 3; 2) maps homomorphically onto

2 2 precisely when there exists a mapping m of all x, y, z on integers

10,11 such that all these relations are congruent to 0 mod 2 (i.e., there

are either none or two 1 's at the second type of crossing and m(x) = m(z)

at the first). If we interpret m(x) = 1 as placing a minus sign before

f(x), we see that these conditions are identical with those for the exist­

ence of a lifted, simple H. Again, this may be verified by examining the

various possibilities.

Proof of Lemma 2. Now let i symbolize (ij4k) and -i symbolize

(ik4j) where i "" j-l := k-2 mod 3. Again, c:.. maps ± i to i. Here, how­

ever, it is necessary to distinguish between two different types of cross­

ing where f(x) 1= fey), depending on whether the segment x for which

f(x):= f(y)-1 mod 3 lies to the right or left of y. At a crossing of the

first type, the associated equation for constructing a hypothetical 2-chain

which bounds t times the curve of index 2 is x + Y+ Z ,t. (CI. [8, §21.)

For the second, it is X! Y I Z 2t. At a crossing where f(x) fey), it is
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x-2y+z = O. Here, of course, we let x,y,z represent also the dummy

coefficients assigned to the 2-cells x, y, z. Coefficients of the other

'2-cells adjoining this branch curve are then t-x, t-y, t-z by the branch

equations. If all of these equations have a solution (in integers) for some

odd t, then we may assign signs + or - to each f(x) according as the

congruence class mod 2 of the coefficient x is 1 or 0, and such an

;Issignment will yield a lifted, locally cyclic H. Again, this latter asser­

t ion may be verified by examining the various possibilities to see that the

behavior of the sign of the symbols ± i is reflected by these equations

(interpreted as congruences mod 2) at each type of crossing.

It may be conjectured that every h lifts to a locally cyclic H.

From the coset representations of (abstract) S4 which belong to its

lIonconjugate subgroups [1] we may construct, for each H, a partially

ordered set of connected covering spaces of S3, branched along the knot,

which cover each other as indicated below:

The covering maps may be thought of as the identification of corresponding

points in various copies of S3. CE. [91-

In view of the recent result of Hilden [3] and/or Montesinos [6], these

coverings may be relevant to the classification problem for 3-manifolds.

Note that any H is consistent with the D-operations of [51, discovered

Independently by Fox and adverted to in [2, §41.

NEW YORK, NEW YORK
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SOME KNOTS SPANNED BY MORE THAN ONE UNKNOTTED
SURFACE OF MINIMAL GENUS

H. F. Trotter

:~ 1. Introduction

A spanning surface of a tame knot K in S3 is a tame orientable sur­

face F embedded in S3 with K as the unique component of its boundary.

We call two such surfaces directly equivalent if there is an orientation­

preserving homeomorphism of S3 onto itself that carries one surface onto

the other and preserves the orientation of K. They are said to be

inversely equivalent if there exists such a homeomorphism reversing the

orientation of K (but still preserving that of S3), and are equiva lent if

they are either directly or inversely equivalent. (We shall not be con­

cerned here with the stronger notion of equivalence under isotopy leaving

K fixed.)

In this paper we give some examples of knots with spanning surfaces

of minimal genus that fall into more than one (direct) equivalence class.

Examples of knots of this kind have been given by Alford, Schaufele, and

I.yon [1,2,6]. The inequivalent surfaces exhibited in these examples

have complements which are not homeomorphic. The contrary is true in

our examples. In fact, all the surfaces that we consider are "unknotted"

in the sense of having complements which are handlebodies.

We prove inequivalence by showing that the Seifert matrices of the

I('levant surfaces are not congruent. (Thus we have some "natural"

('xamples of matrices which are S-equivalent [11] but not congruent.) This

Illalrix condition is of course only sufficient for inequivalence, not neces­

';;lry. It can be shown to hold for infinitely many knots of genus one. AI­

Ihough I am sure Ih;1l it holds for infinitely many knots of every genus, I

h'lVl' no proof of 111(' filet.
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Tn Section 2 we describe the (generalized) pretzel knots which furnish

our examples, and in Section 3 discuss their Seifert matrices and related

algebraic invariants. Section 4 describes the method used to prove non­

congruence of the matrices, and Section 5 summarizes the arithmetic in­

volved in our examples.

§2. Pretzel knots and surfaces

For (P1,"·,Pn) an n-tuple of integers, let F(pI'·",Pn) be the sur­

face consisting of two horizontal disks (lying one above the other like the

top and bottom of a vertical cylinder) joined by n twisted but unknotted

vertical bands, where the ith band in order has \Pii half-twists, right or

left-handed according to the sign of Pi' Figure 1 shows an equivalent

surface in a form that is easier to draw. Let K(pI'''', Pn) be the knot or

F(5, 3, I, I, -3)
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link formed by the boundary of F(pI"", Pn)' Reidemeister [8] called

knots of the form K(PI' Pz' P3) "pretzel knots" and it seems appropriate

to extend the terminology.

F is orientable if and only if all the Pi have the same parity, and

the boundary of F has more than one component if they are all even, or

if they are all odd and n is even. We therefore assume from now on that

n and all the Pi are odd. F(PI ,''', Pn) is then an orientable surface of

genus h, where n = 2h + 1.

Let us say that (ql ,"', qn) is a cyclic rearrangement of (PI ,"', Pn)

if there is some k such that qi - Pi f-k for all i, interpreting the sub­

scripts modulo n. (This is not quite the same thing as a cyclic permuta­

tion, since the Pi need not be distinct.) The following statement is

obvious from the cons truction of F.

(2.1) If (ql'''', qn) is a cyclic rearrangement of (PI'''', Pn) then

F(ql,· .. ,qn) and F(PI'''',Pn) are directly equivalent.

Contemplating the effect on Figure 1 of a 1800 rotation about a vertical

axis lying in the plane of the paper makes the following clear.

(2.2) F(PI'''''Pn) and F(Pn,"',PI) are inversely equivalent.

Let us call an n-tuple (PI ,"', Pn) fully asymmetric if the only re­

arrangements of it that yield a directly equivalent surface are the cyclic

rearrangements. In later sections we shall prove:

(2.3) The n-tuples (5,3,1) and (5,3,1,1,1) are fully asymmetric.

The same method of proof can presumably yield many more examples, but

individual calculations are required in each case, and it is difficult to

draw general conclusions. I conjecture that all n-tuples (with n and all

the Pi odd) are fully asymmetric, unless both +1 and -1 occur in the

1l-1uple. (In the latter case the surface has an "unknotted" handle that

(";tn be moved around freely.) I have, however, no solid supporting evidence
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It follows from (2.2) that if (PI,oo',Pn) is fully asymmetric, and

(ql ,"', qn) is a rearrangement of it, then F(ql"", qn) is inversely

equivalent to F(PI' 00', Pn) if and only if (ql'''', qn) is a cyclic rearrange­

ment of (Pn,"" PI)' Thus (2.3) amounts to the following assertions.

(2.4) F(5, 3,1) and F(5, 1,3) are not directly equivalent but are in­

versely equivalent.

(2.5) No two of F(5, 3,1,1,1), F(5, 1,3,1,1), F(5, 1, 1,3,1), and

F(5, 1, 1, 1,3) are directly equivalent, but the first and fourth are

inversely equivalent, and so are the second and third.

Figure 2 illustrates an obvious equivalence between the knots

K(oo., P, 1,00') and K(· .. , 1, P,"·). More generally, any Pi equal to 1 or

-1 can be permuted freely in the n-tuple without changing the equivalence

class of the associated knot. (See Conway's remarks on "Hyping" in [5],

and the operation of type n.5 of Reidemeister [7].) As immediate conse­

quences of (2.4) and (2.5) we have:

(2.6) The knot K(5,3,1) has unknotted spanning surfaces of minimal

genus falling into at least two distinct classes under direct equiva­

lence.

(2.7) The knot K(5, 3,1,1,1) has unknotted spanning surfaces of mini­

mal genus falling into at least four classes under direct equivalence,

and into at least two classes under equivalence.

Similar examples obviously arise from any fully asymmetric n-tuples

that contain 1 or -1 (with the exception of trivial cases like

(3,1,1,1,1) for which all rearrangements are cyclic).

§3. Seifert matrices of pretzel surfaces

Let F be a spanning surface of genus h for the oriented knot K.

The Seifert form of F is a bilinear form SF defined on the homology

group HI (F) by taking SF(u, v) to be the linking number in S3 of a
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Fig. 2.

cycle representing u and a translate in the positive normal direction to

F of a cycle representing v. (The positive direction is to be determined

hy some convention from the orientations of S3 and K.) A Seifert matrix

for F is obtained by choosing a basis ul ,"', u2h for HI (F) and setting

Vij- SF(ui' u j ) for 1'S i, j:S 2h. A different choice of basis gives a

matrix W such that W PVP' with P an integral unimodular matrix.
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The integral congruence class of its Seifert matrices is thus an invariant

of F.

Let n = 2h t 1 and cons ider the surface F(p 1,"', Pn) where Pi =
2ki t 1. The cycles ul .. ··,u2 h' where ui runs up the (itl)st band and

down the ith, form a basis for H l (F). Define V(Pl'··' Pn) to be the

Seifert matrix for F with respect to the basis (_I)itl ui . (Putting the

alternating sign in here keeps minus signs out of the matrix.) Following

around ui one encounters Pi t Pitl half twists or ki t kitl t 1 full

twists. Thus (with appropriate choice of sign convention for linking num­

bers) the diagonal entry Vii is k i t kitl t 1. Cycles representing ui

and ui+l run in the same direction along the 0+ l)st band and intersect

once on F. When one of them is pus hed off in the positive direction, the

linking number is kitl t 1; when the other is pushed off, the linking

number is kit l' We assume conventions to have been chosen so that

Vi itl = kitl t 1, and Vitl i = ki~l' When i and j differ by more than, ,
1, ui and Uj do not meet or link and Vij = Vji ~ O.

The following observations are not relevant to the rest of the paper,

but seem to be worth commenting on.

(3.1) The determinant of V(Pl .. ··' Pn) .IS

n n

II (ki d) - II ki .

i=l i=l

The proof is a straightforward induction on n. Note that the formula in

(3.1) is a symmetric function of the Pi' There is even more symmetry in

the situation.

(3.2) The Alexander polynomial, the signature, and the Minkowski units

of K(Pl ,"', Pn) are independent of the order of the Pi'

Since the type of K itself is unchanged under cyclic permutation, so are

these invariants. The n-cycle (1 2 .. · n) and the transposition (1 2)
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generate the whole symmetric group, so we need only examine what happens

when Pl and P2 are exchanged. We temporarily adopt the notation Pl =

2at1, P2 = 2b-t-1, P3 = 2c+1. The upper left corner of V(Pl,P2"") is

then

b+ 1 ]

b+c+1

Now subtract the first row from the second, change the sign of the first

row, and perform the corresponding column operations. The resulting

matrix is integrally congruent to the original and has the 2 x 2 matrix

[

a I b+ 1

a+ 1

in its upper left corner, and is otherwise unchanged. It is the same as

V(P2' Pl'''') except that the entries a and a+1 are reversed in position.

Now the signature and Minkowski units depend only on V -t- V', so they

<.Jre unchanged [10]. The Alexander polynomial is det(tV - V'). Every

non-zero term in the determinant of any tridiagonal matrix M must contain

mi,i-t 1 if it contains mi+l,i' so the determinant is not affected if the two

elements are exchanged. Hence the Alexander polynomials of K(Pl ,P2"")

and K(P2' Pl"") are the same.

Proposition (3.2) gives an easy way of constructing presumably dis­

tinct knots which cannot be distinguished by the "classical" invariants.

~4. A necessary condition for congruence of Seifert matrices

If V is a Seifert matrix then (V - V,)-l exists and has integer

entries. Define
[v = V(V - V,)-l .

Then if W = PVP', with P and p- l integral, lw = PVP'(P(V_V')p,)-l

pI vp-l, so for V and W to be integrally congruent it is necessary

that Iv and I'w be integrally similar.
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Let r/J(z) = det (I' - zl) be the characteristic polynomial of r. Similar

matrices of course have the same characteristic polynomial. The theory

of integral similarity is fairly simple when r/J is irreducible (as happens

in our examples), and a brief self-contained account of this case can be

found in [9], which has references to further literature. The rest of this

section is taken almost directly from [9J.

We consider matrices with a given irreducible characteristic poly­

nomial r/J. Let L be the field Q() obtained by adjoining a root ( of

r/J to the rationals, and let R be ring 2f(1 generated by (.

The row class of I' can then be defined as the class of the ideal of

R generated by the determinantal cofactors of the elements of the first

row of I' - (I. (Two ideals A, B of R are in the same class if aB =

bA for some non-zero a, b in R. When R is the full ring of algebraic

integers in L, this coincides with the usual definition of ideal classes

in a Dedekind ring.) The theorem that we shall use states that two

matrices having r/J for characteristic polynomial are similar if and only

if they determine the same row class.

§S. Calculations

The theory and methods of calculation used here can all be found in [3].

Let X = V(S, 3,1) and Y: V(S, 1,3). Then

X= [4 2J
12'

Y = [~ ~J

, [2-( -4 JI X - (I =
2 -1-(

, [1-( -3 Jry - (I =
2 -(

where ( is a root of r/J(z) = z2 - z t- 6. The discriminant of r/J is -23,

which is square-free, so R = 2f( J is the full ring of integers in L = Q(),

and the ideal classes of R form a group. The cofactors of the first row

in r'x - (I are -1-( and 2, so the ideal A = [2,1·' (I represents

the row class of 1'x. Similarly, B . 12, (I represents the row class of I"y.
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It is easy to check that AB, A3 , and B3 arc the respective principal

ideals (2), (1 1- (), and (2 - (). Writing """," for the relation of

class equivalence, we therefore have A3
"'" B3 "'" AB "'" 1, so B "'" A2 .

Thus A "'" B only if A is principal. The norm of A is 2, and if it

were principal, its generator would have to be an element of norm 2.

This is impossible because the norm of x + y( is x2 + xy + 6/, which

does not represent 2. Hence the row classes A and B are not the

same, X is not congruent to Y, and we have proved (2.4), which is

equivalent to the first half of (2.3).

Now let W,X,Y,Z be V(5,3,1,1,1), V(5,1,3,1,1), V(5,1,1,3,1)

and V(5, 1, 1, 1,3) respectively. Then, for example,

W

-4

-1-(

o
o

o
o

1-(

1

_4]
-2

-1

-(

where ( is a root of 1>(z) = z4 - 2z 3 + 12z2 - lIz + 6. Generators for

the ideal representing the row class of rw are _(3_ 1, 2(2_ 4(+2,

_(2+ 1, and (2+(. It turns out to be an ideal of norm 8.

The polynomial 1>(z) can be written as t/J(w) ~ w2 - llw t- 6, where

w co z(1-z). Then ( is a root of (2 + ( + w where uJ is a root of t/J,

and K = Q(w) is a quadratic subfield of L = Q«(). The discriminant of

Kover Q is 97 and of Lover K is 1-4uJ, which has norm 53.

Since both discriminants are square-free, R" zl(l is the full ring of

integers in L and its ideal classes form a group.

The prime 2 factors into the ideals A - [2, 1 t (], B -= [2, (], (both

of norm 2), and C·. [2,(2 t (+1] (of norm 4). AB = (7(2 -7(+4) and

/\ S = (1 + () are principal ideals, so A "'" B- 1 and AS
"'" 1. The ideal

gi ven above, generated by the cofactors of the first row of r~ - (I is

equal to A3 , and similar calculations give A2 B, AB 2
, and B3 as the

prime factorizations of lIw id(';ils ohtained from X, Y, and Z. Conse-
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quently the row classes associated with W, X, Y, and 2 are the

classes represented by A3 , A, A4 , and A2 . If these are all distinct

then no two of W, X, Y, and 2 are congruent, and (2.5) and the second

half of (2.3) follow.

Otherwise A is a principal ideal generated by some element a. The

ideals (as) and (1+() are equal, so as = u(1+() for some unit u. L

is a totally imaginary field of degree 4. so its units are of the form ±en

for some fundamental unit e. The fundamental unit of K=Q(li))~Q(V97)

can be found in tables (e.g. in [4]); expressed in terms of w it is ry =

-655 1- 1138w. (This can in fact be shown to be a fundamental unit for L,

but we do not need that fact.) There are two homomorphisms f, g of R

onto 2/312, characterized by f(O = 7 and g(() = -6. Under both f

and g, w maps to -11 and TJ to 2. The fifth powers modulo 31 are

±1, ±5, and ±6. Since 2 is not a fifth power modulo 31, TJ is not a

fifth power in R. Hence every unit is some power of TJ times a fifth

power, and if u(l + () has a fifth root for any unit u, then so has one of

ryi(l +(), 0 'S i 'S 4. Under g, 1 +( maps to -5 which is a fifth power,

so TJi(l +() cannot be a fifth power unless 5 divides i. Under f, 1 + (

maps into 8, so 1 + ( is not itself a fifth power. This exhausts the

possibilities, and we conclude that A cannot be principal.

There is perhaps some interest in indicating the result of an example

in which the Seifert matrices turned out to be congruent. For the surfaces

F(l, 5, 7, -3, -3) and F(l, 7, -3, -3, 5) the Seifert matrices are

[~
3 0

-~] [~
4 0

-~]
6 4 2 -1

W and V =
3 2 -2 -3

0 -2 -3 0 -2

Then W = PVP', with
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[

39

P = 37
22

39

-151

-106

-37

-144

-19

-2

10

-16

_22]-16

-6

-21

P is not the only matrix which will transform V into W, but it can be

shown to be the "smallest" one that will do so. One may conclude that

congruence of Seifert matrices is not always determinable by inspection.

The calculations reported here were first done while the author held a

visiting appointment in the Mathematical Sciences department at the

T. J. Watson Research Laboratories of the IBM Corporation. Extensive

use was made of the APL interactive programming system, which is very

well adapted to calculation with small matrices. It is feasible to verify

the assertions made in this section by hand calculation, but the partly

trial and error process of arriving at them could hardly have been carried

out without mechanical assistance. It is also a pleasure to acknowledge

the pleasant and stimulating atmosphere of the Laboratories.

PRINCETON UNIVERSITY
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GROUPS AND MANIFOLDS CHARACTERIZING LINKS

Wilbur Whitten

Let I. denote the tame link K1 U··· U K
I1

in the oriented three-s phere

S3, and let p and 77 be fixed integers; p, arbitrary; 77 ~ ±2. For each

of i ~ 1,.··, /1, let Vi be a closed, second-regular neighborhood of Ki ,

and let Ki be a tame knot in Int Vi' For i 1= j, we assume that Vi n Vj

= 0. We also assume that Vi has order greater than zero with respect to

Ki(i= 1"",ll); that is, each meridional disk of Vi meets Ki . We set

R(L) = K1 U···U KIl' and we call R(L) a revision of L. If, for each of

i c.!,",, /1, the knot Ki bounds a disk Di that lies in Int Vi' that has

exactly one clasping singularity, and that has Ki as its diagonal, p as

its twisting number, and 77 as its self-intersection number [13, §20, p. 2321,

then we shall denote R(L) by D(L; p, 77), which we call the (P,77)-double

of I.; we call Di a clasping disk. In this paper, we prove that the group

of 0(1.; p, 77) characterizes the (ambient) isotopy type lLI of I. when

/1 > 1; see the announcement [25] for an outline of the proof.

I recently proved the same result for knots in S3 [24]. J. Simon had

previously characterized a knot's type by the free product of two, suitably

chosen, cable-knot groups [181. The "doubled-link" characterizations,

presented here and in [24] and [251, are, however, more direct, cover links

as well as knots, and yield characterizations of amphicheiral knots [24

and 25, Corollary 2.31. Moreover, because TTl (S3 - 0(1.; p, 77)) characterizes

11.1, sodoes S3- D(L;p'77); see [24, Theorem 2.1,p.263] and Corollary 2.2.

Ii 1. Preliminaries

Throughout this work, the three-sphere has a fixed orientation; all

mappings are pieccwis(' line:!r; all submanifolds, subpolyhcdra; and all
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regular neighborhoods, at least second regular. If L is a link in S3,

then ILl denotes the (ambient) isotopy type of L; L *, the mirror image

of L. The complement C of an open solid torus in S3 is a toral solid;

if a core K of the solid torus is knotted, the manifold C is a K-knot mani­

fold. The complement of fl(> 1) mutually disjoint, open, solid tori in S3

is a fl-link manifold.

Let VI and V2 denote solid tori in S3. The orientation of S3 in­

duces an orientation in each of VI and V2 · A homeomorphism VI .... V 2

that preserves these orientations and that maps a longitude of VI onto a

longitude of V 2 is faithful.

All links are to be oriented, but the orientation of a link has no bearing

on either the link's type or the link's isotopy type. For a knot K, a

meridian-longitude pair (m, A) of oriented, simple, closed curves is always

oriented with respect to K; that is, m has linking number +1 with K,

and A and K are homologous in some second-regular neighborhood of K.

LEMMA 1.1. Let L be a link in S3, and let R(L) be any revision of L.

Then L is splittable if and only if R(L) is splittable.

Proof. If L is splittable, there is a polyhedral 2-sphere S in S3 with

disjoint complementary regions C1 and C2 such that S3 = C1 US U C2 ,

such that L n S = 0, and such that L n Cj f- 0 (j = 1, 2). There is an

autohomeomorphism h of S3 that is isotopic to the identity, that leaves

each knot Ki fixed point for point, and that moves each solid torus Vi

away from S; that is, snh(Vi)~0(i=I"··,fl). Evidently, R(L)nh- 1(S)

= 0 and R(L) n h-1(Cj ) f- 0 (j =1, 2); hence, R(L) is splittable.

Now suppose that L is unsplittable; we can assume that fl> 1. Let

G=TT1 (S3_ L), and let Qi=TT1(Vi -K i)(i=I,···,fl). Because L is un­

splittable, the group G is indecomposable; that is, G is not the free

product of two nontrivial groups [12, Theorem (27.1), p. 19]. If fli is a

meridian of Vi' then fli U Ki is uns plittable because Vi has order

greater than zero with respect to Ki . Evidently, Qi "'" "1 (S3 - VIi UKi»;
hence, Qi is indecomposable; see 1121 (loc. cit.).
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Set ~3i = 17I (S3_(KI u ...uKiuKitI U... UKIl»(i=I,"·,Il-I), set

§o = G, and set 93
1l

= 171(S3 - R(L». Because each of the links Land

III U KI is unsplittab1e, one can easily prove, with the loop theorem and

the Dehn lemma, that the inclusion aV1 -> (S3 - Int (VI U· .. U VIl» induces

a monomorphism 17 1 (aV1 ) -> 17l(S3-Int(VI U.. ·U V
Il
»; the inclusion avl ->

VI - K1 , a monomorphism 17 1 (aV1) -. Ql' Because 171 (S3 - Int (VI U.. ·U VIl»

::::: G, the Seifert-van Kampen theorem implies that ~]1 ::::: G * Ql'
171 (av1)

But the free produce of two indecomposable groups amalgamated over a

nontrivial group is itself indecomposable [8, p. 246]. Thus, ~~1 is inde­

composable.

Suppose, for some i = 1,,,,, Il-I, that §i is indecomposable. Then,

clearly, K1 U.. ·U Ki U Kit1 U· ..U Kil is unsp1ittab1e. Because Ilitl U

Kit1 is also unsplittab1e, we have ~itl ::::: ~i * Qitl' But ~]i
17 1(av it1 )

and Qitl are indecomposable, hence, so is §itl' Induction now implies

that ~Il is indecomposable; hence, R(L) is unsplittab1e [12] (loc. cit.),

concluding the lemma's proof.

REMARK. In the foregoing proof, we saw that, if L is unsplittab1e, then

so is KI U· .. U K 1 UK. Permuting indices, one can, therefore, show,
Il- Il

for i = I,""1l and for Ko = 0 = Kilt I , that

K u· .. u K. U K· U K. u .. ·u K
1 I-I 1 1+1 Il

is unsplittab1e, if L is unsplittab1e.

LEMMA 1.2. Let Land L' be links in S3, and let (p, TJ) and (p', TJ')

be pairs of integers; p and p', arbitrary; TJ and TJ', in 12, -2L If

ILI-1L'I, if p = p', and if TJ = TJ', then ID(L;p,TJ)1 = ID(L';p',TJ')L

Conversely, if ID(L;p,TJ)1 = ID(L';p',TJ')1, then ILl = IL'I; further­

more, p = p' and TJ = TJ' unless

(1) some compo/l('nt Ki of D(L;p, TJ) is a maximal unsplittable sub­

link of D(I'd),I/) :/Ild
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(2) Ki is either the trivial or the figure-eight knot.

In particular, IO(L;p,7])1=IO(L';p',7()! if and only if (ILI,p,7])=

(IL'!,p',7]'), provided that the number of components of L is 2: 2 and

that O(L; P, 7]) is unsplittable.

Proof. Assume that ILl = IL'!, that P = p', and that 7] = 7]'. The links

Land L' then have the same number of components; we have L =

K1 U···U K and L' = K'l U···U K', say For each of i = 1 ... 11 let/1 /1' , 'r'
Vi be a closed regular neighborhood of Ki ; V'i' a closed regular neigh-

borhood of K'i' We assume that Vi n Vj = 0 = V'i n Vj, if it- j.

Because IL! = IL'l, there is an orientation-preserving autohomeomor­

phism hI of S3 and there is a permutation p of 11,,,,, /11 such that

hI (Vi) = V'p(i) (i=I,"·,/1). The knots hl(Ki) and K'p(i) are (P,7])-doubles

of K'p(i) (i= 1,"',/1), W. Graeub has shown that, for any knot K, the

system (IKI,p,7]) determines IO(K;p,7])1 [6, p. 47], Hence, for each of

i = 1,,,,, /1' there is an orientation-preserving autohomeomorphism ¢i of

53 taking hI (Ki ) onto K'p(i)'

We examine the map ¢i' According to our definition of a doubled

knot, there are clasping disks Yi and Y'i in Int V'p(i) such that

hI (Ki) = aYi and K'p(i) = aY'i' Each of Yi and Y'i has a line segment

as its set of singularities. On Yi lays a core ki of V'p(i) meeting

hI (Ki) in exactly two points and containing the set si of singularities of

Yi ; simila~ly, there is a core k'i of V'p(i) on Y'i containing the singu­

larities s'i of Y'i' There is an orientation-preserving autohomeomorphism

¢jl of S3 acting as the identity on 53 - Int V'P(i) and taking (ki , si)

onto (k'i' s) [13, Lemma 1, p. 158]. Beginning at Step 2 on p. 47 of [6],

one can see how Graeub constructs an autohomeomorphism ¢i2 of S3

leaving k'i fixed point for point and mapping ¢il (Yi) onto Y'i' We set

¢i = ¢i2 ¢jl'

Choose a simplicial decomposition for V'p(i) containing some triangu-

lation of Y'" If the natural number n is sufficiently large, the closure
1

Ni of the nth-regular neighborhood of Y'i belongs to both Int V'p(i) and
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Int (¢ i2 (V'p(i))) (= Int (¢i(V'p(i))))' The polyhedron Ni is a handlebody,

the singular dis k Y'i is a strong deformation retract of Ni' and the

group 171 (Y'I) ~ Z. Hence, Ni is a solid torus.

The core k'i of V'p(i) and of ¢i(V'p(i)) belongs to Int Ni . I claim

that k'i is also a core of Ni . Let ci be a core of Ni . If k is a knot

in a solid torus V, let 0v(k) denote the order of V with respect to k.

We have 0v' . (k'i) = 0v' . (ci)ON .(k'.) [13, Theorem 3, p. 175]. Be-
p(l) p(l) 1 1

cause 0v' . (k'i) = 1, we also have 0v' . (ci) = 1 = ON .(k'i)' Hence,
p(l) p(l) 1

there exist knots di and ei such that c i = di It k'i and k'i = ei It ci

113, Theorem 2, p. 171]. Therefore, ci = (d i It ei) It ci' Because factori­

zation is unique in the semigroup of oriented-knot types, d i It ei is

trivial. But this implies that each of di and ei is trivial [5, p. 1421.

Consequently, k'i is a core of Ni [13, Theorem 2, p. 171].

We now construct an autohomeomorphism t/J i of S3 that takes

¢ i(V'p(i)) onto V'p(i) and that acts as the identity on Ni' Define

t/J i: (S3 - Int (¢i(V'p(i)))) = ¢i:/ I(S3 - Int (¢i(V'p(i)))) and t/J i IN i = 1. The

inclusion a(¢i(V'p(i))) .... ¢i(V'p(i)) - Int Ni induces an isomorphism

171 (a(¢i(V'p(i)))) .... 17 1(¢i(V'p(i))- Int Ni); the inclusion a(V'p(i)) .... V'p(i)

- Int Ni , an isomorphism 171 (a(V'p(i))) .... 171(V'p(i) - Int Ni). Hence, the

isomorphism (lfi)a(¢i(V'p(i))))* induces an isomorphism 17 1 (¢i(V'p(i)) -

Int Ni) 17 1 (V'p(i) - Int Ni)' There is a homeomorphism t/J'i: (¢ i(V'p(i)) -

Int Ni) (V'p(i)-Int Ni) inducing the latter isomorphism [21, Corollary

6.5, p. 80]. Because ¢i-/ leaves k'i pointwise fixed, t/Ji1a(¢i(V'p(i)))

takes a meridian-longitude pair onto a meridian-longitude pair. Therefore,

(/J'i takes meridian-longitude pairs for each of ¢i(V'p(i)) and Ni onto

meridian-longitude pairs for each of V'p(i) and Ni , respectively.

But this means that t/J'i !a(¢ i(V'p(i)) - Int Ni) and t/J iIa(¢ /V'p(i)) -

Int Ni ) differ on aV'p(i) u aNi by a map ai such that each of ailav~(i)

and ailaNi is isotopic to the identity [11]; that is, there is an auto­

homeomorphism 0i of (}V'p(i) U aNi such that ai is isotopic to the

identity and such that Il'i 0i l/J'i on a(cPi(V'p(i))) u aNi' Because
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each of dV'p(i) and aNi is collared in V'p(i) - Int Ni , the map 0i can

be extended to an autohomeomorphism of V'pO) - Int Ni . We set

t/J)(cPi(V'p(i))- Int Ni) = 0i t/J'i to complete the definition of t/Ji'

We now define h2 !(S3 - Int (V'p(l) U···U V'p(Il))) = 1 and (h2 !V'p(i)) ~

«t/J i cPi): V'p(i)) (i = 1,",11)· Then the autohomeomorphism h = h
2

hI of S3

takes D(L; p, 1/) onto D(L'; p, 1/), thereby finishing the proof of the

lemma's first conclusion, (I LI, p, 1/) determines ID(L; p, 1/)l.

Now, the "converse." H. Seifert showed in [17; §§9, 10, 11; pp. 77-79]

that, when L is a knot, ID(L; p, 1/)1 determines ILI; that, when L is a

nontrivial knot, ID(L; p, 1/)1 also determines each of p and 1/; and that,

when L is unknotted, D(L; p, 1/) is amphicheiral, if ID(L; p, 1/)1 does

not determine (p,1/). Finally, H. Schubert proved that the only amphicheiral,

doubled knots are the trivial knot and the figure-eight knot [14, Theorem 5,

p. 1451; this completes the lemma's proof when 11 = 1.

Assume now that 11 >: 2, and suppose that D(L; p, 1/) is unsplittable.

For each of i = 1,"',11, let Yi and Y'i be clasping disks that Ki
bounds; assume that Yi C Int Vi and that Y'k n Y'j ,-- Ql when k 10 j.

Lemma 1.1 and the unsplittability of D(L; p, 1/) imply that L is also un­

splittable. Hence, S3 - Int(V 1 U· .. U V
Il

) is boundary irreducible, and

there is an orientation-preserving autohomeomorphism of S3 moving Y'i

onto Yi(i = 1,'" ,11) and leaving each point of D(L; p, 1/) fixed. Seifert

essentially constructed such a homeomorphism in his proof in [17] of

Lemmas 5 and 7; for our proof, one need make only minor changes in

Seifert's work. Therefore, if 11:::: 2 and if D(L; p, 1/) is unsplittable,

then ID(L;p,1/)1 determines the triple (ILl,p, 1/); d. [17, §9, p. 771.
Finally, suppose that ID(L1 ;p,1/),· .. ,D(Lm;p,1/)! is the set of maxi­

mal uns plittable s ublinks of D(L; p, 1/). We have seen that ID(Lj ; p, 1/)1

determines 1L j I (j = 1,"" m); consequently, ID(L; p, 1/)1 determines !LI,
because L = L 1 U.. ·U L m. If, furthermore, no D(L j ; p, 1/) satisfies

simultaneously the conditions (1) and (2) of the hypothesis, then

ID(Lj ; p, 1/)1 determines (P,1/) as well as IL j 1(j-l,", m); therefore,

ID(L;p,T/)1 determines (ILl,p, 1/), as claimed, completing the lemma's



GROUPS AND MANIFOLDS CHARACTERIZING LINKS 69

§2. The characterizations

Let L denote the link KI U···U K/1 In SJ. let D(L;p.7/) be the

(P,7/)-double of L, and, for each of i = 1,",/1, let Wi be a closed

regular neighborhood of Ki . We ass ume that Wi ( Int Vi (i = 1,'" /1), and

we set C 3(L;p,7/) = S3_ Int (W I U.. ·U W/1)'

THEOREM 2.1. Let Land L' be links in S3, and let p and 7/ be

fixed integers; p, arbitrary; 7/ = ±2. Then Land L' are of the same

(ambient) isotopy type if and only if 17 1(C3(L; p, 7/)) ~ 171(C3(L'; p, 7/)).

COROLLARY 2.2. Let Land L' be links in S3, and let p and 7/ be

fixed integers; p, arbitrary; 7/ = ±2. Then Land L' belong to the same

(ambient) isotopy type if and only if C3(L; p, 1/) == c3 (L'; p, 7/).

Proof. The necessity follows from Lemma 1.2; the sufficiency, from

Theorem 2.1.

Proof of Theorem 2.1. Lemma 1.2 immediately establishes the necessity.

To prove the sufficiency, we assume, henceforth, that 17 1 (C 3(L; p, 7/)) ~

IT 1(C3 (L'; p, 7/)).

Let L I ,"', L m be the maximal unsplittable sublinks of L, and sup­

pose m > 1. Applying Lemma 1.1, one can easily show that

D(L I ; p, 7/),"', D(Lm; p, 7/) are the maximal uns plittable s ublinks of

D(L;p, 7/). Hence, 17 I (C3(L;p,7/)) = 17 I (C3(L I ;p,7/))*"'* 17I (C 3(Lm;p'7/));

furthermore, each factor is indecomposable [12, Theorem (27.1), p. 191.

Since 17
1

(C 3(L; p, 7/)) ~ 171(C 3(L'; p, 7/)), we have 171 (C3(L'; p, 7/)) =

GI*· .. *G , with G· ~17I(C3(L.;p,7/))(j-l, .. ,m). Therefore, D(L';p,7/)
m J J

is splittable [12J (loc. cit.). Let D(L'I;P,7/), .. ·,D(L'm,;p,7/) be the maxi-

lI1al unsplittable sublinks of D(L'; p, 7/); we have m'> 1, and L'I,",L'm'

are the maximal uns plittable s ublinks of L'. Setting G'k -~ 17 1(C 3(L'k; p,7/))

(k 1,· ... m'), we have 1T 1(C 3(L'; p, 1/)) 7 G'I *... * G'm" Each factor G'k

is indecomposable !H'calls(' of [12\ (lac. cit.). Therefore, m = m'. and
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G'k.~Gj(j=I,... ,m) for some rearrangement (G'k , .. ,G'k) of
JIm

(G'l ,"', G'm) [8, p. 245]. Consequently, 771 (C3(L'k.;P, 7/)) ~ 771 (C 3(Lj ;p,7/))
1

(j =1,"', m); thus, if the sufficiency of our condition holds for each pair

(L j , L'k) 0= 1,"" m) of unsplittablc links, then it holds for the pair
J

(L, L') of splittable links, because, for any link L, if the maximal un-

s plittable s ublinks are L 1 , .. ·, Lm, then the collection II L 1 I,. .. , IL mII
determines ILl, as one can easily prove.

We shall, therefore, assume not only that "I (C\L;p,7/)) ~ 771 (C 3 (L';p,7/)),

but also that each of Land L' and, hence, each of D(L;p,7/) and

D(L';p,7/) is unsplittable. Finally, note that the number of components

in each of L, L', D(L; p, 7/), and D(L'; p, 7/) is p.; we shall assume that

p. > 1, because the theorem is true when p. = 1 [24].

Now, some notation. We have L' = K'l U.. ·U K~ and D(L'; p, 7/) =

K'l U.. ·U K~. For each of i = 1,"'./1, set T i = avi , and let W'i denote

a closed regular neighborhood of K'i( = D(K'i; p, 7/)); assume that

W'k n W'j = 0 when k ~ j. Set C' -, C\L'; P, 7/) = S3 - Int (W'l U.. ·U W~)

and set C ~ C\L; P, 7/). Also, set M = S3 - Int (VI U.. ·U Vp.) and set

;\. ~ v. - Int W. (i = 1 ... II)
1 1 1 ",.... .

The space M is an aspherical Ii-link manifold and Ai is an aspheri-

cal 2-link manifold [12] (loc. cit.). We have C = (... ((MU T !\)UT /\2)''')
1 2

UT A . For each of i = 1,"·,p., set Mi = C - Int Vi' The link
p. p.

K1U.. ·U Ki_
1

U Ki U Ki t-1 U.. ·U Kp. is unsplittable; see the remark preceding

Lemma 1.2, p. 65. Furthermore, each Ai is a deformation retract of an un­

splittable 2-link's complement. Thus, because 11> 1, each of Mi and

Ai (i = 1,,,' ,p.) is boundary irred uc ible. Moreover, it is not hard to show

that none of the inclusion-induced monomorphisms "I (Ti) .. 771 (M i) and

"I (Ti) ->17 1(A) (i= 1, .. ·,p.) is surjective, because there is only one link

whose group is free abelian of rank two [9]. Therefore, for each of

i = 1,. .. ,p., it follows that "l(C) ~ 771(Mi) * "l(A i) and that this
"I (T)

group is a nontrivial free-product with amalgamated subgroup.
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Because "I (C') ~ "I (C) and because each of C' and C is aspheri­

cal, there exists a homotopy equivalence f: C' .. C; d. [10, p. 931. Set

T = T 1 U...UTp.' A result of]. R. Stallings and F. Waldhausen [20,

Lemma 1.1, p. 506] guarantees the existence of a mapping g: c' .... C with

the following properties:

(1) g "'" f;

(2) g is transverse with respect to T; that is, there exist product

neighborhoods U(g-I(T)) and U(T) such that g maps each

fiber of U(g-I(T)) homeomorphically onto a fiber of U(T);

(3) g-I(T) is a compact, orientable, and, as we shall see, discon­

nected surface properly imbedded in C';

(4) if F is any component of g-I(T), then ker("j(F), "jCC'))

= 1 (j = 1, 2).

We divide the remainder of the proof into seven parts.

1. For each of i = 1,"·,p., the space g-I(T) is not empty.

If g-I(Ti) = 0, then either g(e') C Mi or g(e') C Ai' because T i
separates C. Let x be a point in C', and let y be a point in Ti . When a

suitable path is chosen from y to g(x), then either g*("1 (C',x)) <:; "I (Mi,y)

or g*("1 (e',x));::: "I (Ai' y), depending on whether g(e') C Mi or g(C')

': 1\. Thus, g*("1 (C', x)) is a proper subgroup of "I (C, y), because

IT I (C, y) is a nontrivial free-product with amalgamation. But g is a

homotopy equivalence (by (1)); therefore, g*("1 (C', x)) = "I (C, y), yield-

i ng a contradiction.

We digress to prove a lemma needed in part 2.

LEMMA 2.3. Any properly imbedded, incompressible annulus A In C IS

houndary parallel.

Proof. Let a and f3 denote the components of aA, and suppose that

<I: aW
jl

and f3 C aw
j2

. Assume that A is in general position with re­

~; pect to T· = aVj ; 1hl' (:omponents of AnT are mutually disjoint,
.11 . . 1 J1
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simple, closed curves. Because T
jl

is incompressible in C and because

D(L;p,11) is unsplittable, we can remove those curves in An T
jl

bound­

ing disks in A. Assuming this has been done, choose the curve a' in

A n Tjl cobounding with a a subannulus A' of A properly imbedded

in Vh - Int Wh; we are assuming, of course, that A n Tit still has

curves in it. The winding number of a in ViI is 0 [13, Theorem 4,

p. 175]. Thus, because a' - ia in Vh , the winding number of a' in

V
jl

is O. But if a curve is on the boundary of a solid torus, then the

curve's winding number and order coincide [13, Lemma 1, p. 170], There­

fore, the order of V
it

with respect to a' is 0, and so a' either bounds

a disk in Th or is a meridian of V
jl

.

Clearly, the incompressibility of A prevents a' from bounding in

T
jl

; thus, a' is a meridian. Because the winding number of a in V
jl

is 0, the linking number of a' U a is also 0 [23, p. 374]. Thus, two

trivial knots with linking number 0 bound the annulus A'; hence, A' is

planar [7, p. 136], implying that a'U a is splittable. Hence, the order

of Wit with respect to a must be 0, because, otherwise, the order of

V
jl

with respect to a would be > 0 because the order of V
it

with re­

spect to Kit is 2 [13, Theorem 3, p. 175; Lemma 2, p. 2381, and

0v. (a) > 0 implies that a'U a is unsplittable. Therefore, either a
)1

bounds a disk on aW
it

or a is a meridian of Wit. Certainly, a does

not bound on aw
h

. But if a is a meridian of W
jl

' then a'U K
jl

has

linking number iI, which is a contradiction. Consequently, AnT·
Jl

must now be empty; hence, jl ~ jz and A C Int Vj (j ~ ji = jz), because

T
jl

separates Wjl and Wiz when jl -f- iz·

We now have aA = a U f3 C aWj as well as A C Int Vj . Neither a

nor f3 bounds a disk on awj ; therefore, a U f3 bounds two annuli, Al

and Az' on awj .

I claim that there exists a toral solid Xl and a 2-link manifold Xz
such that Vj - Int Wj ~ Xl UAXZ' To see this, consider the torus Al U A.

There are toral solids, VI and Vz ' such that SJ VI UA UA Vz . If
I
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both Wj and S3 - Int Vj belong to the same solid, say V
2

, then, ob­

viously, the claim holds: take Xl = VI and X2 = Vj - Int (VI U W/ On

the other hand, suppose Wj C VI' say, and suppose S3 - Int Vj C V
2

.

Then A2 separates VI' and so there is a toral solid Xl such that

VI = Xl UA
2

Wj ; note that aXl = A2 U A. But S3 - Int Xl is a toral

solid containing both Wj and S3 - Int Vj . Because this situation is

analogous to the first caSE: with both Wj and S3 - Int Vj in VI' the

claim's proof follows.

Suppose Xl is a knot manifold. Then Xl belongs to a polyhedral

3-cell in Vj [1, Lemma 1, p. 226]. Consequently, 0v.(a) = 0 = 0v.(j3)

113, Theorem 1, p. 171]. Because 0v.(a) = 0v.(Kj) O~.(a) and bec1use

K J J J
0v.( j) = 2, we see that 0w,Ca) = O. Thus, because a does not bound

J J
on awj , each of a and (3 must be a meridian of Wi' But if VCO,2) is

a second-regular neighborhood of a clasping disk D in S3 with trivial

diagonal, with p = 0, and with Tf = +2, then there is a homeomorphism

e: (Vj,Kj) -> (V Co ,2)' aD); each of e(a) and e((3) is a meridian of aD,

the knot aD is trivial, and e(X l ) is a knot manifold. Therefore, the

trivial knot is the composite of two knots one of which is nontrivial. Be­

cause this is impossible [5, pp. 141-142], Xl is a solid torus.

Suppose now that the inclusion-induced homomorphism 171 (A) --> 171(Xl)

is not surjective; we shall deduce a contradiction. Assume that aXl =

1\1 U A. The space Xl U
AI

Wj is, evidently, a toral solid. If Xl UAI Wj
were a knot manifold, then we could find a 3-cell in Vj containing it [11

(lac. ciL), implying that 0v.(Kj) = 0 [13, Theorem 1, p. 171]. Because
J

Ov/Kj) = 2, however, the space Xl UAI Wj is a solid torus. If x is a

~enerator of 171(Xl)' and if y is a generator of 171 (Wj), we have

IT 1(Xl UAl Wj) = Ix,y : xp
= yql. Because A is incompressible, we have

p j. 0; because the inclusion-induced homomorphism 171 (A) --> 171 (Xl) is

not surjective, we have p ~ ±1. Therefore, because 171 (Xl UAl Wj) ~ z,
we have q = ±1; first, q is certainly not 0; second, if q 110, 1, -11,

Ihen ix,y: x P '-yql is the group of a torus link different from a trivial knot

Is. p. 1441. Because q II, thl' inclusion-induced homomorphism
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77 1 (AI ) -> 771 (Wj) is surjective, and so 0W.(a) ..~ 1. Thus, 0v.(a) ~

K J J
0v.( j)Ow.(a) = 2.

J J
Now let k be a core of XI' We have 0v.(a) = 0xl(a)Ov.(k), the

1 1
order 0xl(a) is clearly i p!, and Ipi Ie. 1; therefore, 2 = Ipi Ov/k), the

order 0xl(a) = !p! = 2, and 0v .(k) = 1. If Wv.(k) denotes the winding
J J

number of k in Vj , then Wv.(l<) = 1, because 0v.(k) = ll13, Lemma 1,
J J

p. 170]. Thus, because Wv.(a) = WXI (a)Wv.(k) l13, Theorem 4, p. 1751

and because Wv.(a) ~ Wv.(J(j)Ww.(a) = 0, w~ have Wx (a) ~ O. But
J J J I

a C ax l ; thus, Wx (a) = Ox (a) ~ 2 and Wx (a)' 0 - an absurdity.
I I I

Consequently, the inclusion-induced homomorphism 77 1 (A) -. 77 1 (XI) is

surjective. Thus, the inclusion A -. X is a homotopy equivalence [22];

therefore, A is boundary parallel in C [15, Theorem 3.1, p. 168].

2. We can assume that each component F of g-I(Ti) and, hence,

each component of g-I(T) is a torus that is not boundary parallel.

Because g"" f, the mapping g is a homotopy equivalence; thus,

g*: 77 1(C')-. 77 1 (C) is an isomorphism. Moreover, because T i is incom­

pressible in C, property (4) implies that 77 1 (F) is isomorphic to a sub­

group of 77 1 (Ti). Therefore, because F is orientable, it is either a

2-sphere, a disk, an annulus, or a torus. Property (4) implies that 772 (F)

= 0, so that F is not a 2-sphere. If F is a disk, one can construct a

map g': C' .. C satisfying the properties (1) through (4) and the property

that g,-I(Ti) has fewer components than g-I(Ti); see the second para­

graph in l24, 2, p. 265]. Therefore, we can assume that F is either an

annulus or a torus.

Suppose F is an annulus. Because D(L'; p, T/) and L' are un­

splittable, and because p. > 1, Lemma 2.3 applies to C', and so F is

boundary parallel. As when F was a disk, we now easily replace g by

a map g' satisfying the properties (1) through (4) and the further property

that g,-I(Ti) has fewer components than g-I(T). Thus, we can assume

that F is not an annulus, and that, therefore, each component of g-I(Ti)

is a torus. Finully, we can assunJP that the torus F is not boundary
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parallel, because, otherwise, we could "remove" it in the obvious way;

d. [24, 21.

3. For each of i ,c 1",', /1 and for each component F of g-I(Ti),

we can assume that glF is a homeomorphism.

7S

Let x be a point on F. The homomorphism (g:F)*: 771(F,x)"

771(Ti , g(x)) is a monomorphism, because g has properties (4) and (1) and

because T i is incompressible in C. Hence, giF is homotopic to a

covering map k: F .... T i ([16], [21, Lemma 1.4.3, p. 61]). Because g is

transverse with respect to T i' this homotopy extends to a homotopy

Iht I (0 ~ t:S 1) of g that is constant off a small product neighborhood of

F'. Note that hi * is an isomorphism. Now 77 1(F ,x) C;; hI! (77 1(Ti,h1(x)));

therefore, hi * (77 1(F,x)) = 771(T i , hi (x)) ([3, Theorem 1, p. S7S] or [Is,

Theorem 1.3, p. 161]). Thus, k = hi iF is a homeomorphism, verifying 3.

4. For each of i·.. 1,"',/1, we can assume that g-I(Ti) is connected.

The proof is inductive. If g-I(T1) is connected, the first inductive

step, for i = 1, is complete. Otherwise, suppose that g-I(T1) is dis­

connected. The construction of a map g": C'·, C with the same properties,

(1) through (4), as g, but with g"'-I(T1) having fewer components than

g·-1 (T1)' involves essentially three steps. First, construct a path a in

C' so that a and g-1 (T1) meet only in the endpoints of a - each end­

point on a different component of g-1 (T1) - and so that ga is a null­

iJomotopicloopin C. Second, split C' along g-I(T1); the path a be­

longs to some component X resulting from this splitting. Using a, con­

struct a homotopy from g to g' taking X onto T l' Third, using g',

('onstruct a map g": C' -> C such that g" satisfies properties (1) through

(4), such that g,,-I Cf) C g-I(T), and such that g,,-I(T1) contains

"xactly one component less than g-1 (T1)' We shall omit the details of

Ihis construction, because these details are in [4, §6, p. ISS],

If necessary, we cont inuc the constructions inductive ly - an induction

wilhin the original one· :lIld WI' "bl,lin ;) map hI : C'·, C such that hI
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satisfies properties (1) through (4), such that hII(T) C g-I(T), and such

that hI
1

(T1) contains exactly one component. Note that hI
1 (Ti) Ie (21,

for any i, for the same reason that g-l(Ti) Ie (21 (see I). The remaining

steps in the original induction are now clear, completing the proof of 4,

and we can assume that g-l(T) has exactly Jl components, T'l"', T~,

with g-l (Ti ) = T'i (i = 1,.·., Jl).

LEMMA 2.4. Any properly imbedded, incompressible annulus A

is boundary parallel.

in A.
1

Proof. Because the inclusion-induced homomorphism TTl (A i) .... TTl (C) is a

monomorphism and because A is incompressible in Ai' it follows that

A is also incompressible in C. The proof of Lemma 2.3, therefore, shows

two things: (1) we cannot have one component of eJA in T i and the

other component of eJA in awi ; (2) if eJA C eJWi , then A is boundary

parallel. Thus, we shall assume that eJA C T i .

Now Ai is homeomorphic to a link manifold of a Whitehead link

(Figure 1 depicts a Whitehead link) each of whose components is trivial.

As one can readily see, such a link is interchangeable. Consequently,

there is an autohomeomorphism ¢ of i\ taking T i onto eJWi and

taking eJWi onto T i' The foregoing paragraph implies that ¢(A) is

boundary parallel; therefore, A itself is boundary parallel, concluding

the proof of Lemma 2.4.

x·1
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LEMMA 2.5. Every properly imbedded, incompressible torus in

1\ 0 = 1,···, /1) is boundary para Ilel.

77

There are submanifolds M'i and /\. 'i of

because T'i is incompressible in C',

Proof. Let S be a properly imbedded, incompressible torus in A. not
1

parallel to awi , let V" be a knotted solid torus in S3, and let h: Vi .... V"

be a faithful homeomorphism. The torus h(S) is obviously incompressible

in S3 - Int (h(Wi)) as well as in h(A i). Hence, there is a knot manifold

o and a solid torus B such that S3 = 0 U h(S)B. The torus aBC = h(S))

is not parallel to h(a(Wi)); thus, a core of B must be a companion of

h(D(Ki ; p, TJ)). But this implies that aB is parallel to h(Ti) [13, Lemma 3,

p. 238] and, therefore, that S is parallel to T i which establishes the lemma.

5. (a) There are mutua Ily disjoint, solid tori, V'r"'" V~, such that

rJV'i" T'i and such that W'i C Int V'i 0= 1,,",/1) for a suitable change in

the subscripts of W'r'"'' W~.

(b) Setting M' = S3 - Int (V'r U... U V~), we have M' ~ M, and we

can assume that glM' is a homeomorphism.

Let Xi be a point in T'i'

C' such that C' = M'. UT , A'. ;
1 i 1

7T r (C',Xi) = 7T r (M'i'Xi) *, 7T r (A'i,xi)' Now g-r(Ti)~ T'i' g* is an
TT r(Ti,xi)

isomorphism, and TTr(Mi,g(xi)) * TTr(Ai,g(xi)) is a nontrivial
TT r (Ti,g(xi))

free-product with amalgamation; therefore, one of the sets g(M'i) and

g(A'i) belongs to Mi , and the other belongs to Ai' Assume that g(M'i) ~ Mi

and g(A)t;:.'\. Then g*(TTr(M'i,xi))~TTr(Mi,g(xi)) and g*(TTr(A'i,xi))<;

7T I (A i ,g(xi))' Because g* is an isomorphism and because g*(TT r (T'i,xi))

TT r(Ti,g(x)) (because of 3), we have g*(TTr(M'i,xi)) = TT r(Mi,g(xi)) and

1-':*(TT r (A'i,xi)) ~ TT r(Ai,g(x)) [2, Proposition 2.5, p. 485]. But A'i is

either a toral solid or a link manifold; therefore, A'i is a 2-link manifold,

because its group is that of a link with two components. Consequently,

(/;\'i T'i U aW'i for some W'j with i replacing j. Set V'i = A'i U W'i'
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product with amalgamation.

To prove that V'i is a solid torus, we first show that the following

supposition leads to an absurdity. Suppose A'i contains a properly im­

bedded, incompressible torus Q'i that is not boundary parallel. We have

A'i=XiUQ~Yi' and 171 (A 'i) = 171(X) (*Q') 171 (Yi)· Each of Xi and Yi
1 171 i

is clearly either a knot manifold or a link manifold. As we have seen,

171(A') "" 171 (Ai)' Hence, [12, Theorem (27.1), p. 19] implies that A'i is

a deformation retract of an unsplittable 2-link's complement, because Ai

has this property (recall that Ai is a deformation retract of the complement

of a Whitehead link). Therefore, A'i is irreducible; consequently, each

of Xi and Yi is irreducible, because Q'i is incompressible in A'i' Thus,

each of Xi and Yi is aspherical.

If the inclusion-induced monomorphism 171 (Q'i) > 171 (Xi) is surjective,

then the asphericity of Xi implies that the inclusion map Q'i > Xi is a

homotopy equivalence [22J. Therefore, Xi ~ Q'i x I [Is, Theorem 3.1,

p. 168], But then Q'i is boundary parallel, contrary to our supposition.

Thus, the inclusion-induced monomorphism 171(Q') -. 171 (Xi) is not sur­

jective; similarly, the inclusion-induced monomorphism 17 1(Q'i) ) 17 1 (Yi)

is not surjective; therefore, 171 (Xi) *, 171(Y) is a nontrivial free-
171 (Qi)

Because the 2-link manifold A'i is irreducible, it is aspherical. As

we have seen, (glj\'i)*: 171 (A 'i) .. 17 1(Ai) is an isomorphism. Consequently,

g! A'i is a homotopy equivalence 122]. Let r': Ai -> A'i be a homotopy in­

verse of g!l\'i' There is a mapping r: Ai ) A'i satisfying the following

properties: (1) r "" r'; (2) r is transverse with respect to Q'i;

(3) r- 1(Q') is a compact orientable surface properly imbedded in Ai;

(4) if S is any component of r-
1 (Q'i)' then ker(17j(S),> 17j(A i»= 1 0=1,2).

Because 17 1 (X.) * 171 (Y) is a nontrivial free-product with amalga-
1 17

1
(Qi) 1

mation, r- 1(Q) is not empty; the proof is similar to that in step 1.

Property (4) implies that 171 (S) is isomorphic to a subgroup of 171 (Q'),

because Q'. is incompressible in ;\'" Hence, S is either a 2-sphere,
1 I

;] disk, an annulus, or a torus. It is neither a 2-sphere nor a disk (d. the

proof of st(·p ~).
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If S is an annulus, Lemma 2.4 says that it is boundary parallel. But

then, as in the proof of 2, we could "remove" it. Thus, we can assume

that S is not an annulus; therefore, it is a torus. Moreover, we can

assume that this torus is not boundary parallel, because otherwise, we

could "remove" it; d. [24, 2]. Thus, if A'i contains a properly imbedded,

incompressible torus that is not boundary parallel, then so does 1\, con­

trad icting Lemma 2.5.

We interrupt the proof of 5 to prove the following lemma.

LEMMA 2.6. The linking number of K'i with any closed curve on

T'i( = aV') is zero.

Proof. Let c be any closed oriented curve on T'i' and let fl(c, K)
denote the linking number of c and K'i. Let (a, (3) denote a meridian­

longitude pair for the toral solid V'i. Orient each of a and {i, and

assume that a - 0 in S3 - Int V'i and that {3 - 0 in V'i. Furthermore,

if V'i is a knot manifold, aSSUme that (1 is homologous to a core of

S3 - Int V'i. There are integers a and b such that c - aa + b{3 on T'i.

Now l7 r (S3_(,8uK)) R< l7 r (A) R< l7 r (A i), and l7 r (i\i) is the group ofa

2-link with linking number 0; moreover, a 2-link's Alexander polynomial

determines (independent of the link) the absolute value of the linking num­

ber [19J. Thus, f({3, K) = O. Furthermore, flea, K) = 0, because a

bounds in S3 - Int V'i. But fl(c, K') = a fl(a, K)I b fl(,8, K) and the

lemma follows.

Continuing the proof of 5, we let D'i be a clasping dis k spanning K'i

and missing K'j when j fe i. Seifert's proof of Lemma 7 in 117, p. 75]

yields an ambient isotopy holding D(L'; p, TJ) fixed and moving D'i into

Int V'i. To insure that Seifert's work can be applied here, we need only

note that T'i( = aV'i) is incompressible in C' and that the linking number

of K'i with any closed curve on T'i is zero; see Lemma 2.6.

Assume now that O'i Int V'j. There exists a solid torus N'i such

fhat [Yi :" Int N'i ;1I1d such Ihill Ihl' diagon8l k'i of D'i is a core of N'i
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[13, Proof of Theorem 1, p. 235]. Because D'i is obviously a strong

deformation retract of Wi (see l13] (loc. ciL)), we can assume that

Wi C Int V'i; evidently, we can also arrange for W'i to be in Int N'i .

Because Wi has order 2 with respect to K'i [13, Lemma 2, p. 238] and

because D(L'; P, Tf) is unsplittable, aWi is incompressible in C' and,

hence, incompressible in A'i' Because aN'i is not parallel to aW'i and

because, as we have proved, every properly imbedded, incompressible

torus in I\'i is boundary parallel, aWi is parallel to T'i' But this im­

plies that T'i( = aV) is compressible in V'i' Therefore, V'i is a solid

torus. Consequently, A'i == N'i - Int W'i' Furthermore, there is a faithful

homeomorphism (Wi' K) -> (Vi' Ki), which one can easily construct with

results in [6, pp. 47-54]. Therefore, Wi - Int W'i == Ai' and so A'i == Ai

Because g(A'i) ~ Ai r;:: Vi (i= 1,···,Jl) and because Vi n Vj = (21 when

i 1= j, we obviously have V'i n V'j ~ (21 when i 1= j. This concludes the

proof of 5 (a).

To prove 5 (b), notice in the first paragraph of this step 5 that g(M'1)

~M1 and that (g!M'1)*:171(M'1'x 1) -> 171(M1 ,g(x1)) is an isomorphism.

Notice also that M'1 ~ (M'1 -Int V'2) U T , A'2 and that M1 =(M1 -Int V2)
2

UT 1\2' Now (gIM'1)* is an isomorphism, (g!M'1)*(171(M'1 -Int V;,x2))
2

t;; 17 1(M 1 - Int V2 ' g(x 2)), and (g\M'1)*(171(A'2' x2)) = 171(A 2, g(x2)); thus

(gl M'1 )*(171(M'1 - Int V'2' x2)) = 171(M1 - Int V2 ' g(x2)); that is, 171(M'1 ­

Int V'2) ~ 17 1(M 1 - Int V2) [2, Proposition 2.5, p. 485].

Arguing inductively, we see that 171 (M'1 - Int (V'2 U.. ·U V~)) ~ 171(M1

- Int (V
2

U· ..U VJl)); that is, (g\M')*: 171(M') -> 171(M) is an isomorphism.

The mappings gl T'i (i = 1,"" Jl) are homeomorphisms. Therefore, there

exists a homotopy from g to a map g': C' -> C such that (g'jM'): M' -> M

is a homeomorphism and such that the homotopy is constant on C'- Int M'

[21, Theorem 6.1, p. 77]. Thus, M' == M, and we can assume that gjM'

is a homeomorphism, concluding 5 (b)'s proof.

6. (a) For each of i = 1"",Jl, we have A'i == Ai'

(b) l£ k i is a core of V'i' then Ik, U.. ·U k/L I. IL' l.
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From the proof of 5 (a), we know that /\. 'i === /\. i; this proves 6 (a). To

prove 6 (b), recall that the diagonal k'i of the clasping disk D'i' used

in the proof of 5 (a), is a core of N'i and that N'i n N'j ~ (21 whenever

i 1= j. The definition of a doubled link (see the introduction) implies that

D(L';P,77) = D(k'l u.. ·u k~;P,77)' Lemma 1.2 now implies that Ik'IU ...Uk~1

= IL'1, Assuming that D'i has been moved into Int V'i 0=1,"',11), we

see that k'i is also a core of V'i' There is an autohomeomorphism of

S3 acting as the identity on S3 - Int (V'l U,··U V~) and taking k'i onto

ki 0=1,"',11) [13, Lemma 1, p. 1581. Therefore, lkl U.. ·U kill =

Ik'l U.. ·U k~ I = IL'l, proving 6 (b).

7. The links L' and L belong to the same (ambient) isotopy type.

The proof of 7 is similar to the proof of 6 in l24]. Recall that p and

77 are fixed integers; p, arbitrary; 77 = ±2. We shall prove 7 for p arbi­

trary and 77 = t2. The claim then holds for the pair (p, -2): first notice

*that D(L ; -p, -77) is the mirror image of D(L; p, 77); hence, if
3 3 ' 3 * 3 ,*

1T I (C (L;p,-2)) ~ 1T I (C (L;p,-2)), then 1T I (C'(L ;-p,12)) ~ 1T I (C (L ;-p,+2)),

whence IL*1 = IL'*1 and, therefore, ILl = IL'L Thus, to prove 7, it

suffices, by 6(b), to prove that lk l U.. ·U kill = ILl when 77=+2.

Set GI = 1T I (A'i) and set G2 = 1T I (A i). Choose a basepoint of GI

on T'i; choose a basepoint of G2 on T i' Now read a presentation for

Gj (j = 1,2) from Figure 1.

REMARK. We shall assume that the orientation of S3 has been chosen

so that the twist knot of Figure 1 has 77 = +2.

We have

The pair (u I , Z I) is a meridian-longitude pair in the link manifold M';

the pair (u2 , z2)' a meridian-longitude pair in M. Now abolish the sub­

scripts in G2 , BecCluse g:M' is a homeomorphism, we can assume that
II

g*(zl) urz v and th;tt 1'.+(1I 1) 1I zq, Notice, however, that if
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Q : G --> GIG' is the canonical abelianization of G, then the second rela­

tion for G1 in (*) becomes [Q (z)Jq = 1 under the homomorphism

Q g*: G1 -> GIG'. The integer q is, therefore, zero, because Q (z) is a

free generator of GIG'. Consequently, g!M' matches meridians with

meridians or their inverses; hence, k1 U.. ·U k
ll

and L and, therefore,

L' and L (by 6 (b» are equivalent.

The orientation of S3 induces an orientation in each of V'i and Vi;

in turn, the oriented solid torus V'i induces an orientation in T'i; the

solid torus Vi' an orientation in T i' A pair of transverse, simple,

closed curves on T'i oriented with respect to ki represents the meridian­

longitude pair (u1, zl); a similar pair of curves on T i oriented with

respect to Ki represents the pair (u, z). Each of these pairs of curves

has intersection number +1 or each has intersection number -1, because

there is an orientation-preserving homeomorphism e: V'i --> Vi satisfying

e*(u1) = u and e*(zl) = z. Therefore, to prove that Ik1U... U kill = lLI,

we suppose that g does not preserve the intersection number; that is, we

suppose that one of the following holds: (a) g*(zl) = z, g*(u1) = u- 1;

(b) g*(Zl)=z-l, g*(u1)=u.

If S is a subset of a group H, then <S> denotes the consequence

(or normal closure) of S in H. Set I' = G1/<zlul(P+1» and set

n = GI<zu(p+1». A straightforward argument shows that g*«Zlul(P+1»)

= <zu(p+1» in either case (a) or case (b). Hence, g* induces an isomor­

phism I' --> Q.

If H is a knot group, let !\H(t) denote its Alexander polynomial. We

have ~l'(t) == t2 - t + 1 and ~n(t) = -(2ptl)t2 + (4p+3)t - (2p+l). Ob­

viously, A[,(t) 1= ~n(t), unless p = -1. Therefore, neither (a) nor (b)

can hold when p 1= -1.

To prove that neither (a) nor (b) holds when p = -1, set p = -1 in

the presentation (*), set L= G1 /<zt Ul 1 > (oo !u1,x1 :u1 =

Xl u12xl1uixl1u12x1 uil), and set 0 = GI< zu> (~ Z). The isomor­

phism g*, in either case, induces an isomorphism ~ > O. But ;\1(t) ==

2t2 - 3t I 2 and ''\O(t) I, showing that ~ *O. Consequently, neither
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(a) nor (b) can occur; thus, Ik1 U···U k,) 'c IL! and, therefore, IL' I = IL I,

completing the theorem's proof.
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HNN GROUPS AND GROUPS WITH CENTER

John Cossey and N. Smythe

We shall show that if H is a subgroup with nontrivial center of a

group in a certain class G, then H is an extension of a free group by a

subgroup of the rationals. The class ~ is described in Section 1; essen­

tially it consists of groups which can be constructed by a sequence of

free products with amalgamation and HNN-constructions with free amalga­

mated and associated subgroups, starting with free groups. The class ~

contains all torsion-free I-relator groups, and also fundamental groups of

3-manifolds with incom pressible boundary, in particular knot groups and

link groups. The proof is modelled on [8], but note that we do not assume

H to be finitely generated.

S1. For our own convenience in the definition of the class ~ we shall

f0llow the development of the subgroup theorem for HNN-groups given in

113], summarized below. The reader familiar with this theory as developed

by Karrass, Pietrowski and Solitar [8] or Cohen [4] should have little dif­

ficulty with translation.

A diagram of groups (0, A) consists of

(i) a (connected) directed graph D

(ii) for each vertex v of D, a group Ay

(iii) [or each directed edge e of D leading from the vertex Ae to

the vertex pe, a homomorphism Ae : AAe' Ape'

The mapping cylinder of (D, A) is a group m(D, A) given by

generators: U Av U Ite : e an edge of Dl
y (D

87
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relations: relations of Av ' teAe(a) t;l = a for a ( AAe

te = 1 for e ( T

where T is a maximal tree in D.

The isomorphism type of m(D, A) is independent of the choice of T.

If each Ae is a monomorphism then each vertex group Av is embedded

in the mapping cylinder in the obvious manner; in this case the mapping

cylinder is called the graph product of (D, A).

If D is a tree, the mapping cylinder is simply the colimit of (D, A);

the graph product in this case is called a "tree product" by Karrass and

Solitar (although their tree is slightly different). For the diagram

the graph product is A *C B, the free product of A and B amalgamating

f(C) with g(C).

For the diagram

K

the graph product is the HNN-construction with base K and associated

subgroups f(L) and g(L), i.e.

<K, t : tf(L)t-1
= g(L» .

The mapping cylinder has a universal description in the category of

groupoids [13]; its description in the category of groups is complicated by

the non-uniqueness of the maximal tree T. However we only need here

the fact that there is a homomorphism from the mapping cylinder of (D,A)

onto the colimit of (D, A), the kernel of which is normally generated by
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It e : e an edge of 0 l. Thus if we are given a group G and homomorphism

¢v : Av -> G for each vertex v, s uc h that each diagram

commutes, then there is a uniquely determined homomorphism from the

mapping cylinder of (0, A) into G.

As deve loped in [13], the theory of mapping cylinders allows groupoids

at the vertices of a diagram; in particular we need to allow disjoint unions

of groups to occur. An example should suffice to illustrate how the map­

ping cylinder is then obtained. Consider the diagram

CUD

the vertices being disjoint unions of groups A and B, C and 0 re­

spectively. Suppose f(A) C C, g(A) C C, feB) C C and g(B) C O. The

diagram can then be expanded to a diagram in which only groups appear at

each vertex

The mapping cylinder (or graph product) of the original diagram is

t hen defined to be the mapping cylinder of this expanded diagram.

The subgroup theorem for graph products can now be stated.
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THEOREM 1. Suppose M is the graph product of a diagram (D, A) and

H is a subgroup of M. Then H is the graph product of a diagram (D,B),

where the vertex groupoid Bv is a disjoint union of groups dAvd- 1 n H,

with d ranging over a set of double coset representatives for M mod (H,A).

The edge maps Be are induced from the maps A
e

.

(The theorem also holds for mapping cylinders with an appropriate

modification to allow for the fact that Av is not necessarily embedded

in M in this case.)

Finally we come to the description of the class ~. Let ~o be the

class consisting of the trivial group alone. If ~n-l has been defined,

§n is to consist of graph products of diagrams

L

()
K

where L is a disjoint union of free groups

K is a disjoint union of members of ~~n-l .

(Thus ~l consists of all free groups, §2 contains free products of

free groups with amalgamations, etc.) Let ~ = U ~n' It is an immediate

corollary of the subgroup theorem stated above that § is closed with

respect to subgroups.

It is a consequence of work of Magnus (see [11]) that ~ contains all

torsion-free I-relator groups. It is a consequence of work of Haken ([6];

see also Waldhausen [14]) that fundamental groups of 3-manifolds with

incompressible boundary, in particular knot groups and link groups, are

In §.
Note that every group G f ~~ has cohomological dimension < 2 since

a 2-complex which is a K(G, 1) can be constructed.



HNN GROUPS AND GROUPS WITH CENTER 91

~2. THEOREM 2. Let H be a group in ~'~ having non-trivial center.

Then there is a homomorphism ¢ from II into the rationals 51, whose

kernel is a free group. If H is non-abelian, then the centre of H is

infinite cyclic and is mapped monomorphically by ¢.

Proof. Note firstly that if H is abelian, then it is either free abelian of

rank at most 2 or is locally infinite cyclic (hence isomorphic to a sub­

group of 51) ([5], Theorem 5, p. 149). Thus in the following we may

assume H is non-abelian.

We may assume H (~n' and that the theorem is true for members of

t Jn_ 1 . Thus H is a graph product of a diagram

K

where L is a disjoint union of free groups

K is a disjoint union of members of ~n-l .

Expand this diagram to one in which groups occur at each vertex. In

this expanded diagram we have

(i) ~n-l -groups Ka , for a in a set of vertices A

(ii) free groups Lp, for fJ in a set of vertices B

(iii) for each p (B, two edges from p to vertices in A with

corresponding injections fp: Lp .... Kff3 and gp: LfJ .... Kgp .

Within B choose a subset B' such that the complete subgraph con­

I;lining AU B' is a tree. The graph product S of this subdiagram is a

! rce product which is embedded in H, and H may be regarded as an

liNN-construction with base S, that is, the graph product of the diagram

l (3~ L~B' )(8'/
S
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in Kgf3' Then the

n f{3(L{3) of all
{3 ( B'

Case 1: B=B'=0.

Then A must be a singleton lal and H = Ka ( ~n-l' The result

follows from the induction assumption.

Case 2: B = B' f- 0.

Then H = S, a free product of the groups Ka amalgamating the sub-

group ff3(Lf3) in Kff3 with the subgroup g{3(Lf3)

center of H, ZH, is contained in the intersection

these amalgamated subgroups.

Hence each L{1 has nontrivial center. Since L{3 is free, it must be

infinite cyclic. Thus ZH is infinite cyclic. Furthermore each Ka con­

tains ZH so has nontrivial center. By the induction assumption, if Ka
is non-abelian there is a homomorphism 1>a: Ka -> 2 which is one to one

on the center of Ka . If Ka is abelian, there is a homomorphism

1>a : Ka -> 2 which is one to one on ZH. Since L{3 is cyclic, 1>a is

one to one on ff3(Lf3)' for a = f{3, and on gf3(L{3), for a", g{3.

The tree product S can be built up inductively vertex by vertex. Then

we can inductively construct a map 1>'a: Ka -> 2 as follows. Suppose we

have defined 1>~ for a in a subset A' of A, and a* is a vertex of A

joined to A' via a vertex f3 of B, for example

for x a generator of L f3 .

Thus 1>'ff3ff~ ~ 1>'gf3 gf3 for all f3 (B. The collection l(/>~l :u(AI there

fore induces a homomorphism (/J: S ,12 which is one to one on the center
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The kernel of ¢ is free; this can be seen using a cohomological argu­

ment or directly, from the subgroup theorem. Thus, since (ker ¢) x ZH

is a subgroup of H, ker ¢ can have cohomological dimension at most 1;

the Swan-Stallings theorem tells us that ker ¢ is free. Alternatively,

the subgroup theorem says that ker ¢ is a graph product of a diagram

where each group in L* is of the form (ker ¢) n dLf3 d- 1 =::: (ker ¢) n Lf3

111, and each group in K* is of the form (ker ¢) n dKad- 1 =::: (ker ¢)

n Ka = ker ¢a which is free; the graph product of such a diagram is free.

Case 3: B\B'~ 0, ZH n SH = 1.

Then H/SH is freely generated by It{3: f3 (B \ B'I, with nontrivial

center. Hence H/SH is infinite cyclic.

By the cohomological argument given above, SH is free. Since H is

assumed non-abelian, SH is non-trivial so the cohomological argument

also gives us that ZH has cohomological dimension 1. Thus ZH is

infinite cyclic. It is mapped monomorphically by the quotient map to H/SH

Case 4: B \B' = lf3l, ZH n SH f- 1.

Suppose ZH is not contained in SH. Now H is a split extension

of SH by < tfJ >; suppose t~x (ZH, with m ~ 0, x ( SH. Then
II m H m H

S n < tf3x > = 1, so H contains S x < tf3 x>. Hence S has

cohomological dimension at most 1, and is therefore free. But ZH n SH

! 1, so SH has non-trivial center, and so must be infinite cyclic. Now

there is only one non-abelian extension of an infinite cyclic SH (= < a> ,

say) by <tf3>' that is

2
Illllthecenteroflhisl',r()lIpi~; 1(-1'" which does not meet <a>=SH.
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Thus ZH C SH. We shall in fact show that ZH C S. SH is a graph

product of an infinite diagram

that is to say, a free product of conjugates of S amalgamating conjugates

of ff3(LfJ) with conjugates of gf3(L{1)' The center of SH is therefore

contained in the intersection of all these conjugates. In particular L has

non-trivial center so must be infinite cyclic. Therefore ZH is infinite

cyclic and is contained in S. The arguments of cases 1 and 2 apply to S;

hence there is a homomorphism 1>: S ..., ~ which is one to one on ZH.
-1 -1

Let Z f ZH n ffJ(Lf3)' Z f- 1; then gfJ(ff3 (z» ~ tf3ztfJ = z. Since

LfJ is cyclic, tfJ must act trivially on ffJ(LfJ) mod ker 1>_and 1> ff3 = 1>gfJ'

There is therefore an extension of 1> to a homomorphism 1>: H ... ~ which

is one to one on ffJ(L{1)' therefore on ZH. By the previous argument

using cohomological dimension or the subgroup theorem, ker 1> is free.

Case 5: B'\B' has more than one element.

Then H is a free product of groups < tfJ' S >, fJ ( B'\ B' amalgamated

over S. Hence ZH C S. Choose fJ o (B'\B' and let So = <S,tf3 :f3f-fJo>'

Then H is the graph product of

The argument for case 4 shows that ZH is cyclic, ZH is contained in

ff3
0

(L
f3o

) and tf3
0

commutes with ff3
0

(L
f3o

)' Hence as in the previous

case there is a map 1>: S ... 2 which is one to one on ZH, which may be

extended to II): II .12 by setting 0(I(l) I for <III fl. This m8p ~6 is

Olll' to on(' on ZII <lnd 11<1:-; 1"1'('(' )(('1"11('1. q.e.d.
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§3. As an application of Theorem 2, we derive two results about embed­

ding knot groups in other knot groups due to Chang [31.

We start by proving

THEOREM 3. Let G (§, and suppose that G has a non-abelian sub­

group H with the properties (i) ZH t 1 and (ii) H is either normal or

of finite index in G. Then either ZG 1= 1, or G has a free normal sub­

group F, with G/F isomorphic to a subgroup of the rationals extended

by an automorphism of order 2 acting invertingly (so that if G is

finitely generated, G/F is isomorphic to the infinite dihedral group).

Proof. Note first that if H is of finite index, so is n Hg = Ho'
g £G

From Theorem 2, if ZH -f 1, ZHo 1= 1, and so we may assume that H

is normal in G.

Since ZH is normal in G, and infinite cyclic, the centralizer of ZH

in G, C say, is also normal, and G/C is isomorphic to a subgroup of

Aut (ZH). Thus ~G/CI = 1 or 2, and if G·~ C, ZH < ZG and we are

finished.

Hence suppose IG/C! = 2. Now ZC 1= 1, and hence C has a free

normal subgroup F with C/F isomorphic to a subgroup of the rationals.

We claim F = F n xFx-1
, where x ( G \C, and hence F is normal in

G. Put E = F x ZC; then C/E is periodic, and hence so is C/E n xEx­

Rut E n xEx-1 ~ (F n xFx-1 ) n ZC, and so C/F n xFx-1 is infinite

cyclic-by-periodic. On the other hand C/F n xFx-1 is isomorphic to a

subgroup of C/F x C/xFx- 1
, and contains a subgroup isomorphic to

Z x Z if F t F n xFx-1. Thus we get F = F n xFx-1 .

We now have C/F locally cyclic and G/F non-abelian. If x £ G \C,

1hen it is easy to check that x2 ( F, and that conjugation by xF inverts

the elements of C/F.

The next lemma is pasy to est<'lblish: we include a proof for com­

pleteness.



96 JOHN COSSEY AND N. SMYTHE

LEMMA 4. Suppose H is normal or of finite index in the group G = Zm *Zn'

and H is isomorphic to Zr * Zs' where m,n,r,s are integers, and

neither m nor n is 1, at least one of m, n is not 2, and at least one

of r,s is not 1. Then H = G.

Proof. By the subgroup theorem, H is the graph product of the diagram

where A is a set of (double) coset representatives for G mod (H, 1), B

is a set of double coset representatives for G mod (H, Zm)' and e is a

set of double coset representatives for G mod (H, Zn)' The map f sends

the component ala-1 n H corresponding to a (A into the component

{1Zmf3-1 n H corresponding to the double coset Hf3Zm containing a.

Similarly for g.

Since H ~ Zr * Zs' there can be no loops in this diagram, for other­

wise H would contain a free factor. Furthermore exactly two of the

factors f3Zmf3-1 n H, yZny-1 n H are non-trivial.

Now, if H is normal f3Zmf3-1 n H ~ Zm n H for all f3. Thus there

can be at most two elements in B, and hence H has finite index in G.

Thus· we need only consider the case H of finite index in G. If

H = <x, y : xS -= l ~ 1>, then x must be contained in a conjugate of Zm

or of Zn: say x ( gZmg-1, and so r divides m. The image of H in

the quotient group Zm/r * Zn is finite and of finite index, and hence

m = r. Similarly, s = m or s = n. Let IAI = a, !BI = b, Ie! = c. From

Kurosh [10] p. 63, the number of cosets of H contained in the double

coset Hf3Zm is precisely the index of f3Zmf3-1 n H in f3Zmf3-1.

If just one of the f3Zmf3-1 n H is non-trivial, then precisely one of

the yZny-1 n H is non-trivial and we get



HNN GROUPS AND GROUPS WITH CENTER

(b-1)m + 1 = a = (c-1)n + 1 .

97

(b-2) m + 2 = a = cn .

If two of the f3Zmf3-1 n H are non-trivial, then all the yZny-1 n Hare

trivial, and so

But the diagram is connected and has no loops, and so its Euler

characteristic is 1. Since there are a + b + c vertices and 2a edges, we

have b+ c - a = 1. These equations quickly give a contradiction.

We are now in a position to prove

THEOREM 5 (Chang [3]). Let H be the group < a,b: am = bn >, m, n

coprime, and let G be a knot group containing H either as a normal

subgroup or a subgroup of finite index. Then G = < A,B : Am = Bn >, and

a = Ah, b ~ Bh, where h is prime to mn.

Proof. Since G is a knot group it follows from Theorem 3 that ZG;; 1,

and so by Burde and Zieschang l2] G has generators A, B such that

G=<A,B:Ak=B
E> with k,E coprime.

Thus G/ZG == Zk * Ze' and clearly a non-cyclic subgroup of such a

group has trivial center. Thus ZH = ZG n H, and so HZG/ZG == Zm *Zn

From Lemma 4 we conclude HZG = G, giving H normal in G, and,

by a suitable change of generators if necessary, k = m, e= n, and H =

< AU ,Bv : Aurn = Bvn >, where (u,m) = (v,n) = 1. But Aurn = Bun = Bvn ,

and so u = v, and the result is proved.

§4. REMARKS:

1. Karras, Pietrowski and Solitar prove in [9] that every finitely

generated (free-by-infinite cyclic) group with non-trivial center lies in ~.

2. If H is a finitely generated group with center in ~, then H is

the split extension of a finitely generated free group by an infinite cyclic

group. It follows that H is finitely presented.

3. There do exist non-abelian groups H with center in ~ with H/H'

isomorphic to:l non-cyclic ~;lIbl'.rolip of the rationals. The subgroup
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generated by 1ya x2 y-a : a a positive integer! in the one relator group

< 2 -1 4>. Ix,y : yx y ~ X IS an easy examp e.

4. The subgroups of a group with center in § are either groups with

center or free groups. It follows that all the finitely generated subgroups

of such a group are finitely presented, or, groups with center in § are

coherent.

Unfortunately not every group in § is coherent. For F2 x F2 , the

direct product of two free groups of rank 2, is in § and it is well known

that F2 x F2 is not coherent.

It is known that knot groups are coherent (Scott r12]): it is still not

known if one-re lator groups are coherent. It would be interesting to be

able to distinguish the coherent groups in §.

5. It follows from the previous remarks that the groups H with non­

trivial center in § are locally indicable, and hence the integral group

ring of H has no zero divisors and only trivial units (see Higman [7]).

6. In defining the class ~, we restricted the "amalgamating and

associated" subgroups L to be free. We could allow L to belong to

any class of groups which (i) is closed under subgroups and (ii) for

which the only groups with non-trivial center are infinite cyclic (for in­

stance, choose L as a subgroup of a parafree group [1]), provided we

restrict ourselves to groups of cohomological dimension two. We have not

however corne across any interesting new groups this way.

7. Finally, we would like to pose the question which provoked the

results of this paper: namely is Theorem 2 true for groups of cohomologi­

cal dimension two, or, put in a slightly different way, if G has

cohomological dimension 2, and ZG -J- 1, is G' free?*

JOHN COSSEY
AUSTRALIAN NATIONAL UNIVERSITY

NEVILLE SMYTHE
AUSTRALIAN NATIONAL UNIVERSITY

* Added in proof: R. Bieri has verified this conj"cturt· for a class of groups

sli~htly wider than finite IV prpscnkd ~r()ups.
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QUOTIENTS OF THE POWERS OF THE AUGMENTATION IDEAL
IN A GROUP RING*

John R. Stallings

Introduction

Let [' be a commutative ring with 1; G a group, E: I 'G -) I' the

augmentation of the group ring taking G --> 1; J = Ker E, the augmentation

ideal. This paper shows how to compute the quotient groups In /]n+1

(as well as the multiplicative structure of the graded ring consisting of

these quotient groups). This is done in terms of a spectral sequence

whose boundary maps are homology operations on groups, 'with certain

functorial properties. We can obtain the spectral sequence either ab­

stractly, in terms of the cobar construction on K(G, 1), or practically

(losing a certain amount of homological data) in terms of a presentation

of G. We give an application to a group-theoretic problem. In particular,

following a suggestion of R. Lyndon, we give an example of a group with

11 generators and one relation, which cannot be mapped homomorphically

onto a free group of rank 2.

Some of this paper was suggested by Brian K. Schmidt's thesis lsl,
which computed the additive structure of f'G/J n in terms of a presenta­

t ion of G.

,1. The basic idea

Let P ~ Ix : r I be a presentation of G. Let F = Fl x I be the free

",roup with basis Ix l. Let I be the augmentation ideal in I 'F. For

This work was don.' ",,,I.'r th,' auspices of the Miller Institute for Basic Re­

'.'·;lre-h, the Nationul Sci"llcl' I"llllndntioll, CJncl the University of California, Berkeley

I() 1
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w ( F, let w = 1- w. The graded ring associated to the filtration of ['F

by powers of is well-known to be the I -tensor algebra on the free

['-module X generated by the elements lxL Let R be the free {'-module

generated by lrl, which will here be confused with the {'-sub-module of

IF generated by !rl. Then {'G is the quotient of {~F by the 2-sided

ideal generated by R. Recall that J is the augmentation ideal in I'G.

Then:

d t : K .... Coker (R@X -+ X®R ) X®X) ,

which is the cokernel of a certain map do: R -> 1/12 ~ X. This defines

additionally a map

The cokernel of this is

12/(13
1- RI + IR) .

To obtain J2/J3 we have to factor the above by something more,

namely R n 12
, which comes from the kernel K of do' There is then

a map

whose cokernel is isomorphic to J2 /J3.

The description of J3/J 4 is even more complex: First factor

X ®X @X by the image of R ®X ®X -+ X® R ®X + X ®X ®R. Then factor

this by the image of the kernel of R ®X -+- X ®R ) X ®X. Then factor this

by the image of the kernel of K -) Coker (R ®X + X 0 R .... X 0 X). In the

end, J3/J4 will be isomorphic to something like this:

Etc. We shall arrange these successively more complex computations

into a spectral sequence.

§2. Some notational conventions

P = Ix: rl wilI be a presentation of G; I' a commutative ring with

1: I'G the group ring; .J its <lugmentittion ideal. Modules, tensor
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products, etc., will be construed to be over I '. II means "product," i.e.,

infinite direct product, while II means "coproduct" or infinite direct sum

Also, A + B usually means direct sum.

X will denote the free module with basis lxl in 1-1 correspondence

with the generators in P. R will denote the free module with basis lrl
in 1-1 correspondence with the relators in P.

If M is a module, MO ~ I', mn +1
co M®M n, and T(M) = II Mn is

0>0

the tensor algebra of M, whose multiplication is given by the canonical

isomorphism Mk+£ "'" Mk®M£. T(M) = II Mn is the completed tensor
0>0

algebra, which is the topological algebra obtained from T(M) by comple­

tion with respect to the descending sequence of two-sided ideals

A basic fact, due to Magnus 15,41 is that if I'F is the group ring of

the free group on the generators of P, then its completion with respect

to the powers In of its augmentation ideal is isomorphic to T(X), the

isomorphism being given by x (~1- X.

§3. The spectral sequence from a presentation

Let A, or A(P), be the completed tensor algebra T(X+R).

Define K 1 = X, K2 = R, Kn = 0 otherwise. Then A is the product

of terms called:

Here, AO
o co r. Note that the product of APq and Ar

s is contained in

APtr
q+s

We define A = AP-p,q q

A p,-+ II A_p,q ~ (K1 + K2 )P .

q
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Let B denote the uncompleted tensor algebra T(X + R), which is the

coproduct of the APq'

An element a f APq will be said to have total degree n(a) = -p+q.

An element in B has total degree n if it is a sum of finitely many ele­

ments of total degree n. An element of A has total degree n if it is in

the closure of the elements of B with total degree n; 0 has any total

degree. Note that the elements of A of total degree 0 form a sub-algebra

isomorphic to T(X).

A homomorphism of f'-modules, ¢: B .... A is said to be a derivation,

if it is zero on ADD = f', and if:

We define a: A .... A as follows:

(1) a(x) = o.
(2) a\ R is defined on the basis !'r! thus: r .... 1- r f f'F .. A, by

completion. In other words, ar is the infinite series, in terms

of the Fox derivatives 0i = a/axi' and augmentation E: I'F .... f'.

Cf. [4].

(3) al B is the unique derivation extending the map already defined.

(4) a is the unique continuous extension of this to A.

Now, we note that a2 = 0, since a is a derivation on Band a2 =0

on X t- R which generates B.

If we define <l>r = n A_p *' then <l> is a decreasing filtration on
p >r '

A, and a<l>r c <l>r. -

Also note that a lowers total degree by 1.

Now, what we have, consisting of A, a, <l>, is a filtered chain­

complex. It leads therefore to a spectral sequence E r_p,q' where:

E r is an algebra.

EO_p,q ~ A ,and EO ~ B as all algebra.-p,q
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The boundary maps:
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are themselves derivations induced by a, and Er+l is the homology of

(Er,d r)·

Furthermore, the shape of the possibly non-zero terms in E r is-p,q
of interest: Except for the term E r0 0 = I', we have Er = 0 unless, -p,q
q:::: p and p ~ 1. We say that such a spectral sequence is an upper upper

left octant spectra I sequence.

3.1. EP ~ Ep+l ~
-p,p -p,p ~ Eoo

-p,p

This is true for any upper upper left octant spectral sequence. We refer

to this as convergence on the anti-diagonal. In general, there will be no

convergence phenomenon elsewhere.

The presentation Ix: rl determines a 2-dimensional cell-complex K.

There is a single O-cell eo' a I-cell for each generator x, and a 2-cell

for each relator r; the attaching map of the boundary of the 2-cell is

determined by the recipe that r gives as a word in the generators. The

smash product Itn(K, eo) is the n-fold Cartesian product Kn, modulo the

subspace consisting of all points having at least one coordinate equal to eo

3.2.

This can be proved by noting that EO_p,* is just the chain complex of

I/P(K, eo)' because do is a derivation and coincides with the boundary

map of the chain-complex of (K, eo) on EO-1 *.,

:'j4. Functorality on presentations

Let P = Ix: rI and Q = ly: sl be two presentations. We shall define

<t notion of map from P to Q that will induce a homomorphism of spectral

:;('quences E(P) to E(Q).

If luI is a set thl'll Flul will denote the free group with that set as

h:lsis. A map f: P . <,> (,()I1:;i:;ls of two group homomorphisms:
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rP1 : Flxl -> Flyl

rP2 : Fix, rl -) Fly, sl

satisfying these rules: Define d p : FIx, rl -> Flxl, by x -> x and r, as

basis element of Flx, rl, -> r as a word in !xl. Define dQ similarly.

Then we must have:

rP2 (r) is a product of terms of the form E -1ws w

where w {Flyl and f-: = +1 or -l.

rP1 defines,.: by extension to the completed group rings, a homomor­

phism f1 : X -> T(Y), which is the O-degree part of A(Q).

rP2 gives one a way to define a map f2 : R -> the I-degree part of

A(Q), as follows: If

define

Then

n
Ei -1

rP2(r) II wi si wi
i = 1

e. (Ei -1)/2 and II. II Ei -1
1 J wiSi Wi

i<j

n

1 - rP2(r) = 2
j '" 1

e. 1
E.H·w·s. J(I-s.)w·-
oJ J J J J J

o.
So, let u· = dQ(E.Il.w.s. J) and v· = w.- 1, both being taken as being

J ~ JJJJ J J
elements of T(Y). Then we define:

The fact that rP1 dp = dQ rP2 now implies that f1 + f2 : X + R -> T(Y + S) .~

A(Q) commutes with a in A(P) and A(Q). Extend f1 t f2 to a con­

tinuous algebra homomorphism f#: A(P) ,A(Q). Since the two boundary

maps in A(P) and A(Q) are derivations which commute with f# on

generators of A(P), it follows th~t fll is a elwin-mapping.
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So in the end we have f#: A(P) -) A(Q), commuting with a, preserv­

ing total degree and filtration. Thus, f# defines a map of spectral

sequences f*: E(P) .... E(Q).

4.1. With these definitions, the spectral sequence is a functor from the

category of presentations and presentation maps to the category of upper

upper left octant spectral sequences.

To show that the map of spectral sequences induced by the composi­

tion of two presentation maps is the composition of the two induced maps

of spectral sequences is an exercise in keeping your head while the

indices proliferate and wili be omitted.

4.2. If the map f: P -) Q induces a homology isomorphism of the two­

dimensional complexes of the presentations, then

is an isomorphism for r 2: 1.

This follows from 4.1 and 3.2.

In particular, the complex of P can always be subdivided into a semi­

simplicial two-dimensional complex, giving a presentation Q in which all

relators are of the form

In such a complex:

4.3.

~S. Cobar construction [1] [9]

A coalgebra A (over the commutative ring [') is:

(1) A graded module with An = 0 for n < 0 and Ao ~ r. By A

we mean AI I· A2 + .... By E: A) [' is meant A -> A/A.

(2) A chain-colJlplpx. with a: An' An_ 1 such that a2 , 0 and

(iA
I

O.
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(3) With a diagonal map /\: A. A ® A, which is a chain-mapping

(relative to the usual a on A ® A, such that J(a ® (3) =

(Ja)®{3 + (_l)dima a®a(3), that is strictly associative:

and for which E is a 2-sided co-unit:

These equations have to be interpreted in terms of the standard identifica­

tions of various tensor products, where lA is the identity map on A.

The example of a coalgebra one needs to have in mind is the chain­

complex of a semi-simplicial complex K which has only one vertex, and

which is provided with the Alexander-Cech diagonal:

n

i\(a ) --
O"'n -

Here aj ... k is the semisimplicial analogue of that face of the convex

simplex with vertices (x o'-", xn) which has the vertices (xi"" xk)'

We now construct the tensor algebra T = T(A), giving it the bigrada­

tion where TPq is the coproduct of the terms

over all pos itive p-tuples i1 ,"" ip such that i1 + .,. + ip = q. As in the

earlier construction, T p = TP is distributed over the upper upper left- ,q q

octant.

The homomorphism a: A -> A restricts to a: A -> A. We extend this

to a derivation a: T(A) -> T(A). As before, a derivation is a homomor­

phism D: T(A) -> T(A), such that

where a ( TPq and the total degree n(ll) --p I q.
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The resultant a: T .... T maps TPq -+ TPq-l and satisfies a2 = O.

It differs from the "usual a" on AP by sign differences; nevertheless,

the homology groups of these two boundary maps are isomorphic.

Let e: A ® A, A ® A be defined by

The diagonal map 1\ determines a diagonal map A .... A ® A, and we de­

fine 1\1 to be the composition

Then 1\ maps A .... T(A) and so extends to a unique derivation

1\1 : T(A) .... T(A). This derivation maps TPq to TP+~.

The assumption that i\ is a chain-mapping implies now that 1\ 1a+

al\ 1 ~ 0 on elements of T 1*' and thence by induction on p, using the

fact that 1\1 and a are derivations, it can be proved in general.

The assumption that 1\ is associative now implies that 1\1 2 ~ 0,

first on T 1 *' and then by induction on p, using the fact that 1\ 1 is a

derivation, on TP* .
In summary:

a 'TP .... TP. q q-l

are derivations.

and

Therefore, defining D = a t 1\1 we see that D2
= 0, D is a derivation,

and D lowers total degree by l.

We are now in the standard situation of a double complex; so there is

a spectral sequence using p as the filtration degree.

E r is a graded algebra with a derivation

I E r F r
( r . p,q' J -p-r,q+r-l
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induced somehow from D, with respect to which, the homology of Er is

Er+l.

on which do ~ a .

E is an upper upper left octant spectral sequence, and so there is

convergence on the anti-diagonal.

E is obviously a functor of coalgebras A and appropriately de­

fined coalgebra maps.

§5.1. Suppose A and Bare coalgebras and ¢: A. B is a map of

coalgebras such that ¢*: Hl (A) -> Hl (B) is an isomorphism and

¢*: H2(A) -, H2(B) is onto. Then in the induced map of spectral sequences

¢# : E(A) -> E(B), for r 2: 1;

E r_p,p -> Er_p,p is an isomorphism, and

Er , E r is onto.-p,p+l -p,p+l

I.e., ¢ # is isomorphic on terms of total degree 0 and epimorphic on

terms of total degree 1.

The proof is by induction on r, using the hypothesis for r ~ 1 and

the fact that the terms of total degrees 0 and 1 in E l can be described

(by the Kunneth formula) in terms of Hl (A) and H2(A). The induction

step is an ordinary diagram-chasing argument using the 5-lemma.

5.2. COROLLARY. If ¢* is isomorphic on HI and epimorphic on H2 ,

then EN_p,p(A) ~ EN_p,p(B).

5.3. COROLLARY. If A is the coalgebra of a semisimplicial complex I<

with one vertex, and Tr 1 (K) = G, and B is the coalgebra of the semi­

simplicial Eilenberg-MacLane space K(G,l), then EN_p,p(A) ~ EN_p,

This is because there is a map satisfying 5.2 from K to K(G,l).
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Now consider the Eilenberg-MacLane space K(G, 1). In a sense, the

coalgebra of K(G,I) is the bar-construction of iG. Our spectral

sequence is the cobar construction of this. The result, if there is any

justice, should be equivalent to iG. This is a theorem of E. Brown l2J.

The key point to note is that on a 2-simplex (gl h), a basis element

of A 1 2 , the total boundary D is

D(gl h) = - (g) ® (h) t (g) t (h) - (gh)

The first term here is derived from the diagonal map, the rest from the

boundary map in the semisimplicial complex K(G, 1). It follows that the

map

from the terms of total degree 0 in the cobar construction to the ring 1'G

exactly annihilates the image of D. Thus the total O-dimensional homology

of the cobar construction is 1'G, and the filtration on it is that of the

powers of the augmentation ideal. It follows that the E
oo

_p,p term is

then JP jJpt 1. Combined with 5.3, this shows:

5.4. THEOREM. If A is the coalgebra with coefficients }' of a one­

vertex semisimplicial complex K, and J is the kernel ['G -> I', where

(;= 171 (K), then

';6. Comparison of the two spectral sequences

Given a presentation P, we subdivide it to obtain a homologically

('quivalent presentation Q whose complex K can be considered to be

semi-simplicial. By 4.2, we have Er(P) ~ Er(Q) for r ~ 1. Comparing

t he boundary formula 4.3 of e(Q) with the boundary formula in the cobar

:;pcctral sequence of K, we see there is an isomorphism taking the ele­

IIIL'nt ~ of E(Q) to a0 (1 - T)-l In E(K), where r- xyz-l, a is the

'.I.simplex corresponding to I' ;Inll T is the I-simplex corresponding to z,

oIl1d E(K) is the (,oll1pl"tiol1 III HK) in the p-filtration. The composed

111;1\> (!l·fin<'S;ln iSOllltll),hl·;t1l ,;1'(1') Er(K) for I' I.
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Hence, by 5.4:

JOHN R. STALLINGS

6.1. THEOREM. Let E(P) be the spectral sequence defined in §4 for the

presentation P of a group G. Then, where J is the augmentation ideal

in the group ring ['G,

§7. A group-theoretic application

Suppose G is a group with a presentation with just one re lator, P =

lx 1 ,··,xn : r = I!. We want to investigate the question: Onto which free

groups can G be mapped?

A free group F of rank m has a presentation Q = 1y1"'" YmI with

no relators. If h: G .... F is a homomorphism onto, there are maps of pre­

sentations
a:P .... Q, f3:Q .... P

such that af3: Q .... Q is the identity map, in other words a and hare

retract ions.

Now, with a given coefficient ring I', we can write, when

l-r f Ik \Ik+1,

l-r = ~ a· . (I-x· )···(I-x·)k 11 ... 1k 11 1k

modulo Ik t-1. Thus, in the spectral sequence E(P), the derivations ds
are all zero for s < k -1, and

We think of 7], which is a homogeneous form of degree k in non­

commuting variables, as a sort of homology operation.

Since a: P .... Q is forced to be trivial on r, and the spectral se­

quence is functorial, it follows that

7](ax ... ax ) = 0 .l' , n
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Now suppose ax i = L bij Yj' The fact that a is a retraction implies, if

[' is an integral domain, that the n x m matrix (bij ) = B has rank m.

Furthermore, we could follow a by any automorphism a, Q .. Q, and the

same would be true of ya as is true of a. The result is to multiply B

on the right by an arbitrary invertible m x m integer matrix. Thus, if the

ring [' is one of the prime fields Zp we can fix it up so that B is in

column echelon form.

7.1. For r = Zp a necessary condition that G can be mapped onto a

free group of rank m is that for the form TJ defined by (**), there is a

matrix B = (b·.) over 1-' of size n x m and rank m, in column echelon
1J

form, such that

I.e. ,

I.e., for every k-tuple of integers h,···,jk f [l,ml,

o .
i 1,'" i k
dl,n]

7.2. Suppose the group G has the presentation

Then if G can be homomorphically mapped onto a free group of rank m,

it follows that m:S n/2.

Proof. Select a prime p dividing e. Therefore e = qf where q = pk

and f to mod p. Then with coefficient ring Zp' where x = 1- x,

1- r 1- (I-xl )qf ... (l-xn)qf = 1- (1-~1q)f ... (I-x nq)f

- <\ - q q t 1f(x l I'" I xI! ) llIodulo I .
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So, in the form Tf all the coefficients are zero except for those whose

indices are all the same, in which case the coefficient is f.

Now if (b .. ) ~ B is an nx m matrix of rank m in column echelon1J

form and we take the k-tuple h .. ··'jk ~ s,s,"',s,t in 7.1, we find that

for all s, t ( r1, m],

(rt)
n

i = 1

b. q-l b.
IS It

o .

The matrix C ~ (csi) with csi = bisq-l is obtained from B by trans­

posing and setting every non-zero entry to 1. Since B is in echelon

form, C has the same rank, namely m.

Since f 1= 0 in Zp' the equation (tt) says:

C·B = 0 .

Thus the row-space of C is contained in the null space of B. The

dimensions of these are m and n-m, respectively, and so m::: n-m,

or m::: n/2, as asserted.

Note that, conversely, by mapping the odd generators to themselves,

the even generators to the inverse of the preceding one, but the last one

to 1 if n is odd, we can retract the above group onto a free subgroup of

rank (n-1)/2 or n/2, whichever is an integer.

Another interesting example is this (a similar thing was pointed out to

me by R. Lyndon in a letter about 15 years ago): Let ru, v] = uvu-1v- 1
.

Given an integer n, for 1 ~ i < j::: n, let laijl be n(n-1)/2 pairwise

distinct powers of 2. Let c be a power of 2 at least as large as each

a·· Define e·· ~ cia ...
IJ' IJ IJ

Define an expression

(!)

The product has to be taken in some fixed order, which is not going to

make any difference for our purposes.
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Define a group G now by the presentation:

P ~ Ix . .. x . rex oo. x ) - 11
l' 'n' l' 'n-
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7.3. The above-defined group with one relation cannot be mapped onto a

free group of rank 2.

Proof. Take r ~ 2 2 , In the spectral sequence E(P) all boundary maps

are zero until d2c_ 1 is reached, and then

i < j

If there were a retraction G, Flu,vl, we would have an mx2 matrix of

rank 2 (boo) with1J

We can analyze each summand of this expression somewhat. Suppose

p, q, r, s (22 and a is a power of 2. Look at

We can say the following:

(1) The coefficient of ii2a is pa ra + ra pa = 0 and similarly the

coefficient of v2a is O.

(2) The coefficient of iia va is pa sa, ra qa = ps + rq =

Determinant of (p,q; r,s).

(3) If k divides a and t = alk > 1, and f ~ t/2, (of course,
-k -k t

k, t, f are powers of 2), then the coefficient of (u v ) is:

Therefore, in the expression (*) above, the coefficient of the term
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comes solely from the ij-th summand of Tf, and is therefore, by (2) above,

This must be zero for every pair i, j with i < j. Thus, every 2 x 2 sub­

determinant of B is zero, and so B has rank at most one.

7.3 can be rephrased in the following rather curious form:

7.4. If F is a free group, and x1,"',xn (F then lx1,"',xnl generates

a cyclic subgroup if and only if (where r is given by (!) above)

Proof. Sufficiency is 7.3, since every subgroup of F is free. Necessity

follows from the fact that r would be in the commutator subgroup of the

cyclic subgroup.

Another remark. If one makes an expression r' by replacing the com­

mutators in r by the expression:

2 2 2<u, v > = (uv) u v

then the resulting form in the one-relator group with this relation r' = 1,

is identical with that for r, and so the result 7.3 holds for this group

also. Every generator of the group occurs in r' with only positive ex­

ponents.

§8. Related questions

The examples in §7 are simple in the sense that they could have been

described without spectral sequences. This is probably true of any spec­

tral sequence argument that only depends on facts about the first non­

vanishing dr' One unsolved problem is therefore to derive interesting

group-theoretic results using the machinery derived here in a more essen­

tial way.

For another thing, it is my impression that Milnor's isotopy invariants

[6] can be described in terms of the spectral sequence of the fundamental

group of the compler,lent of a link. Rut this is 110t perfectly clear.
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Finally, Rips l7] has shown that there is a difference between the

"dimension subgroups" and the terms of the lower central series. This

paper has discussed powers of the augmentation ideal, which are related

to the dimension subgroups. It would be worthwhile to describe some

computable spectral sequence which would compute the quotient groups

of the lower central series. There should be a map of that spectral se­

quence into the one defined here, and then homological algebra should be

developed sufficiently for one to perceive clearly why it is that when

torsion appears in the quotients of the lower central series it is possible

for the lower central series to differ from the dimension series. My idea

for this is to substitute the Curtis spectral sequence [31 for the cobar

construction; this would probably converge on the anti-diagonal to the

quotients of the lower central series. The problem would be, how to com­

pute with the Curtis spectral sequence, at least to the point of going

through the Rips example in detail? And how to describe a similar spectra:

sequence in terms of generators and relations?
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KNOT-LIKE GROUPS

Elvira Rapaport Strasser

Abstract

If K is a knot, the fundamental group of its complement in the three­

sphere is called a knot group. Every knot group having finite presenta­

tions, has one consisting of one more generator than the number of defining

relations; that is, a presentation of deficiency 1. Abelianized, the knot

group is free cyclic. I call a finitely presented group, G, knot-like if it

has these two properties.

If G is knot-like, G' its commutator subgroup, and G'/G" is finitely

generated, then G'/G" is free (Abelian) and its rank is equal to the degree,

d, of the Alexander polynomial of G [8]. If G is actually a knot group,

and G' is finitely generated, then G' is free of rank d; the proof [7] is

topological.

Let P be a presentation of deficiency I of the knot-like group G;

then P gives rise to a presentation of G' as a product of groups Hi'

i: 0, ±I, .. ·, and a certain presentation of Ho' Let M be the deficiency

of the presentation of Ho so gotten, and suppose P such that M is

least possible. The main result of the present paper is that any two of

the following conditions imply the third: 1. G' is finitely generated;

2. G' is free; 3. M = d. For one-relator presentations, either of the first

two conditions implies the rest.

While d is independent of the presentation of a group, M is not:

d ~ M and G may have presentations Pl and P z of deficiency I such

that Ml > d, Mz = d.

Ill)
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§1. Introduction

Let p*,~ (x,al,. .. ,an; r1 ,· .. ,rn) present the group G for which the

factor commutator subgroup, GIG', is cyclic. Then I will say that G is

knot-like. It is no loss of generality to assume that the a-symbols are

elements of the commutator subgroup, G'; that ri has the form aiCi for

some elements C i of G' [4]; and that GIG' is generated by the coset

containing x. Then the set of all conjugates, xjais j , i: 1"", n,

j : 0, ±1,.··, generates G', and the ri can be expressed as words in

these conjugates.

Set p* = (x, a; r), so that a is an n-tuple of symbols ai' and r

an n-tuple of words in x and a. Set iiaixj = aij; let Ro be the re­

write of r as an n-tuple of aifwords, and R k the rewrite of the n-tuple

xkrx k. Then
P = (aij; R j , i: 1,.··, n, j: 0,±1,.··)

is a presentation of G'; it makes sense to speak of aii as an element

of G'.

All terms used in the sequel without definition may be found in [51

Take all defining relators reduced and cyclically reduced, and suppose

that Ro contains ai m. but not ai k if k < mi' Suppose further that

, 1 '

regardless of first subscripts, t is the smallest second subscript occur-

ring in the rewrite of r1 ; then the rewrite of xt r1xt contains ai,O for

some i but no negative subscripts. Replacing r 1 by xt r1xt and pro­

ceed ing similarly with the rest of r makes mi non-negative for each 1-

m1 -ml

If now m1
f- 0, then replacing a 1

by x al x everywhere in r

leads to a rewrite containing al,O so that m1 = 0. Similarly for the re­

maining mi' If M is the sum of the numbers Mi , i: 1,.··, n, then the

"spread" of the aij in Ro is M.

If the a·· are allowed to commute - that is, if the second commuta­

lJ

tor subgroup, G", of G is factored out - then Ro will consist of

words of the form
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for certain integers bij' b, etc. For a moment write xjaixj as (ai)X
j

in

P*. Then w becomes

which can be written as
M 1

(a1)b 10+b U x+" ·+bx (a
2

)b 20 ...

Then, modulo G",

Let P(x)=xq(CO+C1X+",+cdxd) be the determinant of the nxn matrix

of the Pij(x), so that d:::: M and Co + c 1x +". t- cdxd is the Alexander

polynomial of G. The constant Co is zero only if P(x) is zero. But

this cannot happen: since ri = ai modulo G', the exponent sum of ai

in ri is 1, and the exponent sum of aj in ri is zero for j 1= i, so tha

setting x = 1 in the expression for ri given above red uces it to ai and

so P(I) = 1. That is, P(x) is not the zero polynomial, and so Co 1= 0,

and cd 1= O. While M varies with the presentation, d is an invariant of

G W.
From the presentation P of G' one gets a presentation of a certain

group

The deficiency of this is (M + n}-n = M.

Adding the integer t to all second subscripts in Ho gives a group

Clearly, the union of the Ht is the presentation P of G'.

An element of liD is 1 in G' if it is consequence (product of con­

jugates) in G' of lh,· 1111'11I1"'1";; of thp n-tuples of relators R o ' R±1 ,'"
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in G'; it is 1 in Ho if it is consequence of the relators R o in Ho'

In general, then, Ho is not a subgroup of G'. But there is a normal sub­

group, call it Ko ' in Ho such that Ho/Ko is subgroup of G'. Similarly

for the Ht . Writing H; for these factorgroups, one gets a presentation

of G' as a free product of the H; with amalgamated subgroups as

follows.

Let H~I be the subgroup of H~ generated by every symbol in H~

except the aiM.' i: 1"", n; and let H~2 be the subgroup of H~ gener-
, I

ated by all but the ai,O' i: 1, .. ·,n. Then mapping each aij into ai,j+I

changes H~I into H~2 and this mapping is an isomorphism since it

corresponds to a conjugation by x in G. The subgroups H:'j are simi­

larly defined for j: 1,2 and all integral t.

Let aij of H;,I be matched with ai,jtl of H;t-I,I; this gives an

isomorphism. Let aij of H;,2 be matched with aij of H;+I,I; this

also gives an isomorphism and provides an identification of the subgroup

H:'2 of H; with the subgroup H;+I,I of H;tI along that isomorphism.

§2. An example

Let G be a one-relator group and p* = (x, a; r) a presentation of it

2 -I 2 -I -3 -I 2 h t d 1with a = a I and r = rI = a x ax a x a x, so tar 00' a mo u 0 G
.. .. 2t-x_x- I _x2 .

The reWrIte of r In the exponential form IS a The reWrite

of x- I r- 1x is ax3+1-x2_2X. Modulo G H
, this can be written as aLex),

with L(x) ~ x 3_x2_2x+ 1 the Alexander polynomial of G. Replacing r

b -1 -1 . p* tY x r x In , one ge s

and

Then
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(that is, free groups of rank 3 because of [31); d M '" Ml = 3, and

m ~ ml ~ O.

Though HOi is free of rank 3 in view of the Freiheitssatz, in this

case inspection is sufficient to establish this fact. For example one can

argue that Ro and the symbols aI' a 2, a 3 freely generate the symbols

3 0 , aI' a 2 , a 3 so that Ho is free on aI' a2 , a 3 . But then Ho is con­

tained in H02 and vice versa.

HOI and H02 are isomorphic under the matching of ai in HOI with

a i+l in H02 so G' is the free product of the Hi with amalgamated sub­

groups
H·1,2

and

in the "natural" way.

The presentation P of G' is (aj;Rj,j:O,±l,. .. ), or

In this example one can get rid of all a j and Rk of P that are not

in Ho by using Tietze transformations. When only Ho is left, one more

Tietze transformation reduces it to HOI (or H02 )' So G' is free of

rank 3 and any triple ai' ai+l' ai+2 generates it.

43. Summary of results

Let G be knot-like.

If G' is finitely generated, IS G' free? For knot groups the answer

IS in the affirmative; the rank of G' is then the degree, d, of the

Alexander polynomial [71. The proof is topological, based on the van

Kampen theorem, available since there is a knot. If G is only knot-like,

it is known only that when G'jG" is finitely generated then it is free of

r:ll1k d [8 \.

More gelwr:tlly, Oil" ":111 ,,~;I< whpll is G' free.
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For presentations with one defining relation, the answer is complete

(Theorem 2): exactly when it is finitely generated. For one relator

presentations of these groups M turns out to be an invariant of G and

so d = M. (Lemma 5.)

On the other ha nd, if G' is free of ra nk t, then there ex is ts a

presentation with d = M = t since G is extension of a free group Ft by

a free cyclic group. In the general case, one would therefore like to have

a presentation P* of G of deficiency 1 for which M - d is as small

as possible (this number is non-negative as d:S M). As this runs into the

unsolved problem of finding the deficiency of a group [91, the condition

M = d had to be used. This condition forces a Freiheitssatz for many­

relator presentations by weeding out cases where we cannot tell at the

present state of our knowledge of these matters whether certain subgroups

are free. If a knot-like group were such that every presentation P* of

deficiency I gave d < M then this group would be weeded out. I do not

know whether such a group could have either a free or a finitely generated

commutator subgroup. I think not. That is, I suspect that a free G' is

finitely generated, as in the one-relator case.

An example of G having a presentation pr with d < M1 and another

presentation P; with d = M2 (M i representing for the moment the value

of M for pi) is easily concocted. The following one has G' = F2 ·

P * ( b -1 -1 -1 -1 -1 b- 1 -l b -l b-l )1 x, a, ,c; c a x ax, x a x x x, x cx

gives

and M = 3. Rewriting the relators modulo H'o gives them the form

and the determinant of

(P.. )
IJ (

X-1 0
-x x-I
o -x
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2
is x(x - 3x + 1). Thus d = 2. The Alexander polynomial is x2 _ 3x + 1.

G is the fundamental group of Listing's knot (4 crossings).

Another presentation

P * ( b b- I -I -I -I -I b- I -I b )2 = x, a,; a x ax, x a x x x

gives

H (b b b-I -I -Ib-I b )o ~ ao' 0' aI' I; 0 a o aI' a 1 0 1

and M2 -c 2 = d.

The lemmata in the next section, while they give a little more informa­

tion, lead to the following theorems.

G will be knot-like, p* a presentation of deficiency 1, G' the com­

mutator subgroup, and M the ensuing deficiency of the presentation Ho'

THEOREM 1. Suppose M is least possible for all presentations p* of

G. Then any two of the following three statements imply the third. (1) G'

is finitely generated. (2) G' is free. (3) The degree of the Alexander

polynomial of G is M.

THEOREM 2. For one-relator p* either of the first two statements in

Theorem 1 implies the rest.

THEOREM 3. Let w(a .. ) and w(a. 'tl) both be elements of Ho' Then
IJ I,J

Ho is a subgroup of G' if and only if for all such pairs, either both are

relators in Ho or neither is.

The last theorem means that from knowledge of Ho alone, one can deter­

mine the factor group Ho/Ko which is subgroup of G'.

Conversations with colleagues at York University, Downsview, Ontario

especially with Abe Karrass enabled me to put the material of this paper

in the present improved form.
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§4. Proofs

G will be a knot-like group in a fixed presentation, p*. The proofs

will be based on a series of lemmata.

LEMMA 1. If G' is finitely generated then Ha,l contains a full set of

generators of G'.

Proof. Let H~ be the subgroup of G' generated by the elements of Hq.

If the lemma holds for H~ 1 then it holds for Ha l. I will prove it for the, ,
former.

As subgroups of G', H~ and H~+l are isomorphic under matching

each a ij of H~ with ai,j+l of H~+l. Therefore G' is the free product

of the subgroups H~ with H~,z and H~-d,l amalgamated along this

isomorphism. Writing G' = U AH~ for this, the segments

S:'t -= H~ * H* 1 * ... * H*
A - A A -t

are seen to be subgroups of G' for every t.

As G' is finitely generated there is a non-negative number t for

which S; contains a full set of generators of G' and so it is isomorphic

to G'. Therefore, in S;+l -, S; * H;t-l there are n relations, one for
A * * . . S*

each i, of the form ai,M.+t+l = wi' and the element wi IS In t·
I

Now the amalgamation in S;+l (as a product of two groups given

above) is along an isomorphism identifying the subgroup H;,z of S;

with H;+l, 1 of H;t-l. Therefore, if some element w of S; equals an

element v of H;+l then w must be in H:'z and v must be in H;+l, 1 .

Thus the n relations a· M t 1 = w~ imply that for each i there exist
, I, .+ t- I

* * Ielements vi in Ht+1,l such that

*. I·· H*vi IS a re atlOn In t+l

and there exist elements u~ In H:'2 such that



KNOT-LIKE GROUPS

* *wi c, u i is a relation in H; ,
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* * * S* *and ui ~ vi under the amalgamation in St+1 c, t AHt+q . These give

the relations
*ai,M

i
+t+1 = vi' 1 . H*,", n In t+1

expressing a· M as an element, v~ of Ht*+1,1'· that is the v~
1, itt+1 l' 1

contain no symbols aj,M.tt+1 for any j.

For any integer k, the groups H~ and Hk are isomorphic under

matching ai,r of H~ and ai,r+k of Hk, i: 1,·'" n. Then, for any non­

negative number p similar results obtain for the subgroups

H~p 1Ht_p A'" AH~ whenever q + p = t; the latter are conjugate to the

subgroup S;' It follows that there exist elements, vi' in H~, 1 such that

a· M cc v·
1, iI'

1,"·' n are relations in H~

Zi' i : 1,"',n are relations in H~

and the vi contain none of the a
J
• M.'
, J

Similar considerations, starting with

*Ho,2 such that

*S_t' yield elements zi in

and the zi contain none of the aj,o'

By the same token, like relations hold in each Hk·
Then, in G', one can express ai, -1 as an element in H~, 1 and so

one can express every element of H: 1 in H~,1' Likewise, the a i,_2

are equal to elements of H:1, and so H:2 can be expressed in the

generators of H~ l' etc. Similarly for ai M.' ai M.+1' and so forth.
I , 1 I 1

This shows: H~, l' qua subgroup of G' is actually G', so that

1I 0 1 contains a full set of generators of G', which proves Lemma 1.

Note that H~,1 is a factor group of Ho,1 so that if Ho,1 itself is

a subgroup of G' it is G' in the sense indicated.

LEMMA 2. lin,) ;,1111 lin,} (If<' ;::;omorphic under matching the aij In

"n,l w;thth,· <li,ill "' "0' if;jmlonlyif Ho ;s<lslIbp,rGlIpo[ G'.
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Proof. It is clear from the definition of the H. , that the groups Ho I
I,J ,

and HI I are isomorphic in G' under matching the a, . of H I and, I,J 0,

the ai,j+I of HI, I' If now Ho, I is isomorphic to HO,2 in the required

manner, then matching the ai J' of Ho 2 with the a, , of HI I is an
" I,J,

isomorphism. A similar statement holds for all the groups Hq . But then

G' is the free product of the Hq with Hq,2 and Hq+I , I amalgamated

along this isomorphism, and so Hq is a subgroup of G' for each integer

q. As the converse is obvious, this proves Lemma 2.

LEMMA 3. If d = M then Ho,I and HO,2 are free of rank M.

Proof. Let Go be the free group generated by the symbols a· . whichI,J

belong to Ho,l' so that Go has rank M. Then

Ro consists of n relators, say Ro = w1,"·,w n. Let bij be the exponent

sum of ai,M. in Wj' so that (bij ) is an nx n matrix; let DI be its
1

determinant. It follows from a theorem of Gerstenhaber and Rothaus [2]

that if D1 1= 0 then Go is a subgroup of Ho' But in that case Go = Ho,1

and so Ho,I is free of rank M.

Replacing Ho,l by HO•2 in this argument and DI by the like deter­

minant, D2 , forthe ai,O' gives the same result for Ho,2' If now d=M

then by the remarks of Section 1 about the coefficients of the Alexander

polynomial, cd is D1 and Co is D2 , so that DI 1= 0 and D2 1= O.

Thus the Ho . are free of rank M, and Lemma 3 is proven.
,J

LEMMA 4. If G' is finitely generated and Ho is subgroup of it, then G'

is free of rank d = M.

Proof. By Lemma 1, Ho. I contains a full set of generators of G' and by

assumption it is a subgroup of G'. Therefore HO,1 is a presentation of G'.
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Since the set of relations a
1
· M. = VI·' i: 1,"" n, with the v· elements
, 1 1

of Ho,l' found in the proof of Lemma 1, hold in Ho' the words a:-~ v'
I, i 1

are relators in Ho' The determinant of the exponent sums of the a· M
I, i

in these words is not zero. It follows easily that the like determinant, D1,

for the n-tuple of relators Ro is also not zero. As in the proof of Lemma 3,

one gets that HO,l is free of rank M. Therefore, G' is free of rank M.

As the Abelianized commutator subgroup, G'/G", is free of rank d [8],

this proves: G' is free of rank M = d, as Lemma 4 claims.

Concerning the matrix of the exponent sums for the a i M. in Ro '
, 1

respectively of those of the ai,o in Ro' it is true not only tnat they are

non-singular but that their determinants are ±l. For if the normal closure,

N, of n elements, wI'''', wn' of a free group F contains a subset

s 1'"'' sn of some free generating set of F, then it easily follows that

the normal closure of sl,"',sn is again N. (See for example [4] or [5].)

LEMMA 5. If G' is finitely generated and free then there is a presenta­

tion, p*, of G for which M = d.

Proof. Let G' be free on the generators a 1, .. ·,ad' Then G is defined

by the number d and the automorphism which the element x in

(x, a 1 , ... , ad; R) = G induces in G':

The relator set R consists of the words x- 1a;l xwi . Their rewrites as

a 1··-words have the form a-I' ~wi(a1 0,a2 o,···,ad 0)' and so Mi = 1 and
J , " ,

M = 1 Mi = d, as claimed.

LEMMA 6. If G' is free and there exists a presentation of G for which

M = d, then G' is finitely generated,



130 ELVIRA RAPAPORT STRASSER

Proof. Let p* be the presentation for which M = d. By Lemma 3, H
O

•1
and Ho 2 are free of rank M and isomorphic under matching a· . of, I,J

Ho 1 and ai J'+1 of Ho 2' - Similarly for Hq and H for all natural q., " -q
By Lemma 2 then, Hi and every product St = Ho AHI A... AHt with

Hi,2 and Hi+1,1 amalgamated, is a subgroup of G'. By assumption, G'

is free so these groups are free. In particular, So = Ho presents a free

group. Since Co 1= 0, elementary considerations of the group Ho/H'o

show that Ho has rank d = M. Further, since M is the deficiency of

the presentation Ho of this free group (there are M+ n generators and

n defining relators), the defining relator set Ro must be an independent

set (in the strong sense that the normal subgroup N in Ho = FIN is not

the normal closure of any n-l of its elements). The same holds for each

n-tuple Rq. The following then is immediate.

As Ho presents a free group, F d' of rank d, one can put

and this is a free group. The presentation has deficiency d and the de­

fining relators are independent. Thus the rank of SI is again d. Simi­

larly, St is free of rank d for each t.

If the sequence St ~ St+l ~ ... of free groups of fixed rank is infinite,

then the limit group is not free [6]. Since the latter is contained in G',

then G' is not free. Under the assumption that G' is free, the sequence

must therefore terminate: there is a non-negative number k such that

Sk+h = Sk for all natural h.

Now let

etc. These groups form a sequence
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Using the fact that Co 1= 0, the same arguments lead to the conclusion

that this sequence breaks off: S_q = S-q-1 ~ ... , for some q. Thus S_q

must be G' and so G' is finitely generated. This proves Lemma 6.

LEMMA 7. lf G' is finitely generated and M = d then G' is free of

rank d.

Proof. By Lemma 3, Ho,1 and Ho•z are free of rank M. Then Ho,1

is isomorphic to Ho z under matching ai J' of Ho 1 and ai J'+1 of
, '"

Ho,z, By Lemma 2, then Ho is subgroup of G'. Since G' is finitely

generated, Lemma 4 applies, and G' is free of rank d, as claimed.

As the last three lemmata cover the statements in Theorem 1, its

proof is now complete.

To prove Theorem 2, let (a O,a1,"',aM; Ro) be the one-relator pre­

sentation Ho obtained from the one-relator presentation p* of G. The

word Ro' reduced and cyclically reduced, contains the symbols a o and

aM by assumption. Therefore [3] HO•1 and Ho,z are free subgroups of

Ho' isomorphic under matching ai of HO,1 with a i+1 of .Ho,z' Simi­

larly for all pairs Hq,z and Hq+1, l' Then Lemma 2 is applicable and

so Ho is a subgroup of G', with G' the free product of the Hq with

amalgamation, U 1 Hq , along the indicated isomorphism.

If G' is finitely generated then Lemma 4 applies and so G' is free

of rank d = M.

On the other hand, if G' is free, so is the subgroup Ho =

(a 0' a1 ,... , aM; Ro) and its rank is M or M + 1. Since p* has deficiency

1, Ro is not the empty word, and so the rank is M. Similarly for H1 =

(a 1 ,···, a M+1; R1)· Then S1 = (Ho' aM+1; R1) = Ho 1H1 is also a sub­

group and free, and its rank is M or M+ 1. Were the rank M + 1, then­

Ho being free of rank M - S1 would be (Ho,aM+1;)= (aO,''',aMt1;Ro)

so that R1 would be a consequence of Ro in the free group generated

by a O.... , aM II' But I~() contains 3 0 and R1 does not, so - again by
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the Freiheitssatz - this is imposs ible [3]. It follows that SI is free of

rank M.

The same holds for all subgroups St = St_1 AHt , for any natural t.

As in Lemma 6, the sequence of the St breaks off: Sk = Sk+1 for some k.

Similarly for S_l ,~(Ho,a_1; R_ 1), etc. Thus G' is finitely generated.

It follows from this that Lemma 4 applies, and so the rank of G' is

M = d. This proves Theorem 2.

It remains to deduce Theorem 3.

If Ho is a subgroup of G' then HO,l and HO,2 are subgroups of

G' and so of G. Then, in G, Ho 2 = x- 1Ho IX, with w(ai ,j+1) =

x-
1

w(ai,j)x for all elements w ~f G', as ~laimed.
If both w(ai .) and w(ai )'+1) are relators in Ho' or else neither is,

,J ,.

then matching of the ai,j of Ho,l with the a i ,j+1 of Ho,2 produces

the isomorphism of Lemma 2 and so Ho is a subgroup of G'. This com­

pletes the proof.

Thus, one can - in theory - read off Ho what to factor out of it to

make it a subgroup of G':

Suppose that w(a ..) contains no symbols ak M for any k and that
1,J , k

v(ai,j) contains no symbols ak,o for any k, and that both words are re-

lators in Ho ' Form the factorgroup (Ho; w(ai j +-1)' v(ai j-1 »; then, , *
apply the same operation to the new group using some further word w

and/or v *. Let H~ be the largest faetorgroup of Ho that is closed

under this operation. Then H~ satisfies the assumptions of Theorem 3,

and so it is a subgroup of G'.

REMARK. If there are no such wand/or v then Ho is a subgroup

with HO,j free, so G' is the free product of the Hq with amalgamated

free subgroups H J' as in the case M = d.q,
For example, the group

(
-3 -2 5 --2 -1 -3 -I 4 -2 )xa'x ax aX'ax a x'a xa x, ,
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with M = 5, d = 3. Since a o and as are present in every relator [31,

Ho is subgroup of G'. This Ho presents a free group but G' is neither

free nor finitely generated.

STATE UNIVERSITY OF NEW YORK, STONY BROOK
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ON THE EQUIVALENCE OF HEEGAARD SPLITTINGS OF
CLOSED,ORIENTABLE 3-MANIFOLDS

Joan S. Birman*

I. Introduction

Let Xg be a oriented handlebody of genus g, and let X' = r(X )g g

be a homeomorphic image of X , with an orientation inherited from that. g
on Xg. lfaXg and aX'g are identified via an orientation-reversing

homeomorphism, then the resulting oriented 3-manifold M is said to be

represented by a Heegaard splitting of genus g. To make this explicit we

will assume that 0: aXg .... aXg is an arbitrary but henceforth fixed

orientation-reversing homeomorphism which extends to an orientation­

reversing homeomorphism of Xg .... Xg, and that ¢: aXg .... aXg is

orientation-preserving. Then we may identify aXg and aX'g by the rule

(1) TO¢(p) = p,

to obtain a 3-manifold Xg U¢X'g. If two Heegaard splittings Xg U¢X'g

and Xg UljJX'g define homeomorphic 3-manifolds, we will write ¢;: ljJ.

It is immediate that ¢ =: ljJ if the isotopy classes of ¢ and ljJ coincide.

The Heegaard splittings Xg U¢X'g and Xg UljJX'g will be said to be

(i) strongly equivalent, denoted ¢::::: ljJ, if there is an

orientation-preserving homeomorphism h: Xg U¢X'g .... Xg UljJX'g

such that h(Xg) = Xg, h(X'g) ~ X'g;

(ii) equivalent, denoted ¢ ~ ljJ, if there is an orientation­

preserving homeomorphism h: Xg U¢X'g .... Xg UljJX'g such

that eithpr h(X g) Xg• h(X'g) .~ X'g or h(Xg) = X'g' h(X'g) = Xg.

Suppol'1l'd in 1'111'1 bv N:;I' (;,""1 N", (;1' .\'l.Wn.
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(iii) weakly equivalent, denoted ¢ - t/;, if there is a homeomor­

phism h: Xg U¢ X'g -. Xg Ut/; X'g such that either h(X g) -" Xg,

h(X'g) = X'g or h(X g) ~ X'g' h(X'g) = Xg.

Note that ¢ ~ t/; ~ ¢ "'" t/; => ¢ ~ t/; => ¢ := t/;. These definitions place

equivalence relations on the class of all Heegaard splittings of any given

genus.

It was proved by Waldhausen in [8J that all Heegaard splittings of the

same genus of S3, and also that all Heegaard splittings of the same

genus of the n-fold connected sum It (S2 x Sl) of n copies of S2 x Sl ,
n

are strongly equivalent. In this paper we study the corresponding question

for other closed orientable 3-manifolds. We begin by establishing

(Theorem 1) that each strong equivalence class (respectively equivalence

class, weak equivalence class) of Heegaard splittings may be identified

with a double coset (respectively two double cosets, four double cosets)

modulo a certain subgroup ~, in the group Wg of isotopy classes of

orientation-preserving homeomorphisms ofaXg; invariants of these

double cosets will then be invariants of Heegaard splittings. We then pro­

ceed to study in Section II, computable invariants of double cosets in

Wg mod i5, (see Theorems 2 and 3). These ideas are applied first in

Corollary 2.1 to classify the equivalence classes of Heegaard splittings

of genus 1, and again in Corollary 2.2 to prove that Waldhausen's results

do not generalize to arbitrary 3-manifolds, by exhibiting a 3-manifold of

Heegaard genus 2 which admits two weak equivalence classes of genus 2

Heegaard splittings. 1 Thus, in general, ¢~. t/; does not imply ¢ ~ t/;.

After this manuscript was completed, we learned that similar examples of com­

posite manifolds that admit more than one weak C'quiva lenee class of Heegaard

splittings had hf'C'n ohtainpd earlier by r':nv.lllllnn 1111. llsinl'. different methods.
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In Section III we discuss the use of our methods to determine finer in­

variants of Heegaard splittings than those given in Theorem 2. We will

show that there is a natural generalization of the integer pairs (p,q)

which are known to characterize the lens spaces up to homeomorphism to

a set of 4 mutually related gxg matrices (P,Q,R,S) of integers which

are invariants of strong equivalence (resp. equivalence, weak equivalence)

classes of Heegaard splittings of genus g > 1. Theorem 3 treats the

problem of distinguishing between classes of Heegaard splittings on the

basis of our integer matrices, however the solution is not as neat as the

classical solution for the case of the lens spaces, and is not given in

closed form.

Methods which are similar to those used here were used earlier by

Reidemeister [71 to study topological invariants of closed orientable

3-manifolds. His approach was to utilize the fact that all Heegaard split­

ting of a 3-manifold are stably-equivalent [7,101. The relationship

between stable equivalence and equivalence is discussed in Section IV,

together with a brief review of Reidemeister's earlier results.

II. Heegaard Splittings and Double Cosets

Let ~g denote the group of isotopy classes of self-homeomorphisms

of a closed, orientable surface aX g of genus g, and let WCg denote

the subgroup of those classes which are represented by maps which pre­

serve orientation. Let iY g denote the subgroup of WCg consisting of

those mapping classes which have representatives that extend to homeo­

morphisms of Xg . Note that ~g is naturally isomorphic to the group of

outer automorphisms, Out TTl ax g, of TTl axg.

If cP: ax -+ ax , we will use the symbol cP* for the induced auto-g g
morphism of TTl axg , and <I> for the isotopy class of cP. 2 Recall that 0

was a fixed orientation reversing homeomorphism ofaXg -+ axg . We assert:

SimilcH1Yr 'I' IIl1d ,,\ dl"lll.!C· llil" 1';CdClpy ('1<.I~ses of ,/l and O.
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THEOREM 1. Let XgU¢>X'g and XgU(,!FX'g be Heegaard splittings.

Then:

(i) ¢> ~ (,!F if and only if <I> and qt are in the same double coset

in 9JCg (mod ~ g).

(ii) ¢>:::::: (,!F if and only if qt is in the same double coset as <I>

or 11<1>-111- 1.

(iii) ¢> -(,!F if and only if qt is in the same double coset as <I>

or 11<1>-1 11 -1 or <1>-1 or 11<1>11- 1.

Proof. Suppose that ¢> ~ til, and that h: Xg U¢> X'g -> Xg U(,!F X'g is the

homeomorphism which defines the equivalence. (Thus h is orientation­

preserving.) Let ho = h !Xg, h'o = hIX'g' hi = ho!aXg, h'l = h'olaX'g'

TI = T\aXg. In order for h to be well-defined on aXg = aX'g it is neces­

sary that the diagram

aXg
cP

aXg
0

• ax
TI

I ax'• g g

hi h'I

aXg
(,!F

• ax 0
I ax

TI
• ax'g g g

be commutative, that is

(2) (,!F 0- 1 -I h, o¢>h- I
.C TI 1T1 1

Since o-ITil h'l T10 and hi l are each orientation-preserving homeomor­

phisms ofaXg which extend to Xg, this implies

(3)

Conversely, if (3) is satisfied, then (2) is likewise satisfied, and we

may use the extensions of o-ITil h'l T /> ana hit to construct a homeo­

morphism h whict- defines an equivalell(,(, !H'tweell the Heegaard splitting"
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Next, suppose that there is an orientation-preserving homeomorphism

h: Xg U<p X'g) Xg U(,!FX'g such that h(Xg) ~ X'g and h(X'g) = Xg. Let

ho ' hi' h'o' h'I' T 1 be defined as before. In order for h to be well-defined

on aX g it is now necessary that the diagram

<p 0 T. ax --_, ax __1_. ax'
g g g

h'1

T

ax'. 1
g

be commutative, that is

ax . ()
g

(4)

Since o-ITl1hlo-l and T1
1h'l -1 are each orientation-preserving homeo

morphisms ofaXg .... aXg which extend to the solid handlebody, we have:

(5)

Exactly as before, if equation (5) is satisfied, then we may construct a

homeomorphism h which defines the required equivalence between the

Heegaard splittings, with h(X g) = X'g and h(X'g) = Xg.

The remaining cases are similar. If the equivalence is via an

orientation-reversing homeomorphism h which maps Xg -) Xg, then (,!F

and <p are again related by equation (2), but now o-IT11h'ITl<P and

h1
1 are orientation-reversing homeomorphisms ofaXg which extend to

Xg. However, we may rewrite equation (2) as

(6)

1 1 "1 I h" . hNow, 0- Tj- h']T 1 ;lIld till ,II"(' cac orientation-preserving omeomor-

IJhisms of (IX ,i/X whl< h ,·xlc·lul. 1H'llcC
Ii. I'.
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(7)
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In the last case equation (4) applies, but since h is orientation reversing,

h od s;:,-1 -l h d s;:,-1 -l h, -1 h't e pr ucts u T 1 1 an u T 1 1 are eac orIentation-preserving

homeomorphisms ofaXg > aXg which extend to Xg.!1

In order to apply Theorem 1, we will make use of the natural repre­

sentation of &;i g in the automorphism group of the first homology group

H1 (aX g ). Invariants of double cosets (modulo the image of iJg ) in that

group will then be invariants of equivalence classes of Heegaard splittings.

To fix conventions, choose generators wi and w'i' 1 <: i <: 2g, for

TT 1aXg and TTl aX'g' making the choice so that T maps representatives

of (ui onto representatives of w'i for each 1 <: i:S 2g. Suppose also
g

that the (iJi satisfy the relation j~l [Wj,Wjtg] = 1, and that if

( : aX g --. Xg is the homomorphism induced by inclusion, that her (* is

the normal closure N in TTl aX g of IWj+g; 1 'S j <: gL

Choose any element <P f &;ig' and let cP: aXg > aX g be a homeomor­

phism which represents <P. Suppose that the action of cP* on TTl aXg is

given by

(8)

for each 1'S i <: 2g. Then we may define an anti-homomorphism a: &;ig ->

Aut H1 (aX g) by the rule

(9) a(<P) = !!E:ij!l, a 2gx 2g matrix of integers.

This definition is independent of the choice of the representative cP of

<P because maps which are isotopic to the identity induce the identity

automorphism on H1 (aX g).

The symplectic group Sp(2g, Z) is the group of all 2gx 2g matrices

of integers M which satisfy the condition

(10) - [ 0M]M- :1:], where ] =
-I

M transpose of M .
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LEMMA 2.1. The anti-homomorphism a maps ~g onto Sp(2g,Z). The sub­

group a<Wg) of Sp(2g, Z) is the subgroup of the matrices M for which

(11) M]M = ~] .

If g = 1, then a is an anti-isomorphism from '~1 onto GL(2,Z).

Proof. See [5, p. 1781. \1

LEMMA 2.2. Let

(12)

where ° denotes a gxg block of zeros. Then the group iYg is the

semi-direct product of its normal subgroup (% and subgroup fl, where

(13)

(14)

- { [U- 1

U ~ D(U)- °

~ c_ {F(S) = [~

OJ -U ' U = trans pose of

~J, S symmetric}

U, det U ~•. ±1)

-
Moreover, a maps iY g onto iY g.

Proof. The symplectic condition (11) implies that if M f iYg, then the
- - 1

matrices U, V in (12) have the property UV = I, hence V·~ U- . It

then follows that we may rewrite M f iY g in the form

(15) [~~J = [~-1 ~J [~ uIwJ = [~ WIU-1J[~_1 ~J

Since M ( Sp t- (2g, Z), and also D(U) f Sp+(2g, Z), it follows that the

matrices F(UW) and F(WU- 1 ) in (IS) are also in Sp+(2g, Z), and there­

fore also satisfy equation (11). This implies that UW and WU- 1 are

s_ymmetric, hence ~g is the semi-direct product of its normal subgroup

(~ and subgroup II.
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-
To see that a maps ~g onto ~g' it suffices to show that U and

and @ are generated by the images under a of elements in ~g. Accord­

ing to [41, an element <I> ( ~ g if and only if, for every representative 1>
of. <1>, it is true that <p*(N) = N, where N is the normal closure in

17 1aX g of IWj+g; 1:S j :s gL
According to [2, p. 851, generators of U are the matrices D(V i), i =

1,2,3 whose Vi's are the gxg matrices:

[

01O... 0J
(16) V = 001···0

1 000... 1
100···0

[

-1 1. J [10 . ]
V - . V

3
_ 11 .. °

2 . . - .. .° ·1 0·1

These matrices are induced by the following automorphisms of 17 1axg :

(18)

if k t- 1, g + 1 .

if kt-l,2,g+1.

Since <p" (N) = N for i = 1,2,3 the assertion is true for U.1* _
Generators of @ are the set of matrices F(S) whose S's are the

matrices S t = Il s ".II, 1 < r < t < g, where S1"J' = ° if i Ie r or t, whiler "1J" - - .
Srt- Str .0 1. The matrix in ~ belonging to F(Srr) is induced by the

following automorphism of 17 1ilX g:
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(20)

while for 1::; r < t ::; g, the matrix F(Srt) is induced by:

(21) cPrt :wk .... wk if k~r,t,g+r,gtrI1"",g+t-1,
*

( -1 -1 )wk ,,·w W W "'wkr+l g+r r+l

(Wk-l"'W-lW-lUJ "'wk)(w k) k=r+1··· t-1r+ 1 g+r r+l g+ ' ".

Since cPrt (N) = N for each pair (r, t) of interest, the assertion is like­
* -

wise true for @. Hence Lemma 2.2 is true. 1\

LE MMA 2.3. Let <1>, '!' (9J'Cg , with g ~ 2. Then

(i) cP ~ t/J only if a('!') is in the same double coset in

Sp(2g, Z) modulo ijg as a(<I».

(ii) cP "'" t/J only if a('!') is in the same double coset as a (<I»

or a(il<l>-lil- 1).

(iii) cP - t/J only if a('!') is in the same double coset as a (<I»

or a(il<l>-lil-1) or a(<I>-I) or a(A<I>il- 1).

(If g = 1, the conditions above are not only necessary but also sufficient.

Proof. This is an immediate consequence of Theorem 1, Lemma 2.1 and

Lemma 2.2. "
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LEMMA 2.4. Let <Il (9J'Cg , and suppose that

(22)

Then

Proof. Since a(<Il) f Sp(2g, Z), and <Il (9J'Cg, equation (11) tells us that

(24)

To see that a(Il<llil- 1) and a(il<ll-1 il-1) have the stated forms, recall

that 0 can be any orientation-reversing homeomorphism ofaXg which

extends to an orientation-reversing map of Xg. By Lemma 2.1, every

symplectic matrix M which satisfies the condition M]M = -] lifts to an

orientation-reversing homeomorphism ofaXg. It then follows that the

matrix

(25) a(il) = [-~ ~J

lifts to an orientation-reversing homeomorphism ofaXg which extends to

Xg. The remaining assertions of Lemma 2.4 follow immediately. II

We are now ready to determine invariants of double cosets modulo _~g

in Sp(2g, Z). Note first that the negative identity matrix belongs to ~ g;

and second, that, for any g x g matrix P, one may always find unimodular

matrices Uo,V o such that

(26) . ); where Pi IPif-l,l SiS r-1 :S g, Pr-I

Pg

and Pr 0.... = Pg ..~ O.
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(See, for example, [6, p. 261.) Hence, by multiplying the four matrices

given in Lemma 2.4 on the left by D(Vo) and on the right by D(V 0)' and

possibly also on the right by the negative identity matrix, we may choose

representatives of the double cosets of a (<I», a(~<I>-ll\-l), a(<I>-l), and

a(~<I>~) of the form:

(27)

LEMMA 2.5. Th_e diagonal entries in PI are invariants of the double

cosets modulo l1g of the four matrices in (27).

Proof. By Lemma 2.2, the group iY is the semi-direct product of its nor-- - -
mal subgroup U and subgroup 05, hence every element ~ f iJ can be

written in the form

(28)

for some unimodular matrix V and some symmetric matrix S. Now, if

M f Sp(2g, Z) is any of the matrices in (27), the effect of multiplying M

on the left by F(Sl)D(V1) and on the right by D(V2)F(S2) will be to

replace PI by P 2 = VI PI V;-l. Since PI and P 2 have the same ele­

mentary invariants, Lemma 2.5 is true. \I

(REMARK. It is easy to see that the matrix PI in each lower left box in

(27) is a matrix of integral one-dimensional homology for Xg V<t> X'g'

Hence if P1="'=Pk=1, 1<Pk+1''',Pr_1' and Pr="'=Pg=O,

then g-r + 1 is the Betti number of XgV<t>X'g and Pk+1,",Pr-1 are

the coefficients of tors ion.)
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THEOREM 2. Let <1>, <1>' (9J'Cg, and suppose that

(29) ~J a(<I>') = [R'
P' S'J.

Q'

A necessary condition for <I> '" <1>' is that the elementary invariants of the

submatrices P and P' coincide. If they coincide, and if the elementary

invariants of P are not all 0, and if PI = p, then c/J ~ c/J' only if

(30) det Q' '" det Q(mod p) and det R'= det R(mod p);

c/J ~ c/J' only if either (30) is satisfied, or

(31) det Q' == det R(mod p) and det R' '" det Q(mod p);

c/J - c/J' only if either (30) or (31) are satisfied, or

(32) det Q' =- det Q(mod p) and det R' == - det R(mod p),

or

(33) det Q' ~ - det R(mod p) and det R' =- det Q(mod p).

Proof. Let °1 , 02 be any pair of unimodular matrices which satisfy the

condition

(34)

and let SI and S2 be arbitrary symmetric matrices. Then, left multipli­

cation of the matrices in (27) by F(SI) D(O1) and right multiplication by

D(02) F(S2) will not disturb the normal form of PI in any of the matrices

in (27). Consider, first, the effect of the latter operation on a(<I» in (27).

It will be replaced by

(35)
R2 = 01 R102 -+ SI PI '

--1 --1
Q2 00°1 QI 0 2 + PI S2

Since plpi for each diagonal entry Pi in PI' it then follows that:
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(37)
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det Q2 - det QI (mod p) det Q(mod p)

det R2 - det RI (mod p) det R(mod p)

A similar argument applies to the remaining cases.

We wish to use Theorem 2 to establish that there are 3-manifolds

which admit more than one weak equivalence class of Heegaard splittings.

The example we construct will be a connected sum of lens spaces, hence

as a first step we use Theorem 2 to examine equivalence classes of

Heegaard splittings of lens spaces,

Lens spaces are 3-manifolds of Heegaard genus 1 which have finite

cyclic fundamental groups, We consider, then, two 3-manifolds XI U¢ X'l

and XIU¢,X'I' where ¢,¢'d))(I' and

(38)

with p> 1. Thus, Xl U¢ X'l is the lens space L(p, q) and Xl U¢, X'l

is the lens space L(p,q'). We assert:

COROLLARY 2,1.

(i) ¢ ~ ¢' iff q':= q(mod p),

(ii) ¢ ~ ¢' iff q', q(mod p) or q'q '" l(mod p),

(iii) ¢ ~ ¢' iff q'-o: ±q(mod p) or q'q '" ±l(mod p).

Moreover, ¢ - ¢' iff ¢- ¢'.

Proof. By results in llJ, the lens spaces L(p,q) and L(p',q') are homeo­

morphic iff q'.~ ± q(mod p) or q'q '" ± l(mod p), and in view of the fact

that rq - ps = r'q' - p's' ~ 1, these are precisely the conditions given in

Theorem 2 for weak equivalence of ¢ and ¢'. To see that the conditions

of Theorem 2 for cl> ~ el>', el> ~ el>' and ¢ - ¢' are not only necessary

hut also suffici('nl if I', I, OIH' nl'ed only produce the homeomorphisms
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which define the equivalence, and this is easily done by examining the

proof of Theorem 1, which is constructive, and using the fact that a is

an anti-isomorphism if g = 1. II

As a second application of Theorem 2, we prove that Heegaard split­

tings are not unique, by exhibiting a 3-manifold of Heegaard genus 2

which admits two weak equivalence classes of Heegaard splittings.

COROLLARY 2.2. Lei <1>,<1>' t 9J1
2

be represented by homeomorphisms

¢, ¢' which induce the automorphisms:

(41)

3w
2

) w
2

w
4

w
2

-r 3 2
u)3 .; w r (W r W3U)r)

r 3 2
U)4 ... w2" (w rw 3w r )

(42)

W
2

) w
2

w 4w
2

r 3 2
u)3 ) W 1 (U)r W 3U)r)

2 4 r
W 4 ... (W 4U)2) w2"

Then X 2 U¢ X'2 is homeomorphic 10 X2 Uc/>' X'2' but the Heegaard

splittings ¢ and ¢' are not weakly equivalent.

Proof. Consider the lens space L(7, 2), which admits equivalent

Heegaard splittings X r Uf3X'r and Xr UoX'r' defined by the automor­

phisms

(43)
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By Corollary 2.1, f3 and 0 are equivalent, but not strongly equivalent.

Hence there is an orientation-preserving homeomorphism h: Xl V f3X'l -->

Xl VOX'l such that h(X 1 ) = X'l' h(X'l)" Xl'

The connected sum Mit M' of two closed oriented 3-manifolds M, M'

is defined in the following manner: remove a 3-cell D from M, and a

3-cell D' from M', and identify aD with aD' by an orientation­

reversing homeomorphism. If M and M' are defined by Heegaard split­

tings, one may always choose the 3-cells D and D' so that they inter­

sect the Heegaard surfaces in discs on aD and aD' respectively. Then

Mit M' will also have a natural representation as a Heegaard splitting, in­

duced by the Heegaard splittings of M and M'. We will carry this out

explicitly in the case where M and M' are each copies of L(7, 2).

Let 171caxl-disc) be the free group freely generated by 0)1,W2'

where the boundary of the deleted disc represents the homotopy class of

w1w2wl1w21. Then f3*,0* lift to automorphisms ~*' 8* of

77 1 (aX 1 -disc) defined by:

~* : wI --> w1w2wI
~-1 ~ ~ ~3 2

(02 .~ wI (w 1w 2w 1)

~

0* : wI' (01 W 2W 1

~ ~ ~24~_1
w 2 --> (w1 w 2) wI

We may now define two isomorphisms from 77 1(aX 1-disc) into 77 1(aX 2 )

by the rules

Now define automorphisms ¢* and ¢'* of 771 (aX 2 ) by

<P*(l)i) ~. j*~*r;l (Oi)' i = 1,3

k*/~*k;l(wi)' i - 2,4

'/'~("'i) i+J<i;1 (Cl!i)' 1- 1,3

1<.;,. k;I('d)' i 2,4
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Then ¢* and ¢'* each define Heegaard splittings of genus 2 of the

3-manifold L(7, 2) It L(7, 2).3 To see that these are not weakly equiva­

lent Heegaard splittings, we apply Theorem 2. Observe that

(44)

o
4
o
7

1
o
2
o

Then, p = 7, det Q = 4, det R = 16, det Q', 8, det R' = 8. Since none

of the congruences (30) - (33) is satisfied, it follows that <P l' '1'. This

proves Corollary 2.2.

REMARK. After this manuscript was completed, we learned that similar

examples of composite 3-manifolds which admit more than one weak

equivalence class of Heegaard splittings had been obtained earlier by

Engmann (11]. Her methods are different than those used here.

III. Finer Invariants of Equivalence Classes of
Heegaard Splittings

In this section we study the question of determining finer invariants

of the double coset modulo Fg of an element A ~ a(<P) in the group

Sp(2g, Z). In view of the results in Section II, any such invariants will

also be invariants of the equivalence class of Heegaard splittings which

are strongly equivalent to ¢.4 If

3 Note tha t care is needed in this definition, because if M' denotes the
3-manifold which is homeomorphic to M but oppositely oriented, then M# M' and
M# M' are not homeomorphic. In our definition, the first and second copies of
L(7,2) in the two cases are coherently oriented, so that our connected sums define
homeomorphic 3-manifolds. This would not be the case if {3 and 0 were weakly
equivalent, but not equivalent splittings.

4 We restrict our attention here to strong equivuIPnct', however the results are
easily modified to includl' the four CHSt'S COI1SH!<'n'et ('urlipr.
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then one such set of invariants were shown in Lemma 2.5 to be the ele­

mentary divisors of P. Therefore we may without loss of generality

assume that P is in Smith normal form, and restrict our attention to

multiplication of A on the right and the left by elements in ~g which

leave P invariant. This is equivalent to the restriction that in consider-
- -

ing multiplication by elements of the subgroup Ug of ~g we restrict our

attention to left multiplication by elements D(U) and right multiplication

by elements D(V), where U and V satisfy the condition

(45) UP = PV .

We begin by considering the case where P is singular. The diagonal

entries of P will be denoted PI"" Pg'

LEMMA 3.1. Suppose that Pr = Pr+l = ... ~ Pg = 0, but Pr-l -t 0. Let

Al be matrix obtained from A by deleting rows r through g and g + r

throu~h 2g from A. Then Al is in. Sp(2(r-1), Z) and invariants of Al

mod ~r-l are invariants of A mod ~g'

Proof. Since A is in Sp(2g, Z), it satisfies equation (11). Equivalently,

the gx g blocks R, S, P, Q satisfy:

(46) 46.1 PQ = QP

46.2 RP = PR

46.3 RQ -SP = I

46.4 RQ -PS = I

46.5 RS = SR

46.6 QS = SQ

Since Pr = Pr+l C
... = Pg = 0, equations 46.1 and 46.2 imply that A de-

composes as:

[Rl °2 Sl
52 ]

R I , Sl' PI' QI are (r-1)x(r-1)

A ~ R.1 1~4 S\ S4 °2,S2,Q2 are (g-r+ 1) x(r-1)

p 0:. <')1 <.) / I-?.\, 53' 03 are (r-1) x(g-r+ 1)
1

0:\ °1 ()\ 1,!.I .. h"1· S'1·04,Q4 are (g-rll)x(g-rt 1)
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where the blocks labeled ° denote blocks of zeros. Equation (46.3) now

implies that R/~4 = 14, the (g-r+1)x(g-r11) identity matrix. Hence

det R4 = ± 1 and R4 = Q4
1

. Define the unimodular matrix U# by

The O(U#) A is equivalent to A and has the simpler block decomposition

(47)

In any further modifications of A# mod ~g we may now restrict ourselves

to modifications which not only preserve the normal form of P, but also

preserve the blocks 02 and 14 in R, and the blocks 03 and 14 in Q.

Let Al be the 2(r-1) x2(r-1) matrix

The fact that A# satisfies equations (46) is now seen to imply that Al

satisfies the corresponding conditions, hence Al is an element of

Sp(2(r-1), Z).

We consider now the effect on Al of left and right multiplication of

A# by elements O(U),O(V) which preserve the normal form of P and

the partial normal forms of Rand Q. The condition that left multiplica­

tion of A# by O(U) and right multiplication by O(V) not alter P is

given by equation (45). This implies that U and V have the block de­

compositions

where U1 PI = PI VI' The condition that the normal forms of Q and R
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be preserved then implies that U4 V4 - 14 , hence det U4 = det V4 = ± 1

and V4 =U4
1

. This, in turn, implies that detU t ~detVl=±1. Itthen

follows that left (respectively right) multiplication of A# by O(U)

(respectively O(V)) has the same effect on Al as left (right) multiplica­

tion of Al by 0(U 1) (0(V1)), where 0(U1) and 0(V1) denote elements

of Sp(2(r-l), Z).

Left (respectively right) multiplication of A# by elements F(L) (or F(K

will not change the normal form of P or the partial normal forms of Q

and R, no matter how one chooses the symmetric matrices Land K.

Moreover, if Land K are partitioned as before into blocks, then the

effect on Al of replacing A# by F(L) A# F(K) is the same as the

effect of replacing At by F(L1) Al F(K1). This proves Lemma 3.1.

REMARK. Modifications in Al mod ~r-l do not, in general, preserve

the subblocks Q2,R~,Sl'S2'S; or S: of A#. However, each modifica­

tion of Al lifts to a modification of A#, defined by setting U2 = V2 = 02

and U4 = V4 = 14 , Moreover, subsequent modifications of A# with

U1 -- VI = 11 and L1 ~ K1 ~- 01 will then leave any normal form which

we find for At invariant, hence it is possible to treat the subblock At

separately from the rest of A#.

LE~MA 3.2. The matrix St in the upper right corner of any matrix which

is ~ r-l -equiva lent to Al and has its PI in Smith normal form is de­

t3rmined by the remaining entries.

Proof. This is an immediate consequence of the fact that every symplectic

matrix must satisfy the six equations (46.1)-(46.6), and since PI is

diagonal and non-singular, equations (46.3) and (46.4) determine St

uniquely.

Since PI is in normal form, and since by Lemma 3.2 the matrix St

need not be COllsidt'wd fllrl!ll'r, we have reduced the problem of finding

invariants of A I ll1"d 1\ I I" IlwI of sludying the effect of equivalence
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-
mod ~r-1 on Q1 and R1. The most general type of modification which

we must consider is one which replaces Q1 and R1 with

(48)

where VI and VI satisfy (45), i.e. V1P 1 = P 1V1, also det VI =

det VI = 1, and where K1 and L 1 are arbitrary (r-1)x(r-1) symmetric

matrices.

It will now be helpful to note the effect of (45) and (46) on the indi­

vidual entries of admissible VI' VI' Q1' R1· Let m1,"', mr_ 2 denote

the ratios of the diagonal entries of PI' i.e.

(49) t = 1,2"", r-2

Let VI = iluiji!, VI = llvijli, Q1 = Ilqijll, R1 = !Irijll. Then (45) is

equivalent to the conditions

(50)

Similarly, the symmetries imposed on Q1 and R1 by virtue of equations

(46.1) and (46.2) imply that

qji qij mimi+1 ... mj_ 1 if i < j

r ij r jimjmj+1 ... mi_1 if i > j

LEMMA 3.3. Let Al A'l be matrices in Sp(2(r-1), Z) which have the

block form

Suppose also that PI is non-singular, and is in Smith normal form. Con-
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sider the sets C of all ordered pairs of matrices (Q*, R*), as defined in

(48) and also the corresponding set C' of all ordered pairs (Q'*, R'*).

Let E, E' denote the congruence class of C, respectively C' mod Pr-l'

where congruence means congruence elementwise of the individual matrices

in C, C. Then Al , A'l are in the same double coset mod ~r-l if and

only if the sets E and E' coincide.

Proof. It is a consequence of the remarks following the proof of Lemma 3.2

that Al and A'l are in the same double coset mod ~r-l if and only if

C coincides with C'. If C and C coincide, then it is clearly necessary

that E and E' coincide. To see that the converse is also true, suppose

that E and E' coincide. Then, for some admissible Ul' V l' K l , L l as

above it must be true that

(52)

(53)

Since Pi!Pr-l for each i ~ 1, .. ·,r-2, and since Kl and L l range over

all possible symmetric integer matrices, we now assert that by possibly

choosing a new pair of symmetric matrices K2 , L 2 the congruences of

(52) can be made equalities:

(54)

(55)

This is immediate for entries which are on and above the main diagonal in

(52) and those which are on and below the main diagonal in (53). It is

[rue for every entry because of the symmetries imposed by equations (51).

Thus C and C' have an element in common, which implies that the

entire sets C and C' coincide, since the entire set can be computed

from anyone entry.
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In the computation of the sets E and E', it was necessary to first

calculate the matrices Q* and R* in (48) over the integers, and then

reduce elementwise mod Pr-I' This means that VI and VI are re­

quired to range over the infinite set of pairs VI' VI in SL(r-1, Z) which

satisfy (SO). However, it is immediate that we can restrict our attention

to admissible pairs in the finite group SL(r-1, Z ), where VI and
Pr-I

VI are now restricted to matrices which satisfy equations (SO) mod Pr-I'

Thus the sets E and E' of Lemma 3.3 may be computed by a finite pro­

cedure.

The finite set E may now be replaced by a particular member of E,

which will be regarded as a representative of the class. For example, one

might select such a representative by ordering the matrices Q* and

choosing a "smallest" one; such an ordering may be based on an ordering

of the individual entries qij of the array of matrices in E. This repre­

sentative then defines a unique matrix

(56)

which we will define to be the normal form for AI'

THEOREM 3. The matrix AlO in (56) is an invariant of the class of

Heegaard splittings which are strongly equivalent to ¢.

Proof. This is an immediate consequence of Lemmas 3.1, 3.2 and 3.3

and the discussion following the proof of Lemma 3.3. !!

REMARK. Having chosen the matrix Ala = F(LI)D(V I ) Al D(VI)F(K I )

one may now enlarge Al a to a suitable modification of the matrix A# of

(47), by replacing the deleted blocks (appropriately modified)_ to obtain a

new representative Aa of the equivalence class of A mod ~g in

Sp(2g, Z). We are then free to make further mod ifications in A a, but

subject to the new restriction that the suhhlocks corresponding to AIO
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remain unaltered. It is possible to solve this problem, in order to select

a unique double coset representative for A mod ~g' however we omit

that derivation because it is complicated, and not of sufficient interest

since we do not know when the procedure will yield topological invariants

of Xg U¢ X'g' That question cannot be settled until one settles the diffi­

cult question of uniqueness of Heegaard splittings which is raised by the

example of Corollary 2.2.

A weaker set of invariants, which may also be computed from our sym­

plectic matrices, and which are true topological invariants, will be dis­

cussed in the next section.

IV. Stable Equivalence

If Xg U¢ X'g is a Heegaard splitting of a 3-manifold M, then it is

always possible to increase the genus of the Heegaard splitting by form­

ing the connected sum M It S3, where S3 denotes the 3-sphere, which

is assumed to be represented by a Heegaard splitting Xl Uf3 X'l' and

where the 3-balls Band B' which are removed from M and S3 in

order to define M tt S3 are chosen in such a way that B n aX g and

B' n aX
I

are each discs. Iterating this process, we may form a splitting

we denote ¢ tt f31/t .. ·tt f3 n of M of any genus g + n. Two Heegaard split­

tings ¢,¢' are of M of genus g and h are said to be stably equivalent

if there exist integers n,m, with g+n=h+m, andsplittings f3 1 , .. ·,{3n

and f3'l'·",f3'n of S3 such that ¢1t{3IIt .. ·/t{-3n ~ ¢'It{3'IIt .. ·/tf3'm·

This concept is of some interest because it was proved by Singer l!Ol
that any two Heegaard splittings whatsoever of a 3-manifold are stably

equivalent. Thus stable equivalence implies topological equivalence.

We now wish to determine how the additional freedom which is

allowed under stable equivalence alters the admissible operations which

preserve the equ iva lencc class of the symplectic matrix A = a(<!» associ­

ated with LI Heel~<I;lfd splilting ,p. Recall that if ¢,¢' are Heegaard

splittings of I',l'nw: I',. willi f\ O«ll), f\' a (<!>'), then 4~ ~ ¢' only if
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A and A' have identical P-blocks, and also only if there exist g x g

symmetric matrices Land K, and gx g unimodular matrices U, V

satisfying equation (45), such that A = F(L)D(U) A'D(V) F(K). (See

Theorem 1 and Lemma 2.2.) Our next result says, essentially, that the

identical condition is necessary for cP == cP', however the requirement

that U and V be unimodular is replaced by the less restrictive condition

that there exist nx n unimodular matrices, for some integer n ~ g, say

U0' V0' such that matrices which play the roles of D(U) and D(V) can

be obtained from D(U o) and D(Vo) by striking out rows 1 through n-g

and n+ 1 through 2n-g+ 1, and the corresponding columns.

We illustrate this with the example of Corollary 2.2. Recall that the

Heegaard splittings cP and cP' of Corollary 2.2 both define the manifold

L(7.2) It L(7,2). The desired equivalence between the matrices a (<I» and

a (<I> ') may be obtained by choosing n = 3 and

o -2J1 0
o 9

L= [0 OJ
o -2

The precise statement of the conditions for stable equivalence is

given below. It includes the additional freedom that cP and cP' may be

splittings of distinct genus.

Let Xk UcP X'k and Xh UcP , X'h be Heegaard splittings, with

[

R'

A'0 = a(<I>') = P':

It will be assumed that Po' P'o are in diagonal form, with diagonal

entries Pl ... ·'Pk and p'l, .. ·.P'h· If Pl="'=Pt= 1, but Pt+lI- 1,

delete rows 1 through t and k + 1 through k + t + 1 and the correspond­

ing columns from Ao to obtain a new matrix A. Similarly, for A'. Sup-

pose then that

~J [
R'

A'= P' S 'J .Q'
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Let g = k-t and let g' = k'- t'. A necessary condition for ¢ == ¢' is that

P = P'. This implies that g' = g.

THEOREM 4. A necessary condition for ¢,~ ¢' is that there exist gx g

symmetric matrices L K and nx n unimodular matrices V V for
' 0' 0'

some n 2' g, such that if D(V) and D(V) are the 2gx 2g matrices ob-

tained by striking out rows 1 through n-g and n+ 1 through 2n-g f-1

and the corresponding columns from D(Vo) and D(V0)' then

A = F(L) D(V) A' D(V) F(K) .

in the above, the submatrices V, V obtained from Vo' V 0 by striking out

the first n-g rows and columns are required to satisfy equations (50).

Proof. Note that if ¢ = ¢', then HI (XkU¢Xi) HI (XhU¢, X'h)' hence

the diagonal matrices PO' P'o can differ only in having a different number

of unit entries on the main diagonal. Considering Ao first, suppose

KO = l',k··ll and L o = lie.. 11 by the rules, IJ' . IJ'
kij=-qij if i~j, i=I,···,t and kij=O if i~j and i-ct+I"",g;

also e.. = -r·· if i> J' and J' ~ 1"", t and e.. = 0 if i> j and
IJ IJ - [R*I

J
S *J -

j = t+I,.··, g. Let A~ = F(Lo) A o F(Ko) = P~ Q~ . Then A~ is the

symplectic matrix associated with a Heegaard splitting of genus k which

is strongly equivalent to ¢. By our choice of L o and Ko the matrices

R~ and Q~ will be bordered top and left by t rows and t columns of

zeros. It then follows from (46.3) that S~ will be bordered top and left

by t rows and columns of zeros, except for -I's on the main diagonal.

Since any matrix which arises from a Heegaard splitting of this same

3-manifold, e.g. A'o' may be brought to a similar partial normal form,

except possibly with additional borders of zeros and 1 's, we may with­

out loss of generality aSSUlIle that any further modifications do not alter

the blocks of zero:: :111(1 I ';:. WI' llI:ty therefore concentrate our attention
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on the submatrices A and A' defined in the statement of the theorem

(which were left unaltered in the multiplication by F(Lo) and F(Ko»'
We must however keep in mind that the freedom to change the size of A

and A' may introduce a new freedom in the choice of L, K, U and V.

The choice of Land K will not present any problem, since every sym­

metric matrix restricts to a symmetric matrix when one deletes the first

row and column. However the matrix obtained from a unimodular matrix

by a similar deletion may no longer be unimodular, hence we require the

condition given in Theorem 4 for the choice of U and V. 11

THEOREM 5 (a generalization of a result due to Reidemeister, [7]). Let

¢, ¢' be Heegaard splittings of genus k and h, and let A and A' be

the deleted matrices defined before the statement of Theorem 4, with

P = P'. If P is singular, perform the additional deletions described in

Lemma 3.2, to obtain submatrices of A and A' which we will denote by

the symbols Al and A'I' Denote the diagonal entries of PI by

Pl"",Pg' with Pi=mi-IPi-I' i=2"",g, andlet ei~gcd(mi,mi_I)'

i-=2,''',g, with e l ='PI' Let lIix ' x=l,"',xi be the ordered array of

distinct prime factors of ei' Let QI = j1qijl! and R I = Ilrij\i. Define

two arrays of quadratic characters Yix and zix by the rules:

1. If Ilixlqii' then Yix == 0

If Ilixlrii' then zix = 0

2 If n. Yq·· then y. = (q .. lII· )• I X 11 ' IX 11 IX

If h. v r.. then z· =(r .. m.),
IX~ 11' IX 11' IX

where the symbol (alb) is the Legendre symbol. 5 Then, ¢ '" ¢' only if

the ordered arrays y. and z· coincide.
IX IX

Proof We examine the manner in which q.. and r·· are altered by the• 11 11

admissible operations in Theorem 4. Note that, by Lemma 3.1, we may

5 Let H, b be coprime integers. Then (alb) I if there exists an integer x

such that x 2 a(mod b). If no such intl'v,er x ,-xist,;, then (a:b) --1.
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restrict our attention to the submatrix which is obtained by deleting the

rows and columns which are associated with zero diagonal entries in P,

(Thus our invariants are associated with the torsion subgroup of the

homology group of the manifold.)

Replacing A by F(L) D(U) A D(V) F(K), we find that Ql' RI go

over to UQI V + PK, U-IR I V-I + LP. Since Pikii = fiiPi '" 0 (mod II ix )

we may restrict our attention to the matrices UQI V and U-IR 1V-I.

The entry qii will be replaced by

g g

qii l l uikqkt vti .
k=1 t=1

This sum decomposes as:
g

qii uiiqiivii t l l uikqktVti f l l uikqktvti
k>i t>i

k>i t<i k
'"
/ 1

t >i t <i

From equations (SO) and (51), we now note that

uii ~ vii if k < i, then m· IIU'k1- 1

if t < i, then mi_I1qit

if t > i, then m.1vt ,
l' 1

if k> i, then
I

mi1qki

we

and our assertion follows.

- *RI = VRI U. Thus, exactly as above,

and our theorem is proved. i!

Thus q'!'. =q ..u~.(mod II. ),
11 11 11 IX
* --I --IIf R I = U RI V ,then

find that roo ,- r*.u2.(mod n. )
11 II II IX '

The quadrat ic ch"r:l('I('r~; Yix discovered by Reidemeister, and

described in Tlwon'lIl ~" w"", Illt('rprl'tcd by Seifert 191 to be linking
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invariants of the torsion subgroup of HI (Xk Uet> X'k)' One expects that

other integer invariants can be associated with those blocks of the matrix

A# in (47) which are related to the infinite part of HI (XkUet>X'k)' Le. the

subblocks R~, Q2' and S2' S~, S:. However, lacking a normal form

for the submatrix A1 of A# under the general operations allowed in

Theorem 4, it appears to be a difficult problem to determine such

invariants. 6
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BRANCHED CYCLIC COVERINGS

Sylvain E. CappeU* and Julius L. Shaneson *

The present paper outlines a solution to the following problem of Fox

r41: When is the p-fold branched cyclic covering space of a manifold,

with a manifold branching set, again a manifold? The solution of this

problem has many consequences for the study of cyclic group actions on

manifolds. A few examples of applications are described below in Section 1

In Section 2 we study branched cyclic covers of S3 and relate a result on

these to the classical P. A. Smith conjecture and the above problem of Fox.

§1. Solution of Fox's problem

Let Mn and Wn+2 be P. L. manifolds with M compact and f: M--> W

a P.L. embedding which is proper, i.e. f(aM) = aW n f(M). A branched

cyclic covering space of W along M is a simplicial complex Y equipped

with a simplicial map 17: Y • W so that Y is a branched cover of W along

M [4] with 17-
I (M) == M a P.L. homeomorphism and Y-M -> W-M a

regular covering space with a finite cyclic group of covering translations.

Note that we do not assume that f(M) is a locally-flat submanifold of W.

It is easy to see that in general W has a p-fold cyclic cover branched

along M if and only if there is a class of order p in HI (W-M; Zp)

which under the composition of the natural maps HI(W_M; Zp)'

III (aE; Zp) -> H2 (E, aE; Zp) goes to a mod p Thorn class l31 of the regu­

lar neighborhood E of M in W, with aE = aE - interior (aW n E). If

WeE is a regular neighborhood of M, this condition just means that the

integral Thorn class of E, defined by analogy with the Thorn class of a

hundle, is divisibh' hy p.



166 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

Fox observed that if Mn is a locally-flat submanifold of Wn+2 , Y is

~ertainly a manifold [4], A precise but entirely local answer to Fox's

problem for P. L. but not necessarily locally-flat submanifolds can be

given as follows. Regard M as a subcomplex of a triangulation of W.

For any point in the interior of an i-simplex ~~ of M, the link pair in

(M, W) is the i-th suspension of a PoL. locally flat knot pair (Sn-I-i,

sn+l-i) [111. Let Xa be the manifold which is the p-fold cyclic cover

f Sn+l-i 1 thO 1 11 fl Sn-l-i I 0 ho a ong 1S oca y- at . t 1S easy to see t at Y is a

P.L. manifold if and only if each such Xa is a sphere. While this re­

duces Fox's problem to questions about locally-flat P.L. submanifolds,

it is too local to be very useful in applications.

We are thus led to a reformulation of Fox's problem. First note that

outside of a regular neighborhood of the branching set M, Y is certainly

a manifold. Thus, Fox's problem is solved by determining which branched

cyclic C0vers of a manifold regular neighborhood E n+2 of Mn are again

PoL. manifolds. Two manifold oriented regular neighborhoods Eg+ 2 and

Er f-2 of Mn are said to be concordant if there is an oriented regular

neighborhood V of M x 1 which restricts to regular neighborhoods E 1

of M x 1 and -Eo of M x O. Recall the classifying space for oriented

regular neighborhoods BSRN2 constructed in [3] using results of [11] and

analyzed using methods of [2]. See also [6], [11. Concordance classes of

manifold oriented codimension two regular neighborhoods of M are in 1

to 1 correspondence with elements of [M, BSRN2 1. Theorem 1 provides

a global answer to the following formulation of Fox's problem. Which P.L.

oriented manifold regular neighborhoods of M are concordant to regular

neighborhoods which have manifold p-fold cyclic covers branched along M?

In applying Theorem 1 it is useful to recall that if fo : M .... Wn
-l

2 is a PoL.

embedding, n? 4, with Eo the regular neighborhood of fo(M) in W,

and E 1 is a manifold regular neighborhood of M which is concordant to

Eo' then there is an ambient concordance of fo in W to a P. L. embed­

ding f1 with E} P.L. homeomorphic to OJ regulm neighborhood of

f 1(M) 131.
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2
THEOREM 1. There exists a classifying space BSRN p equipped with

2 2
a natural map 17: BSRN2 p .... BSRN2 such that an oriented manifold regu-

lar neighborhood Eg+ 2 of the P. L. manifold Mn is concordant to an

oriented manifold regular neighborhood E1 of M with a manifold p-fold

branched cyclic cover if and only if the map g: M .. BSRN
2

which classi­

fies EO lifts to a map g: M -> BSRN~P so that 17g is homotopic to g.

2
This classifying space for branched cyclic covers BSRN2 p has non-

finitely generated homotopy groups in even dimensions greater than 2. To
2

see this, note that an element of 17 i(BSRN2 p) is represented by a regular

neighborhood E it 2 of Si, which after being modified within its concord­

ance class may be assumed to be locally-flat except possibly at one point

P of Si. The p-fold cyclic branched cover of the link pair of P in

(Si, E i+2) is then, by the local criteria for branched covering spaces to

be manifolds discussed above, a sphere equipped with a semi-free Zp

action with a knot as fixed points. This construction defines a map which

is an isomorphism (except for i = 2, when it has kernel Z) of
2

17i(BSRN2 p) to the groups of concordance classes of "(it2)-dimensional

counterexamples to the P. A. Smith conjecture" defined and algebraically

analyzed in [2, §1l1. In particular, 172 i(BSRN2
2

p) is not finitely gener-
2 2

ated for i> 1, 172i+l (BSRN 2 p) = 0 for p odd, and 172(BSRN2 p) = Z if

the classical P.A. Smith conjecture is true for Zp actions on S3. Thus,
2 2as a consequence of [131, 172(BSRN2 ) = Z.

The detailed homotopy type of BSRN~P can be studied by combining

the homology surgery method of studying codimension two embedding

problems of [2], the global approach to non-locally flat embeddings de­

veloped in [3] and generalizations of the characteristic variety theorem

developed by Sullivan [12] to study G/PL. That the characteristic

variety theorem could be generalized to spaces other than G/PL was

observed by J. Morgan and by L. Jones.

As an applicillioll of Tlwon'lll 1 we will consider the following problem:

Which oriented clo~;"d 11I.llldold~; Mn :tre the codimension two fixed points
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f . f . Sn+2o seml- ree actIons on ? Theorem 3 which answers this problem

will combine the following criteria for M to have a P.L. embedding in

Sn+2 with the condition that M be a Zp-homology sphere which is im­

posed by P.A. Smith theory.

THEOREM 2 [31. Let Mn be a closed P.L. manifold with 17 l(LM)-->
n+

Hn+- 1 (LM) onto. Then there is a P. L. embedding M C Sn+2.

The relationship between the dimens ion k of the non-locally flat

points of the embedding of Mn in Sn+2 and the characteristic classes

of M, developed in [3] shows that in many cases k must be at least

n-4. Note that if Mn does have a P.L. embedding in Sn+2, then by

the Thom-Pontrjagen construction, 17 n+2 (L2 M) --> Hn+2(L2M) is onto.

The following result is a kind of converse to P. A. Smith theory. Re­

lated results were obtained by L. Jones in high codimensions (71.

THEOREM 3. Let Mn be a Zp homology sphere with 17 n+l (IM) ~

Hn+1(LM) surjective. Assume that H2(M; Z2) = O. Then there exists a

semi-free P.L. action of Zp on Sn+-2 with M as fixed points.

Many M which satisfy the hypothesis of this theorem do not have

locally-flat embeddings in Sn+2. If the condition in Theorem 3 on the

surjectivity of the Hurewicz map is dropped, we can still show, for n odd,

that there is a Zp homology sphere Vn+2 with a semi-free Zp action

and with M as fixed points. The condition on H2(M; Z2) arises from

the 3-dimensional P.A. Smith conjecture in a manner which will be de­

scribed below.

Another result which follows from Theorem 1, an analysis of BSRN~P

and methods of (21, (3] is the following:

THEOREM 4. Let Wnt-2 be an oriented compact P. L. manifold equipped

with a semi-free Z <Jction, p odd, with fix('d poilll" Mn (" interior (W),
p
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M an oriented closed P.L. manifold with H2 (M; 2
2

) = O. Then if n IS

odd or if 171 (W) = 0, for every closed P.L. manifold M' homotopyequiva

lent to M, there exists a compact P. L. manifold W', equ'ipped with a

semi-free P.L. 2 p action with M' as fixed points, with (W', aW') equi­

variant ly homotopy equiva lent to (W, aW).

The conditions on H2 (M; 2 2 ) in the above results arise in the follow­

ing way. In proving Theorems 3 and 4, we study a natural map of BSRN~P

to G/PL and attempt to find a splitting of it. In particular, on the level

of the second homotopy groups, we are trying to find a splitting of the map

which assigns to a knot which is a counterexample to the classical P.A.

Smith conjecture its Arf invariant. We thus propose the following weak

form of the P.A. Smith conjecture, whose truth would imply the necessity

of the conditions on H2 (M; 2 2 ),

WEAK P.A. SMITH CONJECTURE. Let K C S3, K ~ SI be the fixed

points of a P.L. 2 p action on S3, p odd. Then is ~K(-l) == ± 1

(modulo 8), where AK(t) is the Alexander polynomial of the knot K C S3?

Fox [5] studied restrictions on ~K(t). However as his methods, which

involve expressing homology in terms of ~K(t), apply in high dimensions,

where for p odd the weak P.A. Smith conjecture is false [2), they alone

will not suffice.
Z

A result on 17
2

(BSRN2 p) is indicated at the end of Section 2 below.

§2. Cyclic branched covering of S3

Let {3 C S3 be a knot. Let V be a Seifert surface of {3, with link­

ing form Lv. Let L be a matrix for Lv with respect to some basis.

Let L' denote the transpose of L. If g is complex number of norm 1,

let
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Then K.; is a Hermitian form over the complex numbers; let u.;(j3)

denote its signature. Let 'Ilji, p) be the p-fold cyclic branched cover of

S3 along f3, with the induced orientation.

THEOREM S. The p-fold cyclic cover L(J:3, p) bounds a parallelizable

manifold with signature p-l

l u.;i(j3) ,
i= 1

.; a primitive pth root of unity.

NOTES:

1. u.; ({3) = u.;-1 ((3).

2. The function u.;(j3) is actually a cobordism invariant of f3.

3. u.;(f3) is continuous in .;, except possibly at the negatives of

the roots of the Alexander polynomial of f3.

4. The manifold constructed to bound L = L(f3, p) is simply connected

and has even middle betti number.

S. Analogous results are true in high dimensions.

Theorem 5 has been obtained independently by L. Kauffman [141.

Proof of Theorem 5. Consider

p = f3 x I U V x 0 C S3 x I U 0 4 _ 0 4 .
f3 x 0 S3 x 0

Then the p-fold cyclic branched cover Q of 0 4 along P is a 4-manifold

with boundary L(j3, p). Clearly

Q = <i x I) U p(04) U P x 0 2

P x Sl

where L is the part of L

tubular neighborhood of f-3,

subset of its boundary pS:l

lying over the closure of the complement of a

and p(04) is attached to LxI along the

S3 U ... U S:l consisting of p copies of the
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closure of the complement of a tubular neighborhood of V in S3. (If

TT: .... S3 is the projection, TT:TT- I (S3 - V) is the trivial p-fold covering

space.)
~ ~ 4 ~ ~ 4

Let Q = LX 1 U pO C Q. By excision H2(Q) == H2(Q, pO ) ==

H2 (p(V X I, V x am == HI (pV). Moreover, the mapping H2 (Q) .... H2 (Q) is

surjective, as the composite

e= linking number with P, is a monomorphism. Hence Q and Q have
~ 3

the same index. Since Q is an unbranched cover of a subset of S , it

is para llelizable , i.e. for x (H2 (Q), x·x == 0(2). Hence Q is also

parallelizable.

A basis of H2 (Q) is obtained by pushing circles representing a basis

of HI (V) in each component of TT-IV in L x a to each of the boundary

components of a neighborhood of TT-IV and making the results bound in

the corresponding copy of 0 4 • With respect to the basis thus obtained

from the basis of HI V used to obtain L from Lv' it is easy to see

that the intersection form on H2 (Q) has the matrix

L+L' -L a
-L' L+L' a .......

K a -L' LtL' -L

-L a a

Let H be the matrix

C
I el

eI cf 4 1

fl~ p I(

a -L'

a a
a .. a

a
-I,

-L' LtL'

cfp-II )
ep-II

cf (p_I)2 I .
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where ~ is a primitive pth root of 1 and I is the identity matrix of

the same size as L. Then H'KH is the matrix

and H'H ~ pI. The theorem follows.

NOTE. One can easily show that the intersection form on H2(Q) has the

matrix

From this and Poincare Duality, we may recover all known results on HI (I).

EXAMPLE: f3 = trefoil knot, p = 5. Then

L= (-1 1)
o -1 '

so that a~(ji) = -2 = a_I (f3) for

~ = e 217it , 1/6 < t < 5/6 ,

and

-1/6 < t < 1/6 .ifo

Thus

a~(f3)
4

I a~(f3) = -8.
i = 1

In fact, it is well known l10] that the 5-fold branched cyclic cover of

31 is binary dodecahedral space ("Poincare space").

As a consequence of Theorem 5 and Rohlin's Theorem 191, and results

of [2] the natural periodicity map 7T2(J3SRN~P) • 7Th(BSRN~p) is seen to

be not surjective'.
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ON THE 3-DIMENSIONAL BRIESKORN MANIFOLDS M(p, q, r)

John Milnor

§1. Introduction

Let M = M(p, q, r) be the smooth, compact 3-manifold obtained by

intersecting the complex algebraic surface

of Pham and Brieskorn with the unit sphere Iz 1 12 + Iz2i2 + iz312 = 1.

Here p, q, r should be integers 2: 2. In strictly topological terms, M

can be described as the r-fold cyclic branched covering of the 3-sphere,

branched along a torus knot or link of type (p, q). See 1.1 below.

The main result of this paper is that M is diffeomorphic to a coset

space of the form n\G where G is a simply-connected 3-dimensional

Lie group and II is a discre~ subgroup. In particular the fundamental

group 77 1 (M) is isomorphic to this discrete subgroup lie G. There are

three possibilities for G, according as the rational number p-l ~ q-l +

r- 1 _ 1 is positive, negative, or zero. In the positive case discussed in

Section 4, G is the unit 3-sphere group SU(2), and II is a finite sub­

group of order 4(pqr)-I(p-l + q-l + r- 1 -lr2 • (See Section 3.2.) In the

negative case discussed in Section 6, G is the universal covering group

of SL(2, R). The proof in this case is based on a study of automorphic

forms of fractional degree. In both of these cases the discrete subgroup

II "'" 77 1 (M) can be characterized as the commutator subgroup [1',1'] of a

certain "centrally extended triangle group" reG. [See Section 3. This

rl'5ult has also been ohtained by C. Giffen (unpublished).] The centrally

extended trianv.1l- group I' has <I presentation with generators y l' Y2' Y3

;Ind relat ions

1"1'.
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(Compare [Coxeterl.) It follows that M is diffeomorphic to the maximal

abelian covering space of the 3-manifold I' \ G.

These statements break down when p-I + q-I + r- I = 1. However,

it is shown in Section 8 that M can still be described as a coset space

n\G where G is now a nilpotent Lie group, and n is a (necessarily

nilpotent) discrete subgroup. The proof is based on a more general fibra­

tion criterion. (Section 7.)

The author is indebted to conversations with J. -Po Serre, F. Raymond,

and J. Joel.

HISTORICAL REMARKS. The triangle groups were introduced· by

H. A. Schwarz in the last century. [Three-dimensional analogues have

recently been constructed by W. Thurston (unpublished).] The study in

Section 5 of automorphic forms clearly is based on the work of Klein,

Fricke, Poincare and others. The manifolds M = M(p, q, r) and their

(2n-l)-dimensional analogues were introduced by [Brieskorn, 1966]. He

computed the order of the homology group HI (M; Z), showing that M has

the homology of a 3-sphere if and only if the numbers p, q, r are pairwise

relatively prime. From the point of view of branched covering manifolds,

this same result had been obtained much earlier by [Seifert, p. 222]. Those

Brieskorn manifolds with p-I t- q-I + r- I > 1 have long been studied by

algebraic geometers: Compare the discussion in [Milnor, 1968, §9.8] as

well as [Milnor, 1974J. Those singular points of algebraic surfaces with

finite local fundamental group have been elegantly characterized by

[Prill] and [Brieskorn, 1967/68]. Those with infinite nilpotent local

fundamental group have been elegantly classified by [Wagreich]. For

other recent work on such singularities see [Arnol'd], [Conner and

Raymond], [Orlik], [Saito1, and [SiersmaJ. The work of [Dolgacev] and

[Raymond and Vasquez1is particularly close to the present manuscript.

To conclude this introduction, here is an alternative description of

M(p, q, r). Recall that the torus link L(p, q) of type (p, q) can be
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defined as the set of points (zl' z2) on the unit 3-sphere which satisfy

the equation

This link has d components, where d is the greatest common divisor of

p and q. The n-th component, 1 S; n S d, can be parametrized by setting

ZI = e(tlp) , z2 = e((t+n+~)/q)

for as; t ~ pq/d, where e(a) stands for the exponential function

Note that this link L(p, q) has a canonical orientation.

217iae .

LEMMA 1.1. The Brieskorn manifold M(p, q, r) is homeomorphic

to the r-fold cyclic branched covering of S3, branched a long a

torus link of type (p, q).

Proof. Let V C C3 be the Pham-Brieskorn variety zIP + z2
q

+ z3
r
~ a,

non-singular except at the origin. Cons ider the projection map

from V - 0 to C2 - O. If we stay away from the branch locus zIP + z2 q = a,
then clearly each point of C2 - 0 has just r pre-images in V. In fact

these r pre-images are permuted cyclically by the group n of r-th roots

of unity, acting on V - 0 by the rule

for w r = 1. Thus the quotient space n\(V-O) maps homeomorphically

onto C2 - O. It follows easily that V - 0 is an r-fold branched cyclic

covering of C2 - 0, branched along the algebraic curve zi p + z2 q ~ a.
Now let the group H+ of positive real numbers operate freely on

V - 0 by the rule
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for t > O. Since every R+-orbit intersects the unit sphere transversally

and precisely once, it follows that V - 0 is canonically diffeomorphic to

R+ x M(p, q, r). Note that this action of R+ on V - 0 commutes with the

action of n.
Similarly, letting R+ act freely on C2 - 0 by the rule t: (z l' z2) i->

(t
1
/Pzl' t

1
/qz2)' it follows that C2 - 0 is canonically diffeomorphic to

R+- x S3. The projection map V - 0 .... C2 - 0 is R+-equivariant. There­

fore, forming quotient spaces under the action of R+, it follows eas ily

that M(p, q, r) is an r-fold cyclic branched covering of S3 with branch

locus L(p, q).• (Compare [Durfee and Kauffman], [Neumann].)

§2. The Schwarz triangle groups L* => L

This section will be an exposition of classical material due to

H. A. Schwarz and W. Dyck. (For other presentations see [CaratheodoryJ,

lSiegell, [Magnus],) We will work with anyone of the three classical sim­

ply connected 2-dimensional geometries. Thus by the "plane" P we

will mean either the surface of a unit 2-sphere, or the Lobachevsky plane

[e. g., the upper half-plane y > 0 with the Poincare metric (dx2 + dy2 )//1,

or the Euclidean plane. In different language, P is to be a complete,

simply-connected, 2-dimensional Riemannian manifold of constant curva­

ture +1, -1, or O.

We recall some familiar facts. Given angles a,{3,y with O<a,p,y<TT,

there always exists a triangle T bounded by geodesics, in a suitably

chosen plane P, with interior angles a, {3, and y. In fact P must be

either spherical, hyperbolic, or Euclidean according as the difference

a+{3+y-TT is positive, negative, or zero. In the first two cases the area

of the triangle T is precisely la -t (3 t- y - TT!, but in the Euclidean case

the area of T can be arbitrary.

We are interested in a triangle with interior angles TT/p, TT/q, and

TT/r respectively, where p,q,r:;" 2 are fixed integers. Thus this triangle

T = T(p, q, r) lies either in the spherical, hyperbolic, or Euclidean plane

according as the rational number p-l t q-l + r- 1
- 1 is positive, nega-

live, or zero.
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DEFINITION. By the full Schwarz triangle group L* = L*(p, q, r) we will

mean the group of isometries of P which is generated by reflections

ai' a 2 , a 3 in the three edges of T(p, q, r). We will also be interested in

*the subgroup L C L of index 2, consisting of all orientation preserving

elements of L*.

REMARK 2.1. Before studying these groups further, it may be helpful to

briefly list the possibilities. Let us assume for convenience that p:S q:S r

In the spherical case p-l t- q-l + r- 1 > 1, it is easily seen that (p,q,r)

must be one of the triples

(2,3,3), (2,3,4), (2,3,5); or (2,2, r)

for some r> 2. The corresponding group L(p, q, r) of rotations of the

sphere is respectively either the tetrahedral, octahedral, or icosahedral

group; or a dihedral group of order 2r. The area of the associated triangle

T can be any number of the form TT In with n> 2. In the Euclidean case

p-l + q-l + r- 1
= 1, the triple (p, q, r) must be either

(2,3,6), (2,4,4), or (3,3,3) .

For all of the infinitely many remaining triples, we are in the hyperbolic

case p-l + q-l + r- 1 < 1. The area of the hyperbolic triangle T can

range from the minimum value of (1- 2- 1 - 3- 1 - 7- 1
) TT = TTl42 to values

arbitrarily close to TT.

The structure of the full triangle group L* = L*(p, q, r) is described

* .in the following basic assertion. Recall that L IS generated by reflec-

tions ai' a 2 , a 3 in the three edges of a triangle T C P whose interior

angles are TT/p, TTlq, and TTIr.

THEOREM 2.2 (Poincare). The triangle T itself serves as

*fundamental domain for the action of the group L on the

"plane" P. In o/h(,r words the various images a(T) with

If ( L* nrc mll/II;,1I1' disjuint (·,y.cept for boundary points, and
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cover all of P. This group I* has a presentation with gener­

ators a 1 , a 2 , a 3 and relations

a 2
3 1

and

Here it is to be understood that the edges are numbered so that the

first two edges e 1 and e 2 enclose the angle of l7/p, while e 2 and e 3

enclose the angle of l7/q, and e 3 , e 1 enclose l7/r.

Proof of 2.2. Inspection shows that the composition (T1a2 is a rotation

through the angle 217/p about the first vertex of the triangle T, so the

*relation (a1 ( 2 )P = 1 is certainly satisfied in the group I. The other

five relations can be verified similarly.

Let I denote the abstract group which is defined by a presentation

with generators 01 ,°2 ,°3 and with relations 0"/ = 1 and (01 ( 2 )P =

(°203)q = (0/71)r = 1. Thus there is a canonical homomorphism a I-> (T

~ *
from I onto I , and we must prove that this canonical homomorphism

is actually an isomorphism.

Form a simplicial complex K as follows. Start with the product

I x T, consisting of a union of disjoint triangles ax T, one such triangle

for each group element. Now for each a and each i = 1,2,3 paste the

i-th edge of ax T onto the i-t~ edge of aai x T. More precisely, let K

be the identification space of I x T in which (a, x) is identified with

(aai' x) for each a{I, for each i = 1,2,3, and for each x f ei C T.

Using the relation a/ = 1, we see that precisely two triangles are

pasted together along each edge of K.

Consider the canonical mapping I x T .... P which sends each pair

(a, x) to the image a (x) (using the homomorphism a I-> a from I to

the group I* of isometries of P). This mapping is compatible with the

identification (a, x) '" (aai' x) for x {Ci since the reflection (Ti fixes

ei' Hence there is an induced map
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f: K ..., P .

We must prove that f is actually a homeomorphism.

First consider the situation around a vertex (a. v) of K. To fix our

ideas. suppose that v is the vertex e 1 n e 2 of T. Using the identifi­

cations

together with the relation (a1 ( 2 )p = 1. we see that precisely 2p triangles

of K fit cyclically around the vertex (a. v). (These 2p triangles are

distinct since the 2p elements 01 , a162 , (71 (72°1 •...• (01a2l of ~ map

to distinct elements of ~*.) Now inspection shows that the star neighbor­

hood. consisting of 2p triangles fitting around a vertex of K maps

homeomorphically onto a neighborhood of the image point o(v) in P. The

image neighborhood is the union of 2p triangles in P, each with interior

angle 77!p at the common vertex o(v).

Thus the canonical map f: K ..., P is locally a homeomorphism. But it

is not difficult to show that every path in P can be lifted to a path in K.

Therefore f is a covering map. Since P is simply connected, this im­

plies that f is actually a homeomorphism. The conclusions that ~ maps

*isomorphically to the group I • and that the various images o(T) cover

P with only boundary points in common. now follow immediately. -

REMARK 2.3. More generally. following Dyck, one can consider a convex

n-sided polygon A with interior angles 77!P1,. .. ,77!Pn' Again A is the

fundamental domain for a group ~* = I*cA) of isometries which is gener­

ated by the reflections 0l ... ·'on in the edges of A with relations

for all i modulo n. In fact the above proof extends to this more general

case without any essent ial change.
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COROLLARY 2.4. In the spherical case p-1 +- q-1 +- r- 1 > 1,

the full triangle group ~*(p, q, r) is finite of order 4/(p-1 +­

q-1 +- r- 1 -1). In the remaining cases p-1 +- q-1 +- r- 1 :S 1,

the group ~*<p, q, r) is infinite.

Proof. Since the various images a (T) form a non-overlapping covering

*of P, the order of ~ can be computed as the area of P divided by the

area of T .•

Recall that ~ denotes the subgroup of index 2 consisting of all

*orientation preserving isometries in the full triangle group ~ . Setting

note that the product

is equal to 1.

COROLLARY 2.5. The subgroup ~(p, q, r) has a presentation

with generators T
1

,T
2

,T
3

andrelations T1
P=T2

q
= T3r=T1T2T3 = 1.

Proof. This corollary can be derived, for example, by applying the

*Reidemeister-Schreier theorem. (More generally, for the Dyck group de-

scribed in 2.3 we obtain a presentation with generators T1'"'' Tn and

relations

Details will be left to the reader.•

We conclude with three remarks which further describe these groups ~

* See for example (Weirl.
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REMARK 2.6. Using 2.2, it is easy to show that an element of the group

I has a fixed point in P if and only if it is conjugate to a power of

T 1 ,T2 , or T3 . Hence every element of finite order in I is conjugate to

a power of T 1 ,T2 or T3 . Therefore the three integers p,q,r can be

characterized as the orders of the three conjugate classes of maximal

finite cyclic subgroups of I. (Caution: In the spherical case these

three conjugate classes may not be distinct. In fact in the spherical case,

since each vertex of our canonical triangulation of P is antipodal to

some other vertex, it follows that each Ti is conjugate to some Tjl
where j may be different from i.)

Here we have used the easily verified fact that every orientation

preserving isometry of P of finite order has a fixed point.

THEOREM 2.7 (R. H. Fox). The triangle group I(p, q, r) con­

tains a normal subgroup N of finite index which has no elements

of finite order.

[Fox] constructs two finite permutations of orders p and q so that

the product permutation has order r. The subgroup N is then defined as

the kernel of the evident homomorphism from I to the finite group gener­

ated by these two permutations. Using 2.6 we see that N has no elements

of finite order. -

Note also that N operates freely on P; that is, no non-trivial group

element has a fixed point in P. Hence the quotient space N\P is a

smooth compact Riemann surface which admits the finite group I/N as

a group of conformal automorphisms. To compute the Euler characteristic

X(N \P) of tbs Riemann surface, we count vertices, edges, and faces of

the canonical triangulation of N \ P, induced from the triangulation of

2.2. This yields the formula

X(N\ P)



184 JOHN MILNOR

In the hyperbolic caSe p-l + q-l + r- 1 < 1, it follows that the triangle

group I ~ N contains free non-abelian subgroups. For N is the funda­

mental group of a surface of genus g ~ 2, hence any subgroup of infinite

index in N is the fundamental group of a non-compact surface and there­

fore is free.

Note that a given finite group <Il can occur as such a quotient I/N

if and only if <Il is generated by two elements, and has order at least 3.

For if <Il is generated by elements of order p and q, and if the product

of these two generators has order r, then I(p, q, r) maps onto <Il, and

it follows from 2.6 that the kernel has no element of finite order. As an

example, the triangle group I(2, 3, 7) maps onto the simple group of

order 168. (Compare [Klein and Fricke, pp. 109, 7371 as well as [Klein,

Entwicklung "', p. 369].) Hence this simple group operates conformally

on a Riemann surface N \ P whose genus g = 3 can be computed from

the equation 2-2g = 168(1-T1 _r l _7- 1).

More generally let A be any discrete group of isometries of P with

compact fundamental domain. (That is, assume that there exists a com-

pact set K C P with non-vacuous interior so that the various translates

of K by elements of A cover P, and have only boundary points in

common.) Then A also contains a normal subgroup N of finite index

which operates freely on P. (See [Fox] and IBungaard, Nielsen]. A much

more general theorem of this nature has been proved by [Selberg, Lemma 8].)

Again the Euler characteristic X(N \P) of the smooth compact quotient

surface is directly proportional to the index of N in A. In fact, the

ratio X(N \P)/order (A/N) can be computed as a product X(BA)X(P)

where the rational number X(BA) is the Euler characteristic of A in the

sense of [Wall], and where X(P) ~ ~ (_l)n rank Hn(P) is the usual Euler

characteristic, equal to 1 or 2. Now assume that A preserves orientation.

The quotient S = A \ P can itself be given the structure of a compact

Riemann surface, even if A has elements of finite order. (Compare 6.3.)

In general there will be finitely many ramification points, say x1,"',Xk(S,

Let r1 ,"', rk "2 be the corresponding ramification indices. Then class i-
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cally the data (S; xl"'" xk; r1 ,.··, rk) provides a complete invariant for

the group A. That is: a second such group A' is conjugate to A with­

in the group of orientation preserving isometries of P if and only if the

Riemann surface S'= A'\P is isomorphic to S under an isomorphism

which preserves ramification points and ramification indices. The triangle

group I(p, q, r) corresponds to the special case where S has genus zero

with three ramification points having ramification indices p, q, r.

REMARK 2.8. It is sometimes possible to deduce inclusion relations

between the various groups I(p, q, r) by noting that a triangle T(p, q, r)

can be decomposed into smaller triangles of the form T(p', q', r'). For

example if p = q one sees in this way that

I(p, p, r) C I(2, p, 2r)

as a necessarily normal subgroup of index 2. Similarly, taking p = r one

sees that

as an abnormal subgroup of index 3. However, not all inclusions can be

derived in this manner. A counterexample is provided by the inclusion

I(2, 3, 3) C I(2, 3, 5) of the alternating group on four letters into the alter­

nating group on five letters.

§3. The centrally extended triangle group I'(p,q,r)

As in the last section, let P denote either the Euclidean plane or

the plane of spherical or hyperbolic geometry. Let G denote the con­

nected Lie group consisting of all orientation preserving isometries of P.

Then we can form the coset space G/I where

I = I(p, q, r) C G

is the triangle group of Section 2. Clearly G/I is a compact 3-dimensional

manifold. To compute the fundamental group TTl (G/I) it is convenient to

pass to the univ('rs,t! l'llvpring group G of G.
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DEFINITION. The full inverse image in G of the subgroup Ie G will

be called the centrally extended triangle group [' = I'(p, q, r).

Evidently the quotient manifold GIL can be identified with G/r,

and hence has fundamental group 77 1(GII) ~ I'.

To describe the structure of I', let us start with the isomorphism

G/C ~ G of Lie groups, where the discrete subgroup C ~ 771 (G) is the

center of G. In the spherical case, where G is the rotation group SO(3),

it is well known that this fundamental group C is cyclic of order 2. In

the Euclidean and hyperbolic cases we will see that C is free cyclic.

Evidently I', defined as the inverse image of I under the surjection

G .... G, contains C as a central subgroup with r IC ~ I. [In fact one

can verify that C is precisely the center of I '.J The main object of this

section is to prove the following.

LEMMA 3.1. The centrally extended triangle group I' = I'(p,q,r)

has a presentation with generators Y1' Y2' Y3 and relations Y1 p=

Y2 q = Y3 r ~ Y1 Y2Y3'

Proof. We will make use of the following construction. Choose some

fixed orientation for the "plane" P. Given a basepoint x and a real

number 0, let

denote the rotation through angle () about the point x. Thus we obtain

a homomorphism rx : R .... G which clearly lifts to a unique homomorphism

into the universal covering group. Since rx(277) is the identity element

of G, it follows that the lifted element
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belongs to the central subgroup C. We will use the notation c =rx(277) (C.

In fact C is a cyclic group generated by c, as one easily verifies by

studying the fibration

defined by the formula g f-> g(x). Here SI denotes the group rx(R) C G

consisting of all rotations about x. In the Euclidean and hyperbolic

cases, since P is contractible, it follows that the fundamental group

77 1 (SI) == Z maps isomorphically onto 77 1 (G) == C.

Note that this element rx(277) (C depends continuously on x, and

therefore is independent of the choice of x.

Now recall that the subgroup Ie G is generated by the three rotation:

where vI' v2 ' v3 are the three vertices of T. It follows that the inverse

image f' eGis generated by the three lifted rotations

Yl = rv (277/p), Y2 = rv (277/q), Y3 = rv (277/r) ,
1 2 3

together with the central element c. Clearly

Next consider the product YI Y 2Y 3' Since T 1T2T3 = 1, it is clear that

YI Y 2Y 3 belongs to C, and hence is equal to c k for some integer k.

We must compute this unknown integer k.

It will be convenient to work with a more general triangle, with arbi­

trary angles. In fact, without complicating the argument, we can just as

well consider an n-sided convex polygon A C P with interior angles

a ... a Here we assume that 0 < a· < 77. If a· denotes the reflection
l' 'n' 1 1·

in the i-th edge (suitably numbered), then a/ = 1, and therefore
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Lifting each rotation

to the element
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0·0· 1 '" r (2a.) f G
1 1+ Vi 1

it follows that the product Yl Y2 ... Yn belongs to the central subgroup C.­

Now as we vary the polygon A continuously, this central element

Yl '" Yn must also vary continuously. But C is a discrete group, so

Y1 '" Yn must remain constant.

In particular we can shrink the polygon A down towards a point x,

in such manner that the angles a1,···,a n tend towards the angles

f3 1 "",f3 n of some Euclidean n-sided polygon. Thus the element

Yi'" rv .(2a i) (G tends towards the limit rx(2f3), while the product
1

Yl ... Yn tends towards the product r
X

(2f31 t '" -I 2f3 n). Therefore, using

the formula
f3 1 + ... + f3 n '" (n-2)77

for the sum of the angles of a Euclidean polygon, we see that the constant

product Yl '" Yn must be equal to

rx«n-2) 277) n-2c .

Finally, specializing to the case n", 3, we obtain the required identity

Yl Y2 Y3 = c.

Thus we have proved that r is generated by elements Yl' Y2' Y3'

and c which satisfy the relations

~

Conversely, if r denotes the group which is defined abstractly by

generators Yl' Y2' Y3' c and corresponding relations, then certainly the

element C f f generates a central subgroup C, with quotient f'/C
isomorphic to L by Section 2.5. Thus we obtain the commutative

diagram
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l-c-r-~-l

!onto !onto !2::

1-C-I'-~-1

In the Euclidean and hyperbolic cases, C is free cyclic, hence C maps

isomorphically to C, and it follows that I' maps isomorphically to r.
In the spherical case, since C is cyclic of order 2, we must prove

that 22 ~ 1 in order to complete the proof. This relation can be verified

by a case by case computation. (Compare [Coxeter1) There is an alterna

tive argument which can be sketched as follows.

To prove that 22 = 1, it suffices to show that 22 maps to 1 in the
~

abelianized group r I[I', n. For clearly r is a central extension of the

form

Such a central extension is determined by a characteristic cohomology

class in H2 (f'; ( 2 ). Consider the universal coefficient theorem

[Spanier, p. 2431 The group H2r is zero by Poincare duality, since the

finite group r is fundamental group of a closed 3-manifold. Therefore

our extension is induced from an element of Ext(H 1r, ( 2
), or in other

words from an abelian group extension of the form

Thus we obtain a commutative diagram

t 2:: t
I' -1

t

with A abelian. TIIt'/"I'[or<',;n the sphcr;cal case, thc group C2
gener­

ateel by c2 11/,'11'," ;lIj,·(t/I·'·!r ;lIto thi' alwl;an;zcd group 1'1[1',1'].
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But a straightforward matrix computation shows that 2 maps to an

element of order m(p-l + q-l j r- 1 -1) in this abelianized group, where

m is the least common multiple of p, q, r. In all of the spherical cases

this product is 1 or 2, so 22 ~ 1. •

REMARK. Similarly for the Dyck group of Section 2.3 one obtains a central

extension with generators Yl ,"', Yn and with relations

PI
Yl

Pn
... =0 Y

n
=c and n-2

Yl"'Yn~'c

COROLLARY 3.2. The abelianized group 1/[1, II has order

I I I -1 -1 -1 11,qr+pr+pq-pqr = pqr,p -+q +r - ,.

Here we adopt the usual convention that an infinite group has"order"

zero. Thus the commutator subgroup has finite index in I' if and only if

p-l + q-l t- r- 1 1= 1. To prove this corollary, we apply the usual theorem

that the order of an abelianized group with n generators and n relations

is equal to the absolute value of the determinant of the nx n relation

matrix. Taking the three relations to be YI Y2Y3YI-P = 1, YI Y2Y3Y2-
q

= 1,

YI Y2Y3Y3-r = 1, the relation matrix becomes

1

1-q

1

with determinant qr + pr + pq - pqr, as required .•

1 -1 -1 -1 > 1 . T' h dIn the spherica case p l' q + r , SInce 1 as or er

4/(p-l t q-l + r- 1 -1) as a consequence of 2.4, it follows that the com­

mutator subgroup [!',l] has order 4/(pqr(p-l+ q-l+ r-l_ 1)2).

One case of particular interest occurs when p, q, r are pairwise rela­

tively prime. In this case the index i = Iqr + pr + pq - pqr! of [I', n in

r is relatively prime to pqr. Therefore, using 2.6, it follows that for any
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element y of I' which has finite order modulo the center C there exists

an element yi of If', I'] having the same finite order modulo [1', nne.
It then follows that the three integers p, q, r are invariants of the group

[I ',1 '], Namely, they can be characterized as the orders of the maximal

finite cyclic subgroups of [1', n modulo its center [f', nne.

§4. The spherical case p-1 + q-1 + r- 1 > 1

This section gives a concrete description of the Brieskorn manifolds

M(p, q, r) in the spherical case. Since the conclusions are well known,

the presentation is mainly intended as motivation for the analogous argu­

ments in Section 6.

Let I' be any finite subgroup of the group SU(2) of unimodular 2x2

unitary matrices, acting by matrix multiplication on the complex coordinate

space C2. Note that SU(2) acts simply transitively on each sphere

centered at the origin.

DEFINITION. A complex polynomial f(z) '= f(zl' z2) is I'-invariant if

f(y(z)) = f(z)

for all y (I' and all z ( C2 . Let HI; 1 denote the finite dimensional

vector space consisting of all homogeneous polynomials of degree n

which are ['-invariant. More generally, given any character of I', that

is any homomorphism
X : r --> U(l) C C = C - 0

from r to the unit circle, let H~~'X denote the space of all homogeneous

polynomials f of degree n which transform according to the rule

f(y(z)) = X(y)f(z) .

Note that the product of a polynomial in H~:X and a polynomial in H~'P

belongs to the space H~;m,xp Thus the set of H~:X for all n and X

* *forms a bigraded algebra, which we denote briefly by the symbol HI" .
0,1

This bigraderl <I1gl'br<l ))()SSl'SSCS an identity element 1 ( HI'
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LEMMA 4.1. Let IT = [I, l] be the commutator subgroup of I.

Then the space H~ 1 of II-invariant homogeneous polynomials

of degree n is equal to the direct sum of its subs paces H~,'X

as X varies over all characters of I.

Z I--> f(y(z)) .

Proof. Since every character of I annihilates IT, it follows that

H~,'X C H~' 1. On the other hand, since IT is normal in I, it follows

that the quotient group I lIT operates linearly on H~i 1. In fact, f~r each

IT-invariant homogeneous polynomial f and each y (r let fy denote

the polynomial

(Thus I' acts on the right.) This new polynomial is also IT-invariant

since
(fY)7T = (f(Y7Ty-1))y = fy

for 7T (II. Clearly fy = fy' whenever y == y' mod IT. Since I'/II is

finite and abelian, it follows that H~1 splits as a direct sum of eigen­

spaces corresponding to the various characters of r lIT.•

Now consider a homogeneous polynomial f (H~;X for some n and X

According to the fundamental theorem of algebra, f must vanish along n

(not necessarily distinct) lines L1,"', Ln through the origin in C2 .

Given these lines, the polynomial f is uniquely determined up to a multi­

plicative constant. EVidently each element of the group I must permute

these n lines. Conversely, given n lines through the origin which are

permuted by I, the corresponding homogeneous polynomial fez) of

degree n clearly has the property that the rotated polynomial f(y(z)) is

a scalar multiple of f(;I;) for each group element y. Setting

f(y(z))/f(z) = X(y)

we obtain a character X of I so that f ( Hr,'X.

Let us apply these constructions to the centrally extended triangle

group r = ['(p, q, r) of Section 3; where p-1 I q-1 t r- 1 > 1. To do
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this we must identify SU(2) with the universal covering group G of

Section 3. In fact, SU(2) operates naturally on the projective space

p = pI (C) of lines through the origin in C2. Or rather, since the central

element -I carries each line to itself, the quotient group G ~ SU(2)/!±I!

operates on P, which is topologically a 2-dimensional sphere. Choosing

a G-invariant metric, we see easily that P will serve as model for

2-dimensional spherical geometry, with G as group of orientation preserv­

ing isometries and G = SU(2) as universal covering group.

Let k = 2/(p-l + q-l + r- l -1) denote the order of the quotient group

~ = i II±I!. Then, by 2.6, nearly every orbit for the action of ~ on P

contains k distinct points. The only exceptions are the three orbits con­

taining the three vertices of the triangle T. These three exceptional

orbits contain kip, k/q, and k/r points respectively.

k/p,Xl
Let f l f HI' ,for appropriately chosen Xl' be the polynomial

which vanishes on the kip lines through the origin corresponding to the

orbit of the first vertex of T. Similarly construct the polynomials

k/q,X2 k/r'X3
f2 ( HI' and f3 f Hi ,each well defined up to a multiplicative

constant. We will need some partial information about these three

characters Xl' X2' and X3'

LEMMA 4.2. The three homomorphisms Xi: l' -> U(l) con­

structed in this way satisfy the relation Xl p = X2 q = X/·

Proof. Let y'l"'" y'k f I' be a set of representatives for the cosets of

the subgroup 1±Il c i. Then to each linear form e(z) = alz l ~ a 2 z 2 we

can associate the homogeneous polynomial

k,Xo
of degree k. The argument above shows that f ( HI' for some X0'

Evidently this ch:lr;)c!l'r X () depends continuous lyon the linear form e,
and henc'p is in<!t'I"'IHIl'l1t 01 1'. Now specializing to the case where e(z)
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vanishes at the line corres ponding to one vertex of the triangle T, we

see easily that XI p = X2 q = X3 r = XO' •

REMARK. The characters Xi themselves can be computed by the methods

of Section 6.1. In fact, writing PI,P2,P3 in place of p,q,r, the charac­

ter Xi(Yj) is equal to e(-k/2PiPj) for i Ie- j and to e(1/Pj)e(-k/2pjPj)

for i = j.

We are now ready to prove the following basic result.

LEMMA 4.3. These three polynomials f I , f
2

, f
3

generate the

bigraded algebra Hr,,*. They satisfy a polynomial relation

which, after multiplying each fi by a suitable constant if neces­

sary, takes the form f I p + f
2

q + f
3

r = O.

Proof. Let f (H~;X be an arbitrary non-zero element of the bigraded

algebra. Then f must have n zeros in P = pI (C). If one of these zeros

lies at the i-th vertex of the triangle T, then clearly f is divisible by

fi . If f does not vanish at any vertex of T, then it must vanish at some

point x (p which lies in an orbit with k distinct elements. Choose

k,Xo
A f. 0 so that the linear combination fI p + Af2 q ( HI' also vanishes

at x, and hence vanishes precisely at the points of the orbit containing x.

Then f is divisible by fI P + Af2 q. Now it follows easily by induction on

the degree n that f can be expressed as a polynomial in the fi .

A similar argument shows that the polynomial f3 r is divisible by

fI p + Af2q for suitably chosen A f. 0, say

Multiplying each fi by a suitable constant, we can put this relation in

the required form f1 p + f2 q + f/ = O.•
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REMARK. More precisely, one can show that the ideal consisting of all

polynomial relations between the fi is actually generated by f
I

P+f
2

Q +f/

Compare 4.4 below.

Now let V denote the Pham-Brieskorn variety consisting of all triples

(vI'v2 ,v3) (C
3

with vIP + v2 Q + v3
r

= O. Evidently the correspondence

C2 . Vmaps Into.

Let fl = [1', n denote the commutator subgroup of I'. Since every

character of I annihilates fl, we have fi(17(z» = fi(z) for 17 (fl. There­

fore (fI,f2 ,f3) maps the orbit space fl\C 2 into V.

LEMMA 4.4. In fact, this correspondence flz I-> (fl (z), f2(z), f3(z»

maps the orbit space fl\C 2 homeomorphicaIly onto the Pham­

Brieskorn variety V.

Restricting to the unit sphere in C2 , we will prove the following

statement at the same time.

THEOREM 4.5. The quotient manifold 11\ S3 or II\ SU(2) IS

diffeomorphic to the Brieskorn manifold M(p, q, r).

The orbit space II \S3 can be identified with the coset space

II \SU(2) since SU(2) operates simply transitively on S3.

Proof. First consider two points z' and z" which do not belong to the

same II-orbit. Choose a (not necessarily homogeneous) polynomial g(z)

which vanishes at ZN, but does not vanish at any of the images 17(Z').

Setting

where fl . 1171 ..... 17 I. it follows that h is fl-invariant and h(z')~ h(zN).
111

Expressing h aS;I SIIII1 of homogeneous polynomials and applying 4.1, we
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obtain a polynomial f f H~'X for some n and X satisfying the same

condition f(z') 1= f(z"). Finally, applying 4.3, we see that one of the f.
1

must satisfy fi(z') -/0 fi(z"). Thus the mapping (f l ,f
2
,f3) embeds IT\C2

inject ive ly into V.

Note that each real half-line from the origin in C2 maps to a curve

in V which intersects the unit sphere of C3 transversally and precisely

once. -Therefore we can map the unit sphere of C2 into M ~ M(p, q, r) by

following each such image curve until it hits the unit sphere, and hence

hits M. Thus we obtain a smooth one-to-one map from the quotient IT \S3

into M.

But a one-to-one map from a compact 3-manifold into a connected

3-manifold must necessarily be a homeomorphism. Therefore IT \ S3 maps

homeomorphically onto M. It follows easily that n \ C2 maps homeomor­

phicallyonto V, thus proving 4.4.

Now let us apply the theorem that a one-to-one holomorphic mapping

between complex manifolds of the same dimension is necessarily a diffeo­

morphism. (See [Bochner and Martin, p. 179].) Since the complex manifold

II \C 2 -0 maps holomorphically onto V -0, this mapping must have non­

singular Jacobian everywhere. It then follows easily that the mapping

n\s3 • M is also a diffeomorphism._

§s. Automorphic differential forms of fractional degree

This section will develop some technical tools concerning functions

of one complex variable which will be needed in the next section. Some

of the concepts (e.g., "labeled" biholomorphic mappings) are non-standard.

It is common in the study of Riemann surfaces to consider abelian

differentials (that is, expressions of the form f(z)dz) as well as quad­

ratic differentials (expressions of the form f(z)dz 2
). More generally, for

any integer k ~ 0, a differential (= differential form) of degree k on an

open set U of complex numbers can be defined as a complex valued
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function of two variables of the form

¢(z, dz) = f(z)dz k ,

where z varies over U and dz varies over C.

To further explain this concept, one must specify how such a differ­

ential transforms under a change of coordinates. In fact, if g: U -> U1 is

a holomorphic map, and if ¢1(zl,dz1) = f1(Zl)dz 1
k is a differential on

*Ul' then the pull-back ¢ = g (¢ 1) is defined to be the differential

. k k
¢(z,dz) ~ ¢l(g(z),dg(z» = f1(g(z»g(z) dz

on U. Here g(z) denotes the derivative dg(z)/dz. This pull-back opera­

tion carries sums into sums and products into products.

We will need to generalize these constructions, replacing the integer k

by an arbitrary rational number a. There are two closely related diffi­

culties: If u is not an integer, then the fractional power dzu is not

uniquely defined, and similarly the fractional power g(z)a is not uniquely

defined.

To get around the first difficulty we agree that the symbol dz is to

vary, not over the complex numbers, but rather over the universal covering

group C· of the multiplicative group C of non-zero complex numbers.

Since every element of C· has a unique n-th root for all n, it follows

that the fractional power dza is always well defined in C'.

REMARK. This universal covering group C' is of course canonically

isomorphic to the additive group of complex numbers. In fact, the ex­

ponential homomorphism e(z) = exp(21Tiz) from C to C lifts uniquely

to an isomorphism e: C ~ C·

of complex Lie groups. The kernel of the projection homomorphism

C· -> C· is evidently generated by the image e(l).

We are now re:ldy 10 dpscribe our basic objects.
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DEFINITION. A differential (= differential form) of degree a on an open

set U C C is a complex valued function of the form

¢(z,dz) = f(z)dza

where z varies over U and dz varies over C'. Here it is understood

that the fractional power dza is to be evaluated in C· and then projected

into C· to be multiplied by fez). In practice we will always assume that

f is holomorphic, so that ¢ is holomorphic as a function of two var~ables.

Note that the product of two holomorphic differentials of degrees a and {3

is a holomorphic differential of degree a + (3.

*In order to define the pull-back g (¢) of a differential of fractional

degree, we must impose some additional structure on the map g.

DEFINITION. By a labeled holomorphic map g from U to U1 will be

meant a holomorphic map z f-> g(z) with nowhere vanishing derivative,

together with a continuous lifting g of the derivative from C to C'.
More precisely, g: U • C·

must be a holomorphic function whose projection into C is precisely the

derivative dg(z)/dz. (Alternatively, a labeling could be defined as a

choice of one single valued branch of the many valued function

log dg(z)/dz on U.) Given two labeled holomorphic maps

the composition gl g: U .... U2 has a unique labeling which is determined

by the requirement that the chain law identity

should be valid in C'.
Now consider a labeled holomorphic map g: U .... U1 together with a

differential
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*on VI' The puII-back g (c/>I) is defined to be the differential

c/>(z, dz) = c/>I (g(z), g(z)dz)

on V. Note that this pull-back operation carries sums into sums and

products into products. Furthermore, given any composition

g gI
V ---..... V --..... V2. I

*of labeled holomorphic maps, the pull-back (gl g) (c/>2) of a differential

on V 2 is clearly equal to the iterated pull-back g*cg1*Cc/>2»'
Let I be a discrete group of labeled biholomorphic maps of V onto

itself.

DEFINITION. A holomorphic differential form c/>(z, dz) = f(z)dza on V

is I -automorphic if it satisfies

*y (c/» = c/>

for every y f I. More generally, given any character x: I~ -~ V(l) C C',

the form c/> is called x-automorphic if

*y (c/» = X(y)c/>

for every y. (Thus the I'-automorphic forms correspond to the special

case X = 1.) Note that a form c/>(z, dz) = f(z)dza is x-automorphic if

and only if f satisfies the identity

X(y)f(z)

for all y f I and all z f V.

Evidently the x-automorphic forms of degree a on V form a com­

plex vector space which we denote by the symbol A~X In this way we

* *obtain a bigraded algebra Ai' , where the first index a ranges over

the additive group of rational numbers and the second index X ranges

over the multiplicat ivl' group HomO', V(l» of characters. This algebra
o 1

possesses an idelltity .. 1"11]('111 I / AI,' , It is associative, commutative,

and has no zero-dlvl!;''''. !;" lOlli', :IS til(' opf'n set V is connected.
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REMARK. The classical theory of automorphic forms of non-integer

degree is due to [Peterssonl (Compare [Gunning], [LehnerJ.) It is based

on definitions which superficially look rather different.

Suppose that we are given a normal subgroup of r.

LEMMA 5.1. If N l I' is a normal subgroup, then the quotient

r /N operates as a group of automorphisms of the algebra A *,1

* N
with fixed point set AI'l. If the quotient group I '/N is finite

abelian of order m, then each Aa,l splits as the direct sum
N

of its subs paces A~:X as X varies over the m characters of

[' which annihilate N.

The proof is easily supplied. (Compare 4.1.)_

COROLLARY 5.2. If NCr' is a normal subgroup of finite

index m, then every ¢ (Aa,l has a well defined "norm"
* * ma,l N

(y1 ¢) ... (ym ¢) f A
r

. Here y 1"" , Ym are to be repre-

sentatives for the cosets of N in I'.

Again the proof is easily supplied. _

It will be important in Section 6 to be able to extract n-th roots of

automorphic forms.

LEMMA 5.3. Let ¢(z, dz) = f(z)dza be a x-automorphic form.

If f possesses an n-th root, fez) ~ f l (z)n where f l is holo­

morphic, then the form ¢t (z, dz) = f t (z)dza / n is itself

Xl-automorphic for some character Xl of r satisfying Xln~X'

Proof. For any group element y, since the holomorphic forms ¢l and

Y*(¢l) both have degree a/n, the quotient Y*(¢l )/¢l is a well defined

meromorphic function on U. Raising this function to the n-th power we
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obtain the constant function y *c¢)/¢ = X(Y). Therefore

itself be a constant function. Setting its value equal to

to check that X I is a character of [' with X In ,= X.•

*Y (¢l)/¢l must

Xl (y), it is easy

As open set U, let us take the upper half-plane P consisting of all

z = x + iy with y > O. Then every biholomorphic map from U to itself

has the form

where

is an element, well defined up to sign, of the group SL(2, H) of 2 x 2

real unimodular matrices. The derivative dz'/dz is equal to (g21 z ~ g22)-

It follows easily that the group G consisting of all labeled biholomor­

phic maps from P to itself can be identified with the universal covering

group of SL(2, R). This group G contains an infinite cyclic central sub­

group C consisting of group elements which act trivially on P. The

generator c of C is characterized by the formulas

c(z) = z, c(z) = e(l), c(z)a =e(a) f-> e21Tia in C .

A group 1 C G of conformal automorphisms of P is said to have

compact fundamental domain if there exists a compact subset K C P with

non-vacuous interior so that the various images a (K) cover P, and are

mutually disjoint except for boundary points. We will be interested in sub­

groups of G whose images in G= G/C satisfy this hypothesis.

LEMMA 5.4. Let I' C G be such that the image f' = 1'/(1 n C)

in G operates on the upper half-plane P with compact funda­

mental domain. Then r is discrete as a subgroup of the Lie

group G, nnd tll,- ('osd spa.ce I'\G is compact. This group

I' necessnri!y ;"/I',...",,·t .., th,' center C non-trivially.
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Proof. As noted in Section 2.7 there exists a normal subgroup N C I' of

finite index so that N = N/N n C operates freely on P. The orbit space

under this action, denoted briefly by the symbol N\P, is then a smooth

compact surface S of genus g 2: 2 with fundamental group

171 (S) ~ N ~ NC/C. Here NC denotes the subgroup of G generated by

Nand C.

Since the group G/C operates simply transitively on the unit tangent

bundle T 1 (P) of P, it follows easily that the coset space (NC)\G can

be identified with the unit tangent bundle T 1(S) of the quotient surface

N\P. In particular this coset space is compact, with fundamental group

Hence the abelianized group NC/[NC, NC] = NC/[N, N] can be identified

with the homology group HI (T1 (S».

It follows that N must intersect C non-trivially. For otherwise NC

would split as a cartesian product N x C with N = N/N n C ~ 171(S).

Hence T 1 (S) would have first Betti number 2g I 1, rather than its actual

value of 2g.

(Carrying out this argument in more detail and using the Gysin sequence

of the tangent circle bundle (see [Spanier, p. 260] as well as [Milnor and

Stasheff, pp. 143, 1301), one finds that the kernel of the natural homomor­

phism from HI (T 1 (S» onto HI (S) is cyclic, with order equal to the

absolute value of the Euler characteristic XeS) = 2 - 2g. Identifying these

two groups with NC/[N, N] and N/rN, N] ~ NC/[N, N] C respectively, we

see that this kernel can be identified with C/lN, N] n C. Therefore the

element c 2 - 2g of C necessarily belongs to the commutator subgroup

[N, N] eN.)

Thus N has finite index in NC, so N \G is also compact, and it

follows that r \G is compact. •

REMARK. Conversely, if f' eGis any discrete subgroup with compact

quotient, then one can show that the hypothesis of 5.4 is necessarily
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satisfied. Such subgroups I" can be partially classified as follows. Re­

call from Section 2.7 that the image I' ~ f'C/C is completely classified

by the quotient Riemann surface I'\P together with a specification of

ramification points and ramification indices. But I has index at most

2g - 2 in the full inverse image IC of I. Therefore, for each fixed I

there are only finitely many possible choices for I'.

To show that automorphic forms really exist, we can proceed as follows

Again let I satisfy the hypothesis of 5.4 and let N l I' be normal of

finite index m, with N/N n C operating freely on P.

LEMMA 5.5. If a is a multiple of m, then the space A~l IS

non-zero. In fact, this space contains a form ¢ which does not

vanish throughout any prescribed finite (or even countable) sub­

set of P.

1 1
Proof. Recall that AN' can be identified with the space of holomorphic

abelian differentials fez) dz on the quotient surface S ~ N\ P of genus

g 2: 2. By a classical theorem, this space has dimension g. Furthermore,

using the Riemann-Roch theorem, the space of abelian differentials

vanishing at some specified point of S has dimension g-l. (Compare

[Springer, pp. 252, 270].) Clearly we can choose an element ljJ of this

g-dimensional vector space so as to avoid any countable collection of
* * m,lhyperplanes. Now the norm ¢ = Y1 (ljJ) ... Ym (ljJ) ( AI' of Section 5.2

will be non-zero at any specified countable collection of points. Setting
k Aa,l h h .a = km, it follows that ¢ (I as t e same propertIes .•

The density of zeros of an automorphic form can be computed as

follows. We will think of the upper half-plane P as a model for the

Lobachevsky plane, using the Poincare metric (dx2 +di)/i, and its

associated area element dxdy /y2.

Again let 1'/1' rl (' operate on P with compact fundamental domain.

LeI X: I' . UO) h"" .. 1J"r;wll·r of finite order. (The hypothesis that X

has finitf' order IS 11,,1 """"\111:11. II is m:lde only to simplify the proof.)
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L If ,/.. Aa,X .EMMA 5.6. 'P f l~ IS a non-zero automorphic form, then

the density of zeros of ¢ is a12TT. More explicitly: the number

of zeros of ¢ in a large disk of Lobachevsky area a, each

zero being counted with its appropriate multiplicity, tends

asymptotically to aal2TT as a -> 00.

In particular it follows that a 2: O.

Proof. Again we may choose a normal subgroup N of finite index so that

N = NIN n C operates freely on P. Furthermore, after raising ¢ to

some power if necessary, we may assume that the character X is trivial

and that the degree a = k is an integer. By a classical theorem, the

number of zeros of a k-th degree differential in a compact Riemann surface

N\ P of genus g?: 2 is equal to (2g - 2)k, where k is necessarily non­

negative. (For the case of an abelian differential fez) dz, see for example

lSpringer, pp. 252, 267J. Given such a fixed abelian differential, any k-th

degree differential on N\ P can be written uniquely as h(z) f(z)kdzk

where h is meromorphic on N \P, and hence has just as many zeros as

poles.)

Since the quotient N\ P has area (2g - 2) 2TT by the Gauss-Bonnet

theorem, it follows that the ratio of number of zeros to area is k/2TT, as

asserted. -

/ a,X a,xlN 11 h hREMARK. If ¢ F 0 is a form in Al C AN ,then it fo ows t at t e

number of zeros of ¢ in N\P is equal to (2g-2)a. In particular,

(2g - 2)a is an integer. Thus we obtain a uniform common denominator

for the rational numbers a which actually occur as degrees.

The algebra of N-automorphic forms can be described rather explicitly

as follows. Let k be the order of the finite cyclic group C/N n c,

LEMMA 5.7. If the rational number a is a multiple of 11k,

then,
dimA~,I" (2g-2)a 11-g,
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with equality whenever a > 1. In particular, this vector space is

non-zero whenever a >~. On the other hand, if a is not a

multiple of 11k, then A~,l ~ O.

It follows incidentally that (2g - 2)/k is necessarily an integer.

The following will be proved at the same time.

LEMMA 5.8. If a is a multiple of 11k and a > g/(g - 1), then

given two distinct points of N\ P there exists a form in A~,l

which vanishes at the first point but not at the second.

Proof. For any form ¢ of degree Q the identity

*c (¢) = e(a)¢

is easily verified. Thus if ¢ is N-automorphic and non-zero, with c k (N,

then it follows that e(ka)" 1. Hence a must be a multiple of 11k.

Conversely, if a is a multiple of 11k, then it is not difficult to con­

struct a complex analytic line bundle t a over the surface S = N\p so

that the holomorphic sections of t a can be identified with the elements

of A~,l. For example, the total space of t a can be obtained as the

quotient of PxC under the group N/N n C which operates freely by the

rule v: (z, w) /-> (v(z), v(zrQw). Every holomorphic section z /-> fez) of

the resulting bundle must satisfy the identity f(v(z» = v(zraf(z) appro­

priate to N-automorphic forms of degree a. Note that the tensor product

t a ® t{3 can be identified with t at{3.
To compute the Chern class cl (t a ) we raise to the k-th tensor

power so that holomorphic cross-sections exist as in 5.5, and then count

the number of zeros of a holomorphic section as in 5.6. In this way we

obtain the formula

Now let us apply nil' l~i('III;II1I1-I~()ch theorem as stated in [Hirzebruch,

p.1'1'1I: For <Iny <I11.dylw 1111" IJlllldl(' f: over S,
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dim (space of holomorphic sections) .?: c 1(t) [sJ + 1- g .

Taking t = t a this yields

dim A~,l > (2g - 2)a + 1- g

as asserted.

To decide when equality holds, and to prove 5.8, it is perhaps easier

to use the older form of the Riemann-Roch theorem, as described in

[Springer1 or [Hirzebruch, p. 41. Choosing some fixed ¢ 1= 0 in A~,l,

any element of A~,l can be obtained by multiplying ¢ by a meromorphic

function h on N\P which has poles at most on the (2g-2)a zeros of

¢. More precisely the divisors (h) and (¢) of hand ¢ must satisfy

(h) 2: (¢)-l. According to Riemann-Roch, the number of linearly indepen­

dent h satisfying this condition is > deg(¢) + 1- g, with equality

whenever the degree (2g- 2)a of (¢) is greater than the degree 2g- 2

of the divisor of an abelian differential. This proves 5.7.

If we want this form h¢ to vanish at z' [or at both z' and z"l,

then we must use the divisor (¢)-lz' [respectively (¢)-lz'z"l in

place of (¢ )-1. A brief computation then shows the following. If the

degree (2g-2)a - 2 of the divisor (¢)z,-lz ..-l satisfies

(2g - 2)a - 2 > 2g - 2 ,

a,l
or in other words if a > g/(g -1), then the space of forms in AN

which vanish at z' [respectively at z' and z") is equal to (2g-2)a-g

[respectively (2g - 2)a -1- g]' Since these two dimensions are different,

there is a form which vanishes at z' but not z".•

Aa,P h .REMARK. More generally consider the vector space N were p IS

an arbitrary character of N. Suppose that y = c j is an element of the

intersection N n C. Then the appropriate equation

f(y(z))y(z)U = f(z)p(y)
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takes the form f(z)e(ja) ~ f(z)p(c i ). Evidently there can be a solution

fez) 1= 0 only if the rational number a and the character p satisfy the

relation

for every c i In N n C. Conversely, if this condition is satisfied, then

the argument above can easily be modified so as to show that

dim A~'P 2: (2g - 2)a -1 1 - g ,

with equality whenever a > 1.

In the next section we will need a sharp estimate which says that

"enough" automorphic forms exist. To state it we must think of an auto­

morphic form ¢ explicitly as a function

¢(z, w) ~ f(z)w a

of two variables, where z f P and w f C'. Let the groups I' C G operate

free lyon P x C by the rule

g(z, w) (g(z), g(z)w)

With this notation, the statement that ¢ is I'-automorphic can be ex­

pressed by the equation

¢(y(z, w» ~ ¢(z, w)

THEOREM 5.9. With f' as in 5.4, two points (z', w') and

(z", w") of P x C belong to the same r -orbit if and only if

¢(z', w') = ¢(z", w") for every r -automorphic form ¢.

Proof. First consider the corresponding statement for the normal subgroup

N C I' of Section 2.7, If ¢(z', w') = ¢(z", w") for every ¢ f A:·
1

note

that z' and z# helong to the same N-orbit. For otherwise by 5.8 there

would exist ;1 form e!, I A,I,I which vanishes at z' but not z".
N
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Thus there exists v E N with v(z") = z'. Note that

¢(z', w') = ¢(z", w") = ¢(v(z", w"))

for every N-automorphic form ¢ E A~·l. Defining the element e(u) ( C·
by the equation v(z", w") = (z', w'e(u)), note that

¢(z', w'e(u)) = ¢(z', w')e(au)

Setting this equal to ¢(z', w'), we see that e(au) = 1 whenever ¢ is

non-zero at z'. By 5.8, a can be any sufficiently large multiple of 11k.

Therefore u must be a multiple of k, say u = nk. Hence the correspond­

ing power C
U is in N; completing the proof that (z', w') and (z", w")

belong to the same N-orbit. In fact c-~(z",w") = (z', w').

To prove the corres ponding assertion for I' we will make temporary

use of inhomogeneous automorphic forms, that is. elements of the direct
ffi a,l , "Sum WAN • to be summed over a. Given points (z', w) and (z, w")

not in the same I-orbit. consider the m images Yj(z'. z") where

Y1 ... ·' Ym represent the cosets of N In r. The above argument con­
*,1

structs forms ¢ j ( AN with

¢/z". w") -j ¢j(Y/z', w'))

Subtracting the constant ¢/z", w") E A~,l e= C from each ¢j' we obtain

an inhomogeneous form which vanishes at (z", w') but not at y/z'. w').

Now almost any linear combination ¢ of ¢l'· ... ¢m will vanish at

(z", w") but not anywhere in the }'-orbit of (z', w'). Hence the norm

of Section 5.2 will vanish at (z", w") but not at (z'. w'). Expressing ljJ

as the sum of its homogeneous constituents. clearly at least one must

take distinct values at (z", w") and (z'. w').•
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§6. The hyperbolic case p-I + q-I -j r- I < 1

The computations in this section will be formally very similar to those

of Section 4. However, automorphic forms will be used in place of homoge­

neous polynomials.

Let I~ be the extended triangle group I'(p,q,r) of Section 3, with

p-I + q-I + r- I < 1 so that I' can be considered as a group of labeled

biholomorphic maps of the upper half-plane P. Recall that I' has gener­

ators YI' Y2' Y3 which represent rotations about the three vertices of the

triangle T C P. With this choice of I', the characters X which actually

occur for non-zero x-automorphic forms can be described as follows. We

continue to use the abbreviation e(u) = e 21Tia .

LEMMA 6.1. Let X be a character of the extended triang Ie

group t. If ¢ -J 0 is a x-automorphic form of degree u, then

X(YI) = e((k+a)/p)

where k is the order of the zero of 1> at the first vertex of the

triangle T. The values X(Y2) and X(Y3) can be computed

similarly.

In particular, if ¢ does not vanish at the first vertex of T, then

Proof. Since YI 'C r (21T/p) is a lifted rotation through the angle 21T/p,
vI

the derivative h(v l ) equals e(l/p), hence the fractional power YI(vI)U

in C· projects to the complex number e 21Tia / p = e(a/p). Setting ¢(z,dz)

-- fez) dza , and substituting the Taylor expansion

in the identity
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we obtain

JOHN MILNOR

Hence e(k/p)e(a/p) = X(Y1) as asserted .•

D f " t" I b b th f I -1 1 -1 -1 -1e Ine a ra lOna num er s y e ormu a s = - p - q - r .

Thus 17/s is the Lobachevsky area of the base triangle T. Define a

character X 0 of r by the formulas

The necessary identities

are eas ily verified.

COROLLARY 6.2. If the automorphic form ¢ (A~'X does not

vanish at any vertex of the triangle T, then the degree a must

be a multiple of s, and the character X must be equal to

X
a/so .

Proof. By 6.1 we have X(Y1) ~ e(a/p), X(Y2) = e(a/q), X(Y3) = e(a/r).

Hence the relations

of Section 3.1 imply that X(Y1)P = X(Y2)q = X(Y3)r = e(a) must be equal to

Therefore e(a/s) = 1, or in other words a must be a multiple of s. The

equation X = Xoa / s clearly follows .•

*,* INow we can begin to describe the algebra Ar more explicit y.
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LEMMA 6.3. With r, s, and Xo as above, the complex vector

As'Xo h d' . Th' .space r as ImenSlOn 2. IS space contazns one and

(up to a constant multiple) only one automorphic form which

vanishes at any given point of P.

Proof. We begin with the basic existence Lemma 5.5. For some a there

exists a form ¢ (A~I which is non-zero throughout any specified finite

subset of P. In particular we can choose ¢ to be non-zero on the three

vertices of T. By 6.2, the degree a of this ¢ must be a multiple of s,

say a = ks.

Let us count the number of zeros of ¢. Since the triangle T has

Lobachevskyarea (1- p-I - q-I - r- I )77 = 77/S, it follows that a funda­

mental domain T U a(T) for the action of r;r neon P has

Lobachevskyarea 277/S. But the number of zeros of ¢ per unit area is

kS/277 by 5.6. Therefore the number of zeros of ¢ in the fundamental

domain T U a(T) is precisely equal to k. [Here each pair of zeros z

and y(z) on the boundary of the fundamental domain must of course be

counted as a single zero. Note that ¢ does not vanish at the corners of

the fundamental domain,] In other words there are precisely k (not neces­

sarily distinct) zeros of ¢ in the quotient space f\p.
Next note that this quotient space f \ P can be given the structure of

a smooth Riemann surface. If we stay away from the three exceptional

orbits, this is of course clear. To describe the situation near the vertex

v I it is convenient to choose a biholomorphic map h from P onto the

unit disk satisfying h(v l ) = O. Then the coordinate w = h(z) can be

used as a local uniformizing parameter near vI' Since the rotation y I

of P about VI corresponds to the rotation

of the unit disk about thp oriV,in, it follows that a locally defined holomor­

phic function of w is inVilrlilllt IIl1dl'r Ihis rotation if and only if it is

actually a holornorphi(' 1111\('111111 "I wI'. 11('11(,(, w P can he used as local
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uniformizing parameter for the quotient surface f \ P about the image of

vI' The other two vertices are handled similarly. Note that a meromor­

phic function on r \ P having a simple zero at the image of vI corre­

sponds to a I'-invariant meromorphic function on P having a p-fold zero

at each point of the exceptional orbit I'v1.

Topologically, this quotient f\ P can be identified with the "double"

of the triangle T. Hence it is a surface of genus zero. More explicitly,

following Schwarz, f \ P can be identified biholomorphically with the

unit 2-sphere by using the Riemann mapping theorem to map T onto a

hemisphere and then applying the reflection principle.

Since r \ P is a compact Riemann surface of genus zero, it possesses

a meromorphic function with k arbitrarily placed zeros and k arbitrarily
ks,1

placed poles. Starting with the non-zero form ¢ ( AI' constructed

above, we can multiply by a ['-invariant meromorphic function h which

has poles precisely at the k zeros of ¢, and thus obtain a new form
k 1 -

!/J = h¢ (AI's, whose k zeros can be prescribed arbitrarily in I' \P.

In particular we can choose !/J so as to have a k-fold zero at one point

of f \p, and no other zeros. (To avoid confusion, let us choose this

point to be distinct from the three ramification points.) Then by 5.3 this

form has a k-th root !/J 1 (A;:X for some character X, and by 6.2 the

character X must be precisely Xo' Evidently the form ~J 1 has a simple

zero at just one point of f \ P.

Similarly we can choose !/J 2 ( A~,'X0 which vanishes at a different

point of f \P. Then !/J 1 and !/J 2 are linearly independent. A completely
/ s,Xo h . I . Iarbitrary element !/J 1= 0 of AI' must ave precise y one simp e zero

in f \p, using 5.6. Choosing a linear combination A1!/J 1 + A2!/J2 which

vanishes at this zero, we see that the ratio !/J/(A1!/J1 +A2!/J2) (Af:l repre­

sents a holomorphic function defined throughout f \p, hence a constant.
s,Xo· .

Thus !/J 1 and ~J2 form a basis for AI' ,and this space contains

precisely one I-dimensional subspace consisting of forms which vanish

at any prescribed point of I' \P.•
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The structure of A i-,'*1 can now be described as follows

LEMMA 6.4. With I' '= l(p, q, r) as above, the bigraded algebra
*,* .

AI' IS generated by three forms

where XI' X2' X3 are characters satisfying

The automorphic form ¢i has a simple zero at each point of the

orbit lVi' and no other zeros. These three forms satisfy a

polynomial relation ¢I p" ¢2 q t ¢/ ~ o.

REMARK. The meromorphic function -¢I p/¢/ is the Schwarz triangle

function, which maps the quotient Riemann surface l' \ P biholomorphi­

cally onto the extended complex plane, sending the three vertices of T

to 0,1 and 00 respectively.

Proof of 6.4. To construct ¢I we use 6.3 to construct a form ¢ in

A~'Xo which vanishes only along the orbit of VI' This form must have

a p-fold zero at VI by 5.6 or by the proof of 6.3. Since P is simply

connected, it follows that ¢ possesses a holomorphic p-th root ¢I"

Then ¢I is itself an automorphic form by 5.3. The rest of the proof is

completely analogous to the proof of 4.3.•

Let II denote the commutator subgroup of l(p, q, r). Then by 3.2,

5.1 and 6.4 the graded algebra A~ I is generated by the three forms

¢I' ¢2' ¢3'

COROLLARY 6.S. The coset space n \G is diffeomorphic to

the Brieskort! m:/Tli/,,/d M(p. q, r).



214 JOHN MILNOR

Proof. Let V C C
3

be the Pham-Brieskorn variety zl p + z2 q + z3 r = 0,

singular only at the origin. Since the three functions cP1' cP2' cP3 on

P x t' satisfy the relation cP1 p + cP 2q + cP3 r = 0, and are never simul­

taneously zero, they together constitute a hoiomorphic mapping

(cP 1'cP2,cP 3): P x c· -, V - 0 C C 3 between complex 2-dimensional manifolds

Recall from Section 5.9 that the groups IT C G operate freely on P xC

by the rule g:(z,w) H (g(z),g(z)w). Setting z = x+iy and identifying

w with dz, this action preserves the Poincare metric \dzl 2 /l = : w 1
2Il.

In fact, G operates simply transitively on each 3-dimensional manifold

Iwlly = constant. Since IT is a discrete subgroup of G, it follows that-.
the quotient IT \ (P xC) is again a complex 2-dimensional manifold.

Since each cP i is IT-automorphic, the triple cP I' ¢ 2' c/J 3 give rise to

a holomorphic mapping
<I> : IT\(Px C') , V - 0

* 1on the quotient manifold. By 5.9, since the cPi generate An ' this

mapping <I> is one-to-one. Hence by lBochner and Martin, p. 1791, <l>

maps II\(PxC') biholomorphically onto an open subset of V-O. (It

will follow in a moment that the image of <I> is actually all of V - 0.)

Choosing a base point (zo,I) in P x C', map the coset space II \ G

into the Brieskorn manifold M(p, q, r) = V n S5 as follows. For each

coset IIg the image <I>(IIg(zo,I» is a well defined point (z1' z 2,z3)

of V - O. Consider the curve

through this point in V -0, where t> O. Intersecting this curve with

the unit sphere, we obtain the required point 'P(IIg) of M(p, q, r). It is

easily verified that 'P is smooth, well defined, one-to-one, and that its

derivative has maximal rank everywhere. Since IT \G is compact while

M(p, q, r) is connected, it follows that 'P is a diffeomorphism. -

COROLLARY 6.6. The Brieskorn manifold M(p, q, r) has a

finite covering manifold difft'of/lorphi,' to ;/ non-trivial circle

hw/(J!(' ov,',. ;/ slIrfn.·('.
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Proof. Choosing N C II as in 2.7, it is easily verified that N \ G fibers

as a circle bundle over the surface N\P.•

This corollary remains true in the spherical and nilmanifold cases.

CONCLUDING REMARKS. It is natural to ask whether there is a generali­

zation of 6.5 in which the group II is replaced by an arbitrary discrete

subgroup of G = SL(2, R) with compact quotient. It seems likely that

such a generalization exists:

CONJECTURE. For any discrete subgroup reG with compact quotient,

the algebra A? 1 of I '-automorphic forms is finitely generated. *

Choosing generators cP 1"'" cPk for this algebra, it would then follow

from 5.9 that the k-tuple (cP l ,"', cPk) embeds the complex 2-manifold

1'\(PxC') into the complex coordinate space Ck . It is conjectured that

the image in C k is of the form V-O where V -, Vr is an irreducible

algebraic surface, singular only at the origin. Intersecting this image VI'

with a sphere centered at the origin, we then obtain a 3-manifold diffeo­

morphic to I'\G.

In general it is not claimed that VI' embeds as a hypersurface. Pre-
3 *.1

sumably VI' can be embedded in C only if the algebra Ar happens

to be generated by three elements.

Note that this surface VI' is weighted homogeneous. That is, if each

variable Zj is assigned a weight equal to the degree of cPj' then VI'

can be defined by polynomial equations f(zl'''', zk) = 0 which are homoge

neous in these weighted variables.

Not every weighted homogeneous algebraic surface can be obtained in

this way. Here is an interesting class of examples. Start with an alge­

braic curve S of genus g? 2 together with a complex analytic line

bundle t; over S with Chern number cl < O. Let V(t;) be obtained

from the total space E(t;) by collapsing the zero-section to a point.

Applying the Riel11;lIlll"I<och theorem to negative tensor powers t;-n one

can presumalJly ('01,,;1111'" "Ilolll',h holomorphic mappings vet;) --> C to em­

bed V(,~') ;IS;I w"II',III,'d II"II'"I'."III'"IIS ;dgebraic surface in some C
k

.
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CONJECTURE. The algebraic surface V(I;) obtained in this way is

isomorphic to V1"' for some discrete [' C G if and only if some tensor

power I; k = I; 0 ... 0 I; is isomorphic to the tangent bundle reS).

For each fixed S there are uncountably many line bundles I; with

negative Chern number. Only finitely many of these (the precise number

is k2g for each k dividing 2g - 2) satisfy the condition that the k-th

tensor power is isomorphic to reS).

§7. A fibration eriLerion

In this section p, q, r may be any integers -::: 2.

LEMMA 7.1. If the least common multiples of (p, q) of (p, r)

and of (q, r) are all equal:

e.c.m.(p, q) -c e.c.m.(p, r) = e.c.m.(q, r) ,

then the Brieskorn manifold M(p, q, r) fibers smoothly as a

principal circle bundle over an orientable surface.•

The precise surface B and the precise circle bundle will be deter­

mined below.

At the same time we show that the complement of the origin in the

Pham-Brieskorn variety zIP 1 Z2 q + z 3r = 0 fibers complex analytically

as a principal C'-bundle over the Riemann surface B. In other words

this variety V can be obtained from a complex analytic line bundle I;

over B by collapsing the zero cross-section to a point.

One special case is particularly transparent. If p = q = r, then the

hypothesis of 7.1 is certainly satisfied. The equation zIP + z2 P t- z3 P =O

is then homogeneous, and hence defines an algebraic curve B in the com­

plex projective plane P 2(C). Clearly the mapping (z I ,z2 ,z3) f-> (z I :z2: z 3)

fibers M(p, q, r) as a circle bundle over B.

Proof of 7.1. Starting with any values of p,q,r, let m denote the least

common multiple of p, q, and r. Then the group C of non-zero complex
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numbers operates on the variety ZIP + Z2 q + Z3 r = 0 by the corres pondence

for u t- O. Restricting to the unit circle lui = 1 and the unit sphere

Iz1 1
2

+ Iz2!2 + !z3: 2
= 1, we obtain a circle action on M 0' M(p, q, r).

Let us determine whether any group elements have fixed points in M

or in V-O. If

then at least two of the complex numbers zl' z2' z3 must be non-zero,

hence at least two of the numbers umlp , um/q, umlr must equal 1. If the

three integers mlp, m/q, mlr happen to be pairwise relatively prime, then

it clearly follows that u = 1.

Thus, if mlp, m/q, mlr are pairwise relatively prime, we obtain a

smooth free C action on V - 0 restricting to a smooth free circle action

on M = M(p, q, r). Evidently M fibers as a smooth circle bundle over the

quotient space SI \M = B, which must be a compact, orientable,

2-dimensional manifold. In fact, using the alternative description

B = C·\(V-O)

we see that B has the structure of a complex analytic I-manifold. (The

two quotient spaces can be identified since every C·-orbit intersects the

unit sphere precisely in a circle orbit.)

Since an elementary number theoretic argument shows that mlp, m/q,

mlr are pairwise relatively prime if and only if the hypothesis of 7.1 is

satisfied, this completes the proof. •

To compute the genus of the surface B = SI \M = C·\(V -0), we

describe it as a branched covering of the 2-sphere pl(C) by means of

the holomorphic mapping

f: (1I111/PZl'lIm/qz2,um/rz3) t--> (zIP:z2q).
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Clearly f is well defined. A counting argument, which will be left to the

reader, shows that the pre-image of a general point of pI (C) consists of

precisely pqr/m points of B. Thus f is a map of degree pqr/m from

B to pl(C).

There are just three branch points in pI (C), corresponding to the

possibilities zl = 0, z2 = 0, and z3 = 0 respectively. The preimage

of a branch point contains qr/m, or prim, or pq/m points respectively.

Again the count will be left to the reader.

Now choose a triangulation of pl(C) with the three branch points

(0: 1), (1: 0), and (-1: 1) as vertices. Counting the numbers of vertices,

edges, and faces in the induced triangulation of B, we easily obtain the

following.

LEMMA 7.2. Let p, q, r be as in 7.1, with least common multi­

ple m. Then the surface B ~ SI \ M hils Euler characteristic

X(B) = (qr + pr+ pq _ pqr)/m = pqr(p-l -j- q-l +r- l - l)/m.

In particular the sign of X(B) is equal to the sign of p-l +q-I +r- l _

The genus g can now be recovered from the usual formula X ~ 2 - 2g.

Note that the genus satisfies g> 2, except in the four special cases

(2,2,2), (2,3,6), (2,4,4), and (3,3,3). (Compare Section 2.1.)

To determine the precise circle bundle in question, we must compute

the Chern class

or equivalently the Chern number c 1(.; )[B] of the associated complex

line bundle .;. (The Chern class c l can also be described as the Euler

class of .;. Using the Gysin sequence ([Spanier, pp. 260-261], IMilnor

and Stasheff, p. 143]), one sees that HI (M; Z) is the direct sum of a

free abelian group of rank 2g and a cyclic group of order leI (';)[B!U

To compute c l we consider the map
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from V - 0 to C 2
- O. Thus we obtain a commutative diagram

V-O

I
B

__F__• C2 _0

I
-----::;...-_. pl(C)

n ( C

F
n\(V -0) --_I C2 _0

I I
B f __• pI(e)

where the right hand vertical arrow is the canonical fibration (zl' z2) H

(zl : z2) with Chern number -1, associated with the Hopf fibration

S3 --> S2.

This map F is not quite a bundle map, since inspection shows that

each fiber of the left hand fibration covers the corresponding fiber on the

right m times. To correct this situation we must factor V - 0 by the

action of the subgroup

consisting of all m-th roots of unity. Thus we identify (z l' z2' z 3) with

m/p m/q m/r f h m 1 b .W zl' (,) z2' W z3 or eac W ~ , 0 taining a new commutative

diagram

where F is now a bundle map. Since f has degree pqr/m, it follows

that the new C'-bundle n\(V -0» B has Chern number -pqr/m. But

this new bundle can be described as the C· -bundle associated with the

m-fold tensor product I; 181···181 I; of the original complex line bundle 1;.

Therefore I; has Chern number ci (I; )rBJ = _pqr/m
2

.

Recapitulating, we have proved the following.

THEOREM 7.."\. If th(' hypothesis

III 1'.,·.111.(1'. q) I'.c.m.(p, r) r.c.m.(q, r)
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of 7.1 is satisfied, then the Brieskorn manifold M(p, q, r) fibers

as a smooth circle bundle with Chern number _pqr/m 2 over a

Riemann surface of Euler characteristic pqr(p-l + q-l + r- 1 -1)/m.

The number pqr/m
2

can be described more simply as the greatest

common divisor of p, q, r.

The negative sign of the Chern number has no particular topological

significance, but is meaningful in the complex analytic context, since (

is a complex analytic line bundle with no non-zero holomorphic cross­

sections.

Note that the Euler characteristic of B is always a multiple of the

Chern number of (. In general it is a large multiple, for it is not difficult

to show that the ratio satisfies

in the hyperbolic case. Hence this ratio tends to infinity with m. There­

fore the genus of B also tends to infinity with m.

Here are two examples to illustrate 7.3.

EXAMPLE 1. For any g 2: 0, the manifold M(2, 2(g+ 1), 2(g+ 1)) fibers

as a circle bundle with Chern number -2 over a surface of genus g.

Similarly, for any g 2: 1, the manifold M(2, 2g+ 1, 2(2g+ 1)) fibers as a

circle bundle with Chern number -1 over a surface of genus g.

EXAMPLE 2. The Brieskorn manifolds M(p, q, r) are not all distinct. For

example, M(2, 9, 18) and M(3, 5,15) are diffeomorphic, since each fibers

as a circle bundle with Chern number -1 over a surface of genus 4.

CONCLUDING REMARK. If it is known that M(p, q, r) fibers as a circle

bundle over a surface, does it follow that the hypothesis of 7.1 must be

satisfied? The lens spaces M(2, 2, r) with r 2' 3 provide counter­

examples. These fiber as circle bundles with Chern number ± r over a

surface of genus zero. (Presumably there is no associated analytic fibra-
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tion of V - O?) However, these are the only counter-examples. In the

cases p-I + q-I -j r- I 2: 1, this can be verified by inspection. Thus we

need only prove the following.

LEMMA 7.4. In the hyperbolic case p-I + q-I ~ r- I < 1, if

M(p, q, r) has the fundamental group of a principal circle bundle

over an orientable surface, then the hypothesis of 7.1 must be

satisfied.

The proof can be sketched as follows. First note that the fundamental

group of a principal circle bundle over an orientable surface, modulo its

center, has no elements of finite order. Now consider the fundamental

group II = II(p, q, r) of Section 6. The center of n is precisely equal to

n n C. As noted in 2.6, an element of riC) njII n C has finite order

if and only if it is conjugate to a power of h' Y2' or Y3 modulo C. To

decide which powers of say Yl belong to n, we carry out a matrix com­

putation in the abelianized group ['Ill. (Compare Section 3.2.) Setting

11 = e.c.m.(q, r), it turns out that the order k of Yl modulo II is given by

Evidently the element Y1 k of II belongs to II n C if and only if k is

a multiple of p, or in other words if and only if 11 is a multiple of p.

Thus IIIII n C has no elements of finite order if and only if

and similarly

Lc.m.(q, r) == 0

e.c.m.(p, r) == 0

P.c.m.(p, q)== 0

(mod p) ,

(mod q) ,

(mod r)

Clearly these cond it iOlls are equivalent to the hypothesis of 7.1. •
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§8. The nil-manifold ease p-1 + q-1 i r- 1 = 1

As noted in 2.1, we are concerned only with three particular cases.

The triple (p, q, r), suitably ordered, must be either (2,3,6) or (2,4,4)

or (3,3,3). Clearly each of these triples satisfies the hypothesis of 7.1.

Hence by 7.3 the corresponding manifold M = M(p, q, r) is a circle bundle

over a torus. The absolute value of the Chern number of this circle bundle

is the greatest common divisor of p, q, r which is either 1, or 2, or 3

respectively.

But any non-trivial circle bundle over a torus can also be described

as a quotient manifold N/Nk as follows. Let N be the nilpotent Lie

group consisting of all real matrices of the form

a

1

o ~J
and let Nk be the discrete subgroup consisting of all such matrices for

which a, b, and c are integers divisible by k. (Here k should be a

positive integer.) Then the correspondence

A 1-' (a mod k, b mod k)

maps N/Nk to the torus with a circle as fiber. The first homology group

is isomorphic to Z f9 Z f9 (Z/k), so the Chern number of this fibration

must be equal to ±k. Thus we obtain the following three diffeomorphisms

M(2, 3, 6)

M(2, 4, 4)

M(3, 3, 3)

"'" N/N 1

"'" N/N 2

"'" N/N 3

It must be admitted that this proof is rather ad hoc. I do not know whether

there exists a more natural construction of these diffeomorphisms.

THE INSTITUTE FOR ADVANCED STUDY
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SURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF S3

Jose M. Montesinos

§O. Introduction

This paper deals with the relationship between 2-fold cyclic coverings

of S3 branched over a link and closed, orientable 3-manifolds which are

obtained by doing surgery on a link in S3. In Theorem 1 it is shown that

every 2-fold cyclic branched covering of S3 can be obtained by doing

surgery on a "strongly invertible" link, that is, a link L which has the

property that there is an orientation preserving involution of S3 which

induces in each component of L an involution with two fixed points.

This result has some interesting consequences. Let K be a non-trivial

knot in S3. Then Theorem 1, which is a constructive result, allows us to

obtain a link L in S3 such that the 2-fold covering space K of S3

branched over K can be obtained by doing surgery on L. Note that if L

has property P, then K cannot be a counterexample to Poincare Con­

jecture because 1T(K) / 1. Thus, every simply connected 2-fold cyclic

covering of S3 is S3 iff every strongly invertible link has property P

(Corollary 1). As a second consequence of Theorem 1 we obtain a new

proof of a result established earlier by Viro [25] and also by Birman and

Hilden [2], that every closed, orientable 3-manifold of Heegaard genus

< 2 is a 2-fold cyclic branched covering of S3 (Corollary 2). In Corol­

lary 3 we will sharpen Theorem 1 showing that every 2-fold cyclic

branched covering of S3 can be obtained by doing surgery on a member

of a special family of strongly invertible links in S3.

Let L be a link such that there is an orientation preserving involu­

t ion of S3 with fixed points which induces an involution in each com­

ponent of L. Let M be a man ifold that is obtained by doing surgery

')')'/
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on L. We will see in Theorem 2 that M is a 2-fold cyclic covering of a

manifold that is obtained by doing surgery on a link in S3. As an applica­

tion of Theorem 2, it is shown that each manifold that is obtained by

doing surgery on a noninvertible pretzel knot or on the noninvertible

"borromeans rings" is a 2-fold cyclic branched covering of a 2-fold cyclic

branched covering of S3. This yields some insight into the answer to a

question (Question 3) raised by Birman and Hilden.

The construction of the link L in Theorem 1 uses some knot modifi­

cations, defined by Wendt, which have the effect of changing K into the

trivial knot. Having in mind the purpose of finding, for a given knot K,

if 17(K) is or is not trivial, we define in Section 3 some modifications of

a knot which generalize Wendt's modifications. These modifications have

the effect of exhibiting K as a manifold which is obtained by doing

"generalized surgery" on a link in S3, that is, removing n disjoint

solid tori from S3 and replacing each torus with a special "graph­

manifold" which is bounded by a torus. The advantage of this is that if

a link has property P, then a counterexample to the Poincare conjecture

cannot be obtained by doing generalized surgery on it (Theorem 4).

This fact allows us, in Section 4, to establish that there cannot be a

counterexample to the Poincare Conjecture among the 2-fold cyclic cover­

ings of S3 which are branched over the knots of Kinoshita-Terasaka

(Section 4.1), or over Conway's ll-crossing knot with Alexander poly­

nomial 1 (see Section 4.2), or over a special class of closed 3-braids

(see Section 4.3) first studied by Birman and Hilden.

In Section 5 it is established that graph-manifolds are in the Poincare

Category. This fact was used earlier in the paper, in the proof of

Theorem 4.

Acknowledgement. I would like to express my deep gratitude to Professor

]. S. Birman for her valuable suggestions and comments in reading my

manuscript.
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§1. Statement of the problems

In this section we will discuss several interesting questions which

have been posed by Ralph F ox and others about the Poincare Conjecture

and related matters. These questions will serve to motivate the main re­

sults of this paper, which are given in Sections 2, 3, 4 and 5, below.

Let L denote a link in S3, and let L denote the 2-fold cyclic

covering space of S3 branched over L. Since 2-fold branched covering

spaces are in many ways especially simple (see [2,5,6,15,25,27]), one

might like to know how they are related to the class of all closed, orient­

able 3-manifolds? Ralph Fox has proved [6] that the 3-dimensional torus

SI x SI x SI is not a 2-fold cyclic branched cover of S3. However he has

given a conjecture l6, Conjecture A'] that implies an affirmative answer

to the question:

Question 1. Is every closed, orientable, simply-connected 3-manifold a

2-fold cyclic branched cover of S3?

This appears to be a deep and difficult question, and, as will be seen

below, it may even be equivalent to the Poincare Conjecture.

Now, in [17], l18\ it was shown that there are Seifert fiber spaces,

different from SI x SI x SI, which are not 2-fold cyclic coverings of S3.

However, all of them, are 2-fold cyclic coverings branched over a 3-sphere

with handles [181.

Question 2. Is every closed, orientable 3-manifold a 2-fold cyclic cover­

ing branched over a 3-sphere with handles?

If Question 2 has an affirmative answer, then each closed, orientable

.I-manifold M with HI (M) finite is a 2-fold cyclic covering of S3, be­

cause the lift to M of a non-separating 2-sphere (in S3 with g> 0

handles) must be a non-separating closed, orientable surface in M. Thus

I L,/M) and HI (M) are infinite. Then, an affirmative answer to Question 2

i lllplies an affirmat ivc answer to Question 1.
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Note that a 3-sphere with g > 0 handles is a 2-fold cyclic branched

covering of S3. Joan S. Birman and Hugh M. Hilden have suggested that

it is reasonable to ask the following question, which looks like a weaker

question than Question 2.

Question 3. Is every closed, orientable 3-manifold a 2-fold branched

cyclic covering of a 2-fold branched cyclic covering of ... of a 2-fold

branched cyclic covering of S3?

It was observed by Birman and Hilden that if the answer to Question 3

is affirmative, then Fox's argument [51 implies that if a counterexample

exist to the Poincan[Conjecture, then there is also a counterexample

which is a 2-fold branched cyclic covering of S3.

Thus an affirmative answer to one of the three above questions would

reduce the investigation of the Poincare Conjecture, to the case of 2-fold

cyclic coverings of S3.

Now, the trivial knot is the only knot which has S3 as associated

2-fold cyclic covering branched over it 1271. On the other hand, if L has

more than one component, then HI (1.) f 0 [6] and if L = L 1 !1 L 2 is a

composite knot, then 1T(L) = 1T(L1 ) * 1T(L2 ) [15, Theorem v.s.3.1 Thus,

one is led to consider the following Conjecture (see [15, Conjecture 1.1.1.]):

CONJECTURE 1. If N is a non-trivial prime knot, then 1T(N) ~ 1.

If one searches for a counterexample to Questions 2, 3, then one need

not consider Seifert fiber spaces or closed graph-manifolds ("Graphen­

mannigfaltigkeiten," see [26]) because all of them are 2-fold cyclic

coverings of S3 with handles. 1 I suggest looking for M among the

closed, orientable 3-manifolds obtained by doing surgery on a knot in S3.

In [181 this was proved for Seifert manifolds and for graph-manifolds M
represented by a graph A(M). Of course, this can be extended to each closed
graph-manifold according to 126, Satz 6.3, p. 881 and [15, Teorema V.5 ..1.] and

125; .uol.
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Therefore, in this paper, we explore the relationship between 2-fold cyclic

coverings of S3 branched over a link and closed, orientable 3-manifolds

which are obtained by doing surgery on a link in S3.

§2. Surgery on links and double branched covers of S3

Let L be a link in S3. L is called strongly-invertible if there is an

orientation-preserving involution of S3 which induces in each component

of L an involution with two fixed points. Every strongly-invertible link

L is invertible, but I do not know if every invertible link is a strongly­

invertible link.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained

by doing surgery on a strongly-invertible link L of n components. Then

M is a 2-fold cyclic covering of S3 branched over a link of at most nl-1

components. Conversely, every 2-fold cyclic branched covering of S3

can be obtained in this fashion.

Proof of Theorem 1. Let S3 be represented as Euclidean space with an

ideal point at infinity. It can be supposed without loss of generality [27],

that there is an axis E in S3 such that the axial symmetry u with re­

spect to E induces in each component of L an involution with two

fixed points. For the sake of brevity, the first part of Theorem 1 will be

proved for a knot N in S3.

Let U(N) be a regular neighborhood of N such that u induces an

involution in U(N) (a typical case is illustrated in Figure 1a). Let V

be the solid torus, as represented in Figure 1b, and let u' be the sym­

metry with respect to the axis E'. There is a homeomorphism if; of

(JU(N) onto av such that (u'!aV)if; = if;(u!aU(N».

Let rP now be a homeomorphism of av onto aU(N). Then !/JrP is

;111 Clutohomeomorphism of av and it can be supposed (by composing rP,
if necessary, with an isotopy) that
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Fig. la.

Fig. lb.
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(t(;rP )(u'! aV) = (u'l aV)(t(;rP) .

Thus ¢(u'lav) = t/J-I(u'lav)t/JrP = (ulaU(N»rP.

Then, the space M obtained by pasting V to S3 - U(N) by means

of rP is compatible with the involutions u and u', and admits an

E involution u", induced by u

and u'. The orbit-space of

(S3 -U(N» U V under u" can be

obtained by adjoining the orbit

space of V under u' (which is

a ball) to the orbit-space of

S3 _ U(N) under u, which is S3

minus a ball (see in Figure Ic a

fundamental set for the action of

u on U(N». Then M is a

2-fold cyclic covering of S3,

branched over the image of

E - (ab!- cd) -t (AB + CD) (see

Figures Ia and Ib). This is a

link in S3 which has, at most,

two components.

Fig. Ie.

Conversely, suppose that M is a 2-fold cyclic covering of S3,

branched over a link L. We consider two ways to modify this link, by re­

moving certain solid balls from S3 and sewing them back differently.

First, it is possible, by applying modifications of type WI (see Figure

2a), to change a given link L in S3 into a knot K in S3. Then, by

:~ This result is contained implicitly in [3], and is proved in [21, [25] and [18].
In 121 and 1251 this result has been generalized for orientable surfaces of genus
I', 2. For g '> 2 this genNlllizlltion is not true in general (see [6] and [17]).
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applying further modifications of type W2 (see Figure 2b), it is possible

to change the knot K into the trivial knot T (see [28]). Let n be the

minimal number of modifications of type WI' W2 that are necessary in

order to change the given link L into the trivial knot T.

It may be supposed that these modifications are set up in the inner of

n disjointed balls B 1 ,"', Bn of S3 (see Figure 2). Note that the

2-fold cyclic coverings of B i branched over Bi n T are solid tori. Thus,

in order to build up L it is sufficient to do surgery along n solid tori

in T= S3.

Let Bi be the 2-fold cyclic covering of Bi , branched over B i n T.
n

Then U Hj can be interpreted as a regular neighborhood of a strongly­
I
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invertible link in S3. Thus, L can be obtained by doing surgery on a

strongly-invertible link in S3 which has, at most, n components. 0

Recall that a link L in S3 has property P when it is not possible

to obtain a counterexample to the Poincare Conjecture by doing surgery

on it.

COROLLARY 1. Conjecture 1 is true iff every strongly invertible link

has property P. 0

As property P is known to be true for many links (1], [8], [231,

Corollary 1 implies that Conjecture 1 can be established for a large family

of knots. In Section 4 we will apply Theorem 1 in this way to establish

that there cannot be a counterexample to the Poincare Conjecture among

the 2-fold coverings of S3 which are branched over the knots of Kinoshita­

Terasaka (see Section 4.1), or over Conway's ll-crossing knot with

Alexander polynomial 1 (see Section 4.2), or over a special class of

closed 3-braids (see Section 4.3).

We now give a different application of Theorem 1. Let g> 1 be an

integer. Let L be a link in R3 ~ S3 - (one point) made up of a disjoint

union of circles, each being one of the following: (i) a circle of radius

< 1, center at (2n + 1,0,0) where 0::: n:S g, and lying in the x, Z

plane, or (ii) a circle of radius < 1, center at (2n, 0, 0) where 1::: n:S g,

and lying in the x, y plane, or (iii) a circle of radius ::: 2, center at

(2n, 2, 0) where 1 < n < g, and lying in a parallel plane P n to the y, Z

plane. We assume also that the annulus determinated by two concentric

components of L must be cut by some other component in exactly one

point. Let ~g be the family of links defined in this way, for a given g.

It was proved by Lickorish [13J that every closed, orientable 3-manifold

of genus g may be obtained by doing surgery on a link in the class ~g'

Let ~'g be the subfamily of ~g consisting of those links whose com­

ponents in Pn have radius 2. Note that a link in ~'g is strongly­

invertible.
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Since f'g = f g for g S 2, then according to Theorem 1, we obtain

another proof of the following result by Viro [25\ and 8irman and Hilden [2]:

COROLLARY 2. Every closed, orientable 3-manifold of genus < 2 IS a

2-fold cyclic branched covering of S3. 0

COROLLARY 3. Each 2-fold cyclic covering branched over S3 can be

obtained doing surgery on a link in f' , for some g > l.g -

Proof of Corollary 3. First, we recall the definition of a "plat on 2m

strings." If we represent S3 as R3
-1 <Xl, then the x, y plane separates

S3 in two balls 81 and 8 2 , 81 containing the positive part of axis z.

Let C be a collection of m circles in the x, z plane of radius 2 and

centers at points (1 + Si, 0, 0), where 0 S i:s. m-l. Let f be any

orientation-preserving autohomeomorphism of a81 which keeps the set

C n J81 fixed as a set. Since f is isotopic to the identity map in a8
1

,

there is an autohomeomorphism F': J81 x [0,1] -, a81 x [0,1] such that

F'(x,t) = (x',t), F'(x,l) = (x,l) and F'(x,O) = (fx,O). Then F' is extended

by the identity map outside a81 x [0,11 to an autohomeomorphism F of

81' The subset L = F(C n 81) u (C n 8 2 ), which is a link in S3, is

called a plat on 2m strings (for further details, see [2]). It is a known

result (see, for instance, [2J) that every link type is represented by at least

one plat. Note that F(C n (a81 x [0,1]» is a geometric braid on 2m strings

Thus a plat on 2m strings can be exhibited as a geometric braid on 2m

strings by joining the initial points in pairs, and also the terminal points

in pairs.

The proof of Corollary 3 may be illustrated by the following example

(the general case is left to the reader). Let us consider the plat on 8

strings of Figure 3a. It is possible to change L into the trivial knot by

removing ten solid balls 8 i (i = 1,"" 10) from S3 and sewing them back

differently (see Figures 3a, 3b, 4a). Note that the 2-fold covering of 8 i
branched over 8 i n L or 8 i n T are solid tori. It is clear that we can
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B"

Fig. 3a.

"II',. II>.
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obtain L by doing surgery on the link in f'3 of Figure 4b. In general,

if L is a plat on 2m strings then L can be obtained by doing surgery

I· k' f<)' 3on a In In cl. m-l . 0

As a consequence of Corollary 3 we have:

COROLLARY 4. Conjecture 1 is equivalent to the Conjecture that each

member of f' , g> 1, has property P.g -

To explore further the implications of Theorem 1, observe that if there

is a closed, orientable 3-manifold M which gives a negative answer to

Questions 2 or 3, it must be obtained by doing surgery on a link which is

not strongly invertible. This suggests that one study Questions 2 or 3

by studying the 3-manifolds obtained by doing surgery on a non-invertible

link.

Let L be a link in S3 and let suppose that there is an orientation­

preserving involution u in S3, with fixed points, which induces an in­

volution in each component of L. Let L' be the link consisting of those

components of L for which the number of fixed points of u is different

from two. Let p: S3 -> S3 the 2-fold cyclic branched covering of S3

defined by u.

THEOREM 2. Every manifold obtained by doing surgery on a link L IS

a 2-fold cyclic covering branched over a manifold obtained by doing

surgery on peL').

REMARK. Theorem 1 is a special case of Theorem 2.

3 ]. S. Birman has pointed out to me that it is interesting to note that the class
of :I-manifolds which are obtained by doing surgery on links in ,£ 'g are exactly

th(· class of .1-manifolds which an' "2-symmetric" in the notation of [2].
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Proof of Theorem 2. For the sake of brevity, suppose that L has only

one component and that either u is without fixed points in L or leaves

each point of L fixed. Let U(L) be a regular neighborhood of L, such

that u induces in U(L) an involution. Let u' = u!aU(L).

Let V be a solid torus (see Figure 5) whose core C is a circle in

the x, y plane with center 0 and radius one. Let z (resp. v) be the

involution of V induced by the symmetry with res pect to axis

02 (resp. C). There is a homeomorphism if; of aU(L) onto aV such

that zif; = if;u'. Let p = if;-lp and m = if;-lM be a pair of simple

oriented curves in aU(L) (see Figure 5).

We now paste V to S3 - U(L) in the way that M is homologous to

am -r {3p, where a and (3 are coprime integers. It is easy to see that

there is a homeomorphism rP of aV onto aU(L) such that rP(M) - am +

(3p and rP-1if;-lzif;rP, that is rP-1u'rP, is equal to z if a is odd, or

is equal to v if a is even.

Let W be the space obtained by pasting S3 - U(L) to V by rP.

The map ep is compatible with the involutions u and z (or v, as the

case may be). Thus, there is an involution UN of W, the orbit-space of

which is obtained by adjoining the orbit-space of u (that is S3 minus a

solid torus) with the orbit-space of z (or v, as the case may be), which

is a solid torus. 0

z

y

Fig. 5
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As an application of Theorem 2 consider the pretzel knot K(p, q, r)

(see [24]). If any of the numbers p, q, r is even, it is clear that K(p,q,r)

is a strongly-invertible link. Thus, one obtains a 2-fold cyclic covering

branched over S3 by doing surgery on K(p, q, r). If the numbers p, q, r

are all odd, then there is an involution u of S3 which induces in the

knot K(p, q, r) an involution without fixed points. (A typical case is

illustrated in Figure 6a). Thus, every manifold that is obtained by doing

surgery on K(p, q, r) is a 2-fold cyclic covering branched over a manifold

that is obtained by doing surgery on the trivial knot p(K(p, q, r», where

p is the covering defined by u (see Figure 6b). As the trivial knot is

strongly-invertible it follows that the manifold obtained by doing surgery

on K(p, q, r), (p, q, r odd), is a 2-fold cyclic covering of a 2-fold cyclic

y

L2.
{3:: b"IX :: X y X- I

/ I

Fig 7
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covering of S3. This confirms Question 3. Note that Trotter has shown

that K(p, q, r) is non-invertible if p, q, r are distinct odd integers, each

to greater than one. The author does not know whether the manifolds ob­

tained by doing surgery on these knots are also representable as 2-fold

cyclic branched covering of S3.

As a second application, consider the manifold obtained by doing

surgery on the "borromeans rings," B, illustrated in Figure 7. If we re­

move the solid tori U(L 1 ), U(L2 ), U(L3 ) from S3 and sew them back in

such a way that the curves hI' h2 , h3 are identified with meridians, then

we obtain Sl x Sl x Sl [121, which is not a 2-fold branched cyclic cover­

ing of S3 [61. This shows that B is not a strongly invertible link. But

the axial symmetry with respect to axis E (see Figure 7) induces in each

component of B an involution. Then, by Theorem 2, every manifold that

is obtained by doing surgery on B is a 2-fold cyclic branched covering

of a manifold that is obtained by doing surgery on the trivial knot and this

confirms Question 3. For instance, Sl x Sl x Sl is a 2-fold cyclic

branched covering of Sl x S2.

It is interesting to note that not only is B non-invertible, 4 but also

there is no orientation-preserving involution of S3 which induces an invo­

lution in each component of B and which keeps fixed exactly two points

of B.

4 To the author's knowledge, this fact has not been established elsewhere in
the literature. To prove it, let F 2 = Ix,y /-! be the group of the link formed by

the components L1' L2' The group F 2 is a free group on two ~enerators and the

element xyx-l y -1 is represented by the loop h
3

. If ¢ is an automorphism of

l ] A. -1 -1 -1 -1 f: -1
F

2
, then by 14, Theorem 3.9, p. 165, ,;,-,(xyx y ) = w(xyx y ) w ,where

w is a word in x, y which can be assumed to be reduced. Now, let us assume that
11 is an invertible link. Then there is an automorphism ¢ of F 2 that carries x
to a conjugate of its inverse, carries y to a conjugate of its inverse and carries

xyx -l y -1 to its inverse (compare (29]). The abelianizing homomorphism ,\ maps

F.) onto the abelian group ZGlZ, and ¢ induces an automorphism ¢' of Z$Z.

It ~is easy to see that E is equal to the determinant of the matrix of ¢' with re-
-1 -1 -1 -1 -1 B

'-;pI'd to ,\x, ,\y. Therefore, it follows that w(xyx Y )w = yxy x . ut
",duct ion on the length of w shows that this is impossible. Thus B is a non­
IIlv"r1ible link. The same argument implies that there is not an orientation­
pn""'rving involution of S3 which induces an involution in each component of B

;llId whi,-h k.... ps fix"'] ..xactly two points of B.
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At this point, it may be useful to remark there is a possibility of

existence of a knot N such that there is no orientation-preserving involu­

tion of S3 which induces an involution on N. One of these possible

knots seems to be 817 (see l41 and [19]).

§3. Generalized surgery on links

In this section we will define modifications of the projection of a link

L that generalize the modifications Wl' W2 introduced earlier and also

the ones defined in llOl. These modifications have the effect of exhibiting

L as a manifold which is obtained by doing generalized surgery on a link

in S3, that is, removing n disjoint solid tori from S3 and replacing

each torus with a special "graph-manifold" which is bounded by a torus.

The advantage of this is that if a link has property P, then it will be

shown that a counterexample to the Poincare Conjecture cannot be ob­

tained by doing generalized surgery on it (Theorem 4). This fact will

a llow us to es tablis h Conjecture 1 for a large set of knots (see Section 4).

Let R be a finite tree with a distinguished vertex v(R) (the origin

of R). The tree is to be valued as follows: each vertex of R is labeled

either with a hyphen, or with an arbitrary integer, in such a way that each

vertex labeled with a hyphen belong to exactly one edge, and the origin

v(R) is always labeled with an integer. Each edge of R is labeled with

a pair of coprime integers (a, (J) where 0 S (J Sa. We call R a va lued

tree.

We will describe a procedure for assigning to each valued tree R a

manifold W(R), such that aW(R) is a torus with a fixed oriented fiber,

and moreover such that W(R) is a 2-fold cyclic covering of a 3-ball B,

which is branched over a system of curves L(R) such that aL(R) is the

set la, b, c, dl of Figure 8. To do this, we need some definitions.

Let M(s, 'm) be a manifold obtained as follows. Let M be the

S1-bundle over S2 which admits a section, and let H be a fiber of M.

Suppose that S2 and H have a fixed orientation. We remove m + 2

fibered solid tori Vi from M, i ~ -1,0,1,"', m. Then, S2 cuts aVi
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Fig. 8.

in a meridian curve mi of Viand we give to mi the orientation induced

by S2 - int Vi' Let us take in aV i a fiber hi' with the orientation in­

herited from H. In order to obtain M(s, m) we now paste a solid torus

in such a way that its meridian curve is homologous to mi + shi , i = -1.
m

The boundary of M(s, m) is . U aVi' and mi' hi are fixed oriented
1 = 0

curves in aVi' M(s, m) is a 2-fold cyclic covering of B - int (B1U··.UBm)

branched over the curves L(s, m) of Figure 9 (for further details on the

construction, see [18, Section 2 and Section 3]).

Let B be the ball of Figure 8. We define an autohomeomorphism

of aB as the composition of a rotation, of angle 7T/2 a bout the axis E

which transforms a to d, and a symmetry with respect to the equatorial

plane (see Figure 8). We define an autohomeomorphism v of aB as

follows. Let D be a disc in aB which contains in its interior the

points c, d and is disjoint from a, b (see Figure 8). Then, viD is
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Fig. 9.

defined to be a "twist," holding 0 fixed, in the direction that is indi­

cated in Figure 8, in order to move c to d. Now v is extended by the

identity map outside D.

Now let a, (J be two coprime integers. If al{J is the continued

fraction
1 ... 1- 1

n + 'iTi+ +j +i

we define an autohomeomorphism g(a, (J) of aB as the composition

g(a, (J) = vn tv mt ... tv j tv i , where vO is the identity map. Let f(a, (J) =

g(a, (J) t. Extend the homeomorphisms t, v to B. Then, g(a, (J) and

f(a, (J) admit an extension to B, which we denote with the same symbols

g(a, (J), f(a, (J).

We are now ready to define W(R) and L(R) by induction on the num­

ber n of vertices of R which are labeled with an integer.



SURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF S3
247

Let v(R) be labeled with the integer s. Let us suppose also that

v(R) belongs to m edges t 1 ,"', t and that t· is labeled with (a. P..)
mIl 'f" 1 •

Let ui denote another vertex of t i and assume that u
i

' where 1:<; i:<; r.

is labeled with a hyphen and that U', where r + 1 < j < m is labeledJ - - ,

with an integer. Then, U·. r + 1 < j < m is the "beginning" of a valuedJ - - ,
tree Rj .

Let v(R j) = Uj' Note that the number of vertices of R. which are
.J

labeled with an integer is < n. W(R) is defined inductively, pasting the

r solid torus VI'"'' Vr and the m-r manifolds W(R j ), r + 1:<; j:<; m,

to M(s, m) in such a way that a meridian curve of Vi is homologous to

aimi -'- (3ihi' and the oriented fiber, fixed in aW(Rj), is homologous to

ajmj + (3jhj . Note that in aW(R) = aVo' the oriented fiber ho remains

fixed. Then L(R) is obtained replacing f(ai' (3i)(L(s, 0) n Bi), where

1:<; i ~ r, by L(s,O) n Bi and replacing g(aj' (3j) L(Rj ), where

r + 1 ~ j :<; m, by L(s,O) n B j (see Figure 9). As an illustration of Ihis

process see the example of Figure 10.

Let L be a link in S3 having m components N1,"', Nm. We will

say that a 3-manifold M is obtained by doing general surgery m I illics

on L if M is obtained by removing from S3 a regular neighborhood

U(N) of Ni , 1:s i:<; m, and replacing it with W(R), where R i is sume

valued tree, by pasting aW(R i) to a(S3 - U(Ni».
Let L be a link in S3 and let us suppose that there is a ball B in S3

such that a(B n L) is the set Ia, b, c, dl (see Figure 8) and B n L is a

system of curves g(a, (3) L(R), where R is an arbitrary valued tree and

a, {3 are an arbitrary pair of coprime integers. We will say that has made

a general modification on L, if we replace B n L for the pair of curves

C1 , C2 of Figure 8. Let m be the minimum number of general modifica­

tions which have to be applied to L in order to change L into the

trivial knot. It is clear that L has been obtained by doing general

surgery on a strongly-invertible link in S3 of m components.

The following theorem is proved in the same way as Theorem 1:
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(J,1) (.2,1)

0,1) V'(R) (-1,0) ""-4 '!J"CR-4)-1 II -1
t~ 2- 1;1 ""1

R (3,1) .R.~ (3,1)

Fig. lOa. Fig. lOb.

Fig. lOc. Fig. 10d.

THEOREM 3. Every manifold that is obtained by doing general surgery on

a strong ly-invertible link is a 2-fold cyclic branched covering of S3.

The following theorem indicates a useful application of general surgery.

THEOREM 4. If M is a simply-connected 3-manifold that is obtained by

doing general surgery on a link L with property P, then M ~ S3.
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In order to prove Theorem 4 we first need the following Lemma:

LEMMA 1. Every homotopy 3-ball that lies in a graph-manifold is a 3-ball.

We defer the proof of this lemma until Section 5.

Proof of Theorem 4. We are going to demonstrate the theorem by induction

on the number n of graph-manifolds distinct from a solid torus which are

introduced by surgery. If n = 0, there is nothing to prove, thus let n> O.

Let L I be a component of L such that a regular neighborhood, U(LI)'

of L I has been replaced by a graph-manifold W(R) which is not a solid

torus. If 1T(M) = 1, then aU(LI) bounds in M a homotopy solid torus

([1] and [8; Lemma 5.1]). If W(R) were a homotopy solid torus, it would

be a solid torus (by Lemma 1), hence M- int W(R) is a homotopy solid

torus. Then, 1T(M-int W(R)) is an infinite cyclic group with one generator

which is represented by a simple curve C in a(M-int W(R)). We paste a

solid torus to M- int W(R) in such a way that C is a meridian curve of

it. Thus we have built a manifold M', with 1T(M') = 1, which is obtained

from S3 by doing surgery on the link L, and replacing n-l components

of L by n-1 graph-manifolds which are not solid tori. By the induction

hypothesis, M' = S3 and thus M- int W(R) is a solid torus. Therefore,

M is a graph-manifold. Making use of the result of Lemma 1 we conclude

that Theorem 4 is true. 0

With the purpose of justifying the definitions of general modifications

and general surgery, we make the following remarks. Let K be a non­

trivial knot in S3. If we wish to check Conjecture 1 for K, we can, for

instance, apply m modifications of type W2 in order to change K into the

trivial knot. Then, K is a manifold that is obtained by doing surgery on

a strongly invertible link in S3 of m components. By doing this in all

possible ways, we obtain a family f(K) of links in S3 such that K
can be exhibited as a manifold obtained by doing surgery on an arbitrary

member of f(K). Let m(K) be the minimal number of modifications of
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type W2 which we have to apply to K in order to change K into the

trivial knot. We define f' (K), m'(K), in the same way as f(K) and

m(K), but replacing modifications of type W
2

for general modifications.

Thus K can be exhibited as a manifold obtained doing general surgery

on an arbitrary member of f' (K).

As a consequence of Theorem 4, if a member of f' (K) has property P,

then 1T(K) ~ 1. On the one hand m'(K)::: m(K) and this makes it easier

to check Conjecture 1 for K in many cases, especially when m'(K) = 1,

because property P has been intensively studied for knots. On the other

hand, f(K) C f'(K) and this increases our possibilities of finding a link

with property P such that K is obtained by doing general surgery on it.

It could happen that m'(K) = 1, for every non-trivial knot K. If this

was so, then every 2-fold cyclic covering branched over a knot of S3,

would be obtained by doing general surgery on a strongly-invertible knot

of S3. Then, Conjecture 1 would be equivalent to the conjecture that

every strongly-invertible knot has property P.

§4. Applications

If one seeks a counterexample to the Poincare Conjecture among the

2-fold branched coverings of S3, it is natural to examine covering spaces

which are branched over knots which share deep properties with the

trivial knot. One such property is that the trivial knot has Alexander poly­

nomial ~(t) = 1. Note that if a knot N has Alexander polynomial ~(t)= 1

then N is a homology 3-sphere.

1. Kinoshita-Terasaka knots

Let us consider the knots of Kinoshita-Terasaka [11, p. 149] k(p,2n)

(k(3, 6) is illustrated in Figure lla or lIb). All of them have Alexander

polynomial ~(t) '0 1. Note that k(3,6) can be obtained from the link of

Figure lIe by substituting Hi for C i (i= 1, 2, 3). Thus [18J k(3,6) is

the graph-manifold that is represented (in Waldhausen's notation) by the

graph of Figure 12, where p = 3, n = 2. In general, for k(p,2n), k(p,2n)
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Fig. lla. Fig. lib.

Fig. llc.

{fJ1} (~n)1) (1',1)

(0,0,-1 )
(-1, c) ( -1.1") ~

(0,0,0)
(0,0,-1)

(f1! ,f)
(ft-1 )1')

Fir;. 12.
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is the graph-manifold represented by the graph of Figure 12. Thus, by

Lemma 1, k(p,2n) cannot give a counterexample to the Poincare Conjec­

ture.

2. Conway's ll-crossing knot

Let L be the knot, with Alexander polynomial ~(t) = 1, of Figure

Ba, which was discovered by J. Conway in his enumeration of the non­

alternating ll-crossing knots [3J (see also [20, p. 615]).

The trivial knot T can be obtained by doing one general modification

in L (see Figure Ba, b). The 2-fold cyclic covering B (resp C) of the

ball B (resp. C) branched over B n L (resp. C n L) is a solid torus.
- - - 3

Then, L can be obtained by removing C from T = S and sewing it

back differently. The position of the ball C with respect to the trivial

knot T is shown in Figure 14a. Then, C is a regular neighborhood of

the square knot (Figure 14b). Thus, L can be obtained by doing surgery

on the square knot, hence 1T(L) -f- 1, because a composite knot has

property P ([11, [8]).

Fig. 13a. Fig. 13b.

Fi~. 14H. Fig. 1'111.
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Fig. 1Sa. Fig. 1Sb. Fig. 1Sc.

3. The 3-braid knots (02011)(0102)6m, m ~ 1

In [2] is is proved by Birman and Hilden that if Conjecture 1 is true

for the knots (°2°11) (01 02 )6m, m 2' 1 then Conjecture 1 is true for every

3-braid knot. We prove now that Conjecture 1 is true for the knots

(°2°1
1

) (01 02)6m, m 2' 1. For the sake of brevity, let L be the knot

(°2°11)(°1°2)12 of Figure ISa, b. The trivial knot T can be obtained

by doing one general modification in L (see Figure ISb, c). The 2-fold
- -

cyclic covering B (resp. C) of, the ball B (resp. C) branched over

B n L (resp. C n L) is a solid torus. The position of the ball C with

respect to the trivial knot T is shown in Figure 16a. Then, C is a
-

regular neighborhood of the twist knot T 3 (Figure 16b). Hence L can

be obtained by doing surgery on the twist knot T3' hence 1T(L) /0 1

because a twist knot has property P ([1], (8]).

A similar argument applies to the case where m is arbitrary. In

general, the 2-fold cyclic covering branched over the 3-braid knot

(0201 1)(01 02)6m can be obtained by surgery on the twist knot T 2m-I'



254 JOSE M. MONTESINOS

Fig. 16a.

Fig. 16b.

f ~I

Fig. 17a. Fig. 17b. Fig. 17c.
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4. Generalized doubled knots

Let L be the knot of Figure 17a. L is a strongly-invertible knot

because the symmetry u with respect to the axis E leaves L invariant.

Let p: S3 .... S3 be the 2-fold cyclic branched covering induced by u.

Then, peL) is the path C of Figure 17b. As a composite knot has

property P ([11, (81) then Conjecture 1 is true for the family of links of

Figure 17c, where R is an arbitrary valued tree and where a,{3 are an

arbitrary pair of coprime integers. As the same argument can be applied

to an arbitrary strongly-invertible composite knot, we obtain in particular,

that Conjecture 1 is true for every doubled knot (a fact proved by alge­

braic methods by Giffen [7]).

The same method can be applied to an arbitrary strongly-invertible

link with property P (examples of these can be found in [1 J, [8] and [231).

5. The idea illustrated in the following example may be useful. Let N

be the knot of Figure 18 and let us consider a plane P with cuts N in

the set la, b, c, dl. Thus P divides S3 into two balls A, B. The 2-fold

cyclic covering A (resp. B) of A (resp. B), branched over AnN

(resp. B n N) is the complement of a regular neighborhood of a non-trivial

knot in S3 (see Section 4.4.). Then, N can be obtained by pasting aft.
to aBo According to [1] and [8; Lemma 5.11 /T(N) 1= 1.

f

Fig. 18.
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§S. Demonstration of Lemma 1 *

Recall that the only simply connected Seifert manifold is S3 [22].

On the one hand, every graph-manifold with boundary is a submanifold

of a graph-manifold without boundary. On the other hand, every graph­

manifold without boundary is [26, Satz 6.3J a connected sum of lens­

spaces and reduced graph-manifolds ("Reduzierte Graphenmannigfaltig­

keiten," see [26, 6.2]). Then, according to [9] and [26, Satz 7.1J, Lemma 1

will be proved if we can show that a simply-connected, reduced, closed

graph-manifold is S3.

A reduced graph-manifold is either defined by a graph A(M) (see

[26; 9]), or is a torus-bundle over SI, or is a Seifert manifold over S2

with tl1ree exceptional fibers. Thus, according to [9], it is sufficient to

prove Lemma 1 for closed, reduced graph-manifolds M defined by a graph

A(M). All of them [18; 7.5] are 2-fold cyclic coverings branched over a

3-sphere with g handles. If the graph A(M) is not a tree, or if any of

the vertices of A(M) are valued with a triple (gj,O,Sj)' gj > 0, then

g> 0, hence HI (M) f- 0. If the graph It(M) is a tree with its vertices

valued with triples (gi,O,Sj)' gj:S 0, then M is a 2-fold cyclic cover­

ing branched over a link L of S3 [18; 7.3]. This link L has more than

one component if gj < ° for any j [18; §3]. In this case, we have

HI (M) f- 0. Then, let M be represented by a tree A(M) whose vertices

are valued with triples (0,0, Sj)' For [26, 9.2.3., 9.2.4.a), b) and c)] the

vertices of A(M) either are of order ~ 3, or are valued with a hyphen

but there is always a vertex of order ~ 3. We are going to prove Lemma 1,

for those manifolds, by induction on the number m of vertices of order

2: 3. If m = 1, M is a Seifert manifold and there is nothing to prove.

Assume that m> 1. Then, there is a torus in M that splits M into two

reduced graph-manifolds, Ml' M2, corresponding to the graphs A(M I ),

A(M2) respectively. In order to build A(M I ), A(M2) it is sufficient to

* In this section we will follow the notation of Waldhausen in [261.
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remove from A(M) an edge which joins two vertices of order ?: 3 and to

value these vertices again with (0,1, -). Then, A(Mi), i = 1,2, has at

least one vertex of order 2: 2, valued with (0,1, -).

According to [1], [8; Lemma 5.11, if IT(M) = 1, then either M1 or M2

is a homotopy solid torus. We may assume that M1 is a homotopy solid

torus. Then, M1 may be considered as a submanifold of either a Seifert

manifold with three exceptional fibers, or a graph-manifold that is repre­

sented by a graph with n < m vertices of order 2: 3. Thus, by the induc­

tion hypothesis and according to [9; 2.2]' M1 is a solid torus. But then,

[26; Satz, 9.4] A(M 1) is a graph which has exactly one vertex of order

zero, valued with (0,1, -). This is a contradiction, hence IT(M) /0 1. 0

Therefore, a simply connected graph-manifold is S3.
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PLANAR REGULAR COVERINGS OF
ORIENTABLE CLOSED SURFACES

C. D. Papakyriakopoulos

§1. Introduction

In 1963 this author reduced the Poincareconjecture to two other con­

jectures ([7], p. 251). The first of those conjectures is a special case of

the group theoretic Conjecture 1 of ([8], p. 205). A special case of Con­

jecture 1 was proved by Karrass, Magnus and Solitar ([4], p. 57). Elvira

Rapaport proved Conjecture 1 in full generality ([9], p. 506). In a recent

paper Eldon Dyer and Vasquez ([1], pp. 348-349) proved the algebraic

topological and stronger Conjecture l' of ([8], p. 205).

However, Maskit ([6], p. 342, ff. 2-7) gave a new proof and a simpler

statement of our key theorem ([7], p. 290), so that only the second of the

two conjectures ([7], p. 251) is needed for the reduction of the Poincare

conjecture. That second conjecture leads us to the following problem.

PROBLEM. Let N be an orientable closed surface of genus at least two.

Let g be an element of the fundamental group F of N, and let N be

the regular covering of N corresponding to the normal closure G of g

In F. Is N planar?

The Planarity theorem of Maskit ([6], p. 351) is a theorem of structure,

and describes a way of obtaining any planar regular covering of any com­

pact surface closed or not. However, that theorem does not seem to be

directly applicable to our problem. So we will try to find another way of

solving our problem. We observe that N is planar if and only if the inter­

section number of any two loops on N is zero, see No. 11 of this paper.

We also observC' tlt:l! N :lnd the loops on it depend on g. Thus, we need

)()]
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a formula which will give us the intersection number of any two loops on

N by means of g. The equation with right hand side zero and left hand

side the right hand side of the formula will give the solution of our

problem.

We find such a formula, and actually in the case where G is the nor­

mal closure in F of a finite or infinite sequence gt' g2"" of elements

of F, see Theorems 10.13 and 11.1 of this paper. Thus, the problem

posed above is solved in theory. However, the result provided by the

solution is not sufficient to solve the second conjecture of ([71, p. 251),

see Section 5 at the end of this paper.

The main theorems of this paper are Theorems 10.13 and 11.1. The

first of those theorems provides us with the intersection and expansion

formulas, and the second provides us with a more explicit expansion

formula and the necessary and sufficient conditions that N be planar.

The core of those formulas is the operator A, which is defined by means

of Fox-derivatives ([31, p. 550). The definition of A and the way we

obtain the formulas are involved, and in the seque I of this Introd uction we

will try to explain things briefly.

In Section 2, which is preparatory, we first define the notion of conju­

gation in No. 1. The conjugate of a group ring element is obtained by

replacing every element of the group by its inverse. In No.2 we define

the notion of inner product in a group ring, the natural way. In No.3 anti­

derivations are defined. The conjugate of an anti-derivation is a deriva­

tion. In No.4 biderivations are introduced. A biderivation is a map on

two variables, it is a derivation with respect to the left variable and anti­

derivation with respect to the right variable. In No.5 biderivations in a

free group ring are examined and proved to be of a special form, see

Theorem 5.3. In No.6 some propositions concerning biderivations are

proved, Theorem 6.3 will be needed in Section 4.

In Section 3 we study intersection theory on N, and we obtain the

intersection formula (8.5). This is an indispensable formula for Section 4,

which expresses the intersection number of two I-chains on N as a sum
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of inner products of their coefficients. Section 3 was inspin-d hy Reidc­

meister's paper [101. However, we emphasizc that Iw nl'ithl'1' obtuins a

formula nor does he introduce the inner product. Thl' not ion of inner

product, though so simple and natural, is of dccisive importance in obtain­

ing the formulas needed to solve our problem.

The following Section 4 is the main part of our papcl'. In No.9 we

introduce the operator t\, and in No. 10 after elaborate work we obtain

the intersection formula (10.11) and the expansion formula (10.12). Those

formulas are expressed with the help of the operator t\ and the inner

product. We then obtain the first main Theorem 10.13, the proof of which

is based on formulas (10.11) and (10.12). Finally in No. 11, we obtain

the second main Theorem 11.1, which provides a more explicit expansion

formula, and the necessary and sufficient conditions that N be planar.

Thus, the second main theorem provides us with a solution of our problem.

The proof of the second main theorem is based on the first one and

Theorem 6.3 of Section 2.

We finish our paper with Section 5, where we formulate a conjecture.

The solution of that conjecture will provide us with a proof of the

Poincare conjecture.

The paper is dedicated to the memory of Ralph Fox. A small sign of

the gratitude the author feels to Ralph, for helping him to come to Prince­

ton and stay here.

§2. Operations in Group Rings

1. Conjugation.

Let r be a finite or infinite denumerable group with elements gi'

I' 1,2, .. ·. We denote by z[I'] the integral group ring of r. Thus any

element r of zll' I is of the form

~' 1ll·1'·
.... 1'1'

.~ 1,2""

when- only a linil., nllllll ... 1 "I III, ,Ill' dirr,'r('nf from zero. Wc wrilC'
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and we call it the conjugate of r. We also denote (~-:-"> by ( ... r, i.e.,

(... r = (-:-:-:-"). The following hold.

(1.1) m - m, for any element m of Z .

(1.2) r = r, for any element r of z[I'].

(1.3) r -+ s = r -+ 5, for any two elements r, s of Z[ 1'1 .

(1.4) rs = sr.

For any finite number of elements r· j = 1 '" n of zLI '] we have
J ' "

(1.5) (~ rj) ~ rj' (~ rj) IIrk
J J k

where k = n,"', 1.

Let ..p: [' -> I" be a homomorphism of the group r into another

finite or infinite denumerable group I ". This induces a ring-homomorphism

..p: z[['1 -> z[l"1. (N.B. for the sake of simplicity, instead of denoting

the ring-homomorphism by ..p, say, we denote it simply by ..p, see ([3],

p. 548).) The following holds .

(1.6) ..p(r) = r/J(r), for any element r of z[I'] .

We define rO to be the sum of the coefficients of r, where r is

given at the starting of this No.1, i.e.,

see ([3], p. 549, ff. 18-20). A final remark is that the conjugation was

introduced by Reidemeister ([111, p. 23, e.8).

2. Inner product

Let gi and gj be two elements of I', we define the inner product

of them by
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(2.1)

i,j = 1,2,,,, .s

oij being the Kronecker index. Let now rand s be two elements of

z[11,

We then define the inner product of them by

r ° s = ~ m.n.(g.og.) = ~
"- IJ 1 J "­
i, j

This is an element of Z, i.e., integer. We observe that the operation °

is a map 0: Z[ n x Z[ n .... Z, and that, generally, it does not behave

naturally under a homomorphism of f'. However, the following hold,

where r, sand t are elements of Z[ r].

(2.2) The inner product is bilinear, i.e.,

(r+t)os = ros+tos

r ° (s + t) = r ° s + rot

(2.3) The inner product is symmetric, i.e.,

(2.4)

(2.5) mr ° ns = mn(ros), m, n (Z

(2.6) rt ° s = r ° s t, tr ° s = rots

(N.B. prove it first for t (r, and then pass to the general case.)

3. Anti-derivations.

Fox ([3], p. 549) introduced the notion of derivation in Z[ n. This

is a map D: Z[ n .... Z[ n with the following two properties, where r, t

are elements of z[11.
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(3.1)

(3.2)

C. D. PAPAKYRIAKOPOULOS

D(r+ t) = Dr + Dt (linearity)

D(rt) = (Dr)tO + r(Dt) .

We now introduce the notion of anti-derivation in Z[ n. This is a

map D': zf11 --> z[l'] with the following two properties, where r, tare

elements of Z[ I '1.

(3.3)

(3.4)

D'(r-J t) = D'r t- D't (linearity)

D'(rt) = (D'r)tO -J (D't)r .

It is easily seen that D' is an anti-derivation if and only if 0' is a

derivation, where O'er) = iYr. Therefore anti-derivations have properties

similar to those of derivations.

4. Biderivations

A biderivation in zf ['] is a map 8: Z[ 1] x Z[ n --> Z[ 1] with the

following two properties, where r, s, t are elements of z[I'].

(4.1)

(4.2)

8(r+t,s) = 8(r,s)f-8(t,s)

8(r, s + t) = 8(r, s) -J 8(r, t) (bilinearity)

8(rt, s) = 8(r, s)tO + r8(t, s)

8(r,st) = 8(r,s)tO t- 8(r,t)s

Thus, 8 is a derivation with respect to the left variable, and anti­

derivation with respect to the right variable. Hence the following proper­

ties hold.

(4.3)

(4.4)

8(m, t) = 8(t, m) = 0, m (z .

8 (~m.r. ~ n.s.) = ~ m·n· 8(r.,s·)k 11' k J J k 1 J 1 J
i j i,j

(4.5) 8cI, t) = - J8(f, t),

8(t, f) = - 8(t, f)f,

feI'

t(zU']
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(4.6) e(r, g) = reef, g) g, f, g ( )'

(4.7) A linear combination over Z of biderivations in Z[ f'] is a bi­

derivation in Zr I '].

5. Biderivations in a free group ring

Let now X be a free group on free generators xl'"'' xn ' (n < (0).

The following is a biderivation in zrxl,

(5.1)

e(r s) = ~ ~ 0 .. dS
, k ax· 1J dx.

i,j 1 J

r,s,OijfZ[Xl, i,j.=l,"·,n

where a is the Fox-derivative ([3], p. 550), andax·1
d (a)-
aXj ~ dij .

The operator, obtained from the right hand side of the equality (5.1) by

deleting rand s, is a biderivative with matrix IIOijll, where

(5.2) i, j - 1,· .. , n .

The general biderivative in a free group ring is provided by (5.1) accord­

ing to the following theorem.

THEOREM 5.3. If e is a biderivation in the free group ring zlx], then

e is defined by (5.1) and (5.2).

Proof. Let us consider the follow ing biderivative

where i, j = 1,. .. , n. As usual, by the length e(u) of an element u of X

we mean the number of letters in the reduced word representing u. The

following hold
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*® (xi' Xj) = ®(xi ' Xj)

* *® (x·,x.) = - ® (x. X.)X.
1 J l' J J

- ®(X. X.)X. = ®(X. 5{.)
l' J J l' J

* - *® (X. X.) = - X·® (X, X.)
l' J 1 l' J

- x· ®(X. X.) = ®tX. X.)
1 l' J V'I' J

by (4.5)

by (4.5)

by (4.6)

From the above and (4.3), it follows that feu) + f(v) £ 2 implies ®(u, v)

*= ® (u, v), where u and v are elements of X. We now proceed by

induction.

(5.4) (Inductive hypothesis). Suppose that feu) + f(v) < m (> 2) implies

*®(u, v) = ® (u, v), for any two elements u, v of X.

Let us now suppose that u', v' are two elements of X, such that

feu') + f(v') = m. If either P.(u') or f(v') = 0 then, by (4.3),

®*(u', v') = 0 = ®(u', v') .

Thus, from now on we can suppose that both feu') and f(v') are ;;; 1.

We have to consider two cases, P.(u') > 1 and = 1.

Let us first suppose that P.(u') > 1. Then u'= uw, where u,w,uw

are reduced words, such that

P.(u') = f(u) + few),

The following hold

feu) and f(w);;; 1

®(u', v') = ®(u, v') + u ®(w, v')

IG\* , t.:;\ * ')= ~ (u, v ) + U (1 (w, v

= ®*cu', v')

by (4.2)

by (5.4)

by (4.2) .

Let us now suppose that P.(u') = 1. Then rev') > 1. Thus v' = vw,

where v, w, vw are reduced words, such that
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C(v') = C(v) + C(w),

The following hold

C(v) and C(w) ~ 1

8(u', v') 8(u', v) + 8(u', w)v

8\u', v) + 8*(u', w)v

= 8\u', v')

Hence, for any two elements u, v of X, we have

by (4.2)

by (5.4)

by (4.2)

(5.5) *8(u, v) = 8 (u, v) .

Let now r, s be two elements of Z[X]. Then we have the following,

where mi' nj are elements of Z and ui' Vj are elements of X,

By (4.4) and (5.5), the following hold

8(r,s) = l mi nj 8(ui,Vj)
i,j

*m·n·8 (u· v·)
1 J l' J

i,j

*8 (r, s)

This completes the proof of our theorem.

6. Special properties of biderivations

Let X be a free group on free generators xl ,"', x n ' (n < 00), and let

P = IIus be a finite product where u is an element of X and E ~ ± 1.

Then the following "chain rule" holds

(6.1)
u

ap au
dU £'

1

i= 1,"',n
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where u ranges over all the different to one another u's appearing in

the product P. Here some explanation is needed: We consider the differ­

ent to one another u's as representing free generators of a free group and

we apply Fox-derivatives. Formula (6.1) follows from ([3], p. 549, (1.5)

and (1.6)) and reductions.

LEMMA 6.2. Let S be a biderivative in the free group ring Z[xJ, and

let

be two products, where u and v are elements of X. Then the following

holds

S(P, Q) = l ~~ S(u, v) ~;
u,v

where the sum ranges over all the different to one another u's and v's

appearing in P and Q respectively.

Proof. By Theorem (5.3), and (5.2), we have

= ~ (~ dP au ) S(x.,x.) (~ ~ aV)k k au (ji": 1 J k av (ji":
i, j u 1 v J

= ~. (~ dP au) S(x.,x.) ~ av dQ
k k au (ji": 1 J k (ji": dV
i,j u 1 v J

_~ ap (~ au sex. x.) dV) dQ
- k dU ~ dXi l' J dXj dV

u,V 1,)

= l ~~ S(u, v) ~ .
u,V

This completes the proof of our lemma.

by (6.1)

by (1.4)

by (5.1)
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THEOREM 6.3. Let ~f: X .... [' be a homomorphism of a free group X on

free generators xl"'" X n ' (n < oc), in a denumerable group 1'. Let

II
o.

1-P = u·w· u·
1 1 1 '

be two products, i = 1,"" p and j = 1,"" q, where ui ' Vj are elements

of X, and wi' Zj are elements of ker..p. Then the following holds

..p8(p, Q) ~ 0 ·10· ~f(U' 8(w. z·)v.)k 1 J 1 l' J J
i, j

where 8 is a biderivative in ZrX].

Proof. By Lemma 6.2 the following holds

8(P,Q) = l ~~ 8(u,v) 1!!
u,v

where u (or v) runs over all the different to one another elements of X

appearing in the finite sequence ui' wi (or Vj' z/ By (1.6), we have

..p8(P, Q) = l ~ (~~) ..p8(u, v) ~f(~)
U,V

where ~f: zlxJ -> zl n is the ring-homomorphism induced by the group

homomorphism ~.

We now observe that the set, which u (or v) ranges over, consists

of all w·'s (or z·'s) which are different to one another, and all ui's
1 J

(or v/s) which are different to one another and do not appear as wi's

(or Zj's). If u (or v) is one of the wi's (or Zj's) say wk (or ze)'

then the following holds
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where 1 S,\ S p (or 1 S /l S q) and such that w,\ = wk (or z/l = ze). If

u is none of the wi's (or z/s), then the following holds

From the above we obtain the following, where the sum ranges over

all pairs k, e such that, wk (or ze) ranges over all different to one

another wi's (or Zj's),

~ o.E.·"(u·8(w· z·)v·)k 1 J V' 1 l' J J
i, j

where i = 1,.··, p and j = 1,.··, q. This completes the proof of our

theorem. Q.E.D.

Let now P be a product as of Theorem 6.3. We define the following

elementary transformations of P.
0·

(i) Deletion of a factor uiwi lUi' where wi ~ 1.

(ii) Insertion of a factor uwu, such that u (X, w = 1.

(1'1'1') D I' f f °i_ d °h_ h th te ehon 0 two actors uiw i ui an uhwh uh' s uc a

if- h, ui = uh' wi = wh' and 0i + 0h = O.

(iv) Insertion of two factors uwu and uwu, such that u ( X,

w ( ker t/J. (N .B. the inserted factors need not be neighboring

in the final product.)

A product which is obtained from P by a finite number of the above

elementary transformations is called homologous to P. Under the hypoth­

eses of Theorem 6.3 the following holds.

THEOREM 6.4. If P" and Q" are products homologous to P and Q

respectively, then
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If P' and Q' are products similar to P and Q respectively, then

ljJ 8(PP', Q) = ljJ 8(P, Q) t- ljJ 8(P', Q)

ljJ 8(P, QQ') = ljJ 8(P, Q) + ljJ 8(p, Q')

Finally, we have

ljJ8(P,Q) 00 -ljJ8(P,Q), ljJ8(P,Q) = -ljJ8(P,Q)

273

The proof of the theorem follows from Theorem 6.3 and No.4. We now

observe that P and P" (or Q and Q") represent the same element of

HI (ker ljJ, Z) -= ker ljJ /[ker ljJ, ker ljJ] .

This justifies the term homologous. We finally observe that, the operator

ljJ 8 behaves like an intersection theory operator.

§3. Intersection Theory

7. Topological considerations

Let N be an orientable closed surface of genus p:::: 2. We denote

by a l 'f3 I .... ,ap,f3p a fundamental system of N based at a point 0,

and let a r, f3r, .. ·,a;, f3; be the dual to it based at a point 0*. The

first system defines a fundamental polygon of N shown in (Figure 1),

·0

aj
o

{3i

,
" {3 It

" i~*', *-_ aj" {3p
-- ...... " 0* --.* ............ ::::. -- -- -- ---{31 -- --- ~~ .
~--,I' ••••---- / ........

a ·* ./ ............
1./ a* ......../ f ......./' ....

./
./

/

o

o

Fig. t
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the picture indicates also the orientation of N we are g.oing to consider.

In (Figure 2) is shown how the a, (3's are arranged around o.

Let us write F-1T1(N,0), let G beanormalsubgroupof F, and

H -~ F /G. We denote by N the universal covering surface of N, and by

N the regular covering surface of N corresponding to G. The surfaces

Nand N have orientations induced by that of N. Thus we have the

following diagram

q

where q, q, q are the projections, and the corresponding covering transla­

tions are G, H, F respectively.

We select a point ;; on N lying over 0, and we denote by
- - -* -* - * * .
fli,(1i,ai,(3i paths on N lying over ai,(3i,ai,(3i respectIvely as

shown in (Figure 3), where ai' b i are the elements of F defined by the

*loops ai,(3i respectively, i ~ 1,···,p. We also lift the path 00 (see
-- * -(Figure 2)) and we obtain the path 00 , on N, see (Figure 3). By means

~ ~ ~ ~ * ~ * ~ ~* ~

of the projection q, we obtain o,ai,(3i,ai,(3i'oo on N.

For the sake of convenience we denote by P1,P2,···,P2p-1,P2p (or
* * * * * * "* ~*)

(J
1
,P2"",P2p_1,P2p) the loops a1,(31, .. ·,ap ,(3p (or a1,(31,· .. ,ap'~Jp

respectively, The following hold concerning intersection numbers.

(7.1)
~ ~ * S>Is(p. p. ) = u ..

l' 1 IJ

1,1=1,· .. ,2p, where 8 .. is the Kronecker symbol.
IJ

X. The intersection formula

Let X: F .~ H be the natural epimorphism, and let us denote the

I if~ht cosets of F mod G by Gf
OK

' where fOK are the representatives,

I, 1,2,... (the sequence is finite or infinite, and f01 = 1). We write

\ (CfOK ) h
K

,
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* *Let y, 0 be paths on N based at 0, 0 and composed of loops

Pi'P~ and their inverses respectively, i = 1,.··,2p. Let y,l>* be the
- - -* *paths on N based at 0, fo and lying over y, 0 respectively, where

~ - ~* -* ~
f ( F. We write y = q(y) and 0 = q(o ). These are paths on N based

~ ~* - -* ~ ~*
at 0, ho respectively, where h = X(f). Let c, d and c, d be the

- -* ~ ~*I-chains corresponding to the paths y, 0 and y, 0 respectively. The

following hold

(8.1)

where i = 1,···,2p and ri,si or x(ri)'X(s) are elements of the integral

group ring Z[FJ or z[Hl respectively. We observe that ri' si can be

written as follows

(8.2)

where gil ( G, miAIl and niAll (Z, and the indices A, Il have a finite

range. Thus, we have

(8.3)

By (8.1) and the above formulas the following hold

d* = ~(t niAhA) P~

~ ~*
k niAhAPi
i,A
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Concerning intersection numbers the following hold

i,j,A,v
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where i, j ~c 1,.··, 2p, v has the range of A, and the range of A is de­

fined by (8.2). We now observe that

in case i = j, A ~ v or any other case respectively, see (7.1). Hence,

we have

(8.4)

where i = 1,.··, 2p, and the range of A is defined by (8.2).

We now consider the following sums of inner products, making use of

(8.3), where i, j ~ 1,,'" 2p, /l has the range of A, and the range of A

is defined by (8.2).

= l miAniA .
i,A

The right hand side of the above equalities hold by (2.2), (2.5), and (2.1).

lienee, by (8.4), we obtain the following intersection formula
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(8.5)
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~ ~*

Is(c,d ) = L x(r) 0 X(si)' i = 1,.··,2p

where ri,si are defined by (8.1).

§4. The Main Formulas and Planar Coverings

9. The basic biderivatives

We now are going to introduce some biderivatives, which are indispen­

sable in obtaining the main formulas.

Let lP = (aI,bI,···,ap,bp)' p ~ 2, be a free group of rank 2p, and

let Z[lP! be the integral group ring of lP. we write

(9.1)

where i= 1,. .. ,p and r,s (z[lP1. The operator 1\1 is a biderivative in

Z[lP J. see No.5. We also write

(9.2) 1\2(r, s) = ~ (~ d/) djs

J 1

where i = j -\- 1,"" p, j = 1,"" p-l, and the operator d k is defined as

follows

(9.3)

The operator 1\2 is a biderivative in Z[lP J, as it can be proved eas ily.

Finally, we write

(9.4)

The operator J\ is a biderivative in Z[lP], by (4.7), and it appears in

the main formula.
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For any two elements r, s of the integral group ring Z[<fl] the follow­

ing formula holds

(9.5) ~ (d.r) d·sk 1 1
i=I,.··,p.

This is proved by computing the two sides of the formula and comparing

them. The computation makes use of (9.1), (9.3), (1.2) and (1.5), and is

straightforward.

The matrix of each one of the A's is of the form

II
(aa)

(ba)
(ab) II
(bb)

where (aa), (ab), (ba), (bb) are "submatrices" p x p. The matrix of

\1 has all its other entries zero, except those on the main diagonals of

the "submatrices." Each one of the "submatrices" of A2 has all its

entries on and above the main diagonal zero. Hence, each of the "sub­

matrices" of /\ has all its entries above the main diagonal zero, i.e.,

each of the "submatrices" of A is of triangular form.

10. The general case

In the present No. 10 we keep the notation and conventions introduced

in Nos. 7, 8 and 9. We thus have

<fl -~ .... F X .... H

where wand X are epimorphisms, and

F = (aI' b1 ,"', a p ' bp : II la i , bi]) ,

i

We also have the following sequence

z[<fll ~-, z[Fl L z[Hl

("(Hlcerning the integral group rings.

,- 1"", p ~ 2 .
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l<ri.~
0......

I~
0......

ltj
10

0
l<it~

......
0......
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l~
~:::::::::------J:""'-"---I..c......
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Let now y, y' be two loops on N based at 0, and composed of

loops ai,f3 i and their inverses, i = 1,···,p. Let y,y' be the paths on

N based at ;; and lying over y,y', and let c,c' be the 1-chains corre­

sponding to y, y' respectively. Let finally w, w' be the words in

ai' bi's corresponding to the loops y, y' respectively. Bya formula due

Lo Fox ([2], p. 521) we have

(l0.1) c' ::: ~ [w(u'.)u. + w(v'.)f3-.Jk 1 1 1 1

u·1
aw
aa. '

1

v·1
aw';r;: ,

1

v'·
1

Jw'
abo .

1

To be able to apply formula (8.5), we have to deform y on N to a

* * * *loop y based at 0 and composed of loops ai' f3 i and their inverses,

i = 1,"·,p. This is done by deforming y on N. We observe that y is
-E -E

composed of paths fai,ff3i' where ffF and E=±l, i=l,"·,p.
F - *If fai' appears in y, we then replace it by the path fX i E, see (Figure

- E _ - *f-'
4). If f f3 i appears in y, we then replace it by the path fy i " see

-* - * --*(Figure 5). We thus obtain a new path y on N, such that y = q(y )

* * f3* d h . .is a loop based at 0 , composed of loops ai' i an t elf lfiverses,

i = 1,"',p, and y* is homotopic to y on N. The 1-chains correspond-

-* -* -*-*ing to fX· fY· are fA·, fB· respectively, where
1 'l 1 1

(10.2)

+ (l-ai) ll(l-a)cij + (l-bj)~jJ
j

-* -* --*B i (l-ai-bi)ai + (l-bi)f3 i

I (1- bi) l [(1-aj)cij + (1-bj)~jl
j
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-----t----=:::::::~~
'+-

.L)
'+-
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l>-
'+-

II
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II
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-* -*where j = 1"", i-I. Hence the I-chain c corresponding to y is, by

(10.1),

(10.3) -*c ~ lw(u.)A~ t- (u(v.)B~] i = 1,"',p .k 11 1 l'

Before applying (8.5), we have to evaluate the right hand'side of the

last formula using (10.2). For the sake of convenience we write

(10.4) W(w) = z U)(ui) = xi

uJ(ai) -~ ai

W(vi) = Yi

(l)(b i ) b i

where i= 1,"" p. By (10.3) and (10.2) we have

t· y.(l-b.) (l-h.){:Yl)
1 1 1 J

-*c 2 ( -* - -*x.(l-a.)a. ~ x·a·b· (:3.
1 11 Ill f-l

i

t ~ [x.(l-a.)(l-a.)a: + x.(l-a.)(l-h.)~:k 1 1 .1.1 1 1 .1.1
j

-*
Y·(l-b·)(l-a.)a.

1 1 .1 J

where j = 1,,,,, i-I and i-- 1,,,,, p. From this we obtain

c* -, 2 ({ xp-a) + Yi(l-a i-bi)

i

} -*lx-(l-a.) + y.(I-b.)](l-a.) a·
.1 J .1 J 1 1

(l0.5) j

\ {x.a.b. t y.(l-b.)
1 1 1 1 1

+ 2 [xp-aj) + YP-bj)] (I-hi) } p~)
j

where i·· i I 1,"',p and i = 1,"·,p. That the right hand sides of the

!:lst two eqlwlities are equal can be seen by computing the coefficients
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* -*of ai and (3i· By the fundamental formula of the free differential calcu-

lus (l3t p. 551, (2.3)), we have

w - 1 = ~ [~ (a.-I) + dw (b.-I)]k oa, 1 abo 1
. 1 1
1

by (10.1)

where i = 1,···, p. By applying the group ring homomorphism w, we

obtain

~ [x.(l-a.) + y.(l-b.)]k 1 J J J
j

(l-z) + [x.(a.-1) + y.(b.-1)]
1 1 1 1

where j = i+1,···,p and k= 1,···,i-1, see (9.3).

Replecing the left hand side of the above equality by the right hand

side in (10.5), and performing reductions we obtain the following

c* = 2 ({ (1-z)(1-ai)-x/1-a)-Yibia i + li) (2 djW) (I-a) } ~7
1 J

t- { (l-z)(l-bi)-xP-ai-b i)-yP-bi) + w (2 djW) (l-bi) } ~7)
j

where i=1,···,i-1 and i=l,.··,p. We now write

U· = (l-w)(l-a·)-u.(l-a·)-v.b.a. + (~d.w) (I-a.)
1 1 1 1 111 k J 1

j

Vi = (l-w)(l-bi)-u/!-ai-b i)-v/!-bi) + (2 djW) (l-bi)

J

where i = 1,·,·, i-I and i = 1,.··, p. From the last three equalities and

(10.4) we obtain the following
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(10.6) -*c i=I,··,p.

-* - -*This is the I-chain corresponding to the path y on N based at 0 ,

* - - * *and such that y = q( y ) is a loop on N based at 0 , composed of

* *loops ai' f3 i and their inverses i = 1,"" p, and

(10.7) *y "" y on N

*i.e., y is homotopic to y on N.

We now are ready to apply formula (8.5). Let us consider the paths
-,-- * - - -* ..... , -
y, fy which are based at 0, f 0, where f (F. We write y = q( y') and
~* - * --* - ~*
y = q( y ), whence q(f y ) = h y , where h = X(f). We observe that
..... ,- ..... * ..... ..... - .....* ..... ,- ..... *
y , h yare paths on N based at 0, h 0 respective ly. Let c, h c be

~,-~*
the I-chains corresponding to y, h y respectively. By (10.1) and (10.6)

where i=I,"',p and hfH. By(8.5),w~have

Is(h2',2*) = Is(2',11 2*)

where i = 1,"" p. By (2.6), (2.2) and (1.6), we obtain
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where , 1,.··, p. Hence the following holds

(10.8) Is(hc',c*) = h 0 XCI) (~ [V·u'. + V.V'.])k 1 1 1 1

i

i =- 1"", p .K = ~ lV:li'.j V·v'.]k 1 1 1 l'

where i = 1,"" p, h f H, u'i and v'i are given by (10.1), and Vi,Vi are

given by the formulas preceding (10.6).

We now have to compute the second factor of the right hand side of

(10.8). We write

(10.9)

From this and the formulas defining Viand Vi' after performing some

rearrangement, we obtain

K = (l-w) 2 [(l-a)u'i I (l-b)v)

-; 2 (~djW ) [(l-a)u'i + (l-bi)v'i]
1 J

where j = 1,,,,, i-I and -.= 1,"" p. By (1.5), (10.1) and (9.3), the

following holds

(l-a·)u'. -+- (l-b.)v'. - d1·w', i = 1,"" p .
1 1 1 1

By the fundamental formula of the free differential calculus (l3], p. 551,

(2.3)) and (9.3) we have

(10.10)

From the last two equations and (1.5) we obtain
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where io 1,.··, p. By (1.5), (1.2), (10.1) and (9.1) the following holds

287

K = I\(w, w') .

~ [u.(l-a. )u'. t v·b·a-·u'· + u.(l-a·-b.)v'. + v.(l-b·)v'·] -, A (w' w)ok 1 1111111 1111 11 l'

where i = 1,···,p. From the last five equalities, we have

K = (l-w)(l-w') - l\ (w', w) - 2 (2 djW) diw'

i j

where j ~ 1,'··, i-I and ic 1,·,·, p. By (10.10), where now w' is re­

placed by w, we obtain

K -, (l-w)(l-w') - .'\ (w', w) - 2 (w -1- 2 djW) diw'

i j

where j = j, ... , p and i = 1,·,·, p. By (10.10) and (1. 5), the following hold

K ~ (l-w)(l-w') - 1\1 (w', w) - 2 (w-1) diw' " 2 (2 djW) diw'

1 1 J

K = (l-w)(l-w') - 1\1 (w', w) - (w-1)(w'-1) -I- 2 (2 djW) diw'

i j

- 1\1 (w', w) + 2 (2 djW) djw'

i j

where j ~ i,···,p and i = 1,···,p. From the above we obtain

K = - Al (w', w) +~ (diw) diw' + 2
k

(~djW) dkw'

1 J

where j = kT1,···, p, k -,1,···, p-1 and i = 1,.··, p. By (9.5), (9.2) and

(9.4), we have

From the above equality, (10.9) and (l0.8), we obtain the following

ill(l'rsection formula

(lO.ll) ~, ~* h \( ')Is(hc ,c ) 0_ 0 xcoi W, W •
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From this we have the following expansion formula

(10.12) xcoA(w, w') = l Is(hc', 2*) h

where the sum runs over all elements h of H. This sum is finite, be­

cause y and y' are compact. The last formula is obtained by observing

that the left hand side is an element of Z[Hl, and then computing the

coefficients by use of (10.11) and the formulas for inner products.

We now summarize things: Let N be an oriented closed surface of

genus p ~ 2, with base point 0, and let

be the fundamental group of N, see (Figures 1 and 2). Let G be a

normal subgroup of F, let N be the regular covering surface correspond­

ing to G, and let (; be a point on N lying over o. Let y,y' be two

loops on N based at 0, and let w, w' be words in ai' bi defining the

elements of F represented by y,y' respectively. I.e., w,w' are ele­

ments of the free group
<1> = (aI' b I , .. , a p ' bp)

of rank 2p. Let y, Y' be two paths on N based at a and lying over

y, y' respectively.

THEOREM 10.13. If the elements of F defined by w, w' belong to G,

then y, y' are loops, and the following formulas hold

Is(h Y', y) = h 0 xwA(w, w')

xwA(w,w')= lIs(hy',y)h

where the sum runs over all h (H = FIG.
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Proof. Without any loss of generality we can suppose that y, y' are loops

composed of ai,{3i's in accordance with the words w,w' respectively.

In the present case, because of (10.7), y* is a loop homotopic to y on

N~ L d b ~*~, h 1 1 ~* ~,. et us enote y c , c t e -cyc es corresponding to y , y respec-

tively. The following hold

Is(h y-, y) = Is(h y', y*) = Is(hc',2*)

From the above, (10.11) and (10.12), follow the formulas of our theorem.

REMARK 10.14. Let us now consider the special case G ~ F. Then

H = 1, N-, N, q= identity, y = y and y' = y'. Thus, the formula of

Theorem 10.13 becomes now

(wA(w, w'»o

see No.1, or ([3], p. 549, ff. 18-20).

Is(y',y)

11. Planar coverings

We now suppose that the group G, of the previous No. 10, is the

normal closure in F of the finite or infinite sequence of elements

(d(w 1),w(w2 ), .. ·, where wl'w2 ,'" are words of the free group <1>. Thus,

H ~ FIG = (a1,b1, .. ·,ap,bp : II [ai,bJ,w1,W2 ,")

i

where i = 1.... , p. Hence H = <l>/Go' where Go is the normal closure in

<f> of the elements wO,w1,w2 .. ··, and W o is the product of the commuta­

tors.

Let now w, w' be two elements of Go' then the following hold

w
~.

w' = v II v.w~Jv.
J j J

j

where Uj,V j are words of <II, J/I< and Aj are positive, Ok and E j are

I I, the range of thp il1di('('~; II ;IIHI is finite, and u, v are products

(' !' f' Ii, 'II II I I() trans orllls 0 w() Ill, '



290 C. D. PAPAKYRIAKOPOULOS

Let y, Y be two loops on N representing the elements w(w), w(w')

of F respectively. The loops y, y' are those of Theorem 10.13.

THEOREM 11.1. If the group G is the normal closure in F of the ele­

ments w(wI)'w(w2 ),oo., then

l Is(hy',y)h = lOkEjXW(UkA(W/1k,W.\./V)

h k,j

where h runs over aI/ elements of H = F /G. F ina l/y, N is planar if

and only if

where K, v 0- 1,2,'"

Proof. Let us denote by Yo' Y
llk

' Y.\.. loops on N based at 0 represent-
J ~ ~ ~

ing the elements cd(wo),cv(w
llk

),Cl)(w.\./ of F, and let YO'Yllk'Y'\'j be

the loops on N based at (; and lying over Yo,Yllk,Y.\.. respectively.
J

Then, Yo is contractible in N, because w(w0) -= 1. Thus, by Theorem

10.13, we have the following

where the sums run over all h f H. By Theorem 6.3 and the above three

equa lities, the following holds

xwA(w,w') = l 0kEjXW(UkA(wllk,w.\./v)

k,j

By Theorem 10.13, we have the following
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X(uA(w, w') = 2. Is(h y', y) h .

291

The last two formulas imply the first formula of our theorem.

By (fs], p. 140, ff. 26-29 and p. 165, ff. 15-17), it is easily proved

that N is planar if and only if the intersection number of any two loops

on N based at 0 is zero. If N is planar, then we apply the first

formula of our theorem for the special case w = w , w' = wand we have
K 1/

If the second formulas of our theorem hold, then by the firs t formula the

following holds

for any two loops y,y' on N based at o. Hence, N is planar. This

completes the proof of our theorem.

REMARK 11.2. In the case of actual computations, Theorem 6.4 may turn

out to be very useful sometimes.

ss. A Conjecture

The formulas of Theorem 11.1 provide us with a solution of the problem

we posed in the Introduction. However, as we have already mentioned

there, the result provided by the solution is not sufficient to solve the

second conjecture of ([71, p. 251). Nevertheless, our formulas may be

very helpful for a solution of the conjecture we express in the sequel.

Let us suppose that, on the oriented closed surface N of genus at

least two, we have two oriented simple closed curves A, B meeting at

only one point with intersection number one. Let A' be an oriented

simple closed curve on N homologous to B. Let X, Y and X' be the

primary simple closed geodesics on N, corresponding to A, B and A'

respectively (17], p. 270, Lemma (12.2». Let Ok' k = 1,,,,, 2m; 1 (~ 1),

be the common points of X and X', and let Xk and X'k be the loops

with base point 01< (It·fiIH·<! hy X and X' respectively. Let finally wk
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be the element of F ~ 77} (N, ok) corresponding to the commutator [Xk,xil.

Under the above hypotheses we formulate the following conjecture.

CONJECTURE. There is a k (~1 and S; 2m-d) such that the regular

covering of N, corresponding to the normal closure of wk in F, is

planar.

This conjecture implies the second conjecture of ([71, p. 251), but not

conversely. That conjecture is more delicate. Hence, a proof of the above

conjecture would imply a proof of the Poincare conjecture.
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INFINITELY DIVISIBLE ELEMENTS IN 3-MANIFOLD GROUPS

Peter B. Shalen

An element g of a group is said to be divisible by an integer n if

g = x n holds for some element x in the group. We will say that g is

infinitely divisible if it is divisible by infinitely many different integers.

L. Neuwirth ([5], Problem S) has asked whether a knot group can have

infinitely divisible elements other than the identity. We show that it can­

not; more generally, we show that the fundamental group of a compact,

orientable, irreducible, piecewise-linear 3-manifold M has no infinitely

divisible elements f. 1, provided that M is almost sufficiently large in

the sense of Waldhausen (see Section 7 for definitions). This is the

theorem of Section 7. A weaker result in this direction was obtained in [21

The result cannot quite extend to an arbitrary compact 3-manifold M

since a lens space (for example) has a finite fundamental group, and any

element of finite order in a group is clearly infinitely divisible. However,

one can make the

CONJECTURE (Cf. [201, p. 87). Every compact, irreducible, orientable,

piecewise-linear 3-manifold with infinite fundamental group is almost

sufficiently large.

Now it follows from Moise's triangulation theorem ([8], [9]; also fll;

;md [131) and a theorem of Kneser's (f5]; see [7] for a good discussion)

Ihat for any compact, orientable 3-manifold M, 171 (M) is isomorphic to

" finite free product of infinite cyclic groups and fundamental groups of

('ompact, irreducible, orientable 3-manifolds. It is easy to see that an

Infinitely divisible element in a free product must be conjugate to an

'l{\"
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infinitely divisible element of some factor. Using the theorem of Section 7,

the above conjecture would therefore imply that an element of 17 1(M) is

infinitely divisible only if it has finite order. By considering the orient­

able double cover, one could extend this result to the non-orientable case

(d. Lemma 13 in Section 7 below).

It should be noted that the compactness hypothesis is essential, since

there exists an open subset of Euclidean 3-space whose fundamental

group is isomorphic to the additive group of rational numbers (see [3]).

The proof of the theorem depends heavily on Haken's theory of hierar­

chies; the only facts needed are contained in [20], and we review them in

Section 7. An arbitrary sufficiently large manifold can be built up from

one or two 3-cells by successive application of a boundary-gluing process.

Using this, the proof of the theorem reduces to comparing the divisibility

properties of elements of an incompressible (d. Section 1) piece of the

boundary of a 3-manifold, with the divisibility properties of the same ele­

ments regarded as lying in the fundamental group of the 3-manifold. This

is done in Sections 2 - 4 for boundary pieces that are not tori, and in Sec­

tion 5 for tori. The results obtained in the two cases (Prop. 2 of Section 2

and Prop. 3 of Section 5) are rather different. The problem of extending

the results of Sections 2-4 directly to tori is related to the problem dis­

cussed in Section 3 after the definition of an "envelope."

I would like to thank W. Jaco and B. Evans for pointing out the proof

of Proposition 1 of Section 1 based on Waldhausen's generalized loop

theorem, which is much simpler than my original proof. They had obtained

a similar result independently. I would also like to thank F. Waldhausen

for a series of interesting discussions on the unsolved problem discussed

in Section 3. Finally, I am indebted to Marcelo Kupferwasser and to the

referee for correcting a good many errors in the original typescript.

§O. Conventions

We work in the piecewise-linear (PL) category everywhere (except

in Section 4 where we briefly consider the simplicial category). Thus all
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manifolds, maps, homeomorphisms, homotopies, isotopies, etc. are under­

stood to be PL. A surface is a connected 2-manifold. A disc is a (PL)

2-cell; an arc is a (PL) I-cell; tori, annuli, etc. have the us ual PL struc-
o

tures. The boundary and interior of a manifold M are written aM and M.

On the other hand, if X is a subset of a space Y, the frontier and (set­

theoretic) interior of X in Yare denoted Fr X and Int X (or Fry X

and IntyX).

By a simple curve we mean simply a (PL) I-sphere. On the other

hand, a singular curve is a (PL) map of the standard I-sphere Sl (bound­

ary of the standard 2-simplex) into a space (polyhedron). A singular curve

which is 1-1 will sometimes be called a parametrized simple curve, or a

parametrization of its image.

In any connected polyhedron P, there is a bijective correspondence

between (free) homotopy classes of singular curves in P, and conjugacy

classes in 7T I (P). (Here, as in other statements that are independent of

the choice of a basepoint, we suppress the basepoint.) THE CONJUGACY

CLASS ASSOCIATED WITH A SINGULAR CURVE a WILL BE WRITTEN

lal. If the singular curves a,T are such that frl = fal k , k an integer, we

will say that T is homotopic to a k-th power of a. (Operations in a

group such as raising to the k-th power are clearly defined on conjugacy

classes.) We will say that T is a k-th power of a if T(SI) = a (SI), and

r is homotopic to a k-th power of a in the space a (SI). Singular curves

IT and T are said to be anti-homotopic if T is homotopic to a minus-first

power of a. A singular curve is homotopic to a power of a simple curve y

If it is homotopic to a power of an orientation of y. A singular curve is

"()ntractiblc if it is homotopic to a constant map; a simple curve is con­

tractible if a parametrization of it is contractible.

Two embeddings f, g: P -~ Q are isotopic if there is a map H: P x I 'Q,

"tleh that for all t (I the map Ht : P ... Q defined by Ht(p) ~ H(p, t) is

.Ill embedding, and such that Ho = f, HI = g. They are ambient-isotopic

Ii there is <l homeomorphism h: Q 'Q, isotopic to the identity, such that
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h 0 f = g. Two simple curves are isotopic if they have isotopic orienta­

tions; two arcs a, {3 C Q are isotopic with endpoints fixed if there is a

homeomorphism j: a .... {3 which is isotopic in Q to the indus ion, under

an isotopy which is constant on aa.
An (n-l)-manifold N contained in an-manifold M is 2-sided if

there is an embedding c: N x [-1,1] .... M such that c(Nx[-I,I]) is a

neighborhood of N in M, and c(n, 0) = n for all n f N. Such an embed­

ding c is called a collar neighborhood of N. If N is 2-sided in M,

then in particular N n aM = aN. If N is 2-sided in M and f: M' -, M is

a map, M' a manifold, we say that f is transversal to N if f-l(N) = N'

is a 2-sided submanifold of M', and if there exist collar neighborhoods

c, c' of N, N' such that f(c'(N'x ltl)) C c(Nx!tl) for all t f l-l, 1]. It is

well-known that transversality is a "general-position" condition: for ex­

ample, if M' is compact, f: M'·, M is such that f (riM') CaM, N is

2-sided in M, and flaM' is transversal to aN C (1M, then f can be

approximated (in the metric sense, say) by a map which agrees with f on

aM and is transversal to N. (These facts will be used only for dimen­

sions ~ 3.)

The fundamental results of Papakyriakopoulos on 3-manifolds - Dehn's

lemma, the loop theorem and the sphere theorem ([111, lI2]; see also [14J,

[16]) are crucial for the arguments in this paper. Many of the applications

are made via two corollaries which we state below, with references or in­

dications of proofs, as Principles 1 and 2.

DEFINITION. Let T be a surface in a connected 3-manifold M such

that either T is 2-sided or TeaM. We say that T is incompressible

in M if T is neither a disc in aM nor the frontier of a 3-cell in M,

but "l(T) .... "l(M) is injective. More generally, if a 2-manifold T is

either 2-sided in M or contained in aM, T is incompressible in M if

each of its components is incompressible.

PRINCIPLE 1. Let M be a connected 3-manifold, and let the 2-manifold

T be either 2-sidC'd in M or contained in aM. Assume that T is neither
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a disc in aM nor the frontier of a 3-cell in M. Then T is incompressi­

ble if, and only if, for every disc ~ C M such that ~ n T = a/\, a/\
bounds a disc in T.

Proof. The "only if" assertion follows from the elementary fact that a

contractible simple curve in a 2-manifold always bounds a disc. The

"if" assertion is essentially the second sentence of 2.8.1 on p. 14 of

[17], (A slight paraphrase of this sentence is, "if T is a compact

2-sided surface in a 3-manifold M and cannot be reduced, then 77
1
(T) ....

77 1 (M) is injective." The statement that T "cannot be reduced" is pre­

cisely the hypothesis of our assertion; and the compactness of T is not

used in the proof of the second sentence of 2.8.1.)

DEFINITION. A homotopy 3-cell is a compact, contractible 3-manifold

whose boundary is a 2-sphere.

PRINCIPLE 2. Let M be a connected, orientable 3-manifold. We have

77 2 (M) = 0 if and only if every 2-sphere in M bounds a homotopy 3-cell

in M.

Proof. This is proved in the same way as Theorem 2 on p. 5 of [7J, ex­

cept that the term "cell" is replaced in both its occurrence by "homotopy

3-cell," and the reference to the Poincare hypothesis is deleted. The

fact that a simply connected 3-manifold bounded by a 2-sphere is a

homotopy 3-cell follows from Poincare duality and the Hurewicz theorem.

Finally we use the following general conventions. All unlabeled

homomorphisms (e.g. "1 (X) )"1 (Y)) are understood to be induced by in­

clusion. The Euler characteristic of a finite polyhedron P is denoted

X(P). We use c(x) to denote the conjugacy class of an element x of a

group, and <x> to denote the subgroup generated by x.

s1. Divisibility of loops in boundary surfaces

We define a notion of divisibility for conjugacy classes in the funda­

mental group of a surface, and prove a result (Proposition 1) to the effect
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that the divisibility associated to a curve in the boundary of a 3-manifold

depends only on its homotopy class in the manifold. The proof of Proposi­

tion 1 given here is due to W. Jaco and B. Evans; it uses Waldhausen's

generalization of the loop theorem [19\'

LRMMA 1. Let G be the fundamental group of an orientable surface.

Any g ( G -! 11 can be written as x n , where x is primary in G and

n ~ 0; moreover, n and x are uniquely determined by g.

Proof. This is obvious if G is free abelian. We can therefore assume

G = 77 1(T, p), where the surface T is not a torus. Let (T, p) be the

based covering corresponding to the centralizer of g in G. Then T is

an orientable surface, not a torus, and 77 1 (T) has non-trivial center.
- -

In particular, T cannot be closed. Hence 77 1(T) is free. As 77 1(T)

has a center, it has rank 1. Thus the centralizer of g in G is infinite

cyclic, and the lemma follows.

DEFINITION. In the situation of Lemma 1, x is called the primary root,

and n the divisibility of g in G. As n obviously depends only on the

conjugacy class c(g) of g, it may also be called the divisibility of

c(g). The divisibility of a singular curve a in a 2-manifold T is the

divisibility of lal C 77 1(Ta ), where T a is the component of T contain­

ing a(Sl).

COROLLARY 1. lf an element of 77 1(T), T an orientable surface, is

divisible by an integer k, its divisibility in 77 1(T) is an integer divisi­

ble by k.

COROLLARY 2. lf g E 77
1

(T) has divisibility k, then gm has divisi­

bility Imlk for any integer m 1= O.

,
In particular gm and gm have the same divisibility only if m -, -tm'.

IIence·
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COROLLARY 3. A cyclic subgroup of "I (T) contains only two clements

of a given divisibility.

The next lemma is well-known and may be proved in the same style as

Lemma 1.

LEMMA 2. If T is an oriented surface, a conjugacy class in "I (T),

represented by a non-contractible parametrized simple curve in T, is

primary.

PROPOSITION 1. Let T be an incompressible 2-manifold in the bound­

ary of an orientable 3-manifold M. Then any two non-contractible singu­

lar curves in T, that arc freely homotopic in M, have the same

divisibility in T.

Proof. Assume the assertion false. Then there are singular curves °1 ,°
2

in T, homotopic in M, with respective divisibilities mt , m2 in T,

where mt < m2. Write TiO = 1,2) for the component of T containing

0i(Sl). Fix a basepoint t (T2. We may take 02 to be based, so that it

defines an element g2 of "1 (T2' t), and denote by x the primary root

of g2 in "1(T2,t). The infinite cyclic subgroup <x> of "l(M) deter­

mines a covering space M of M with a canonical basepoint t. Let p

denote the covering projection and let ~2 be the lifting of 02 based at t.

Identify "1 (IV/) with Z in such a way that x = 1. As Z is abelian,

every free homotopy class of singular curves in M defines an integer.

Clearly 02 defines the integer m2 .

By the covering homotopy property, the based lifting 02 of 02 to M

is freely homotopic in M to some lifting 01 of °1 , which again repre-
- - -

sents the integer m2 if regarded as a loop in M. The components T l'T 2

of P-1 (T) that contain °1 ,°2 are incompressible but have non-trivial
- - 2

fundamental groups; thus "l(T t ) ~ "1(T2) ~ Z, and by orientability T 1
"

and '1'2 arp 0[l('ll :lIl1ll1li.
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! claim that there exist non-contractible parametrized simple curves

~l' ~2 in Tl' T2 that are homotopic in M. This is trivial if T = l' .
- - 00 _ 12

If T I 1=T2 , the open subsets TI ,T2 of aM are disjoint and contain

the mutually homotopic closed curves 0-1 ,0-2 which are non-contractible

in M. The claim therefore follows from the theorem of [19!.
- -

Now since _T 2 is an annulus and 77 1(T2).771(M) is surjectiv_e by

construction, ~2 re_presents an integer u~, ± 1. Hence so does ~l' Let
- - J: - - m2 u - 1
a l (1) = q, and let s 1 be based at q; then the loop ~I *a1 represents

0, and is therefore null-homotopic in Tl' It follows that [0-11 is divisi­

ble by m2 in 77 1(1'1)' and therefore that laI ) is divisible by m2 in

77 1(T1); thus m2!mi by Corollary 1 to Lemma 1, and the assumption

mi < m2 is contradicted.

§2. Divisibility of boundary curves in the interior

DEFINITION. A 3-manifold pair is a pair (M, T), where M is a con­

nected 3-manifold and TeaM is a surface. (M, T) is acceptable if

772(M),~ 0, M is orientable, and T is compact and incompressible (Sec­

tion 0).

N.B. We may have aT 1= 0.

DEFINITION. Let (M, T) be a 3-manifold pair, and let c(g) 1= III be a

conjugacy class in 77 1(T) having divisibility k. If the image of c(g)

in 77 1 (M) is divisible by some integer e> 2k, c(g) will be called

special (with respect to (M, T)).

The object of Sections 3 and 4 is to prove:

PROPOSITION 2. Let (M, T) be an acceptable pair. Then:

(a) Any special conjugacy class in 77 1 (T) can be represented by

a power (Section 0) of a parametrized simple curve in T.

(b) If T is not a torus, then any finite set of special conjugacy

classes in 77 1(T) can be represented by a set of powers of

disjoint parnm<'lrizcd simple curves.
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Now it is well-known and easy to prove that for any compact orientable

surface T, there is an integer N(T) such that T cannot contain more

than N(T) disjoint, non-homotopic, non-contractible simple curves.

Assuming the truth of Proposition 2, a set of special conjugacy classes

c 1,", c n in "1 (T) can be represented by powers of disjoint parametrized

simple curvesY1 ,", Yn in T. If we assume in addition that the ci

all have the same divisibility k, Corollary 3 to Lemma 1 of Section 1 im­

plies that at most two of the Yi can lie in any given cyclic subgroup of

"1 (T); hence by the fact just recalled, n::; 2 N(T). In particular we

obtain the

COROLLARY TO PROPOSITION 2. If (M, T) is an acceptable pair and

T is not a torus, "1 (T) contains only finitely many special conjugacy

classes having a prescribed divisibility in "1 (T).

It is this group-theoretical conclusion that is used in the proof of our

main· result.

§3. Cutting and pasting

This section is preliminary to the proof of Proposition 2. It is

assumed in this section and the next that (M, T) is an acceptable pair.

The following technical notion is central to the argument:

DEFINITION. Let a be a non-contractible singular curve in T. An

envelope for a is a compact 3-manifold K C M, such that

(i) every component of aK is a torus and

(ii) the conjugacy class [al c "1 (B), where B is the component

of aK containing a, is special with respect to the

3-manifold pair (K, B).

Set A = K n aM. The envelope K is called normal if the following

extra conditions hold:
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(iii) A = T if T is a torus, and A is an annulus otherwise; and
()

(iv) the 2-sided 2-manifold (aK)- A is incompressible in M.

If 0 has an envelope, it is said to be enveloped.

The obvious examples of enveloped curves are obtained as follows:

Let (Mo ' To) be a 3-manifold pair, and let Be To be an annulus. Let

y be a non-contractible simple curve in a(D2 x Sl) such that

[yl C 77 1(D2
x Sl) has divisibility > 2. In the disjoint union of Mo and

D2 x Sl, identify B with a regular neighborhood of y in d(D 2 xS 1 );
o

this gives a 3-manifold M, and we can set T ,. (To U d(D 2 x Sl)) - B.

It is easy to find conditions guaranteeing that (M, T) is acceptable. In

this case D2 x Sl is clearly a (normal) envelope for any non-contractible

o in a(D2 x Sl) - B.

The most vexed (and vexing) question left open in this paper is whether

every enveloped singular curve has an envelope homeomorphic to D2 x Sl .

This could perhaps be settled by F. Waldhausen's unpublished "torus-

annulus theorem."

LEMMA 3. An enveloped singular curve has a normal envelope.

Proof. Let 0 have the envelope K. By enlarging K if necessary, we

may assume that K n aM is a 2-manifold. We may further assume that

K n aM is connected and is contained in T; for if this is not the case,

we can modify K by a (non-ambient) isotopy which is constant on a regu­

lar neighborhood N of 0 1 (Sl) in K n aM, and moves (aK)- N into ~.
To prove the lemma we must choose K so that (a) the surface A

K n aM is a torus or annulus, (b) A· T if T is a torus, and (c) each
o

component of (aK)- A is incompressible.

We claim, first, that if either (a) or (c) fails to hold, then a has an

envelope K', suchthat K'naM is again a surface in T, but such that

M- K' has fewer components than M- K; and that if K satisfied (b),

then so will K'.
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First suppose that (a) does not hold. Let Bo denote the component

of flK that contains A; then since Bo is a torus, 7/"1 (A) ) 7/"1 (Bo) can­

not be injective. Hence some component C of riA bounds a disc
o

i'" C Bo- A; as T is incompressible, C must also bound a disc DC T.

But since A is connected and contains the non-contractible curve G, we
o

must have DC T - A. Now .1\ U D is a 2-sphere, and by Principle 2 of

Section 0 it bounds a homotopy 3-cell E; since K is connected and

contains the non-contractible curve G, it can intersect E only in 1\

We may set K' = K U E, proving the claim in this case.

Now suppose that (a) holds but that (c) does not. Then some com-
o

ponent S of (riK)- A fails to be incompressible. Now it follows from

(a) that A is incompressible; for T is incompressible, 7/"1 (T) is torsion

free, and A contains a non-contractible curve. Hence if A is an annulus
o

the annulus A' C (riK) - A which has the same boundary as A is also

incompressible, since its generating curve defines the same conjugacy

class in 7/"1 (M) as the generating curve of A. Therefo·re S must be a

torus. As S is not incompressible, we may use Principle 1 of Section 0

to replace a non-contractible annulus in S by two discs, thus producing

a 2-sphere S' C M. Then S' is homologically trivial, since 7/"2(M) - 0,

and therefore S is also homologically trivial. It follows that S bounds

a compact PL 3-manifold R c: M-K. We can set K' = K U R, and the

claim is proved in this case as well.

It follows from the claim just proved that G has an enve lope KI

satisfying (a) and (c). Then KI is normal unless (b) fails to hold, i.e.

unless T is a torus but AI ,= KI n aM is an annulus. In this case, let

K2 be a regular neighborhood of K1 U T. K2 clearly is an envelope for

G and satisfies (b).

I·lence by the claim proved above, a has an envelope K3 satisfying

(a) and (c), and (b) as well.

COROLLARY I. If (J is enveloped then fal is special with respect to

(M, T).
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A converse to Corollary 1 will be proved as Lemma 7 of Section 4.

COROLLARY 2. An enveloped curve is homotopic in T to a power (Sec­

tion 0) of a parametrized simple curve.

Proof. Every singular curve in a torus or annulus is homotopic to a power

of a parametrized simple curve

LEMMA 4. Let K I , K2 be normal envelopes for singular curves a
1

,02
o

in T. Set Ai oc Ki n oM 0= 1,2) and suppose that oA I and oA
2

inter-

sect each other transversally. If CoAl) n CoA
2

) 1= 0, then there exists a
o

disc :\ C T whose boundary is of the form b
1

U b
2

, where b
i

C oA
i

is

an arc 0= 1,2), and b1 n b2 = obI = ob 2 .

Proof. By taking K1 and K2 in general position, without altering Al

and A2 , we may assume that Fr K1 and Fr K2 Cwhich by normality are

2-sided 2-manifolds) intersect transversally.

By hypothesis A1 and A2 have non-empty boundaries. Since the

envelopes K1 and K2 are normal, it follows that Al and A2 are annuli
o

and that T is not a torus. Let Yi C Ai be a simple curve carrying a

generator of HI (Ai)' Any 2-sided surface in Ki has an integer intersec­

tion number with Yi' defined up to sign. We claim that

(*) No 2-sided surface in Ki 0= 1,2) can have intersection

number ±1 or ±2 with Yi'

To see this, fix orientations of Yi and of the 2-sided surface J C Ki ,

so that the intersection number Yi . J is a well-defined integer. Let

k> 0 denote the divisibility (Section 1) of the singular curve (Ji in oK i .

Since ai is in Ai' it is a ± k-th power (Section 0) of Yi' Hence ai . J =

± k(Yi . J). On the other hand, since ai is special in Ki by the defini­

tion of an envelope, [a) is divisible by some integer P> 2k in 77 1(Ki );
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therefore ai . J is divisible by e. So if Yi . J were ± 1 or ±2, then

e> 2k > 0 would divide either k or 2k, which is impossible. Thus (*)

is proved.
o

Write A'I- 0= 1,2) for the 2-sided annulus B- - A· C M where B- ISI I' I
the component of aKi containing Ai' We will say that a 2-sided arc a

in an annulus A traverses A if the endpoints of a lie in different com­

ponents of JA. The lemma is proved by distinguishing two cases, accord­

ing to whether (I) each arc, which is a component of A'I n A'2' traverses

both A'I and A'2' or (II) some component of A'I n A'2 is an arc which

does not simultaneously traverse A'I and A'2'

Proof in Case 1. By hypothesis, JA I = aA'I has non-empty and trans­

versal intersection with aA 2 ~ aA'2; in particular, aA I intersects A2 ,

and an arbitrary component of (aA I ) n A2 is an arc fJ, 2-sided in A2·

The endpoints of (3 lie in aA I n aA2 -, aA'I n dA2 - The components

a,a* of A'I n A'2 containing these endpoints must be arcs by trans­

versality (A'I and A'2 are components of Fr KI and Fr K2). Since we

are in case I, a and a* must traverse A'I' It follows that aU a* is

the frontier in A'I of a disc l"rectangle"l R C A'I' such that (3 C R.

The boundary of R consists of a, (3, a* and another arc {-3*C JA'I = JA I

We claim that dR C K2. In fact, by construction we know that a U a*

C A'2 and fJ C A
2

. Hence, by transversality, K2 contains some neigh­

borhood of aU (3 U a* in R. Thus if (3* were not contained in A2 =
o 0

K
2

n aM, (3* would intersect aA2 = aA'2; and for any x ( f3* n aA'2'

the component a o of A'I n A'2 containing x would be an arc, again by

transversality. But a o would be contained in R, since it could not

intersect a or a*. Furthermore, since we are in case I, ao would
o

traverse A'I' Hence a o would have an endpoint in (3. This is impossi-
o

ble; for since (3 is 2-sided in A2, we have (3n aA'2 = 0. Thus the

cla im is proved.

By transversality, the component J of A'I n K2 containing aR is

a 2-sided surface in K2 , and J C R. Since A'I) J is 2-sided in M
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we have J n A2 c J n dM C dR. This shows that the intersection number

Y2 . J in K2 is numerically equal to the intersection number Y2 . dR in

B2 (both are defined up to sign).

We can now show that {i and {i* do not both traverse A2. To do

this, consider the simple curve dR C B2. Here B2 is the union of the

annuli A2 and A'2' whose intersection is their common boundary; and

dR consists of the disjoint arcs a and a*, which are 2-sided in A'2'

and the disjoint arcs {i and {i*, which are 2-sided in A2. Furthermore,

since we are in case I, a and a* both traverse A'2' If, in addition,

both {i and (i* were to traverse A2 , dR would have intersection num­

ber ±2 with Y2' since Y2 represents a generator of HI (A 2)· By the

last paragraph we would have Y2' J = ± 2 in K2 , contradicting the above

observation (*).

Let b i be one of the arcs {i,{3*, chosen so as not to traverse A2 .

Then b i is an arc contained in A2 n aA I and 2-sided in A2, and its

endpoints lie in a single component C of aA2. Hence there is an arc

b2 C C such that bi U b2 bounds a disc I'l C A2 , and the lemma is

proved in Case I.

Proof in case II. In this case we may assume, by symmetry, that some

component of A'I n A'2 is an arc a which does not traverse A'I' Hence

there is an arc b i C dA'i such that a U b i bounds a disc ["hemi-disc"l

HI C A'I' We may suppose a to be chosen so that HI is minimal, i.e.

contains no other arcs which are components of A'I n A'2' Thus (by
o

transversality) b i will contain no points of dA'i n dA'2 = aA I n aA 2·

It will be shown presently that a cannot traverse A'2' This will im­

ply the lemma via the following argument. Since a does not traverse A'2

there is an arc b2 C rJA'2 such that a U b 2 bounds a disc H2 C A'2'
o

Now bi U b2 C l' is a simple curve, since b l contains no points of

aA'i n aA'2' On the other hand, the existence of the discs HI and 112

guarantees that b i and b2 are each isotopic in M, with endpoints

fixed, to a. Hence b I U b 2 is contractible in M; since l' is incom­

pfessihle, hI U hJ. must hound" disc '\ ( T, ;IS fl'quifed.
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It remains to sh~w that a cannot traverse A'2' For this purpose,

observe that since b i C dA I contai~s no points of rJA I n dA
2

, we have

either (i) b i C A2, or (ii) b i C T - A2. We will assume that a

traverses A'2' and derive separate contradictions in the s ubcases (i)

and (ii).

First suppose that (i) holds. Then a and b
i

are 2-s ided arcs in

A'2 and A2 respectively, and they have the same endpoints in dA
2

=

dA'2 (since aUb l =rJH I ). Hence if we assume that a traverses A'2'

it follows that b i traverses A2 , and the simple curve dH I ~ a U b
i

has intersection number ± 1 with Y2 in the torus A2 U A'2 = B2 C. K
2

.

Now the component J of A'I n K2 that contains dH I is a 2-sided

surface in K2 , by transversality, and J C HI' Since A'I :) J is 2-sided

in M, we have J n A2 C J n dM C dH I . It follows that J also has inter

section number ± 1 with Y2' But this contradicts (*) once again.

Finally, suppose that (ii) holds. Let L be a regular neighborhood of
o

b i in T - A2 , such that L n dA2 is a regular neighborhood of

b i n JA 2 - db i in rJA 2. Then L is a disc and intersects A2 in two

arcs, which lie in different components of dA 2 . Since T is contained

in the boundary of the orientable manifold M, and is therefore orientable,

it follows that L U A2 is a disc with one handle.

On the other hand, let L* be a regular neighborhood of a In A'2'

Since da = db l , we may choose L* so that L * n dA 2 ~ L n dA 2 . The

frontier of L (resp. L *) in T -;\2 (resp. A'2) consists of two arcs

PI,P2 (resp. pt,p;); we may index these arcs so that JPi ,-rJp7(i= 1,2).

Now the existence of the disc HI guarantees that a is isotopic to b i

in M, with endpoints fixed. It follows that Pi is isotopic to p7 in M

with endpoints fixed, for i = 1,2.

Assume that a traverses A'2' Then A'2 - L* is a disc, whose

boundary consists of P~' p;, and two other arcs T I , T 2 C dA'2' It is

clear that the boundary of the disc-with-handle L U A2 is precisely

PI LJ T
t

U P2 U T
2

. Since Pi is isotopic to p7,rJ(LU A2) is isotopic to

the boundmy of the disc A~J.- L*, and is therefore contractible in M.
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But T is incompressible, and so a(LU A2 ) must bound a disc in T.

Thus T contains a disc and a disc with one handle having the same

boundary. This is impossible, since we observed at the beginning of

this argument that T cannot be a torus. This contrad iction completes

the proof.

COROLLARY. Assume that T is nota torus. Let (/1,"',an be en­

veloped singular curves. Then the ai are homotopic to powers of dis­

joint simple curves.

Proof. It is enough to show that the ai are homotopic to enveloped

curves a'i' which have normal envelopes Ki (1 < i:S n) such that the

sets a(K i naM) are disjoint. For then, since T is not a torus, the

normality of the Ki will imply that the sets Ki n oM are annuli; and

since a'i lies in Ki n aM, a'i will be homotopic to a power of either

component of a(Ki n aM).

Inductively we may assume that 0 1 ,"', 0n_l already have normal

envelopes Kl"", Kn_ 1 such that a(K I n aM),,,,, o(Kn_ 1 n aM) are dis­

joint. Now by Lemma 3, an has a normal envelope Kn· By taking Kn

in general position we may suppose that a(Kn n oM) intersects

a(K
I

n aM) U ... U o(Kn_
1

n aM) transversally. If the number v of points

in the latter intersection is > 0, we will show how to homotop an to a

curve a~, which has an envelope K~ such that a(K~ n aM) intersects

a(K
I

n aM) U ... U o(Kn_ 1 n aM) transversely in fewer than v points. By

induction on v, this will prove the corollary.
o

Since v > 0, Lemma 4 gives a disc i\ C T with ai\ = bj U bn, where

b
j

C a(K
j

n aM) for some j < n, bn C a(K n n aM), and bj U bn = ab j = abn·

Among aU such discs let t!. be taken to be minimal with respect to in­

clusion. Then t!. is disjoint from a(K I n aM) U ." U a(K n noM).

Hence if U is a small neighborhood of i\ in T, there is a homeo­

morphism J: T > T, isotopic to the identity re 1 (T - U), such that
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J(a(Kn n aM)) has exactly v-2

a(Kn_ 1 n aM), all transversal.

]:M .... M, and set a~=Joan'

§4. A tower

intersections with d(K l n aM) U '" U

Extend J to a PL homeomorphism

* -Kn = J (Kn)·

We use a "tower" argument - following ideas of Papakyriakopoulos

([12]), as refined by Shapiro, Whitehead and Stallings ([141, [16]) - to

produce a converse to Corollary 1 to Lemma 3 of Section 3. Combined

with the corollary to Lemma 4, Section 3, this will prove Proposition 2,

which was stated in Section 2.

It will be useful in what follows to distinguish between simplicial

complexes and polyhedra: by a (finite-dimensional) polyhedron we under­

stand a subset of a Euclidean space which is the underlying set :LI of

some (locally finite, geometric) simplicial complex L. Similarly, we dis­

tinguish between simplicial maps and piecewise-linear (PL) maps: a map

f: p, P' of polyhedra is PL if there are simplicial complexes L, L',

with :L: ~ P, IL'l = P', such that f "is" a simplicial map from L to L'.

DEFINITION. Let Land L' be finite simplicial complexes, and let

¢ : L .... L' be a simplicial map. The complexity of ¢ is the number of

unordered pairs lv, wI of vertices of L such that ¢(v) = ¢(w).

Whereas:

DEFINITION. Let P,Q be polyhedra, and suppose that P is compact.

The complexity of a PL map f: P 'Q is the smallest integer v for

which there exist simplicial complexes L, L' with ILl = P, ICI = f(P)

C Q, such that f "is" a simplicial map of complexity v from L to C.

We will write v(f) for the complexity of f.

The significance of this notion of complexity (a measure of the failure

of a map to be 1-1) lies in the following lemma, essentially due to

Stallings. Recall that a lifting of a PL map to a PL covering spaces is

PL. A covering space is trivial if the covering projection is a homeomor-
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LEMMA 5. Let f: P .... Q be a PL map of polyhedra, where P is com­

pact, and suppose that 171(f(P» ~ 171(Q) is surjective. If f has a lifting

f to a given non-trivial PL covering space 0 of Q, then v(f) < v(f).

Proof. Let Land L' be simplicial complexes such that 1LI ~ P,

iL'I = f(P), and f: L .... L' is a simplicial map of complexity v(f). Let

p: 0 .... Q be the covering projection, and let f(P) denote the component

of p-1(f(P» that contains f(P). Then f(P) is a covering space of f(P).

Hence f(P) can be identified (piecewise-linearly) with IL'I, where L'

is a simplicial complex, in such a way that p!f(P) is a simplicial map
- - -

from L' to L'; and the lifting f: L .... L' is automatically simplicial.

To prove the lemma, it suffices to show that this simplicial map
- -
f: L .... L' has complexity less than v(f), which is the complexity of the

simplicial map f: L .... L'. Since f = fop, any two vertices of L which

have the same image under f also have the same image under f; so
- - -
f: L .... L' has complexity :s v(f). If equality held, then p:f(P) would be

1-1 and would therefore map 171(f(P» isomorphicallyonto 171(f(P».

Since by hypothesis 17 1(f(P» '171(Q) is surjective, it would follow that

171(0) .... "l(Q) were surjective, contradicting our hypothesis that 0 is

connected and non-trivial.

It is assumed for the remainder of this section that (M, T) is an
-

acceptable pair. Note that if M is a finite covering space of M and T

is a component of the induced covering space of T, then (M, T) is

again an acceptable pair.

LEMMA 6. Let a be a non-contractible singular curve in T. Let M

be a 2-sheeted covering space of M, and let T be a component of the

induced covering space of T. Assume that a has a lifting a to T,

and that [;J C "/h has the same divisibility as [a] C 1716'). Finally,

assume that a is enveloped. Then a is homotopic in T to an en­

veloped singular curve.
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Proof. Let T: M .... M denote the (non-identical) covering transformation.

Then T
2

= 1, but T has no fixed points. Let p: M.... M denote the

covering projection.
-

By Lemma 3 of Section 3, a has a normal envelope K. Set A = K n
aM C T. By taking K in general position we may assume that aA and

a(TA) intersect transversally. (Of course this condition, and the following

seven paragraphs, are vacuous in the case that A is a torus.)

We claim that if aA n a(TA) -J- 0, then there is a disc t1 C T such
- _ a

that (i) a~ is a union of two arcs b l c:: aA and b2 c:: a(TA), (ii) t1 is
- -

disjoint from aA and from a(TA), and (iii) i\ n Tt1 = O.

To prove this, first apply Lemma 4 of Section 3, placing tildes on M

and T, and taking a l = 0-, a2= Ta, K1 = K, K2 = TK. This shows that

there is a disc t1 satisfying (i). If t1 is taken to be minimal among all

discs satisfying (i), then by transversality [cf. proof of Corollary to

Lemma 4, Section 3] it will satisfy (ii) as well.

The proof of the claim will be com pleted by showing that (iii) follows

from (i) and (ii).
a

If (iii) does not hold, then either T/1 or a(TI~) intersects t1. In the
0__ _

first case, since /1 is a component of the set aM - (aA U a(TA)), which is
a a

invariant under T, we must have T'\ = ~. Hence TA = ~, and the

Brouwer fixed-point theorem implies that T has a fixed point. This is a

contradiction.

Now suppose that a(d) intersects 1\. Then either Tb l or Tb2

intersects t1. Suppose for example that rb l n t1 f. O. Since b i is the
- -

closure of a component of aA - a(TA), Tb l is the closure of a component

of J(TA) - aA. The only sets which intersect t1 and which may be com-_ _ a

ponents of a(TA) - aA are b2 and y - b2 , where y is the component

of a(TA) containing b2 . If Tb l = b2 , then the ~imple curve bl U b2 is

invariant under T. But ~ is the only disc in aM whose boundary is

b l U b2; for otherwise the component of aM containing a would be a

2-sphere, and (j would 1)(' cOl1tractible. Hence we again conclude Tt1='\,

and again we !WVl':1 ('ol1II':llli.-liOl1,
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o

Finally, suppose that Tb 1 = Y - b2 , where y is a component of

a(TA). Note that since TOa is a non-contractible singular curve in the
- -

annulus TA, it is homotopic in TA to a k-th power (k> 0) of some

parametrization Yo of y. Since [Yo] C TTl (1') is primary by Lemma 2 of

Section 1, k is the divisibility of [a] in TTl (1'). On the other hand,

since b 1 U b2 bounds a disc £\ C T, y is isotopic to the simple curve
o 0

b1 U (y - b2 ); and the latter is invariant under T, since Tb 1 = Y - b
2

.

Hence [poyoICTT1(T) is divisible by 2, and [poa]=[a1CTT1(T) is

divisible by 2k. But by hypothesis, [a] has the same divisibility in

TTl (T) as [0-1 in TTl (1'), namely k. But this contradicts Corollary 1 to

Lemma 1 of Section 1.

- -
From the claim just proved we can deduce that if aA n a(TA) 1= 0,

then there is a singular curve a' homotopic to a on T, and a normal

envelope K' for a', such that if we set A' '" K' n aM, aA' and T(aA')
- -

intersect transversally and in fewer points than JA an'd T(aA). In fact,

the claim implies that there is a PL homeomorphism f): T .-. T, isotopic
- --

to the identity reI aT, such that f) (aA) n f) (a(TA)) contains four points
- -

fewer than aA n a(TA). We can extend f) to a PL homeomorphism

f): !VI .-.!VI which is PL isotopic to the identity. Then a' = f) 0 a and
- --
K' = f) (K) are the required curve and envelope.

We may therefore assume that

(1)

(2)

- -
JA n a(TA) = 0

By taking K in general position, we may further assume that

- -
Fr K and Fr (TK) intersect transversally.

-
We now claim that if some component y of (Fr K) n Fr (TK) bounds

- -
a disc in Fr K or in Fr (TK), then there is a homotopy 3-cell E C M- -
such that (n aE is a union of two discs D1 C Fr K and D2 C Fr (TK),

o -
(in D1 is disjoint from Fr (TK), and (iii') (aD 1) n T(aD 1)- 0.
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To prove this, recall that since the envelope K is normal, Fr K is

an incompressible 2-manifold. Now if y C Fr Kn Fr (rK) bounds a disc
- 0

D 1 C Fr K, say, w: may ta~e D1 to be minimal, so that D1 contains no

components of Fr K n Fr(rK). By incompressibility, y also bounds a

disc D2 C Fr(rK); and the minimality of D 1 implies that D1 U D 2 is a

2-sphere. By Principle 2 of Section 0, D1 U D2 bounds a homotopy

3-cell E C M, which therefore satisfies (i'). The minimality of D1 im­

plies (ii').

The proof of the claim will be completed by showing that (iii') follows

from (i') and (ii'). Note that aD 1 and reaD 1) are components of Fr K

n Fr (rK). Hence if (iii') does not hold, we must have r(aD 1 ) = aD I . Now

D1 is the unique disc contained in Fr K and bounded by aD1 ; and D2

is the unique disc contained in Fr rK and bounded by aD 2 = aD I = r(aD 1 ).

It follows that rD I = D2, and hence that D1 U D2 = aE is invariant

under r. But E is the only homotopy 3-cell in M bounded by aE, and

so rE = E. By a familiar application of the Lefschetz fixed point theorem,

r must then have a fixed point, which is impossible. Thus (iii') is

established.

From the last claim we can deduce that if some component of Fr K n
Fr rK bounds a disc in Fr K or in Fr rK, then there is an envelope K

- - --
for a such that K' n aM = A, but such that Fr K' and Fr rK' intersect

- -
transversally in fewer components than Fr K and Fr rK. In fact, if E

is the homotopy 3-cell given by the claim, let P be a small regular
- -

neighborhood of E such that (Fr K) n P and Fr (rK) n P are discs

D: J D 1 and D;) D2. Let D:'C ap be a disc which is disjoint from
* * * *,

D and which has the same boundary as D 1. Then D1 U D1 bounds a2 0 _

* * - * K- d f' K'homotopy 3-cell E C P. Either E n K = (2) or E C ; e Ine to

be, respectively, KU E* or K - E*. Clearly K' is a 3-manifold and

Fr K' = (Fr K- D:) U D:'. In view of (in and (~ii'), this _shows that if P

is a small enough neighborhood of E then Fr K' n Fr (rK') has fewer

('omponents than Fr Kn Fr (TK) the components aD I and a(rD 1 )
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having been removed. On the other hand it is clear that rJK'= (aK - D*) U*' _ _ }
D}, so that rJK' is homeomorphic to rlK, and therefore consists of tori.

To show that K' is an envelope for z" it remains to show that [z,] is
- - - -

special with respect to (K', A). This is obvious if K C K'. The other

possibility is that K = K' n E*, where K' n E* = D~'. But then, since

E* is a homotopy 3-cell, "}(K') --> "}(K) is an isomorphism by van

Kampen's theorem, and it follows that a is special in K'.
We may therefore assume that

(3) No component of Fr K n Fr (rK) bounds a disc in

Fr K or in Fr rK .

From (1), (2), and (3), it follows that every component of (Fr K) n
- - -

Fr (rK) is a simple curve, non-contractible both in Fr K and in Fr (rK).
- -

Since each component of Fr K or Fr(rK) is an annulus or a torus, it

now follows that the closures of the components of Fr K - Fr (rK) and

Fr (rK) - Fr K are all annuli and tori. But by (2), K U rK is a

3-manifold; and we have shown that its boundary is a union of annuli and

tori, meeting only pairwise and only in components of their own boundaries.
-

Hence each component of a(K U rK) has Euler characteristic zero.
- -

Set K = p (K U rK). Then K is covered by K U rK; hence it is a

3-manifold whose boundary components all have Euler characteristic zero.

Since K eM must be orientable, the components of rJK must be tori.

Finally, by hypothesis, a and Z, have the same divisibility k; and

since K' is an envelope, [z,] C "} (K) is divisible by some integer

e> 2k. Hence [a] C "} (K) is divisible bye, and is therefore special

with respect to (K, A). It follows that K is an envelope for (J, and the

lemma is proved.

In the proof of the next lemma, which is the crucial result of this

section, we use a space constructed as follows. Let A be an annulus,

let band b' be the components of aA, and let Sand S' be I-spheres.

In the disjoint union S' U A U S make the identifications x - j(x)(x ( b),
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x - j'(X')(X' f b'), where j: b .... Sand r: b' .... S' are covering maps of

degrees k and E respectively. The resulting space, which we will de­

note by pt, can be identified homeomorphically with a polyhedron in

such a way that the I-spheres Sand S' are subpolyhedra. Let Sand

S' be identified with the standard Sl via orientations that are compati­

ble in the obvious sense. It is then clear that if a and (J' are singular

curves in a polyhedron Q, such that [o]k = [o,]E C 771(Q), then there is

a map f: P~ -) Q such that f!S = 0, fl S' = 0'; and conversely, that if

such an f exists then Lalk = fa'j E.

LEMMA 7. Every special conjugacy class in 771 (T) is represented by an

enveloped curve.

Proof. Let c(x) be special in 771(T) and let k denote its divisibility

in 77 1(T). Then c(x) is divisible in 771(M) by an integer E> 2k. Set

c(x) = c(y)k, where c(y) is primary in 771(T), and c(x) - c(u/, c(u) c
771(M). Then by the above discussion there is a PL map f: P~ -) M

such that f I S represents c(y) in 771(T) and f ~ S' represents c(u) in

771(M). We may suppose f to be chosen so that f- 1(JM)=S. Wewill

prove by induction on the complexity v(£) that c(x) is represented by

an enveloped curve.

We can always find a neighborhood N of f(P~) in M, and a neigh­

borhood U of f(S) in T, such that U eN, (N, U) is an acceptable

pair, and 771(f(P~)) .... 771(N) is surjective. To see this, let Uo be a

regular neighborhood of f(S) in T. If 77 1(Uo) .... 771(T) is not injective,

there is a disc DC T such that D n Uo = aD; then Uo U D is a

2-manifold with fewer boundary components than Uo' Hence by repeating

this process a finite number of timps, we obtain a surface U C T such

that Ua C U and 77 1(U) .... 771(T) is injective. It follows that 771(U) ....

17 1 (M) is injective. It is clear from the construction that 771(f(P~)) ....

17 1(f(P~) U U) is s urjcct i Vt'. Now if No is a regular neighborhood of
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f(P~) U U in M, the pair (No' U) has all the properties required of

(N, U) except that "2(No) may be non-zero.

But if "2(No) t 0, then by Principle 2 of Section 0 there is a

2-sphere L C NO which does not bound a homotopy 3-cell in No'

Since "2(M) = 0, Principle 2 implies that L bounds a simply-connected

3-manifold Be M. Now (No U B, U) still has all the properties required

of (N, U), except that "2(No U B) may still be non-zero; but No U B
c

has fewer boundary components than No' since B must contain a com-

ponent of aNo' Hence it is again sufficient to repeat the process a

finite number of times.

Now it is immediate from the definition of (PL) complexity that f

still has complexity v(f) if it is regarded as a map of P~ into N.

Hence in doing the induction step we may replace (M, T) by (N, U); i.e.

we may assume that 171 (f(P~))' 171 (M) is surjective.

If HI (M; Q) has rank :S 1, then aM has total genus < 1. If aM

contains a 2-sphere, it follows from Principle 2 of Section 0 that M is a

homotopy 3-cell; this is impossible since aM contains the non-contractibl

singular curve fls. The boundary of M is therefore exactly a torus.

Hence if HI (M; Q) has rank <: 1, M is itself an envelope for a, and

the lemma is therefore true in this case.

Now suppose that HI (M; Q) has rank > 1. Note that HI (P~; Q) has

rank 1, since "I(P~) has a presentation <a,b:ak=b
e>. Hence

f*: HI (P~; Q) .... HI (M; Q) cannot be surjective; thus HI (M; Z)!im(f*:H1(P~;
.... HI (M; Z)) is infinite, and therefore admits a homomorphism onto a group

of order two. It follows that 171 (M; Z) has a subgroup H of index 2

which contains the image of f#:"1 (P~) .... "I (M) (basepoints being irrele­

vant since H is necessarily normal). This means that f lifts to a map
- e - -
f: P k .... M, where M is some 2-sheeted covering of M.

Let T denote the component of the induced covering space of T

which contains reS). Let c(y) denote the conj ugacy class in 171 (T)

determined by Cis, and c(u) the class in "I (i'l) determined by Cis'. Set
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c(x) = c(y)k. Then c(y) is primary, since c(y) is, and c(x) therefore

has divisibility k in 771(T). But the existence of the map f on P~

shows that c(x) C c(ii{ In particular c(x) is special, so that the

hypotheses of the lemma are satisfied by (M, T) and c(~); in this con­

text f obviously has the property required of f above. But since we

have assumed that 771(f(P~ ))-> 771(M) is surjective, Lemma 5 implies that

v(f) < v(f). By the induction hypothesis, therefore, x is represented by

an enveloped curve a in T. Since c(x) and c(x) both have divisibility

k, Lemma 6 now shows that the projection of a in T, which represents

c(x), is homotopic to an enveloped curve. This completes the induction.

We can at last give the

Proof of Proposition 2. Statement (a) follows from Lemma 7 above and

Corollary 2 to Lemma 3 of Section 3. Statement (b) follows from Lemma 7

and the corollary to Lemma 4 of Section 3.

§5. Boundary tori

We must deal separately with acceptable pairs (M, T) for which T

is a torus;. Proposition 2 gives no useful information in this case.

Note that since a torus T has an abelian fundamental group, it is

natural to speak of elements of 77 1(T) where until now we have spoken

of conjugacy classes.

DEFINITION. Let (M, T) be an acceptable pair. A non-contractible

singular curve a in T is called distinguished (relative to (M, T)) if

there is a singular curve in an incompressible component of aM which

is homotopic to a in M, but is neither homotopic nor anti-homotopic

(Section 0) to a in aM.

DEFINITION. An oriented 3-manifold M is called exceptional if M is

compact, and if each component of elM is a torus T such that

im (771(T) --> 771(M)) has index::; 2 in "I(M).
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REMARK. It may be shown, using the Stallings fibration theorem, than

an exceptional oriented 3-manifold which is irreducible (d. Section 6) is

a regular neighborhood of a I-sided Klein bottle or a 2-sided torus. This

fact will not be needed.

PROPOSITION 3. Let (M, T) be an acceptable pair such that T is a

torus but M is not exceptional. Then any two distinguished singular

curves in T which have the same divisibility in T are either homotopic

or anti-homotopic (Section 0) in T.

Proof. Let 0 1 and 02 be distinguished and let each have divisibility k.

Let e i be a singular curve in T (i = 1,2) such that (ei] l IT I (T) is pri­

mary and lei]k.~ [oiJ; we may assume that e i is a parametrized simple

curve, for every primary element of IT 1 (S 1 x SI) is represented by such a

curve.

It is enough to show that the simple curves el(SI) and e 2 (SI) are

isotopic to disjoint simple curves; for then eland e 2 are either homo­

topic or anti-homotopic, and hence so are 01 and 02' We suppose

e 1(SI) and e
2

(SI) to intersect each other transversally, and to have

been chosen within their isotopy classes so as to minimize the number of

points in their intersection. Under these conditions we will show that

e l (SI) n e
2

(SI) = 0.

Note that

(*) there is no disc .\ C T whose boundary has the form

a l U a
2

, where ai:::: ei(SI) is an arc and a l n a2 =

Ja l = Ja 2 ·

For if such a 1'\ existed we could take it to be minimal with respect

to inclusion; and el(SI) would then be isotopic, under an ambient

isotopy constant outside a small neighborhood of 1'\, to a curve which

would intersect e
2

(SI) transversally in a smaller number of points.
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We will study ';1 and ';2 by lifting them to an appropriate cover­

ing space. Fix a basepoint x ( T, and let M be the covering space of

M determined by the subgroup im (Tr 1(T, x) -, Tr 1(M, x)) of Tr1 (M,x). Let
. .

x be the canonical basepoint of M, and let p: M ) M be the projection.
. .

Then since Tr 1(T) .... Tr 1(M) is injective, Tr 1(T) .... Tr 1(M) is an isomorphism,

where T is the component of p-l(T) containing x. On the other hand,

Tr 2 (M) ~ Tr 2 (M) = 0, since (M, T) is acceptable. Since the 3-manifold M

with non-empty boundary is necessarily without homology in dimensions

> 2, the Hurewicz theorem now implies that Tri(M) ~ 0 for all i > 1. We

can conclude that T c... M is a homotopy equivalence; this follows, for

example, from Whitehead's theorem ([151, p. 405) that a map between con­

nected polyhedra is a homotopy equivalence if it induces isomorphisms of

homotopy groups in all dimensions.

It is clear from the construction that T is a degree-one covering of T.
.. .

We claim that no component B I=- T of aM can be a torus. First of

all, since T c... M is a homotopy equivalence, the generator of H2(T;Z2)
-

maps onto a generator of H2(M; Z2); hence if B is a torus, a generator
. .

of H2(B; Z2) must either map to zer.o in H2(M; Z2)' or e~se ha~e th:

same image as the generator of H2(T; Z2)' Thus either B or TUB

bounds a compact 3-manifold, which by connectedness must be all of M.
- - - - -

But B cannot bound M, since TeaM. Hence M is compact and aM

= T U 8. It follows that p-l(T) is either T or TU 8. On the other

hand, since T c... M is a homotopy equivalence, the exact homology

sequence of (1\1, T) shows that Hi(M, T; Z) = 0 for all i. Now M is

orientable, since M is, and Poincare-Lefschetz duality ([15], p. 298)

shows that Hi(M, 8; Z) = 0 for all i. By the universal coefficient

theorem, Hi(M, 8; Z) = 0 for all i. Again by the exact h.omology _

sequence, HI (8) .... HI (M) is an isomorphism; since Tr 1(B) and Tr 1(M)

are abelian, this means that Tr 1(8) ) Tr 1(M) is an isomorphism. In the

case that p-l(T) TUn, it follows that plB induces an isomorphism

of Trt(H) onto {{to'); thlls i1, as a covering space of T, has degree
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one. This implies that p-I(T) = TU H is a degree-two covering space

of T. On the other hand, in the case that p-I(T) = T, p-I(T) is of

course a degree-one covering of T. Hence the degree of M as a cover­

ing space of M, which is equal to the degree of p-I(T) as a covering

space of T, is at most two in any case.

Now let T I be any component of aM. Then T I is covered either by

T or by B (possibly by both), with degree one. In particular T I is H

- -
torus. Moreover, since "I(T) and "I(B) are mapped isomorphically

onto "I (M) via inclusion, the subgroup im ("I (TI) .... "I (M» of "I (M)

(defined a priori up to conjugacy) corresponds to the covering space M

and hence has index at most two. This means that M is exceptional, a

contradiction to the hypothesis. Thus the claim is proved.

Note, however, that any incompressible component B of aM has

abelian fundamental group since M does. Since we have shown that B

is not a torus if B 1= T, it must be an open disc or an open annulus.

Now, since the singular curve 0i is distinguished for i = 1,2, there

is a singular curve Pi in aM which is homotopic to 0i in M, but not

in aM. By the covering homotopy property for covering spaces, the unique
-

lifting ~i of 0i to T is homotopic to some lifting Pi of Pi to aM;
but ~i and Pi cannot be homotopic in aM. If Pi were to lie in T,

then since T c.... M is a homotopy equivalence, Pi would be homotopic

to ~i in T; he_nce Pi must lie in a component Hi j T of aM. By the

above remarks Bi is an open annulus or disc; since it contains the non­

contractible singular curve Pi' it is an open annulus.

Since 0i is homotopic in T to a k-th power of ';i(SI), ai - and

hence Pi - are homotopic in M to a k-th power of the unique lifting
- - - I . -
';i of ';i to T. Thus if Ni is a regular neighborhood of ';i(S ) in T,

there are non-contractible singular curves in the disjoint open subsets
o 0 _ _

Ni and Bi of aM which are, homotopic in M. The generalized loop

theorem ([19]) then asserts that there are simple curves xi C Ni , ri C Bi ,

which bound an annulus Ai C M. Since xi is necessarily ambient
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isotopic to t i(Sl) in Ni , and since ambient-isotopic curves in Tare

ambien:-isotopic_in M, we may assume that xi = ii(Sl). Furthermore,

since B1 and B2 are either disjoint annuli or the same annulus, r
1

and

r2 are ambient-isotopic to disjoint curves, and may therefore be assumed

disjoint. Finally, we may assume that Ai n aM = aA i ; and since t
1

CS 1 )

- 1 .
and ';2CS ) Intersect transversally, we may take Al and A

2
to inter-

sect each other transversally by putting them in general position.

Weare at last ready to prove that ';l(Sl) n';2(sl) = 0. Since T is

a degree-one covering of T, it suffices to show that t1 (S1 ) n t2(S1 ) = 0.
- 1 - 1

Assume to the contrary that ';1 (S ) n ';2(S ) contains a point y. The

component of Al n A2 containing y is an arc c (by transversality,

since y (aM) and the other endpoint z of c must lie in (aA
1

) r, caA2).

But Z cannot lie in r1 or r2 since r1 n r2 ~ 0 and since B 1
, B2

are d isj oint from T. Hence z ( t1 (Sl) n t2(Sl). In particular, for

i = 1,2, c is a 2-sided arc in the annulus Ai' and the two points of

ac = c n aA i lie in the same component t i(Sl) of aA i ; hence c is

the frontier of a disc D i C Ai' and (aD i)- ci is an arc ai C ';i(Sl).

Each choice of a point y (t1(Sl) n t2(Sl) determines discs D1 CAl'

D2 C A2 in this way. Let y be chosen so as to make the disc D1 mini­

mal with respect to inclusion. Then a1 contains no point y' (i1(Sl) n

';2(Sl), for y' would determine a disc D'l C D1 . In particula~, a1 n a2

~ 0; since a 1 and a 2 have the same endpoints, a 1 n a 2 c: T is a

simple curve. It is contractible in M, for a 1 can be (non-ambiently)

isotoped through D1 to c, and then through D2 to_ a2 . Since T is

incompressible, a 1 U a2 must actually contract in T, and must there­

fore bound a disc ~ c: T. This contradicts the statement (*) proved

above, and thus completes the proof.

COROLLARY 1. Let (M, T) be as in Proposition 3. Then any two

singular curves in T which are homotopic in M are either homotopic

or anti-homotopic in T.
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Proof. If the singular curves a and a' in T are homotopic in M but

are not homotopic or anti-homotopic in T, then by definition they are

both distinguished. On the other hand, it follows from Proposition 1 (Sec­

tion 1) that a and a' have the same divisibility. Then Proposition 3

asserts that a and a' are homotopic or anti-homotopic, after all.

COROLLARY 2. Let (M, T) be any acceptable pair such that T is a

torus. Then any conjugacy class in "I (M) is represented by at most two

elements of 171 (T).

Proof. If M is not exceptional this is contained in Corollary 1. If M is

exceptional we can identify 171 (T) with its image in 171 (M), which is of

index ~ 2. Now for any x ( 171 (T), the number of conjugates of x in

171 (M) is equal to the index of the centralizer of x in 171 (M), which con­

tains TTl (T) since the latter is abelian. Thus any conjugacy class which

intersects 171 (T) contains at most two elements.

We will also need

LEMMA 8. If in the acceptable pair (M, T), M is an exceptional

3-manifold and T is a component of aM, then 171 (T) contains no

special elements (Section 2).

Proof. Identify 171 (T) with its image in 171 (M). Since 171 (T) has index

:s. 2 in "I (M), it is normal; in particular, the square of any element of

"l(M) is in 171 (T). Now if x ("l(T) is special and has divisibility k

in 171 (T), it has the form x = /, where 1 1= y ( 171 (M) and E> 2k. Then

(y2)E ~ x2 has divisibility 2k in "I (T) by Corollary 2 to Lemma 1 of

Section 1, but is divisible by E> 2k > 0 in 171 (T), since y2 f 171 (T) by

the above. This contradicts Corollary 1 to Lemma 1 of Section 1.

§6. Free products with amalgamation

This section contains the only group theory required for the proof of

the theorem of Section 7.
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Let F,G, and H begroups,andlet i:H .... F and j:H ... G be

monomorphisms, regarded as identifying H with subgroups of F and G.

Recall that the free product of F and G with amalgamated subgroup H

is the quotient of the free product F*G by the relations i(h) = j(h) for

all h (H. Recall the fundamental property of F *G, as proved for
H

example on pp. 198-199 of [6]: if 11>, r are complete sets of left coset

representatives for F, G, then every element of F *G has a unique ex-
H

pression in the canonical form hal ···an , where h(=i(h)=j(h» (H,

a i ( II> u I' but a i I H (1 SiS: n), and a i+1 (II> if and only if

a i ( I' (1 -:; i < n). We will call the integer n:;> 0 the length of the given

element. The element will be called a cyclically reduced word if n S 1,

or if one of the elements a 1 and a n is in II> and the other is in I'.

LEMMA 9. In a free product with amalgamation F *G,
H

(i) every element is conjugate to a cyclically reduced word;

(ii) two cyclically reduced words which are conjugate in F *G
H

have the same length, provided that one of them has length> 1

(iii) if w is a cyclically reduced word of length n 2: 2, then wm

(m 2: 0) is a cyclically reduced word of length mn.

Proof. Part (i) is the initial statement of Theorem 4.6 from p. 212 of [6].

Part (ii) follows immediately from Part (iii) of the theorem just quoted.

Part (iii) appears on the bottom of p. 208 and the top of p. 209 of [6].

COROLLARY. [£ w ( F * G is such that w m is infinitely divisible for
H

some m> 0, w is conjugate to an element of F or G.

Proof. If the conclusion is false, then by part (i) of the lemma, w is

conjugate to a cyclica lly reduced word w' of length E> 1. By part (iii)

of the lemma, w,m. which is infinitely divisible, is a cyclically reduced

word of !pngl h IIII' I.
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For infinitely many integers n > a there exist elements x of F * G
n H

such that x~ = w,m. By part (i) of the lemma, xn is conjugate to a

cyclically reduced word x'n of some length An' If An > 1, then (x'n)n

is cyclically reduced of length nAn by part (iii) of the lemma; hence by

part (ii), nAn = mE. Since this is possible for only finitely many values

of n, some xn must be conjugate to an element of F or G; hence

w,m must also be conjugate to an element of F or G. But since w,m

is cyclically reduced of length > 1, this contradicts part Oi) of the lemma.

LEMMA 10. Let F and G be subgroups of groups F' and G'. Let H

be a group that is identified isomorphically with subgroups of F and G,

so that F *G and F'*G' are defined. Then the natural homomorphism
H H

J1: F * G .... F'* G' is injective, and for any w f F * G, fleW) has the same
H H H

length as w. Furthermore, if w is cyclically reduced then so is J1(w).

Proof. Let w be written in the above canonical form as an element of

F * G. Then using the identifications described in the hypothesis, we can
H

regard this as the canonical form of J1(w) considered as an element of

F'* G'. The lemma follows, since the length of an element, and the
H

properties of being cyclically reduced and of being the identity, can be

read off from the canonical form of the element.

The final result of this section interprets the preceding group theory

in a topological context. Its proof is conveniently worded in terms of a

construction that will be used in a stronger way in Section 7.

Let j" be a 2-sided surface in a 3-manifold m. Then it is easy to

construct a 3-manifold M, possibly disconnected, and disjoint surfaces

T, T' in aM, such that m is obtained from M by identifying T with

T' via some (PL) homeomorphism, and such that 1 = T = T' under the

identification. Moreover, the pair (M, T U T') is determined up to homeo­

morphism by mand :f. We will say that M is obtained from 'lTI by

splitting along T
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LEMMA 11. Let ~ be an incompressible 2-sided surface in a 3-manifold

m. Then any conjugacy class c(x) C 171(m), such that xm is infinitely

divisible for some m > 0, is represented by a curve in m- ~.

Proof. If ~ separates m, then since ~ is incompressible, van Kampen's

theorem provides an identification of 171 (m) with a free product with

amalgamation F -= 171 (A) * 17 1(B), where A and B are the com-
17 1(3)

ponents of the manifold obtained by the splitting mat ~. Hence by the

corollary to Lemma 9, c(x) is represented by a (singular) curve in A or
o 0

B, and hence by one in A or B.

Now suppose that ~ does not separate m. Since m is orientable

we can define a homomorphism from HI (m; Z) to Z as intersection num­

ber with the surface ~ (or with its fundamental class in H2 (m, am; Z)).

This induces a homomorphism from 171(m~ to Z, whose ker~el L deter­

mines an infinite cyclic covering space mof m. Write p: m.... m for the

projection, and T: m.... mfor a generator of the covering group. If M is

the closure of a component of m- p-l(~), then M is homeomorphic to

the manifold obtained by splitting m at ~; its frontier in mconsists- -
of two surfaces ~ and T~, each of which is mapped homeomorphically

onto ~r by p. We have m= U TnM, Tn- 1MnT nM = Tn~, and TnMnTn'M= (2)
nfZ - -

for In'-n\ > 1. Note also that ~ is incompressible in m, since ~ is

incompressible in m.
The image of the conjugacy class c(x) under the intersection number

homomorphism is an integer v such that mv is infinitely divisible in Z;

this implies v = 0, i.e. c(x) C L. Moreover, for any conjugacy class

c(y) C 171 (m), such that c(y)p = c(x)m, the same argument shows that

c(y) C L. It follows that c(x)m is actually infinitely divisible in L.

Hence a singular curve a representing c(x) has a lifting a in m, and

the conjugacy class c(x) determined by a in 171 (m) has infinitely

divisible m-th powpr.
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*n1 -
77 1 (T (J))

n n -1
(A - (T 1(M) U"'U T 2 (M»); similarly the natural map G -. G' is injec-

By compactness we can find integers n1:S n2 such that a(Sl) C
n1 n2

T (M) U ... U T (M). Suppose this to have been done in such a way that

n2 - n1 ::: 0 has the smallest possible value. Then we c~aim that n1 = n2 .

Assume, to the contrary, that n1 < n2 . Then since j" is incompres-
. n1 n

sIble, van Kampen's theorem allows us to identify 77 1(T (M)U",UT 2(M»
n 1 n2 -1

with an amalgamated free product F * G, where F = 77 1(T (M)U·· ,UT (M
H

n2 n2 ~G = 771(T (M», and H = 771 (T (.J». Then the conjugacy class determined
- n1 n2

by a in 77 1(T (M) U ... U T (M» is represented by a cyclically reduced

word w in F * G, by part (i) of Lemma 9. Let e denote the length of w.
H

Now set F' ,- 771(A), G' = 771 (B), where A and B are the closures of
- n2 - n2 -1 0 n2 0

the components of m- T (1) containing T (M) and T (M) respec-

tively. We can identify 771 OR) with F'* G'. Furthermore, the natural map
H

F -+ F' is injective, for F' can be identified with F

tive. Identifying F and G with their images under these injections we

see that F, G, F', G', and H satisfy the hypotheses of Lemma 11. H:nce

c{j.t(w», which is the conjugacy class c(x) determined by a in 77 1OR)
ooF'*G', is a cyclically reduced word of length e in F'*G'. Butwe

H H
observed above that c(x)m is infinitely divisible in 771on). Thus by the

corollary to Lemma 9, x is conjugate in F' * G' to an element of F'
H

or G', i.e. to a cyclically reduced word of length :S 1. Part (ii) of

Lemma 9 therefore shows that e:s 1.
n1 n2 . '

Recalling that Wf77 1 (T (M)U·"UT (M»~F*G Isacychcally
H

reduced word of length e, we now know that w, which represents the

conjugacy class in F * G determined by;;, is an element of F or G;
H n n

i.e. a is homotopic in T l(M)U,,,U T 2(M) to a (singular) curve in
n n -1 n2 . . .

T l(M)U",UT 2 (M) or in T (M). This contradIcts the assumed mInI-

mality of n2 - n1 > 0; thus we must have n1 = n2 ·
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In other words, a lies in a region T
n1

(M), and by a homotopy it may
n 0 - -

be assumed to lie in T 1(M) C m- p-1 (J). Then p 0 a is a curve in

m- j" representing <x>.

§7. Hierarchies; the main theorem

DEFINITION. A 3-manifold M is irreducible if every 2-sphere in M

bounds a 3-ce11.

DEFINITION (d. [18], [20]). A compact, orientable, irreducible 3-manifold

is sufficiently large if it contains an incompressible 2-sided surface. A

compact irreducible 3-manifold M is almost sufficiently large if some

orientable, irreducible finite covering of M is sufficiently large.

In [18], the sufficiently large manifolds are characterized among the

compact, orientable irreducible 3-manifolds by their fundamental groups.

In particular it is shown that M is sufficiently large if HI (M; Z) is in­

finite. This is true for example if M is the complement of an open regu­

lar neighborhood of a knot in S3.

We now state our main result.

THEOREM. If the compact, irreducible, orientable 3-manifold M is

almost sufficiently large then IT 1(M) has no infinitely divisible elements.

The proof of this theorem occupies the rest of the present section.

The following standard argument shows that for m almost sufficiently

large, IT lOll) is torsion-free. Since m is irreducible and orientable,

Principle 2 of Sect~on 0 implies that IT2 (m) = O. On t~e other hand, since

some finite cover m of m is sufficiently large, IT lOR) is either a non­

trivial free product with amalgamation or admits a homomorphism onto the

integers: this is shown in [18]. In either case, IT 1(m) is infinite. By

applying the Hurewicz theorem to the universal covering space of m, one

concludes that m is aspll('ric;d (IT n(m) ~ 0 for n '> 1). By a theorem of
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P. A. Smith's (Theorem 16.1 on p. 287 of [4] applied to the universal

covering of m), finiteness of dimension then implies that 17 1 em) is

torsion-free.

The proof of the above theorem now reduces to the case where m IS

orientable and sufficiently large via the following fact:

LEMMA 12. If a torsion-free group G has an infinitely divisible element

1= 1, so does each of its subgroups of finite index.

Proof. If a is infinitely divisible in G, so is am for any m > O. If

a 1= 1, then am 1= 1 since G is torsion-free.

The proof in the case that mis sufficiently large depends on Haken's

theory of hierarchies; we review the re levant results from [20].

DEF1N1TlON. A hierarchy for a 3-manifold m is a sequence of 3-manifolds

m= Mo"'" Mn, not necessarily connected, such that

(i) each component of Mn is a 3-cell, and

(ii) for 0 ~ i < n, Mi +1 is obtained by splitting Mi along a

2-sided incompressible surface T i (Section 6).

The integer n:::: 0 is called the length of the hierarchy.

REMARK. Any component of a manifold obtained by splitting an irreduci­

ble manifold mat an incompressible surface j" is irreducible.

We extract the following result from [161. It seems to be essentially

due to Haken.

LEMMA 13. Every sufficiently large, compact, irreducible, orientable,

connected 3-manifold mhas a hierarchy.

Proof. If am 1= 0, this is contained in Theorem 1.2, p. 60 of [20]. If m
is closed, it has an incompressible surface ~r; we can split mat j" to

obtain a 3-manifold M. Each component of M is irreducible, by the
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remark following the definition of a hierarchy, and has non-empty boundary

Hence each component of M has a hierarchy, and it follows that ~l has

one.

To prove the theorem when m is sufficiently large, we argue by in­

duction on the length of a hierarchy of m. By definition, if mhas a

hierarchy of length n, then mcan be split at some incompressible

2-sided surface j" to produce a manifold m' which has a hierarchy of

length < n. Arguing inductively, we assume that

for any component M of m', TTl (M) is without

infinitely divisible elements -I 1.

Assuming in addition that

TTl (:»I) has an infinitely divisible element a,

we will produce a contradiction.

Let To and T 1 denote the surfaces in am' that are identified to

produce j"; for i = 0,1, let Mi denote the component of m' containing

T i (so that Mo 1= M1 if and only if j" separates m).

LEMMA 14. For i = 0,1, (M i , T i ) is an acceptable pair.

Proof. Since j" is incompressible in m, T i is clearly incompressible

in M·. On the other hand, M· is orientable, and is irreducible by the
1 1

remark following the definition of a hierarchy. Hence by Principle 2 of

Section 0, TT 2 (M i ) = 0.

Let ¢: m' .... mdenote the identification map.

DEFINITION. A lifting of a singular curve 0 in m is a singular curve

a in m' such that ¢Joa = o.

The following elementury fact will be used twice.
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LEMMA 15. If {3 and {3' are non-contractible (singular) curves in

m- j" which are homotopic in m, then there are singular curves {3 =

{3o' {3l,···,fis = {3' (s > 1) such that

(i) {3l,",{3s_l are in j",
and

(ii) {3i and {3itl admit homotopic liftings in m' for 0:5 i < s.

Proof. Let f: Sl x I .... mbe a PL homotopy between {3 and (3'; thus

f(x, 0) = (3(x) and f(x, 1) = f3'(x), for all x ( Sl. We may take f to be

transversal to j". Suppose that in addition we can choose f so that no

component of f-l(j") bounds a disc in Sl x I. Then it will be possible

to index the components of Cla) u (Sl x aI) as Sl x 101 = So' Sl ,"',

SS_l'SS = Sl-111, in such a way that Si U Si-d bounds an annulus Ai'

with Ai n f-l(j") = 0, for 0 S i < n. The lemma will then follow, for we

can set (3i = fl Si' where Si is identified with Sl via an appropriate

homeomorphism.

It is therefore enough to show that if some component y of Cl(j")

bounds a disc 1\ C Sl x 1, then there is a PL homotopy f': Sl x I .... m,
transversal to ;J and agreeing with f on Sl x JI, but such that f'-l(j")

has fewer components than f-l(j"). To do this, let 1\' be a regular

neighborhood of ~ in Sl x I, such that 1\' - 1\ is disjoint from f-l(j")
o

and such that f(l\'-1\) is contained in a regular neighborhood N of :r.
Then fIJ~' is homotopic to a constant in m, and therefore also in

N - j" since j" is 2-sided and incompressible. Hence we can extend
o 1

fl((sl x I)-to to a PL map f'ls x I .... msuch that f'(I\') C N - j".

Clearly f' has the required properties.

COROLLARY. The conjugacy class c(a) (see t above) is represented

by a singular curve ao in ;J.

Proof. Since a is infinitely divisible, there exists an element xn of

IT lOR), for each of infinitely many integers n > 0, such that xnn_ a.
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By Lemma 11 of Section 6, c(a) is represented by a singular curve a in

m- 1, and each c(xn) is represented by a curve en in m- 1. Now

by the above assumption (*) a cannot be homotopic in m- 1 to the

n-th power (Section 0) of en for infinitely many n; fix n so that a is

not homotopic to the n-th power TJn of en in m- 1. Since a and TJn
are homotopic in m, Lemma 15 applies with {3 = a, {3' ~ TJ n' The integer

s appearing in the conclusion of Lemma 15 must be > 1, since otherwise

a and TJ n would be homotopic in m- 1. Hence we can define ao to

be the singular curve (3}. Since a and ao admit homotopic liftings in

M, they are certainly homotopic in m.
Let k denote the divisibility (Section 1) of [aol:::: 77} Cf).

LEMMA 16. For each of infinitely many integers n> 0, there exists a

singular curve an in 1 such that

(i) rani:::: 77}('J) has divisibility k;

(ii) for some lifting ;n of an to some T j (j = 0 or 1), [;n] C

77}(Tj ) is special (Section 2) with respect to the pair (Mj,Tj ),

and is divisible by n in 77} (Mj );

(iii) an is either homotopic to ao in 1, or else has a lifting

; 'n to some Tr (j' = 0 or 1) which is distinguished (Sec­

tion 5) with respect to the pair (Mr' Tr);

(iv) if 1 is a torus and separates m, then an has a lifting

which is homotopic in m' = Mo U M} [disjoint] to some

lifting of ao'

Proof. Since a is infinitely divisible in 77} em), there are infinitely

many integers n > 2k such that a ,. xnn for some xn f 77} em), It follows,

moreover, from Lemma 11 of Section 6, that each c(xn) is represented

by a curve !; ( m- T On the other hand, any lifting ao of ao to m'
n 0

is certuinly homotopic 10,1 curve (~'o in m'; and if TJn is an n-th power

(Section 0) of ,.. II 111)1( :1,,,'11 (!)"(~'o C1nd lin me homotopic in m.
So hy 1,('111111:1 I~), 1111'1" .11" ""If',IILII "lII"V('S "II/ill' /II ,"', /!s l/n,
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such that f31"",f3 s _ 1 are in ~J, and f3 i and f3 it1 have homotopic

liftings to :nr for 0 s: i < s. If we now define Wo = 0
0

, Wi = f3
i
(l < is: n),

it is still true that f3'i and f3'i t 1 have homotopic liftings to :nr(05 i <m);
d f3' f3' . '(an - 0"'" - s-1 are In J.

We claim that the conclusions of the lemma are true if we set a =f3' 1n s-
First of all, since for 1 s: i < s-l, Wi and f3'i+1 have liftings in

To U T 1 C a:nr which are homotopic in :nr, Proposition 1 of Section 1

shows that Wi and f3'i-'. 1 have the same divisibility in 1; hence

an = f3s - 1 has the same divisibility as f3 0 = 0 0> namely k. This is

conclusion (i). On the other hand, since some lifting a of a '0 f3
n n s-1

to Tj , j = 0 or 1, is homotopic in Mj to f3s'~ TJ n , which is an n-th

power of ';n in Mi , [an]C171(Mj) is divisible by n. But since, by con­

clusion (i), an C 17 1(T j ) has divisibility k, our restriction of n to

values > 2k guarantees that an is special. Thus (ii) is proved.

We may assume that f3'i and f3'i+1 are never homotopic or anti­

homotopic (Section 0) in 1 for 1 s: i < m-1; for if they are we can re­

place the sequence f3'0" .. , f3~ by a sequence with fewer terms but having

the same properties. Now if s > 1, this assumption implies in particular

that an = f3's-1 and f3'S-2 are not homotopic or anti-homotopic in 1,
although they have homotopic liftings a'n and {3's-2 to :nr Thus a'n

is not homotopic or anti-homotopic to (3's-2 in aMj" where j' is de­

fined by a'n(S1) C Tr' This says that a'n is distinguished with respect

to the pair (Mr' Tr)' On the other hand, if s = 1, then obviously an"

Wo ~ 0 0 , This proves (iii).

Finally, suppose that 1 is a torus and separates m. Then we can

identify Mo and M1 with submanifolds of m', and within each Mi we

can identify T i with 1. Note also that T 1 is disjoint from Mo (in

m'), and To from M1·

By (ii), [an] is special with respect to some (M i , T j ) for j = 0 or 1;

by symmetry we can take j = O. Then the manifold Mo is not exceptional

according to Lemma 8 of Section 5. (Note that M1, on the other hand,

may very well be exceptional.) Our assumption that (i'i and (i'j I I are
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never homotopic or anti-homotopic in j" therefore implies, by Corollary 1

to Proposition 3 of Section 5, that they are never homotopic in Mo' But

OUr original condition on the f3i means, in this case, that f3'i and f3'i+l

are homotopic in Moor in M1 for 1 S i < s-1. Thus a0 = f3'0 and

an = f3's-l are homotopic in M1 , and conclusion (iv) is proved.

LEMMA 17. The singular curves an given by Lemma 16 represent only

finitely many homotopy classes in j".

Proof. First consider the case where j" is not a torus. By conclusion

(ii) of Lemma 16, each an has a lifting in T i' j = 0 or 1, which repre­

sents a special conjugacy class in 17 1(Tj ). But in this case, by the

corollary to Proposition 2, Section 2, each 17 1(T j) contains only finitely

many special conjugacy classes (relative to (M j, T j». The lemma follows

in this case.

Next suppose that :J is a torus but does not separate m. Then the

split manifold m' is connected and has To and T 1 among its boundary

components. By conclusion (ii) of Lemma 16, there are special curves

an with respect to one of the pairs OJ(, To) and OJ(, T 1)' It therefore

follows from Lemma 8 of Section 5 that m' is not exceptional. Hence by

Proposition 3 of Section 5, each of To and T 1 contains at most two

homotopy classes of distinguished curves of divisibility k. But by con­

clusion (iii) of Lemma 16, each an either is homotopic to ao in j", or

else has a lifting a'n to To or T 1 which is distinguished, and which,

by conclusion (i) of the same lemma, has divisibility k. It follows that

in this case the a represent at most five different homotopy classesn

In j".

Finally, suppose that j" is a torus and separates m. Then we can

identify Mo and M1 with submanifolds of m, and T i with 1, within

Mi' By conclusion (iv) of Lemma 16, each an is homotopic to ao in

Mo or in MI' But by Corollary 2 to Proposition 3 of Section 5, there is

at most onl' !tolllol0(lY l" l:tss of curves in To which are homotopic to (To
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in Mo ' apart from the class of 0 0 itself; and similarly in MI' Hence

in this case the an represent at most three distinct homotopy classes.

Proof of the theorem concluded. Lemma 16 gives singular curves a in
n

j" for an infinity of integers n > O. By Lemma 17, these represent only

finitely many homotopy classes in j"; thus by restricting n to a smaller

infinite set of integers we may assume that the an are all homotopic in

j". Furthermore, by (ii) of Lemma 16, each an has a lifting an to some

Tj (j = 0 or 1) such that [an] is divisible by n in 17 1(M j). By restrict­

ing n to a still smaller infinite set of integers, and perhaps re-indexing,

we may assume that these j are all equal to O. Then the an all repre­

sent the same non-trivial conjugacy class in 17 1 (M o)' which is divisible

by each of integers n in our infinite set. This contradicts our induction

hypothesis (*), and the theorem is thereby proved.
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