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Abstract
Nicas, A.J., Classifying pairs of lagrangians in a hermitian vector space, Topology and its
Applications 42 (1991) 71-81.

A new elementary geometric proof, exploiting the positive curvature of complex projective space,
of a basic lemma in the theory of lagrangian pairs in hermitian vector space is presented.
Applications to the classification of such pairs and to symplectic vector bundles possessing a pair
of lagrangian subbundles are given.
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Introduction

In this paper we study pairs of lagrangian subspaces in a finite dimensional
hermitian vector space.

Given a pair (L,, L,) of lagrangian subspaces in hermitian vector space (V, (-, -))
together with orthonormal bases B, ={e,,..., e,} and B,={f,,..., f,} for L, and
L, respectively, a basic invariant of the pair (L,, L,) is its Souriau matrix, the n X n
complex matrix AA' where A; =(f;, e;) and A'is the transpose of A. The conjugacy
class of AA'is independent of the choice of orthonormal bases and so we define
the characteristic polynomial of the pair (L,, L,) to be the characteristic polynomial
of this matrix.

While the unitary group of V permutes the set of lagrangian subspaces transitively,
this action is not doubly transitive.

Theorem 1.9 asserts that pairs of lagrangian subspaces in (V, (-, -)) are determined
up to unitary equivalence by their characteristic polynomials. As a consequence a
homogeneous space description of the set of all pairs of lagrangian subspaces with
a fixed characteristic polynomial is obtained in Theorem 1.11.
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The starting point for this classification is Theorem 1.4, the “diagonalization
lemma”, which asserts that for a given pair of lagrangian subspaces (L,, L,) there
exists an orthonormal basis {e;,...,e,} for L, and unit complex numbers «;,
i=1,...,nsuchthat {ae,..., a,e,} is an orthonormal basis for L,. Note that the
Souriau matrix is diagonal with respect to these bases. We offer a new elementary
geometric proof of this basic lemma which exploits the positive curvature of complex
projective space. Some immediate applications of Theorem 1.4 to symplectic
geometry are also given in Section 1 (see Corollaries 1.5,1.7, 1.8 and Proposition 1.6).

In Section 2 we consider a pair of lagrangian subspaces (L,, L,) in a symplectic
vector space (E, w). Theorem 2.5 provides a homogeneous space description of the
set CH(E; L,, L,) of all positive compatible complex structures J on (E, w) such
that the characteristic polynomial of the pair (L,, L,) with respect to the hermitian
structure in E given by g(x, y) = w(Jx, y)+ww(x, y) is a fixed complex polynomial
P. Applications of these results to symplectic vector bundles are given in Section 3.

The theory expounded here grew from the need to study intersections of real
subvarieties in a singular complex projective variety. I am grateful to C. Frohman
for useful discussions.

1. The geometry lagrangian pairs

A hermitian vector space is a triple (V, J, (-, -)) where V is a real vector space, J
is a complex structure on V, and (-, -) is a hermitian form on the complex vector
space (V, J). In this section it will be convenient to omit J from the notation since
we consider a fixed complex structure on the underlying vector space. A real vector
subspace L of V is said to be totally real if (u, v) € R for all u, ve L. Lis a lagrangian
subspace if it is totally real and maximal with respect to this property. In the case
V is finite dimensional, which will be assumed henceforth, the dimension of a
lagrangian subspace is one-half the real dimension of V.

The real part of (-, -), denoted (-, -), is a Euclidean inner product on V. Evidently,
if Lc V is a lagrangian subspace, then any real basis for L which is orthonormal
with respect to (- , -), is also a complex basis for V which is orthonormal with respect
to the hermitian inner product (-, -).

Let (L,, L,) be a pair of lagrangian subspaces of (V,(-,-)) and suppose B,=
{e,...,e,} and B,={fi,..., f,} are orthonormal bases for L, and L, respectively.
Let A be the nx n complex matrix A; =(f;, ¢;). Clearly A is a unitary matrix as it
is the matrix with respect to B, of the unitary transformation T: V-~ V defined by
Te; =f.

Definition 1.1 (see[2]). The Souriau matrix of (L,, L,) with respect to (B, B,) is
AA"' where A' is the transpose of A.

Note that AA" is both unitary and symmetric. Now suppose that Bj ={e}, ..., e,}
and B,={f!,...,f.} are other orthonormal bases for L, and L, respectively and
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A’(A")! the corresponding Souriau matrix where A'=(f}, e}). Let P, Q be the nxn
matrices P; = (e;, e), Q; =(fi, f))- Since L, and L, are lagrangian subspaces P and
Q are real orthogonal matrices; furthermore, A= PA’Q. Hence

AA'= (PA'Q)(PA'Q)'= PA'(A")'P".

Thus AA' is conjugate to A'(A’)" via an orthogonal matrix. It follows that the
characteristic polynomial of a Souriau matrix for (L,, L,) is independent of the
choice of orthonormal bases ( B;, B,). Accordingly, we make the following definition.

Definition 1.2. The characteristic polynomial of the pair (L,, L,), denoted o(L,, L,),
is the characteristic polynomial of a Souriau matrix for (L,, L,).

In particular o(L,, L,) is a monic complex polynomial of degree equal to the
complex dimension of V; furthermore, since a Souriau matrix for (L,, L,) is unitary
its roots must lie on the unit circle in C.

The multiplicative group of nonzero complex numbers acts on the nonzero vectors
in V by scalar multiplication. The complex projective space, CP(V), is the quotient
of this action. It is a familiar example of a compact complex manifold of complex
dimension dimc V —1. Similarly, if W is a real vector space, the real projective
space RP(W) is obtained as the quotient of the action of the multiplicative group
of nonzero real numbers on the nonzero vectors of W; it is a compact manifold of
dimension dim W —1. Points of CP(V) will be written as [v] where ve V while
points of RP(W) will be written as [w]z where we W. If W< V is a real vector
subspace there is a natural map RP(W) - CP(V) given by [w]g>[w]. When W< V
is totally real this map is an embedding: If [w,]=[w,] where w,, w,€ W, then
Aw, = w, for some nonzero complex number A. Since W is totally real (w,, w))=
Aw,, w)eR and consequently A is real and so [w,]g=[w,]g. In the case W is
totally real we will identify RP(W) with its image in CP(V). When L= V is a
lagrangian subspace RP(L) < CP(V) will be called a projective lagrangian.

Lemma 1.3. Any two projective lagrangians in CP( V) must have nonempty intersection.

Proof. Endow CP(V) with the Fubini-Study metric. For any lagrangian subspace
Lc V the projective lagrangian RP(L) is a totally geodesic submanifold of CP(V).
Indeed, RP(L) is the fixed point set of the isometry of CP(V) which is induced by
complex conjugation with respect to L, i.e., the R-linear map o: V- V uniquely
defined by o (w, +Jw,) = w,—Jw, for w,, w,€ L.

It is well known that CP(V) has positive sectional curvature. By a theorem of
Frankel [1, Theorem 1, p. 169] any two compact totally geodesic submanifolds of
complementary dimension in a connected complete manifold of positive sectional
curvature must have nonempty intersection. In particular this applies to any two
projective lagrangians in CP(V). [
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We now prove a “diagonalization lemma” for a Souriau matrix of a pair of
lagrangian subspaces.

Theorem 1.4 (Diagonalization lemma). Let (L,, L,) be a pair of lagrangian subspaces
in a hermitian vector space (V, (- ,-)) of complex dimension n. There exists an ortho-
normal basis {e,, ..., e,} for L, and unit complex numbers «;, i=1, ..., n such that
{a,e,, ..., a,e,} is an orthonormal basis for L,. Furthermore, the numbers as, ..., a
(including multiplicities) are precisely the roots of the characteristic polynomial of the

pair (Lla L2)'

To justify the name given to this result, note that the Souriau matrix of (L,, L,)

with respect to the bases provided by the theorem is the matrix diag(ai,..., al),
the diagonal matrix with diagonal entries af,.. ., al.
Proof. By Lemma 1.3 the projective lagrangians RP(L,) and RP(L,) must have
nonempty intersection in CP(V). Hence there is a nonzero vector ve L, and a
nonzero complex number A such that Ave L,. Let e, =v/||v| and @, =A/|A|. Then
e, € L, is of unit length and «, is a unit complex number such that a,e,€ L,. Let
V' be the hermitian orthogonal complement of e,, i.e., V' is the complex hyperplane
in V definedby V'={ue V|(u, e;)=0}. Let Lj=L,~ V'fori=1,2. L} is a lagrangian
subspace of V' because {e,} can be extended to an orthonormal basis {e,, u,, ..., u,}
for L, and L) is the real span of {u.,..., u,}. Similarly L is also a lagrangian
subspace of V'. Applying mathematical induction, we obtain an orthonormal basis
{e,,...,e,} for L, and unit complex numbers «;, i=1,...,n such that
{a,e,, ..., a,e,}is an orthonormal basis for L,. The Souriau matrix of (L,, L,) with
respect to these bases is the diagonal matrix diag(asj,..., ). Its characteristic
polynomial is o(L,, L,) =[]}_, (X — @}) and thus the numbers a7, ..., o (including
multiplicities) are precisely the roots of o(L,, L,). O

One immediate consequence of the proof of Theorem 1.4 is:

Corollary 1.5. Let (L, L,) be a pair of lagrangian subspaces in a hermitian vector
space (V,{(-,-)). There exists a complex hyperplane H such that (L,n H, L,n H) is
a pair of lagrangian subspaces in H.

Given a pair of lagrangian subspaces in a hermitian vector space (V, (-, -)), we
obtain the following canonical orthogonal decomposition of L,. Let a?l, ey afm be

the distinct roots of the characteristic polynomial o(L,, L,). Define subspaces W,
of L, for k=1,...,m by

W,={veL,|a,veL,}.
Note that W, is independent of the choice of square root of aj .
Proposition 1.6 (Canonical orthogonal decomposition). L, decomposes as an

orthogonal direct sum L= W,®- - -@® W,,. The dimension of W, is the multiplicity of
the root a; of o(L,, L,).
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Proof. Let @ = a;, B =, and suppose ue W,, ve W,. Then au, Bve L,. Since L,
and L, are lagrangian subspaces the quantities (u, v) and (au, Bv) are real. If
(u, v) # 0, then the equality (au, Bv) = aB(u, v) implies that aBeRNS'={x1}. Con-
sequently a”>=B” and so W, = W,. Thus W, and W, are orthogonal if s # t.

By Theorem 1.4 there is an orthonormal basis {e,, . . ., e,} for L, such that a;e; € L,.
Let I(j)={k|ai=aj}}. For ve L, let

Ww; = Y (v ep)ex.
kel(j)

Then w; € W, and v=Z;"=l w;. Hence W, @ - -@ W, spans L,. The set {ex| ke I(j)}
is a basis for W, and thus dim W, is equal to the cardinality of I(j) which is also
the multiplicity of «; as a root of o(L,, L,). O

Note that for (L,, L,) as above, L, also has a natural decomposition as an
orthogonal direct sum:

Ly=a,W,® - -@a;, W,.

Corollary 1.7. The intersection of two projective lagrangians RP(L,) and RP(L,) in
CP(V) is a disjoint union of real projective planes of dimensions k,—1,...,k,—1
where ki, ..., k, are the multiplicities of the roots of the characteristic polynomial
O-(Lla L2)

Proof. Let L, = W,®- - -@® W,, be the canonical orthogonal decomposition given
by Proposition 1.6. The W, are totally real subspaces of V and

RP(L;) "nRP(L,) = U RP(W,)
k=1
is a disjoint union. [J

Given a hermitian vector space (V, (-, -)) and a lagrangian subspace L we define
the unitary group, U(V), to be the group of all unitary transformations of V and
the orthogonal group with respect to L, O.(V), to be the subgroup of U(V) which
preserves L. If (L,, L,) is a pair of lagrangian subspaces let L, = W,®- - -@® W,, be
the corresponding canonical orthogonal decomposition. Define V, = W, @ JW, for
k=1,..., m. Then V, is a complex subspace of V, W, is a lagrangian subspace of
Viand V=V,®- - @V, is an orthogonal decomposition of V as a hermitian vector
space. An element ¢ € O, (V)N O.,(V) must preserve these decompositions of L,
and V respectively. Conversely any ¢ € U( V) which preserves these decompositions
belongs to O; (V) O.,(V). We conclude:

Corollary 1.8. There is an isomorphism O (V)N OLQ(V)EH;":1 Ow, (Vi) given by
¢ (dlv,..., dlv,)

We now show that pairs of lagrangian subspaces in a hermitian vector space
(V, (-, -)) are classified up to unitary equivalence by their characteristic polynomial.
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Theorem 1.9 (Classification theorem). Suppose (L,, L,) and (L}, L}) are pairs of
lagrangian subspaces in hermitian vector space (V, (-, -)). There exist a unitary transfor-
mation ¢ € U(V) such that ¢(L;) = L} fori=1,2 if and only ifo(L,, L,)=o(L}, L)).

Proof. Suppose ¢ exists. By Theorem 1.4 there is an orthonormal basis B, =
{e,,...,e,} for L, and unit complex numbers «; where i=1,...,n such that
B,={a,e,,...,a,e,} is an orthonormal basis for L,. Since ¢ is unitary B}=
{¢(e)), ..., d(e,)} is an orthonormal basis for L; and B,={a,p(ey),...,a.¢p(e,)}
is an orthonormal basis for L,. The Souriau matrix of (L,, L,) with respect to
(B,, B,) is diag(ef, .. ., a2) which is also the Souriau matrix of (L;, L;) with respect
to (B}, B3). Hence a(L,, L,) = o(L}, L}).

Conversely, suppose o(L,, L,)=o (L}, L). Let a,..., e, be the roots of this
polynomial (including multiplicities). By Theorem 1.4 there is an orthonormal basis
{e,,...,e,} for L, and an orthonormal basis {fi,... ,f.} for L} such that
{aye,, ..., aye,} is an orthonormal basis for L, and {a,fy,..., a,f,} is an ortho-
normal basis for L}. Define ¢: V> V by ¢e;=f;,j=1,..., n. Then ¢ is unitary and
S(L)=Li fori=1,2. O

In what follows P will be a monic complex polynomial of degree n whose roots
lie on the unit circle in C and let (V, (-, -)) be a hermitian vector space of complex
dimension n.

We will use the symbol £ to denote the set of all lagrangian subspaces of V. Define

$P ={(L1, LZ) egxgla(Lb LZ) = P}~

&, is the set of all pairs of lagrangian subspaces of V with characteristic polynomial
P. ¥, is not empty, indeed:

Lemma 1.10. Suppose 1 is a root of P of multiplicity m where m =0 means 1 is not
a root. Given L,€ & and a subspace W < L, with dim W =m there exists an L, € <
such that L, L,= W and o(L,, L,) = P.

n

Proof. Factor P as P(X)=(X-1"II_,., (X —aj) where ai#1 for j=
m+1,...,n Let B={e,,...,e,} be an orthonormal basis for W (B is empty if
m =0). Extend B to an orthonormal basis {e,, ..., e,} for L,. Define L, to be the
real span of {e;,..., €u, Ami1Cmt1s--- a,e,}. Then L, is a lagrangian subspace of
V and o(L,, L,)=P. Clearly W< L,nL,. Suppose velL,nL,. Then v=
w+Y .. tiae; where we W and f,€R. Since L, is a lagrangian subspace (v, ¢;) =
tia; €R. The coefficients ¢; must be zero otherwise a;€RN S'={+1} would imply
ai=1.Hence W=L,nL,. O

We can now characterize £ as a homogeneous space.

Theorem 1.11. For any (L,, L,) € &p there is a natural isomorphism:

U(V)/OL(V)A O (V)=Zp.
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Proof. By Theorem 1.9 the unitary group U(V) acts transitively on &Zp. The stabilizer
Of (Ll, L2)€$P is U(V)(Ll,L2)=OLI(V)molxz(V)' O

Remark. Projection onto the first factor yields a map £» - £ which can be identified
with the natural map U(V)/O. (V)N O.(V)>U(V)/O, (V). This map is the
projection of a smooth fiber bundle. By Corollary 1.8 its fiber, O, (V)/ O, (V)N
O.,(V), is a real flag manifold.

2. Lagrangian pairs in a symplectic vector space

Let (E, ) be a symplectic vector space, i.e., E is a real vector space and o is a
nondegenerate 2-form. L< E is a lagrangian subspace if it is self-annihilating for
o and maximal with respect to this property.

Definition 2.1. A complex structure J on E is compatible if » is J invariant and
positive if in addition (x,y), = w(Jx, y)+w(x, y) defines a (positive definite)
hermitian form on (E, J).

The set of positive complex structures on (E, w) will be denoted C*(E). Note
that L< E is a lagrangian subspace if and only if for some J € C*(E) it is a maximal
totally real subspace of (E, (-, -),). Since we will consider different positive complex
structures on a fixed underlying symplectic vector space (E, w), the notation of the
previous section will be augmented as follows: Let L,, L,, L be lagrangian subspaces
of (E, w) and Je C*(E). U(E,J) is the unitary group of (E,(-,);). O.(E,J) is
the orthogonal group with respect to Lof (E.{-,);).o(L,, Ly; J)isthe characteristic
polynomial of (L,, L,) computed in (E, (-, );).

The symplectic group, Sp(E), is the group of all real linear automorphisms of E
which preserve w.

In what follows we will assume that (E, w) is finite dimensional and that (L,, L,)
is a fixed pair of lagrangian subspaces in E.

For any complex polynomial G and complex number A define multi(G, A) to be
zero if A is not a root of G and to be the multiplicity of A if A is a root of G.

Lemma 2.2. IfJe C*(E), then dim L, ~ L,=multi(e(L,, L,; J), 1).

Proof. We use the hermitian structure (-, ), on (E, J). Suppose dim L, L,>0.
If e, L~ L, is a unit vector, extend {e,} to an orthonormal basis B, ={e,, ..., e,}
for L, and also to an orthonormal basis B,={e,, f,...,f.} for L,. The Souriau
matrix S of (L,, L,) with respect to (B, B,) has S;;=1 and S,;=85;,=0 for j>1.
Hence 1 is a root of the characteristic polynomial of S which by definition is
o(L,, Ly; J).
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Suppose Bi=1,B3,---» 2, are the distinct roots of o(L,, L,; J). By Proposition
1.6 there is an orthogonal decomposition L, = W, @ -® W, where dim Wg =
multi(o(Ly, L3 J), B).  We,={vel, |ViveL)}=LinL,, completing the
proof. 0O

For the remainder of this section P will be a monic complex polynomial of degree
1 dimg E whose roots lie on the unit circle in C. Define for Je C*(E)

Xp(Ly, Lo J)={Ae Sp(E) l O-(A—I(Ll)y AL J)= P}.

Lemma 2.3. Xp(Ly, Ly; J) is not empty if and only if multi(P,1) =dim L, N L,.

Proof. Suppose Xp(Li, La; J) is not empty, say A€ Xp(Ly, Ly; J). Then dim Lin
L,=dim A™(L)n A" (L) = multi(P, 1), the last equality by Lemma 2.2.

Suppose multi(P, 1) =dim L, n L,. By Lemma 1.10 there exists a lagrangian sub-
space L such that L;n Ly=L,n L,and o(L, L,;J)=P By[3, Proposition 2.2.18]
there is A e Sp(E) such that A(L,) =L, and A(L,) =L, (in fact A|,, can taken to
be the identity). Then A€ Xp(Ly, L2} J). O

Proposition 2.4. For any Aoe Xp=Xp(Ly, Lo J ), Xp is the double coset
Sp(E)(Ll,Lz)AOU(Ea J) Where Sp(E)(Ll,Lz) = {AG Sp(E)lA(L,) = L,~, i= 1, 2}.

Proof. Suppose Be Xp. Then o(B™(L,), B"(L,); J) = P. By Theorem 1.9 there
exists ¢ € U(E,J) such that #B (L) =As'(L;) for i=1,2. Thus A¢pB '€
Sp(E) L, 1, and so Be SP(E) (1,12 AcU(E, J).

Conversely, suppose B =yAcd where e Sp(E)r, L, and @€ U(E,J). Then
B N(L)=¢ 'As'v (L) = ¢ 'AG(L) for i=1,2. Again by Theorem 1.9
(B Y(L,), BT/ (Ly); J) = (A5 (Ly), As'(L,); J) and so Be Xp. O

We now determine the set CH(L,, L,) of all positive complex structures J such
that o(L,, L,; J)=P.

Theorem 2.5. CH(Ly, L,) is not empty if and only if multi(P, 1) =dim L, N L,. If
Je Ch(L,, L,), then there is an isomorphism:

Sp(E) (L,.1o/ OL(E. J) N OL(E, J) = Cr(Ly, L)
where Sp(E) 1,1, ={A€Sp(E)|A(L) =L, i=1, 2}.

Proof. If CH(L,, L,) is not empty, then Lemma 2.2 implies that multi(P, 1) =
dim L,n L,.

For any JeC'(E) and A€ Sp(E) we have AJA 'e C*(E). Since
AV (E (-, Yaa) > (B, -),) is an isometry of hermitian vector spaces it follows
that o(A~(L,), A" (Ly); J) = 0(Ly, Lo} AJA™"). Suppose multi(P,1) = dim Ly N L.
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Choose any Joe C*(E). By Lemma 2.3 there exists A,€Sp(E) such that
a(A; (L), As'(L,); Jo) = P. Then J,=A,JoAs' € CH(L,, L,) and so in particular
+(L,, L,) is not empty.

For J € Ch(L,, L,) define 6,: Xp(L,, L,; J)-> CH(L,, L,) by 6,(A)=AJA™". 6, is
surjective since any J'e C*(E) is of the form AJA™' for some A € Sp(E). Note that
0,(A,)=0,(A,) if and only if A5'A,e U(E,J). Thus 6, induces a bijection
Xp(Ly, Ly; J)/U(E,J)=C#(L,, L,). By Proposition 2.4 Xp(L,, L,;J) is the
double coset Sp(E) ., 1, U(E, J) and thus

Xp(Ly, Ly; J)/ U(E,J) =[Sp(E) L,y U(E,J)]/ U(E, J)
=Sp(E)(L,,,)/SP(E)(r,,L,," U(E, J)
=Sp(E)(Ll,L2)/OL1(Ea‘,)mOLZ(EaJ)‘ O

The special case of a pair (L,, L,) of transverse lagrangian subspaces,i.e., L, L,=
(0), is of particular interest.

If (L,, L,) is transverse, then Sp(E), 1, can be identified with GL(n, R), the
group of nxn invertible real matrices where 2n =dimg E. By Corollary 1.8 the
subgroup Oy (E,J)N O.(E,J) of Sp(E), 1, can be identified with the block
diagonal embedding of O(k,)x- - -x O(k,,) in GL(n, R) where ki, ..., k,, are the
multiplicities of o(L,, L,; J) and O(k) is the group of k x k orthogonal matrices.
Note that k,+- - -+k, =n.

We express these observations as follows. Suppose 1 is not a root of P and P
has multiplicities k,, ..., k,,.

Corollary 2.6. If (L,, L,) is transverse, then there is a diffeomorphism:
Cp(Ly, L) =GL(n,R)/ O(ky) X+ + - X O(ky,).
Since the inclusion of O(n) in GL(n, R) is a homotopy equivalence we conclude:

Corollary 2.7. If (L,, L,) is transverse, then CH(L,, L,) is homotopy equivalent to
the real flag manifold O(n)/ O(k,) X+ - - X O(k,y,).

In particular CH(L,, L,) is connected if (L,, L,) is transverse because the real
flag manifolds are connected.

3. Applications to vector bundles

A symplectic vector bundle (€, w) over a smooth manifold M consists of a smooth
real vector bundle & over M together with a smooth field w of symplectic forms
on the fibres of &.
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A vector subbundle n < € is a lagrangian subbundle if for each x € M the fiber
7. is a lagrangian subspace of (&, w,). (&, ) admits a lagrangian subbundle if
and only if the structure group of € can be reduced from Sp(2n, R) to O(n) where
the fiber dimension of & is 2n.

Given a symplectic vector bundle (&, w) there is an associated convex cone bundle
3 (%) called the Siegel bundle of € whose fiber over x€ M is the space C*(&,) of
positive complex structures on (&,, ) (see [3, p. 59]). A positive complex structure
on (&, w) is equivalent to a smooth cross section of 3(%).

A pair (1, 7,) of lagrangian subbundles of the symplectic vector bundle (%, w)
will be called regular if the intersection n, N n, is a subbundle of &, equivalently,
if the intersection (7,)x M (7n,), has constant dimension.

In what follows P will be a monic complex polynomial of degree equal to one-half
the fiber dimension of € and whose roots lie on the unit circle in C. Given a regular
pair (7,, 1,) of lagrangian subbundles of & such that multi(P, 1) = dim(7,). N (n2),
we can define Zp(%; 7,, 11,) to be the subbundle of (&) whose fiber over xe M
is Ch((m)x, (M2)x). A cross section of Xp(&; n,, n,) is equivalent to a positive
complex structure J on (&, ») such that o((n,)x, (12)x; J) = P for all xe M. Since
the fiber Ch((m1)x, (m2)x) is typically not contractible, in general there may be
obstructions to the existence of such a J.

Remark. If M is contractible, then Z5(&; 7,, 7,) is a trivial bundle and thus admits
a cross section.

The case when (7,, 1,) is transverse, i.e., 7, N 1, is the zero bundle, is of particular
interest.

Proposition 3.1. Suppose (n,,n,) is transverse. If M has the homotopy type of a
1-complex, then 3p(€; m,, 1) admits a cross section.

Proof. Let X = M be a 1-complex such that the inclusion is a homotopy equivalence.
By Corollary 2.7 the fiber C((m1)x, (72)x) is homotopy equivalent to a real flag
manifold and thus connected. It follows that any section of 25(&; 7,, 17,) over the
0-skeleton of X can be extended to all of X. Since X — M is a homotopy equivalence
any section over X can be extended to M. [

For an arbitrary manifold M the following result is an easy consequence of the
preceding theory.

Proposition 3.2. Suppose (n,, n,) is transverse. Let A € S '—{£1}. Then there exists a
positive complex structure J on (&, o) for which An;=m,.

Proof. Let P(X)=(X—A%)" By Corollary 2.6 the fiber Cp((m:), (12)x) of
35(%; m1, 1,) is diffeomorphic to GL(n,R)/ O(n)=R" which is contractible. Hence
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for any M the bundle 2»(%; 7,, n,) admits a cross section. Any such cross section
defines a positive complex structure on (&, w) with the property An,=17,. O

The results of this section are, of course, equally valid for continuous symplectic
vector bundles over CW complexes.
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