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Open Book Structures on (n − 1)-Connected

(2n + 1)-Manifolds

By Oziride Manzoli Neto, Sadao Massago∗ and Osamu Saeki†

Abstract. We completely classify simple open book structures
on (n− 1)-connected closed (2n+ 1)-dimensional manifolds for n ≥ 4,
n �= 7, and on (n − 1)-connected rational homology (2n + 1)-spheres
for n = 3, 7, using their algebraic topological invariants. This gener-
alizes some known results about the classification of fibered knots in
spheres and the existence of open book structures on manifolds. We
also give applications and examples so as to show the effectiveness of
our classification.

1. Introduction

In the topological study of isolated singularities of complex hypersurfaces

in Cn+1, a special kind of codimension two submanifolds in S2n+1, called

simple fibered knots, play an important role [Mil68]. These submanifolds are

highly connected and their complements fiber over the circle.

A natural generalization of simple fibered knots, called an open book

(or an open book structure), consists of a highly connected codimension two

submanifold K in a highly connected closed manifold M , and a fibration of

M−K over the circle S1, satisfying certain conditions (see Definition 2.1 for

details). Note that the case discussed by Milnor [Mil68] is a particular case

whereM = S2n+1. As a generalization of Milnor’s fibration theorem, Hamm

[Ham71] and Lê [Lê92] have shown that open book structures on manifolds

not necessarily diffeomorphic to S2n+1 appear naturally around isolated

singularities of complex analytic functions on certain complex varieties (see

∗The second author has been partially supported by CNPq, Brazil.
†The third author has been partially supported by Grant-in-Aid for Scientific Research

(No. 13640076), Ministry of Education, Science and Culture, Japan.
2000 Mathematics Subject Classification. Primary 57Q45; Secondary 57R40.
Key words: Fibered knot, isotopy of embeddings, Milnor fibration, open book, ratio-

nal Seifert form, spinnable structure.

439



440 Oziride Manzoli Neto, Sadao Massago and Osamu Saeki

also [Kin97]). This gives us a good motivation for the study of open book

structures on general manifolds.

Historically, the terminology “open book” was introduced by

Winkelnkemper [Win73], who proved that an arbitrary simply connected

closed (2n+1)-dimensional manifold with n > 3 admits an open book struc-

ture. Independently, Tamura [Tam73] proved a similar result, although he

used the terminology “spinnable structure”. Then, Lawson [Law78] proved

that the simply connectedness is not necessary for n ≥ 3, and Quinn [Qui79]

generalized the result of Lawson, for n ≥ 2, and studied open book struc-

tures on manifolds with boundary. On the other hand, for simply connected

5-dimensional manifolds A’Campo [A’C72] obtained an existence theorem,

and for 3-dimensional manifolds Alexander [Ale23] obtained an existence

theorem. These theorems have been used to obtain certain interesting

properties of these manifolds, and the authors have not worked over the

classification problem in general cases.

The special case of open book structures on the sphere S2n+1, n ≥ 2,

called “simple fibered knots”, have been studied by several authors ([Ker65,

Lev70, Dur74, Kat74, Sae99]) and classification theorems have been ob-

tained for n ≥ 3. In the classification, Seifert linking forms associated with

a fiber of the fibration over the circle has played an essential role. Note

that linking numbers can be naturally defined in S2n+1, but not in general

manifolds.

The purpose of this paper is to classify completely the open book struc-

tures on highly connected odd dimensional manifolds, using certain invari-

ants, much more sophisticated than the Seifert linking form for the sphere

case.

Let M be an (n − 1)-connected closed (2n + 1)-dimensional manifold.

If it admits an open book structure, then the closure F of a fiber, called a

page, of the fibration over the circle is a codimension one submanifold, and

we can consider the following invariants associated with F : the homomor-

phism iF∗ : Hn(F ; Z) → Hn(M ; Z) induced by the inclusion iF : F → M ,

the intersection form QF on Hn(F ; Z), and the tangential invariant αF :

Hn(F ; Z) → πn−1(SO(n)), where the last invariant measures the twist of

the normal bundle of an embedded sphere representing a given homology

class and has been introduced and studied by Wall [Wal62, Wal63]. Further-

more, we can define a Seifert linking form ΓF over the rational numbers on
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the smallest direct summand of Hn(F ; Z) containing Ker iF∗. These are the

invariants that we consider in our work. It will turn out that they should

satisfy certain relations among themselves and also some relations to the

ambient manifold M . We call the set of the above invariants a system of

open book invariants associated with an open book structure.

Given a manifold M as above, we can define a system of open book

invariants purely algebraically, without the use of open book structures.

Namely, we consider a finitely generated free Z-module G, a homomorphism

iG : G → Hn(M ; Z), a bilinear form QG on G, a certain map αG : G →
πn−1(SO(n)), and a bilinear form ΓG over the rational numbers defined on

the smallest direct summand of G containing Ker iG. These should satisfy

certain properties. We can also define a natural equivalence relation for such

systems of open book invariants. Let A(M) denote the set of all equivalence

classes of systems of open book invariants defined purely algebraically as

above, for a given manifold M .

For open book structures on a manifold M , we can define the natural

equivalence relation as follows. Two open book structures on M are struc-

turally isotopic (or isotopic through open books), if there exists an ambient

isotopy of M sending the fibration structure of one open book to that of the

other. Such an equivalence has already been considered by Durfee [Dur74] in

the case of M being the sphere. Let OB(M) denote the set of all structural

isotopy classes of open book structures on M .

The main results of this paper are as follows. In the following, we

denote by (K,ϕ) an open book structure on a manifold M , where K is the

codimension two submanifold, called a binding, and ϕ : M −K → S1 is the

fibration.

Theorem 5.15. LetM be an (n−1)-connected closed oriented (2n+1)-

dimensional manifold with n ≥ 4, n �= 7, or an (n − 1)-connected oriented

rational homology (2n+ 1)-sphere with n = 3, 7. Then the map

S : OB(M)→ A(M)

defined by sending each structural isotopy class of a simple and oriented open

book structure (K,ϕ) on M to the equivalence class S(K,ϕ) of its system

of open book invariants establishes a one-to-one correspondence between the

set OB(M) of all structural isotopy classes of simple and oriented open book
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structures on M and the set A(M) of all equivalence classes of systems of

open book invariants with respect to M .

Theorem 6.4. Suppose that K is an (n−2)-connected closed oriented

(2n− 1)-dimensional manifold embedded in an (n− 1)-connected closed ori-

ented (2n+1)-dimensional manifold M with n ≥ 4, n �= 7, or in an (n− 1)-

connected oriented rational homology (2n + 1)-sphere with n = 3, 7. Then

all simple and oriented open book structures on M with binding K are struc-

turally isotopic.

Theorem 6.6. Let K be an (n− 2)-connected closed (2n− 1)-dimen-

sional manifold embedded in an (n−1)-connected closed (2n+1)-dimensional

manifold M with n ≥ 3. Then we have the following.

(1) The submanifold K is the binding of some open book structure (which

is not necessarily simple) on M with simply connected page F , if and

only if the normal bundle of K in M is trivial (or equivalently, the

tubular neighborhood N(K) of K is trivial), π1(E) ∼= Z, and πi(E)

are finitely generated for all i, where E = M −N(K).

(2) The above open book is simple, if and only if πi(E) = 0 for i =

2, 3, . . . , n− 1.

Theorem 6.4 gives a uniqueness of an open book structure associated

with a fixed binding. Due to this theorem, we can consider the system of

invariants of an open book structure as a complete invariant of the binding

as a codimension two embedding. Theorem 6.6 gives necessary and sufficient

conditions for a codimension two embedding to be a binding of a simple open

book structure.

The present paper is organized as follows.

In §2, we introduce the concept of an open book and review some results

of fiber bundles over spheres which will be used in this paper.

In §3, we define and analyze the invariants associated with an open book

structure which will be used in the subsequent sections.

In §4, we give an isotopy criterion for open book structures, using the

invariants introduced in §3. This shows that the map S of Theorem 5.15 is

injective.
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In §5, we construct an open book structure on M , corresponding to

a given system of open book invariants (Theorem 5.15), obtaining the re-

alization of invariants introduced in §3. This shows that the map S of

Theorem 5.15 is surjective, and hence it is bijective.

In §6, we analyze open book structures associated with a given bind-

ing, obtaining the uniqueness of the associated open book structure (Theo-

rem 6.4), which has been known for open book structures on spheres S2n+1

for n ≥ 3 (see [Dur74]). Another important result is a characterization of

codimension two embeddings which are bindings of some open book struc-

tures (Theorem 6.6).

In §7, we study decompositions of open books with respect to connected

sum, as an application of our classification theorem of open book structures.

As an example of open books which are not decomposable, we introduce the

notion of a minimal open book structure, and prove its existence. We also

give some examples which have interesting properties with respect to the

decomposition. These show that our classification is effective in a sense that

the elements of A(M) can be computable.

Finally, in §8, we introduce the notion of a variation map associated

with a diffeomorphism of a manifold with boundary which is the identity

on the boundary. When applied to the monodromy diffeomorphism of an

open book, this defines an invariant of an open book. It turns out that

giving the variation map is equivalent to giving the rational Seifert form for

an open book, which has been known for the spherical case [Kau74]. Fur-

thermore, we use variation maps together with our classification theorem of

open book structures to give an isotopy criterion for certain diffeomorphisms

of manifolds with boundary.

Note that the third author [Sae99, Sae02] has developed a theory of open

book structures on simply connected 5-dimensional manifolds; however, the

results obtained therein are not complete as in this paper because of the

difficulty in dealing with manifolds of dimensions three and four.

Throughout the paper all (co)homology groups are with integer coeffi-

cients, and manifolds and maps are differentiable of class C∞, unless other-

wise mentioned. The symbol “∼=” denotes a diffeomorphism between man-

ifolds, or an appropriate isomorphism between algebraic objects, and “id”

the identity map.

Observe that an open book and its system of invariants are denoted
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by (M,K,ϕ) and S(M,K,ϕ) respectively (see Definition 3.23) until §5,

where ϕ : M − K → S1 is the associated fibration. However, from §6,

sometimes we denote them simply by (M,K) and S(M,K) respectively,

due to Theorem 6.4. When the ambient manifold M is obvious, sometimes

we denote an open book by (K,ϕ) and its system of invariants by S(K,ϕ).

A large part of this paper has been written in the second author’s PhD

thesis [Mas00]. The first and the second authors would like to thank the

people at Hiroshima University during their stay there. The third author

would like to thank the people at ICMC, University of São Paulo, for their

hospitality during his visit there. Finally, the authors would like to thank

the referee for carefully reading the manuscript and for various helpful com-

ments.

2. Preliminaries

In this section, we shall recall some basic definitions and properties of

open book structures on closed odd dimensional manifolds. We also recall

some facts about fibrations over spheres which will be necessary in the

subsequent sections.

2.1. Open book structures

Definition 2.1. Let K be a smoothly embedded closed (2n − 1)-

dimensional manifold in a closed (2n+1)-dimensional manifoldM . Suppose

that there exist a trivialization τ : K ×D2 → N(K) of the tubular neigh-

borhood N(K) of K in M and a smooth fibration ϕ : M −K → S1 such

that the following diagram is commutative:

K × (D2 − {0}) τ−→ N(K)−K
p↘ ↙ϕ

S1,

where p denotes the obvious projection. Then the triple (M,K,ϕ) is called

an open book and the pair (K,ϕ) is called an open book structure on M .

Furthermore, K is called the binding and the closure in M of each fiber

Ft = ϕ−1(t), t ∈ S1, is called a page. We call F = F0, 0 ∈ S1 = R/Z,

the typical page of the open book. Note that each page Ft is a compact
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2n-dimensional manifold with boundary ∂Ft = K: in other words, it can

be regarded as a Seifert manifold for the embedded manifold K.

Definition 2.2. An open book (M,K,ϕ) is said to be simple, if K

is (n − 2)-connected, and both M and F are (n − 1)-connected, where F

denotes a page.

We will often use the following lemma, which can be proved by us-

ing standard arguments in algebraic topology together with Smale’s result

[Sma62]. See [Mas00] for details.

Lemma 2.3. Let F be an (n − 1)-connected compact 2n-dimensional

manifold with boundary ∂F = K �= ∅. Then for n > 2, the following three

are equivalent to each other.

(1) The manifold F is (n− 1)-connected and K is (n− 2)-connected.

(2) The manifold F is homotopy equivalent to a bouquet of n-spheres.

(3) The manifold F decomposes as D2n ∪ h1 ∪ · · · ∪ hr, where r =

rankHn(F ) and hi are n-handles attached to the zero handle D2n

simultaneously along an (n− 1)-dimensional link in ∂D2n.

Definition 2.4. We say that an open book (M,K,ϕ) is oriented , if

M is oriented, and the pages have orientations compatible with the fibration

ϕ : M −K → S1, where we fix an orientation of S1 once and for all.

Definition 2.5. Let F be the typical page of an open book (M,K,ϕ).

We identify S1 with R/Z and for the fibration ϕ : M − K → S1, set

Ft = ϕ−1(t), t ∈ S1. The vector field on M obtained as a pull-back of the

canonical vector field on S1 determines a one-parameter family of diffeomor-

phisms νt : M → M , t ∈ R, such that ν0 = id : M → M , νt|F0 : F0 → Ft
and νt|K = id : K → K. The diffeomorphism h = ν1 : F → F is called

the characteristic map of the fibration, which is determined uniquely by the

fibration ϕ up to isotopy. We also call h the (geometric) monodromy of the

open book.

An open book can always be obtained by the following construction.
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Definition 2.6 ([Win73, Qui79]). Let F be a connected compact ori-

ented 2n-dimensional manifold with boundary K and h : F → F an orien-

tation preserving diffeomorphism such that h|K = id. Then the mapping

torus of h is defined as E = F × I/{(x, 1) ∼ (h(x), 0)}, where I = [0, 1],

and its boundary is naturally identified with K×S1. Gluing K×D2, using

the natural identification K × S1 = ∂(K × D2), to the mapping torus of

h|K = id, we obtain the relative mapping torus

M = F × I/{(x, 1) ∼ (h(x), 0)} ∪K×S1 K ×D2 = E ∪K×S1 K ×D2.

By extending the projection p : F × I/{(x, 1) ∼ (h(x), 0)} → S1 ∼= R/Z

defined by p(x, t) = t for x ∈ F and t ∈ S1 = R/Z, we can construct the

fibration ϕ : M − (K × {0})→ S1, which is possible, since K × (D2 − {0})
is a collar neighborhood of ∂E = K × S1. Then the triple (M,K × {0}, ϕ)

is an open book. Such a construction is called an open book construction.

Note that its typical page can be identified with F = F × {0} and that its

geometric monodromy coincides with h. It is easy to see that an arbitrary

open book can be constructed in this way and that the isotopy class relative

to boundary of the monodromy diffeomorphism h completely determines the

open book.

It is easy to show that if F and K are (n − 1)- and (n − 2)-connected

respectively, thenM is (n−1)-connected, and hence the open book is simple.

Remark 2.7. Open books have been first defined and studied indepen-

dently by Winkelnkemper [Win73] and Tamura [Tam73], although Tamura

called them spinnable structures (see also [Kat74]). In the special case where

the ambient manifold M is the (2n+1)-sphere [Dur74] or the binding is the

(2n− 1)-sphere [Tam93], an open book structure is called a fibered knot .

It is known that every closed (2n + 1)-dimensional manifold with n ≥
1 admits an open book structure [Ale23, Win73, Tam73, A’C72, Law78,

Qui79].

For a later use, we present the following notion of trivial open books.

Definition 2.8. A simple open book structure (M,K,ϕ) on a (2n+1)-

dimensional manifold M with n ≥ 3 is said to be trivial if Hn(F ) = 0 for a

page F .
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It is a well-known fact that trivial open book structures on S2n+1, n �= 2,

exist and are unique up to isotopy, by the classification theorem of simple

fibered knots [Ker65, Lev70, Dur74, Kat74], where the isotopy means the

isotopy through open books (see Definition 3.21). This trivial open book

presents the trivial embedding of S2n−1 in S2n+1 as its binding. Note that

M may not necessarily be the standard (2n + 1)-sphere for a trivial open

book (M,K,ϕ). It is a homotopy (2n + 1)-sphere in general. For details,

see §7.2.

2.2. Bundles over spheres

In this subsection, we recall some facts about the relationship between

disk bundles over spheres and the homotopy groups of SO(n), which will be

used in the subsequent sections. For general terminologies, refer to [Ste51].

It is a well-known fact that SO(n + 1) fibers over Sn with fiber and

structure group SO(n). We have the following homotopy exact sequence

associated with this fiber bundle:

πn(S
n)

∂−→ πn−1(SO(n))
i∗−→ πn−1(SO(n+ 1))

p∗−→ πn−1(S
n),(2.1)

where ∂ is the boundary homomorphism, i : SO(n) → SO(n + 1) is the

inclusion map defined by i(A) = A ⊕ (1), and p is the projection defined

by p(B) = B · en+1 with en+1 being the north pole of Sn. The boundary

homomorphism ∂ sends the generator of πn(S
n) ∼= Z to the characteristic

map of the fibration [Ste51]. We will often use the following lemmas, which

are well-known (see [Wal65], [Ker60], or [Mas00]).

Lemma 2.9. For the boundary homomorphism ∂ : πn(S
n) →

πn−1(SO(n)) as above with n ≥ 2, n �= 3, 7, we have Im ∂ ∼= Z for n even

and Im ∂ ∼= Z2 for n odd. For n = 3, 7, we have ∂ = 0.

Lemma 2.10. Let E be the total space of an oriented Dn-bundle E over

Sn associated with an oriented n-plane bundle over Sn (n ≥ 2). Note that its

structure group is SO(n). If ξ ∈ Hn(E) denotes the class represented by the

zero section Sn×{0}, then the self-intersection number ξ · ξ in E coincides

with p∗(χ) ∈ πn−1(S
n−1) ∼= Z, where p∗ : πn−1(SO(n))→ πn−1(S

n−1) is the

homomorphism induced by the projection p : SO(n)→ Sn−1 of the fibration

SO(n− 1)→ SO(n)→ Sn−1, and χ is the characteristic map of the bundle

E.
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Remark 2.11. Consider the homomorphism p∗ : πn−1(SO(n)) →
πn−1(S

n−1) induced by the projection p : SO(n) → Sn−1 and the bound-

ary homomorphism ∂ : πn(S
n) → πn−1(SO(n)) of the fibration SO(n) →

SO(n+ 1)→ Sn as above, with n ≥ 2. Then p∗ ◦ ∂ : πn(S
n)→ πn−1(S

n−1)

is the multiplication by two for n even and p∗ ◦ ∂ = 0 for n odd (see [Ste51,

Theorem 23.4]).

Lemma 2.12. Consider Sn ×Dn+1 as the unit disk bundle associated

with the trivial (n+ 1)-plane bundle over Sn and suppose that E is the unit

Dn-bundle over Sn embedded as a subbundle of Sn × Dn+1, n ≥ 2. Thus

the total space E of E is determined by the section v of the trivial bundle

Sn × ∂Dn+1 → Sn, where v is orthogonal to E in each fiber {∗}×Dn+1. If

∂ : πn(S
n) → πn−1(SO(n)) denotes the boundary homomorphism of (2.1),

and χ ∈ πn−1(SO(n)) denotes the characteristic map of the bundle E, then

∂v = χ, where v is considered as an element of πn(S
n) = πn(∂D

n+1).

3. System of Invariants of an Open Book Structure

In this section, we define several invariants for a given open book struc-

ture on a manifold, among which is a generalization of the Seifert linking

form in the case of open book structures on (or fibered knots in) spheres.

In our general case, we need more materials than just the linking form, so

that we define a system of such invariants.

In the rest of the paper, we assume that all open books are simple and

oriented, unless otherwise specified.

3.1. Tangential invariant

Definition 3.1 ([Wal62]). Suppose that F is an (n − 1)-connected

compact 2n-dimensional manifold. Each element of Hn(F ) can be repre-

sented by an n-sphere embedded in F , uniquely determined up to isotopy, for

n ≥ 4 [Hae61, Wal62]. Define the map αF : Hn(F ) → πn−1(SO(n)), called

the tangential invariant of F , so that for each ξ ∈ Hn(F ) ∼= πn(F ), αF (ξ) is

the characteristic map of the normal disk bundle of the embedded n-sphere

which represents the element ξ. When n = 3, we have πn−1(SO(n)) = 0,

and we define αF as the zero map. Thus, the tangential invariant of F is

defined for all n ≥ 3.
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Remark 3.2. The above tangential invariant satisfies the addition rule

given by

αF (ξ + ζ) = αF (ξ) + αF (ζ) +QF (ξ, ζ)∂tn,

where ∂ : πn(S
n) → πn−1(SO(n)) is the boundary homomorphism of

Lemma 2.9, tn is the generator of πn(S
n) ∼= Z represented by the iden-

tity map Sn → Sn, and QF is the intersection form of F (see [Wal62] or

[Wal63]). Thus, we have the following properties.

(1) αF (0) = 0 (Put ζ = 0 in the above formula).

(2) αF (−ξ) = −αF (ξ) +QF (ξ, ξ)∂tn (Put ζ = −ξ in the above formula).

Hence, the value of αF (ξ) and the intersection form determine the values of

αF over the multiples of ξ, and consequently, αF is uniquely determined by

their values on the generators of Hn(F ), for each fixed intersection form.

Remark 3.3. Given an (n− 1)-connected closed (2n+ 1)-dimensional

manifold M with n ≥ 2, we define the tangential invariant αM : Hn(M)→
πn−1(SO(n + 1)) in the same way as we did for αF , since each element of

Hn(M) ∼= πn(M) can be represented by an embedded n-sphere, uniquely

determined up to isotopy for n ≥ 2 [Hae61, Wal63]. Note that αM is always

a homomorphism. See [Wal67].

Remark 3.4. If iF : F ↪→M is an embedding, then the tubular neigh-

borhood of iF (F ) in M is diffeomorphic to F × [0, 1] and a relationship be-

tween the tangential invariants of F and M is given by i∗ ◦ αF = αM ◦ iF∗,
where i∗ : πn−1(SO(n))→ πn−1(SO(n+ 1)) is the homomorphism of (2.1).

3.2. Rational Seifert form

In the following, let us analyze invariants associated with an embedding

of a 2n-dimensional manifold F into a (2n+ 1)-dimensional manifold M .

The following lemma holds, provided that F is a page of some open book

structure on M . The proof is easy and is left to the reader.

Lemma 3.5. If F is the typical page of a simple open book structure on

a closed (2n + 1)-dimensional manifold M , then the homomorphism iF∗ :

Hn(F )→ Hn(M) induced by the inclusion iF : F →M is surjective.
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Let us now define the rational Seifert form of a 2n-dimensional manifold

embedded in a (2n+ 1)-dimensional manifold M , which is a generalization

of the usual Seifert linking form for Seifert manifolds of knots and links in

spheres (see [Dur74, Kat74, Kau74]). In order to define the rational Seifert

form, we need the concept of the rational linking number defined as follows.

Let a and b be two disjoint n-cycles in an (n − 1)-connected closed

oriented (2n+ 1)-dimensional manifold M , representing torsion elements of

Hn(M). Thus ra vanishes in Hn(M) and bounds some (n+1)-chain A inM

for some integer r �= 0. We define the (rational) linking number of a and b in

M as lk(a, b) = (1/r)A·b ∈ Q, where A·b represents the intersection number

of A and b in M . To see that this is well-defined, let us first note that there

exists an integer s �= 0 such that sb = 0. If A′ is another (n + 1)-chain in

M such that ∂A′ = ra, then 0 = (A ∪ (−A′)) · 0 = (A ∪ (−A′)) · (sb) =

s ((A ∪ (−A′)) · b) , and since s �= 0, we have (A∪ (−A′)) · b = 0. Now, since

a ∩ b = ∅ and ∂A = ∂A′ = ra, we have 0 = (A ∪ (−A′)) · b = A · b− A′ · b,
and hence lk(a, b) does not depend on the choice of A. Similarly, it does not

depend on the choice of r �= 0, either.

Observe that the linking pairing lk(·, ·) is (−1)n+1-symmetric, i.e.

lk(a, b) = (−1)n+1 lk(b, a), which can be checked by using Wall’s argument

[Wal67].

Now let F be a compact oriented 2n-dimensional manifold embedded

in a closed oriented (2n + 1)-dimensional manifold M . Note that, for the

moment, F may not necessarily be a page of some open book structure on

M . As in [Ker65], define ν+ : F → M − IntF and ν− : F → M − IntF as

small push-off’s in the positive normal and the negative normal directions

to F , respectively. Then ν+
∗ and ν−∗ are homomorphisms from Hn(F ) to

Hn(M − IntF ). In the case that F is an oriented page of an oriented open

book (M,K,ϕ), ν+
∗ and ν−∗ are isomorphisms.

Now we need the following definition.

Definition 3.6 ([KaM79]). Let G be a finitely generated free Z-mod-

ule and H ⊂ G a submodule. We define

R(H) = {g ∈ G : rg ∈ H for some r ∈ Z− {0}}

and call it the radical closure of H in G. Note that R(H) coincides with

the smallest direct summand of G containing H.
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Definition 3.7. Let iF∗ : Hn(F ) → Hn(M) denote the homomor-

phism induced by the inclusion iF : F ↪→ M of a compact oriented 2n-

dimensional manifold F embedded in a closed oriented (2n+1)-dimensional

manifold M . Note that iF∗(R(Ker iF∗)) is contained in τHn(M), where

τHn(M) denotes the torsion part of Hn(M). If ξ and η ∈ R(Ker iF∗) ⊂
Hn(F ) are represented by n-cycles a and b respectively, then ν+

∗ (a) and

b are disjoint n-cycles in M representing elements in τHn(M). Then we

define the bilinear form

ΓF : R(Ker iF∗)×R(Ker iF∗)→ Q

by ΓF (ξ, η) = lk(ν+
∗ (a), b), where ν+

∗ (a) and b are regarded as cycles in M .

We call this form the rational Seifert form of F .

To see that the rational Seifert form is well-defined, we have to show

that the definition does not depend on the choices of the cycles representing

the homology classes in Hn(F ). For this, suppose that a and a′ are n-cycles

representing the same element in Hn(F ). Thus a and a′ are homologous in

F , and there exists an (n + 1)-chain C in F such that ∂C = a − a′. Now,

suppose that rν+(a) bounds an (n+1)-chain A in M . Then rν+(a′) bounds

A−rν+(C) and lk(ν+(a′), b) = (1/r)(A−rν+(C)) ·b, where “·” denotes the

intersection number in M . Since C ⊂ F , ν+(C) does not intersect b and we

have (A− rν+(C)) · b = A · b. Thus lk(ν+(a), b) = lk(ν+(a′), b). Now sup-

pose that b and b′ are n-cycles in F representing the same element in Hn(F ).

Then b and b′ are homologous in F , and there exists an (n+ 1)-chain D in

F such that ∂D = b− b′. Suppose that rν+(a) bounds an (n+ 1)-chain A

in M . By choosing A appropriately, we may assume that A∩D is a 1-chain

in F such that ∂(A∩D) = A∩ b−A∩ b′. Thus we have A · b = A · b′ in M ,

and consequently lk(ν+(a), b) = lk(ν+(a), b′). Hence ΓF is well-defined.

Remark 3.8. In the case thatM is the (2n+1)-sphere S2n+1, we have

that R(Ker iF∗) = Hn(F ) and ΓF : Hn(F ) × Hn(F ) → Z ⊂ Q. Thus, the

rational Seifert form reduces to the classical Seifert form.

Since ν+
∗ and ν−∗ map R(Ker iF∗) to R(Ker(iM−IntF )∗) homomorphi-

cally, where iM−IntF : M − IntF → M is the inclusion map, we can prove

several generalizations of results in [Kau74]. Among them is a generalization

of [Kau74, Lemma 2.1] as follows.
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Lemma 3.9. Let ΓF be the rational Seifert form of a compact ori-

ented 2n-dimensional manifold F embedded in a closed oriented (2n + 1)-

dimensional manifold M . Then we have

ΓF (ξ, ζ) + (−1)nΓF (ζ, ξ) = QF (ξ, ζ)

for all ξ, ζ ∈ R(Ker iF∗), where QF denotes the intersection form on Hn(F ).

The proof of the above lemma is similar to that of [Kau74, Lemma 2.1]

and is left to the reader. Note that the signs appearing in the formula of

the above lemma are slightly different from those of [Kau74, Lemma 2.1].

This is due to our definition of the linking number as in [Wal67], which is

slightly different from that of Kauffman [Kau74].

Lemma 3.10. If ΓF is the rational Seifert form of a page of an open

book, then det ΓF = ±|τHn(M)|−1, where det ΓF ∈ Q denotes the determi-

nant of the rational Seifert form ΓF defined as the determinant of an asso-

ciated matrix, and |τHn(M)| denotes the order of the torsion part τHn(M)

of Hn(M).

Proof. By Lemma 5.6, which will be proved in §5, we have

det ν̃+
∗ = ±|τHn(M)|det ΓF ,

where

ν̃+
∗ = ν+

∗ |R(Ker iF∗) : R(Ker iF∗)→ R(Ker(iM−IntF )∗).

Since ν+
∗ is an isomorphism for the case of an open book and

(ν+
∗ )−1 (R(Ker(iM−IntF )∗)) = R(Ker iF∗),

we see that ν̃+
∗ is also an isomorphism. This completes the proof. �

Other important properties of the rational Seifert form involve the in-

variants of M defined in [Wal67] that are more sophisticated than those

used in Lemma 3.10, and require additional concepts as follows.

Definition 3.11. For n ≥ 1, we define the bilinear form bM :

τHn(M) × τHn(M) → Q/Z by bM (ξ, ζ) = lk(a, c) (mod 1), where a and
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c are disjoint n-cycles in M representing the homology classes ξ and ζ ∈
τHn(M) respectively [Wal67]. Note that bM is a well-defined bilinear form,

which is sometimes called the torsion linking pairing of M .

Remark 3.12. For n odd with n ≥ 5, n �= 7, we have Im ∂ ∼= Z2 by

Lemma 2.9, where ∂ : πn(S
n) → πn−1(SO(n)) is the boundary homomor-

phism of (2.1). Since the homotopy exact sequence (2.1) takes the form{
Z

∂−→ Z2 ⊕ Z2
i∗−→ Z2

p∗−→ 0, n ≡ 1 (mod 8),

Z
∂−→ Z2

i∗−→ 0
p∗−→ 0, n ≡ 3, 5, 7 (mod 8)

(see [Ker60, Wal65]), we have a well-defined and natural extension of the

isomorphism Im ∂ ∼= Z2, which will be denoted by φ : πn−1(SO(n)) → Z2,

such that (φ, i∗) : πn−1(SO(n))→ Z2⊕πn−1(SO(n+ 1)) is an isomorphism

(see [Wal65]). Note that φ is an epimorphism.

Definition 3.13. For n odd with n ≥ 5, n �= 7, define the quadratic

form

qM : τHn(M)→ Q/2Z,

introduced by [Wal67], as follows. Let a be a spherical representation of

ξ ∈ τHn(M) uniquely determined up to isotopy, and consider a tubular

neighborhood N(a) of a. Then ∂N(a) is an Sn-bundle over a ∼= Sn and

the tubular neighborhood E of a section of ∂N(a) → a is a Dn-bundle

over a. Denote its characteristic map by α1 ∈ πn−1(SO(n)). For n as

above, we can adjust this section so that φ(α1) = 0 (see Lemma 2.12),

where φ : πn−1(SO(n)) → Z2 is the epimorphism of Remark 3.12. Define

qM (ξ) as the rational linking number between a and the core of E modulo

2. Then qM (ξ) is well-defined, and it is a quadratic form associated with

the bilinear form 2bM , where bM is the torsion linking pairing of M defined

in Definition 3.11, i.e.

qM (ξ + ζ)− qM (ξ)− qM (ζ) ≡ 2bM (ξ, ζ) (mod 2)

for all ξ, ζ ∈ τHn(M) (see [Wal67]).

The rational Seifert form is compatible with the invariants of M , by the

following lemma. Note that F may not necessarily be a page of an open

book.
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Lemma 3.14. For n ≥ 2 with n �= 3, 7, the rational Seifert form ΓF
has the following properties.

(1) The congruence

ΓF (ξ, ζ) ≡ bM (iF∗(ξ), iF∗(ζ)) (mod 1)

holds for all ξ, ζ ∈ R(Ker iF∗), where bM : τHn(M)×τHn(M)→ Q/Z

is the torsion linking pairing of M defined in Definition 3.11.

(2) If n is odd, then we have

ΓF (ξ, ξ) ≡ qM (iF∗(ξ)) + φ(αF (ξ)) (mod 2)

for all ξ ∈ R(Ker iF∗), where qM : τHn(M) → Q/2Z is the quadratic

form of Definition 3.13 and φ : πn−1(SO(n))→ Z2 is the epimorphism

of Remark 3.12.

Proof. (1) This follows from the definitions of the Seifert form ΓF
and of the torsion linking pairing bM .

(2) Let a ⊂ F be the spherical representation of ξ ∈ R(Ker iF∗). The

translation in the positive normal direction of F determines a section of

∂N(a) → a, where N(a) is the tubular neighborhood of a in M . Denote

the image of the section by ã and its tubular neighborhood in ∂N(a) by E.

Since E is parallel to N(a) ∩ F , the characteristic map α1 of E is equal to

αF (ξ), where αF : Hn(F ) → πn−1(SO(n)) is the tangential invariant of F .

Since ΓF (ξ, ξ) is the rational linking number between a and its translation

in the positive normal direction, ΓF (ξ, ξ) ≡ qM (iF∗(ξ)) (mod 2), provided

that φ(αF (ξ)) = 0.

If φ(αF (ξ)) = φ(α1) �= 0, then we need to adjust the section so that

we have φ(α1) = 0. Note that the sections of ∂N(a) → a are in one-to-

one correspondence with the unit normal vector fields on a. Choose the

normal vector field that differs by tn from the normal vector field of F

restricted to a, where tn is the generator of πn(S
n) ∼= Z, and denote the

image of the section determined by this new vector field by a′ and the

tubular neighborhood of a′ in ∂N(a) by E′, respectively. Then we have

∂tn = α′1 − α1 by Lemma 2.12, where α′1 is the characteristic map of the

bundle E′. Therefore, we have φ(α′1) = φ(∂tn) + φ(α1) ∈ Z2. Recall that

φ|Im ∂ : Im ∂ ∼= Z2 → Z2 is an isomorphism (see Remark 3.12) and ∂tn �= 0,
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since ∂ is a non-vanishing map for our values of n (see Lemma 2.9). This

implies that φ(∂tn) �= 0 in Z2. Since φ(α1) �= 0 by our hypothesis, we have

φ(∂tn) = φ(α1), and consequently, φ(α′1) = 0. Thus qM (iF∗(ξ)) coincides

with the linking number of a and a′ modulo 2.

Since lk(a, a′) and lk(a, ã) = ±ΓF (ξ, ξ) differs by ±1, we have

qM (iF∗(ξ)) ≡ (ΓF (ξ, ξ) + 1) + (φ(αF (ξ)) + 1) (mod 2),

which completes the proof of (2). �

3.3. System of invariants

So far, we have defined several invariants associated with a compact

oriented 2n-dimensional manifold F embedded in a closed oriented (2n+1)-

dimensional manifold. In order to consider the abstract set of invariant

systems for a given ambient manifold M , we need the following definition.

Definition 3.15. LetM be an (n−1)-connected closed oriented (2n+

1)-dimensional manifold with n ≥ 3. A system of open book invariants with

respect toM consists of five algebraic objects {G,QG, αG, iG,ΓG} as follows:

(1) a finitely generated free abelian group G,

(2) a (−1)n-symmetric bilinear form QG : G×G→ Z, called an intersec-

tion form,

(3) an epimorphism iG : G→ Hn(M),

(4) a map αG : G→ πn−1(SO(n)), called a tangential invariant, such that

(a) the diagram

G
αG−→ πn−1(SO(n))�iG �i∗

Hn(M)
αM−→ πn−1(SO(n+ 1))

is commutative, where αM is the tangential invariant of M , and

i∗ is the homomorphism induced by the natural inclusion i :

SO(n)→ SO(n+ 1),

(b) p∗αG(ξ) = QG(ξ, ξ) ∈ πn−1(S
n−1) ∼= Z for all ξ ∈ G, where

p : SO(n)→ Sn−1 denotes the projection of Lemma 2.10,
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(c) αG(ξ + ζ) = αG(ξ) + αG(ζ) +QG(ξ, ζ)∂tn for all ξ, ζ ∈ G, where

∂ : πn(S
n) → πn−1(SO(n)) is the boundary homomorphism ap-

pearing in Lemma 2.9 and tn is the generator of πn(S
n) ∼= Z

represented by the identity map of Sn,

(5) a bilinear form, called a rational Seifert form, ΓG : R(Ker iG) ×
R(Ker iG)→ Q, where R(Ker iG) is the radical closure of Ker iG, such

that

(a) det ΓG = ±|τHn(M)|−1, where |τHn(M)| denotes the order of

the torsion part of Hn(M), and det ΓG is the determinant of ΓG,

(b) ΓG(ξ, ζ) + (−1)nΓG(ζ, ξ) = QG(ξ, ζ) for all ξ, ζ ∈ R(Ker iG),

(c) the diagram

R(Ker iG)×R(Ker iG)
ΓG−→ Q�iG×iG

�π
τHn(M)× τHn(M)

bM−→ Q/Z,

is commutative, where bM is the torsion linking pairing of M

defined in Definition 3.11, and π is the natural projection,

(d) for n odd with n ≥ 5, n �= 7,

ΓG(ξ, ξ) ≡ qM (iG(ξ)) + φ(αG(ξ)) (mod 2)

for all ξ ∈ R(Ker iG), where qM is the quadratic form of Def-

inition 3.13 and φ : πn−1(SO(n)) → Z2 is the epimorphism of

Remark 3.12.

The collection of invariants {Hn(F ), QF , αF , iF∗,ΓF } associated with an

open book structure onM with typical page F forms a system of open book

invariants with respect toM for n ≥ 3, since iF∗ is surjective by Lemma 3.5,

the properties of αG follow from Remark 3.4, Lemma 2.10 and Remark 3.2,

and those of the rational Seifert form follow from Lemmas 3.10, 3.9, and

3.14.

Remark 3.16. If n is even, then the above tangential invariant αG
is uniquely determined by the intersection form QG, due to item (4b) of
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Definition 3.15 and the injectivity of p∗ : πn−1(SO(n)) → πn−1(S
n−1) (see

[Ste51]), where p is the projection of Lemma 2.10. Thus, we may sometimes

omit the tangential invariant in a system of open book invariants in the case

of n being even.

Remark 3.17. In the case that M is a homotopy (2n+1)-sphere (n ≥
3), there exists a one-to-one correspondence between the set of systems of

open book invariants with respect to M and the set of unimodular Seifert

forms, which can be seen as follows (see [Mas00] for details).

To see that the system of invariants is uniquely determined by the Seifert

form, first note that iG = 0 and QG is determined by the Seifert form. In

the case that n is even, QG determines αG by Remark 3.16. When n = 3, 7,

we have that αG = 0, since πn−1(SO(n)) = 0 (see [Ker60]). In the case that

n is odd, n �= 3, 7, note that αM = 0 and we have ImαG ⊂ Ker i∗ = Im ∂,

where ∂ : πn(S
n)→ πn−1(SO(n)) is the boundary homomorphism of (2.1).

Hence, by item (5d) of Definition 3.15, we see that αG is determined by the

Seifert form.

We show that an arbitrary unimodular Seifert form ΓG can be completed

in a way to form a system of open book invariants. For this, we put iG = 0

and define QG by the formula of item (5b) of Definition 3.15, observing

that R(Ker iG) = G. Let us now define αG in a coherent way. For n even,

observe that QG(ξ, ξ) is even for all ξ ∈ G, since QG is symmetric. Thus

QG(ξ, ξ) ∈ 2Z = Im(p∗ ◦ ∂) by Remark 2.11. On the other hand, p∗|Im ∂ :

Im ∂ → 2Z ⊂ Z ∼= πn−1(S
n−1) is an isomorphism. Thus, we can define

αG(ξ) = (p∗|Im ∂)−1(QG(ξ, ξ)). When n = 3, 7, we have πn−1(SO(n)) =

0 (see [Ker60]) and consequently, it is enough to define αG = 0 so that

it satisfies the condition of item (4a) of Definition 3.15. For n odd with

n �= 3, 7, observe that φ|Im ∂ : Im ∂ → Z2 is an isomorphism, where φ :

πn−1(SO(n)) → Z2 is the epimorphism of Remark 3.12. Define αG(ξ) =

(φ|Im ∂)−1 (ΓG(ξ, ξ) (mod 2)) so that αG satisfies the relation of item (5d)

of Definition 3.15, since qM = 0. Finally, we can check that the system

{G,QG, αG, iG,ΓG} thus constructed satisfies all the required properties as

in Definition 3.15.

We define an equivalence relation on the systems of open book invariants.
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Definition 3.18. Suppose that {G,QG, αG, iG,ΓG} forms a system of

open book invariants with respect to M , and {G′, QG′ , αG′ , iG′ ,ΓG′} forms

another system of open book invariants with respect to the same manifold

M . We say that the two systems of invariants are equivalent, if there exists

an isomorphism Ψ : G→ G′ such that the following conditions are satisfied.

(1) The isomorphism Ψ is an isometry, i.e., QG′(Ψ(ξ),Ψ(ζ)) = QG(ξ, ζ)

for all ξ, ζ ∈ G.

(2) The diagram bellow is commutative.

G
Ψ−→ G′

iG ↘ ↙iG′

Hn(M)

(3) The isomorphism Ψ preserves the tangential invariants, i.e.,

αG′(Ψ(ξ)) = αG(ξ) for all ξ ∈ G.

(4) The isomorphism Ψ preserves the rational Seifert form, i.e.,

ΓG′(Ψ(ξ),Ψ(ζ)) = ΓG(ξ, ζ), ∀ξ,∀ζ ∈ R(Ker iG)

(note that Ψ (R(Ker iG)) = R(Ker iG′) by condition (2) above).

Definition 3.19. The set of all equivalence classes of systems of open

book invariants with respect to M is denoted by A(M).

Remark 3.20. In the case that M is a homotopy (2n + 1)-sphere

(n ≥ 3), the set A(M) coincides with the set of all congruence classes

of unimodular matrices (see Remark 3.17).

Now let us define a geometric equivalence between two open book struc-

tures on the same manifold.

Definition 3.21. Let us consider two (simple and oriented) open book

structures (Kj , ϕj), j = 1, 2, on a closed (2n+ 1)-dimensional manifold M .

A structural isotopy between (K1, ϕ1) and (K2, ϕ2) is an ambient isotopy
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Φ = {Φt}t∈[0,1] of M such that Φ0 = id, Φ1(K1) = K2 (preserving the

orientations) and the diagram

M −K1

Φ1|M−K1−→ M −K2

ϕ1 ↘ ↙ϕ2

S1

is commutative. When such a structural isotopy between (K1, ϕ1) and

(K2, ϕ2) exists, we say that they are structurally isotopic or isotopic through

open books ([Dur74]).

Remark 3.22. If two open book structures (K1, ϕ1) and (K2, ϕ2) on

M are structurally isotopic by an isotopy Φ, then Φ1∗ : Hn(F1) → Hn(F2)

clearly establishes an equivalence between their systems of open book in-

variants (see Definition 3.18) for n ≥ 3, where F1 and F2 are the typical

pages of (K1, ϕ1) and (K2, ϕ2) respectively.

Definition 3.23. For an open book (M,K,ϕ), we denote the equiva-

lence class of its associated system of open book invariants by

S(M,K,ϕ) = {Hn(F ), QF , αF , iF∗,ΓF },

which represents an element of A(M), where F is the typical page of

(M,K,ϕ). When M is obvious in the context, the system of open book

invariants will be denoted simply by S(K,ϕ).

Let us denote by OB(M) the set of all structural isotopy classes of

simple and oriented open book structures on a given (n − 1)-connected

closed oriented (2n+ 1)-dimensional manifold M . Then we define the map

S : OB(M) → A(M)(3.1)

so that it sends each structural isotopy class of an open book structure

(K,ϕ) on M to the equivalence class S(K,ϕ) of its system of open book

invariants. Note that this is a well-defined map by Remark 3.22.

We will show later that the above map S is in fact a bijection in our

situation.
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4. Isotopy Criterion for Open Book Structures

In this section, we prove that two open book structures with equivalent

systems of open book invariants are structurally isotopic, i.e. the map S of

(3.1) is injective.

More precisely, the main theorem of this section is the following iso-

topy criterion. Note that an (n− 1)-connected closed (2n+ 1)-dimensional

manifold M is a rational homology sphere, if Hn+1(M) = 0.

Theorem 4.1. Let M be an (n−1)-connected closed oriented manifold

of dimension 2n + 1 with n ≥ 4, n �= 7, or an (n − 1)-connected oriented

rational homology (2n+ 1)-sphere with n = 3, 7. If two simple and oriented

open book structures on M have equivalent systems of open book invariants,

then they are structurally isotopic.

4.1. Isotopy of pages

In this subsection, we show the following.

Lemma 4.2. Let M be an (n−1)-connected closed (2n+1)-dimensional

manifold with n ≥ 4, n �= 7, or an (n − 1)-connected rational homology

(2n + 1)-sphere with n = 3, 7. If two open book structures on M have

equivalent systems of invariants, then their typical pages are isotopic in M

by an isotopy which preserves the orientations of the pages.

Proof. Let F and F ′ be the typical pages of the two open book struc-

tures which have equivalent systems of open book invariants. Denote the

Seifert form, intersection form, and the tangential invariant of the open book

associated with F by ΓF , QF and αF , respectively, and those associated with

F ′ by ΓF ′ , QF ′ and αF ′ , respectively. Suppose that Ψ : Hn(F )→ Hn(F
′) is

an isomorphism which establishes an equivalence between the two systems

of open book invariants.

Let us consider the decomposition Hn(F ) = R(Ker iF∗) ⊕ A, where

A ∼= Hn(F )/R(Ker iF∗), and take a basis {e1, . . . , er} of Hn(F ) associated

with this decomposition such that {e1, . . . , es}, s ≤ r, forms a basis of A

and {es+1, . . . , er} forms a basis of R(Ker iF∗). Take a basis of Hn(F
′) as

{e′1 = Ψ(e1), . . . , e
′
r = Ψ(er)}.
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Using Lemma 2.3, construct handlebody decompositions F = D2n
1 ∪h1∪

· · · ∪ hr and F ′ = D2n
2 ∪ h′1 ∪ · · · ∪ h′r of F and F ′ respectively in M , asso-

ciated with the above bases, where h1, . . . , hr and h′1, . . . , h
′
r are n-handles

attached simultaneously to the 0-handles D2n
1 and D2n

2 respectively. Denote

the n-disks which represent the cores of hi and h′i by ci and c′i respectively.

In the above decompositions, we may assume that the 0-handles D2n
1 and

D2n
2 coincide with each other, including the orientations, and we denote it

by D2n.

Since ∂ci is an (n−1)-sphere embedded in ∂D2n which is a (2n−1)-sphere

with n > 2, it bounds an n-disk in ∂D2n by [Hae61]. Pushing the interior

of this n-disk to the interior of D2n, we may assume that ∂ci bounds an n-

disk in D2n such that the intersection with ∂D2n is exactly ∂ci. Attaching

this disk to ci along the boundary and applying the smoothing process,

we obtain an embedded n-sphere c̄i ⊂ F representing the homology class

ei ∈ Hn(F ). Using the same argument, we obtain an embedded n-sphere

c̄′i ⊂ F ′ representing the element e′i ∈ Hn(F ′), for i = 1, 2, . . . , r.

Now, we make use of Levine’s argument [Lev70] in order to conclude that

the ordered links {∂c1, . . . , ∂cr} and {∂c′1, . . . , ∂c′r} are isotopic in ∂D2n as

follows. We have lk(∂ci, ∂cj) = QF (ei, ej) and lk(∂c′i, ∂c
′
j) = QF ′(e′i, e

′
j) (i �=

j), where lk denotes the linking number in ∂D2n. Since Ψ preserves the in-

tersection form, we have that QF (ei, ej) = QF ′(Ψ(ei),Ψ(ej)) = QF ′(e′i, e
′
j).

Thus lk(∂ci, ∂cj) = lk(∂c′i, ∂c
′
j) for all i �= j. Since n > 2, we see that

{∂c1, . . . , ∂cr} and {∂c′1, . . . , ∂c′r} are isotopic as ordered links in ∂D2n.

Thus, we may assume that ∂ci = ∂c′i for all i.

Now we need the following lemma to continue the proof of Lemma 4.2.

Lemma 4.3. There exists an ambient isotopy of M relative to D2n,

carrying ck to c′k for all k = 1, . . . , r.

Proof. An isotopy of the cores of the handles is obtained by induction

on k.

Suppose that there exists an ambient isotopy ofM relative to D2n which

carries ci to c′i for i = 1, . . . , k − 1. Then we may assume that ci = c′i for

all i < k. Moreover, we may assume that ck ∩ c′k = ∂ck = ∂c′k. Let

us try to show that there exists an isotopy carrying ck to c′k relative to

D2n ∪ c1 ∪ · · · ∪ ck−1.

First, observe that c̄k and c̄′k represent the same homology class in
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Hn(M) by our hypothesis (see item (2) of Definition 3.18). Thus, ck ∪∂ck
(−c′k) represents the zero class in πn(M − IntD2n) ∼= πn(M) ∼= Hn(M), and

consequently, ck and c′k are homotopic relative to boundary in M − IntD2n.

By the engulfing theorem [HZ66], we may assume that ck ∪∂ck (−c′k) is con-

tained in a tubular neighborhood of a point. In this way, ck ∪∂ck (−c′k)
can be considered as an embedded n-sphere in a (2n+ 1)-disk contained in

M − IntD2n, n ≥ 2, which implies that ck∪∂ck (−c′k) bounds an (n+1)-disk

D′
k embedded in M − IntD2n.

Using an isotopy relative to boundary, we can modify D′
k so that it

intersects c1 ∪ · · · ∪ ck−1 transversely at a finite number of points. Since

D′
k is a disk with boundary ck ∪∂ck (−c′k), we can construct an isotopy

H : Dn × [0, 1]→M such that{
H(Dn × [0, 1]) = D′

k, H(Dn × {0}) = ck, H(Dn × {1}) = c′k,

H(x, t) = H(x, 0) for all (x, t) ∈ ∂Dn × [0, 1],

and H|IntDn×[0,1] : IntDn × [0, 1]→M is an embedding.

Modifying H if necessary, we may assume that for each t, H(Dn × {t})
does not intersect

⋃
i<k ci, or intersects it at a unique point. Moreover, we

can modify it so that the intersection of H(Dn×{t}) with
⋃
i<k,i≤s ci occurs

only for t ∈ (0, 1/2) and the intersection with
⋃
s<i<k ci occurs only for t ∈

(1/2, 1). We enumerate the values of t such thatH(Dn×{t})∩
(⋃
i<k ci

)
�= ∅,

obtaining 0 < t1 < · · · < tp < 1/2 < tp+1 < · · · < tq < 1.

For n = 3, 7, we are assuming that M is an (n − 1)-connected rational

homology (2n+ 1)-sphere and it is not necessary to analyze the case i ≤ s.
For the other cases, we need the following.

Lemma 4.4. For n ≥ 4, n �= 7, we can modify H above so that H(Dn×
I) does not intersect ci for all i < k with i ≤ s.

Proof. Since i ≤ s, ei is an element of the basis of A. Thus, iF∗(ei)
is a primitive element of Hn(M), since iF∗|A : A → Hn(M)/τHn(M) is an

isomorphism by Lemma 3.5, where τHn(M) is the torsion part of Hn(M)

and Hn(M)/τHn(M) is the free part of Hn(M). Consequently, by Poincaré

duality, there exist êi ∈ Hn+1(M), 1 ≤ i ≤ s, such that êi · iF∗(ej) =

δij (1 ≤ i ≤ s, 1 ≤ j ≤ r), where δii = 1, δij = 0 for i �= j, and “·”
denotes the intersection number in M . Since n ≥ 4, we have that the
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Hurewicz homomorphism πn+1(M) → Hn+1(M) is surjective (see [Hu59,

Chapter X, Theorem 8.1]), and we can represent êi by an embedded (n+1)-

sphere ĉi inM [Wal63, Hae61]. Moreover, sinceHn+1(M−D2n) ∼= Hn+1(M)

by the isomorphism induced by the inclusion map, ĉi can be chosen in

M − D2n. Using the Whitney trick [Whi44, Mil65], we may assume that

ĉi ∩ cj = ∅ for i �= j (1 ≤ i ≤ s, 1 ≤ j ≤ r) and ĉi intersects transversely

with ci at a unique point.

For each l such that 1 ≤ l ≤ p, let i (i < k, i ≤ s) be the index such that

H(Dn × {tl}) ∩ ci �= ∅, and let γl be an embedded curve in ci which joins

the point H(Dn × {tl}) ∩ ci in D′
k ∩ ci with the point ĉi ∩ ci, such that γl

intersectsD′
k∩(∪i<kci) at the unique point, the initial point of γl. Taking the

connected sum ofD′
k with ĉi along γl, using an appropriate orientation for ĉi,

we can eliminate the intersection ofH(Dn×{tl}) with ci. Using the Whitney

trick, we can eliminate the intersections of ck, c
′
k with ĉi(i < k). Putting ĉi

in a transverse position with respect toD′
k, using an isotopy, we may assume

that D′
k and ĉi intersect along some embedded circles. Moreover, we may

assume that their intersections occur on H (Dn × (0, t1/2)). Since ĉi is an

embedded (n + 1)-sphere which does not intersect H(Dn × [tl − ε, tl + ε])

for ε > 0 sufficient small, we can modify H on Dn × [tl − ε, tl + ε] so that

H(Dn × [0, 1]) is the connected sum described above.

Repeating this process for l = 1, . . . , p, we can eliminate the intersec-

tions of H(Dn × [0, 1]) with ci, i < k, i ≤ s. This completes the proof of

Lemma 4.4. �

Let us return to the proof of Lemma 4.3. In the case where k ≤ s, we

already have the desired isotopy.

In the case where k > s, we need to eliminate the intersections ofH(Dn×
[0, 1]) with cj for s < j < k. For this, note that ej , ek ∈ R(Ker iF∗) and

e′j , e
′
k ∈ R(Ker iF ′∗) by our choice of the indices so that we can consider the

values of the rational Seifert forms ΓF (ej , ek) and ΓF ′(e′j , e
′
k).

Set D′′
k = H(Dn× [1/2, 1]). Then D′′

k lies as an embedded (n+1)-disk in

M − IntD2n. Observe that ĉi∩ cj = ∅ for i �= j, which implies that H(Dn×
[0, 1/2]) remains disjoint from cj . Thus, the intersection number of D′′

k with

cj is equal to the intersection number of H(Dn × [0, 1]) with cj , which is

equal to the linking number between ∂H(Dn × [0, 1]) = ck ∪∂ck (−c′k) and

c̄j , where c̄j is the embedded n-sphere in F corresponding to cj . Moreover,
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we have

lk
(
ck∪∂ck(−c′k), c̄j

)
= lk(ν+c̄k, c̄j)− lk(ν ′+c̄′k, c̄

′
j)

= ΓF (ek, ej)− ΓF ′(e′k, e
′
j) = 0

by our hypothesis, where c̄′j = c̄j , c̄k and c̄′k are the embedded n-spheres in

F and F ′ corresponding to ck and c′k respectively, and ν+ and ν ′+ are the

translations into the positive normal directions of F and F ′ respectively.

Since the algebraic intersection ofD′′
k and cj is zero, we can use the Whit-

ney trick [Whi44, Mil65] to remove the intersections of D′′
k with cj for all j

with s < j < k, by using an isotopy of D′′
k in

(
M − (D2n ∪ c1 ∪ · · · ∪ cs)

)
∪

∂ck relative to boundary. Since D′′
k is an (n + 1)-disk, we can modify the

isotopy H on Dn × [1/2, 1] so that H(Dn × [1/2, 1]) = D′′
k .

Thus we have an isotopy

H : Dn × [0, 1]→
(
M − (D2n ∪ c1 ∪ · · · ∪ ck−1)

)
∪ ∂ck

of ck to c′k relative to ∂Dn × [0, 1].

Then, by the isotopy extension theorem, we have an ambient isotopy of

M , relative to D2n ∪ c1 ∪ · · · ∪ ck−1, carrying ck to c′k.
The successive composition of the above ambient isotopies for k =

1, . . . , r gives us an ambient isotopy of M relative to D2n which carries

ck to c′k for all k. This completes the proof of Lemma 4.3. �

Now let us return to the proof of Lemma 4.2. We will prove that there

exists an isotopy which carries the handle hi to h′i for all i. Since the cores

of the handles are isotopic by Lemma 4.3, we may assume that the cores ci
and c′i of the handles of F and F ′, respectively, coincide with each other for

each i. We may further assume that the handles hi and h′i are embedded as

subbundles of a disk bundle, which is the tubular neighborhood N(ci) of ci
in M , associated to a normal vector bundle of ci in M . Thus, hi and h′i are

determined by their unit normal positive vector fields vi and v′i respectively,

along ci in N(ci).

Note that the two embeddings hi and h′i are isotopic as subbundles

relative to hi ∩ D2n = h′i ∩ D2n, if and only if vi and v′i are homotopic

relative to ∂ci.

Since vi and v′i coincide along ∂ci, we can glue them to obtain a vector

field ϑi on the n-sphere ci∪∂ci (−ci) which is considered to be a formal union.
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Given a trivialization of the Dn+1-bundle N(ci) ∪∂ci×Dn+1 (−N(ci)), the

homotopy class of ϑi determines and is uniquely determined by an element

of πn(S
n). Moreover, vi is homotopic to v′i relative to ∂ci, if and only if ϑi

vanishes as an element of πn(S
n). Since αF (ei)−αF ′(e′i) is the characteristic

map of the subbundle determined by the normal vector field ϑi, we have

∂ϑi = αF (ei)− αF ′(e′i) = 0(4.1)

by Lemma 2.12 and our hypothesis.

In the case where n is even (n ≥ 4), we have that ∂ : πn(S
n) →

πn−1(SO(n)) is injective by Lemma 2.9. Thus, we have that ϑi = 0, and

consequently, hi and h′i are isotopic relative to hi ∩D2n = h′i ∩D2n.

When n is odd (n ≥ 3), the proof goes as follows. First, observe that

ΓF (ei, ei)− ΓF ′(e′i, e
′
i) = ϑi ∈ πn(Sn) ∼= Z

for all i > s (ei ∈ R(Ker iF∗), e′i ∈ R(Ker iF ′∗)). To check this, recall that

ΓF (ei, ei) and ΓF ′(e′i, e
′
i) are the linking numbers of c̄i and its translations

by v̄i and by v̄′i respectively, where v̄i and v̄′i are the obvious extensions of vi
and v′i on c̄i = c̄′i, respectively. Since ϑi ∈ πn(Sn) is the difference between

these two vector fields, we have that ΓF (ei, ei)− ΓF ′(e′i, e
′
i) = ϑi.

Since the isomorphism Ψ : Hn(F )→ Hn(F
′) preserves the Seifert forms

by our hypothesis, we have that ϑi = 0. Thus the normal vector fields vi
and v′i are homotopic relative to boundary, for i > s, and consequently, the

handle hi is isotopic to h′i relative to hi ∩D2n = h′i ∩D2n for these values

of i.

For n = 3, 7, we are assuming that M is a rational homology sphere,

which implies that Hn(F ) = R(Ker iF∗), and it is not necessary to worry

about the case i ≤ s. Thus, hi and h′i are isotopic relative to hi ∩ D2n =

h′i ∩D2n for all i.

Now it remains only the case that n is odd with n �= 3, 7 and i ≤ s.
In order to prove that the handle hi is isotopic to h′i relative to hi∩D2n =

h′i ∩ D2n for i ≤ s, recall that Im ∂ ∼= Z2 for n odd with n ≥ 5, n �= 7,

where ∂ : πn(S
n) → πn−1(SO(n)) is the boundary homomorphism (see

Lemma 2.9). Since ∂ϑi = 0 as has been seen in (4.1), ϑi ∈ πn(Sn) ∼= Z is a

multiple of 2. To complete the proof of Lemma 4.2, we need the following.

Lemma 4.5. When n is odd with n ≥ 5, n �= 7, for each i ≤ s, there

exists an ambient isotopy Φ = {Φt}t∈[0,1] of M relative to D2n ∪ h1 ∪ · · · ∪
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hi−1 ∪ hi+1 ∪ · · · ∪ hr such that Φ0 = id, ci = Φ1(ci), and the difference

between the vector fields associated with hi and with Φ1(hi), denoted by ϑi,

represents the element 2 in πn(S
n) ∼= Z.

Proof. Consider the embedded spheres c̄i ⊂ F and ĉi ⊂M−D2n ⊂M
representing the elements ei ∈ Hn(F ) and the dual êi ∈ Hn+1(M) respec-

tively such that ĉi∩ c̄j = ∅ for i �= j, 1 ≤ j ≤ r, and ĉi transversely intersects

ci at a unique point, as discussed in the proof of Lemma 4.4. We may further

assume that ĉi ∩ hj = ∅ for i �= j, 1 ≤ j ≤ r. We set ci ∩ ĉi = {p}.
Consider a sufficiently small tubular neighborhoodN(ĉi) associated with

the normal bundle of ĉi inM , and the fibration π : N(ĉi)→ ĉi. Furthermore,

consider a neighborhood Dp ∼= Dn1 × D1 of p in ĉi. Then we can identify

π−1(Dp) with Dn1 ×D1×Dn2 ⊂ Rn×R×Rn, where Dn1 , D
1 and Dn2 are the

unit disks in Rn,R and Rn respectively, and we may assume that π−1(Dp) ⊃
ci ∩ N(ĉi) in such a way that ci ∩ N(ĉi) = {0} × {0} ×Dn2 (see the left of

Figure 1).

Now we identify Dn with Dn3 ∪Sn−1× [0, 1]∪Sn−1× [1, 2], where Dn3 is

the unit disk and ∂Dn3 = Sn−1 × {0}. Define the embedding

η : Dn = Dn3 ∪ Sn−1 × [0, 1] ∪ Sn−1 × [1, 2]

→ Dn1 ×D1 ×Dn2 = π−1(Dp) ⊂ N(ĉi)

Fig. 1. Modifying ci ∩N(ĉi).
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by



η(x) = (x, 0, 0), x ∈ Dn3 ,
η(x, t) = (x, 0, tx), (x, t) ∈ Sn−1 × [0, 1],

η(x, t) = ((2− t)x, 0, x) , (x, t) ∈ Sn−1 × [1, 2]

followed by a smoothing. Then η defines an embedding such that η(∂Dn) =

η(Sn−1 × {2}) = {0} × {0} × ∂Dn2 (see the right of Figure 1).

If d = ci − (ci ∩N(ĉi))∪η(Dn), then d is diffeomorphic to ci. Moreover,

ci and d are isotopic in M relative to D2n ∪ h1 ∪ · · · ∪ hi−1 ∪ hi+1 ∪ · · · ∪ hr.
Thus we may assume that d is the core of hi.

Set ∆ = η(Dn3 ) = Dn1 × {0} × {0}, then ∆ = d ∩ ĉi ⊂ ĉi. Since ∆ is

a disk of codimension one in ĉi ∼= Sn+1, there exists a trivial open book

structure on ĉi (see Definition 2.8) such that ∆ is the typical page. De-

note the one-parameter family of diffeomorphisms of ĉi associated with this

open book by {νt}t∈R (for details, see Definition 2.5). Then νt : ĉi →
ĉi satisfies ν0 = id and νt|∂∆ = id for all t. Define dt = (d−∆) ∪
νt(∆) for t ∈ R. Then dt, t ∈ [0, 1], determines an isotopy of d in M −(
D2n ∪ h1 ∪ · · · ∪ hi−1 ∪ hi+1 ∪ · · · ∪ hr

)
which can be extended to an am-

bient isotopy Φ : M×[0, 1]→M relative toD2n∪h1∪· · ·∪hi−1∪hi+1∪· · ·∪hr,
by the isotopy extension theorem.

Now, the isotopy Φ carries the handle hi with core d to a handle h̃i with

the same core d. Let us consider the difference between the normal vector

fields on d determining h̃i and hi, and denote it by θ. Then θ is trivial

outside N(ĉi) ∩ d, and we may assume that the difference exists only on

Sn−1× [0, 1] = η(Sn−1× [0, 1]) ⊂ d. In this part, θ represents the twisting of

the vector field produced by the isotopy Φ. Since the isotopy Φ is obtained

as an extension of dt, Φ produces a rotation along Sn−1 × {0} ⊂ Rn × R.

Therefore, to absorb the twist in Sn−1× [0, 1], θ|Sn−1×[0,1] makes a rotation

along Sn−1 × {t} when we increase the value of t ∈ [0, 1], completing one

turn at t = 1 (see Figure 2).

Thus, θ is defined as a map

θ : Dn4 ∪ Sn−1 × [0, 1] ∪Dn5 ∼= Sn → Sn ⊂ Rn × R× {0}
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Fig. 2. The change of normal vector field by the action of the isotopy Φ.

by 

θ(u) = (0, 1, 0) ∈ Rn × R× {0}, u ∈ Dn4 ,
θ(v) = (0, 1, 0) ∈ Rn × R× {0}, v ∈ Dn5 ,
θ(x, t) = (sin(2πt)x, cos(2πt), 0)

∈ Rn × R× {0}, (x, t) ∈ Sn−1 × [0, 1],

where Sn−1 = ∂∆. Observe that the normal space of Sn−1 = ∂∆ ⊂ Rn ×
R× {0} in ĉi ∼= Sn+1 at the point x is determined by (x, 0, 0) and (0, 1, 0).

Now it is an easy exercise to show that the degree of the above map

θ is equal to −2 for n odd and 0 for n even. Therefore, we have that

the constructed isotopy Φ changes the normal vector field associated with

the handle by −2 as an element of πn(S
n) ∼= Z. This implies that there

also exists an isotopy which changes it by 2. This completes the proof of

Lemma 4.5. �

We return to the proof of Lemma 4.2 in the case where n is odd with

n �= 3, 7 and i ≤ s.
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By successive applications of the isotopies relative to D2n ∪ h1 ∪ · · · ∪
hi−1 ∪ hi+1 ∪ · · · ∪ hr given by Lemma 4.5, we can adjust vi (1 ≤ i ≤ s) so

that ϑi determined as the difference between vi and v′i corresponds to the

zero element of πn(S
n). Thus, hi and h′i are isotopic in(

M − (D2n ∪ h1 ∪ · · · ∪ hi−1 ∪ hi+1 ∪ · · · ∪ hr)
)
∪ (hi ∩D2n)

relative to hi ∩ D2n = h′i ∩ D2n for all i ≤ s. This complete the proof of

Lemma 4.2. �

Remark 4.6. In the proof of Lemma 4.2, F and F ′ may not neces-

sarily be pages of open books. The necessary requirement is that F and

F ′ are homotopy equivalent to a bouquet of n-spheres, and that iF∗ and

iF ′∗ are surjective. Thus the lemma gives an isotopy criterion for two com-

pact oriented 2n-dimensional manifolds homotopy equivalent to a bouquet

of n-spheres, embedded in an (n − 1)-connected closed oriented (2n + 1)-

dimensional manifold, such that the inclusions induce epimorphisms in the

homology level.

Analyzing the proof of Lemma 4.2, we obtain the following stronger

result.

Lemma 4.7. Let M be an (n−1)-connected closed (2n+1)-dimensional

manifold with n ≥ 4, n �= 7, or an (n−1)-connected rational homology (2n+

1)-sphere with n = 3, 7. Suppose that ji : F → M , i = 1, 2, are embeddings

of an (n−1)-connected compact oriented 2n-dimensional manifold with non-

empty (n − 2)-connected boundary such that ji∗ : Hn(F ) → Hn(M) are

surjective. If the systems of invariants associated with ji are equivalent to

each other, and if the equivalence is induced by the identity map of F , then

the embeddings ji are isotopic to each other as maps into M .

Proof. Let F = D2n ∪h1 ∪ · · · ∪hr be the handlebody decomposition

of F as in the proof of Lemma 4.2. Then we can easily isotope j1 so that

j1|D2n = j2|D2n . Then, by Lemma 4.3, we can isotope j1 relative to D2n

so that j1(hk) = j2(hk), for all k with 1 ≤ k ≤ r. In fact, in the proof

of Lemma 4.3, we can choose the isotopy H appropriately so that we have

j1|hk = j2|hk at the end of the isotopy. This is possible, since every con-

tinuous map Dn+1 → IntD2n+1, n ≥ 3, whose restriction to boundary is a
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smooth embedding is homotopic to a smooth embedding relative to bound-

ary. Then the rest of the proof of Lemma 4.2 shows that we can further

isotope j1 so that it coincides with j2 as a map of F into M . This completes

the proof of Lemma 4.7. �

The above lemma will be used in §8 for the study of isotopies of certain

diffeomorphisms of the 2n-dimensional manifold F .

4.2. Isotopy of open book structures

Lemma 4.8. Two open book structures onM with isotopic typical pages

are structurally isotopic for n ≥ 3.

Proof. The argument of Durfee [Dur74] for simple fibered knots in

S2n+1 works without problem in our case as well as follows.

By our hypothesis, we may assume that the typical pages F and F ′ of

the two open book structures coincide. Then the bindings also coincide and

we denote it by K.

Consider E = M −N(K), where N(K) is a tubular neighborhood of

K in M as in Definition 2.1, and let ϕ1 : E → S1 and ϕ2 : E → S1 be

the fibrations corresponding to the two open book structures. Note that

we can take the same tubular neighborhood N(K) of K for both open

book structures, because of the uniqueness of a tubular neighborhood up to

ambient isotopy. Furthermore, a trivialization of the tubular neighborhood

of K is unique up to isotopy, since K is simply connected, and hence we

may assume that ϕ1|∂E = ϕ2|∂E . Denote F ∩ E and F ′ ∩ E by F and F ′

respectively by abuse of notation. Then we have F = ϕ−1
1 (0) and F ′ =

ϕ−1
2 (0). Consider a closed neighborhood J ⊂ S1 = R/Z of 0. Then, by

the uniqueness of a tubular neighborhood N(F ) of F = F ′ in E, we may

assume that N(F ) = ϕ−1
1 (J) = ϕ−1

2 (J) and ϕ1|N(F ) = ϕ2|N(F ) : N(F )→ J .

Now consider E′ = E −N(F ) and the two fibrations ϕ′
1 = ϕ1|E′ : E′ →

S1 − J = [0, 1] and ϕ′
2 = ϕ2|E′ : E′ → S1 − J = [0, 1]. Note that we have

ϕ′
1|∂E′ = ϕ′

2|∂E′ .

Observe that all fibrations over [0, 1] are trivial, which implies that there

exist trivializations g1 : E′ → F × [0, 1] and g2 : E′ → F × [0, 1] such that
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the diagram

E′ gj−→ F × [0, 1]

ϕ′j
↘ ↙p

[0, 1]

commutes for j = 1, 2, where p denotes the projection to the second factor.

Since ϕ′
1|∂E′ = ϕ′

2|∂E′ , we may assume that

g1 ◦ g−1
2 |F×{0} = id and g1 ◦ g−1

2 |∂F×[0,1] = id .

Thus g1 ◦ g−1
2 gives a pseudo-isotopy of F × I which is the identity

over (F × {0}) ∪ (∂F × I), where I = [0, 1]. Since n ≥ 3, by the relative

version of the pseudo-isotopy theorem of Cerf [Cer70], it is isotopic, as a

pseudo-isotopy relative to (F × {0}) ∪ (∂F × I), to an isotopy which is

not necessarily the identity map on F × {1}, since g1 ◦ g−1
2 |F×{1} is not

necessarily the identity. This means that there exists an ambient isotopy

H : (F × [0, 1]) × [0, 1] → F × [0, 1] of F × [0, 1] such that H0 = id, H1 =

g1 ◦ g−1
2 , and Ht|(F×{0})∪(∂F×[0,1]) is the identity map for all t ∈ [0, 1], where

Ht : F × [0, 1]→ F × [0, 1], t ∈ [0, 1], is given by Ht(x, s) = H((x, s), t).

Define the map H : E′ × I → E′ by H(x, t) = g−1
2 (H(g2(x), t)). Then,

H0 = id and ϕ′
2 ◦ H1 = ϕ′

2 ◦ g−1
2 ◦ g1 = p ◦ g1 = ϕ′

1, where Ht : E′ →
E′, t ∈ [0, 1], is given by Ht(x) = H(x, t). Moreover, Ht is the identity over

∂E′ − g−1
2 (F × {1}). Since H0 = id, we have that Ht|g−1

2 (F×{1}) is isotopic

to the identity for all t, and consequently, we can extendH to E′∪(F×[0, 1])

so that it is the identity on the boundary and that it carries F×{t} to F×{t}
for each t ∈ [0, 1], where F × [0, 1] is considered to be a collar neighborhood

of g−1
2 (F ×{1}) in ϕ−1

2 (J). Thus, we can extend H to an isotopy of E such

that it is the identity on ∂E, which allows us to extend it further to an

ambient isotopy of M . Due to the properties of the original H, we have

that ϕ2 ◦H1|E = ϕ1, and consequently, H is an isotopy between ϕ1 and ϕ2.

Thus, the two open book structures are structurally isotopic (or, isotopic

through open books). This completes the proof of Lemma 4.8. �

Theorem 4.1 now follows from Lemmas 4.2 and 4.8.

Remark 4.9. The additional condition for M , to be a rational homol-

ogy (2n+1)-sphere for n = 3, 7 in Theorem 4.1, has been necessary because
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of the proof of Lemma 4.2, where we used Lemma 2.9 in order to guarantee

that the difference ϑi ∈ πn(Sn) ∼= Z is a multiple of 2. This argument is

not valid for n = 3, 7. In the case that n = 3, we also have the problem

of spherical representations of elements of Hn+1(M) used in the proofs of

Lemmas 4.4 and 4.5.

We do not know if Theorem 4.1 is valid for n = 3, 7 without the addi-

tional condition.

5. Realization of Invariants

In this section, we prove that each system of open book invariants can

be realized by an open book structure. This means that given a system

of invariants s̄ ∈ A(M), there exists an open book (M,K,ϕ) such that

S(M,K,ϕ) = s̄, where S(M,K,ϕ) denotes the equivalence class of the

system of open book invariants associated with (M,K,ϕ). This construction

will be achieved in two steps. The first one is to construct a submanifold

of codimension one which realizes the system of invariants, and the second

step is to prove that this submanifold is the page of an open book structure.

5.1. Realization by a codimension one submanifold

In the following, hoping no confusion arises, we will not distinguish

between a system of open book invariants and its equivalence class.

Proposition 5.1. Let s̄ = {G,QG, αG, iG,ΓG} ∈ A(M) be a system

of open book invariants with respect to M , where M is an (n− 1)-connected

closed oriented (2n+1)-dimensional manifold with n ≥ 3. Then there exists

an embedding of a compact oriented 2n-dimensional manifold F in M which

is homotopy equivalent to a bouquet of n-spheres such that the system of

invariants associated with F coincides with s̄.

Proof. Let {ei}ri=1 with r = rankG be a basis of G such that

{es+1, . . . , er} is a basis of R(Ker iG), 0 ≤ s ≤ r. Consider the complex

V ′ = D2n∪γ′1∪· · ·∪γ′r, where each γ′i
∼= Dn is attached to ∂D2n using the em-

bedding ∂γ′i ↪→ ∂D2n such that ∂γ′i ∩ ∂γ′j = ∅ and lk(∂γ′i, ∂γ
′
j) = QG(ei, ej)

for i �= j, where lk denotes the linking number in ∂D2n ∼= S2n−1. This is

possible, since n ≥ 2, and we can embed V ′ in D2n+1 ⊂M .
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Observe that each element iG(ei) ∈ Hn(M) ∼= πn(M) can be represented

by an embedded n-sphere in M −D2n+1, since n ≥ 1 [Hae61, Wal63]. We

may assume that the n-spheres are disjoint from each other.

Now, take the connected sum, inside M − D2n, of the n-sphere repre-

senting iG(ei) with γ′i of V ′, for each i = 1, . . . , r. Denote the resulting

embedded complex by V = D2n ∪ γ1 ∪ · · · ∪ γr, where γi ∼= Dn corresponds

to γ′i in V ′.

Let vi be a non-vanishing normal vector field on γi. Then vi restricted to

∂γi represents an element of πn−1(S
n) = 0, and consequently, it is homotopic

to a normal vector field on ∂γi determined as the restriction of a non-

vanishing normal vector field on D2n. Thus, we may assume that vi is

normal to D2n on ∂γi. This normal vector field determines an n-handle

hi = γi × Dn ⊂ N(γi) with core γi, i = 1, . . . , r, so that it is normal to

the n-handle, where N(γi) is a tubular neighborhood of γi in M . Thus

we have constructed a 2n-dimensional manifold F = D2n ∪ h1 ∪ · · · ∪ hr
embedded in M . Note that F is homotopy equivalent to a bouquet of

n-spheres and Hn(F ) = G under the identification of ei ∈ G with the

element of Hn(F ) corresponding to γi. Using this identification, we have

that iF∗ = iG : Hn(F ) = G → Hn(M), where iF : F → M denotes the

inclusion. In the following, we always assume that the intersection form and

the Seifert form are represented as matrices with respect to the bases {ei}ri=1

and {ei}ri=s+1 of G = Hn(F ) and R(Ker iG) = R(Ker iF∗) respectively. Note

that we have R(Ker iG) = R(Ker iF∗) under the above identification.

The intersection matrix off its diagonal coincides with the linking matrix

of {∂γi}ri=1 by our construction. In the case that n is odd, the diagonal of

the intersection matrix always vanishes, since it is (−1)n-symmetric, which

implies that the intersection form of F coincides with QG. When n is even,

observe that the diagonals of the intersection matrices on G and on Hn(F )

are uniquely determined by the tangential invariants on the elements of the

basis (see item (4b) of Definition 3.15 and Lemma 2.10). Thus, let us adjust

the tangential invariants.

No matter whether n is even or odd, the n-handle hi of F is uniquely

determined by the homotopy class of the normal vector field vi on the core

γi, up to isotopy. If we substitute hi by h̃i, where h̃i is determined by

a normal vector field ṽi on γi such that vi and ṽi coincide on ∂γi, then an

element ϑi ∈ πn(Sn) is determined as the difference between vi and ṽi. Note
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that given any m ∈ πn(Sn) ∼= Z, we can always obtain ṽi such that the ϑi
associated with the difference is represented by m, since the correspondence

between the homotopy classes of non-vanishing sections of Dn+1×Sn → Sn

and the elements of πn(S
n) ∼= Z is bijective.

Definition 5.2. A twist of hi by m ∈ Z is the replacement of hi by

h̃i so that ϑi = m in πn(S
n) ∼= Z.

As discussed in the proof of Lemma 4.2, ∂ϑi coincides with the difference

between the tangential invariants associated with hi and h̃i by Lemma 2.12,

where ∂ is the boundary homomorphism of the homotopy exact sequence

(2.1).

Since the tangential invariant αF of F and the desired tangential in-

variant αG are compatible with the tangential invariant of M (see Re-

mark 3.4 and item (4a) of Definition 3.15), the difference αG(ei) − αF (ei)

lies in Ker i∗ = Im ∂. Thus, there exists an element m ∈ πn(Sn) such that

∂m = αG(ei)− αF (ei). Then, using the twist of hi by m, we can eliminate

this difference. Consequently, we may assume that αF = αG on all the

elements of the basis. As previously observed, αF and αG determine the

diagonals of the intersection forms for n even, and as a consequence, we

have QF = QG.

Since αF and αG coincide on the elements of a basis and QF = QG, the

addition formula (Remark 3.2 for αF and item (4c) of Definition 3.15 for

αG) implies that αF = αG on Hn(F ) = G.

By the above argument, we may assume that F realizes all the invari-

ants except the Seifert form. Let us now adjust the diagonal of the Seifert

matrix. When n is even, we have that 2ΓG(ei, ei) = QG(ei, ei) (item (5b) of

Definition 3.15) and 2ΓF (ei, ei) = QF (ei, ei) (Lemma 3.9) for s+ 1 ≤ i ≤ r.
Since QG = QF , the diagonal of the Seifert matrix of F coincides with that

of G.

When n = 3, 7, observe that

ΓG(ei, ei)− ΓF (ei, ei) ≡ bM (iG(ei), iG(ei))− bM (iF∗(ei), iF∗(ei))

≡ 0 (mod 1)

for s + 1 ≤ i ≤ r, due to item (5c) of Definition 3.15 and item (1) of

Lemma 3.14. Consequently, ΓG(ei, ei) and ΓF (ei, ei) differ by an integer
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and hence, we can adjust it by using a twist associated with this difference.

Since πn−1(SO(n)) = 0 for n = 3, 7 (see Lemma 2.9), we always have

αG = 0 = αF and consequently, the tangential invariant does not change.

When n is odd (n ≥ 5, n �= 7), observe that R(Ker iG) = R(Ker iF∗) by

the identification iF∗ = iG. We have ΓG(ei, ei) = qM (iG(ei)) + φ(αG(ei))

(mod 2) (item (5d) of Definition 3.15) and ΓF (ei, ei) = qM (iF∗(ei)) +

φ(αF (ei)) (mod 2) (item (2) of Lemma 3.14) for s + 1 ≤ i ≤ r, since n ≥
5, n �= 7. Since the tangential invariants coincide, we have that ΓG(ei, ei)−
ΓF (ei, ei) ≡ 0 (mod 2) and as a consequence, ΓG(ei, ei) − ΓF (ei, ei) = 2mi
for some mi ∈ Z. Now, we make the twist of the handle hi of F corre-

sponding to ei by 2mi. Since ΓF (ei, ei) is defined to be the linking number

between the translation of an n-cycle Ei representing ei, in the positive nor-

mal direction of F , and Ei, the twist by 2mi changes ΓF (ei, ei) by 2mi, since

it changes the normal vector field exactly by 2mi. Thus, after the twist, we

may assume that ΓG(ei, ei) = ΓF (ei, ei). Note that the change of αF (ei) by

the above mentioned twist is ∂(2mi) = 2(∂mi) = 0 in Im ∂ ∼= Z2, since n is

odd, n ≥ 5, n �= 7 (see Lemmas 2.9 and 2.12). Thus the tangential invariant

does not change during this process.

In this way, we may assume that the diagonals of the Seifert matrices

of F and G coincide, independently of n being even or odd. In order to

complete the adjustment of the Seifert form, we use Kervaire’s method

[Ker65] as follows.

By item (5c) of Definition 3.15 and item (1) of Lemma 3.14, we have

that ΓG − ΓF is an integer matrix (with vanishing diagonal). Furthermore,

by item (5b) of Definition 3.15 and Lemma 3.9, we have that

(ΓG − ΓF ) + (−1)n · t(ΓG − ΓF ) = QG −QF = 0,

where tA denotes the transpose of a matrix A. Thus, ΓG−ΓF = (−1)n+1X+
tX for some integer matrix X = (xij)s+1≤i,j≤r such that xii = 0.

Since n ≥ 3, ∂γi is the trivial knot in ∂D2n, where D2n is the 0-handle

of the decomposition F = D2n ∪ h1 ∪ · · · ∪ hr. Thus ∂γi bounds an n-disk

in ∂D2n. Attaching this n-disk to γi along their boundaries, we obtain an

n-cycle in F representing the element ei ∈ Hn(F ). Denote this n-cycle by

γ̄i.

For s+1 ≤ j ≤ r, let Dj be a small (n+1)-disk in M which intersects γj
transversely at a unique point in their interiors. Take Dj sufficiently small
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so that Dj does not intersect γi for i �= j, 1 ≤ i ≤ r, and that Di∩Dj = ∅ for

i �= j, s+1 ≤ i ≤ r. Orient Dj so that lk(γ̄i, ∂Dj) = δij , for s+1 ≤ i, j ≤ r,
where δii = 1 and δij = 0 for i �= j.

Now consider a trivialDn-bundleN(∂Dj) ∼= ∂Dj×Dn which is a tubular

neighborhood of ∂Dj in a 2n-disk containing Dj inside its interior. We can

choose N(∂Dj) small enough so that it does not intersect F .

Now we consider hi = γi ×Dn, s+ 1 ≤ i ≤ r, and take an ambient fiber

connected sum of N(∂Dj) and hi as follows.

Let D′
j ⊂ ∂Dj and D′′

i ⊂ γi be small n-disks such that the fibrations

N(∂Dj) and hi restricted to them are trivial. Substitute hi = γi ×Dn by(
(γi − IntD′′

i )×Dn
)
∪
(
[0, 1]× Sn−1 ×Dn

)
∪
(
(∂Dj − IntD′

j)×Dn
)
,

where the union is made as follows. Consider a small tubular neighborhood

[0, 1]×Dn×Dn of an embedded curve which joins the centers of D′
j and D′′

i

and which is disjoint from F and N(∂Dk), s+ 1 ≤ k ≤ r, except at its end

points. We may suppose that {0}×Dn×{0} = D′
j and {1}×Dn×{0} = D′′

i .

Then, we identify {0} × Sn−1 × Dn ⊂ [0, 1] × Sn−1 × Dn with ∂D′
j × Dn

and {1} × Sn−1 ×Dn ⊂ [0, 1]× Sn−1 ×Dn with ∂D′′
i ×Dn (see Figure 3).

After this fiber connected sum, the n-cycle associated with the new

handle corresponding to ei coincides with the embedded connected sum

N(∂Dj)D′
j

D′′
i

hi

[0, 1]×Dn ×Dn

Fig. 3. Fiber connected sum of hi and N(∂Dj).
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∂Dj N(∂Dj)

hi
hj γi

γj

[0, 1]× Sn−1 ×Dn

Fig. 4. Adjusting the Seifert form.

γ̄i?∂Dj (see Figure 4). Note also that the diffeomorphism type of F or the

homomorphism iF∗ do not change under this operation.

When xij > 1, we iterate the above fiber connected sum operations xij
times, using different Dj at each step in a way to avoid the intersection

with the previous ones. If xij < 0, then we use −Dj , which is Dj with the

orientation reversed, in place of Dj , and perform the fiber connected sum

operations |xij | times. When xij = 0, no operation is needed.

After all these operations for s + 1 ≤ i, j ≤ r, the n-cycle associated

with the core of the new handle h̃i corresponding to ei coincides with the

embedded connected sum

γ̃i = γ̄i
r
?

j=s+1
xij∂Dj .

Denote the resulting manifold by F̃ . Then, for s + 1 ≤ i, j ≤ r, we have

that

ΓF̃ (ei, ej) = lk(ν+γ̃i, γ̃j)

= lk

(
ν+

(
γ̄i

r
?

k=s+1
xik∂Dk

)
, γ̄j

r
?

l=s+1
xjl∂Dl

)
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= lk(ν+γ̄i, γ̄j) +
r∑

l=s+1

xjl lk(ν+γ̄i, ∂Dl)

+
r∑

k=s+1

xik lk(ν+∂Dk, γ̄j)

+
r∑

k=s+1

r∑
l=s+1

xikxjl lk(ν+∂Dk, ∂Dl).

By our choice of the (n+ 1)-disks Dk, we have lk(∂Dk, ∂Dl) = 0, and since

lk(γ̄i, ∂Dk) = δik, we have

ΓF̃ (ei, ej) = lk(ν+γ̄i, γ̄j) + xji + (−1)n+1xij

= ΓF (ei, ej) + (−1)n+1xij + xji = ΓG(ei, ej).

Observe that iF∗, the intersection form, and the fibering structure of hi
are maintained by this operation, and as a consequence, the Seifert form is

the only invariant that is changed. Thus, F̃ realizes all the desired invari-

ants. This completes the proof of Proposition 5.1. �

5.2. Realization by an open book structure

In this subsection, we prove that an embedding of a compact 2n-dimen-

sional manifold homotopy equivalent to a bouquet of n-spheres which re-

alizes a system of open book invariants is in fact a page of an open book

structure.

Definition 5.3 ([Qui79]). Let F ↪→M be an embedding of a compact

2n-dimensional manifold F with boundary into a (2n+1)-dimensional man-

ifold M such that the normal bundle of F in M is trivial. Then the tubular

neighborhood N(F ) of F can be identified with F×I ⊂M , where I = [0, 1].

We say that F ⊂ M is a homotopy page, if the inclusions of F × {0} and

F × {1} into M − (F × I) induce isomorphisms on the homotopy groups.

Our goal is to prove that the F constructed in Proposition 5.1 is always

a homotopy page.

We put W = M − (F × I) for simplicity, where F × I is a tubular

neighborhood of F in M . Note that the inclusion of F ×{1} into W can be

identified (homotopically) with a small translation in the positive normal
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direction of F , which is denoted by ν+ : F → M − IntF . In the same

manner, the inclusion of F×{0} intoW can be identified with the translation

in the negative normal direction, denoted by ν− : F →M − IntF .

By our construction, F is obtained by attaching simultaneously some

n-handles to the 0-handle, and since n ≥ 3, ∂F is (n − 2)-connected by

Lemma 2.3.

Lemma 5.4. Let F be an (n − 1)-connected compact 2n-dimensional

manifold with (n− 2)-connected boundary ∂F �= ∅ embedded in an (n− 1)-

connected closed (2n+1)-dimensional manifold M , such that iF∗ : Hn(F )→
Hn(M) is surjective, with n ≥ 3. Then W = M − (F × I) is (n − 1)-

connected and H∗(W ) ∼= H∗(F ).

Proof. Since n ≥ 3, by the conditions on F and ∂F , and by the

Seifert-van Kampen theorem, we have π1(∂(F × I)) = {1}. Since M is

simply connected, the Seifert-van Kampen theorem again implies that W

is also simply connected. Thus we have only to prove Hi(W ) = 0 for

i ≥ 2, i �= n, and Hn(W ) ∼= Hn(F ).

Consider the homology exact sequence

· · · → Hi+1(M,W )→ Hi(W )→ Hi(M)→ · · ·

of the pair (M,W ) and observe that Hi+1(M,W ) ∼= Hi+1(F × I, ∂(F ×
I)) ∼= Hi(F, ∂F ) by excision and the Künneth theorem. Thus the sequence

becomes

· · · → Hi(F, ∂F )→ Hi(W )→ Hi(M)→ · · ·

and hence we have Hi(W ) = 0 for i = 2, . . . , n− 1, since Hi(F, ∂F ) = 0 =

Hi(M) for these values of i. Consequently, W is (n− 1)-connected.

Let us consider the homology exact sequence of the pair (M,F × I)

· · · → Hi(F × I)→ Hi(M)→ Hi(M,F × I)→ Hi−1(F × I)→ · · · .

Since Hi(M,F × I) ∼= Hi(W,∂W ) by excision, the sequence becomes

· · · → Hi(F × I)→ Hi(M)→ Hi(W,∂W )→ Hi−1(F × I)→ · · ·

and hence we have that Hi(W,∂W ) = 0 for i = 0, 1, . . . , n − 1 due to the

high connectivities of F and M .
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For dimension n, the above sequence becomes

· · · → Hn(F × I)→ Hn(M)→ Hn(W,∂W )→ 0.

Since iF∗ : Hn(F ) → Hn(M) is surjective by hypothesis, we have

Hn(W,∂W ) = 0.

Now, by Poincaré-Lefschetz duality and the universal coefficient theorem

for cohomology, we have

Hi(W ) ∼= H2n+1−i(W,∂W )

∼= Hom (H2n+1−i(W,∂W ),Z)⊕ Ext (H2n−i(W,∂W ),Z) = 0,

for i > n, since H2n+1−i(W,∂W ) = 0 for these values of i.

For i = n, we have

Hn(W ) ∼= Hn+1(W,∂W )

∼= Hom (Hn+1(W,∂W ),Z)⊕ Ext (Hn(W,∂W ),Z)

∼= Hom (Hn+1(W,∂W ),Z)

and hence Hn(W ) is free over Z. Since Hn(W ) and Hn(F ) are free Z-

modules, they are isomorphic, if and only if their ranks coincide.

Consider the homology exact sequences

0→ Hn+1(F × I, ∂(F × I))→ Hn(∂(F × I))→ Hn(F × I)→ 0

associated with the pair (F × I, ∂(F × I)) and

0→ Hn+1(W,∂W )→ Hn(∂W )→ Hn(W )→ 0

associated with the pair (W,∂W ). Using the Poincaré-Lefschetz duality,

and the fact that Hn(F ) and Hn(W ) are free Z-modules, we have

Hn(∂(F × I)) ∼= Hn(F )⊕Hn(F ) and Hn(∂W ) ∼= Hn(W )⊕Hn(W ).

Since ∂(F × I) = ∂W , we have

Hn(F )⊕Hn(F ) ∼= Hn(F )⊕Hn(F ) ∼= Hn(W )⊕Hn(W )

∼= Hn(W )⊕Hn(W ).

Thus, we have rankHn(F ) = rankHn(W ) as desired. �
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Set R = R(Ker iF∗) and R′ = R(Ker iW∗), where R(Ker iF∗) and

R(Ker iW∗) are the radical closures of Ker iF∗ and Ker iW∗ respectively (see

Definition 3.6), and iF : F →M and iW : W →M are the inclusions. Since

iW ◦ ν+ : F → M and iF : F → M are isotopic, the following diagram is

commutative:

Hn(F )
iF∗−→ Hn(M) −→ 0�ν+∗ �id(5.1)

Hn(W )
iW∗−→ Hn(M) −→ 0.

Thus we have ν+
∗ (Ker iF∗) ⊂ Ker iW∗, which implies that ν+

∗ (R) ⊂ R′. Thus,

the homomorphisms ν̄+
∗ : Hn(F )/R→ Hn(W )/R′ and ν̃+

∗ = ν+
∗ |R : R→ R′

induced by ν+
∗ : Hn(F ) → Hn(W ) are well-defined. Moreover, ν+

∗ is an

isomorphism if and only if both ν̄+
∗ and ν̃+

∗ are isomorphisms, since R and

R′ are direct summands of Hn(F ) and Hn(W ) respectively.

Lemma 5.5. Let F be an (n − 1)-connected compact 2n-dimensional

manifold with (n− 2)-connected boundary ∂F �= ∅ embedded in an (n− 1)-

connected closed (2n+1)-dimensional manifold M , such that iF∗ : Hn(F )→
Hn(M) is surjective, with n ≥ 3. Then, ν̄+

∗ : Hn(F )/R→ Hn(W )/R′ is an

isomorphism.

Proof. By excision and Poincaré-Lefschetz duality, we have

Hn(M,W ) ∼= Hn(F × I, ∂(F × I)) ∼= Hn+1(F × I) ∼= Hn+1(F ) = 0.

Then the homology exact sequence of the pair (M,W ) gives the exact se-

quence

Hn+1(M) −→ Hn+1(F × I, ∂(F × I))(5.2)
∂−→ Hn(W )

iW∗−→ Hn(M) −→ 0,

and consequently, iW∗ is surjective.

By the commutative diagram (5.1) and the fact that ν+
∗ (R) ⊂ R′, we

have that the diagram

Hn(F )/R
īF∗−→ Hn(M)/τHn(M)�ν̄+∗ �id

Hn(W )/R′ īW∗−→ Hn(M)/τHn(M)
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is commutative, where īF∗ and īW∗ are the homomorphisms induced by iF∗
and iW∗, respectively. Since iF∗ and iW∗ are surjective, īF∗ and īW∗ are

isomorphisms. Thus ν̄+
∗ is also an isomorphism. �

Lemma 5.6. Let F be an (n − 1)-connected compact 2n-dimensional

manifold with (n− 2)-connected boundary ∂F �= ∅ embedded in an (n− 1)-

connected closed (2n+1)-dimensional manifold M , such that iF∗ : Hn(F )→
Hn(M) is surjective, with n ≥ 3. Then we have that

det ν̃+
∗ = ±|τHn(M)|det ΓF ,

where det ν̃+
∗ and det ΓF are the determinants of ν̃+

∗ and ΓF respectively,

and |τHn(M)| is the order of the torsion part τHn(M) of Hn(M).

Proof. In order to prove the lemma, define the homomorphism

ψ : Hn(F, ∂F )→ Hn+1(N(F ), ∂N(F )) ∼= Hn(F, ∂F )⊗H1(I, ∂I)

by ψ(A) = A ⊗ [(I, ∂I)] for A ∈ Hn(F, ∂F ), where N(F ) is the tubular

neighborhood of F in M , I = [0, 1], and [(I, ∂I)] ∈ H1(I, ∂I) ∼= Z is the

canonical generator. Set Φ = ∂ ◦ ψ, where ∂ : Hn+1(N(F ), ∂N(F )) →
Hn(W ) is the boundary homomorphism of the exact sequence (5.2) in the

proof of Lemma 5.5.

Then, Φ (Hn(F, ∂F )) ⊂ Ker iW∗ and the following diagram is commuta-

tive:

Hn(F, ∂F )�ψ ↘Φ

Hn+1(N(F ), ∂N(F ))
∂−→ Ker iW∗.

Note that ψ is an isomorphism. We also have that ∂ is surjective by the

exact sequence (5.2) and as a consequence, Φ is surjective.

We now make use of the following notion of orthogonal submodules.

Definition 5.7. Consider finitely generated free Z-modules A = A1⊕
A2 and B, and a bilinear form ξ : A × B → Z. For i = 1, 2, define the

submodule A⊥
i of B, called the orthogonal complement of Ai with respect

to ξ, by

A⊥
i = {b ∈ B : ξ(a, b) = 0 for all a ∈ Ai}.
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Lemma 5.8. If ξ : A × B → Z is a unimodular bilinear form, where

A = A1 ⊕ A2 and B are finitely generated free Z-modules of the same rank

r, then we have that B = A⊥
1 ⊕A⊥

2 .

Proof. Since ξ is unimodular, there exist bases {ai}ri=1 and {bi}ri=1

of A and B respectively such that

{a1, . . . , as} is a basis for A1,

{as+1, . . . , ar} is a basis for A2,

ξ(ai, bj) = δij ,

where s = rankA1, δii = 1 and δij = 0 for i �= j. Then we see easily

that {b1, . . . , bs} and {bs+1, . . . , br} are bases for A⊥
2 and A⊥

1 respectively.

Consequently, we have B = A⊥
1 ⊕A⊥

2 . �

Remark 5.9. Observe that rankA⊥
1 = rankA2 and rankA⊥

2 =

rankA1.

Let us return to the proof of Lemma 5.6. Since R ⊂ Hn(F ) is a direct

summand and the intersection form

〈 , 〉 : Hn(F )×Hn(F, ∂F )→ Z(5.3)

is unimodular due to Poincaré-Lefschetz duality,

R⊥ = {a ∈ Hn(F, ∂F ) : 〈b, a〉 = 0 for all b ∈ R ⊂ Hn(F )}

is a direct summand of Hn(F, ∂F ) by Lemma 5.8 above, where 〈b, a〉 denotes

the intersection number of b and a in F .

Lemma 5.10. We have R⊥ ⊃ Ker Φ.

Proof. Consider the commutative diagram

Hn+1(M)
δ−→ Hn(F, ∂F )

||
�ψ ↘Φ

Hn+1(M)
δ′−→ Hn+1(N(F ), ∂N(F ))

∂−→ Ker iW∗,
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where

Hn+1(M)
δ−→ Hn(F, ∂F ) and Hn+1(M)

δ′−→ Hn+1(N(F ), ∂N(F ))

are defined by Poincaré-Lefschetz duality and by the homomorphisms

Hn(M)
i∗F−→ Hn(F ) and Hn(M)

i∗
N(F )−→ Hn(N(F ))

induced by the inclusions iF : F →M and iN(F ) : N(F )→M , respectively.

Observe that the last sequence of the above diagram is a part of the exact

sequence (5.2).

Since ψ is an isomorphism and the last sequence of the diagram is exact,

we have that Ker Φ = Im δ. Thus, for all b ∈ Ker Φ, there exists a b′ ∈
Hn+1(M) such that b = δ(b′). Hence, for an arbitrary a ∈ R, we have that

〈a, b〉 = 〈a, δ(b′)〉 = iF∗(a) · b′ = 0, where the first two intersections are in

F and the last intersection is in M . The last equality holds, since iF∗(a) is

a torsion element of Hn(M). Thus, b ∈ R⊥ and as a consequence, we have

Ker Φ ⊂ R⊥. �

Lemma 5.11. We have R⊥ = Ker Φ, and the homomorphism

Φ̄ : Hn(F, ∂F )/R⊥ → Ker iW∗

induced by Φ is an isomorphism.

Proof. Since Φ : Hn(F, ∂F )→ Ker iW∗ is surjective,

Φ̄ : Hn(F, ∂F )/Ker Φ→ Ker iW∗

induced by Φ is an isomorphism. Thus, it is enough to show that R⊥ =

Ker Φ.

By Lemma 5.10, we have an epimorphism

p : Hn(F, ∂F )/Ker Φ→ Hn(F, ∂F )/R⊥

defined as the natural projection. Now consider p ◦ Φ̄−1 : Ker iW∗ →
Hn(F, ∂F )/R⊥, which is also an epimorphism.

Observe that rank(Ker iW∗) = rank(Ker iF∗) by Lemma 5.4 and the dia-

gram (5.1). Then we have rank(Ker iW∗) = rankR = rank(Hn(F, ∂F )/R⊥),

where the last equality is due to Remark 5.9.
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Since Ker iW∗ and Hn(F, ∂F )/R⊥ are free Z-modules and any epimor-

phism between two finitely generated free Z-modules of the same rank

is an isomorphism, we have that p ◦ Φ̄−1 is an isomorphism, and conse-

quently, p is an isomorphism. Thus, we have that Ker Φ = R⊥, which

implies that Hn(F, ∂F )/Ker Φ = Hn(F, ∂F )/R⊥. This completes the proof

of Lemma 5.11. �

Now let us return to the situation of Lemma 5.8. Define ξ1 : A1 ×
(B/A⊥

1 ) → Z by ξ1(a, [b]) = ξ(a, b), where [b] denotes the coset of b. Then

we see that ξ1 is a well-defined bilinear form by the definition of A⊥
1 .

Lemma 5.12. The bilinear form ξ1 is unimodular.

Proof. By the proof of Lemma 5.8, we have that B/A⊥
1
∼= A⊥

2 and

there exist bases {[b1], . . . , [bs]} of B/A⊥
1 and {a1, . . . , as} of A1 respectively

such that ξ1(ai, [bj ]) = ξ(ai, bj) = δij (see the proof of Lemma 5.8). This

completes the proof of Lemma 5.12. �

Let us return finally to the proof of Lemma 5.6. Consider the submodule

Ker iW∗ of the finitely generated free Z-module R(Ker iW∗). By [KaM79,

Theorem 8.1.1], there exists a basis {ã1, . . . , ãr−s} of R′ = R(Ker iW∗) such

that {Ãi = riãi}r−si=1 is a basis of Ker iW∗, obtained by diagonalizing the

matrix associated with L in the exact sequence

0 −→ Ker iW∗
L−→ R(Ker iW∗) −→ R(Ker iW∗)/Ker iW∗ −→ 0,

where r − s = rank(Ker iF∗) = rank(Ker iW∗) and r1, . . . , rr−s are positive

integers.

Since Φ̄−1 : Ker iW∗ → Hn(F, ∂F )/R⊥ is an isomorphism, the ba-

sis {Ai = Φ̄−1(Ãi)}r−si=1 of Hn(F, ∂F )/R⊥ is well-defined. Since R and

Hn(F, ∂F )/R⊥ are related by duality (Lemma 5.12), we can choose a basis

{ai}r−si=1 of R, which is dual to the basis {Ai}r−si=1 of Hn(F, ∂F )/R⊥.

In order to analyze the matrix of ν̃+
∗ : R → R′ with respect to these

special bases, we observe that

ΓF (ai, aj) = lk(ν̃+
∗ ai, aj) = lk

(
r−s∑
k=1

[ν̃+
∗ ]kiãk, aj

)
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=
r−s∑
k=1

[ν̃+
∗ ]ki lk(ãk, aj) =

r−s∑
k=1

1

rk
[ν̃+

∗ ]ki lk(Ãk, aj),

where ν̃+
∗ ai =

∑r−s
k=1[ν̃

+
∗ ]kiãk with [ν̃+

∗ ]ki ∈ Z. By the definition of the

linking form lk, the last expression is equal to

r−s∑
k=1

1

rk
[ν̃+

∗ ]ki lk(Ãk, aj) =
r−s∑
k=1

1

rk
[ν̃+

∗ ]ki lk(Φ̄(Ak), aj)

=±
r−s∑
k=1

1

rk
[ν̃+

∗ ]ki〈aj , Ak〉 = ±
r−s∑
k=1

1

rk
[ν̃+

∗ ]kiδjk = ± 1

rj
[ν̃+

∗ ]ji,

where aj ∈ R ⊂ Hn(F ), Ak ∈ Hn(F, ∂F )/R⊥, the intersection 〈aj , Ak〉
is induced from the usual intersection form of F as in Lemma 5.12, and

〈aj , Ak〉 = δjk ∈ Z by the choice of our dual bases.

Observing that |τHn(M)| = r1 · · · rr−s, since

τHn(M) ∼= R(Ker iF∗)/Ker iF∗ ∼= R(Ker iW∗)/Ker iW∗,

we have

det ΓF =
±1

r1 · · · rr−s
det ν̃+

∗ =
±1

|τHn(M)| det ν̃+
∗ .

This completes the proof of Lemma 5.6. �

Proposition 5.13. Let F be an (n− 1)-connected compact 2n-dimen-

sional manifold with (n − 2)-connected boundary ∂F �= ∅ embedded in an

(n− 1)-connected closed (2n+ 1)-dimensional manifold M , such that iF∗ :

Hn(F ) → Hn(M) is surjective, with n ≥ 3. If det ΓF = |τHn(M)|−1, then

F is the page of some open book structure on M .

Proof. By Lemmas 5.5 and 5.6, ν+
∗ : Hn(F )→ Hn(W ) is an isomor-

phism and an analogous argument shows that ν−∗ : Hn(F ) → Hn(W ) is

also an isomorphism, where W = M − (F × [0, 1]). Since W is homotopy

equivalent to a bouquet of n-spheres by Lemma 5.4, the theorem of White-

head [Spa66, Chapter 7, §5, Theorem 9] implies that ν+ and ν− induce

homotopy equivalences. Thus F ⊂M is a homotopy page. Since n ≥ 3, the
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h-cobordism theorem ([Sma62]) implies that W = M − (F × I) ∼= F × I
and as a consequence, F is the page of some open book structure on M . �

The above proposition, item (5a) of Definition 3.15 and Proposition 5.1

give the following.

Theorem 5.14. LetM be an (n−1)-connected closed oriented (2n+1)-

dimensional manifold with n ≥ 3. Then for each equivalence class of a

system of open book invariants s̄ ∈ A(M), there exists a simple and ori-

ented open book structure (K,ϕ) on M such that S(M,K,ϕ) = s̄, where

S(M,K,ϕ) is the equivalence class of the system of open book invariants

associated with (K,ϕ).

Now Theorems 5.14 and 4.1 give the following classification theorem

presented in the introduction.

Theorem 5.15. LetM be an (n−1)-connected closed oriented (2n+1)-

dimensional manifold with n ≥ 4, n �= 7, or an (n − 1)-connected ori-

ented rational homology (2n + 1)-sphere with n = 3, 7. Then the map

S : OB(M) → A(M) defined by sending each structural isotopy class of

a simple and oriented open book structure (K,ϕ) on M to the equivalence

class S(K,ϕ) of its system of open book invariants establishes a one-to-one

correspondence between the set OB(M) of all structural isotopy classes of

simple and oriented open book structures on M and the set A(M) of all

equivalence classes of systems of open book invariants with respect to M .

Remark 5.16. In the case that M ∼= S2n+1 with n ≥ 3, the above

result is well-known, where A(M) can be identified with the set of all con-

gruence classes of unimodular matrices (see Remarks 3.17 and 3.20, and

[Dur74, Kat74]). However, the result is not valid for n = 2, even when

M ∼= S2n+1 (see [Sae87]).

6. Bindings

In this section, we focus on the isotopy class of the binding of an open

book structure as an embedded submanifold of codimension two, obtaining

two important results. The first one guarantees the uniqueness of an open

book structure for a given binding, which is equivalent to saying that the
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system of open book invariants, studied in §3, is in fact an invariant of

the binding. The second one gives necessary and sufficient conditions for a

codimension two embedding to be a binding of some open book structure.

6.1. Open book structure is determined by its binding

Lemma 6.1. Consider two simple and oriented open book structures

with common binding K, on an (n−1)-connected closed (2n+1)-dimensional

manifold M with n ≥ 3, with typical pages F1 and F2 respectively. Then

there exists an orientation preserving diffeomorphism Φ : M →M carrying

F1 to F2, such that Φ ◦ ν+
1 = ν+

2 ◦ Φ|F1 and Φ∗ : Hn(M) → Hn(M) is the

identity, where ν+
1 : F1 → M − IntF1 and ν+

2 : F2 → M − IntF2 are small

translations in the positive normal directions of F1 and F2 respectively.

Proof. The diffeomorphism Φ can be obtained by an argument similar

to that used in [Sae99, Lemmas 2.4 and 2.5] as follows.

Set E = M −N(K), where N(K) is a tubular neighborhood of K in

M , and we denote the fibration E → S1 associated with the two open

book structures by ϕ1 and ϕ2, and the typical pages by F1 = ϕ−1
1 (0) and

F2 = ϕ−1
2 (0) respectively, where 0 ∈ S1 = R/Z. Since H1(K) = 0, the

trivialization of N(K) is uniquely determined up to homotopy. Then we

may assume that ϕ1|∂N(K) = ϕ2|∂N(K). Consider the universal cover Ẽ of

E. By the uniqueness of the universal cover, Ẽ = F1 × R is diffeomorphic

to F2 × R. Thus, there exists a diffeomorphism g : F2 × R → F1 × R such

that the diagram

F2 × R
g−→ Ẽ = F1 × R

ρ2↘ ↙ρ1(6.1)

E

commutes, where ρ1 and ρ2 are the projections of the universal covers as-

sociated with ϕ1 and ϕ2 respectively. Since F2 is compact, we may assume

that F̃2 = g(F2 × {0}) ⊂ F1 × (0, r) for some positive integer r. Then

F̃1 = F1 × {0} and F̃2 bound a compact manifold W1 ⊂ F1 × [0, r], and

F̃2 and F1 × {r} bound another compact manifold W2 ⊂ F1 × [0, r]. Since

ϕ1 coincides with ϕ2 on the boundary of E, W1 and W2 form invertible

cobordisms relative to boundary (see [Sie68]). Thus, W1 is an h-cobordism
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relative to boundary [Kin78, fact 3]. Since n ≥ 3, W1 is diffeomorphic to

F1 × [0, 1].

In order to obtain an embedding of W1 in E×I with I = [0, 1], we make

use of Wall’s construction ([Wal70, p. 140], [Lau76], [Sae99, Lemma 2.5]) as

follows. For simplicity, we identify Ẽ with F1×R. Let p2 : Ẽ = F1×R→ R

be the projection to the second factor and consider the embedding (i, p2/r) :

W1 → Ẽ × I, where i : W1 → Ẽ is the inclusion map, (p2/r)(x) = p2(x)/r,

and I = [0, 1]. Attaching a compact submanifold of F̃2 × I bounded by

(i, p2/r)(F̃2) and F̃2 × {1} and smoothing, we obtain an embedding ẽ :

W1 → Ẽ × I. Denote the image of this embedding by W . Then W is a

submanifold of Ẽ×I whose boundary relative to ∂Ẽ×I consists of F̃1×{0}
and F̃2 × {1}; i.e. ∂W − (∂Ẽ × I) = F̃1 × {0} ∪ F̃2 × {1} (see the left of

Figure 5). Using the projection ρ1 × id : Ẽ × I → E × I, where ρ1 is the

projection in the diagram (6.1), we define

ē = (ρ1 × id) ◦ ẽ : W1 → E × I.

It is not difficult to check that it is an embedding, with image Ŵ =

(ρ1 × id)(W ) bounded by F1 × {0} and F2 × {1} relative to ∂E × I; i.e.

∂Ŵ − (∂E × I) = F1 × {0} ∪ F2 × {1} (see the right of Figure 5).

Cutting E × I along Ŵ = (ρ1 × id)(W ), we obtain a compact (2n+ 2)-

dimensional manifold, denoted by X. Considering the covering translation

τ : Ẽ → Ẽ, we see that the compact manifold in Ẽ × I bounded by W

W Ŵ

F1 × {0}

F2 × {1}

F̃1 × {0}

F̃2 × {1}

Ẽ × [0, 1]
E × [0, 1]

Fig. 5. Embeddings of W1 in Ẽ × I and in E × I.
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F̃1 × {0}

F̃2 × {1}

W

Ŵ
W ′ = (τ × id)(W ) X

X

Y

E × [0, 1]Ẽ × [0, 1]

ρ1 × id

Fig. 6. Cutting E × I along Ŵ .

and W ′ = (τ × id)(W ) can be identified with X by the covering projection

ρ1 × id : Ẽ × I → E × I (see Figure 6).

Lemma 6.2. The manifold X gives an h-cobordism between W and W ′

relative to boundary.

Proof. Cutting Ẽ × I along W , we have two non-compact manifolds

whose intersection coincides withW . SinceW and Ẽ×I are both connected,

these two manifolds are simply connected by the Seifert-van Kampen theo-

rem. We take the one that contains W ′, and cutting it along W ′, we obtain

two new manifolds, where one of them is X. Since W ′ is simply connected,

both of the resulting manifolds are necessarily simply connected, which im-

plies that X is also simply connected (see Figure 6).

SinceW , W ′ and X are all simply connected, we have only to prove that

H∗(X,W ) = 0. For this, consider Ẽ = F1 ×R, and set Y = (F1 × I)× {0}.
Then the inclusion W ↪→W ∪ Y ∪W ′ is a homotopy equivalence, and as a

consequence, we have by excision

H∗(X,W ) ∼= H∗(X,W ∪ Y ∪W ′) ∼= H∗(E × I, Ŵ ∪ (E × {0})).

Since E × {0} ↪→ Ŵ ∪ (E × {0}) is a homotopy equivalence, we have that

H∗(X,W ) ∼= H∗(E × I, Ŵ ∪ (E × {0})) ∼= H∗(E × I, E × {0}) = 0.
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Similarly, we have H∗(X,W ′) = 0. Since n ≥ 3, we have that (X;W,W ′) is

an h-cobordism relative to boundary [Mil65]. �

Thus, there exists a diffeomorphism Θ : W×I → X such that Θ|W×{0} =

id : W ×{0} →W . Consider the diffeomorphism Θ1 = Θ|W×{1} : W →W ′.

Then Φ̃ = Θ−1
1 ◦ ((τ × id)|W ) : W → W is a diffeomorphism and we have

Φ̃(F1) = F1 and Φ̃(F2) = F2, where the boundary components F̃1×{0} and

F̃2 × {1} of W (relative to ∂Ẽ × [0, 1]) are naturally identified with F1 and

F2, respectively.

Since X is an h-cobordism relative to boundary, we have that

Φ̃|F1 = h1, Φ̃|F2 = h2, Φ̃|
∂W−(F1∪F2)

= id,

where h1 and h2 are the monodromy maps of ϕ1 and ϕ2 respectively (see

Definition 2.5). On the other hand, since W1
∼= W is diffeomorphic to

F1×[0, 1], there exists a diffeomorphism λ : F1×I →W such that λ|F1×{0} =

id. Consider the diffeomorphism λ1 = λ|F1×{1} : F1 → F2 induced by λ.

Then, h1 and λ−1
1 ◦ h2 ◦ λ1 are pseudo-isotopic relative to boundary by the

pseudo-isotopy λ−1 ◦ Φ̃ ◦ λ.
Now define the diffeomorphism

Φ′ : E = F1 × I/(x, 1) ∼ (h1(x), 0)→ E = F2 × I/(y, 1) ∼ (h2(y), 0)

by Φ′ = (λ1 × id) ◦ λ−1 ◦ Φ̃−1 ◦ λ.
Note that we have

Φ′(x, 1) = (λ1 × id) ◦ λ−1 ◦ Φ̃−1(λ1(x), 1)

= (λ1 × id) ◦ λ−1
(
h−1

2 ◦ λ1(x), 1
)

= (λ1 × id)
(
λ−1

1 ◦ h−1
2 ◦ λ1(x), 1

)
= (h−1

2 ◦ λ1(x), 1)

and

Φ′(h1(x), 0) = (λ1 × id) ◦ λ−1 ◦ Φ̃−1(h1(x), 0) = (λ1 × id)(x, 0)

= (λ1(x), 0).

Hence, Φ′ is well-defined and is an orientation preserving diffeomorphism.

Moreover, we have the following.
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Lemma 6.3. The induced homomorphism Φ′
∗ : Hn(E)→ Hn(E) is the

identity.

Proof. Since E −N(F1) ∼= F1 × I, where I = [0, 1] and N(F1) is a

tubular neighborhood of F1 in E, we have that

Hn(E,F1) ∼= Hn(E,N(F1)) ∼= Hn(F1 × I, F1 × {0, 1})
∼= Hn+1(F1 × I, ∂F1 × I) ∼= Hn+1(F1, ∂F1)

∼= Hn−1(F1) = 0

by excision and Poincaré-Lefschetz duality. Then the homology exact se-

quence

Hn(F1)
i′F1∗−→ Hn(E) −→ Hn(E,F1)

of the pair (E,F1) implies that i′F1∗ : Hn(F1)→ Hn(E) is surjective, where

i′F1
: F1 → E is the inclusion given by i′F1

(x) = x × {1} and x × {1} is in

F1 × {1} ⊂ E = F1 × I/(x, 1) ∼ (h1(x), 0).

Thus, an arbitrary ξ ∈ Hn(E) can be represented by an n-cycle a×{1} ⊂
E = F1 × I/(x, 1) ∼ (h1(x), 0) for some n-cycle a in F1.

Denote the homology class represented by a×{1} in Hn(E) by [a×{1}].
Then we have

Φ′
∗(ξ) = Φ′

∗([a× {1}]) = [Φ′(a× {1})] = [h−1
2 ◦ λ1(a)× {1}].

Since h2 is isotopic to the identity of F2 in E by a one-parameter family

of diffeomorphisms determined by the second open book structure, we have

that Φ′
∗(ξ) = [λ1(a)× {1}].

Now, we observe that λ1(a) is isotopic to a in Ẽ and hence in E. As

a consequence, we have [λ1(a) × {1}] = [a × {1}]. Thus, we have Φ′
∗(ξ) =

[a× {1}] = ξ. This completes the proof of Lemma 6.3. �

Since Φ′ : E → E is the identity on ∂E, there exists a natural extension

Φ : M →M of Φ′ which preserves the orientations. Then the diagram

Hn(E)
Φ′

∗−→ Hn(E)�iE∗

�iE∗

Hn(M)
Φ∗−→ Hn(M)
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commutes, where iE : E →M is the inclusion. Observing that K = ∂F1 is

(n− 2)-connected, we have, by excision and Poincaré-Lefschetz duality,

Hn(M,E) ∼= Hn(K ×D2, ∂(K ×D2)) ∼= Hn+1(K ×D2)

∼= Hn+1(K) = Hn−2(K) = 0.

Then by the homology exact sequence of the pair (M,E), we have

· · · −→ Hn(E)
iE∗−→ Hn(M) −→ 0

and iE∗ is surjective. Thus, by Lemma 6.3 and the commutativity of the

above diagram, we see that Φ∗ : Hn(M) → Hn(M) is the identity. This

completes the proof of Lemma 6.1. �

Theorem 6.4. Suppose that K is an (n−2)-connected closed oriented

(2n− 1)-dimensional manifold embedded in an (n− 1)-connected closed ori-

ented (2n+1)-dimensional manifold M with n ≥ 4, n �= 7, or in an (n− 1)-

connected oriented rational homology (2n+1)-sphere with n = 3, 7. Then all

simple and oriented open book structures on M with binding K are isotopic

through open books.

Proof. Let (K,ϕ1) and (K,ϕ2) be open book structures in question

and denote the Seifert form and the typical page of (K,ϕ1) by Γ1 and F1

respectively, and the Seifert form and the typical page of (K,ϕ2) by Γ2

and F2 respectively. We will show that the isomorphism Hn(F1)→ Hn(F2)

induced by Φ|F1 : F1 → F2 establishes an equivalence between the two

systems of open book invariants, where Φ is the diffeomorphism constructed

in Lemma 6.1.

By definition of Φ′ in the proof of Lemma 6.1, we have that Φ′|F1 :

F1 × {0} → F2 × {0} is an orientation preserving diffeomorphism. Thus

Φ|F1 : F1 → F2 is a diffeomorphism, and induces an isomorphism (Φ|F1)∗ :

Hn(F1) → Hn(F2) which preserves the tangential invariants and the inter-

section forms.

Since Φ∗ is the identity on Hn(M), the following diagram commutes:

Hn(F1)
(Φ|F1

)∗−→ Hn(F2)

iF1∗
↘ ↙iF2∗

Hn(M),
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where iFj : Fj →M , j = 1, 2, are the inclusion maps. Recall that Φ ◦ ν+
1 =

ν+
2 ◦Φ|F1 , where ν+

1 and ν+
2 are small translations in the positive normal di-

rections of F1 and F2 respectively. Therefore, we have lk(ν+
2 (Φ(ξ)),Φ(ζ)) =

lk(Φ(ν+
1 (ξ)),Φ(ζ)) for all n-cycles ξ and ζ in F1 representing elements of

R(Ker iF1∗). If rν+
1 (ξ) bounds an (n + 1)-chain ξ̃ in M , then rΦ(ν+

1 (ξ))

bounds Φ(ξ̃), and as a consequence, we have that lk(Φ(ν+
1 (ξ)),Φ(ζ)) =

lk(ν+
1 (ξ), ζ), since Φ preserves the orientations. Thus, Γ2((Φ|F1)∗(ξ),

(Φ|F1)∗(ζ)) = Γ1(ξ, ζ) for all ξ and ζ in R(Ker iF1∗).
In this manner, (Φ|F1)∗ gives an equivalence between the systems of open

book invariants associated with (K,ϕ1) and (K,ϕ2). Thus, by Theorem 4.1,

the two open book structures are structurally isotopic. �

Remark 6.5. By Theorem 6.4, an open book structure on an (n− 1)-

connected closed (2n+1)-dimensional manifold M with n ≥ 4, n �= 7, or on

an (n− 1)-connected rational homology (2n+ 1)-sphere M with n = 3, 7, is

determined uniquely by the isotopy class of the oriented embedding of the

binding K in M . In particular, the system of open book invariants is an

invariant of the embedding of the binding.

Since the embedding of the binding determines the open book structure,

eventually we denote the open book (M,K,ϕ) simply by (M,K), for n ≥
4, n �= 7, or when n = 3, 7 and M is a rational homology sphere.

6.2. Fibering criterion

In this subsection, we give necessary and sufficient conditions for a codi-

mension two submanifold to be a binding of some open book structure.

Theorem 6.6. Let K be an (n− 2)-connected closed (2n− 1)-dimen-

sional manifold embedded in an (n−1)-connected closed (2n+1)-dimensional

manifold M with n ≥ 3. Then we have the following.

(1) K is the binding of some open book structure (which is not necessarily

simple) on M with simply connected page, if and only if the normal

bundle of K in M is trivial (or equivalently, the tubular neighborhood

N(K) of K is trivial), π1(E) ∼= Z, and πi(E) are finitely generated

for all i, where E = M −N(K).

(2) The above open book is simple, if and only if πi(E) = 0 for i =

2, 3, . . . , n− 1.
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Proof. (1) Suppose that K is the binding of an open book structure

(which is not necessarily simple) with simply connected typical page F .

Then N(K) is trivial by the very definition of an open book structure.

By the homotopy exact sequence

· · · → πi(F )→ πi(E)→ πi(S
1)→ · · ·

associated with the fibration F → E → S1, and by the fact that F is simply

connected, we have that π1(E) ∼= Z.

Now we note that the above sequence gives that πi(E) ∼= πi(F ) for i > 1.

Since F is simply connected, Corollary 16 of [Spa66, Chapter 9, Section 6]

implies that πi(F ) are finitely generated for all i. Thus, πi(E) are finitely

generated for all i.

Now suppose conversely that N(K) is trivial, π1(E) ∼= Z and πi(E)

are finitely generated for all i. We will prove that there exists an open

book structure (not necessarily simple) with binding K and with simply

connected page.

Since N(K) is trivial, ∂E = ∂N(K) can be identified with K × S1 and

as a consequence, we have the trivial fibration ∂E → S1 defined as the

projection to the second factor. We will verify that the fibration extends

to E, using the fibration theorem of Browder-Levine [BL66]. For this, we

recall some concepts.

Let E be a compact manifold with boundary and suppose that there

exists an orientable fibration f : ∂E → S1. We also suppose that dimM >

5, π1(E) ∼= Z, and that πi(E) are finitely generated for all i ≥ 2. Let

v ∈ H1(S1) be the generator corresponding to the orientation class of S1.

Then the class ϑ(f) = f∗(v) ∈ H1(∂E) is defined. On the other hand, the

inclusion map i : ∂E → E induces a restriction map i∗ : H1(E)→ H1(∂E).

Then, by Browder-Levine [BL66], if there exists a non-vanishing class ϑ ∈
H1(E) such that i∗ϑ = ϑ(f), then f extends to a fibration f̃ : E → S1.

In our case, almost all conditions of the above result are already verified,

except the existence of ϑ, where f : ∂E = K × S1 → S1 is the projection

to the second factor of ∂E = K × S1. Since K is simply connected, we

have H1(K) = 0. It follows from the Künneth theorem that H1(K ×S1) ∼=
H1(S1) which is induced by the trivial inclusion of S1 in K × S1. Then

f∗ : H1(S1) → H1(K × S1) is an isomorphism and ϑ(f) = f∗(v) is a

generator of H1(K × S1) ∼= Z. Thus, if i∗ : H1(E) → H1(∂E) induced by
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the inclusion i : ∂E → E is surjective, then there exists a non-vanishing

element ϑ ∈ H1(E) such that i∗ϑ = ϑ(f).

Consider the cohomology exact sequence associated with the pair

(E, ∂E):

· · · −→ H1(E)
i∗−→ H1(∂E) −→ H2(E, ∂E) −→ · · · .

Since we have H2(E, ∂E) ∼= H2n−1(E) by Poincaré-Lefschetz duality, the

sequence becomes

· · · −→ H1(E)
i∗−→ H1(∂E) −→ H2n−1(E) −→ · · · .

Thus, i∗ is surjective, if H2n−1(E) = 0. Let us consider the Mayer-Vietoris

exact sequence associated with {E,N(K)}:

H2n(M)→ H2n−1(∂E)→ H2n−1(E)⊕H2n−1(N(K))→ H2n−1(M).

We have H2n(M) = H2n−1(M) = 0 by our connectivity condition, and also

H2n−1(N(K)) ∼= H2n−1(K), since N(K) ∼= K × D2. Thus, the sequence

becomes

0 −→ H2n−1(∂E) −→ H2n−1(E)⊕H2n−1(K) −→ 0.

We have H2n−1(∂E) ∼= H2n−1(K × S1) ∼= H1(K × S1) ∼= H1(S1) ∼= Z, and

H2n−1(K) ∼= Z, since K is closed and orientable. Therefore, the sequence

reduces to

0 −→ Z −→ H2n−1(E)⊕ Z −→ 0.

This implies that H2n−1(E) = 0, and as a consequence, i∗ is surjective.

Thus, there exists a desired cohomology class ϑ and by the result of Browder-

Levine mentioned above, the fibration f : ∂E → S1 extends to a fibration

f̃ : E → S1.

To verify that the page is simply connected, observe that the homotopy

exact sequence associated with the fibration F → E → S1,

π2(S
1)→ π1(F )→ π1(E)→ π1(S

1),

reduces to

0 −→ π1(F ) −→ π1(E)
f̃∗−→ π1(S

1).(6.2)
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Observe also that the following diagram commutes:

π1(∂E) ∼= π1(K × S1)
i∗−→ π1(E)

f∗↘ ↙f̃∗
π1(S

1).

Since f is the projection to the second factor, f∗ is surjective, and con-

sequently f̃∗ is also surjective. On the other hand, we have π1(E) ∼= Z.

Then f̃∗ is an isomorphism, and this implies that π1(F ) = {1} by the exact

sequence (6.2).

In order to verify that F is connected, observe that the homotopy exact

sequence of the fibration F → E → S1 in the zero level is

0 −→ Z
f̃∗−→ Z −→ π0(F ) −→ 0,

since E is connected. Since f̃∗ is an isomorphism, we have that π0(F ) = 0,

which implies that F is connected. This completes the proof of part (1).

(2) Consider the homotopy exact sequence

· · · → πi+1(S
1)→ πi(F )→ πi(E)→ · · ·

associated with the fibration F → E → S1. This implies that πi(F ) ∼= πi(E)

for i = 2, . . . , n− 1. Since F is simply connected, it is (n− 1)-connected, if

and only if πi(E) = 0 for i = 2, . . . , n− 1. Since K is (n− 2)-connected, we

have the desired result. This completes the proof of Theorem 6.6. �

As a consequence of Theorems 5.15, 6.4 and 6.6, we have the following

classification theorem of certain codimension two embeddings up to isotopy.

Corollary 6.7. Suppose that M is an (n − 1)-connected closed ori-

ented (2n + 1)-dimensional manifold with n ≥ 4, n �= 7, or an (n − 1)-

connected oriented rational homology (2n + 1)-sphere with n = 3, 7. Then

there exists a one-to-one correspondence between the set A(M) of all equiv-

alence classes of systems of open book invariants with respect to M and the

set of all isotopy classes of oriented submanifolds of codimension two which

satisfy the conditions of Theorem 6.6.

Remark 6.8. Levine [Lev70] has classified codimension two embed-

dings of homotopy (2n − 1)-spheres into S2n+1, up to isotopy, whose com-

plements have the homotopy type of S1 up to the dimension n − 1. Such
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embeddings are called simple knots. In his classification, Seifert matrices of

such simple knots have played an essential role. We do not know if the above

corollary can be generalized to include codimension two submanifolds whose

complements have the homotopy type of S1 up to the dimension n− 1, but

may not necessarily fiber over the circle.

7. Decomposition of Open Books

In this section, we use our classification theorem of open book structures

(Theorem 5.15) to study the decomposition of open books with respect to

“connected sum”. We also introduce the notion of a minimal open book

structure for a given ambient manifold and prove its existence.

7.1. Connected sum of open books

Definition 7.1. Let Ki be the oriented binding of an oriented open

book structure (which may not necessarily be simple) on an oriented (2n+1)-

dimensional manifoldMi, i = 1, 2. We assume thatKi are connected. Let us

take a sufficiently small tubular neighborhood Di ∼= D2n+1 in Mi of a point

of Ki. We may assume that (Di, Di ∩Ki) is diffeomorphic to the standard

disk pair (D2n+1, D2n−1) and that the fibration Di−(Di∩Ki)→ S1 induced

from the open book structure corresponds to the canonical fibration, which

is trivial. We take the connected sum M1?M2 = (M1 − IntD1) ∪ (M2 −
IntD2) obtained by a natural identification between ∂D1 and ∂D2 such

that it reverses their orientations, that ∂D1 ∩K1 corresponds to ∂D2 ∩K2

orientation reversingly, and that the identification respects the fibrations on

the boundaries of the disks. In this process, we can glue K1− (IntD1 ∩K1)

and K2− (IntD2 ∩K2) along their boundaries to obtain the connected sum

K1?K2.

Then the open book structures on M1 and M2 naturally induce an open

book structure on the manifold M1?M2, with binding K1?K2 and page

F1HF2, where F1HF2 denotes the boundary connected sum of F1 and F2.

This new open book is called a book connected sum, or simply a connected

sum, if there is no confusion, and is denoted by (M1,K1)?b(M2,K2), or sim-

ply by M1?bM2. Note that the resulting open book is oriented and that it

does not depend on the choice of the points on Ki, since Ki are connected,

i = 1, 2.
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Note that if (Mi,Ki) are simple, then so is (M1,K1)?b(M2,K2).

In what follows, we always assume that open books used in book con-

nected sums are simple.

For n ≥ 3, let A2n+1 be the union of all A(M), where M runs through

all (n− 1)-connected closed oriented (2n+ 1)-dimensional manifolds. Then

we define the sum in A2n+1 as follows.

Definition 7.2. Take s1, s2 ∈ A2n+1. Suppose that s1 ∈ A(M1) and

s2 ∈ A(M2) for (n−1)-connected closed oriented (2n+1)-dimensional mani-

foldsM1 andM2. Let {G1, QG1 , αG1 , iG1 ,ΓG1} and {G2, QG2 , αG2 , iG2 ,ΓG2}
be representatives of s1 and s2 respectively. Then we define the sum as

s1 + s2 = [{G1 ⊕G2, QG1 ⊕QG2 , αG1 + αG2 , iG1 ⊕ iG2 ,ΓG1 ⊕ ΓG2}],

where [∗] denotes the equivalence class of ∗, G1⊕G2, QG1 ⊕QG2 are direct

sums, ΓG1 ⊕ ΓG2 is the direct sum with respect to R(Ker(iG1 ⊕ iG2)) =

R(Ker iG1) ⊕ R(Ker iG2), iG1 ⊕ iG2 : G1 ⊕ G2 → Hn(M1) ⊕ Hn(M2) is

defined naturally, and αG1 + αG2 : G1 ⊕ G2 → πn−1(SO(n)) is defined by

(αG1 + αG2)(ξ ⊕ ζ) = αG1(ξ) + αG2(ζ) for all ξ ∈ G1 and ζ ∈ G2.

We observe that the operation does not depend on the choice of the

representatives and is well-defined. Furthermore, we can easily prove the

following.

Proposition 7.3. Let M1 and M2 be (n−1)-connected closed oriented

(2n + 1)-dimensional manifolds with n ≥ 3. If (M1,K1) and (M2,K2) are

open book structures on M1 and M2 respectively, then we have that

S((M1,K1)?b(M2,K2)) = S(M1,K1) + S(M1,K1),

where S denotes the equivalence class of the system of open book invariants

associated with an open book.

Note that the tangential invariant is not a homomorphism in general;

instead, we can use the addition rule mentioned in Remark 3.2. The proof

of the above proposition is then straightforward (for details, see [Mas00]).
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7.2. Trivial open books

In this subsection, we study trivial open books (see Definition 2.8). This

is necessary in the study of decomposition of open books, since a book

connected sum with a trivial open book hardly produces a new open book,

as we will see later in this section.

The following lemma can be proved by using the generalized Poincaré

conjecture (see [Sma61] and [Mil65]). The details are left to the reader.

Lemma 7.4. If an open book (M,K,ϕ) is trivial with n ≥ 3, then

(1) M is a homotopy (2n+ 1)-sphere, and

(2) the typical page F is diffeomorphic to D2n and the binding K = ∂F

is diffeomorphic to S2n−1.

The following is an immediate consequence of Theorem 5.15.

Proposition 7.5. Let M be a homotopy (2n + 1)-sphere with n ≥ 3.

Then there exists a unique trivial open book structure on M up to structural

isotopy.

Remark 7.6. Consider a (simple) open book structure (M,K) on an

(n − 1)-connected closed (2n + 1)-dimensional manifold M with n ≥ 3.

Suppose that (S2n+1,K0) is a trivial open book. Since the trivial open

book is associated with the trivial embedding of S2n−1, the book connected

sum with (S2n+1,K0) does not change the open book structure. Thus

(M,K)?b(S
2n+1,K0) is always structurally isotopic to (M,K) under the

natural identification M?S2n+1 = M .

On the other hand, if (Σ,KΣ) is a trivial open book, where Σ is a

homotopy (2n + 1)-sphere which is not diffeomorphic to S2n+1, then

(M,K)?b(Σ,KΣ) may be different from (M,K), since M may not be diffeo-

morphic to M?Σ.

Remark 7.7. In the above remark, in order to get the same conclusion

for (Σ,KΣ) as well, we need some additional conditions as follows.

Consider a (simple) open book structure (M,K) on an (n−1)-connected

closed (2n+1)-dimensional manifold M with n ≥ 4, n �= 7, or on an (n−1)-

connected rational homology (2n + 1)-sphere M with n = 3, 7. Suppose
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that (Σ,KΣ) is a trivial open book, where Σ is a homotopy (2n+ 1)-sphere

which may not necessarily be diffeomorphic to S2n+1 (see Definition 2.8 and

Proposition 7.5). Then we have that the system of open book invariants

associated with (M,K) corresponds to that of (M,K)?b(Σ,KΣ): however,

we have to be careful, since S(M,K) ∈ A(M), while S((M,K)?b(Σ,KΣ)) ∈
A(M?Σ).

Thus, if M ∼= M?Σ by a diffeomorphism which preserves the orien-

tations and which induces the “identity” on homology, then (M,K) and

(M,K)?b(Σ,KΣ) are “structurally isotopic” by Theorem 4.1 if we identify

M and M?Σ by the above diffeomorphism.

7.3. Decomposition of open books

Definition 7.8. An open book (M,K) is said to be decomposable in

the weak sense, if M is orientation preservingly diffeomorphic to M1?M2

and if (M,K) is structurally isotopic to (M1,K1)?b(M2,K2) under the above

diffeomorphism, for some non-trivial open books (Mi,Ki), i = 1, 2.

The following lemma is a consequence of the above definition together

with Proposition 7.3.

Lemma 7.9. Let (M,K) be an open book structure on an (n − 1)-

connected closed (2n + 1)-dimensional manifold M with n ≥ 3. If (M,K)

is decomposable in the weak sense, then the system of open book invariants

associated with (M,K) decomposes as

S(M,K) = [{G1, QG1 , αG1 , iG1 ,ΓG1}] + [{G2, QG2 , αG2 , iG2 ,ΓG2}]

for some [{G1, QG1 , αG1 , iG1 ,ΓG1}] and [{G2, QG2 , αG2 , iG2 ,ΓG2}] ∈ A2n+1

such that G1 �= 0, G2 �= 0 and Hn(M) = Im iG1 ⊕ Im iG2.

The following proposition is a consequence of Theorem 5.15.

Proposition 7.10. Suppose that (M,K) is an open book and M =

M1?M2, where M,M1 and M2 are (n− 1)-connected closed (2n+1)-dimen-

sional manifolds, with n ≥ 4, n �= 7, or M,M1 and M2 are (n−1)-connected

rational homology (2n + 1)-spheres with n = 3, 7. Then (M,K) is struc-

turally isotopic to the book connected sum (M1,K1)?b(M2,K2) of some open
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books (M1,K1) and (M2,K2), if and only if the system of open book invari-

ants associated with (M,K) decomposes as a direct sum with respect to the

decomposition Hn(M) = Hn(M1)⊕Hn(M2) as in Definition 7.2.

In the above proposition, we have supposed thatM = M1?M2. However,

if αM = 0, then we have a similar result without assuming this hypothesis

as follows.

Proposition 7.11. Let (M,K) be a simple open book structure on an

(n−1)-connected closed (2n+1)-dimensional manifold M such that αM = 0

and n ≥ 4, n �= 7. If the system of open book invariants associated with

(M,K) decomposes as

S(M,K) = [{G1, QG1 , αG1 , iG1 ,ΓG1}] + [{G2, QG2 , αG2 , iG2 ,ΓG2}]

for some [{G1, QG1 , αG1 , iG1 ,ΓG1}] and [{G2, QG2 , αG2 , iG2 ,ΓG2}] ∈ A2n+1

such that G1 �= 0, G2 �= 0 and Hn(M) = H1 ⊕ H2, where H1 = Im iG1

and H2 = Im iG2, then there exist non-trivial simple open books (M1,K1)

and (M2,K2) such that M is diffeomorphic to M1?M2 and that (M,K)

is structurally isotopic to (M1,K1)?b(M2,K2). In other words, (M,K) is

decomposable in the weak sense.

Proof. By item (5c) of Definition 3.15, the decomposition Hn(M) =

H1 ⊕ H2 is orthogonal with respect to bM : τHn(M) × τHn(M) → Q/Z.

Thus, by [Wal67, Corollary, p. 285], there exists a decomposition M −
IntD2n+1 = M ′

1HM
′
2 such that Hn(M

′
i) = Hi, i = 1, 2. Since αM = 0 by our

hypothesis, we have that αM ′
1

= αM ′
2

= 0. Then, by [Wal67, Theorem 8, p.

285], ∂M ′
1
∼= S2n ∼= ∂M ′

2. Therefore, we can consider M1 = M ′
1∪D2n+1 and

M2 = M ′
2 ∪D2n+1, where the union is taken by identifying the boundaries

and we have that M = M1?M2.

Then, by our hypothesis and by Proposition 7.10, (M,K) is structurally

isotopic to the book connected sum of (M1,K1) and (M2,K2) for some open

books (M1,K1) and (M2,K2). �

Remark 7.12. (1) If M is a homotopy sphere, or more generally, if M

is stably parallelizable, then αM = 0.

(2) The condition αM = 0 in the above proposition is used to guarantee

that αM ′
1

= αM ′
2

= 0, which implies that ∂M ′
1 and ∂M ′

2 are diffeomorphic
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to S2n. If we have αM �= 0, then at least one of αM ′
1

or αM ′
2

is non-trivial,

which implies that ∂M ′
1 or ∂M ′

2 may be an exotic sphere.

(3) In Proposition 7.11, the decomposition (M1,K1)?b(M2,K2) is not

unique in general. Note that if M = M1?M2, then we have that M =

(M1?Σ)?(M2?(−Σ)) for any homotopy sphere Σ of dimension 2n+ 1.

So far, we have been interested in the decompositions of open books in

the weak sense as defined in Definition 7.8. Since the ambient manifold M

may not be the sphere, we have another definition of decomposability for

open book structures as follows.

Definition 7.13. An open book structure (M,K) on a manifold M

is said to be decomposable in the strong sense, if it is structurally isotopic

to the connected sum (M,K1)?(S
2n+1,K2) for some non-trivial open books

(M,K1) and (S2n+1,K2).

Note that if an open book (M,K) is decomposable in the strong sense,

then it is also decomposable in the weak sense.

Definition 7.14. When an open book is not decomposable in the

strong (resp. weak) sense, we say that it is indecomposable in the strong

(resp. weak) sense.

7.4. Minimal open book structures

In order to give examples of open book structures which are indecom-

posable in the strong sense, we introduce the following notion.

Definition 7.15. Let F be the typical page of a simple open book

structure (K,ϕ) on a (2n + 1)-dimensional manifold M . If rankHn(F )

coincides with the minimum number of generators of Hn(M) over Z, then

we say that (K,ϕ) is minimal .

We have the following existence theorem of minimal open book struc-

tures as a consequence of our realization theorem of systems of open book

invariants.

Theorem 7.16. If M is an (n − 1)-connected closed (2n + 1)-dimen-

sional manifold with n ≥ 3 such that Hn(M) is torsion free, i.e. τHn(M) =

0, then there exists a simple and minimal open book structure on M .
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Proof. By Theorem 5.14, it suffices to construct a system of open

book invariants with respect to M with minimal “rank”.

Since Hn(M) is free, we can take G = Hn(M) and iG = id. Note that

R(Ker iG) = 0, which implies that the Seifert form vanishes. Thus, we have

only to construct the tangential invariant αG and the intersection form QG.

In order to construct these invariants, recall that αM is a homomorphism

(see Remark 3.3), while αG may not.

Let {e1, . . . , er} be a basis of G = Hn(M) and choose values for αG(ej) ∈
πn−1(SO(n)) such that i∗αG(ej) = αM (ej), j = 1, . . . , r. This is possible,

since i∗ : πn−1(SO(n)) → πn−1(SO(n + 1)) is an epimorphism by the ho-

motopy exact sequence (2.1) together with the fact that πn−1(S
n) = 0.

When n is odd, αG(ej) ∈ πn−1(SO(n)) ∼= 0, Z2 or Z2⊕Z2 (see [Wal65])

and p∗αG(ej) = 0 ∈ πn−1(S
n−1) ∼= Z, where

p∗ : πn−1(SO(n))→ πn−1(S
n−1)

is the homomorphism of Remark 2.11 which vanishes for n odd. When n is

even, we have p∗αG(ej) ∈ πn−1(S
n−1) ∼= Z. Then we define the intersection

form by

QG(ej , ek) =

{
p∗αG(ej) ∈ Z (j = k),

0 (j �= k).

Observe that it is (−1)n-symmetric.

Now, define the values of αG : G→ πn−1(SO(n)) by

αG


 r∑
j=1

kjej


 =

r∑
j=1

(
kjαG(ej) +

kj(kj − 1)

2
QG(ej , ej)∂tn

)
∈ πn−1(SO(n)),

where r = rankG, tn is the generator of πn(S
n) represented by the identity

map Sn → Sn (see Remark 3.2) and ∂ is the boundary homomorphism of

the exact sequence (2.1) (see Lemma 2.9).

In order to show that {G,QG, αG, iG,ΓG} constitutes a system of open

book invariants with respect to M , it is enough to prove the following.

Lemma 7.17. The map αG satisfies the conditions of items (4a), (4b)

and (4c) of Definition 3.15.
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Proof. Let us first check that the following diagram commutes:

G
αG−→ πn−1(SO(n))

||
�i∗

Hn(M)
αM−→ πn−1(SO(n+ 1)).

We have that

i∗αG


 r∑
j=1

kjej


 = αM


 r∑
j=1

kjej


 ,

which follows from our definition of αG together with the fact that i∗∂tn = 0,

definition of αG(ej), and the fact that αM is a homomorphism. Thus, we

have i∗ ◦ αG = αM on Hn(M).

For n even, we have

p∗αG


 r∑
j=1

kjej


 = QG


 r∑
j=1

kjej ,

r∑
j=1

kjej


 ,

which follows from the fact that p∗∂tn = 2 [Ste51, §23.4] (see also Re-

mark 2.11). For n odd, since both p∗ ◦ αG and QG vanish, we have that

p∗αG


 r∑
j=1

kjej


 = 0 = QG


 r∑
j=1

kjej ,

r∑
j=1

kjej


 .

Finally, let us verify that αG(ξ + ζ) = αG(ξ) + αG(ζ) +QG(ξ, ζ)∂tn for

all ξ, ζ ∈ G. We have that

αG


 r∑
j=1

kjej +
r∑
j=1

ljej


(7.1)

=
r∑
j=1

(
(kj + lj)αG(ej) +

(kj + lj)(kj + lj − 1)

2
QG(ej , ej)∂tn

)
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by our definition of αG. On the other hand, we have

αG


 r∑
j=1

kjej


+ αG


 r∑
j=1

ljej


+QG


 r∑
j=1

kjej ,
r∑
j=1

ljej


 ∂tn

=

r∑
j=1

(
kjαG(ej) +

kj(kj − 1)

2
QG(ej , ej)∂tn

)

+
r∑
j=1

(
ljαG(ej) +

lj(lj − 1)

2
QG(ej , ej)∂tn

)

+


 r∑
j=1

kjljQG(ej , ej)


 ∂tn,

which coincides with the right hand side of (7.1). This completes the proof

of Lemma 7.17. �

Thus, we obtain a system of open book invariants with respect to M .

By the realization theorem (Theorem 5.14), we see that there exists an

open book structure on M which realizes the above system of open book

invariants. This completes the proof of Theorem 7.16. �

We do not know if the condition τHn(M) = 0 is essential in Theo-

rem 7.16. Our conjecture is the following.

Conjecture 7.18. IfM is an (n−1)-connected closed (2n+1)-dimen-

sional manifold with n ≥ 3, then there exists a minimal open book structure

on M .

Remark 7.19. Note that the unique minimal open book structure on

Sn+1 with n ≥ 3 is the trivial one. However, for general manifolds, we do

not have the uniqueness of minimal open book structures, as shown by the

following example.

Example 7.20. For n ≥ 4, n �= 7, set M = Sn × Sn+1. Since Hn(M) ∼=
Z is torsion free, the Seifert form of a minimal open book structure on M

should be trivial, and as a consequence, a minimal open book structure

on M is uniquely determined by the intersection form and the tangential
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invariant. Note that the tangential invariant αG is compatible with the

tangential invariant αM of M , if and only if ImαG ⊂ Ker i∗ = Im ∂, since

αM = 0, where i∗ : πn−1(SO(n)) → πn−1(SO(n + 1)) is induced by the

inclusion and ∂ : πn(S
n) → πn−1(SO(n)) is the boundary homomorphism

of (2.1).

For n even, Im ∂ ∼= Z (see Lemma 2.9) and we can choose αG corre-

sponding to each integer. Since αG uniquely determines the intersection

form, we have that the set of structural isotopy classes of minimal open

book structures on M = Sn × Sn+1 is in one-to-one correspondence with

the set of integers, due to our classification theorem (Theorem 5.15).

For n odd, Im ∂ ∼= Z2 by Lemma 2.9. Thus there exist exactly two

choices for αG, and the intersection form always vanishes. Therefore, we

have exactly two structural isotopy classes of minimal open book structures

on M = Sn × Sn+1.

Remark 7.21. Note that a minimal open book structure is always

indecomposable in the strong sense. In fact, if there exists a decomposition

(M,K) = (M,K1)?b(S
2n+1,K2) with Hn(F1) �= 0 and Hn(F2) �= 0, where

F1 is the typical page of (M,K1) and F2 is the typical page of (S2n+1,K2),

then the open book (M,K1) satisfies rankHn(F1) < rankHn(F ), where

F = F1HF2 is the typical page of (M,K). Consequently, (M,K) is not

minimal.

Thus, Theorem 7.16 implies that there exists at least one indecompos-

able open book structure in the strong sense, on any (n−1)-connected closed

(2n+ 1)-dimensional manifold M such that τHn(M) = 0, when n ≥ 3.

However, a minimal open book is not always indecomposable in the weak

sense. For example, consider the book connected sum of two non-trivial

minimal open book structures on manifolds with torsion free homologies.

Then it is minimal, but is decomposable in the weak sense.

The above remark and Conjecture 7.18 suggest the following.

Conjecture 7.22. Let M be an (n − 1)-connected closed (2n + 1)-

dimensional manifold with n ≥ 3. Then there exists an indecomposable

open book structure in the strong sense on M .

An indecomposable open book structure in the strong sense may not

necessarily be minimal, as shown by the following example.
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Example 7.23. Let us consider M = Sn × Sn+1 with n odd, n ≥ 3,

and G = Z ⊕ Z. Then for any epimorphism iG : G → Hn(M), we have

R(Ker iG) ∼= Z, and the Seifert matrix is given by ΓG = ±1 (see item (5a)

of Definition 3.15). In this case, the Seifert form determines only the self-

intersection of the generator, which is zero, since n is odd. Let us define

the intersection form so that it is non-zero. Now, we define the tangential

invariant αG. Let {e1, e2} be a basis of G such that e2 is a generator of

R(Ker iG). Define αG : G→ πn−1(SO(n)) by

αG(ke1 + le2) = (k + l + klQG(e1, e2))∂tn ∈ πn−1(SO(n)).

Since αSn×Sn+1 = 0, the condition of item (4a) of Definition 3.15 is satisfied.

For the condition of item (4b) of Definition 3.15, note that

p∗αG(ke1 + le2) = (k + l + klQG(e1, e2))p∗∂tn = 0,

since n is odd. Furthermore, we have QG(ke1 + le2, ke1 + le2) = 0, since n

is odd. This verifies the condition.

Now we verify the condition of item (4c) of Definition 3.15. We have

that

αG
(
(ke1 + le2) + (k′e1 + l′e2)

)
= αG

(
(k + k′)e1 + (l + l′)e2

)
(7.2)

=
(
k + k′ + l + l′ + (k + k′)(l + l′)QG(e1, e2)

)
∂tn.

On the other hand, we have that

αG(ke1 + le2) + αG(k′e1 + l′e2) +QG(ke1 + le2, k
′e1 + l′e2)∂tn

=(k + l + klQG(e1, e2))∂tn + (k′ + l′ + k′l′QG(e1, e2))∂tn

+ (kl′ − lk′)QG(e1, e2)∂tn,

which coincides with the right hand side of (7.2), since ∂tn is of order two.

Finally, as to item (5d) of Definition 3.15, we have that ΓG(le2, le2) =

l2ΓG(e2, e2) = ±l2 and

qM (iG(le2)) + φ(αG(le2)) = qM (0) + φ(l∂tn)

= lφ(∂tn) = l (mod 2),

which verifies the condition.



Open Book Structures on Manifolds 509

Thus, there exists an open book structure on M associated with the

system of open book invariants constructed above, by our Theorem 5.14.

This open book structure is not minimal and is indecomposable in the strong

sense, or even in the weak sense. In fact, if it were decomposable in the weak

sense, then the intersection form would be in a diagonal form, and since n

is odd, it should vanish, which contradicts the construction. Thus, we have

constructed an indecomposable open book structure in the strong sense

which is not minimal.

In the case that M is the sphere S2n+1, it is easy to see that there

exists an indecomposable open book structure on M = S2n+1 which is not

minimal, due to the existence of Seifert matrices which do not decompose

as a non-trivial direct sum and the classification theorem for simple fibered

knots in the spheres [Lev70, Dur74, Kat74].

Minimal open book structures on decomposable manifolds may be inde-

composable in the weak sense as the following example shows.

Example 7.24. Set M = (Sn × Sn+1)?(Sn × Sn+1), n ≥ 3. Since

Hn(M) ∼= Z⊕Z, the Seifert form of a minimal open book structure must be

trivial, and hence, a minimal open book structure is uniquely determined by

the intersection form and the tangential invariant. Let {e1, e2} be a basis of

G = Hn(M). Now we define the intersection form QG so that the matrix in

the basis {e1, e2} is given by

(
0 1

−1 0

)
when n is odd, and by

(
0 1

1 0

)
when n is even.

Now we define αG by αG(ke1 + le2) = klQG(e1, e2)∂tn = kl∂tn. Then

we can verify that the intersection form and the tangential invariant satisfy

the conditions of Definition 3.15, using an argument similar to that in the

above examples. Therefore, there exists an open book structure associated

with the system of open book invariants constructed above by our realiza-

tion theorem (Theorem 5.14). This open book structure is clearly minimal.

Furthermore, it is indecomposable in the strong sense, or even in the weak

sense, since the intersection form does not decompose as a direct sum.

Using the existence of minimal open book structures, we can show that

there exists an injection from the set of structural isotopy classes of open

book structures on the sphere S2n+1 to that on a given (n − 1)-connected
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closed (2n + 1)-dimensional manifold M with n ≥ 3 such that Hn(M) is

torsion free. For this, we first show the following cancellation lemma for

minimal open books.

Lemma 7.25. Let (M,K) be a minimal open book structure on an

(n− 1)-connected closed (2n+ 1)-dimensional manifold M with n ≥ 3 such

that τHn(M) = 0 and let N be an (n − 1)-connected rational homology

(2n+1)-sphere. Suppose that (N,K1) and (N,K2) are two open books such

that (M,K)?b(N,K1) and (M,K)?b(N,K2) are structurally isotopic to each

other. Then (N,K1) and (N,K2) are structurally isotopic.

Proof. Let F be the typical page of (M,K), and F1 and F2 the typ-

ical pages of (N,K1) and (N,K2) respectively. Then the typical page of

(M,K)?b(N,Kj) is the boundary connected sum FHFj , j = 1, 2, and we

have the natural decomposition Hn(FHFj) = Hn(F )⊕Hn(Fj). For this de-

composition, we have that R(Ker iF'Fj∗) = Hn(Fj), j = 1, 2, since F is the

typical page of a minimal open book structure, Hn(M) is torsion free, and

Hn(N) ⊂ Hn(M?N) is exactly the torsion part, where iF'Fj : FHFj → M ,

j = 1, 2, are the inclusion maps.

By our assumption, there exists a structural isotopy Φ = {Φt}t∈[0,1]

between (M,K)?b(N,K1) and (M,K)?b(N,K2). Then Φ1∗ : Hn(FHF1) →
Hn(FHF2) is an isomorphism which establishes an equivalence between the

systems of open book invariants of (M,K)?b(N,K1) and (M,K)?b(N,K2)

(see Remark 3.22). Since Φ satisfies the commutative diagram

Hn(FHF1)
Φ1∗−→ Hn(FHF2)

iF�F1∗
↘ ↙iF�F2∗

Hn(M),

Φ1∗ maps Ker iF'F1∗ to Ker iF'F2∗ and induces an isomorphism Φ̄ :

Hn(F1)→ Hn(F2).

Since Φ1∗ preserves the systems of open book invariants and Φ̄ is its

restriction, it also preserves the systems of open book invariants, giving

an equivalence between the systems of open book invariants of (N,K1) and

(N,K2). Thus (N,K1) is structurally isotopic to (N,K2) by Theorem 4.1. �

By the above lemma, we immediately have the following two results.
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Proposition 7.26. Let (M,K) be a minimal open book structure on

an (n − 1)-connected closed (2n + 1)-dimensional manifold M with n ≥ 3

such that τHn(M) = 0. Suppose that (S2n+1,K1) and (S2n+1,K2) are

two open book structures on the sphere such that (M,K)?b(S
2n+1,K1) and

(M,K)?b(S
2n+1,K2) are structurally isotopic to each other. Then

(S2n+1,K1) is structurally isotopic to (S2n+1,K2).

Corollary 7.27. LetM be an (n−1)-connected closed (2n+1)-dimen-

sional manifold such that Hn(M) is torsion free with n ≥ 3. Then we have

an injective map of the set of all structural isotopy classes of open book

structures on S2n+1, to the set of all structural isotopy classes of open book

structures on M , defined by sending (S2n+1,K ′) to (M,K)?b(S
2n+1,K ′),

where (M,K) is a minimal open book structure on M , whose existence is

guaranteed by Theorem 7.16.

When Hn(M) is not torsion free, we do not know if the above results

are valid or not. Our conjecture is the following.

Conjecture 7.28. Let M be an (n − 1)-connected closed (2n + 1)-

dimensional manifold with n ≥ 3. Then we have an injective map from the

set of all structural isotopy classes of open book structures on S2n+1, to the

set of all structural isotopy classes of open book structures on M , defined by

sending (S2n+1,K ′) to (M,K)?b(S
2n+1,K ′), for some open book structure

(M,K) on M .

8. Variation Map and Its Application

In this section, we introduce the notion of a variation map, which is

a homomorphism induced in the homology level, for a self-diffeomorphism

of a manifold with boundary. Applying this to the monodromy of an open

book, we obtain the variation map associated with an open book. When the

ambient manifold is the sphere, the variation map is always an isomorphism,

and it has been known that giving the Seifert form is equivalent to giving

the variation map, so that the variation map is a very important invariant

in this case (see, for example, [Kau74]). We will see that this is also the

case in the general (possibly non-spherical) case as well. Furthermore, as an

application of the variation map, together with our classification theorem
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of open book structures, we study isotopy of certain diffeomorphisms of

(n− 1)-connected compact 2n-dimensional manifolds with boundary.

8.1. Variation map

Definition 8.1. Let h : F → F be a self-diffeomorphism of an (n−1)-

connected compact 2n-dimensional manifold F such that h|∂F = id. Given

an element ξ ∈ Hn(F, ∂F ), let x be an n-chain of (F, ∂F ) representing ξ.

We define ∆(ξ) = [x − h(x)], where [x − h(x)] denotes the homology class

represented by the n-cycle x − h(x) in Hn(F ). Then ∆ : Hn(F, ∂F ) →
Hn(F ) is a well-defined homomorphism, which is called the variation map

associated with h. Note that ∆ depends only on the homotopy class of h

relative to boundary.

Suppose that h1 and h2 : F → F are diffeomorphisms such that h1|∂F =

h2|∂F = id. It is easy to see that if they are homotopic relative to boundary,

then ∆1 = ∆2, where ∆1 and ∆2 are the variation maps associated with h1

and h2 respectively. In particular, if they are isotopic relative to boundary,

then we have ∆1 = ∆2.

Definition 8.2. Let (M,K) be an open book with typical page F . As

we have mentioned in Definition 2.5, we have the characteristic map (or the

monodromy) h : F → F of the fibration over the circle. Note that h satisfies

h|∂F = id and is uniquely determined up to isotopy relative to boundary.

Thus the variation map ∆ : Hn(F, ∂F ) → Hn(F ) of h is defined and does

not depend on the choice of h. We call ∆ the variation map of the open

book (M,K).

Let (M,K) be a (simple) open book structure on an (n− 1)-connected

closed (2n+ 1)-dimensional manifold M with n ≥ 3. We denote its typical

page by F . Then we have the exact sequence

0 −→ Hn+1(M)
iM∗−→ Hn+1(M,F × I)

∂−→ Hn(F × I)
iF∗−→ Hn(M) −→ 0

of the pair (M,F × I), where I = [0, 1], F × I is a tubular neighborhood of

F in M , iM : M → (M,F × I) is the inclusion, and iF∗ can be identified
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with the epimorphism induced by the inclusion iF : F →M . Note that we

have

Hn+1(M,F × I) ∼= Hn+1(M − (F × I), ∂(F × I))
∼= Hn+1(F × I, ∂(F × I)) ∼= Hn(F, ∂F )

by excision, by the fact that M − (F × I) ∼= F × I, and by the Künneth

theorem, respectively. Analyzing carefully theses identifications, we obtain

the exact sequence

0 −→ Hn+1(M)
δ−→ Hn(F, ∂F )

∆−→ Hn(F )
iF∗−→ Hn(M) −→ 0,(8.1)

where δ is induced by the restriction map and ∆ is the variation map of the

open book.

It is a well-known fact that for simple open book structures on the

spheres, the variation map is always an isomorphism. Furthermore, the

variation map determines and is determined by the Seifert form (see [Kau74,

Lemma 2.7]).

For an open book structure on a general manifold, the variation map

may not necessarily be an isomorphism. In order to get a monomorphism,

let us consider the orthogonal complement R⊥ of R = R(Ker iF∗) with

respect to the intersection form (5.3) defined in Definition 5.7. Then we

have the following.

Lemma 8.3. We have Ker ∆ = R⊥.

Proof. Let x be an arbitrary n-cycle representing an element of

Hn(F, ∂F ). Since ν+ : F → M − IntF and ν− : F → M − IntF can

be identified with the positive and the negative “half turns” with respect to

the fibration M −K → S1 respectively, we have

ν−∗ ◦∆([x]) = ν−∗ [x− h(x)] = [ν−(x)− ν− ◦ h(x)] = [ν−(x)− ν+(x)].

Recall the homomorphism Φ : Hn(F, ∂F ) → Ker iW∗ defined in the proof

of Lemma 5.6, where W = M − (F × I) and iW : W → M is the inclusion

map. Then, regarding ν± as maps of F intoW , we obtain [ν−(x)−ν+(x)] =

−[ν+(x) − ν−(x)] = −Φ([x]). Since ν−∗ : Hn(F ) → Hn(W ) is an isomor-

phism, we obtain Ker ∆ = Ker Φ = R⊥ by Lemma 5.11. �
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By the above lemma, ∆ induces the homomorphism

∆̄ : Hn(F, ∂F )/R⊥ → Hn(F ).

Thus we obtain the exact sequence

0 −→ Hn(F, ∂F )/R⊥ ∆̄−→ Hn(F )
iF∗−→ Hn(M) −→ 0,

and hence

0 −→ Hn(F, ∂F )/R⊥ ∆̄−→ R
iF∗|R−→ τHn(M) −→ 0,

is exact. Then, we have the following generalization of [Kau74, Lemma 2.7].

Lemma 8.4. We have ΓF (a, ∆̄B) = 〈a,B〉 for all a ∈ R and B ∈
Hn(F, ∂F )/R⊥, where 〈 , 〉 : R × Hn(F, ∂F )/R⊥ → Z is the unimodular

bilinear form induced from the restricted intersection form R×Hn(F, ∂F )→
Z of F as in Lemma 5.12.

Proof. The lemma follows from the following:

ΓF (a, ∆̄B) = lk(ν+
∗ a, ∆̄B) = lk(a, ν−∗ ◦ ∆̄B) = lk(a,−Φ(B))

= − lk(a,Φ(B)) = −(−1)n+1 lk(Φ(B), a)

= (−1)n(I ×B) · a = 〈a,B〉,

where (I ×B) · a denotes the intersection number in M . Note that

[∂(I × x)] = [ν+(x)− ν−(x)] = Φ(B)

for a cycle x representing B. �

Note that the sign appearing in the formula of the above proposition

is slightly different from that of [Kau74, Lemma 2.7]. This is due to our

definition of the linking number as in [Wal67], which is slightly different

from that of Kauffman [Kau74].

The above lemma suggests the following notion of an algebraic variation

map associated with a system of open book invariants.
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Definition 8.5. LetM be an (n−1)-connected closed (2n+1)-dimen-

sional manifold and s = {G,QG, αG, iG,ΓG} a system of open book invari-

ants with respect to M . Then the algebraic variation map ∆̄ : G∗/R⊥ → R

is defined by the formula

ΓG(a, ∆̄B) = 〈a,B〉(8.2)

for all a ∈ R and B ∈ G∗/R⊥, where G∗ is the dual of G and R⊥ is the

orthogonal complement of R with respect to the restriction of the natural

paring 〈 , 〉 : G ×G∗ → Z. The map ∆̄ is a well-defined homomorphism as

the following lemma shows.

Lemma 8.6. The map ∆̄ : G∗/R⊥ → R is a well-defined homomor-

phism and is uniquely determined by the formula (8.2).

Proof. By Proposition 5.1, the given system of open book invariants

s = {G,QG, αG, iG,ΓG}

can be realized by an (n − 1)-connected compact 2n-dimensional manifold

F embedded in M . Then by the last part of the proof of Lemma 5.6, we see

that the matrix (ΓG(ai, rjaj)) is unimodular for some basis {ai} of R and

some integers rj . Then the result follows immediately. �

The following lemma is a consequence of the above definition.

Lemma 8.7. We have det ∆̄ = ±|τHn(M)|.

Proposition 8.8. There exists an exact sequence

0 −→ G∗/R⊥ ∆̄−→ R
iG|R−→ τHn(M) −→ 0.

Proof. Since det ∆̄ = ±|τHn(M)|, ∆̄ is injective. Furthermore, since

iG : G→ Hn(M) is surjective, iG|R : R→ τHn(M) is also surjective. Thus,

we have only to prove that iG ◦ ∆̄ = 0.

Let B ∈ G∗/R⊥ be an arbitrary element. Item (5c) of Definition 3.15

implies

ΓG(a, ∆̄B) ≡ bM (iG(a), iG(∆̄B)) (mod Z)
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for all a ∈ R. By our definition of ∆̄, we have ΓG(a, ∆̄B) = 〈a,B〉 ∈ Z,

and hence we have bM (iG(a), iG(∆̄B)) = 0 ∈ Q/Z for all a ∈ R. Since

iG : R→ τHn(M) is surjective and bM is non-singular by [Wal67], we have

iG(∆̄B) = 0. This completes the proof of Proposition 8.8. �

Note that the Seifert form determines, and is determined by the algebraic

variation map.

8.2. Application to diffeomorphisms of manifolds with boundary

In this subsection, we use variation maps and the previous results in

order to study isotopy of diffeomorphisms of (n − 1)-connected compact

2n-dimensional manifolds with boundary.

Recall the open book construction studied in Definition 2.6.

Proposition 8.9. Let F be an (n − 1)-connected compact 2n-dimen-

sional manifold with (n − 2)-connected and non-empty boundary with n ≡
2, 5, 6 (mod 8) and n ≥ 4. Furthermore, let h1 and h2 : F → F be orien-

tation preserving diffeomorphisms which are the identity on the boundary.

We suppose that Coker(∆1)⊗ Z2 = Coker(∆2)⊗ Z2 = 0, where ∆1 and ∆2

are the variation maps associated with h1 and h2 respectively. If ∆1 = ∆2,

then the manifolds obtained by the open book constructions with respect to

h1 and h2 are diffeomorphic to each other up to taking connected sum with

some homotopy (2n+ 1)-sphere.

Proof. Let M1 and M2 be the manifolds obtained by the open book

constructions with respect to h1 and h2 respectively (see Definition 2.6).

We denote the respective bindings by K1 and K2. Then the manifolds M1

and M2 are diffeomorphic to each other up to taking connected sum with a

homotopy sphere, if and only if their systems of invariants defined by Wall

[Wal67] are equivalent.

Consider the homology exact sequence

0 −→ Hn+1(Mj) −→ Hn(Fj , ∂Fj)
∆j−→ Hn(Fj)

iFj∗−→ Hn(Mj) −→ 0

associated with the open book (Mj ,Kj), j = 1, 2, where Fj is the typical

page (see (8.1)). Since F1 = F = F2 and ∆1 = ∆2 by our assumption, we

have that H = Hn(M1) = Coker(∆1) = Coker(∆2) = Hn(M2).
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Since F1 = F = F2, we can identifyHn(F1) withHn(F2), and since ∆1 =

∆2, we have that ΓF1 = ΓF2 by Lemma 8.4. Consequently, by item (5c) of

Definition 3.15, we have bM1 = bM2 .

By Remark 3.4, we have that i∗ ◦ αF = αMj ◦ iFj∗, j = 1, 2, where i∗ :

πn−1(SO(n))→ πn−1(SO(n+1)) is the homomorphism of (2.1). Therefore,

αM1 = αM2 holds under the above identification Hn(M1) = Hn(M2), since

iFj∗ are surjective.

Then by item (5d) of Definition 3.15, we have qM1 = qM2 when n is odd.

By our hypothesis, we have H ⊗ Z2 = Coker(∆1) ⊗ Z2 = Coker(∆2) ⊗
Z2 = 0. Hence, for n even with n �= 4, 8, the invariants φ̂(M1) ∈
Hn+1(M1; Z2) ∼= H ⊗ Z2 = 0 and φ̂(M2) ∈ Hn+1(M2; Z2) ∼= H ⊗ Z2 = 0

vanish.

Since n ≡ 2, 5, 6 (mod 8), πn(SO) ∼= πn(SO(n + 2)) vanishes (see

[Wal65]). Thus the invariant β̂ ∈ H ⊗ πn(SO) also vanishes for M1 and

M2. Note that no other invariants are necessary in Wall’s classification

theorem [Wal67, Theorem 7], since n �≡ 0, 1, 4 (mod 8).

Thus, M1 − IntD2n+1 ∼= M2 − IntD2n+1 by the classification theorem

of (n− 1)-connected almost closed (2n+ 1)-dimensional manifolds [Wal67].

Therefore, there exists a homotopy (2n+1)-sphere Σ such thatM1?Σ ∼= M2.

This completes the proof of Proposition 8.9. �

Remark 8.10. As Wall’s result shows, the diffeomorphism M1?Σ ∼=
M2 can be chosen so that the induced isomorphismHn(M1) = Hn(M1?Σ)→
Hn(M2) coincides with the identification Hn(M1) = Hn(M2) mentioned

above.

Theorem 8.11. Under the same assumption as in Proposition 8.9, we

have the following.

(1) The diffeomorphisms hiHh
−1
i : FH(−F ) → FH(−F ), i = 1, 2, are iso-

topic to each other relative to boundary.

(2) There exists a positive integer k such that

hiH · · · Hhi︸ ︷︷ ︸
k times

: FH · · · HF︸ ︷︷ ︸
k times

→ FH · · · HF︸ ︷︷ ︸
k times

, i = 1, 2,

are isotopic to each other relative to boundary.
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(3) There exists a positive integer k such that hki : F → F , i = 1, 2, are

isotopic to each other relative to boundary.

(4) We can modify h1 homotopically on a disk D2n embedded in the inte-

rior of F fixing ∂D2n so that it is isotopic to h2 relative to boundary.

In particular, h1 and h2 are homotopic relative to boundary.

Proof. We use the same notation as in the proof of Proposition 8.9.

Note that we have M2
∼= M1?Σ for some homotopy sphere Σ.

(1) We have M2?(−M2) ∼= M1?(−M1), since Σ?(−Σ) is always diffeo-

morphic to S2n+1. Furthermore, by Remark 8.10 and the proof of Proposi-

tion 8.9, the diffeomorphism can be chosen so that it preserves the systems of

open book invariants associated withM1?b(−M1) = (M1, ∂F )?b(−(M1, ∂F ))

and M2?b(−M2) = (M2, ∂F )?b(−(M2, ∂F )), since systems of open book in-

variants and invariant systems of (n− 1)-connected closed (2n+ 1)-dimen-

sional manifolds behave well under book connected sum. Hence, under the

above identification, they are structurally isotopic by Theorem 4.1. Note

that the typical page of −(Mi, ∂F ) is identified with −F and that its geo-

metric monodromy is identified with h−1
i , i = 1, 2.

Let us denote the structural isotopy between the open booksM1?b(−M1)

and M2?b(−M2) by Φ = {Φt}t∈[0,1]. Then by Lemma 4.7, we may assume

that Φ1 : FH(−F ) = F1H(−F1) → F2H(−F2) = FH(−F ) is the identity map,

where F1 and F2 are the typical pages of (M1, ∂F ) and (M2, ∂F ) respec-

tively, and F1H(−F1) and F2H(−F2) are the typical pages of M1?b(−M1) and

M2?b(−M2) respectively. Therefore, their geometric monodromies h1Hh
−1
1

and h2Hh
−1
2 are isotopic relative to boundary.

(2) Note that the h-cobordism group θ2n+1 of homotopy (2n+1)-spheres

is finite for n �= 1 (see [KeM63]). Let k be the order of Σ in θ2n+1. Then

we have,

M2? · · · ?M2︸ ︷︷ ︸
k times

= M1? · · · ?M1︸ ︷︷ ︸
k times

.(8.3)

Furthermore, as in (1), by Theorem 4.1, we see that the open books

M1?b · · · ?bM1︸ ︷︷ ︸
k times

and M2?b · · · ?bM2︸ ︷︷ ︸
k times
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are structurally isotopic under the above identification (8.3). Consequently,

their monodromy diffeomorphisms

h1H · · · Hh1︸ ︷︷ ︸
k times

and h2H · · · Hh2︸ ︷︷ ︸
k times

: FH · · · HF︸ ︷︷ ︸
k times

→ FH · · · HF︸ ︷︷ ︸
k times

are isotopic to each other relative to boundary.

(3) Let us consider the diffeomorphism h̄1 = h1Hh
−1
Σ : FHD2n → FHD2n,

where hΣ : D2n → D2n is the monodromy of the trivial open book structure

(Σ,KΣ) on the homotopy sphere Σ (see Definition 2.8 and Proposition 7.5).

Let M̄1 be the manifold obtained by the open book construction with re-

spect to h̄1. Then M̄1 is diffeomorphic to M1?(−Σ) ∼= M2?Σ?(−Σ) ∼= M2.

Furthermore, under an appropriate identification of M̄1 and M2, the sys-

tems of open book invariants associated with the open books determined

by h̄1 and h2 coincide with each other. Hence, the open book structures are

structurally isotopic by Theorem 4.1. Thus, h̄1 and h2 are isotopic relative

to boundary as in (1).

Let k be the order of Σ in the h-cobordism group θ2n+1 of homotopy

(2n+ 1)-spheres. Note that we have h̄k1 = hk1Hh
−k
Σ . Since h−kΣ is isotopic to

the identity of D2n relative to boundary, we see that h̄k1 is isotopic to hk1
relative to boundary. Thus, hk1 and hk2 are isotopic relative to boundary.

(4) This follows from the proof of (3). �

We can weaken the condition of Theorem 8.11 as follows.

Corollary 8.12. Let F be an (n − 1)-connected compact 2n-dimen-

sional manifold with (n − 2)-connected and non-empty boundary with n ≡
2, 5, 6 (mod 8) and n ≥ 4. We suppose that there exists a diffeomorphism

h : F → F with h|∂F = id such that Coker(∆h) ⊗ Z2 = 0, where ∆h is the

variation map associated with h. Let h1 and h2 : F → F be orientation

preserving diffeomorphisms which are the identity on the boundary. If the

variation maps associated with h1 and h2 coincide with each other, then we

have the following.

(1) The diffeomorphisms hiHh
−1
i : FH(−F ) → FH(−F ), i = 1, 2, are iso-

topic to each other relative to boundary.
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(2) There exists a positive integer k such that

hiH · · · Hhi︸ ︷︷ ︸
k times

: FH · · · HF︸ ︷︷ ︸
k times

→ FH · · · HF︸ ︷︷ ︸
k times

, i = 1, 2,

are isotopic to each other relative to boundary.

(3) There exists a positive integer k such that hki : F → F , i = 1, 2, are

isotopic to each other relative to boundary.

(4) We can modify h1 homotopically on a disk D2n embedded in the inte-

rior of F fixing ∂D2n so that it is isotopic to h2 relative to boundary.

In particular, h1 and h2 are homotopic relative to boundary.

Proof. Let g1 and g2 : F → F be the diffeomorphisms defined by

g1 = (h1 ◦ h−1
2 ) ◦ h and g2 = h. Then g1 and g2 satisfy the conditions of

Theorem 8.11. Hence item (4) holds for g1 and g2, and hence for h1 ◦ h−1
2

and id. This implies that item (4) holds for h1 and h2. Then the other

items (1)–(3) follow immediately. �

Remark 8.13. In the above corollary, the condition that there exists

a diffeomorphism h : F → F with h|∂F = id such that Coker(∆h)⊗ Z2 = 0

is equivalent to that F can be embedded in a Z2-homology (2n+ 1)-sphere

as a page of an open book structure. In particular, if F is a page of an open

book structure on S2n+1 — i.e., if F is a fiber of a fibered knot — then two

diffeomorphisms h1 and h2 : F → F with h1|∂F = h2|∂F = id satisfy the

condition (4) of the above corollary, if and only if their associated variation

maps coincide with each other.

Remark 8.14. In [Sae99], [Sae02], the third author has studied simple

open book structures on simply connected rational homology 5-spheres and

has obtained results similar to Theorem 8.11 and Corollary 8.12 for n = 2.
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Universidade de São Paulo
Caixa Postal 668, CEP 13560-970
São Carlos - SP, Brazil
E-mail: ozimneto@icmc.usp.br
URL: http://www.icmc.usp.br/˜ozimneto/

Sadao Massago
Universidade Federal de São Carlos
Departamento de Matemática
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