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ABSTRACT 

The work of Sullivan and Wall on surgery theory, as extended to the 

topological case by Kirby and Siebenmann, showed the existence of an exact 

sequence of pointed sets for the surgery theory of a compact oriented mani-

fold with boundary (M,3M) of dimension m > 6: 

(*) 

We address the problem of group structure in the surgery exact sequence 

(*) and its extension to the left. When G/TOP is given the infinite loop 

space structure arising from Quinn's theory of surgery spaces, it is shown: 

Theorem: There is a long exact sequence of abelian groups and homomorphisms: 

where e is the surgery obstruction map. 

Moreover, it is shown that this sequence is natural with respect to 

induction and restriction for a covering projection of finite index, or more 

generally, for oriented bundles with fiber a closed oriented manifold. A 

corrected version of Siebenmann's periodicity theory for sTOP(M,3M) is also 

obtained. 

Finally, Dress induction and localization are applied to the surgery 

exact sequence to prove: 

Theorem: Suppose G is a finite group of homeomorphisms acting freely on 

pair (M,3M). Let s(H) sTOP(M/H,3M/H) for a subgroup H of G. Also 

let C be a class of subgroups of G and A a subring of the rational 

iv 



INDUCTION THEOREMS 

numbers. Then the sum of the induction maps ~H£C s(H) 9 A~ s(G) 9 A is 

surjective and product of the restriction maps S(G) 9 A ~ nH£Cs(H) 9 A is 

injective in the cases: 

1. C is the class of cyclic subgroups of G, A = Q. 

2. C is the class of 2-hyperelementary subgroups of A, A 

Z[l/3, 1/5, ... J. 

v 

3. n1 (M) is finite, C is the class of p-element?ry subgroups of G, 

p odd, and A= Z[l/2]. 

4. n1(M) is finite, C is the union of the classes in 2 and 3, and 

A = Z. 

This memoir is a slightly revised version of the author's doctoral 

dissertation (Princeton, 1979). 
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INTRODUCTION 

Let CAT be one of the categories DIFF, PL, TOP of smooth, piecewise 

linear, and topological manifolds respectively. The work of Sullivan and 

Wall on surgery theory as extended to the topological c'ase by Kirby and 

Siebenmann (see [KS], [Sul], [Wal]) showed the existence of an exact se-

quence of pointed sets for a compact oriented CAT manifold with boundary 

(M,aM), dim M = m > 6: 

where sCAT(M,aM) is the set of s-cobordism classes of CAT simple homo

topy equivalences N + M relative to aM, nCAT(M,aM) is the set of normal 

cobordism classes of CAT normal maps over M relative to aM, and e is 

the surgery obstruction map. Moreover, Lm+l(n1 (M)) acts on the set 

· sCAT(M,aM) and there is a long exact sequence of groups: 

The set nCAT(M,dM) can be identified with set [M,aM;G/CAT,*] of homotopy 

classes of maps into G/CAT. The space G/CAT is the homotopy fiber of the 

natural map BCAT + BG where BCAT is the classifying spaces for stable 

CAT bundles and BG is the classifying space for stable spherical fibra-

tions. 

We address the problem of group structure in the surgery exact sequence 

(*) and its extension to the left in the case CAT = TOP. We also comment 

on the case CAT = PL. When G/TOP is given the infinite loop space structure 

arising from Quinn's theory of surgery spaces, we show: 

Received by the editors January, 1980. 
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2 ANDREW NICAS 

Theorem: There is a long exact sequence of abelian groups and homomorphisms: 

where e is the surgery obstruction. 

Moreover, we show that this sequence is natural with respect to induction 

and restriction for a covering projection of finite index, or more generally, 

for oriented bundles with fiber a closed oriented manifold. A corrected 

version of Siebenmann's periodicity theorem for sTOP(M,8M) ([KS, p. 283)) 

is also obtained. 

Finally, we apply Dress induction and localization to the surgery exact 

sequence to prove: 

Theorem: Suppose G is a finite group of homeomorphisms acting freely on 

the pair (M,8M). Let s(H) = sTOP(M/H,aM/H) for a subgroup H of G. 

Also let C be a class of subgroups of G and A a subring of the rational 

numbers. Then: 

I; The sum of the induction maps 

~H£C s(H) 8 A + s(G) 0 A is surjective 

II. The product of the restriction maps 

s(G) 0 A+ 1E£c s(H) Q A is surjective 

in the cases: 

1. C is the class of cyclic subgroups of G, A = Q. 

2. C is the class of 2-hyperelementary subgroups of G, A 

Z[l/3, l/S, ..• J. 

3. 11
1

(M) is finite, C is the class of p-elementary subgroups of G, 

p odd, and A= Z[l/2]. 

4. 11
1

(11) is finite, C is the union of classes in 2 and 3, and A=Z. 
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An easy corollary of the theorem is: 

Corollary: A simple homotopy equivalence f: N + M relative to aM, n1(M) 

finite, is homotopic to a homeomorphism relative to aM if and only if the 

lifting f: N + M of f to each covering M of M with n1 (M) 2-hyper-

elementary or p-elementary, p odd, is homotopic to a homeomorphisms 

relative to aM. 

Our discussion is organized as follows: 

The theory of n-ads is briefly reviewed in Section 1 of Chapter 1. In 

Section 2 ti-objects in a category are defined and ordered simplicial com-

plexes and their geometric product are also discussed. Sections 3 and 4 

contain an exposition of the homotopy theory of ti-sets which will be needed 

in the sequel. 

In Chapter 2 we begin be defining certain types of surgery problems in 

Section 1. These will be used as the basic building blocks for the geometric 

co.nstructions of that chapter and of Chapter 3. 

definition and a discussion of the surgery space 

surgery space lL I (B) 
q 

where B is a CW r-ad. 

Section 2 contains the 

lL (B) and of the restricted 
q 

The approach to surgery 

spaces which we present is a modification of that due to Quinn in his thesis 

[Q]. Let CAT denote one of the categories TOP or PL of topological and 

piecewise linear manifolds respectively. In Section 3 we define the ti-sets 

SCAT(x,a0x) and NCAT(x,a 0x) for a CAT manifold r-ad X. SCAT(x,a0x) 

is the ti-set of homotopy CAT structures on X relative to a
0
x, and 

NCAT(x,a 0x) is the ti-set of CAT normal maps over X relative to a0x. 

Finally we show in Theorem 2.3.4 that SCAT(x,a0x) can be identified with 

the homotopy fiber over the 0-component of the geometrically defined surgery 

obstruction map F: NCAT(x,a0x) + lLm(o0x) (see definition 2.3.3) where 

m =dim X > r +r and o0X is the (r-1)-ad obtained from X by deleting 

the zero-th face, ri 0x. 
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In Section 1 of Chapter 3 we show that the surgery spaces L (B) for a 
q 

CW r-ad B determine a periodic n-spectrum L(B) with zero-th space 

:n..8 (B). The corresponding 0-connected spectrum with zero-th space L 8 (B) 0 , 

Il..(B) (l, ••. ,oo) in the notation of Adams [A), will also be of interest since 

when B is a point :n..8 (B)0 has the homotopy type of the classifying space 

G/TOP. The notion of a surgery mock bundle is introduced in Section 2 and 

the properties of these objects are discussed. This notion will be useful 

because the cohomology theory with coefficients in the spectrum Il..(B) coin-

cides with the cobordism theory of surgery mock bundles and the group 

HO(X;Il..(B) (l, ••. ,oo)) has a similar description. In addition, various 

geometric maps such as the assembly map, which is the subject of Section 3, 

and the induction and restriction maps of Chapter 4 are easily defined in 

terms of surgery mock bundles. 

Chapter 4 contains the construction of induction and restriction maps 

at the ~-set level for the various terms of the surgery exact sequence. In 

Section 1 a transfer map tr(p): ~(E,F) + ~+w(K,L) is defined for an 

oriented simplicial w-mock bundle p: E + K, F = p-1(1) (see definition 

4.1.1). ~(E,F) and ~(K,L) are ~-sets isomorphic to the function spaces 

and MK,L :L (B) ,<jl) 
q 

respectively and are described in 

terms of surgery mock bundles (see definition 3.2.4). In the case p is a 

triangulation of a covering projection of finite index, the transfer tr(p) 

. . h h 1 h H*( ,·Il..(B)) gives rise to a transfer map for t e co omo ogy t eory and also 

for 0 . H ( ,Il..(B) (l, ... ,oo)) which coincides with the cohomology transfer of 

[A] or [Rsh]. If Ee and Kk are oriented simplicial manifold s-ads and 

p: E + K is an oriented 0-mock bundles triangulating a covering projection 

of finite index and 

tative square: 

().E 
i 

i O, •.• ,s - 2, then there is a commu-



!iq(E,(l
0
E) 

l tr (P) 

!iq(K,Cl
0
K) 
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lL <a0 IEI) q+e 

l lL <IPI) q+e 

lL <a
0
IKI) q+e 

where the horizontal maps are the assembly maps. In Chapter 5 it is shown 

that the homotopy fiber of the assembly map is homotopy equivalent to the 

~-set of homotopy TOP structures under the appropriate conditions. Hence 

the induced map of homotopy fibers in the diagram above yields an induction 

oriented simplicial w-mock bundle there is an induction map: 

In Section 2 we show how to obtain restri~tion maps for surgery spaces 

and for STOP( ). Suppose p: E + B is a map of CW r-ads which is an 

oriented topological bundle with fiber a compact oriented topological mani-

5 

fold of dimension w such that 
-1 p (Cl.B) = Cl.E 

]. ]. 
i = O, ••• ,r-2. The pullback 

with respect to p defines a transfer map for surgery spaces tr(p): 

lL (B) + L (E). This construction is due to Quinn [Q), and is based on q q+w 

the geometrically defined transfer of [Wal]. If B and E are also 

oriented manifolds then the pullback defines a restriction map: 

* I (p): STOP(B,Cl0B) + STOP(E,Cl0E). This map can also be obtained as an 

induced map of homotopy fibers of the assembly map. 

Chapter 5 begins with an exposition of the homotopy equivalence G/TOP ~ 

JL
8

(pt)
0 

of Quinn and Siebenmann. This equivalence endows G/TOP with an 

infinite loop space structure since JL8 (pt) 0 is the zero-th space of the 

spectrum lL(pt) (1, ••• , 00). Let K be a triangulation of a compact oriented 

PL-manifold s-ad with m > s +4. Assume for every subset c of 

{l, ••• ,s - 2}Cl K = () {Cl .Kl j <. c} is connected and non-empty. a0K may be 
c J 

empty of disconnected. We then establish a homotopy co11U11utative square: 
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!!..4r (K,aoK) 
A 

i 
NTOP c I K I , a 0 I K I > 

F 

where A is the assembly map, F is the surgery obstruction map, and the 

vertical maps are homotopy equivalences. The homotopy fiber of ~· E(~), 

which is a H-group (i.e., a homotopy associative H-space with a homotopy 

inverse), is then homotopy equivalent to the homotopy fiber of F which is 

in turn homotopy equivalent to STOP( !Kl ,a
0

!KI). The homotopy sequence of 

the homotopy fibration E(A)-+ M4r(K,a
0

K)-+ JL
4 

(a
0

jKj), which is a long 
- r+m 

exact sequence of groups, maps isomorphically to the homotopy sequence of 

the homotopy fibration: 

yielding a long exact sequence of groups: 

This sequence is independent of the triangulation of M = !Kl. Our analysis 

also enables us to prove a corrected version of the periodicity theory of 

Siebenmann [KS, p. 283]: 

Theorem: Let M = !Kl be as above. Then: 

2. if a0M is empty then there is an exact sequence of groups 

Since L0 (1) = Z, is isomorphic to sTOP(M) or to 

sTOP(M) @ Z; moreover, both cases can occur. 
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Using the results of Chapter 4, the surgery exact sequence is shown to be 

natural with respect to induction and restriction for a covering projection 

of finite index and, more generally, for oriented bundles with fiber a closed 

oriented PL manifold. Finally, we comment on how to extend the above 

results to non-triangulable topological manifolds and how to make the PL 

surgery exact sequence: 

an exact sequence of groups and homomorphisms, M a PL manifold s-ad, 

dim M > s +4. 

In Section 1 of Chapter 6 the apparatus of induction theory, i.e., 

Green functors and their modules, is described. The properties of the trivial 

Green functor and its modules are also discussed. In Section 2 Dress 

induction and localization are applied to the surgery exact sequence to 

obtain our induction theorem for sTOP( ). 



1. PRELIMINARIES 

1.1 N-ads 

Notation: For a finite indexing set A let llAll denote the cardinality 

of A. 

Definition (see [Wa 1, Ch. 0)): Let 2n-l be the category whose objects are 

subsets of {0,1, .•. ,n-2} and whose morphisms are the inclusion maps. Let 

C be a subcategory of the category of sets and maps. A n-ad in C is an 

intersection preserving functor 2n-l + c. 

If X is a n-ad, denote lxl X({O, •.• ,n-2}) and for a subset c 

of {O, ••• ,n-2} Cl X = X({O, •.. ,n -2} - c). Observe that Cl X c c 

n {Cl .XI j e: c} and hence !xi and Cl .X determine the n-ad X. The 
J J 

notatl.on (X;a0x, .•• ,an_2x) will be used for the 

(n - l!cll )-ad, also denoted by Cl X: 

n-ad x. a x c is natu-

rally a c 

Let {O, ••. ,n -2} - c = {i(O), ••• ,i(k)} i(O) < i(l) < ••• < i(k) 

Then 1axl=ax, c c a.<a x) =a {"(")}x =ax n a.(.)x Jc cu l.J c l.J 

A map of n-ads in .£_, f: X + Y, is a morphism f: IX! + IY! which for 

every subset c of {O, ••• ,n-2} 

X is a n-ad then the (n-1)-ad 

restricts to a morphism ax+ a Y. 
c c 

If 

iS.X 
J 

is obtained from X by omitting the 

j-th face, ().X. Let M be a m-ad in C and N a n-ad in C. Suppose 
J 

that C is equipped with a suitable product, for example, the Cartesian 

product when C is the category of sets and maps or of spaces and continuous 

maps. MxN is the (m+n-1)-ad: 

8 
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Let CAT denote one of the categories: 

1. TOP of topological manifolds and continuous maps. 

2. PL of piecewise linear manifolds and piecewise linear maps. 

Definition: A CAT manifold n-ad is a topological n-ad M such that for 

every subset c of {O, ••. ,n-2} M(c) is a CAT manifold with bounary 

given by aM(c) u M(b)I b cc, b ~ c}. acM is allowed to be empty, the 

empty set being viewed as a CAT manifold of any dimension. Note that 

dim la Ml= dim !Ml - llcil· c 

1.2 LI-objects 

LI-objects will be used extensively in the geometric constructions of 

Chapters 2 and 3. The basic references on the subject are [RS2] and [RS3]. 

Definition: Let ll be the category with objects Lin, the standard 

n-simplex, n = 0,1, ..• and whose morphisms are injective order preserving 

simplicial maps Lim+ Lin. A LI-object in a category C is a contravariant 

functor ll + C. A morphism of LI-objects is a natural transformation of 

functors. 

Equivalently a LI-object X in C can be defined as a sequence of objects 

X(k) k 0,1,... in C together with morphisms ai: X(k) + X(k -1) 

9 

0 < i < k satisfying a.a. =a. 1a. for i < j. The a• IS 
]. 

are called face 
]. J J- ]. 

maps and the elements of X(k), in the case C is a subcategory of the 

category of sets and maps, are called k-simplices. A morphism of LI-objects 

X + Y is a sequence of morphisms fk: X(k) + Y(k) such that fkaj =ajfk+l" 

LI-objects in the category of sets and maps are called LI-sets. 

Simplicial complexes are closely related to LI-sets. Let K be a 



10 ANDREW NICAS 

simplicial complex viewed as a collection of closed linear simplices lying in 

"' R • K is said to be ordered if the vertices of K are given a partial 

order which induces a total order on the vertices of each simplex of K. If 

K is ordered then it can be viewed as a 6-set, also denoted by K, in a 

natural manner: the k-simplices of the 6-set K are the k-simplices of 

the simplicial complex K and the face maps are determined by the ordering 

of K. An order preserving simplicial map f: K ~ L between ordered simpli-

cial complexes which is injective on each simplex of K is equivalent to a 

6-map K + L, also denoted by f. 

The geometric product of two ordered simplicial complexes H and K, 

denoted HQ K, is the ordered simplicial complex defined as follows: Let 

HO= {v(i)I i €I} and KO= {w(j)I j € J} be the vertex sets of H and 

K respectively. The vertex set of H Q K is HO x KO ordered lexico-

graphically. A typical r-simplex, r 
0 , or H Q K has the form r 

0 

((v(i
0

,w(j 0 )), .•• ,(v(ir),w(jr))) where: 

1. {v(i
0
), ... ,v(ir)} and {w(j 0 ), ... ,w(jr)} span a simplex of H 

and K respectively. 

2. for every s, 0 < s < r, (v(i ),w(j )) is strictly less than s s 

(v(i 
1

),w(j 1)) in the lexicographic ordering of HOxK0 . 
s+ s+ 

The space underlying H ~ K is IHI x IKI. More generally the geometric 

product can be defined for arbitrary 6-sets but this will not be needed. 

Let H, K, A, B be ordered simplicial complexes and f: H + B order pre-

serving simplicial maps which are injective on each simplex, i.e., f and 

g are 6-maps. The order preserving simplicial map f 0 g: H 0 K +A 0 B 

defined on vertices by f 0 g((v,w)) = ((f(v),g(w))) is clearly a 6-map. 

and v(i_0) <=, ..., <= v(i_r)  and w(j_0) <=, ..., <= w(j_r).
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1.3 The Homotopy Theory of ~-Sets 

We now discuss some of the homotopy theory of ~-sets which will be 

applied in subsequent chapters. Let An,k = ~n - (int ~n U int ak~n) viewed 

as a simplicial complex with ordering induced from ~n. 

Definition: A 6-set X is said to be Kan if every ~-map f: An,k + X 

n,k > 0 extends to a 6-map F: ~n + X. 

Equivalently, X is Kan if for every collection of n-1 n-simplices of X 

x. j E: {O, ••• ,n} j ~ k, such that 
J 

there exists a n-simplex x with 

aixj = aj-lxi for i < j i,j ~ k, 

a.x = x. j ~ k. A sub 6-set of X 
J J 

with 

exactly one n-simplex, for each n > 0 wtll be called a point subcom-

plex of X. When X is Kan the homotopy groups of the pair (X,v) can be 

defined in purely combinatorial manner: 

Tim(X,v) = {x E: X(m)I a.x = v 1 i 
l. m-

o, ... ,m}/relation m > 0 

The relation is defined as follows: x is equivalent to y if there exists 

z f X(m+l) with amz = x, a.z = v. for i 
l. l. 

0, •.. ,m-1. This 

is an equivalence relation and there is a natural isomorphism nm(X,v) 

TI <lxl ,lvl) m > 0 where lxl is the geometric realization of X (see 
m 

[RS2, Ch. 6]). 

Remarks: 

1. Relative homotopy groups can also be defined (see [Ma, p. 7] and 

[RS2, Ch. 6]). 

2. The set n0(X,v) when viewed as an unbased set does not depend on 

v and one writes n0 (X). n0 (X) is called the set of path compo-

nents of X. 
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3. Let (X,v) be a pointed L'l-set. The 0-component of X, denoted 

XO' is the pointed L'l-set defined by: 

x0 (0) {x £ X(O) I there exists yeX(l) with a0y = x, a1y=vo} 

XO(j) {x £ X(j) I akx £ x
0
(j -1) k=O, ••• ,j} j > 1 

Face maps are obtained by restricting the face maps of X. Clearly x
0 

is 

Kan if X is Kan. 

4. The Cartesian product of two L'l-sets X and Y is the L'l-set de-

fined by (XxY)(j) X(j) xY(j) and with face maps ak(x,y) = 

(akx'aky). When X and Y are Kan !XxYI and Ix! x IYI are 

homotopy equivalent (see [RS2]). 

The following version of J. H. c:Whitehead's theorem is valid for 

L'l-sets (see [RS2, Ch. 6]): 

Theorem 1.3.1: Let X,Y be Kan L'l-sets and f: X + Y a L'l-map. Suppose 

for every point subcomplex v of X n.(f): n.(X,v) + n.(Y,f(v)) 
J J J 

is an 

isomorphism for every j > O. Then f is a homotopy equivalence. 

By Remark 6.7 of [RS2] the previous theorem yields a criterion for an 

inclusion of Kan L'l-sets to be a deformation retraction: 

Proposition 1.3.2: Let X c Y be an inclusion of Kan L'l-sets and suppose 

for each n,k every L'l-map f: /\n,k + Y with f(Cl/\n,k) C X extends to a 

L'l-map F: L'ln + Y such that F(akl'ln) C X. Then X CY is a deformation 

retraction. 

There is a notion of fibration for L'l-maps: 

Definition 1.3.3: A L'l-map p: E + B is called a Kan fibration if given the 
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following commutative square of 6-maps: 

B 

A 6-map h: 6n + E can be found making the resulting diagram conunute. Equi-

valently p is a Kan fibration if for every collectio~ of n (n-1)-simplices 

x. 
J 

jE:{O, ... ,n} j + k of E with a .x. = a. 
1
x. 

]. J J- ]. 
for i < j i,j + k and 

for every n-simplex y of B with aiy p(xi) i + k, there exists a 

n-simplex x of E such that a.x = x. for i + k and p(x) = y. 
]. ]. 

Let X be a Kan pointed 6-set. Denote the base point of X(j) by v .• 
J 

Define pointed 6-sets Ax and ill{ by: 

(AX) (n) 

(nX) (n) 

{o £ X(n + 1) I 
{oE:X(n+l)! 

= vo} 

= VO' an+lo = vn} • 

The face maps of AX and nx come from the face maps of X and the base-

point of (AX)(n) and (nX)(n) is vn+l" AX is called the 6-set of paths 

on X originating at v and nx is called the 6-set of loops on X based 

at v. Clearly AX and nx are Kan. Define p : (AX) (n) + X(n) by n 

p (x) 
n a n+lx. Then p (a.x) 

n J 
a 1a.x n+ J 

=a.a x = 
J n+2 ajpn+l(x) j = 0, •.• ,n + 1. 

Hence p: AX + X is a 6-map. 

Proposition 1.3.4: p: AX+ X is a Kan fibration. 

Proof: Let x. £ (AX)(n-1) j £ {O, .•. ,n} j + k with a.x. =a. 1x. for 
J ]. J J- ]. 

i ~ j i,j + k and let y £ X(n) aiy = p(xi) i + k. View the xi's as 

elements of X(n) and let x n+l Y• Then aixn+l = p(x.) a x. i + k. 
]. n i 

Since x is Kan there exists x £ X(n + 1) with a .x = x. i + k. Clearly 
]. ]. 

<ao)n+lx = XO and thus x is an n-simplex of AX. p(x) = a x n+l = x n+l = y. 
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If Z is a space, the singular complex of Z, denoted SZ, is the 6-set 

whose j-simplices are continuous maps from 6j into Z and whose face maps 

are given by restriction to k = o, ... ,j. The singular complex defines 

a functor from spaces to 6-sets; furthermore, if Z is a CW complex and 

X is a Kan 6-set then there are natural homotopy equivalences ¢(Z): SZ + Z 

and W(X): X + SJXI (see [RS2]). The path space on a pointed space (Z,z), 

denoted PZ, is the space of continuous maps from. the unit interval to Z 

h: I+ Z such that h(O) = z. The path fibration e: PZ + Z is defined by 

e(h) h(l). 

Proposition 1.3.5: Let x be a Kan pointed 6-set. There is a commutative 

diagram: 

nix! P!XJ !xi 

r L(X) I M(X) 

IPI 

iN(X) 

lnxJ IAXI !xi 

where the vertical maps are natural based homotopy equivalences 

Proof: We mimic the proof of Lemma 5.1, p. 36 of [BRS]. Suppose Z is a 

pointed space. The homeomorphisms (6nxI)/6nxO + 6n+l, (t
0

, ••• ,tn;s) I+ 

(st
0

, ... ,stn,l-s) n > 0 induce a natural isomorphism of 6-sets 

G(Z): ASZ + SPZ; furthermore, the diagram: 

ASZ 
G(Z) 

SPZ 

sz p ) sz 

is commutative and G(Z) restricts to an isomorphism G'(Z): nsz + snz. 

L, M, N are defined as the composites: 

L(X) <PW I xi) 

11Cx) <PCPJxl) • JGCslxl)l • IAw(x)I 
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NCx> ¢Clxl> • lwcx>I 

Since each of the maps on the right are natural based homotopy equivalences, 

so are L, M, and N. 

Let (X,x) and (Y,y) be Kan pointed 6-sets and f: X + Y a base point 

preserving 6-map. 

Definition 1.3.6: The homotopy fiber of f over the basepoint y is the 

pointed 6-set, E(f), given by: 

E(f)(n) 

a.(x,y) 
J 

I n+l { (x,y) e: X(n) x Y(n+l) ca
0

) y 

(Cl.x,Cl.y) (x,y) e: E(f)(n) 
J J 

j = 0,. . .,n 

The basepoint of E(f)(n) is (xn,yn+l). There is a pullback square of 

basepoint preserving 6-maps: 

E(f) u AY 

.1.3. 7 

x f y 

where U and V are the natural projections. Using the fact that X is 

Kan and that p is a Kan fibration it is easy to verify that E(f) is Kan. 

There is also the following fiber mapping sequence: 

1.3.8 

where 

--" QE(f) ~ illC Qf> Qy ~ E(f) ~ X ....!.:;, Y 

(xn+l'y) 

fn+l (x) 

y e: (QY) (n) 

x e: (illC)(n) 

Recall that in the category of pointed spaces and basepoint preserving 

continuous maps the homotopy fiber, F(g), of g: (A,a) + (B,b) is defined 

by the pullback diagram: 
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F(g) PB 

A 
g 

B 

Applying the geometric realization functor to diagram 1.3.7 and using Propo

sition 1.3.S, one obtains a natural based homotopy equivalence E(f) ~ F(Jfl). 

Proposition 1.3.9: There is a based homotopy equivalence QE(f) ~ E(Qf). 

Proof: Observe that lnE(f)I '.l.. nlE(f)I ~ QF(lfi) and that IE(Qf)I ~ 

FClnfl) ~ FCnlfl) and, furthermore, QF(lfl) and FCnlfi) are homeomorphic. 

Given a commutative square of ~-maps of pointed ~-sets: 

x F y 

1.3 .10 

X' g ). Y' 

there is an induced ~-map of homotopy fibers h: E(f) + E(g) defined by: 

h (x,y) = (a (x),b 1Cy)) (x,y) £ E(f)(n). n n n+ 

We now discuss the analog of H-spaces in the ~-set category. Let 

(Y,e) be a Kan pointed ~-set. A H-structure on (Y,e) is a ~-map 

g: (YxY,(e,e)) + (Y,e) such that the maps g( ,e), g(e, ): (Y,e) + (Y,e) 

defined by g( ,e)(x) = g(x,e) and g(e, )(x) g(e,x) are homotopic to 

the identity. Note that IYI is an H-space with homotopy unit Jel and 

multiplication given by the composite IYI x IYI ~ IY xYJ ~ JYI. The 

triple (Y,e,g) is said to be homotopy associative if the H-space IYI is 

homotopy associative and a H-group if IYI is a H-group (i.e., a homotopy 

associative H-space with a homotopy inverse). A ~-map f: (Y,e) + (Y',e') 

between two Kan ~-sets with H-structures (Y,e,g) and (Y',e',g') is said 

to be a H-map if lfl is a H-map. f will be called a H-homomorphism if 
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f(g(x,y)) = g' (f(x) ,f(y)) for each n-simplex (x,y) of Y x Y. 

In the case f is a H-homomorphism, a H-structure m: E(f) xE(f) + 

E( f) is defined by m((x,y),(u,v)) = (g.(x,u),g! 1 Cy,v)) where (x,y) and 
J J+ 

(u,v) are j-simplices of E(f). Note that the maps R: QY' + E(f), 

V: E(f) + Y of 1.3.8 are H-homomorphisms where QY' has the H-structure 

induced by the H-structure of Y'. I.f diagram 1.3.10 is a commutative square 

of H-homomorphisms, then the induced map E(f) + E(g) . is clearly a H-

homomorphism. 

More generally, we have the following theorem concerning the H-space 

properties of the homotopy fiber: 

Theorem 1.3.11: Let (Y,e) and (Y',e') be Kan pointed 6-sets with given 

H-structures and f: (Y,e) + (Y',e') a H-map. Then if E(f) is the homo-

topy fiber of f over e': 

1. E(f) is a H-space with the natural basepoint as homotopy unit. 

2. The namps R: Y' + E(f), V: E(f) + Y of 1.3.8 are H-maps. 

3. If Y and Y' are homotopy associative and f is homotopy asso-

ciative with respect to given associating homotopies for Y and Y' 

then E(f) is homotopy associative. 

4. If in addition to the conditions of 3 above, n0 (Y,e) and n0(Y',e') 

are groups, then n0(E(f),*) is a group. 

Proof: Recall that IE(f)I is naturally homotopy equivalent to F(if!), the 

homotopy fiber of If! over the basepoint. 1 and 3 are then a direct conse-

quence of Theorem 1 and Theorem 15 respectively of [St]. 2 follows from the 

definition of the H-space multiplication in F(lfl) in the proof of 

Theorem 1 of [St]. Assume the hypotheses of 4. The fiber mapping sequence 

for f yields an exact sequence of pointed sets: 

TI (R) n
0

(V) n
0
(f) 

~ Til(Y',e') ~ TIO(E(f),*) ---~TIO(Y,e) ~ TIO(Y',e') 
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By 3 n
0

(E(f),*) is a monoid and by 2 the maps n
0

(R) and n
0

(v) are monoid 

homomorphisms. 4 is a consequence of the following lemma with B = Im n0(v) = 

Lemma: Let A~ M ~ B ~o be an exact sequence of monoids and suppose A 

and B are groups. Then M is a group. 

Proof: It is sufficient to show that each x t M has a left and right 

inverse. Let x £ M. Since b is surjective there exists y £ M such that 

b(y) = b(x)-1 • Observe b(xy) = 1 and thus a(z) = xy for some z £ A. 

-1 is a right inverse for Similarly has a left inverse. Then ya(z ) x. x 

~: The conditions of Theorem 1.3.rl (4) are satisfied when Y and Y' 

are loop spaces and f is a loop map. 

We conclude this section with a theorem which will be useful in the 

sequel: 

Theorem 1.3.12: Let the following square be a homotopy commutative diagram 

of Kan pointed ~-sets: 

(Y ,e) 
f (Y',e') 

(A,a) g 
) (U,b) 

Suppose (Y,e), (Y',e'), and f satisfy the hypotheses of Theorem 1.3.11 (4) 

and that U and V are homotopy equivalences. Then there is a homotopy 

equivalence of homotopy fibers E(f) + E(g), 

Proof: Since homotopy equivalent maps have homotopy equivalent homotopy 

fibers it can be assumed, without loss of generality, that the diagram above 

is strictly commutative. Then by 1.3.10 there ia an induced map of homotopy 
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fibers h: E(f) + E(g). The homotopy equivalences U and V impose H-

structures on A and B respectively so that (A,a), (B,b), and g satisfy 

the hypotheses of Theorem 1.3.11 (4). The homotopy sequence of the homotopy 

fibration E(f) + Y 1 Y' maps into that of E(g) +A~ B: 

~n1 (Y,e) _,. n
1

(Y',e') ~n0 (E(f),*) _,. n
0

(Y,e) ~ n
0
(y',e') 

ln1 (U) ln1 (V) ln0 (h) Jn0 (U). ln0 (v) 

~n1 (A,a) ~ n
1

(B,b) ._, n
0

(E(g),*) ~ n
0

(A,a) 4 n
0

(B,b) 

By Theorem 1.3.11 (4) the two horizontal sequences are eJ!:.act sequences of 

groups and homomorphisms; furthermore, n0 (h) is a homomorphisms since h is 

a H-map. Hence by the five lemma n
0

(h) is an isomorphism. Similarly 

n.(h): n.(E(f),v) + n.(E(g),h(v)) is .a.n isomorphism for any point complex v 
J J J 

and j > 1. The theorem follows from Whitehead's theorem (Theorem 1.3.1). 

1.4 Function Spaces 

Let (K,L) be an ordered simplicial pair and (X,Y) a 6-set pair. The 

function space 6(K,L;X,Y) ia the 6-~et whose j-simplices are 6-maps 

g: K Q 6j + X with g(L Q 6j) contained in Y and whose face maps are given 

by restriction to K 9 <\6j fpr k = (;),.,. ,j. A 6-map f: (K,L) + (H,J) 

between ordered simplicial pairs inducea a 6-map: 

f#: 6(H,J;X,Y) + 6(K,L;X,Y) given by f#(g: H 9 6j + X) g(f Q id). 

A 6-map h: (X,Y) + (W,Z) induces a 6-map: 

hg • 

Remark.II: 

l· If (X,Y) is a Kan pair then 6(K,L;X,Y) is Kan. 

2. If the pointed ti-set (Y,e) hai> a H-structure m: YxY + Y with 
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homotopy unit e then 6(K,L;Y,e) inherits a H-structure from Y by 

means of the induced map 

6(K,L;Y ,e) x 6(K,L;Y ,e) 
mil 

6(K,L;Y xY,(e,e))---'-;> 6(K,L;Y,e) 

Given pointed spaces A and X and subspaces B of A and Y of X 

containing the base points, let Map(A,B;X,Y) be the space of continuous 

basepoint preserving maps (A,B) + (X,Y) with the compact-open topology. 

Suppose (K,L) is an ordered simplicial pair with a basepoint k £ L. Assume 

that K is locally finite and that k is maximal in the ordering of the 

vertices of K. The 6-set SMap(IKl,JLI ;X,Y), where S denotes the singular 

complex, will be naturally identified with the 6-set whose j-simplices are 

continuous maps f: (JK 0 6jl ;JL 0 6jl ,Jk 0 6jl) + (X;Y,*) and whose face 

maps are given by restriction to IK 3 ak6jl k = O, ... ,j. In the case 

(K,L) is an unbased locally finite ordered simplicial pair we replace (K,L) 

by (K U +,L U +) where + is a disjoint vertex ordered so that every 

vertex of K precedes it. 

Lemma l.4.1: Let (K,L) be as above and let (Z,z) be a pointed space. 

Then there is a natural homotopy equivalence: 

A: n SMap ( IKI '111 ;Z,z) + SMap ( IKI 'ILi ;QZ,*) • 

Proof: The 6-map A is defined as follows: Let g: IK 0 6j+ll + z be a 

j-simplex of Q SMap ( IKI, ILi ;Z,z). Then A. (g): 
J 

IK 0 6jl + nz is the map 

given by Aj(g)(x)(t) = g(tx + (1 - t )v) where lorl • 
r 

£ K 0 6j x £ a 

(identified with K 8 a. 6j+l) 
]+l and v is the vertex (k,v. 1) of 

]+ 

K 0 llj+l, and 0 < t < 1. 

A homotopy inverse B for A is defined as follows: Let f: IK 0 6j I+ 

nz be a j-simplex of SMap ( IKI 'ILi; z ,*). Every x £ lo I, where a is an 

s-simplex of K 0 6j+l not in K 0 v. l' can be uniquely expressed in the 
]+ 
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IK @ v. i 1 • J+ 
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I n I j+11 t # 0, w E: a I K ~ () . 1ti , and 
J+ 

V
1 

E lol Ii 

is the map given by B.(f)(x) 
J 

f(w)(t) 

2 l 

for x as above and B.(f)(x) = * for x E: K@ v. 
1

• Then B.(f) is con-
j J+ J 

tinuous and B is a ti-map; furthermore it is readily verified that AB and 

BA are homotopic to the respective identities. 

Let (K,L) be as in Lennna 1.4.1 and let (A,*) be a Kan pointed ti-set. 

A natural ti-map µ: Qti(K,L;A,*) + ti(K,L;QA,*) is defined as follows: let 

f: K 6 tij+l + A be a j-simplex of Ql'i(K,L;A,*) and let v denote the 

vertex (k,vj+l) of K 6 tij+l. If a is a r-simplex of K 6 tij let o•v 

be the (r+l)-simplex of K 6 tij+l spanned by a and v where K 8 tij is 

identified with K 6 (). 
1
tij+l. 

J+ 
Define µ.(f): K 8 tij +QA to be the ti-map 

J 

by µ.(f)(o) = f(o·v). 
J 

Proposition 1.4.2: µ is a homotopy equivalence. 

Proof. Given a Kan ti-set (B,b) there is a natural homotopy equivalence 

n: MK,L;B,b) + SMap( IKI, ILi; IBj, lbl) given by n.(g: K 8 tij + B) = lgl. 
J 

There is a commutative diagram: 

Q/'i(K,L;A,*) ~ QSMap(IKj,ILl;IAJ,*) 

1µ 
MK,L;QA,*) ~ SMap( IKI, ILi; IQAI, *) 

A - SMap( IKI, ILi; IQAI ,*) 

lid 
SMap( IKI, IL I; JQAI ,*) 

L# is the homotopy equivalence induced by the homotopy equivalence L(A): 

IQAj + QjAj of Proposition 1.3.S. The ti-map A is the homotopy equivalence 

of Lemma 1.4.1. Then µ is a homotopy equivalence since it is a composite 

of homotopy equivalences. 



2. SURGERY SPACES 

2.1 Definitions 

00 

R will denote the set of sequences in the real numbers R (x
0

,x
1

, ... ) 

such that x. = 0 for all but finitely many i. Rn+l is included in R
00 

l. 

by (x
0

, ••• ,xn) + (x0 , ••• ,xn,O, •.. ). 

Let B be a topological r-ad and q,j non-negative integers. The 

objects of the next definition will be used extensively in the sequel: 

Definition 2.1.1: A surgery problem of type (q,j) over B consists of the 

following data: 

1. Compact oriented topological manifold (j+r+2)-ads M and X of 

dimension q + j embedded in L'lj x Rs C L'lj x R
00 

for some s so that 

and M ( U j " M) c i'nt .j x Rs 
- k=O 0 k Ll 

and M has a normal microbundle in L'lj x Rs. Similarly for X. 

2. A degree 1 map f: M + X of (j+r+2)-ads (see [Wal, Ch. 2]) such 

that Cl. 1f: Cl. 1M + 3. 1x is a simple homotopy equivalence of 
J+ J+ J+ 

(j+r+l)-ads. 

3. A TOP microbundle, n, over X and a map b: vM + n of micro-

bundles covering 

L',j x Rs. 

f where is a normal microbundle of 

4. A continuous map of (j+r+2)-ads, called the reference map 

M in 

h: X + (Bxllj;BxC!
0
t), ... ,BxCljllj,Bxllj,a

0
Bxllj, .•. ,ar-

2
Bxllj) such 

that the diagram: 

x 

22 
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commutes where i is the inclusion and the unlabelled arrows are 

the projections. 

The notation 
f h . 

M -4 X _,.Bx L'IJ b,n will be used for a surgery problem of type 

(q,j) over B as in the previous definition. 

Let x = M __,. X - B xllj b,n be as above. c\x for k = 0, ••• ,j will 

denote the surgery problem of type (q,j-1) over B given by restriction 

over the k-th face: 

Similarly, akx is the surgery problem of type (q-1,j) over the (r-1)-ad 

akB given by restriction over the (k+j+2)-th face for k = O, •.. ,r-2. -x 

is the surgery problem of type (q,j) over B obtained by reversing the 

orientations of M and X. 

Let Np C Rs, s large, be a closed oriented topological manifold and 

suppose N has a normal microbundle If x is as above then xxN is 

defined to be the surgery problem of type (q+p,j) over B given by: 

MxN f x id X x N h1l Bx L'lj b' ,n' 

where b' bx id and n' is the microbundle 

2.2 Surgery Spaces 

Surgery spaces in the non-simple connected case were first constructed 

by Quinn (see [Q]). In this section we will only consider the untwisted case. 

Let B be a CW r-ad. 
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Definition 2.2.0: The surgery space 1L (B) is the pointed ti-set defined 
q 

as follows: 

1L (B)(j) is the set of all surgery problems of type (q,j) over B. 
q 

The base point, denoted ¢., is the empty surgery problem over 
J 

B. The 

face maps are the maps ak k = o, ... ,j defined in the previous section. 

Let f: B1 + B2 be a map of CW r-ads. ,Composing f with the refer-

ence map of each simplex of 1Lq(B
1

) yields a map of pointed ti-sets 1L (f): 
q 

1L is a covariant functor from the category of CW q 

r-ads to the category of pointed ti-sets. Orientation reversal and the maps 

O, •.. ,r-2 (see Section 2.1) define natural basepoint preserving 

ti-maps -: 1L (B) + 1L (B) and q q 

Disjoint union provides a natural H-structure for 1L (B). To be pre
q 

cise, let t € R and consider the map d(t) defined by d(t)(x
0

,x1 , •.. ) = 

(t,x
0

,x
1

, •.• ). If x = M+ X+ Bxtij b,n is a surgery problem of type (q,j) 

over B then by applying idxd(t), where id: tij + tij is the identity, to 

the ambient space in which M and X are embedded, one obtains in the 

obvious manner another surgery problem of type (q,j) over B which will be 

denoted by D(t)(x). Define a basepoint preserving ti-map µ: 1L (B) '}(lL (B)+ 
q q 

1L (B) by µ.(x,y) = D(O)(x) U D(l)(y) where x and y are j-simplices 
q J 

of 1L (B). The symbol 11 U 11 denotes the union of the underlying sets and 
q 

maps. The maps D(t) t = 0,1 ensures that this is a disjoint union. The 

basepoin~ ¢, generated by the empty surgery problems over B, serves as a 

homotopy unit. 

Orientation reversal, the maps 
k 

a : 1L (B) + 1L 1 (akB), and 
q q-

where f: Bl + B2 is a map of CW r-ads, are easily seen to be 

homomorphisms with respect to the H-structure defined by µ. 

The properties of 1L (B) 
q 

will now be investigated. 

Proposition 2.2.1: 1L (B) 
q 

is Kan. 

1L ( f) 
q 

H-
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Proof: Let x. = M. + x. + B x Lln-l b. ,n. j £ {O, ... ,n} j -F k be a collec-
J J J J J 

tion of n (n-1)-simplies of lL (B) with a.x. = a. lx. for i < j i,j -fk. q ]. J J- ]. 

Make the canonical identification of Lln-l with ().Lin to obtain u = 
J 

f h n k 
M~X~Bx/i.' b,n where M,X C An,k x Rao and so that u restricted to 

x. 
J 

for j "' k. By Theorem 3.3.2 u can be viewed as surgery 

problem of type (q+n-1,0) over the (r+l)-ad Bx (An'k;ClAn'k) with a
0
M 

and a
0
x empty. The above "assembly" process is explained in more detail 

in Section 3.3. Let I be the unit interval and let the map n k n g:A' xI+LI 

be a homeomorphism with g I An,k x 0 the natural inclusion An,k + Lin and 

g(ClAn'kxI U An'kxl) C Clklln. Let X = MxI fxid) Xx! ~Bxlln b',n' 

where h' = (idxg)(hxid), b' =bx id n' = nxv
1 

where v
1 

is a normal 

microbundle to I C R
1 . View M x I as being embedded in Lin x Rao via g 

with the manifold (n+r+2)-ad structure 

Cl.(MxI) M.xo j £ {O, ••• ,n} j "' k J J 

Clk(Mx I) Cl 1M x I v (U{M. xll j £ {O, ••• ,n} j "' k}) J 

Cl . (M x I) Cl. 1M x I j > 1 n+J J+ 

and similarly for Xx I. Then x is seen to be a surgery problem of type 

(q,n) over B with a .x 
J 

x. j "' k. Hence the LI-set lL (B) 
q 

Let 

is the 

J 

s: Llj + Llj+l be defined by s(v) = (l/2)v + (l/2)v. 
1 ]+ 

(j+l)-th vertex of Llj+l. Define a map ej: lL (B)(j) + 
q q 

is Kan. 

where 

(nll. 
1

CB))(j) 
q-

as follows: Suppose x = M + X ~ B xllj b,n is a surgery problem of type 

(q,j) over B. s and give M the 

manifold (j+r+3)-ad structure obtained from the given manifold (j+r+2)-ad 

structure of M by inserting an empty face in the (j+l)-th position, i.e., 

so that with the new ad structure (). 1M is empty. 
]+ 

Similarly, do this for 

X. Then ej(x) is the surgery problem of type 
q 

(q-1,j+l) over B given 

Note that ej(x) £ by M ~ X ~Bx Llj+l b,n where h' = (id x s)h. 
q 

(nll. 
1

CB))(j). 
q-

The ej's define a 
q LI-map e : lL (B) + rlL 

1
CB). q q q-
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Proposition 2.2.2: e : IL (B) + QIL 1CB) q q q- is a homotopy equivalence, q .::_ 1. 

Proof: View e as an inclusion. By Proposition 1.3.2 it is sufficient to 
q 

show that every ti-map f: An,k + QIL 
1

CB) with f(CJAn'k) Ce (IL (B)) 
q- q q 

extends to a ti-map F: tin + QIL 1(B) with F(CJktin) c e (IL (B)). F is q- q q 

constructed by assembling the image of f as in the proof of Proposition 

2.2.1, taking the product with the unit interval, and then giving what results 

the appropriate (n+r+2)-ad structure. An explicit homotopy inverse, d : 
q 

QIL 
1

(B) + IL (B), for 
q- q e can be constructed as follows: Each q 

j+l y s ti - v. 
1 

can be 
]+ 

uniquely expressed in the form tv + ( 1 - t )v. 
1 ]+ 

j+l 
t F o, vs a. 1ti • 

]+ 
Define the map u: tij+l 

- vj+l + tij by 

u ( tv + ( 1 - t )v. 
1

) v. 
]+ 

j+l 
QILq-l (B). (3 0 ) x = ¢0 

M,X C (tij+l ) R00 

- vj+l x . 

Let x = M+ x ~ Bx tij+l b,n be a j-simplex 

implies h(XlC Bx (tij+l - v. 
1

) and that 
]+ 

of 

h' . 
Then define (d ) . (x) to be M ~ X --'>Bx ti] 

q J 

where h' (id xu)h, and M and X are given the manifold (j+r+2)-ad 

b,n 

structure obtained by deleting the empty (j+l)-th face and where M and X 

are viewed as embedded in tij x R00 by means of the map 

J'+l 00 J'+l 00 ( A -v.
1
)xR +A xR(tv+(l t)v x)+(vtx) '-' '-' - . l' ' ' . ]+ J+ 

If f: B
1 

+ B
2 

is a map of CW r-ads it is easily verified that 

e IL (f) = (QIL 
1

Cf))e • Also e commutes with orientation reversal and q q q- q q 

the maps ak k = o, ... ,r-2. 

The disjoint union H-structure on IL l (B) q- induces a H-structure on 

QIL 
1

CB); 
q-

furthermore, it is clear that e 
q 

is a H-homomorphism. In 

general if K is a H-space then the multiplication on QK arising from 

the loop space structure is homotopic to the multiplication on QK induced 

by the H-space structure of K. So in particular, Proposition 2.2.2 implies 

that (IL (B), disjoint union) is a H-group. 
q 

Orientation reversal coincides with the group inverse in homotopy: 
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Proposition 2.2.3: TT.(-): n.(lL (B),¢) + n.(lL (B),¢) is the group inverse 
J J q J q 

for j > O. 

Proof: Let x = M ->- X + B x llj b ,n represent an element of n.(lL (B),¢). 
J q 

Then 8ix is the empty surgery problem for i = O, ... ,j. Take the product 

of x with the unit interval to obtain a surgery problem y of type 

(q,j+l) over B where M x I has the (n+j+3)-ad structure: 

a
0

(MxI) 

8. 1 CMxI) 
l.+ 

MU -M, 

( 8. M) x I 
l. 

ai (M x I) is empty for i 

i > j + 2 

o, ... ,j+l, 

and similarly for Xx I. Thus y is a homotopy (x U -x) "' ¢ .• 
J 

Now suppose that B is a CW r-ad such ~hat for every subset c of 

{1, .•• ,r-2} 8cB is connected and non-empty and n1 (ac!BI) is finitely 

presented. 

Proposition 2.2.4: For j+q-r > 5 there is a functorial isomorphism 

27 

:J(lLq(B),¢) ~ Lq+j(n1 (B)) where Lq+l(n1 (B)) is Wall's algebraic L-group 

of the group r-lattice n1 (B). 

Proof: Let L 1 .(B) be the geometric surgery group defined by Wall in 
q+J 

[Wa 1, Ch. 9]. A comparison with Wall's definition (see [Wa 1, pp. 86-87]) 

shows that a j-simplex x of lL (B) such that 8 .x {< ¢. l 
q l. J-

for i = o, ... ,j 

is the same, after deleting the j+l empty faces, as an object representing 

an element of Ll .(B). 
q+J 

Moreover, it is clear that Wall's equivalence 

relation coincides with the homotopy equivalence relation in the definition of 

n.(lL (B),<!J). 
J q 

Hence 1 n.(lL (B),¢) = L .(b) 
J q q+J and naturality in B is a 

direct consequence of the definitions. The proposition now follows from 

Corollary 9.4.1 of [Wal]. 
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Proposition 2.2.S (Periodicity): For q-r .'.'._ 5 there is a natural homotopy 

equivalence 8k: JLq(B) + 1Lq+
4

k(B) defined by taking products with the k

fold Cartesian product of 2-dimensional complex projective space. 

Proof: Let 2 k 
P = (CP ) , the k-fold Cartesian product of 2-dimensional 

complex projective space. 

j-simplices by x + xx P 

The map 8 = lL (B) + 
k q 

(see Section 2.1). ek 

lLq+4kCB) is defined on 

is clearly a natural H-

homomorphism with respect to the disjoint union H-structure; furthermore, 

it commutes with the maps eq, ak k = O, •.. ,r-2, and orientation reversal. 

The proposition follows from Wall's periodicity theorem (Theorem 9.10 of 

[Wa 1), Proposition 2.2.4 and Whitehead's theorem (Theorem 1.3.1). 

Remarks: 

1. The connectivity assumption on B in the two previous propositions 

could be dropped if we were willing to consider fundamental 

groupoids. 

2. We have only considered the untwisted case in our discussion of 

surgery spaces. There are difficulties with Wall's construction of 

geometric surgery groups in the twisted case which have been 

rectified by Farrell and Hsiang in [FHs]. 

Let B be a CW r-ad as in Proposition 2.2.4. A surgery problem of 

type ( q, j) over B M + x + B x t) b ,n is said to be restricted if for every 

subset c of {O, ••• ,j}: 

1. a x is connected. 
c 

2. n1<ach): n1 <acx) + n1(Bx3/1j) is an isomorphism whenever a x is 
c 

non-empty. 

The next definition is due to Siebenmann in the 1-ad case (see [K]) and is 

based on [Wa 1, Ch. 9) and (Q]; 
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Definition 2.2.6: The restricted surgery space lL~(B) is the A-set whose 

j-simplices are restricted surgery problems of type (q,j) over B and 

whose face maps are defined as for lLq(B). 

lL'(B) is Kan. This is proved by the same argument used in the proof of 
q 

Proposition 2.2.1. The condition that the reference map of the assembled 
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simplex x of Proposition 2.2.1 induces an isomorphism. on fundamental groups 

is a consequence of Van Kampen's theorem. 

There is a natural inclusion lL'(B) C lL (B). The utility of lL'(B) is q q q 

due to the following proposition: 

Proposition 2.2.7: For q-r > 4 the natural inclusion i: lL' (B) + lL (B) 
q q 

is a homotopy equivalence. 

Proof: Comparison with [Wa 1, Ch. 9] shows that 

L2 is defined in [Wa 1, p. 88]. Theorem 9.4 of 
q 

11
0

ClL'(B)) = L2(B) where q q 

[Wa l] is then the statement 

that 110 (i): 110 (JL~(B)) + 110 (lLq(B)) is a bijection. By an easy extension of 

Wall's argument, one has that 11.(i): 
J 

11.(lL'(B),v) + 11.(JL (B),v) 
J q J q 

is a 

bijection for j > 1 and any point complex v. The proposition is then a 

consequence of Whitehead's theorem (Theorem 1.3.1). 

Remark: PL surgery problems could have been used in the place of TOP sur-

gery problems in the definitions of the surgery spaces to obtain ~-sets 

homotopy equivalent to the ones already defined. 

2.3 Spaces of Homotopy Structures and Normal Maps 

Throughout this section X c R
00 

will be a compact oriented CAT 

manifold r-ad of dimension n, where CAT = TOP or PL. 
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Definition 2.3.1: A CAT normal map of type j over X relative to a
0
x 

consists of the following data: 

1. A compact oriented CAT manifold (j+r+l)-ad of dimension n+j 

MCfljxR,forsome s,sothat MnakfljxRs=cikM k=O, •.. ,j 

and I . j s M - (U{<lkM k = O, ••• ,j}) C int fl xR , and M has a CAT 

normal microbundle in flj x Rs. 

2. A degree 1 map f: M+ xx flj of manifold (j+r+l)-ads such that 

3. 

a. 1 f is a CAT isomorphism 
J+ 

A CAT microbundle, n, over 

b: VM + n 

in fl j x Rs. 

covering f where 

of (j+r)-ads. 

xx flj and a microbundle map 

is a normal microbundle of 

The notation M + Xxflj b,n will be used for the object defined above. 

M 

The fl-set NCAT(x,a 0x), called the fl-set of CAT normal maps over x 

relative to aox, is the a-set whose j-simplices are normal maps of type j 

over x relative to aox and whose face maps arise from the (j+r+l)-ad 

structure of each simplex (compare with Definition 2.2.1). 

Definition 2.3.2: A CAT simple homotopy equivalence of type j over X 

relative to aox consists of: 

1. A CAT manifold (j+r+l)-ad l1 of dimension n+j as in 1 of 

Definition 2.3.1. 

2. A simple homotopy equivalence f: M+ Xxflj of (j+r+l)-ads such 

that a. 
1

f 
J+ 

is a CAT isomorphism of (j+r)-ads. 

The fl-set SCAT(x,a0x), called the fl-set of homotopy CAT structures 

on X relative to a0x, is the fl-set whose j-simplices are CAT simple 

homotopy equivalences of type j over x relative to aox and whose face 

maps are the obvious ones. 

The definitions above are a modification of the definitions of Rourke, 
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[Ro], and Quinn [Q]. Both NCAT(x,a 0x) and SCAT(x,a0x) are Kan. 'l'he proof 

of this fact is similar to the proof of Proposition 2.2.1. Note that the 

identity map x + X determines a basepoint for SCAT(x,a0x). 

The geometric version of the surgery obstruction map can now be defined: 

Definition 2.3.3: The surgery obstruction map is the 6-map 

F. (M + Xx 6j b v) J , M + X x 6 j id o 
0
x x c) b, v • 

A comparison of definitions inunediately shows that lT.(F): 
J 

1Tj(NCAT(x,a0x),*) + 1Tj(lLnCo
0
X),¢) coincides with the geometrically defined 

surgery obstruction map of Wall (see [Wa 1, p~ 107)). 

The following theorem, which is stated for the 2-ad case in [KS), will 

be important in the sequel. This result is due to Quinn (see [Q)) in a 

weaker form. 

Theorem 2.3.4: Suppose that dim X > r +4 and for every subset c of 

{l, ... ,r-2} acx is non-empty and connected. aox is allowed to be empty or 

disconnected. Then there is a homotopy equivalence SCAT(x,a 0x) + E(x,a 0x) 

where E(x,a 0x) is the homotopy fiber of the surgery map F of Definition 

2.3.3 over the basepoint ¢. 

Proof: Assume X is embedded in RP where p is large compaed to n = 

dim x. The connectivity assumption on X implies that F(NCAT(x,a 0x))C 

lL~(o 0x). Let h: 6j xI + 6j+l be the embedding (v,t) + (l-t/2)v+(t/2)vj+l" 

Then h(8k6j x I) C 8k6j+l k = O, ••. ,j and hl6j x 0 is the natural inclusion 

6j C aj+l6j+l. Note that the space lL~(o0X) has ¢• the point complex of 

empty surgery problems, as a basepoint. Define a 6-map U: SCAT(X,a 0X) + 

NCAT(x,a0x) by Uj(x) = M + X x6j b(x),n(x) where 

j-simplex of SCAT(x,a0x) and where the normal data 

f . 
x = M + X x 6J is a 

b(x), n(x) is chosen 
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inductively as follows: If is a 0-simplex of let 

be a normal microbundle of M in and choose a homotopy inverse g 

for f so that -1 * (a 1f) = a1g. Let n(x) = g (vM) be the induced micro-

bundle and choose a microbundle map b(x): v + n covering f. If b(x) and 

n(x) have been defined on j-simplices then for each (j+l)-simplex y use 

the above procedure to construct normal data b(y) and n(y) while ensuring 

that b((l .y) = b(y) I a .M and n(a .y) = n(y) I xx a .L'). It is easily verified 
i i i ·i 

that U is uniquely defined up to homotopy. Define a ll-map V: 

SCAT(x,a 0x) + AlL~ ( °cJX) as follows: Let x = M 1 X be a j-simplex of 

sCAT(x,a0x). Then 

V. (x) 
J 

f x id j MxI---'l>Xxll xI id x h 6
0
X x llj+l b' (x), n' (x) 

where n'(x) = n(x) xvI' b'(x) = b(x) x id and vI is the normal microbundle 

1 j .j+lxR"' of I c R . M x I and Xx l\ x I are viewed as being embedded in u 

via h and have the manifold ((j+l) + (r-1) + 2)-ad structures: 

(lk(X x L'ljxI) =Xx akl'lj x I 

=XxlljxO 

= X x L'I j x 1 U Cl 
0

x x L'I j x I 

- x j - ak . 2 x L'I x I -J-

Clearly 

mutative square of L'l-maps: 

a. lv. (x) 
J+ J 

=MxO 

= M x 1 U a . 1M x I 
J+ 

=ak_1MxI 

k=O, ... ,j 

k = j + 1 

k = j + 2 

F.U.(x). Hence there is a com-
J J 

This yields a L'l-map S = (U,V): SCAT(x,a0x) + E'(X,a0x) where E'(x,a0x) 

is the homotopy fiber of F: NCAT(x,a0x) + 11~ (o0X) over the basepoint ~· 

It will now be demonstrated that S induces a bijection n0 (SCAT(x,a0X)) + 

n0 CE'(X,a0X)). To avoid cumbersome notation, the details will be given in 
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the case X is a manifold 2-ad (x,ax). 

Injectivity of TI
0

(S): 

Let wi = M-+ X i = 0,1 represent two elements of TI0 (sCAT(X,aX)) and 

suppose that for i = 0,1 S(wi) represent the same element in TI0(E'(X,aX)). 

Then there exists y E E'(X,aX)(l) such that aiy = S(wi) i = 0,1. Expli-

citly, let 
1 f 2 

y = (W -+ X x b. , P + Q -+ X x b. ) • Although the normal data has 

been omitted from the notation, it is to be understood. · Since y £ 

E'(x,ax)(l) it follows that: 

a2P-+ a2Q = W-+ Xxb.1 

a2P-+ a
3
Q is a simple homotopy equivalence of 4-ads. 

The condition aiy S(w.) i 
l. 

0,1 gives 

a.w .... xxa.b.1 = w. 
l. l. l. 

i O,l 

Note that P and a2P are connected and there is a commutative square: 

where = indicates isomorphism. 

The following version of Wall's TI - TI theorem will be used: 

Theorem 2.3.5 (see [Wa 1, Ch. 4)): Let G: N-+ Y b,n be a CAT normal map 

of m-ads. Suppose dim Y > 6 and GI a.N i = l, .•• ,m-2 
l. 

is a simple homo-

topy equivalence of (m-1)-ads and the inclusion aoy c y induces an isomor

phism of fundamental groupoids. Then G is normally bordant relative to 

a1N U ... U am_2N to a simple homotopy equivalence of m-ads, the normal 

bordism having a (m+2)-ad structure. 

The theorem above implies that f: P-+ Q is normally bordant relevant to 
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a0P u a1P u a3P to a simple homotopy equivalence of 5-ads f': P' + Q. 

a.P' = a.P and f I I a .P' = fl a .P for i = 0,1,3. Note that z = 
1 1 1 1 

a f' 
= Xxt-1 a P' ~aQ is a 1-simplex of SCAT(x,ax) with a.x w. 

2 2 1 1 

i = 0,1. Hence represent the same element in 

Surjectivity of n0(S): 

f F 1 Let y = (M + X, P + Q + Xxll) represent an element of n0(E'(X,aX)). Note 

that: 

a0P and a0Q are empty, a1P + a1Q = f: M + X, 

a
2
P + a2Q is a simple homotopy equivalence, and 

1 
TI1<a1P) = nl(X) = TI1(Xxti) = TI1(P). 

By Theorem 2.3.5 (the TI -n theorem) F: P + Q is normally bordant relative 

a2P to a simple homotopy equivalence of 4-ads F': P' + Q where a0P' is 

empty. Hence there is a normal map: 

G: W + (Qx[o,1/2]; QxO, Qxl/2, a1Qx[O,l/2], a2Qx[O,l/2]) 

such that: 

a0G a0w + QxO F: p + Q 

a1G a1w + Q x 1/2 F' P' + Q 

a
3
G = a3w + a2Q x [o,1/2J a2P x [0,1/2] 

Fia 2Pxid 
a2Q x Eo,112J 

Let w = a1P' + a1Q. Note that a1Q = X and that w is a 0-simplex of 

SCAT(X,aX). Attach at the level-1/2 and a normal bordism to Q which has 

the form 

a1w x [1/2,11 + Q x [1/2,11 (obtinaed by a homotopy of F'). 

See Diagram 2.3.6. Give the resulting normal map T + S the following 5-ad 

structure: 
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a3w = a 2Px [0,1/2) (rear) 
I 

/ 
/ 

~ ' \ 
I 

w :\WI P' x [1/2,1) a P----+ Cl WI 
1 0 I 

()OT_,. 

a T _,. 
1 

a
2
T _,. 

= p I 
I 

I 

\ 
\ 
I 

11 
I 

-a2w 

lG 

= p' I 
I 

I 

(front) 

lF' 

QxOI Q x [0,1/2] 
I 

Qx[l/2,1) 

I 

Diagram 2.3.6 

a0s F: p _,. Q 

a 1 s a
1
P' x [1/2,1] _,. a

2
q x [0,1/2] v0Cw) 

a 2s a
2
w _,. a

1
Q x [0,1/2] 

Qxl 

Cl T->-
3 

a
3
s a

3
w u a

2
P x [1/2,1] u a1w x 1 _,. a

2
q x [o.1J 
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u Q x 1 

A reference maps S->- Xxb. 2 is easily constructed giving T->- S _,. Xxb. 2 the 

structure of surgery problem of type (m,2) over the 1-ad ox. Let 

z = (a
2

w->- <\Qx [0,1/2], T->- S + Xxb. 2). Then z is a 1-simplex of 

E'(X,ClX) such that a
0

z = y and a1z = S(w). This proves n0(S) is 

surjective. 

To show that S: SCAT(x,ax) _,. E'(x,ax) induces a bijection 

nj(SCAT(x,ax),v)->- nj(E'(X,Cl,X),S(v)) for all j > 1 and any point complex 

v one employs a straightforward extension of the above argument together with 

the following easy extension of Theorem 2.3.5 (the TI -TI theorem): 
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Theorem 2.3.7: Let G: N + Y b,n be a CAT normal map of (m+2)-ads with 

dim Y > s+4, s > 2. Suppose for every subset c of {O, .•. ,s-2} such that 

acy is non-empty, the inclusion a Y + Y c induces an isomorphism of funda-

mental groupoids n1CacY) + n1 (Y) and that for each j, s-1 .::_ j .::_ m+s-1, 

a.F: a.N + a.Y is a simple homotopy equivalence of (m+s-1)-ads. Then G 
J J J 

is normally bordant relative to as-lN U ..• U am+s-2N to a simple homotopy 

equivalence of (m+2)-ads, the normal bordism h~ving a (m+s+2)-ad structure. 

By Whitehead's theorem (Theorem 1.3.1) the map S: SCAT(x,ax) + E'(x,ax) 

is a homotopy equivalence. As a consequence of Proposition 2.2.7, the 

inclusion E'(x,ax) + E(X,aX) is a homotopy equivalence. This proves 

Theorem 2.3.4. 



3. SURGERY MOCK BUNDLES AND ASSEMBLY 

3.1 Surgery Spectra 

Let B be a CW r-ad such that for every subset c of {O, .•• ,r-2} 

acB is connected and n1 (ac1BI) is finitely presented. Define lL(B) = 

{(An,an: An+ nAn+l)I n .'.':. O} as follows: 

A4k+j = lL8-j (B) k > 0 j 0,1,2,3 

For j = 0,1,2 and k > 0 a4k+j: A4k+j + nA4k+j+l is the -map e8_j: 

lLB-j (B) + n1L 7_j (B) of Proposition 2.2.2 and' a4k+3 is the composite 

e
9
e

1
: lL

5
(B) + lL

9
(B) + QlL8 (B) where e1 is the periodicity map of Propo

sition 2.2.S. Propositions 2.2.2 and 2.2.S imply that lL(B) is a Q-spectrum. 

It is clearly periodic with period 4. The S?ectrum lL(B) gives rise to a 

generalized cohomology theory defined by: Hq(X,Y; lL(B))= [X,Y;ilL. (B~,lit>IJ i-r 

where (X,Y) is a finite CW pair and q = r mod 4. By the periodicity of 

lL(B) there is an isomorphism Hq(X,Y;lL(B)) ;;; Hq((X,Y) x (tiP,at.P);lL(B)) for 

p = 4m > O. 

We will be mainly concerned with the case B = pt, where "pt" will be 

used to denote the space consisting of one point. Note that lL(pt) is not a 

0-connected spectrum since n0 (1L8 (pt),ij>) = L
0

(1) = Z, the infinite cyclic 

group. The associated 0-connected spectrum with zero-th space lI..8 (pt) 0 , 

lL(pt)(l, ••. , 00) in the notation of Adams [A], will also be of interest since 

it will be shown in Chapter 5 that 1L8 (pt)0 has the homotopy type of the 

space G/TOP. 

37 
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3.2 Surgery Mock Bundles 

The notion of a surgery mock bundle is an adaptation of the mock bundle 

idea of [BRS]. 

Definition 3.2.1: Let K be an ordered simplicial complex, B a CW r-ad, 

and q a non-negative integer. A (q,B) surgery mock bundle over K,~, 

consists of the following data: 

1. Closed subspaces M and X of !Kl x RP C !Kl x R
00 

for some p. 

2. Microbundles v over M and n over X. 

3. A collection, denoted l~I. of continuous maps 

M ! X !]_ Bx !Kl, b: v-+ n 

where b is a map of microbundles covering f and if a is a j-

simplex of K and M
0 

= M n ax RP, x
0 

= X n ax RP, then I~ I 
restricts to a surgery problem of type (q,j) over B, denoted 

by ~(cr): 

where f 
a 

M,,. -+ X -+ Bx (cr) b ,n 
u a a a 

Let L be a subcomplex of K. A (q,B) surgery mock bundle over K 

relative to L is a (q,B) surgery mock bundle over K,~, such that for each 

simplex a of L ~(cr) is the empty surgery problem. 

Recall that an ordered simplicial complex is said to be oriented if there 

is a given function u from the simplices of K to {-1,1}. If T is a 

j-simplex of K and a= 3kT then the incidence number e(cr,T) is defined 

by: 

e(cr,T) k (-1) u(cr)u(T). 
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Now suppose are connected oriented manifolds with Y 

included in the boundary of X. The incidence number e(Y,X) is defined by 

comparing the given orientation of Y with the orientation of Y induced 

by X: 

e(Y,X) 1 if these orientations agree 

-1 otherwise 

Suppose in Definition 3.2.l that the complex K is oriented. Then 

is said to be an oriented (q,B) surgery mock bundle over K if for each 

pair (o,T) where o is a (j-1)-face of the j-simplex T, e(o,T) 

e(X ,X ) = e(M ,M ). This is to hold for each component if X
0 

or M
0 

is o T o T 

not connected. 

-s is defined to be the oriented surgery mock bundle over K given by 

reversing the orientation of each MT and x,. If L is a subcomplex of K 

then the restriction of K to L, denoted slL is defined in the obvious 

manner. 

Definition 3.2.2: An oriented (q,B) surgery mock bundle over K,s is said 

to be special if for every j-simplex o of K s(o) is a j-simplex of 

lLq (B) 0 where the subscript 0 denotes the 0-component. 

There is a notion of induced bundle for surgery mock bundles: 

Definition 3.2.3: Let K and H be ordered simplicial complexes, g: H + K 

a 6-map, and s a (q,B) surgery mock bundle over K (notation as in 

Definition 3.2.1). The pullback of s by g is the (q,B) surgery mock 

* bundle over H, denoted g s: 

* * * * g M+ g X+ Bx!HI g b, g n 

* (g f;)(o) * * * * ( g M) + ( g X) + B x Io I g b , g n 
o o o o 
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is defined by the following pullback diagram of spaces and continuous 

* v 
g M M 

t i 
* u g x x 

t t 
Bx IHI id x I g l B x I KI 

which restricts over each simplex a of H 

* 
v 

(g M)a 
a 

t u 
* a (g X) 

a 

l 
id x 1~1 ii> Bx !al 

Since g induces a simplicial isomorphism 

* g b is the induced 

micro bundle map 

* * * V (v) -+- U (n) = g n 

to the pullback diagram: 

Mg(a) 

l 
x g(a) 

1 
Bx I g(a) I 

lal -+- lg(a)I, and U 
a 

maps: 

are 

homeomorphisms and hence * (g ~)(a) has the structure of a surgery problem 

of type (q,dim a) over B. 

If H and K are oriented with orientation functions w and w' 

respectively, define a new orientation function for H by: p(a) 

w(a)w'(g(cr)). Suppose ~ is an oriented surgery mock bundle, as above. Then 

* g ~ is an oriented surgery mock bundle where * (g M) is given p(cr) 
a 

times 

the orientation induced by 

* for (g X) • 
cr 

M g(cr) and the homeomorphism V 
cr 

and similarly 

The same considerations apply in the relative case and to special surgery 

mock bundles. 

We now investigate the problem of representing the cohomology theory 

H*( ·,Il..(B)) . f kb dl in terms o surgery moc un es. The following definitions will 

be basic to our discussion. 
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Definition 3.2.4: Let (K,L) be an ordered and oriented simplicial pair. 

Then ~(K,L), called the ~-set or oriented (q,B) surgery mock bundles 

over K relative to L, is the pointed ~-set defined as follows: 

~(K,L)(j) is the set of all oriented (q,B) surgery mock bundles over 

41 

K 8 ~j relative to L © ~j. The empty surgery mock bundle over K © ~j 

serves as a base point. Face maps are defined by restriction over K © ak~j 

k=O,. •• ,j. 

Using special oriented surgery mock bundles (see Definition 3.2.2) one 

defines the pointed ~-set ~(K,L) as in the previous definition. This 

~-set will be used to obtain a geometric representation for 

HO( ;lL(B)(l, .•. f')). 

Let f: (K,L) + (H,J) be a ~-map of ordered and oriented simplicial 

pairs. Then f induces ~-maps: 

and 

. given by (f#)k(~) = (f © id)*~ where ~ is a k-simplex of ~(H,J) or 

~(H,J) and id: ~j + ~j is the identity. 

Remark: When B =pt the symbol "B" will be dropped from the notation above. 

The disjoint union of two oriented (q,B) surgery mock bundles over K 

relative to L is defined with the aid of the maps id x d(t): !Kl x R
00 

+ 

IKI x R
00 

t = 0,1 d(t)(x0 ,x1 , ... ) = (t ,x0 ,x1 ,. .. ) essentially as in 

Section 2.2. This operation provides a natural H-structure in ~(K,L) and 

in ~(K,L) with the empty surgery mock bundle over K serving as the 

homotopy unit. Note that if f: (K,L) + (H,J) is a ~-map then the induced 

maps are H-homomorphisms. Orientation reversal induces a natural 

* * * * 
H-homomorphism ~ + ~ and ~ + ~· 

If Nnc. RP is a closed oriented manifold and ~ is an oriented (q,B) 
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surgery mock bundle over K relative to L then an oriented (q+n,B) sur-

gery mock bundle over K relative to L,~ xN, is defined by taking Cartesian 

products with N in the obvious manner (compare with Section 2.1). This 

yields a natural H-homomorphism Mi<K,L) + ~+n(K,L) and similarly a natural 

H-homomorphism ~(K,L) + ~+n(K,L). When N = (CP2 )k, the k-fold Cartesian 

product of 2-dimensional complex projective space, this map will be denoted 

by e k 
and will be called the periodicity map. , 

Let K be an ordered simplicial complex which is oriented with orienta-

tion function w. Let L be a subcomplex of K. The glue map 

G: MK,L;lLq (B) ,¢) + ~(K,L) is the 

h: K Ill fij + lL (B) be a j-simplex of 
q 

6-isomorphism defined as follows: Let 

simplex of let h(CJ) = M + X 
CJ CJ 

and can be viewed as being embedded in 

each k-simplex CJ of K Ill 6j if CJ is identified with 6k using the 

unique order preserving simplicial isomorphism 6k +CJ. Since h is a 6-map 

the union of h(CJ)'s for CJ EK Ill 6j yields: 

M+X+Bx!K1J16jl b,n 

which restricts to h(CJ) over ICJI x R
00

• Reorienting each 

w, one obtains an oriented (q,B) surgery mock bundle over 

to which defines G. (h). 
J 

G is clearly a 6-map. 

Similarly there is a glue map: 

G: 6(K,L;Ilq(B),cp) + ~(K,L). 

M and 
CJ 

K Ill 6j 

X using 
CJ 

relative 

Both G and G have obvious inverses given by "disassembling" a surgery 

mock bundle into its component surgery problems. Hence G and G are 

isomorphisms. 

The /'I-sets 6(K,L;l1q(B),¢) and 6(K,L;l1q(B) 0 ,¢) inherit H-structures 

from lLq(B) and l1q(B) 0 respectively. Both are H-groups since Il., (B) 
q 

and 

l1q(B)
0 

are H-groups. It is clear that G and G are H-homomorphisms and 
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that they are natural with respect to 6-maps, i.e., if f: (K,L) + (H,J) is 

a 6-map then there is a commutative diagram: 

3.2.5 MH,J;JL (B),¢) ~ 
q 

ll 
G MK,L;JL (B) ,¢) ~ 

q 

Mi(H,J) 

tl 
Mi(K,L) 

and similarly for G. There is also a commutative square: 

3.2.6 MK,L;JL (B),¢) -4 Mi(K,L) q 

t<ek)ll tek 

MK ,L; ]Lq+4k (B) ,¢) ~ Mq+4k(K L) 
B ' 

q 2: 5 

where 8k: JLq(B) + lLq+4k(B) and Gk are the periodicity maps defined by 

taking Cartesian products with (CP2 )k. By Proposition 2.2.5 8k is a 

homotopy equivalence and thus (8k)# is also a homotopy equivalence. It 

.follows e k 
is homotopy equivalence. The analogous result holds for * ~· 

The natural inclusion i: JLq (B) 0 + JLq (B) induces a H-homormorphism 

i: MK,L;JL (B) 0 ,¢) + 6(K,L;JL (B) ,¢) and thus also a H-homormorphism 
q q 

j: ~(K,L) + Mi<K,L) which can be viewed as a natural inclusion. The map 

j has the following properties which will be of interest in the sequel: 

Proposition 3.2.7: Let (K,L) be an ordered and oriented simplicial pair. 

Then 

and an injection for k = 0. 

2. If in addition K is connected, there is an exact sequence of 

groups: 
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Proof: Let X be the 11-group with X(j) = n
0

(ILq (B) ,¢) for all j and with 

face maps ds X(j) + X(j-1) given by the identity map. Note that n
0

(X,*) = 

n0 (X,*) = n0 (ILq(B),¢) and that lxl is discrete. Define a 11-map 

p: IL (B) + X by sending a j-simplex 
q 

y of IL (B) 
q 

to the equivalence class 

of ca
0

)jy. The homotopy fiber of p over the base point is easily seen to 

be isomorphic to ILq(B)
0 

and so the sequence 

fibration sequence. Hence the sequence: 

+ IL (B) + X 
q 

(*) 11(K,L;IL (B) 0 ,¢) + 11(K,L;IL (B),¢) + 11(K,L;X,*) 
q q 

is a 

is also a fibration sequence (see Theorem 7.8 of [Ma]). Let Y = 11(K,L;X,*). 

Then IYI is discrete since lxl is discrete. The fiber mapping sequence 

of 1.3.8 for (*) becomes: 

(**) 

The maps in the above sequence are all H-maps. Since IYI is discrete nky 

is a point complex for k > 1. Hence applying n0 to (**) yields the first 

part of the proposition. If K is connected and L is empty note that 

Y = 11(K;X) is isomorphic as a 11-group to X since lxl is discrete. 

Applying n0 to (**) then yields the second part of the proposition. 

We now discuss the relationship between surgery mock bundles and the 

* cohomology theory H ( ;IL(B)). 

Let (K,L) be an ordered and oriented simplicial pair. For p ~ 0 

define groups n{<K,L) by: 

3.2.8 p j mod 4 • 

Since a 1-simplex of ~(K,L) can be viewed as a cobordism of (q,B) 

surgery mock bundles over K relative to L, ~(K,L) is the cobordism 

group of oriented (8-j ,B) surgery mock bundles over K re.lative to L. 

There is a sequence of isomorphisms: 
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3.2.9 n{CK,L) - no(li(K,L ;1L8-j (B) ,cji) via the glue map G 

- rlKI ,ILi ;llL .. CB)I ,*] by [RS2, Ch. 6] = 
i-J 

- HP( IKI 'ILi ;lL(B)) 

* In particular, 3.2.9 implies ~(K,L) does not depend on the ordering 

or orientation of (K,L). 

If f: (K,L) + (H,J) is a 6-map between ordered and oriented simplicial 

pairs, the induced homomorphism fp: n{CH,J) + n{CK,L) is given by n
0

(f#) 

where If: ~-j (H,J) + ~-j (K,L) has been defined previously and p = j mod 4. 

If f is an order preserving simplicial map which is not necessarily injec-

tive on each simplex, the induced homomorphism 

defined using the simplicial mapping cylinder of 

* f 

f 

* * ~(H,J) + ~(K,L) is 

(see [Sp, p. 151]): 

(M,N) be the simplicial mapping cylinder of .f and i: (K,L) + (M,N), 

Let 

j: (H,J) + (M,N) the natural inclusions. 

( •11 ) • • h. f* . . b 1TQ J is an isomorp ism. is given y 

Since 

* f 

j is a homotopy equivalence 

n
0

(i#)n
0
(j#)-l. It follows 

from 3.2.9 that f* = H*(lfl) where H*Clfl) is the induced map in the 

* cohomology theory H ( ; lL(B)). 

Consider the commutative diagram: 

3.2.10 li(K,L;lL 
1

(B) ,¢) 

y 
I (dq+l)# 

li(K,L;QlL (B) ,¢) 

j\ 
Qli(K,L;lL (B) ,cji) 

q 

where µ is the natural homotopy equivalence of Proposition 1.4.2, 

d QlL (B) + 1L 1CB) is the homotopy equivalence defined in the proof q+l q q+ 

of Proposition 2.2., G and G-l are the glue map and its inverse respec-

tively, and finally Lq is defined to be the composite. Eq will be called 

the geometric suspension. Eq is a homotopy equivalence since it is a 
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composite of homotopy equivalences. 

It is readily observed that: 

Define homomorphisms 

s 
p 

if p 

by: 

mod 4 j 1,2,3 

if p 0 mod 4 

where e 1 is the periodicity map of 3.2.6. s 
p 

is an isomorphism since 

and 0 are homotopy equivalences. By 3.2.9 and the definition of the spec-

trum JL(B), Sp 

* 
is seen to coincide with the suspension in the chomology 

theory H ( ;JL(B)). Thus we have shown that provides a geometric 

representation for this theory. 

Similarly, 0 H ( ;JL(B) (1, •.. ,oo)) can be geometrically represented as a 

cobordism group of special oriented surgery mock bundles (see Definition 

3.2.2): 

with induced homormophisms defined as for As in 3.2.9 there is a 

natural isomorphism: 

0 
.!!!J3(K,L) HO(jKj,jLj;JL(B)(l, ••• ,oo)). 

3.3 Assembly 

In this section the notion of assembly is duscussed and the assembly 

maps are defined. The assembly maps will be important in the sequel since it 

will be shown in Chapter 5 that under appropriate conditions the surgery 

obstruction map is given by an assembly map. 
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Definition 3.3.1: Let K be an ordered and oriented simplicial s-ad. K 

will be called an oriented simplicial manifold s-ad of dimension m if K 

is a combinatorial triangulation of a compact oriented PL manifold s-ad 

~ with 3.M corresponding to the subcomplex a.K of K j = O, .•. ,s-2. 
J J 

The next theorem, whose proof is postponed to the end of this section, 

will enable us to define the assembly map: 

Theorem 3.3.2 (Assembly): Let B be a CW r-ad and K be as in the above 

definition. Suppose that s is an oriented (q,B) surgery mock bundle 

over K: 

kl M!x~BxjKj b,n 

s(o) M + X + Bx \a I b ,n a a a a 

Let M have the (s+r)-ad structure: 

a.M u {M I a c a.K} 
J a J 

j o, ... ,s-2 

as-l+iM U {3m+l+iMoj Om E K} i 0, •.• ,r-1 

and similarly for X. 

Then M and X are compact oriented TOP manifold (s+r)-ads of 

dimension m+q and f: M->- X b,n is a degree 1 normal map of (s-r)-ads 

such that as-lf is a simple homotopy equivalence of (s+r-1)-ads. 

The definition below of the assembly map is an adaptation of Quinn's 

definition in [Q]: 

Definition 3.3.3: Let K be as in Definition 3.3.1 and let B be a CW 

r-ad. The assembly map A: ~(K,a0K)-+ lLq+m(Bx o0 jKJ) is the ti-map defined 

as follows: Let s be a j-simplex of ~(K,a0K), i.e., an oriented (q,B) 

surgery mock bundle over K ® ~j relative to a
0

K ® tij. By the previous 
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theorem If I has the structure of a surgery problem of type (q+m,j) over 

the (s+r-2)-ad Bx 00 1 K\. Then A is defined on j-simplices by A.(s) = 
J 

Isl. Thus the effect of the assembly map on the surgery mock bundle s is 

essentially to forget its simplicial structure and to view the total space 

Isl of s as a surgery problem. 

Similarly there is an assembly map: 

Both A and A are clearly H-homormorphisms with respect to the dis-

joint union H-structures. In addition A and A conunute with the 

periodicity maps, i.e., there is a conunutative diagram: 

3.3.4 

and similarly for A. 

Cartesian products with 

~+4p(K,(lOK) 

rep 
~(K,a0K) 

A 
~:rr.. 4 (BxoolKI) q+m+ P 

jeP 
~:IL (Bxo 0 IK\) q+m 

are the periodicity maps defined by taking 

An inspection of the definitions also reveals that there is a conunuta-

tive diagram: 

3.3.5 ~+1 <K,a 0K) ~ :rr..q+l+m (Bx o0 \KI) 

iLq idq 

n~<K,a0K) ~ n:rr..q+m (Bx o0 IKI) 

where is the geometric suspensis (see 3.2.10) and dq is defined in th~ 

proof of Proposition 2.2.2. 
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The remainder of this section will be devoted to the proof of Theorem 

3.3.2. 

Let K be a locally finite ordered simplicial complex, viewed as a col-

lection of closed linear simplices lying in 
co 

R • If a is a simplex of K, 

the following notation will be used: 

B(o,K) { µ £ KI a is a face of µ} 

B(o ,K)(j) { µ t: B (a, K) I dim µ :::_ dim a + j} 

!B(o,K)l(j) = u {µ £ B(o,K)(j)} . 

Observe that IB(o,K)l(co) is just \star(o,K)I, the geometric realization of 

the star of a in K. 

Lemma 3.3.6. Suppose q .::_ 0 and K is as above. Let B be a space and 

{B(<)I T £ B(o,K)} a collection of subspaces such that: 

1. B(T) is a topological ball of dimension q +dim T. 

2. If µ is a face of T then B(µ) C:. aB(T). 

3. B(T) () B(T') B(T () T') for each T,T' £ B(o,K). 

4. B = U {B(<)I T £ B(o,K)}. 

Then B is a homeomorphic to Eq x I star(o ,K) I where Eq is the 

standard q-ball. 

Proof: Let B(j) = V {B(T)j T £ B(o,K)(j)} and let P(j) be the proposi-

tion: 

P(j): There exists a homeomorphism 

such that h.(EqxT) = B(T) for each T £ B(o,K)(j). 
J 

P(O) is obvious because B(o,K)(O) = {o}. Assume P(j) and let: 

T £ B(o ,K) dim T = j + 1 +dim a 

D(T) u {µ £ B(o,K)I µ is a face of T, dimµ j +dim a} 

D'(T) = U {B(µ)I µ t: D(T)} • 
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D(T) is just the union of codimension 1 faces of T which contain a and 

thus D(T) isaballofdimension j+dima. It follows that EqxD(T) is 

a q+j+dima ball contained in 3(EqxT). By the next lemma (Lemma 3.3.7) 

D1 (T) isa q+j+dima ball contained in 3B(T). Hence h:EqxE(T)+D'(T) 

extends to a homeomorphism H: Eq x T + B(T). Doing this for each j+l+dim a 

simplex of B(a,K) yields a homeomorphism h. 
1 J+ 

satisfying P(j+l). 

lemma follows by induction and from the fact that; K is locally finite. 

The 

Lemma 3.3.7: Let the notation be as above. Suppose that T E B(a,K) where 

dim T = j + 1 +dim a and C(T) is a non-empty subcollection of the codimen-

sion one faces of T which have a as a face. Let D = U {B(µ)I µ E C(T)}. 

Then D is a j+q+dima ball with De 3B(T). 

Proof: We use induction j. 

Assertion (j): The lemma is true for j. 

If j = O then C(T) = {O} and thus assertion (0) is obvious. Now induc-

tively assume assertion (j). Let TE B(a,K) with dimT= j +2 +dim a and 

let C(T) {a1 , •.• ,ap} be a non-empty subcollection of the codimension one 

faces of T which have a as a face. 

Claim (r): E(r) is a j + 1 + q +dim a ball. 

This is obvious when r = 1. Inductively assume the claim for r. 

Since a. 
l. 

and 

E(r) n B(a 1 ) = U{B(a. n a 
1

>1 1 < i _< r} r+ 1 r+ 

are codimension one faces of T each is a 

codimension one face of ar+l" By the induction hypothesis, assertion (j), 

E(r) fl B(a 
1

) r+ is a q + j +dim a ball and clearly E(r) n B(cr 
1

) C E(r) n r+ 

3B(ar+l). Hence E(r+l) E(r)UB(cr 1) isa q+j+dima ball since the r+ 

union of two balls along a common face is a ball. By induction on r claim 

(p) is true which proves assertion (j+l). The leilll!la follows by induction 

on j. 
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Proposition 3.3.8: Let Km be a simplicial manifold s-ad and X C IKI xR
00 

a subspace such that for each j-simplex a of K X(cr) = X n (icrl xR
00

) is 

a TOP manifold (j+r+2)-ad of dimension j+q with c\X(cr) = x<aicr) i = o, ... ,j 

and a.X(cr)C (intlcri)xR
00 

for i > j. Then x is a 
l. 

ad of dimension m+q. The ad structure of x is given 

a .x 
l. 

Xll(la.KlxR
00

) 
l. 

U {a 
1 

.X(cr) I om E K} m+ +i 

i 

i 

TOP manifold (s+r)-

by: 

O, ••• ,s-2 

O, ••. ,r-1 

Proof: For simplicity assume s = r = 1. The conclusion is then X is a 

TOP manifold of dimension m + q with boundary X given by ax = 

U {8 1x(cr)I om EK}. The general case of the proposition can be obtained m+ 

by induction on r and s. 

~: If T is a k-simplex of K note that 

i o, ... ,k 

Suppose x E X then x E X(cr) with p = dim a minimal. Since p is 

minimal either x E int X(cr) or The second case occurs 

if and only if X E 8X. 

Case 1. x E int X(o). Since X(o) is a p+q dimensional manifold there 

exists a (p+q)-ball B(o) C int X(o) with x E int B(o). Let C(O) = 

{B(o)}. Suppose the collection C(j) = {B(T)i T E B(o,K)(j)} has been 

constructed so that the following is true: 

1. B(T) C X(T) is a ball of dimension q + dim T 

2. B(T) ll B(T 1
) = B(T ('\ T1

) for T,T 1 E B(o,K)(j) 

3. If T1 is a face of T then B(T') C ClB(T) ('\ ClB(T) (1 ClX(T) . 

Let TE B(cr,K) dim T = j +l +p and let D = U {B(µ)I µ is a codimension 1 

face of T containing o}. Note that DC ClX(T) and that by Lemma 3.3.7 
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D is a ball of dimension p + q + j. Since 8X(T) is collared in X(T) there 

is a neighborhood B(T) of D in X(T) such that B(T) is homeomorphic to 

D x I and B(T) n 8X(T) = D. Find such a B(T) for each (j+l+p)-simplex 

in B(a,K). This yields a collection C(j+l) satisfying conditions 1 - 3 

above. By induction we obtain a sequence of such collections C(j) j 

O, ••• ,m-p. Lemma 3.3.6 implies that B = U {B(T)I B(T) E C(m-p)} is homeo

morphic to Eq x lstar(a,K)I (Eq is the stand~rd q-ball). Since Km is a 

conbinatorial triangulation of a PL manifold lstar(a,K) I is a m-ball and 

thus B is a (q+m)-ball. B is clearly a neighborhood of x in A and 

x E int B. 

Case 2. 

x E F. 

x E int 'i>+lX(a). Let F C int ap+lX(a) be a (q+p-1)-ball with 

Since 8X(a) is collared in X(a) there is a neighborhood B(a) of 

F in X(a) such that B(a) is homeomorphic to F x I and B(a) n X(a) = F. 

Proceeding as in Case 1, we obtain a neighborhood B of x in X homeo-

morphic to the (q+m)-ball Eq x I star(a,K) I and such that x E aB. 

X is thus a manifold of dimension m + q with boundary X since each 

point of X has a neighborhood of the appropriate type. 

Let M111 be a compact connected orientable manifold with boundary. An 

orientation for M is a choice of a generator for the infinite cyclic group 

H (M,aM). This homology class will be called the orientation class and will m 

be denoted by [M]. If M is not connected then an orientation of M is 

a choice of orientation for each component. If M = U M(j) is a disjoint 

union of components then H (M,aM) =@ H (M(j),aM(j)) m m and [M) is defined 

to be @ [M(j)]. If M is a manifold s-ad then the orientation class [M] 

determines orientation classes [akM] E Hm_1CakM,aakM) k = o, ... ,s-2 by 

means of the map given by the composite: 
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where J\M=U{ClMJ JlclJ 2}. c 

Proposition 3.3.10: Suppose in addition to the hypotheses of Proposition 

3.3.8 that 

1. K is an oriented manifold. 

2. Each X(o) is oriented. 

3. For every pair of simplices (o,T) of K with a a codimension 

one face of T the incidence numbers satisfy: 

E(o,T) e(X(o),X(T)) • 

Then X is an oriented TOP manifold (s+r)-ad. 

Proof: By Proposition 3.3.8 X is a TOP manifold (s+r)-ad. Without loss 

of generality it can be assumed that X is connected. Suppose s = r 1. 

Then by considering the double of X along ax we are reduced to the case 

r = 0, s = 1. The case of general s,r can be reduced to the case above by 

doubling along a face of X and by induction. 

Let F(j) = U {X(o)J dim a~ j}. Then F(m) 

of the triple (F(m),F(m-l),F(m-2)) yields: 

X and the exact sequence 

0 + H (F(m),F(m-2)) + H (F(m),F(m-1)) ~ H 
1

(F(m-l),F(m-2)) m+q m+q m+q-

H (F(m),F(m-2)) = X by the exact sequence of the pair (F(m),F(m-2)) and m+q 

Hj(F(i),F(i-1)) Qldim o=i Hj(X(o),ClX(o)) by excision. The exact sequence 

above becomes: 

where a is the map of 3.3.9. 
T 

Let [X(o)] EH (X(o),ClX(o)) be the orientation class, dim a m. m+q 

3.3.ll Define [X] ldimo=m [X(o)] • 
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3.3.12 Cl[X] 

'd· \~ 0 e(a.o,o)[X(o.)] . 
L im a =m lJ= J J 

Since K is a closed oriented simplicial manifold, every (m-1)-simplex 

a of K is the face of exactly two m-simplex T,T' of K; furthermore the 

incidence numbers satisfy e(a,T) = -e(a,T'). Hence 3.3.12 implies that 

Cl[X) = O. It is easily verified that [X) gene.-ates 

X is orientable with orientation class [X]. 

ker Cl = H (X). m+q 

Proof of Theorem 3.3.2: We have 1~1 = M + X +Bx IKI b: v + n. By 

Hence 

Proposition 3.3.10 M and X are oriented manifold (s+r)-ads of dimension 

m+q. By 3.3.11 and the fact that each f
0 

has degree 1: f*[M) = 

'd· (f )*[M(o)] = Ld· [X(o)] = [X). Hence f has degree 1. In 
l im a = m a im a = m 

order to show that Cls-lf is a simple homotopy equivalence of (s+r-1)-ads 

one uses induction on the skeleta of K and the sum theorem for simple 

homotopy equivalences (see [C, p. 76]). 



4. INDUCTION AND RESTRICTION 

4.1 The Transfer in Surgery Mock Bundle Theory 

Let p: E + K be an order preserving simplicial map between ordered and 

oriented simplicial complexes and let w > 0. 

Definition 4.1.1: p is an oriented simplicial w-mock bundle if: 

1. For every j-simplex a of K -1 P (o) is an oriented simplicial 

manifold (j+2)-ad of dimension j +w such that as unoriented 

manifolds 
-1 -1 

akp Co) = p cako) k = o; ... ,j. 
2. For every j-simplex T of K if a is a (j-1)-face of T then 

-1 -1 
e(o,T) = e(p (o),p (T)) where the e( , )'s are the incidence 

numbers. 

Let p be as above, L a subcomplex of K and -1 
F = p (L). A transfer 

map tr(p): ~(E,F) + Mri+w(K,L) will now be defined: Suppose ~ is a (q,B) 

surgery mock bundle over E relative to F where B is a CW r-ad 

I~ I M1 x~ Bx\E\ b,n 

M + X + Bx a b ,n 
a a a a 

The transfer of ~ with respect to p, denoted tr(p)(~), is the (q+w,B) 

surgery mock bundle over K relative to L given by: 

4 .1.2 I tr(p)(E) \ 
f h' 

M+ X + BxlK\ b,n where h' (id x p )h • 

For a j-simplex a of K, tr(p)(~)(o) is obtained as follows: Let 

~\p-1 (o) = N + Y ~Bx lp-
1

Co)\ blN, n\Y. Then by Theorem 3.3.2 

(Assembly) x = N + Y ~· B xa b\N, nlY, where g' = (id x \Pl )g, has the 
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structure of a surgery problem of type (q+w,j) over B. Let 

tr(p)((}(a) = x. 

Remark: We view E as being embedded in R11
• Let c: M-+ K be the com-

posite !Plnhf where TI is projection onto IEI. Then in 4.1.2 M is 

viewed as being embedded in !Kl xR
00 

by M-+ !Kl xR
00 

m-+ (c(m),m) E: 

The transfer defines a ~-map tr(p): ~(E,F)-+ ~+w(K,L) given on a 

j-simplex s by tr(p)js tr(p 0 id)(s) where id: ~j -+ ~j is the iden-

tity. tr(p) will be called the transfer with respect to p. Composition 

with the inclusion ~(E,F) -+ ~(E,F) yeilds a transfer map: 

!.E_(p): ~(E,F)-+ ~+w(K,L) 

Suppose that w = 0 and IP!: JEI -+ IKI is a covering projection. At 

least in this case it is possible to define a transfer map !E_(p): ~(E,F)-+ 

~(K,L). Let s be a j-simplex of ~(E,F). Then for any s-simplex T 

of E s(T) is an s-simplex of 1Lq(B)0 • Since for each i-simplex a of 

K, p-1(a) is a disjoint union of oriented i-simplices of E, we have 

tr(p 0 id)(s)(a) is an i-simplex of 1Lq(B) 0 . Hence the image of !E_(p) 

defined in the previous paragraph lies in ~(K,L). 

The transfer maps we have defined are clearly H-homomorphisms with 

respect to the disjoint union H-structures; furthermore, they commute with 

orientation reversal and the periodicity maps. The transfer is also func-

torial over pullbacks. This means that if p': H-+ J and p: E-+ K are 

oriented simplicial w-mock bundles and g: E-+ H and f: K-+ J are ~-maps 

so that the square: 
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is a pullback square then the following square is commutative: 

4 .1.3 ~(H) 
tr(p') ' ~+w (J) 

ll li 
Mq(E) tr(p) ~+w(K) 

This is a direct consequence of the definitions and th~ fact pullback squares 

are composable. The corresponding relative version and the version for ~ 

are also valid. 

It is easily verified that there is a commutative square: 

(4 .1.4 51~-l(E,F) -4 ~(E,F) 
I I 
l5ltr(p) · 1tr(p) 

~-l(K,L) ~ ~(K,L) 

where p: E + K is an oriented w-mock bundle with -1 
F= p (1) and E is the 

geometric suspension defined by diagram 3.2.10. 

Suppose p: X + X is a covering of finite index where X is a finite 

polyhedron. Let t: IK/ + X be a triangulation of X where K is an 

ordered and oriented simplicial complex. The triangulation t can be canoni-

cally lifted to a triangulation t: /Kl + X of X so that there is a 

simplicial map q: K + K and a commutative square: 

4 .1.5 Ii</~ x 
1q11 lp 
IK/~ x 

(see [Sp, p. 144]). In addition, K can be ordered and oriented so that 

q: K + K is an oriented simplicial 0-mock bundle. From the transfer map 

* - * tr(q): ~(K) + ~(K) one obtains a homomorphism 

* 11
0 

(MB (K) ,<j>). Then 3.2.9 and 4.1.5 combine to define a transfer homomorphism: 
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Hj(X;lL(B)) + Hj(X;lL(B)) which will temporarily be denoted by TRS(q). This 

homomorphism does not depend on the choice of triangulation of X. Suppose 

t': ILi + X is another PL compatible triangulation of X, i.e., there is 

a PL homeomorphism g: IKI + p,j such that t' = tg. By Lemma 2.5 of [RSl] 

there is a simplicial complex P containing K and L as subcomplexes and 

a triangulation: T: (JPl;IKl,ILI) + (XxI;XxO,Xxl) with Tl IKI = t and 

Tl ILi = t'. T lifts to a triangulation T: <IPl;IKl,li:i) + (Xxl;XxO,Xxl) 

with TI I KI = t and TI IL I = t'. Let q: K + K, q': L + L, and Q: P + P 

be the corresponding simplicial covering projections. Consider the commuta-

tive diagram: 

where the vertical maps are induced by the maps X + Xx I, X + Xx I, 

y + (y,k) k = 0,1. Note that 

n are the projections. It follows that TRS(q) = TRS(q') and hence the 

homomorphism which we have defined is independent of the triangulation of X. 

The notation tr(p) will be used for this homomorphism. 

* * Using ~ in place of ~ a transfer homomorphism: !E_(p): 

0 0 H (X;lL(B)(l, ..• ,co)) + H (X;lL(B)(l, •.• ,co)) as above. 

More generally, if p: Y + X is a map of polyhedra which can be trian-

gulated as an oriented simplicial w-mock bundle q: E + K then the transfer 

* *- j tr(q): ~(E) + ~ (K) induces a transfer homomorphism: tr(p): H (Y;lL(B))+ 

j w w H (Xx/'; ,Xx()/'; ;lL(B)). To see that this homomorphism does not depend on 

the given triangulation of p one constructs, given another PL compatible 

triangulation q':E'+K' of p,atriangulationof pxid:Yxl+Xxl 
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which restricts to the given triangulations of p on Y xi+ Xxi i = 0,1. 

This can be accomplished by using the mock bundle subdivision theorem of 

[BRS]. Then arguing as in the discussion which accompanies diagram 4.1.6 

shows that tr(p) is uniquely defined. 

In any cohomology theory, in particular * H ( ;L(B)), there is a transfer 

defined for finite coverings of finite CW complexes (see [A] or [Rsh]). We 

now show that this transfer, which we call the cohomology transfer, coincides 

with our geometrically defined transfer. F. W. Roush has proved the follow-

ing theorem: 

Theorem ([Rsh, p. 5)): * In any cohomology theory U defined on the category 

of finite CW pairs, there exists a unique map t, called the transfer, of 

* degree 0 defined on coverings of finite index 

* U (Y,B) satisfying the following axioms: 

p: (X,A) + (Y,B), t: U (X,A) + 

1. t is functorial over pullbacks. 

2. t commutes with the coboundary operators for pairs or triples of 

coverings. 

3. t for the identity covering (X,A) + (X,A) is the identity. 

4. For a covering which splits as a topological sum of subspaces each 

covering the base, transfer for the total covering is the sum of 

the transfers for the component coverings. 

Roush's theorem implies that our geometrically defined transfer for 

* H ( ;L(B)), tr(p), agrees with the cohomology transfer: tr(p) clearly 

satisfies axioms 3 and 4, axiom 1 follows from 4.1.3 and axiom 2 follows 

from 4.1.4. 

The transfer can also be defined with the aid of the Thom isomorphism. 

In analogy with Chapter 2 of [BRS], the Thom isomorphism in the cohomology 

* theory H ( ;L(B)) can be easily described in terms of surgery mock bundles: 

Let p: E(u) + K be a simplicial triangulation of an oriented r-block 
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bundle u over K, with zero section s: K + E(u). Composition with s 

defines a LI-map: 

T: ~(K) + ~-r(E(u),E(~)) (q .:'... r) 

Explicitly, let ~ be a zero simplex of ~(K): 

h 
l~I =M+X~BxlKI b,n and M ~ X ~ Bx T b ,n . 

T T T T 

h' M+ X +Bx IE(u)I b,n h' (idxs)h 

h' 

Ms(a) ---, xs(a) ~Bx s(a) bs(a) ,ns(a) h' 
a 

(id x s)h 

and similarly for higher simplices of .~(K). Then T induces an isomor

phism: 

* I *+r I • T: H (jK ;lL(B)) ~ H <IE(u)j, E(u)I ;lL(B)) 

whose inverse is given by tr(p). 

Now suppose c: X + X is a finite covering of finite polyhedra and that X 

is embedded in Xx int(lls) with normal block bundle Vs. The geometrically 

defined transfer * - * tr(c): H (X;lL(B)) + H (X;lL(B)) is seen to coincide with 

the composite: 

·* 
(*) H*cX;lL(B)) .'! H*+s(E(V),E(V);lL(B)) 1+ H*+s(X x (Lis ,Cllls);lL(B)) 

~ H*(X;lL(B)) 

where E is given bys-fold suspension (compare [BRS], p. 25). By the 

appendix of [BeS] the composite (*) coincides with the cohomology transfer 

of Roush, thus providing an alternate proof of the agreement of the geome-

trically defined transfer and the cohomology transfer. 

Let p: (X,A) + (Y,B) be a finite covering of finite complexes. Since 

the inclusion map of zero-th spaces lL8 (B) 0 c.. lL8(B) extends to a map of 
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spectra J: lL(B) (1, •.• , 00 ) + lL(B) (see [A, p. 145)) there is a commutative 

diagram: 

0 J# 0 
H (X,A;lL(B) (l, ••• ,oo))~ H (X,A);lL(B)) 

lt' 

0 J# 0 
H (Y,B;lL(B) (l, ••• ,oo))~ H (Y,B;lL(B)) 

where the vertical maps are the cohomology transfers and the horizontal maps 

are induced by J. 

It is an easy consequence of our definitions that the diagram: 

0 H (X,A;lL(B) (1, ... ,oo)) 
J 

-4. HO(X,A;lL(B)) 

ltr(p) 

0 H (Y,B;lL(B) (l, ••• ,oo)) 

J lt<(p) 
_J4 HO(Y ,B;lL(B)) 

is commutative where the vertical maps are the geometrically defined trans-

fers. By Proposition 3.2.7 (1) the horizontal maps in the two diagrams above 

. are injective. It has already been shown that tr(p) = t. Hence it follows 

that .EE.(p) = t', i.e., .EE.(p) coincides with the cohomology transfer. 

We now investigate the relationship between the assembly maps and the 

transfer. Let p: E + K be an oriented simplicial w-mock bundle. Suppose, 

in addition that E and K are oriented simplicial manifold s-ads with 

-1 a.E = p (a.K) for j = O, ••• ,s-2. Let dim E = e and dim K = k. Then 
J J 

e = w + k and an inspection of the definitions reveals that there is a 

commutative square: 

4 .1. 7 

where A (E) and A (K) are the assembly maps, id is the identity 
-q q+w 
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B + B, and JL <id x IP I) q+e was defined in Section 2.2. When w = 0 and 

!Pi is a covering projection there is also a commutative diagram: 

A (E) 
4.1.8 ~(E,30E) -=q )>]Lq+e(BxoolEI) 

I I 
l
tr(p) 1JL (id x I Pl) q+e 

A (K) 

~(K,30K) =<J )> ]Lq+e (Bx oo!Ei) 

The commutative square 4.1.7 induces a H-homomorphism of homotopy 

fibers of the assembly maps over the basepoint ¢: 

4 .1.9 E(A (E)) + E(A (K)) • 
-=q q+w 

Now let B = pt, q = 4n > 5, dim K s+4 and suppose that for every 

subset c of {l, •.. ,s-2} 3cE and 3cK are connected and non-empty. a0E 

and a
0
K may be empty or disconnected, It is proved in Chapter 5 (see 

5.1.9 and 5.1.10) that there are homotopy equivalences: 

4 .1.10 E(~n(E)) 2:. STOP< IE I ,aolEI) 

E(A4n+w(K)) 2:. STOP((IKI ,aolKI x (tJ.w,3!1w)) 

and 

if w > 1 

Hence if w .?:_ 1, 4.1.9 and 4.1.10 define, up to homotopy, an induction map: 

If STOP( ) is given the H-structure imposed by the homotopy equivalences 

of 4.1.10 then I*(p) is a H-map. 

Similarly, if w = 0 and IP! is a covering projection we have, using 

4.1.8 in place of 4.1.7, an induction map: 

4 .1.12 
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4.2 The Transfer in the Theory of Surgery Spaces 

Let p: E + B be a map of CW r-ads with for 

i O, ..• ,r-2. Assume that p is an oriented topological bundle with fiber 

a closed oriented manifold of dimension w. The construction presented below 

of the transfer map: 

tr(p): lL (B) + lL (E) q q+w is that of Quirin (see [Q]). 

Let x = M + X + Bxllj b,n be a j-simplex of lLq(B), i.e., x is a surgery 

problem of type (q,j) over B. Form the pullback diagram: 

M:~x ~Exllj 

lu lv lpxid 

M~X~Bx~j 

Then x' = M + X + Ex llj b,n is seen to be a j-simplex of lL (E) where q+w 

is the induced microbundle map - * * b: U (v) + V (n) 

x', we obtain a ll-map tr(p): lLq(N) + Lq+w(E). 

n. Defining tr(p) .x 
J 

The transfer map is clearly a H-homomorphism and commutes with orienta-

tion reversal and the periodicity map. Recall that for j + q .::_ 5 

n.(lL (B),¢) = L. (n
1

(B)) where L. (n
1

(B)) is Wall's algebraic L-group 
J q J +q J+q 

(see Proposition 2.2.3). If p is a covering projection of finite index 

then the transfer n.(tr(p)); n.(lL (B),¢) + n.OL (E),¢) coincides with the 
J J q J q 

* algebraically defined restriction map: I : L. (n1(B)) + L. (n
1

(E)) where 
J+q J+q 

j + q .::_ 5 and I= n1 (p). 

Let p: H + K be a ll-map between ordered simplicial complexes and B 

a CW s-ad. Suppose that H and K are oriented simplicial manifold r-ads 

of dimension m with i 0,.,. ,r-2 and assume that 

IP!: IH\ + !Kl is a covering projection of finite index. It follows from 

the definitions that there is a commutative square: 



64 ANDREW NICAS 

A (K) 
4.2.1 ~(K,a 0K) :::s , lL (Bx60 JKI) q+m 

ll I 

A (H) 
rr(idx\pl) 

~(H,a 0H) 
-q 

lLq+m (Bx o0 1HJ) 

where the horizontal maps are the assembly maps and If p is the induced map 

of Section 3.2. (Recall that If p is also constructed as a pullback.) There 

is also a commutative square with ~ in place 'of ~· The square 4.2.l 

induces a H-homomorphism of the homotopy fibers of the assembly maps over 

the basepoint ¢: 

4.2.2 E(A (K)) + E(A (H)) 
-q ~ 

Now let B =pt, q = 4n ~ 5, dim.K ~ r+4, and suppose that for every 

subset c of {l, .•• ,r-2} cicH and cicK are connected and non-empty. a0K 

and a0H may be empty or disconnected. It is proved in Chapter 5 (see 5.1.9) 

that there are homotopy equivalences: 

4.2.3 X = \Kl or IHI 

Then 4.2.2 and 4.2.3 define, up to homotopy, a restriction map: 

4 .2.4 

is given the H-structure imposed by the homotopy equiva-

* lences of 4.2.3 then I (p) is a H-map. 

The restriction map for STOP( can also be defined directly: Let 

diagram: 

4.2.5 M--? IHI x l\j 

1 t1 Pl x id 

M--? JKI x l\j 
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and define r* (p) .x M -> IHI x t) giving a Cl-map 
J 

Since the vertical maps in 4.2.1 are obtained as pullbacks and the homotopy 
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equivalences of 4.2.4 are natural with respect to pullbacks, it follows that 

the two definitions of the restriction map agree up to homotopy. 

More generally, let p: H -> K be an order preserv~ng simplicial map 

which triangulates an oriented topological bundle with fiber a closed oriented 

manifold of dimension w. Also suppose that Hm+v and Km are oriented 

simplicial manifold r-ads with -1 p (Cl.K) = Cl.H 
l. l. 

i = O, ••• ,r-2. Let C be 

the simplicial mapping cylinder of p and i: H-> C, j: K-> C the natural 

inclusions. Then there is a homotopy connnutative diagram: 

_!iq(K,CJ
0

K) 
A (K) 

4.2.6 :::9. ~ :IL Co 0 IKI) q+m 

fl !tr( IPI) _!iq(c,a
0
c) 

lill 
A (H) 

_!iq(H, Cl 
0

H) :::s ~ lL Co 0 IHI) q+m+w 

where the horizontal maps are the assembly maps. ./I 
J is a homotopy equiva-

lence since j is a homotopy equivalence. Hence there is an induced map of 

homotopy fibers: E(A (K))-> E(A (H)). When dim K .:_ r+4, q = 4n .:_ 5, and -q -q 

H and K satisfy the 0-connectivity conditions of 4.2.3, this yields a 

restriction map defined up to homotopy: 

4.2.7 

This restriction map can also be defined by the pullback construction of 

4.2.s. 



S. GROUP STRUCTURE IN THE SURGERY EXACT SEQUENCE 

Notation: As in Chapter 1, SX will denote the singular complex of a space 

X. Let Pr= (CP2)r, the r-fold Cartesian product of 2-dimensional complex 

projective space. 

The spaces G/CAT, CAT = TOP or PL, are defined to be the homotopy 

fiber of the natural map between classifying spaces BCAT +BG (see [Wal], 

Ch. 10). The following theorem of Quinn and Siebenmann relates G/TOP with 

the surgery spaces ]L (pt): 
q 

Theorem S.1.1 ([KS, p. 297]): There are homotopy equivalences: 

1. a(O,r): S(G/TOP) + :JL
4

r (pt) 0 r > 2. 

2. a(k,r): S(S"Gk(G/TOP)) + :JL4r+k(pt) 4r+k 2:. S, k > 1. 

Discussion: a(k,r) is defined to be the composite 

5.1.2 

k > 0 

r SMap(P ,0.k(G/TOP)) is identified with the 6.-set whose j-simplices are 

· (Prx,kx,j,Prx"'kx,j) continuous maps: Ll Ll al.l Ll + (G/TOP,*) and whose face maps 

are given by restriction to for p = O, ... ,j. Similarly, 

S(S"Gk(G/TOP)) can be viewed as the 6.-set whose j-simplices are continuous 

maps (6.k x 6.j ,36.k x 6.j) (G/TOP,*) and whose face maps are the obvious ones. 

The 6.-map B takes a j-simplex u: l x 6.j + G/TOP of S(nk(G/TOP)) to 

u where n: pr x6.kx6.j + l\kx6.j is the projection. F is the surgery 

obstruction map of Definition 2.3.3 and for any space X A: X + pt is the 
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unique map. 

The 6-map C is a special case of the following general construction: 

Let M be a compact oriented topological manifold s-ad with m > s+4. We 

inductively construct a 6-map C(M,Cl0M): SMap(M,Cl0M;G/TOP,*)-+ NTOP(M,Cl0M) 

simplex by simplex using topological transversality. This map is constructed 

in the PL case in [Ro], the main difference being that PL transversality 

is employed in [Ro]. Explicitly: For each 0-simplex u: (M,Cl
0

M)-+ (G/TOP,*) 

of SMap(M,Cl0M;G/TOP,*) use topological transversality to obtain a normal 

map of s-ads x = (N-+ M b,n) relative to a0M representing u. Recall 

that this is accomplished by obtaining a fiber homotopy trivialized topolo-

gical bundle over M,~, representing u and then making the collapse map 

t: Sm+i-+ T(~), where T(~) is the Thom space of ~. transverse to 

M~ T(~) (this requires m ~ s+4). Let C(M,Cl0M) 0 (u) = x. Suppose C(M,a0M) 

is defined on q-simplices q .:::_ j. For each (j+l)-simplex 

u: (M x 6j+1 ,a
0
M x 6j+l) -+ (G/TOP,*) apply (relative) topological transvers-

ality to obtain a normal map x of type j+l over M relative to ClOM 

representing u and such that d x = C(M,CloM) .(Cl u) for p = o, ••• ,j. Let p J p 

C(M,CloM) j+l (u) x. Then by induction we obtain the 6-map C(M,Cl0M). 

C(M,a
0

M) is a homotopy equivalence. This is shown in the PL case in [Ro]; 

the TOP case follows by substituting TOP transversality for PL trans-

versality used in the argument of [Ro]. Note that the definition of C(M,Cl0M) 

involves an inductive choice for each j-simplex u of SMap(M,Cl0M;G/TOP,*) 

of a normal map representing u. If C'(M,Cl0M) is a 6-map obtained by 

making different choices of representatives then (relative) transversality 

can be used to construct a homotopy between C(M,Cl 0M) and C'(M,a 0M). Hence 

C(M,Cl
0

M) is uniquely defined up to homotopy. 

Returning to 5.1.2, the 6-map C is given by C 

Then the map: 

TI.(a(k,r)): TI.(Qk(G/TOP,*)-+ TI.(lL
4 

k(pt),¢)) 
J J J r+ 
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is the surgery obstruction map nk .(G/TOP,*) + Lk .(1) 
+J +J 

which by the compu-

tations of Kirby and Siebenmann (see [KS, p. 267]) is an isomorphism when 

k+j _:::. 1 and the zero map when k+j = O. In particular, the image of a(O,r), 

r _:::. 2, lies in n..
4
r(pt) 0 • Theorem 5.1.1 then follows from Whitehead's 

theorem. 

The homotopy equivalence S(G/TOP) 2: n..8 (pt) 0 of Theorem 5.1.1 (1) gives 

G/TOP an infinite loop space structure since :ir,.8 (pt) 0 is the zero-th space 

of the spectrum n..(pt) (1, ••. , 00 ) (see Section 3.1). 

Let Km be an oriented simplicial manifold s-ad, m > s+4. We will 

now establish homotopy commutative squares: 

S.1.3 

r > 2 

S.1.4 

4r+k .:_ 5, k > 1 

such that the ~-maps V and V' are homotopy equivalences. In the dia-

grams above, er is the periodicity map obtained by taking Cartesian products 

Wl..th Pr. AJ.r d A th bl --. an 4r+k are e assem y maps, F is the surgery 

obstruction map (see Definitions 2.3.3) and the maps V and V' are the 

subject of the discussion below. 

Let Qp be the Kan subcomplex of n..p(pt) 0 whose j-simplices are 

surgery problems of type (p,j) x= (M ! X + ~j b,n) such that f is a 

homeomorphism or x is the empty surgery problem. It is easily seen that 

the base point ¢ of n.. (pt) is a deformation retract of Q , in particular 
p p 

is contractible. Since n..4r(pt) 0 is a H-space and Q4r is contrac-

tible, Theorem 5.1. (1) gives that a(O,r): (S(G/TOP),*) + (n..4r(pt) 0 ,Q
4
r) 

is a homotopy equivalence of pairs, r > 2. Hence the induced map 
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equivalence. 

If X is a pointed CW complex let n(x): ~(K,a0K;SX,*) + 

SMap( IKI ,a0 1KI ;X,*) 

¢(X)lfl where If! 

be the natural homotopy equivalence given by n(X).(f) 
J 

is the geometric realization of f and ¢(X): lsxl + X 

is the natural map. Define a ~-map: 

by W = c(!Ki,a
0

1Ki)n(G/TOP). Then W is a homotopy equivalence since it is 

a composite of homotopy equivalences. 

5.1.5 

Consider the following diagram: 

~(K,aoK;:n..4r(pt)o,¢) 

I 
~Ill 

~(K,aoK;:n..4r(pt)O,Q4r) 

i a(O,r)/I 

~(K,aoK;S(G/TOP),#) 

Jw 
NTOP( !Kl ,aolKI) 

A 

-4 :n..m+4r<aolKI) 

iid 

In the above diagram A
1 

is the composite 

G A 
MK,a 0K;:n..4r(pt) 0 , ) ~ lj_4r (K,a 0K) .=,:n..4r+m<o 0 IKI) 

where G is the glue isomorphism and A is the assembly map. The ~-map 

A2 is similarly defined. er is the periodicity map and the maps a(O,r)# 

and W have been defined previously. I# is induced by the inclusion 

I: (:n..4r(pt) 0 ,¢) + (:n..4r(pt) 0 ,Q4r). I 11 is a homotopy equivalence since I 

is a homotopy equivalence of pairs, Q4r being contractible. 

The top square in diagram 5.1.5 is strictly co11U11utative. To see that 

the bottom square in 5.1.5 is homotopy co11U11utative, i.e., that A
2
a(O,r)# 
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and 6 FW are homotopic, observe the following: 
r 

First, Map(jKI xPr,d
0

1KI xPr;G/TOP,*) = Map(jKl,d
0

jr<!;Map(P;G/TOP),*) 

and there is a homotopy commutative diagram: 

5 .1.6 
Bii 

6(K,d
0
K: S(G/TOP) ,*) ---~ MK, d

0
K:SMap(Pr ;G/TOP) ,*) 

I 
I r 

~n(G/TOP) * tn(Map(P ;G/TOP)) 

SMap( I Kl, do I Kl ;G/TOP ,*) TI SMap( I KI ~Pr, do I K [ x Pr ;G/TOP ,*) 

le( [Kl ,d 0 [KI) le< !Kl x P\a
0

jK[ x Pr) 

H=(xPr) r r 
NTOP ( I KI 'Cl 0 I KI ) NTOP ( I KI x p 'Cl 0 I KI x p ) 

where B: S(G/TOP) + SMap(Pr;G/TOP) is the map of 5.1.2, * TI is induced by 

the projection n: jKI xPr + !K[. Note that the composite of the maps in the 

first column is W. 

Second, let g_ be the Kan subcomplex of r 
NTOP(P ) whose j-simplices 

are normal maps of type j over Pr, n = (M 1 Pr x 6j b ,n) such that f is 

a homeomorphism. Define the 6-map G': 6(K,Cl0K;NTOP(Pr),.9_) + 

NTOP(jK[ xP\a
0

1KI xPr) by gluing together the image of a j-simplex 

g: K ~ 6j + NTOP(Pr) of 6(K,Cl 0K;NTOP(Pr),.9_) and then applying Theorem 3.3.2 

(Assembly). There is a commutative diagram: 

5 .1. 7 

JL
4 

(TI)F r+m 

is projection. 

Finally, there is a homotopy commutative diagram: 
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5 .1.8 

where W' is the composite of the maps in the second column of diagram 5.1.6 

and C C(Pr): SMap(Pr,G/TOP)-->- NTOP(Pr). Diagram 5.1.8 above is seen to be 

homotopy commutative as follows: Construct a homotopy inverse 

T: NTOP([Kf xPr,a 0 fKI xPr)-->- Ll(K,3 0K;NTOP(Pr),g) for G' using transver

sality: If x = (M ! I K © llj I x Pr b,n) is a j-simplex of 

ll-map T. (x): 
J 

j r 
K r;i ll -->- NTOP(P ) is 

defined inductively by making f transverse to fa I x Pr C. f K © ll j I x Pr for 

each simplex a of K r;i llj. Then it is easily seen that TW' and C are 

homotopic. 

Now recall that the image of a(O,r) lies in 11
4
r(pt)

0 
and observe that 

11
4

r+m(n)FHW = 8rFW. Then combining diagrams 5.1.6, 5.1.7, and 5.1.8 we 

obtain that the bottom square of diagram 5.1.5 is homotopy commutative. 

Let (I#)-l and W-l be homotopy inverses for the maps I# and W 

respectively in diagram 5.1.5 and let 

be the glue isomorphism. Define the 

V is a homotopy equivalence since it is a composite of homotopy equivalences. 

Diagram 5.1.5 then yields diagram 5.1.3. Similarly, using the maps a(k,r) 

k > 1 we obtain diagram 5.1.4. 

We now discuss group structure in n0 (STOP(IKf ,a0 1Kf ),*) and the surgery 

exact sequence in the topological case. 

Recall from Chapter 3 that the assembly map 

11
4

r+m(o
0

[KI) is a H-homormorphism with respect to the disjoint union H-

structures and that ~4 rCK,o0K) and 114 ( o0 f KI ) r+m are H-groups. Let 

E(~r) be the homotopy fiber of ~r over the basepoint ¢· For the remain

der of this chapter it will be assumed that for every subset c of 

{l, ..• ,s-2} acK is connected and non-empty. ~ 0K will be permitted to be 
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disconnected or empty unless otherwise stated. By Theorem 2.3.4 there is a 

homotopy equivalence STOP(jKj ,a 0 jKj) + E(F) where E(F) is the homotopy 

fiber of the surgery obstruction map F: NTOP(jKj ,a 0 1KI) + lLmCo0 IKI) over 

the basepoint ¢· Also recall that diagram 5.1.3 gives a homotopy commu-

tative square: 

5 .1.3 

r > 2 

where V is a homotopy equivalence. By Proposition 2.2.5 the periodicity 

map 6r is also a homotopy equivalence. Applying Theorem 1.2.12 to 

Diagram 5.1.3, we obtain a homotopy equivalence: 

5 .1.9 

Theorem 1.3.11 (4) implies that E(~r) is a homotopy associative H-space 

such that n0 CE(~r),*) is a group. Then the homotopy equivalence of 5.1.9 

imposes a homotopy H-structure on STOP( I Kl ,a 0 jKj) such that 

n0 CsTOP(jKJ ,a 0 1KJ ), *) is a group. It will be shown later that this group 

structure is independent of the triangulation of M = JKI. 

Notational Convention: The group n0 (STOP(JKl,a 0 JKI),*) will be denoted by 

sTOP(JKJ ,a 0 JK)) when it is conentient to do so. 

Arguing as above with diagram 5.1.4 in place of diagram 5.1.3 we obtain 

for 4r+k > 5 and k > 1 a homotopy equivalence: 

5 .1.10 

By diagram 5.1.3 and the proof of Theorem 1.3.12, the homotopy sequence 

of the homotopy fibration E(~r) + ~4 r(K,3 0K) + lL4r+m(o 0 IKI) yielding a 

commutative ladder -- diagram 5.1.11: 
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S.1.11 

where the top sequence is a long exact sequence of groups and homomorphisms 

and the vertical maps are isomorphisms. V-l and e-1 
r 

are homotopy inverse 

for v and er respectively. 

If X is any compact oriented TOP manifold s-ad then it is a direct 

consequence of the definitions that: 

and 

In addition a comparison with the definitions of [Wal], Chapter 10 shows 

that the sequence 

is precisely the surgery exact sequence of [Wal], p. 197. 

By Proposition 2.2.4 71.(lL 4 <o 0 IKI),¢) = L .(711 <o
0

IKI)). J m+ r m+J 
Let r = 2 

and recall the following from sections 2 and 3 of Chapter 3: 

71 0 (~8 (K,a 0K),cp) = HO(IKI ,a
0

1KI ;G/TOP) where G/TOP is the notation we are 

using for the spectrum lL(pt) (l, ... ,ro) with ze.ro-th space JL
8

(pt)
0 

2: G/TOP. 

Also 

Remark: Proposition 3.2.7 (1) implies that for j ~ 1, 
8 0 . . 

71/M (K,CloK),cp) = H CCIKl,aolKI) x (llJ,a.tiJ);lL(pt)). 

The commutative ladder 5.1.11 then yields: 

8 71.(M (K,aoK),¢) 
J -
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Theorem 5.1.12: There is a long exact sequence of groups and homomorphisms: 

--+ sToP<<IKI ,a
0

1KI) x <ti
1 

,ati
1

)) ~Ho(( IKI ,a
0

1KI) x <ti
1 ,ath ;Q../TOP) 

Al 0 
~Lm+1 <n 1 <o0 1Kj))--+ sT0PCIK!,a 0 1KI) ~H <IKl,a 0 1Kl;G/TOP) 

AO 
~ Lm<n 1 Co 0 1KI )) 

where A. corresponds to the surgery obstruction map under the isomorphism 
J 

of 5.1.11. 

Remark: In contrast, suppose G/TOP is given the Whitney sum infinite loop 

space structure. In that case it is known that the surgery obstruction 

8: [jKI ,a
0

1KI ;G/TOP]-+ Lm(n 1 Co
0

1KI )) is not a homomorphism in general (see 

[Wa 1, p. 110]). 

The periodicity theorem for the group sTOP(IKI ,a0 !Kj) will now be 

derived. It will also be shown that this group is abelian. 

In the special case that a
0

K is non-empty, observe that 

i'i(K,'tJK;lLq(pt)
0

,¢) = i'i(K,3
0
K;lLq(pt),¢) or equivalently _!iq(K,a

0
K) =Mq(K,a

0
K) 

since if K is connected and a0K is non-empty then the image of any i'i-map 

f: (K ® i'ij,a
0

K ® i'ij)-+ (lLq(pt),¢) must lie in 

lL (pt) 
q 

containing the basepoint ¢. ~q(K,3 0K) 
the component of 

implies that 

E(A ) = E(A ) 
-q q 

where E(A ) 
-q 

and E(A ) 
q 

are the homotopy fibers of the 

respective assembly maps over the basepoint ¢· The periodicity theorem of 

Siebenmann ([KS, p. 283]) can now be recovered in the case a
0

K is non-empty: 

Theorem 5.1.13: Let K be as above, 30K non-empty. Then there is a H-map 

inducing a homotopy equivalence: 
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Proof: For r > 1 there are H-maps inducing homotopy equivalences: 

E(~(r+l» '.:.:.STOP( I Kl ,aol Kl) by 5 .1.9 

E(A4r+4) ::.:_STOP((IKl,aolKl)x(t:,,
4

,at:,,
4

)) by5.1.10 

Since E(~r+4 ) E(A
4

r+4 ) when K is connected and a0K is non-empty, the 

result follows. 

Before proceeding to the case a0K is empty we show that 

STOP( I Kl ,a 0 !KI) is a loop space when a0K is non-empty. 

Recall from diagram 3.3.5 that there is a homotopy commutative square: 

A 

rlA 
q-l> rtJL 

1
Ca

0
IKI) 

m+q-

where the vertical arrows are homotopy equivalences. Since a
0

K is non-empty 

* * . and K is connected we can replace M by M and A* by ~ in the 

diagram above.. Applying Theorem 1.3.12 to the resulting diagram yields a 

H-map inducing a homotopy equivalence E(rlA 1 ) ~ E(A ). By Proposition 1.3.9 
-q- - -q 

there is a H-map inducing a homotopy equivalence EWA 
1

) + rlE(A 1). 
-q- -q-

Letting q = 4r+l, r = 2 and applying 5.1.9 proves: 

Proposition 5.1.14: Let K be as above and a
0

K non-empty. Then there is 

a H-map inducing a homotopy equivalence: 

Remark: Combining 5.1.3 and 5.1.4 we have a H-map inducing a homotopy 

equivalence: 

~) 
0

K non-empty. 
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Hence STOPCIKI ,a 0 1KI) is an infinite loop space and in particular 

STOP(IK\ ,a
0

1KI) is abelian when a0K is non-empty. 

Now suppose that a0K is empty. K can be viewed as an oriented simpli

cial manifold (s-1)-ad by deleting the empty zero-th face. The corresponding 

periodicity result for the group sTOPCIKI) is: 

Theorem 5.1.15: There is an exact sequence of groups: 

Since L
0

(1) = Z, the infinite cyclic group and the image of a homomor

phism into Z is either zero or infinite cyclic we have the following 

corollary: 

I I 4 I 4 Corollary 5 .1.16: The group STOP ( K x 6. , [ K x 36. ) is isomorphic to 

sTOP(\KI) or to sTOPCIK\)@ Z. 

Remark: Let Tn be the n-torus and Sn the n-sphere. Consider the 

computations: 

1. 
n k n k 

sTOP(T x6. ,T x36.) 0 n+k > 5 (see [KS, p. 275]) 

2. n 
sTOP(S ) = 0 n > 5 (by the generalized Poincare conjecture) and 

n 4 n 4) sTOP(S x 6. ,S x 36. = Z (using the surgery exact sequence). 

Hence both possibilities in Corollary 5.1.16 can occur. As a 

consequence Theorem C.5 of [KS, p. 283] is incorrectly stated. 

Proof of Theorem 5.1.15: The fiber mapping sequence of 

(see 1.3.8) maps by natural inclusion into the fiber mapping sequence of 

A : Mq(K) + 1L ( IK\) yielding a commutative ladder: 
q m+q 
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where j is the inclusion. Note that Qti(K;JL (pt) 0 ) = Qll(K;JL (pt)) or 
q q 

equivalently Q~q(K) = QMq(K) since the image of any ti-map: 

F: (K ® 6j+l ,K ® <ao)j+l6j+l) -+ (JLq(pt) ,qi) 

component containing the basepoint qi, if 

the identity. Let M. 
-J 

M. 
J 

K 

must lie in JL q (pt) 0' 

is connected. Hence 

TI. (Mq(K) ,¢), and L. 
J J 

the 

Qj 

77 

is 

L .(n1<IKi)). Then applying no to the diagram above yields a COllllIIUtative 
m+q+J 

ladder of exact sequences: 

Let q 8. By Proposition 3.2.7 (2) there is an exact sequence 

.(*) 

Hence j* is injective. A variant of the 5-lemma shows that u* must be 

injective. A further diagram chase reveals that the cokernel of u* injects 

into the cokernel of j*. By (*) the cokernel of j* injects into L
0

(1). 

This yields an exact sequence: 

The theorem follows from 5.1.9 and 5.1.10. 

Remark: Theorem 5.1.15 also implies that sTOP(iKI) is abelian since 

STOPCIKI xti
4

,IKI xati4 ) is abelian. 

We now show that the group structure of sTOP(IKI ,a
0

1Ki) is independent 
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of the triangulation of the PL manifold s-ad M = !Kim. For clarity this 

will be proved in the case M is a closed manifold. 

Let K' be another oriented simplicial manifold triangulating M. 

Assume that the triangulations are PL compatible. By Lemma 2.5 of [RSl] 

there is a triangulation P of M x I such that P restricted to M x O is 

K and P restricted to M x 1 is K'. Let i: K + P and i': K' + P be 

the inclusions. Consider the following commutative diagram: 

'!2_8 (K) 
~(K) 

lL 8 <1K[) s.i.11 E(~(K)) m+ 
t t f ao 1u Ii" 

~(P) 
E(~(P)) '!2_8(P) lL 

9
«IPI ;[Kl ,IK'[) m+ 

lw I ( i • )11 la1 
it A(K') 

E(~(K' )) M8 (K') - ') 1Lm+8 (I K' I ) 

where E(~( )) is the homotopy fiber of the assembly map ~( ), ill and 

(i')lf are the induced maps, a0 and a1 were defined in Section 2.1, and 

U and W are the induced maps of homotopy fibers. Since i and i' are 

homotopy equivalences, ill and ( i' )II are also homotopy equivalences. To 

see that ak k = 0,1 are homotopy equivalences we use the following theorem 

of Wall: 

Theorem S.1.18 ([Wa 1, p. 93]): For any CW n-ad X and 0 < k < n-2 there 

is a natural exact sequence: 

where L1 .(Y) 
p+J 

n.(lL (Y),<jl) p+j > 5 and i* is induced by the inclusion. 
J p 

Applying the theorem above with X = ( IP I ; I KI) and observing that i* 

is an isomorphism since i: K + P is a homotopy equivalence gives that 

n.(lL ([P\;[K[),¢) = 0 p+j > 5. Another application of the theorem with 
J p 
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0 
(l : TI.(lL 

1
(X),¢) + TI.(lL ((lkX),¢) is an 

J p+ J p 
X = ( IPI, IKI, IK' j) shows that 

isomorphism for .'.:_ O, p > 5. Thus 30 is a homotopy equivalence by White-

head's theorem and similarly for a1 . By Theorem 1.3.12 U and W are 

homotopy equivalences. Hence there is a H-map inducing a homotopy equiva-

lence E(~(K)) + E(~(K')). Then 5.1.9 gives a H-map inducing a homotopy 

equivalence STOPCIKI) ~ STOPCIK'I) and in particular a group isomorphism 

STOPCIKI) ~ STOPCIK'I>· 

Using the results of Chapter 4, it is now easy to show that the surgery 

exact sequence of 5.1.12 is natural with respect to induction and restriction. 

We first make the following: 

Observation 5.1.19: Given a commutative square of basepoint preserving 

6-maps of Kan pointed 6-sets: 

A --4 B 

the fiber mapping sequence of f (see 1.3.8) maps into the fiber mapping 

sequence of g yielding a commutative ladder: 

where E(f) and E(g) are the homotopy fibers of f and g respectively 

over the basepoints. 

Suppose that Nn and J.f1 are compact oriented PL manifold s-ads 

such that for every subset c of {l, ••• ,s-2} a N and a M are connected 
c c 

and non-empty. ()ON and a0M may be empty or disconnected. Also assume 
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that m,n > s+4. 

Let p: N + M be a PL map with -1 
p (() .M) = () .N 

l. l. 
for i=O, ... ,s-2 

which can be triangulated as an oriented simplicial w-mock bundle p': E + K 

(see Definition 4.1.1). Note that n = m+w. An example of such a map p is 

an oriented PL bundle over M with fiber a compact oriented PL manifold 

of dimension w. When w = 0 we will assume that p is a covering pro-

jection. Applying Observation 5.1.19 and Theore~ 5.1.12 to the commutative 

square 4.1.7 with q = 8 (or to 4.1.8 if w = 0) we obtain 

Theorem 5.1.20: There is a commutative ladder of exact sequences: 

---'> Ln ( Til ( 60N)) 

I 
[p* 

..Jr 
~ Ln(n1(o0M)) 

where I*(p) is induced by the induction map of 4.1.11 (or of 4.1.12 if 

When w = 0 it was shown in Chapter 4 that tr(p) coincides with the 

cohomology transfer. For all w it was also shown in Chapter 4 that tr(p) 

is independent of the triangulation of p. The same extendibility argument 

used there or in 5.1.17 can be used to show that I*(p) is independent of 

the given triangulation of p. 

Now suppose that p: N + M is a covering projection. Applying 

Observation 5.1.19 and Theorem 5.1.12 to the commutative square 4.2.1, we 

obtain 

Theorem 5.1.21: There is a commutative ladder of exact sequences: 
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~ sTOP(M,3
0

M) ~ HO(M,3 0M;G/TOP) 

l1*(p) lHO(p) 

~ STOP(N,30M) ~ Ho(N,aoN;G/TOP) 

* * where I (p) is induced by the restriction map of 4.2.4 or 4.2.5. p is 

given by n
0

(tr(p)) where tr(p) is the transfer in the theory of surgery 

spaces (see Section 4.2). 

More generally, if p: N + M is an oriented PL bundle with fiber a 

closed oriented PL manifold of dimension w, then using diagram 4.2.6 in 

place of 4.2.1 yields a commutative ladder of exact sequences: 

~ STOP(M,aoM) 

I * ll (p) 

~ STOP(N,aoN) 

* 

~ Ho(M,aoM;G/TOP) 

lHO(p) 

~ H0(N,30N;G/TOP) 

---+ Lm(n1(o
0

(M)) 

I 
ttr(p) 

~ Ln(n1 (o 0N)) 

where I (p) is the restriction map of 4.2.7 and tr(p) is induced by the 

transfer in the theory of surgery spaces (see Section 4.2). 

81 

We close this chapter by making some comments on some extensions of the 

theory hitherto developed. 

1. In the topological case we have shown the existence of group structure in 

the surgery exact sequence for triangulable manifolds. As remarked by 

Siebenmann ([KS, pp. 280-288]) the theory can be extended to non-triangulable 

topological manifold s-ads X with dim X > s+4 by triangulating the total 

space D of a stable normal disk bundle of X in Euclidean space and then 

giving consideration to the corresponding assembly map for D. We will not, 

however, pursue this in our discussion. 

2. The surgery exact sequence can also be made an exact sequence of groups 

and homomorphisms in the PL case, i.e., if M is a compact oriented PL 
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manifold s-ad m > s+4, then there is an exact sequence of groups: 

(*) 

This is accomplished as follows: The H-space structure on G/TOP arising 

from the homotopy equivalence G/TOP ~ lL8 (pt) 0 can also be described using 

the characteristic variety theorem of Sullivan (see [J] for an exposition of 

the characteristic variety theorem for surgery spaces). The characteristic 

variety theorem for G/PL (see [Su 2]) provides a natural group structure 

in [X,G/PL], for X a finite complex, and hence a H-group structure for 

G/PL. The natural map i: G/PL + G/TOP is then a H-map when G/PL and 

G/TOP are given their characteristic variety H-space structures. Let K 

be an oriented simplicial manifold triangulating M. Then the composite 

~(K,aoK;S(G/PL),*) 

is a H-map where A2a(O,r)# is the map of diagram 5.1.5. Call the compo-

site J. In analogy to diagram 5.1.3 there is a homotopy commutative square: 

~(K,aoK;S(G/PL),*) 

r 
where the vertical maps are homotopy equivalences. Let E(J) be the homo-

topy fiber of J over the basepoint. By Theorem 1.3.11 (4) E(J) is a 

homotopy associative H-space such that ~0 (E(J),*) is a group. Theorem 

1.3.12 implies that E(J) is homotopy equivalent to the homotopy fiber of 

the surgery obstruction map F: NPL (!Kl ,a0 !Kl) + lLm(60 !Kl) over the basepoint 

which by Theorem 2.3.4 is homotopy equivalent to SPL(IK!,a0 !Kj). The proof 

of Theorem 1.3.12 also shows that the homotopy sequence of the homotopy 

fibration E(J) + ~(K,a0K;S(G/PL),*) + lLm+4rC60M) maps isomorphically into 

the homotopy sequence of the homotopy fibration SPLCIKl,a0 1KI) + 

NPL<!Kj,a
0

1KI) + lLmC60 IKi). As in the case of Theorem 5.1.12, this yields 
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the exact sequence of groups (*). 

The method above fails in the smooth case because of the lack of a 

characteristic variety theorem for G/O. Thus there remains the unresolved: 

Question: Is the surgery exact sequence in the smooth case naturally an 

exact sequence of groups and homomorphisms? 



6. INDUCTION THEOREMS 

6.1 Algebraic Preliminaries 

Given a finite group G, let G be the cat~gory whose objects are sub

groups of G and whose morphisms H + K are triples (H,g,K) such that 

g E: G and 
-1 

gHg is a subgroup of K. A morphism I: H + K, 

can be thought of as the composite of the group homomorphism 

I = (H,g,K) 

-1 H + gHg given 

by conjugation by followed by the inclusion homomorphism of -1 into g gHg 

K. Composition in G is defined by (K,g' ,L)(H,g,K) = (H,g'g,L) and the 

identity H + H is (H,e,H) where e is the identity element of G. 

In this chapter Ab will denote the category of abelian groups. Suppose 

M = (m,m'): G + Ab is a pair of functors where Ill is covariant and m' is -
contravariant and m(H) = Ill I (H) for all objects H of G. If I: H + K is 

a morphism of Q_, the notation I* = m(I) * and I m' (I) and M(H) 

m(H) = m'(H) will be used. I* is called induction with respect to I and 

I* is called restriction with respect to I. 

Definition 6.1.1: M: G + Ab as above is a Mackey functor if: 

1. 

2. 

3. 

For any isomorphism I: H + K, I * 
I* is the identity M(H) + M(H). 

For any inner conjugation I = (H,h,H) h E: H * 
I* and I are the 

identity M(H) + M(H). 

The double cos et formula holds: Let L and L' be subgroups of 

the subgroup H of G. Suppose H has a double coset decomposition 

H = u {Lg. L I I i 
1. 

l, ..• ,n} gi E: H. Then: 

\n ( I -1 ( ( I -1 -1 ! ) * Li=l L n (giL gi ),e,L)* L n giL gi ),gi ,L 

Definition 6.1.2: Let M,N: G +Ab be Mackey functors. A morphism of 

84 
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Mackey functors f: M + N consists of a collection of homomorphisms 

f(H): M(H) + N(H) for each object H of G such that for any morphism 

I: H + K in G there are commutative diagrams: 

M(H) f(H)) N(H) M(H) ~ N(H) 

r*J tr* 
M(K) __iJ!.2.., N(K) 

r* i jr* 
M(K) ~ N(K) 

If f: M + N is a morphism of Mackey functors then ker(f), coker(f), 

im(f), coim(f): G +Ab are the Mackey functors defined by: 

(ker(f) )(H) ker(f(H): M(H) + N(H)) 

(coker(f) )(H) coker( II 

(im(f))(H) im( II 

(coim(f) )(H) coim( II M(H)/ker f(H) 

where H is a subgroup of G. Induction and restriction maps are induced by 

the commutative diagrams of Definition 6.1.2. The conditions of Definition 

6.1.1 are trivial to verify. The category of Mackey functors and their mor-

phisms is an abelian category in the obvious manner. 

Definition 6.1.3: Let M: G +Ab be a Mackey functor. M is called a Green 

functor if: 

1. For each object H of G M(H) is a ring with unit and for each 

* morphism I of G I is a ring homomorphism. 

2. Frobenius reciprocity holds: For each morphism I: H + K and 

y E M(H), x E M(K) one has: 

and 

A morphism of Green functors M + M' is a morphism of Mackey functors 

f: M + M' such that for each object H of G f(H) is a ring homomorphism. 
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Definition 6.1.4: Let M: G + Ab be a Green functor and N: G 7 Ab be a 

Mackey functor. N is said to be a left M-module if: 

1. For each object H of G N(H) is a left module over the ring 

M(H). 

2. For each morphism I: H + K in G and v E M(H), x E M(K), 

y £ N(H), z £ N(K) one has: 

* I (x • z) and 

and 

Now suppose M: G + Ab is a Green functor and N and P are left M-

modules. A morphism of Mackey functors f: N + P is a M-module morphism if 

for each object H of G f(H) is a ~(H)-module homomorphism. If f: N 7 P 

is a M-module morphism then ker(f), coker(f), im(f), and coim(f) are M-

modules in the obvious manner. 

The tensor product of an abelian group A and a Mackey functor 

N: G + Ab is the Mackey functor N ® A: G + Ab given on objects by 

(N ® A)(H) N(H) ® A and for a morphism I of G induction and restriction 

* are given by I* ® id and I ® id respectively where id: A+ A is the 

identity. A morphism of Mackey functors f: N + P and a homomorphism of 

abelian groups g: A+ B induces a morphism of Mackey functors f ® g: 

N ® A+ P ® B given by (f ® g)(H) = f(H) ® g. 

If A is a ring with unit and M: G + Ab is a Green functor then M ® A 

is also a Green functor where multiplication in the ring (M ® A)(H) is given 

by (x ® a)(y ® b) = (xy) ® (ab) where x,y £ M(H) and a,b £ A and the 

unit is 1 ® 1. In our application A will be a subring of the rational 

numbers. 

Remark 6.1.5: Suppose M is a Green functor, N is a M-module, A is a 

ring with unit, and B is an A-module. Then N ® B is a (M ® A)-module 
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where the action of (M ® A)(H) on (N ® B)(H) is given by: 

(m ® a) • (n ® b) (m • n) ® (a• b) m £ M(H), n £ N(H), a £ A, b £ B 

Clearly if g: B + C is an A-module homomorphism then id ® g: N 0 B + N ® C 

is a (M ® A)-module morphism. 

Given a finite group G, the trivial Green functor. triv: G +Ab is 

defined as follows: For every object H of G triv(H) = z, the ring of 

integers. If I = (H,g,K) is a morphism of £. the induction map I: z + z 

is given by multiplication by [K: -1 
gHg ] ' the index of gHg -1 in K, and the 

* restriction map I : Z + Z is the identity. The double coset formula follows 

from the fact if L and 1 1 are subgroups of H 

double coset decomposition then [H:L] = Li [L; L n 

defining conditions are also trivially verified. 

and H = lJ. 
1 

( I -1 ] gi L gi ) " The other 

Proposition 6.1.6: Let {H.jj=l, ... ,n} 
J 

be a collection of subgroups of 

the finite group H and let P be a (possibly empty) subset of z (the 

integers) consisting of primes. Suppose for each prime p dividing the order 

of H and not in P, some H. contains a Sylow p-group of H. Then the sum 
J 

l n ( n of the induction maps: I = . 1 H. ,e ,H)*: @. 
1 

triv(H.) ® Z[P] + 
J= J J= J 

triv(H) 0 Z[P] is surjective where Z[P] is the subring of the rationals 

generated by P. 

Proof: Let p be a prime dividing the order of H and not in P. If p 

divides each [H: H.] then no H. can contain a Sylow p-group of H con-
] J 

trary to hypothesis. This implies that the greatest common divisor of the 

numbers [H: H.] is equal to a product of primes in P (or equal to 1 if P 
J 

is empty). Thus there are m. £ Z[P] 
J 

such that 

is the image of I and the result follows. 

l· m.[H: H.] = 1. Hence 1 
J J J 
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We now characterize those Mackey functors which are modules over the 

trivial Green functor: 

Proposition 6.1.7: Let N: G + Ab be a Mackey functor. Then N is a module 

over the trivial Green functor if and only if for each morphism I = (H,g,K) 

* of G the composite I*I : N(K) + N(K) is multiplication by -1 [K: gHg ]. 

Proof: Suppose N is a module over the trivial.Green functor. Then for 

x E N(K), 1 E triv(H), and I= (H,g,K) we have: 

-1 
[K: gHg ]x • 

Conversely, let the action of triv(H) on N(H) be just the natural Z-

module action. The conditions of Definjtion 6.1.4 follow directly from the 

* fact that I*I is multiplication by the index. 

The following remark will be useful in Section 2: 

Remark 6.1.8: Let N be a module over the trivial Green functor triv: G+Ab 

and A a ring with unit. Suppose that N(H) is an A-module for each 

* object H of G and for each morphism I of £, I* and I are A-module 

homomorphisms. Then N is a (triv © A)-module where the action of the ring 

(triv ® A)(H) on N(H) is given by: 

(x © a) • y x • (ay) x E triv(H), a E A, y E N(H) 

Note that x • (ay) = a(x • y) since the action of triv(H) is just the 

natural Z-module action. 

The propositions above together with the induction theorems of Dress in 

[Dr] yield many useful exact sequences for modules over the trivial Green 
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functor. Modules over the trivial Green functor can arise in the following 

manner: 

Proposition 6.1.9: Let f: M + N and g: N + M be morphisms of Mackey 

functors and suppose N is a module over the trivial Green functor. Then M 

is a module over the trivial Green functor if one of the following is true: 

1. f is a monomorphism. 

2. g is an epimorphism. 

Proof: Let I (H,g,K) be a morphism of G. There are commutative 

diagrams: 

0 ~ M(K) ...illi4 N(K) N(K) ~ M(K) ---7 0 

t lv 
0 ~ M(K) ~ N(K) 

1 
I 

v r 
N(K) ~ M(K) ~ 0 

where v * I*I : N(K) + N(K) and W = * I*I : M(K) + M(K). By Proposition 

(i .1. 7 v is multiplication by m = [K: -1 gHg ). 

1. Suppose f is a monomorphism. Then 

f(K)W(x) Vf(K) (x) m • f (K)(x) f(K) (mx) . 

Hence W(x) = mx since f(K) is injective. Proposition 6.1.7 

implies M is a module over the trivial Green functor. 

2. Suppose g is an epimorphism. If x E M(K) then g(K)(y) = x for 

some y since g(y) is surjective. Then 

W(x) Wg(K)(y) g(K)V(y) g(K)(my) mx . 

Proposition 6.1.7 implies that M is a module over the trivial Green 

functor. 

Corollary 6.1.10: Let h: N + P be a morphism of Mackey functors where N 
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is a module over the trivial Green functor. Then ker(h), im(h), and coim(h) 

are modules over the trivial Green functor. 

Proof: The corollary follows from Proposition 6.1.9 and the exact sequences 

of Mackey functors: 

0 + ker(h) + N + coim(h) + 0 and N+im(h)->-0. 

6.2 Induction Theorems for STOP( ) 

In this section Dress induction theory and localization are applied to 

the surgery exact sequence in order to study the group sTOP(x,a 0x) 

n0 (STOP(x,a 0x),*) of homotopy manifold. structures on the manifold s-ad X 

relative to aox. 

We will need to discuss how a generalized cohomology theory gives rise 

to Mackey functors: 

Let (X,Y) be a finite CW pair and G a finite group acting freely 

on the pair (X,Y) on the right. Let g E G and H,K be two subgroups of 

G such that 
-1 

gHg is a subgroup of K. 

to be the composite of the homeomorphism 

Define the map p(H,g,K): X/H + X/K 

X/H + X/gHg-l, xH + (xg-l)(gHg-l) 

followed by the covering projection 
-1 -1 X/gHg +X/K, x(gHg ) +xK. Clearly 

p(H,g,K) 

* 
is a covering projection of finite index. If C is a spectrum and 

H ( ;E_) is the corresponding cohomology theory, define functors 

as follows: 

M.(K) = Hj(X/K,Y/K;C) 
J -

for an object K of G 

M.: G +Ab 
J -

and if I= (H,g,K) is a morphism of G define homomorphisms I*: M(H) + 

M(K) and I*: M(K) + M(H) by: 

6.2.1 and * I trj(p(H,g,K)) 
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where trj is the cohomology transfer of [Rsh] or [A], defined for the 

covering p(H,g,K) of finite index . 

Proposition 6.2.2: For .:::_ 0, M.: G +Ab is a Mackey functor. 
J 

Proof: The double coset formula for the transfer was proved by Roush 

([Rsh, p. 89)). The other conditions of Definition 6.1.1 are easily verified. 

Now suppose Xm is a compact oriented manifold s-ad such that m > s+4 

and for every subset c of {l, ... ,s-2} acx is connected and non-empty. 

a
0

x is allowed to be empty or disconnected. Let G be a finite group of 

orientation preserving homeomorphisms of the s-ad X which act freely on 

X. We now define functors sj' hj' ~j: G +Ab. for j > O. 

Definition of s.: G +Ab: 
J 

For a subgroup H of G define sj(H) = nj(STOP(X/H,a 0x/H),*). Let 

I (H,g,K) be a morphism of G. The map p(H,g,K) described previously is 

.a covering of finite index. The induction map of 4.1.12 then defines an 

induction homomorphism I*: s.(H) + s.(K) 
J J 

and the restriction map of 4.2.4 

* defines a restriction homomorphism I : s.(K) + s.(H). 
J J 

Definition of h.: G +Ab: 
J 

Let G/TOP denote the spectrum :n..( pt) ( 1, .•• ,oo) with zero-th space 

:n..
8

(pt)
0 
~G/TOP (see Chapter 5). Then by Proposition 6.2.2 the functors 

h: G + Ab given by 

h. (H) 
J 

with induction and restriction defined by 6.2.l are Mackey functors. Note 

that if aox is non-empty or j > 0 then 

h. (H) 
J 
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Definition of L.: G +Ab: 
-J 

For a subgroup H of G let L.(H) 
-J 

restriction are respectively defined by: 

r* = n.(lL (p(H,g,K))) 
J m 

and 

n.(lL X/H),~). Then induction and 
J m 

* r = n.(tr(p(H,g,K))) 
J 

where tr(p(H,g,K)) is the transfer map defined for lL-spaces in Section4.2. 

Recall that n.(lL ( 00S/H),~) coincides with the algebraically defined J m ~ . 

L-group L .(n1 (o
0

X/H)) 
m+J 

of the group lattice and the geometri-

cally defined induction and restriction maps coincide with the algebraically 

defined induction and restriction maps. By [Dr, p. 302] the functors 

j > 0 are Mackey functors. 

For any subgroup H of G the surgery exact sequence of 5.1.12 

becomes: 

6.2.3 
A. A0 

~ s .(H) ~ h.(H) --4 L.(H) ___.,. •.. ~ so(H) ~ ho(H) ~ !::r,(H) 
J J -J -v 

Since by 5.1.20 and 5.1.21 the surgery exact sequence is natural with 

respect to induction and restriction, we obtain for a morphism r = (H,g,K) 

of G two commutative ladders: 

A. 
--+ s .(H) ~ h.(H) ~ L.(H) 

J J -J 

lr* tr* lr* A. 

--+ ... ~ s
0

(H) ~ h
0

(H) ___,_. ~(H) 

l l l 
6 .2.4 

~ s.(K) ~ h.(K) 4 L.(K) 
J J -J 

A. 
6.2.5 ~ s.(H) - h.(H) __.4 L.(H) 

J J -J 

Tr* jr* jr* 
A. 

---+ ... ~ s
0

(H) --:) h
0

(H) --+ ~(H) 

i T T 
~ s.(K) ~ h.(K) 4 L.(K) 

J J -J 

Remark: Although we have not proved that the functors s. 
J 

are Mackey 

functors, all that will be needed is that they possess induction and restric-

tion homomorphisms compatible with those of h. 
J 

strated. 

and L., as already demon
-J 
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Diagrams 6.2.4 and 6.2.S imply that the surgery obstruction map 

A.: h. -+- L. 
J J -J 

j ~ 0 is a morphism of Mackey functors. Hence U. 
J 

coker (A. 1) and V. = ker (A.) j > 0 are also Mackey functors and there 
J+ J J 

are short exact sequences: 

6.2.6 0 -+- U. (H) -+- s. (H) -+- V. (H) -+- 0 
J J J 

for each subgroup H of G; moreover, 6.2.4 and 6.2.S ~mply that the se-

quences of 6.2.6 are natural with respect to induction and restriction for 

morphisms of G. 

Let C be a collection of subgroups of G and M: G -+- Ab a Mackey 

functor. Suppose for each pair H,H' in C we are given a double coset 

decomposition G = l)i HgiH'. The following notation will be used: 

M(•) M(G) 

M(C) @Ht:C M(H) 

M(C x C) lil H' M(H n(gH'g-l)) 
H, ,g 

where for fixed (H ,H') in C x C, 

There are homomorphisms: 

I* : M(C)-+- M(•) 

I* - J*: M(C x C) -+- M(C) 

defined by I* lH (H,e,G)* and 

and 

and 

* I 

* I 

g runs over the double coset 

representatives of H,H'. 

* I : M(•)-+- M(C) 

* J M(C)-+-M(CxC) 

\ -1 -1 -1 LH,H',g (H n(gH'g ),e,H)* - (H n(gH'g ),g ,H')* 

nH,H',g (H n (gH'g-1),e,H)* - (H n (gH'g-1),g-l,H')* 

The notational convention above can be reformulated more conceptually by 

defining Mackey functors on the category of finite G-sets as done by Dress 

in [Dr]. These definitions also make sense for the functors s. j ~ O. 
J 
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The following theorem of Dress ([Dr, Proposition 1.2, p. 305]) will be 

important to our discussion: 

Theorem 6.2.7 (the Dress lemma): Let M: G +Ab be a Green functor and 

N: G + Ab a M-module. Suppose C is a collection of subgroups of G and 

I*: M(C) + M(•) is surjective. Then there are exact sequences: 

1. 

2. 

* 
0 --- N(•) _..;I;;__.,. N(C) 

o---N(•) 
I* 

4---- N(C) 

* * I -J N(C x C) 

N(CxC) . 

Given a Mackey functor N: G + Ab and a collection C of subgroups of 

G define llm N(C) and ljm N(C) by: 

* * lim N(C) = ker(I - J ) and lim N(C) 
+ 

The condition that * I induce an isomorphism N(G) + lim N(C) 
+ 

or that 

induces an isomorphism ljm N(C) + N(G) is equivalent respectively to the 

exactness of sequence 1 or of sequence 2 of Theorem 6.2.7. 

We now investigate the induction properties of the Mackey functors u. 
J 

and V. j ~ 0 of 6.2.6. 
J 

The following lemma is implicit in Section 1 of [Ml]: 

Lemma 6.2.8: Let P be a set of primes and C a collection of subgroups of 

the finite group G such that for each prime p not in P and dividing the 

order of G some subgroup of G in C contains a Sylow p-group of G. 

Let M.: G +Ab j ~ 0 be the Mackey functors associated to any cohomology 
J 

H*c theory ;~) for a given free action of G on a finite CW pair (X,Y) 

(see Proposition 6.2.2). Then there are exact sequences: 

* * * 
0 M. ( •) Ill Z[P] I M. (C) Ill Z[P] I -J M.(cxc) Ill Z[P] 

J J J 

Ill Z[P] 
I* 

M. (C) Ill Z[P] 
I*-J* 

M.(CxC)®Z[P] 0 M. ( •) 
J J J 
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Proof: Let w.: G +Ab be the Mackey functor associated to stable cohomo
J 

topy theory. Madsen ([Ml, Section 1)) shows that w
0 

is a Green functor, 

where multiplication is given by the cup product, and the M. 
J 

are w -0 

modules. Let H be a subgroup of G, t = (H,e,G), and n = [G:H]. By 

[Ml, p. 312), the map is an isomor-

phism. It easily follows from this fact and the hypotheses on C that the 

95 

sum of the induction maps w
0

(C) © Z[P] + w
0

(•) © Z[P] is surjective. Noting 

that Mj © Z[P] is a (()JO © Z[P] )-module, the conclusion of the lelllllla is 

then a consequence of the Dress lelllllla (Theorem 6.2.7). 

Proposition 6.2.9: Let A be a subring of the rational numbers and C a 

collection of subgroups of G. Suppose one of the following is true: 

1. c class of cyclic subgroups of G, A= Q (the rationals). 

2. C m class of 2-hyperelementary subgroups of G 

A= z( 2 ) = Z[l/3, 1/5, ••• ). 

3. c class of p-elementary subgroups of G, p odd, A Z[l/2]. 

4. C ~union of the classes in 2 and 3 above. A z. 

Then in cases 1-4, there are exact sequences, j ~ 0: 

* * * 
) V.(•) ©A 

I 
V. (C) ©A I -J '7 V . ( C x C) 0 ©A 

J J J 

0 

Equivalently 

an isomorphism 

* I 

u. (.) I* 
U. (C) ©A 

J J 

induces an isomorphism 

lim U. ( C) + U. ( G) • 
+ J J 

I*-J* 
U.(CxC)©A ©A 

J 

V.(G) + lim V.(C) 
J + J 

and 

Proof: Recall that V. = ker(A.: h. + L.) and that U. = 
J J J -J J 

induces 

coker(A. 1 : h. 1 + L. 1 ). Since a subring of the rationals is flat as a 
J+ J+ -J+ 

Z-module, V. ©A= (ker(A.)) ©A= ker(A. ©A) and U. ©A= coker(A. 1 ©A). 
J J J J J+ 

Note that for a subgroup H of G there is a short exact sequence, 
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sequence of the fibration X + X/H. The equivariant Witt ring of Dress, 

[Dr], define a Green functor W: G +Ab. By Theorem 2.3 of [FHs] the functors 

L. j > 0 are W-modules. Theorem 2, p. 295 of [Dr] is precisely the state
-J 

ment that the sum of the induction maps I*: W(C) Ill A+ W(•) Ill A is sur-

jective in the cases 1-4. Hence by the Dress lemma (Theorem 6.2.7) there are 

exact sequences in the cases 1-4: 

* * * 
6.2.10 0 L. ( •) Ill A I ')L.(C)IJIA ·r -J')'L.(CxC) Ill A 

-J -J -J 

and 

0 (; L. ( •) 
-J 

Ill A< 
I* 

L. (C) 
-J 

Ill A 
I*-J* 

L.(CxC) 
-J 

Ill A 

For an early application of induction theory to L-groups localized away from 

2 see [Th]. 

Lemma 6.2.8 yields exact sequences as in 6.2.10 above with h in place 

of L in the cases 1-4. 

Consider the commutative diagram: 

0 0 0 

l 1 I 
A. Ill A -.It 

0 ~ V.(•) Ill A ~ h/•) Ill A J ) L.(•) Ill A 
J -J 

lr* t l 
0 ~ V. (C) Ill A ~ h.(C) Ill A ~ L. (C) Ill A 

J J -J l * * I. I -J 
'JI 

0 ~ V.(CxC) lllA ~ H.(CxC) lllA 
J J 

Then the rows and the second and third columns are exact. A straight-

forward diagram chase shows that the first column must be exact. There is 

also a commutative diagram: 



h. 1(C) 8 A ~ 
]+ 

t 
h. 1(•) 8 A ~ 

J+ 

l 
0 
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L. 
1
(•) 8 A --..:.,. 

-J+ 

l 
0 

l 
0 

The rows and the first and second columns are exact. Another diagram 

chase reveals that the third column must be exact. Hence Proposition 6.2.9 

has been proved. 

The induction properties of the functors s . 
. J j ~ 0 will now be exam-

ined. Recall that s 0(H) = sTOP(X/H,a 0X/H). We deduce the following 

theorems: 

Theorem 6.2.11: Let C be the class of cyclic subgroups of G. Then for 

j > 0: 

97 

1. The sum of induction maps QJH C s.(H) 8 Q->- s.(G) 8 Q 
£ J J 

is surjective. 

2. The product of the restriction maps sj(G) s Q->- nH£C sj(H) 8 Q is 

injective. 

Theorem 6.2.12: Let C be the class of 2-hyperelementary subgroups of G. 

Then for j _:: 0: 

1. The sum of the induction maps QJH£C sj(H) 8 Z(Z) ->- sj(G) 0 z( 2) is 

surjective. 

2. The product of the restriction maps sj(G) 8 z( 2) ->- TIH£C sj(H) 8 z( 2) 

is injective. 

* Proof of Theorem 6.2.11: For any spectrum !• H ( ;!) 8 Q js a direct sum 

of ordinary cohomology theories. It is a well-known property of ordinary 
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cohomology theory that if p: X + X is a covering of finite index of finite 

connected CW complexes then restriction with respect to p followed by 

induction with respect to p is multiplication by the index [n
1

(X): 

Hence by Proposition 6.1.7 h. ® Q: G +Ab is a module over the 

trivial Green functor, triv: G + Ab. 

J -

Corollary 6.1.10 implies that v. ® Q = 
J 

ker(A. ® Q: h. ® 
J J 

Q + L. ® Q) is also a module over the trivial Green functor. 
-J 

By Remark 6 .1.8, V. ® Q is a (triv ® Q)-module. Proposition 6.1.6 together 
J 

with the Dress lemma (Theorem 6.2.7) imply that the sum of the induction maps 

l*: V.(C) ® Q + V.(•) ® Q is surjective where C is the class of cyclic 
J J 

subgroups of G. 

By Proposition 6.2.9 (1) the sum of the induction maps l*: Uj(C) ® Q + 

U.(•) ® Q is surjective. From the exact sequences of 6.2.6 tensored with 
J 

Q (which remain exact since a subring of Q is flat as a Z-module) and 

from the fact that these sequences are natural with respect to induction and 

restriction one obtains a commutative diagram: 

0 ~ U.(C) ® Q ~ s.(C) ® Q ~ V.(C) ®Q __,,. 0 
J J J 

ll* 11* 11* 

0 ~ U.(•) ®Q ~ s. (.) ® Q ~ V.(•) ® Q ~o 
J J J 

where the rows are exact and the two outer vertical maps are surjective. A 

diagram chase shows that ® Q + s.(•) ® Q must be surjective, i.e., 
J 

the sum of the induction maps @He:C s.(H) ® Q + s.(G) ® Q is surjective. 
J J 

This proves the first part of Theorem 6.2.11. 

* Claim: The product of the restriction maps l : U.(•) ® Q + U.(C) ® Q is 
J J 

injective where C is the class of cyclic subgroups of G. 

Let N.: G +Ab be the Mackey functor N. 
J J 

are short exact sequences of Mackey functors: 

0 ~ N. l 
J+ 

~i+l ~ --"> u. 
J 

coim(A.: h. + 1.). There 
J J -J 

where A. 
1 -J+ 

by A. l' J+ 

is induced 
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Since h. Ill Q is a module over the trivial Green functor triv: .£+Ab, 
J 

N. Ill Q = coim(A. Ill Q: h. Ill Q + L. Ill Q) is also a module over the 
J J J -J 

trivial Green functor by Corollary 6.1.10. By Remark 6.1.8, N. s Q is a 
J 

(triv Ill Q)-module. Proposition 6.1.6 and the Dress lemma (Theorem 6.2.7) 

yield an exact sequence: 

* 
0 -7 N.(•) Ill Q ~ N.(C) Ill Q ~ N.(CxC) Ill Q 

J J J 

By 6.2.10 there is also an exact sequence: 

* 
0 ~ L.(•) Ill Q ~ L.(C) Ill Q ~ L.(CxC) Ill Q 

-J -3 -J 

Consider the commutative diagram: 

0 0. 

l l 
N.l(•)®Q ~ L. l(•) Ill Q ___.,, U.(•) Ill Q 

J+ -J+ 

J Jr* 1 l 
0 ~ N. 1(C) Ill Q ~ L. l (C) Ill Q ~ U. (C) Ill Q 

]+ l -J+ J 

l 
0 -7N. 1(CxC)lllQ-"7L. 1(CxC)l!IQ 

]+ -J+ 

The rows and the first two columns are exact. A diagram chase (see Lemma 

* 

99 

6.2.15) shows the map I in the third column must be injective, proving the 

claim. 

By Proposition 6.2.9 (1), * I : V.(•) Ill Q + V.(C) Ill Q is injective. The 
J J 

exact sequences of 6.2.6 yield a commutative diagram: 

0 
'""""'"' 

U.(•) Ill Q __., s.(•) Ill Q ~ V.(•)sQ ~ 0 

J Jr* J lr* J 

lr* 
0 ___,, U. (C) Ill Q 

J 
~ s. (C) 

J 
Ill Q ~ V. (C) 

J 
Ill Q ___.,, 0 

where the rows are exact and the two outer vertical maps are injections. 
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* Another diagram chase shows that I : s.(•) 0 Q + s.(C) 0 Q must be injec-
J J 

tive, i.e., the product of the restriction maps sj(G) ® Q + TIHEC sj(H) 0 Q 

is injective. Hence the second part of Theorem 6.2.11 has been proven. 

Proof of Theorem 6.2.12: If we could show that hj ® z( 2) was a module over 

the trivial Green functor then the proof of Theorem 6.2.11, with all modules 

tensored with z( 2) in place of Q and Proposit~on 6.2.9 (2) substituted 

for Proposition 6.2.9 (1), would provide a proof of Theorem 6.2.12. 

Recall that hj(H) = Ho((X/H,aoX/H) x (~j.a~j);G/TOP) where G/TOP is 

the spectrum lL( pt) ( 1,. • .,oo) with zero-th space JI..
8 

(pt) 
0 
~ G/TOP. The work 

of Taylor and Williams (see [TW]) shows that the spectrum G/TOP localized 

at the prime 2 is a product of Eilenberg-MacLane spectra. Hence 

* H ( ;G/TOP) 0 z( 2) is a sum of ordinary cohomology theories. It follows 

that is a module over the trivial Green functor. 

Remark: In contrast, suppose G/TOP is given the infinite loop space 

structure arising from the Whitney sum, denoted by (G/TOP)@. It is known 

that the spectrum (G/TOP)@ localized at 2 is not a product of Eilenberg-

MacLane spectra (see [M2]). 

In order to obtain an analog of Theorem 6.2.12 for odd primes, our method 

will require the additional hypothesis that the fundamental group of the 

s-ad X is finite. 

Theorem 6.2.13: Suppose the fundamental group of X is finite and let C 

be the class of p-elementary subgroups of G, p odd. Then for j .:_ 0: 

1. The sum of the induction maps @H C s.(H) ®Z[l/2] + s.(G) 0Z[l/2] 
E J J 

is surjective. 
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2. The product of the restriction maps s.(G) e Z[l/2] + 
J 

TIHEC sj(H) e Z[l/2] is injective. 

Proof: It is known that the torsion subgroup of the L-group of a finite 

group consists only of 2-torsion (see [Wa2)), Hence the map id e j: 

L.(H) ® Z[l/2] + L.(H) 8 Q is injective for each H where j: Z[l/2] + Q 
-J -J 

is the inclusion. Consider the following commutative diagram of morphisms 

of Mackey functors: 

Z[l/2] 

h. 8 Q 
J 

A. 8 Z[l/2] 
J Z[l/2] 

A. 8 Q __ J ____ .., L. ® Q 
-J 

where b = id 8 j and c = id 8 j, id: h ..... h:' 
J J 

id: L. + L. are the 
-J -J 

101 

respective identities. It follows that there is an exact sequence of Mackey 

functors: 

0 + ker(b) + ker((A. ® Q)b) ~ h. s Q • 
J J 

Let R be the.Mackey functor R = im(b: ker((A. 8 Q)b) + h. 8 Q). Note 
J J 

V. s Z[l/2] = ker(A. 8 Z[l/2]) 
J J 

= ker((A. s Q)b) since c is a monomorphism. 
J 

The exact sequence above becomes: 

6 .2.14 0 + ker(b) + v. s Z[l/2] + R + 0 • 
J 

Recall that h. ® Q is a module over the trivial Green functor (see the proof 
J 

of Theorem 6.2.11). By Corollary 6.1.10 R is also a module over the trivial 

Green functor. Remark 6.1.8 implies that R is a (triv 8 Z[l/2])-module. 

Proposition 6.1.6 and the Dress lemma (Theorem 6.2.7) imply that the sum of 

the induction maps I*: R(C) + R(•) is surjective where C is the class of 

p-elementary subgroups of G, p odd. 

Recall from Lemma 6.2.8 and its proof that h. 
J 

is a module over a Green 

functor w: G + Ab (arising from stable cohomotopy theory) which has the 
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property that I*: w(C) ® Z[l/2] + w(•) ® Z[l/2] is surjective. By Remark 

6.1.5 b =id® j: h. ® Z[l/2] + h. ® Q is a (w ® Z[l/2])-module morphism. 
J J 

Hence ker(b) is a (w ® Z[l/2])-module and thus the Dress lemma (Theorem 

6.2.7) gives that I*: (ker(b))(C) + (ker(b))(•) is surjective. The exact 

sequence 6.2.14 yields a commutative diagram: 

0 ~ (ker(b))(C) 

0 ~ (ker(b))(•) 

~ V. (C) ® Z[l/2] 
J 

~ V.(•) ® Z[l/2] 
J 

~ R(C) ~ 0 

where the rows are exact and the two outer vertical maps have been shown to 

be surjective. The usual diagram chase shows that I*: V.(C) ® Z[l/2] + 
J 

V.(•) ® Z[l/2] is surjective. 
J 

By Proposition 6.2.9 (3) the sum of the induction maps 

I*: U.(C) ® Z[l/2] + U.(•) ® Z[l/2] is surjective. Then the exact sequences 
J J 

of 6.2.6 give a commutative diagram: 

0 ~ u.(C) ® Z[l/2] ~ s.(C) ® Z[l/2] ~ v.(C) ® Z[l/2] ~ 0 
J J J 

l I* lr* lr* 

0 ~U.(•) ® Z[l/2] ~ s.(•) ® Z[l/2] ~ V.(•) ® Z[l/2] ~ 0 
J J J 

where the rows are exact and the two outer vertical maps are surjective. 

Hence I*: s.(C) ® Z[l/2] + s.(•) ® Z[l/2] 
J J 

is surjective, proving the first 

part of Theorem 6.2.13. 

In order to prove the second part of Theorem 6.2.13 we will need the 

following homological lemma: 

Lemma 6.2.15: Suppose we are given a commutative diagram of morphisms in a 

small abelian category: 
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0 

l 
A ~B ~c ~o 

lp 
lq 

-It lr 
' ~c· 0 ~ A' ~B' 

lp' lq' 

A" ~B" 

such that the rows and columns are exact. Then there is a monomorphism 

ker(r) -+ ker(a") (and hence a monomorphism ker(r) -+ A"). 

Proof: By the full embedding theorem for small abelian categories it can be 

assumed that the diagram above consists of homomorphisms of modules over a 

ring. 

Let x £ ker(r). Since b is surjective b(y) = x for some y £ B. 

b'q(y) = rb(y) = 0. Thus q(y) = a'(z) for some z £A'. a"p'(z) 

q'a'(z) = q'q(y) 0. Hence p'(z) £ ker(a"). Define R: ker(r)-+ ker(a") 

by R(x) = p'(z), x and z as above. To see that R is well-defined 

suppose b(y') = x and q(y') = a'(z'). Since b(y-y') = O, y-y' = a(u) 

for some u £A. Then a'(z-z') = q(y-y') = qa(u) = a'p(u). Hence 

z - z' p(u) since a' is injective. p'p(u) = 0 implies p I (z) p(z'). 

R is clearly a homomorphism. If R(x) = p'(z) 0 then z = p(s) 

for some s £ A. qa(s) a' (s) a' (z) = q(y). Thus a(s) = y because 

is injective. x = b(y) ba(s) 0 and hence R is injective. 

The lemma is used to prove the following: 

Claim: The product of the restriction maps * I : U.(•) 0 Z[l/2]-+ 
J 

U.(C) 0 Z[l/2] is injective. 
J 

Proof of the Claim: Let N.: G-+ Ab be the Mackey functor 
J 

q 
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N. = coim(A. : h. ->- L.) • 
J J J -J 

There is a short exact sequence of Mackey functors: 

::i:.\
A. 

+ 0 ----+ N. 1 L. 1 ~ U. ~ 0 where 
J+ -J+ J A. 1 -J+ 

is induced by 

A. 
1

: h. 
1

->- L. 
1

• Consider the following commutative diagram of morphisms 
J+ J+ -J+ 

of Mackey functors: 
0 

l 
0 ~N. l J+ 

s Z[l/2] -7 L. 1 -J+ 
s Z[l/2] ~u. 

. J 
s Z[l/2] ~ 0 

l l l f =ids j 

0 ~Nj+l s Q __,,. L. 1 -J+ 
s Q ~u. 

J 
s Q ~o 

1 l 
N. 1 s Q/(Z[l/2]) __,,. L. 1 s Q/(Z[l/2]) 

J+ -J+ 

l l 
0 0. 

where the vertical columns come from tensoring with the exact sequence 

O->- Z[l/2] ~ Q->- Q/(Z[l/2]) -+- O. The first and second rows are exact because 

Z[l/2] and Q are flat Z-modules. The first and second columns are exact 

because the tensor product is right exact and because id sj: L. ls Z[l/2]-+
-J+ 

L. 
1 

s Q is a monomorphism (see the proof of the first part of Theorem 
-J+ 

6.2.13). Applying Lemma 6.2.15 to the above diagram we obtain a monomor-

phism: ker(f)->- N. 1 s Q/(Z[l/2]) where 
J+ 

f = id s j. Recall from the proof 

of Theorem 6.2.11 that N. l s Q J+ 
is a module over the trivial Green functor. 

Since Nj+l s Q ->- Nj+l ~ Q/(Z[l/2]) is an epimorphism, Proposition 6.1.9 (2) 

implies that N. 1 s Q/(Z[l/2]) 
J+ 

is also a module over the trivial Green 

functor. Proposition 6.1.9 (1) then gives that ker(f) is module over the 

trivial Green functor, triv: G->- Ab. By Remark 6.1.8, ker(f) is a 

(triv s Z[l/2])-module. From Proposition 6.1.7 and the Dress lemma (Theorem 

6.2.7) we conclude that the product of the restrictions maps 

* I : (ker(f))(•) ->- (ker(f))(C) is injective. 

From 6.2.10 there is an exact sequence: 
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* * * I -J 
O __,, L.(•) ®Z[l/2] ~ L.(C) ®Z[l/2] ~ L.(C xC) ®Z[l/2] __,, 0 

~ ~ ~ 

Tensoring the above sequence with Q and identifying Z[l/2] ® Q with Q 

via the isomorphism Z[l/2] ® Q + Q a® b + ab, we obtain an exact sequence: 

* 0 ~ L. ( •) ® Q ~ L. (C) ® Q __,, L. (C x C) ® Q __,, 0 
-J -J -J 

N. ® Q, a module over the trivial Green functor, is a (triv ® Z[l/2))-module 
J 

by Remark 6.1.8. Proposition 6.6.6 and the Dress lennna' combine to give an 

exact sequence: 

* 
0 ~ N. ( •) ® Q ~ N. (C) ® .Q ~ N. (C x C) ® Q ~ 0 

J J J 

Then arguing as in the proof of the second part of Theorem 6.2.11 we obtain 

that I*: U.(•) ® Q + lJ.(C) ® Q jg injective •. 
J J 

The exact sequence of Mackey functors: 0 + ker(f) + U. ®Z[l/2] + U. ®Q 
J J 

yields a connnutative diagram: 

0 ~ (ker(f))(•) ~ U.(•) ® Z[l/2] ~ U.(•) ® Q 
J J tr* lI* lI* 

0 ~ (ker(f))(C)--? U.(C) ® Z[l/2]---+ U.(C) ® Q 
J J 

The rows are exact and the two outer vertical maps have been shown to be 

injective. A diagram chase reveals * I : U.(•) ® Z[l/2] + U.(C) ® Z[l/21 
J J 

is 

injective, proving the claim. 

By Proposition 6.2.9 (3) the product of the restriction maps 

* I : V(•) ® Z[l/2] + V.(C) ® Z[l/2] is injective. The exact sequence of 6.2.6 
J 

yields a connnutative diagram: 

o __.,u.(.) ® Z[l/2] -7 s.(.) 
J J 

lI* 

® Z[l/2] __,, V.(.) ® Z[l/2] 
J 

lI* lI* 

~o 

0 --"t U. (C) ® Z[l/2] ---=J s. (C) ® Z[l/2] _,,,, V. (C) ® Z[l/2] ~ 0 
J J J 
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where the rows are exact and, as demonstrated, the two outer vertical maps 

* are injective. The usual diagram chase shows that I: s.(•) 0 Z[l/2] + 
J 

s.(C) 0 Z[l/2] is injective which is the conclusion of the second part of 
J 

Theorem 6.2.13. 

Combining Theorems 6.2.12 and 6.2.13 we have 

Corollary 6.2.16: Suppose the fundamental group of the manifold s-ad X is 

finite. Let C be the union of the class of p-elementary subgroups of G, 

p odd, and the 2-hyperelementary subgroups of G. Then for j ~ 0: 

1. The sum of the induction maps @H£C 

The product of the restriction maps 

s.(H) + s.(G) is surjective. 
J J 

2. sj(G) + TIH£Cs/H) is injective. 

A simple application of the corollary is: 

Corollary 6.2.17: Let f: M + X be a simple homotopy equivalence of compact 

oriented manifold pairs such that af is a homeomorphism. Suppose X is 

connected, m;:: 6, and the fundamental group of X is finite. Then f is 

homotopic to a homeomorphism relative to ax if and only if for every 

covering X of X with TI 1 (X) p-elementary, p odd, or 2-hyperelementary, 

the lifting i: M + x of f is homotopic to a homeomorphism relative ax. 

Proof; The "only if" portion of the corollary is trivial. Let X be the 

universal cover of X and G = Til (X). Then s0(G) = sTOP(X/G,X/G) 

sTOP(X,aX). Noting that f: M + X is homotopic to a homeomorphism relative 

to ax if and only if f represents the zero element in the group 

sTOP(x,ax), the result follows from Corollary 6.2.16 (2). 

The corollary above generalizes to s-ads in the obvious manner. 
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