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Degree theory and BMO;
Part I: Compact Manifolds without Boundaries

H. Brezis AND L. NIRENBERG

§1.0. Introduction

In this paper we consider degree theory for mappings « from one compact smooth
n-dimensional manifold X to a connected compact smooth manifold Y of the same
dimension. These are manifolds without boundary and which are oriented.

The classical degree counts the “number of times” Y is covered by u(X), taking
into account algebraic multiplicity. For instance, if u € C' and y € Y is a regular
value of the map v, i.e., u™1(y) consists of a finite number of points z1,...,z; at
each of which the Jacobian of the map, J,, in terms of local coordinates (with the
given orientation), is nonsingular, then

deg(u, X,y) = Z sgndet J,(z;).
J
A basic fact is that this degree is independent of the choice of the regular value y,
and we then denote this degree by deg(u, X,Y).

Degree extends to continuous maps u from X to Y because of the fundamental
fact that if u,v € C}(X,Y), and are close in the C° topology, then they have the
same degree. Degree theory is often defined directly for continuous maps via the
action of the map on nth degree homology.

One of the important properties of degree is that if it is not zero then the
map is onto Y. Another basic fact is that the degree is invariant under continuous
deformation of the map (homotopy).

For a C'-map there is an integral formula for the degree. Namely, if y is a
smooth n-form on Y then

deg(u,X,Y)/Yu:/Xuou. (0.1)

(see e.g., L. Nirenberg [1]). This may be expressed using local coordinates by

/ flu)det Ju(z)dzs A ... A dzy,
b'e
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if u= fly)dyy A ... Adyy. In particular, if X and ¥ are Riemannian manifolds,
then

deg(u, X,Y) = \_ra%?j /Xdet Jou(z)do(z) (0.2)

where do is the volume element on X, and J, is computed using geodesic normal
coordinates at z and geodesic normal coordinates at u(zx).

Specializing further, consider X = 9¢), where (2 is a smooth bounded domain
in R**1 and Y = S™. Consider u € C*(X,Y) and let @ be any C'-extension inside
Q with values in R*™!. There is another integral formula for the degree of u:

deg(u,d0,8™) = |—;—|/ det Jzdzy ... dZTni1, (0.3)
Q

where |B| is the volume of the unit ball B in R"*!. Since det J; is a divergence
expression, using Green’s theorem, one easily obtains the equality of the two integral
formulas.

Formulas (0.2), (0.3) suggest the possibility of extending degree theory to an-
other class of maps — which need not be continuous — namely, maps in appropriate
Sobolev spaces. This was done in the 80’s:

(a) In connection with their proof of the existence of “large” harmonic maps,
H. Brezis and J. M. Coron [1] (see also H. Brezis [2]) were led to consider degree
for H' maps from S2 to S2. This degree is given by the integral on the right hand
side of (0.2). To prove that this integral is an integer relies on the fact that smooth
maps from S? to S? are dense in H*(S?, S%) (see R. Schoen and K. Uhlenbeck [1]).

(b) Motivated by a question concerning the Ginzburg-Landau equation (see
Boutet de Monvel-Berthier, Georgescu and Purice [1]), L. Boutet de Monvel and
O. Gabber introduced a degree for maps u € H/2(S%, 8%). It is the familiar case
of (0.2), namely the “change in argument”

1 [ du_ 1

1 ogly . - = | adu )
deg(u, 5%, 5%) = ot Jo w2 Ja hdu (0.4)

Using the duality between H'/2 and H~/2 one sees that this is well defined. (The
degree may also be expressed in terms of the Fourier coefficients of u; see Section 1.5.
It is then transparent that degree makes sense for v € H Y 2.) That the expression
(0.4) (or the analogue in terms of the Fourier coefficients) is an integer for u €
H'/2 is proved by approximation, as above. Alternatively, one may extend u €
HY/2(8%,8%) to @ € H'(B,R?), and then use formula (0.3). This H/2 degree is
also used in Bethuel, Brezis and Hélein [1].

The natural generalization of (a) is to maps in the Sobolev space W™ (X,Y),
while (b) extends degree to maps in W R TH(HQ, §7) — a space slightly larger
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than W1 ™. These are borderline spaces: embedding into continuous functions just
fails.

In connection with degree for H*/2(S8*, 1), L. Boutet de Monvel and O. Gab-
ber made the interesting observation that the notion of degree for maps from S* to
' makes sense for maps in the class VMO: the closure in the BMO(= bounded
mean oscillation) topology of smooth maps. However they did not establish the basic
properties of VMO degree, such as stability under homotopy within VMO, surjec-
tivity if deg # 0, etc. The VMO degree is not defined by an integral formula; it is de-
fined via approximation. More precisely, they pointed out that if u € VMO(S1, §%)
and

1 0+¢
W) =g [ us,
then |%(6)] — 1 uniformly in & — despite the fact that u need not be continuous.
Then, for £ small,
i (9)
|T(0)]

has a well defined degree, which is independent of . This is their definition of the
degree.

ue(0) =

In this paper we develop this concept for maps between n-dimensional mani-
folds X, Y, and establish its basic properties. The degree is defined via approxima-
tion, in the BMO topology, by smooth maps from X to Y.

A natural related question is: Are smooth maps from X to Y dense in
WhP(X,Y), with 1 < p < 0o? Here X and Y might have different dimensions.
For p > dim X the answer is always yes. For p < dim X the answer was given by
F. Bethuel [1]: a necessary and sufficient condition for density is that I, (¥) =0,
where IT denotes the homotopy class and [p] is the integral part of p.

We now describe the organization of the paper.

In Section 1.1 we recall the notion of BMO maps in Euclidean spaces and
describe its extension to maps between manifolds. For this purpose it is convenient
to put a Riemannian metric on X and to embed Y smoothly into some RY . However,
the notion of BMO(X,Y) is independent of the particular metric or embedding —
as will be the degree.

The BMO (semi) norm of a map » from X to RV is

fulsio = sup f fuy) ~ welo)ldoty) (05)

e<rg €

where

au(z) = fB v (0.6)
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Here, for any z € X, B.(x) is the geodesic ball centered at x with radius ¢ < rg,
the injectivity radius of X and f , 4 denotes the average of u in a set A. A very
convenient equivalent (semi) norm is

= s £ f ) —u(Edo()do ) (07

ey

(Incidentally, (0.7) suggests a notion of BMO for maps into a general metric space
Y. Such maps enjoy some of the basic properties of BMO maps, e.g. the John-
Nirenberg [1] inequality holds — via the usual proof.)

The space VMO(= vanishing mean oscillation) is the completion of smooth
maps in the BMO norm. This space was introduced by Sarason [1] who established
a useful characterization (see Lemma 3). In the same section we present some of
the properties of VMO maps, such as the effect of left composition by a Lipschitz
map F (see Lemma 2’ and the more general Lemma A.7 in Appendix A). The map
Ty Fou, for u € BMO(X,RY), need not be continuous in its dependence on
u — as a map from BMO to BMO — but it is continuous at every 4 € VMO (see
Lemma A.8 and Remark A.1). Lemma 4 gives a characterization of compact sets
mn VMO — an adaptation of Arzeld-Ascoli to VMO.

The proofs of many technical statements are given in Appendix A.

Section 1.2 takes up various examples of BMO and VMO maps. In addition
to continuous maps, VMO contains all the “borderline” Sobolev spaces W*7F for
1<p, sp=n.

The degree for VMO maps is defined in Section 1.3. The first main result, The-
orem 1, deals with its stability under perturbation in VMO: given u € VMO(X,Y),
there exists § depending on u such that, for v € VMO(X,Y) with |ju —v|lsmo < 6,
it has the same degree as wu; this implies in turn the invariance of degree under
homotopy within VMO.

Surprisingly the 4§ really depends on u (see Lemma 6). This is in contrast to
the standard perturbation of continuous maps; there the § is uniform. We point out
in Remark 7 that the degree can also be defined for u in BMO(X,Y’) provided u is
“close” to VMO.

In Section 1.4 we carry over standard properties of degree to VMO. For ex-
ample, we prove that if degu # 0, then u is “onto” Y. This is more subtle than
for the continuous case becanse u may be changed on a set of measure zero. We
are led to a notion of “essential range” of uw which is independent of the choice of
representatives in the class of equivalent maps.

The formulas (0.2), (0.3) extend when u is in some appropriate “borderline”
Sobolev space (see Properties 4 and 5).

In Section 1.5 we take up a natural question concerning maps from X to Y, not
necessarily of the same dimension. BMO(X,Y) —as well as LP(X,Y), 1 <p< >
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— is arcwise connected, while VMO(X,Y) has components which are simply the
closures of the components of C° maps.

Section 1.6 deals with a question first considered by R. Coifman and Y. Meyer
[1], namely the possibility of lifting a map v € BMO(X, §*) to BMO(X,R). The-
orem 3 asserts that this can be done with VMO if and only if % is homotopic to a
constant within VMO, In Theorem 4, which is directly related to a result in Coif-
man and Meyer [1], we show that any u € BMO(X, S*) with small BMO norm may
be written as u = ¢ with ¢ € BMO(X,R) and ||¢|lamo < 4/jullsmo. The proofs
are quite technical. They make use of the John-Nirenberg inequality; various forms
of this inequality for manifolds are presented in Appendix B.

Of course degree theory extends to maps on domains or manifolds with bound-
ary. In Part 11 we will consider this situation for VMO maps. A new feature is that
VMO maps in a domain need not have a trace on the boundary. This makes the
theory more delicate.

The plan of the paper is the following:

L1. BMO and VMO

1.2. Some examples of BMO and VMO functions
1.3. Degree for VMO maps

1.4. Some properties of degree

I.5. Further comments

L.6. Lifting of VMO maps

Appendix A. Some useful estimates on BMO, et al.
Appendix B. John-Nirenberg inequality on manifolds, et al.

We wish to express our thanks to a number of colleagues for interesting discus-
sions and encouragement: L. Boutet de Monvel, F. Browder, S. Chanillo, G. David,
H. Furstenberg, I. M. Gelfand, A. Granas, Y. Meyer and P. Mironescu, with special
thanks to P. Jones.

§L.1. BMO and VMO

Let X be a smooth n-dimensional compact manifold without boundary. In this
section we recall the notion of BMO and VMO functions and maps defined on X
and we state some of their properties. There is much literature on BMO, but mainly
defined in Euclidean space; e.g., E. Stein [1] where many references may be found.
People have worked with BMO on some manifolds, but the subject is mainly folklore
to people in the field.

DEFINITION OF BMO FOR REAL FUNCTIONS ON X. We first put a smooth Rie-
mannian metric on X. (Later we shall show that the notion of BMO is independent
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of the choice of metric.) Consider a real function f in L'(X), using the measure
associated to the metric. Set

oo = sup f(£) = Fo@)ldo ) )

e B ()

where ro = ro(X), the injectivity radius of X (see e.g., M. P. do Carmo [1]), ¢ is
the element of volume on X, B.(z) denotes the geodesic ball in X of radius ¢ < rg,
centred at z, and

7o) *fga@ [(2)do(2).

As usual, f, f = IT}%T [ f denotes the average of f on A. BMO(X,R) — often

denoted by BMO — consists of those functions with || f||smo < oo. For these, (1)
defines a norm on BMO — modulo constants, (see E. Stein [1]) — and BMO is
complete under this norm.

Clearly

— foz)|do(y) < y) — f(z)|do(z)do
f, Vo=@ < f 170 - et

- fB ( )i ( )gf(y) - fe(ﬂf) + ]Fe(x} — f(2)|do(z)do(y)

< szs( £ ) - Fo()ldo(y).

Consequently, the following is an equivalent norm on BMO:

E<'r0

1]l = sup fsmfs(x) F(y) — £(2)ldo(y)do(2); (1)

in fact,
I fllsmo < |Ifll, < 2[fllsmo- (1)

A first simple but useful property is

LEMMA 1. There ezists a constant C, depending on X (and the metric) such that
for every f € BMO,

Il < o+ [ 1]

This is proved in the Appendix; see Lemma A.1.
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REMARK 1. If we replace ro by any positive r; < rg we get a new norm || f||;. The
two norms are equivalent.

Indeed, || fll1 < Ifllemo =: || fllo. Conversely, if r1 < & < rq then

fm) = Felo)l < 2{35@) 1

sﬁfmfxmso/xm.

We now use Lemma 1. Since we may suppose [ x J = 0, we obtain the desired
conclusion

171 < Clifllo-

If one changes the Riemannian metric on X one obtains an equivalent BMO
norm. More generally, if X; and X, are two smooth compact Riemannian manifolds
of dimension n, without boundary, and ¢ : X; — Xo is a C" diffeomorphism, then
f € BMO(X>) implies that f o ¢ € BMO(X;) and

£ o ellBmocxy) < CllifllBMocxy)

(see Lemma A.10 in the Appendix; a more general form, where ¢ is only quasi-
conformal and X; = X, = R, was proved by H. M. Reimann [1]).

If € is an open subset of X, we set

[ fllBMo() = the sup in (1) taken over all balls B.(x) in , with & < rq.

An L' map u : X — RY belongs to BMO(X,RY) provided each component
of u is in BMO. As norm, we use the definition (1), except that the absolute value
refers to the Euclidean norm in RY.

DErFINITION OF BMO MAPS INTO A MANIFOLD. Let Y be a compact manifold
without boundary which we always take to be smoothly embedded in some RY. We
say that a map u belongs to BMO(X,Y), if u € BMO(X,R") and u(z) € Y ae.

CrLAmM. The notion of BMO(X,Y) is independent of the metric on X and of the
embedding of Y.

That it does not depend on the metric in X follows from a previous consider-
ation. To verify its independence of the embedding of Y, we use the following

LEMMA 2. Let F be a Lipschitz map from RY into RP and let u € BMO(X,RY).
Then F o u is in BMO(X,R") and

1 0 ullsmo < 2| F|LipllullBmo-
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This follows immediately from (1”); see also the more general Lemma A.2.

Proof of Claim. Suppose @1 and @, are smooth embeddings of Y into RY and R”.
Then 17 = @ 0 7 * is a smooth map of ¢;1(Y) onto ¢2(Y). Let F be a Lipschitz
continuous extension of n as a map from RY to R”. Using Lemma 2 we see that
the BMO norm using ¢2, is bounded by a constant times the BMO norm using ¢;.
Thus the norms are equivalent. E]

Having chosen a Riemannian metric on X, and a smooth embedding of Y in
some RN BMO(X,Y) is equipped with a metric

d(u,v) = |lu — vl[Bmo(x,RN)-

A different choice of the Riemannian metric on X and of the embedding of ¥ in
some R yields an equivalent metric. Thus it makes sense to say that a sequence
of maps u; : X — Y converges to u in BMO(X,Y), independently of the choice of
metric on X and embedding of Y.

In view of (1') there is a natural notion of BMO of a map from X into any
metric space Y, namely

ull, = sup fm fw dist(u(y), u(2))do(y)do (2).

e<ry
zeX

It is clear that C°(X) C BMO(X); other examples of BMO functions will be
given later (see Section 1.2). In particular, the examples show that smooth functions
are not dense in BMO. It is therefore natural to introduce the following definition
(see D. Sarason [1]).

DEFINITION OF VMO FUNCTIONS AND MAPS. VMO is the completion of smooth
fanctions in the BMO norm, namely, a real function f on X belongs to VMO(X,R)
it f € BMO(X,R), and there is a sequence (f;) of smooth functions such that
If; = fllBmo — 0. In view of Lemma 1 we may also suppose that ||f; — f|lz2 — 0.

VMO is equiped with the BMQO norm.

REMARK 2. In the definition of VMO(X, R) one could use continuous f; instead of
smooth f;. This follows easily from two facts:

(i) C(X,R) is dense in C°(X,R),

(i) C°(X,R) € BMO(X,R) and

IfllBMo < 2|f]co.
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Similarly, one defines VMO(X, RY). Furthermore, a map v : X — R" belongs
to VMO(X,Y) if u € VMO(X,R") and u(z) € Y ae. z € X.

As above, VMO(X, Y) is independent of the Riemannian metric on X. The fact
that it is also independent of the choice of embedding of ¥ in some Euclidean space
follows from a variant of Lemma 2. In view of this fact, unless we say otherwise,
from now on we fix a Riemannian metric on X, and an embedding of Y in RY . The
variant of Lemma 2 is:

LEMMA 2'. Let F' be a Lipschitz map of RN into RP and let u € VMO(X,RY).
Then F ou € VMO(X,RP).

For proof, see the more general Lemma A.7. A natural way to prove the lemma
would be to take a sequence of smooth maps u; tending to w in BMO N L! and to
show that Fou; — Fou in BMO. Indeed, this method of proof works, but it is more
delicate than it would appear. In fact u + F o u is not continuous in BMO N L!; it
is however continuous at points u in VMO. See Lemma A.8 and Remark A.1. The

proof of Lemma 2 that we present is different; it relies on Sarason’s characterization
of VMO:

LEMMA 3 (D. Sarason [1]). u € VMO(X,RY) iff u € BMO(X,R"Y) and

lim [u — Te(z)] = 0 uniformly in z € X. (2)
e—0 BE<$)

Again, in view of (17), property (2) is equivalent to

limf/ f lu(y) —u(z)] =0 uniformly in z € X. (2"
Be(z) J Be (=)

g0

The implication: VMO == (2) is easy. Indeed, given § > 0, there is a
v € CO°(X,RN) such that
“’LL - U”BMO < 5/2

Write

footm =g,
B (z)
s,
2

(6= v) — (8 (e) — 5.(2))| +fB C

IN
mloqv

provided ¢ is sufficiently small (depending on v). Property (2) follows easily.

The converse implication is more delicate. It is in fact a consequence of a more
general form of Lemma 3, Lemma 3’ below. First some notation:
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For v € BMO(X,R"Y) and 0 < a < ro(X), set

M, = M,(u) = supr o= @ < o

s<a

zE€X

My = Mp(u) = ;{% M, (u).
LEMMA 3’ (D. Sarason [1]). There is a constant A depending only on X (and choice
of Riemannian metric), such that, if u € BMO(X,RY), then
My(u) < dist(u, VMO(X,RY)) < A My(u). (3)
Here distance is measured using the BMO norm. More precisely,

llu — Tellzmo < A Mo(u) Ve <ro, Vu€ BMO(X,RY). (4)

This is Lemma A.5.

Note that (2} says that Mo{u) = 0; hence (3) yields the implication <= in
Lemma 3. In addition we have

COROLLARY 1. For any u € VMO(X,RY),

llie — ullpmo — 0, @ — u in L' ase — 0. (5)

The first assertion follows from (3) and (4); the last assertion is well known.
Another consequence of (4) is:

COROLLARY 2. There is a constant A depending only on X (and choice of metric),
such that N
HﬂEHBMQ < AHU“BMO Ve <rg, Yuée BMO(X, RN). (6)

If u € C%X,Y), the map = + @.(x) maps X into RY, but not into Y.
However, for ¢ small it lies close to Y. {This is clear since @, — u uniformly.)
Surprisingly the same is true for v € VMO(X,Y) — even though u need not be
continuous. Indeed we have

dist(@.(x), Y) < f lu(y) — Te(z)| < M. (). @

e (z

and M. (u) tends to 0, by (2).
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REMARK 3. Note that (7) holds if Y is any closed set in RY — not just a smooth
manifold.

This fact is at the heart of the paper, because it allows us to project 4., for €
small, onto its nearest point in Y.

As pointed out in the introduction, the role of VMO maps in conjunction with
(7) was first observed by L. Boutet de Monvel and O. Gabber.

Denote by P the projection operator in RY to the nearest point on Y (this is
well defined in a tubular neighbourhood of Y'). For ¢ less than some &g,

u:(z) = Puc.(z) is well defined. (8)
Here is one more
COROLLARY 3. There is a constant C depending only on X such that for any
a <Tro,€ S €0,

My(u.) < C(Mg(u) + Mc(u)) Yu€ VMO(X,Y).

Proof. We have
M, (us) < CM,(Te)

since P is Lipschitz continuous. On the other hand,
My (G.) < My(te —u) + Mg (u)
< AM (u) + My(u)
by (4). O

Presumably, in the assertion of the corollary, the term C'M.(u) could be omit-
ted. This is clear in Euclidean space.

We will be considering families of maps in VMO(X,Y'). Let F € VMO(X,Y)
be a collection of maps. For each individual map « € F we have

lim dist (@ (z),Y) = 0 (9)

uniformly in & € X, but this does not hold uniformly with respect to the map
u. However, if F is a compact subset of VMO(X,Y), then (9) holds uniformly in
z € X and u € F. This is an immediate consequence of (7) and the following:

LEMMA 4 {Characterization of compact sets in VMO). Assume F is a compact
subset of VMO(X,RY). Then

li_I)I(l) M. (u) =0 holds uniformly in u € F. (10)
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Conversely, if F is any collection of maps in VMO(X,RY) such that (10) holds,
then F is contained in a compact subset of VMO(X, RN ).

Proof of the first assertion (the second, which is more delicate, is proved in
the Appendix; see Lemma A.16):

Given any 6 > 0 we may cover F by a finite number of ballg

k
F C U B5/2(?}i)

g==1

(where B refers to balls for the BMO norm).

For each i there is some ¢; > 0 such that Ve < g,
M (v;) < 8/2. (11)

Set gg = Igliilk g;. Given v € F, there is some 7 such that
1<i<

HU — 'Ui“BMO < (5/2.
Then Ve < ¢

Ma(v) < Me(v - 'Uz') + ﬂfe(”z) < “U - UiHBMO + Ms(vz')
< (6/2)+(6/2) by(11).

Some further consequences of Lemma 8 and Corollary 1 are:

COROLLARY 4. Given u € VMO(X,Y),

llue — ullemo — 0, ue — u a.e. as € — 0.

Proof. We have

llu — Pi.||smo < [lu — @eliBMo + |G — PicllBMo
< Hu - ﬁaﬁBMO + Qh_ﬂs - P@s*co
< Jlu — Gellsmo + 2sup dist(T.(z),Y)

—>0 aseg—0,

by (5) and (9). 0
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COROLLARY 5. Given v € VMO(X,Y'), there exists a sequence u; € C*(X,Y)
such that u; — u in BMO and a.e.

Proof. Since C™°(X,Y) is dense in C°(X,Y) the result follows with the aid of
Corollary 4. 0

§1.2. Some examples of BMO and VMO functions

As we have said in Remark 2, continuous functions f on X belong to VMO and
[fllemo < 2|flce. (12)

A less obvious class consists of functions in Sobolev spaces corresponding to
limiting cases — where the embedding is into LP for every p < oo, but not into
L=,

ExampLE 1. W*(X) € VMO(X) with continuous embedding.

Proof. We first prove that W"(X) C BMO(X), with continuous embedding. By
Poincaré’s inequality — which even holds on a manifold — we have, for ¢ < rq,

/Be(zj lu — . (z)| < Ce /Ba(m) V.

/Ba(x) |u—ac(z)] < Ce® (/Bs(w) |Vu|”) 1/n
fBE(m) lu—e(z)| < C (/Bg(m) Wui”) 1/"’ .

which implies the desired conclusion. The embedding in VMO now follows easily
from (13) and Lemma 3. O

Hence

and thus
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More generally, we have:

EXAMPLE 2. W5P(X) C VMO(X) in the limiting case of the Sobolev embedding,

i.e., sp=n, 0 < s < n (s may or may not be an integer). *

Proof. We distinguish two cases:

Case 1: s > 1. Then, by the Sobolev embedding, (see e.g., R. A. Adams [1], Theorem

7.57),
WP(X) C WH™(X)

and the conclusion follows from Example 1.

Case 2: 0 < s < 1. Recall that

i | [ <.

and in our case $p = n, so that

wee={u [ T <)

As before, we first prove that

WP ¢ BMO with continnous injection.

To prove (14), we compute for ¢ < rg,

f (:c)f (=) ute)l <% mf Bu(x) WOE%M
) C/Be(w)/e(w) dlst&t()zgllz’

which yields (14). It then follows, as above, that W*? C VMO.

[

1) For the definition and general properties of fractional Sobolev spaces, see e.g., R. A. Adams

[1}, Chapter VIL
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Next we present some specific functions in BMO or VMO. The functions
are defined on some bounded domain  in R™ containing the origin; @ may be
considered as an open subset of a compact manifold X.

ExaMPLE 3. The function log |z| belongs to BMO(Q), for any n (see F. John and
L. Nirenberg [1] or E. Stein[1], Chapter IV, Section 1.1.2). However, log|z| is not
in VMO. To see this, observe that

%31(0)

1=f oglyl~f loglal
B.(0) B.(0)

and thus I does not tend to zero as € — 0.

b

log ly| - fB o log |z

ExAMPLE 4. The function f(z) = log } log ixll is in VMO(Q). An easy way to verify
this is to observe that f belongs to W1 (), when n > 2, because

C

VA< Tog =]

For n =1, f is the trace on R of the function log ] log ‘x” in R? -— which belongs
to W2 = H' in any bounded region on R?. Consequently its trace belongs to
HY2(Q) = W22(Q2). By Example 2, this function is then in VMO.

Applying Lemma 2" we see that the functions exp(ilog|log |z||) or sin(log |log |z||)
also belong to VMO.

ExAMPLE 5. The function f(z) = 'log!xﬂa, for 0 < a < 11isin VMO(Q).

Proof. Observe first that f € W,2" in case n > 1/(1 — a). If n < 1/(1 — @), fix an

loc

integer m > 1/(1—a). Then the function f(z) belongs to I/Vli’cm(]Rm) Consequently
1

its trace on R™™! belongs to I/Vlic =™ (R™1). Continuing to take traces, we find

that f € W,m™ (R™). Again by Example 2, f € VMO((). O

ocC

We conclude this section with a particular, but useful sequence of VMO func-
tions in R.

ExaMpPLE 6. In R, consider the sequence

. 1

log |z e 1 1

filx) 1 Tog j if 5z < lz| < 7
1
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Then
“fjnHl/Z — (0 as 3 — OC.

In particular, || f;{lzmo — 0.

Proof. Consider the sequence for € R?. One easily verifies that

I £ill e ey — 0.
The desired result then follows by taking trace. (]

The reader may prefer a direct argument showing that ||f;||lsmo — 0, an
argument which does not rely on trace. Here is one: f; may be written as

o) = min {1, manc {0, -1 - 2E L

log j

Since F(t) = max{0,t} is Lipschitz with Lipschitz constant 1, it follows from
Lemma 2 that

log || 2
-1 — <L
H max{0, —1 Tog 7 } \BMO S long log ||| gpro
< <
~ logj

Similarly,

I fillemo < 1_6%7"

This argument shows that for any n, f; as defined above, in R", satisfies

C
I fillBmo < Tog]

0

REMARK 4. In Example 6 it seems natural to replace f; by a simpler sequence of
functions, in which f; is linear on (J%, 31—) However, the reader may verify that, then
[l f5llsmo does not tend to zero. Our sequence (f;) is the kind of sequence which is
commonly used to prove that in two dimensions, a point has zero capacity.
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8L1.3. Degree for VMO maps

This is our main topic. We consider VMO maps from X to Y. Here, X and YV
are smooth n-dimensional compact manifolds without boundaries — which we now
assume to be oriented manifolds. We shall define a degree for such maps and show
that it has some of the usual properties of a degree.

We first put a Riemannian metric on X and consider ¥ as smoothly embedded
in some RY. Recall that for a C! mapping u: X =Y,

1
degu = m/}{detJu(x),

where J,(z) is the Jacobian at z of the map u computed in terms of geodesic
normal coordinates at z and at u(z). This integral clearly makes sense for a map in
Wl’”(X ,Y'). We shall prove later that for such a map, this expression is indeed an
integer. This fact suggests that degree theory, which extends to continuous maps,
extends also to maps in WH™(X,Y). In an attempt to find a general class of maps
including both of these, the natural candidate seems to be the class VMO.

We now proceed to define the degree for a VMO map u: X — Y.

DEFINITION. Let u € VMO(X,Y). For 0 < ¢ small, recall

Ue(z) = fBE(m) u  and u.(z) = Pi.().

Define
deg(u, X,Y) = deg(u., X.,Y)

for ¢ small. We claim that this is independent of ¢. Indeed for & small, since u. is
continuous, deg(ue, X,Y") is defined. Furthermore, using the deformation wsc y.(1—s)e/,
for ¢,¢’ small, 0 <t < 1, we see that degu, = degu,.

In principle, deg(u,X,Y) depends on the choices of metric on X and of the
embedding of Y. We shall see soon that it is independent of these choices. We
first establish an important fact about this degree, namely, that it is stable under
perturbation in VMO:

THEOREM 1. Let u € VMO(X,Y). Then there exists 6 > 0 depending on u, such
that if v € VMO(X,Y) and
d(u,v) < 6,

then
degv = degu. (15)
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Recall that d(u,v) refers to the metric induced by the norm of BMO(X,RY)
once an embedding of Y has been chosen. Easy consequences of Theorem 1 are

COROLLARY 6. Let Hi(+) be a one-parameter family of VMO maps from X to Y,
depending continuously in the BMO topology, on the parameter t. Then

deg H.(-) s independent of t.

COROLLARY 7. deg(u, X,Y) is independent of the choices of Riemannian metric
on X and of the embedding of Y.

Proof. Suppose we have another metric on X and a smooth embedding of Y in some
RP. We then obtain another family 4. mapping X —+ Y. There is a corresponding
degree d. By Corollary 4, @, — v in BMO(X,Y) as ¢ — 0. Applying Theorem 1 we
obtain the desired conclusion. O

In the proof of Theorem 1 we shall use

LEMMA 5. Consider u € VMO(X,Y). Suppose that for some constant vector
EERY,

wz) +EEY  ae.
Then

deg(u + &) = degu.

Proof of Lemma 5. We need only consider & # 0, and, in fact, in this case we will
also prove that both degrees are zero. We may suppose £ = (£1,0,0), £&x > 0 and
also that 0 € Y, and that 33 <0 Vy € Y. Then

ui(z) < —¢;, ae on X.

Consequently for € < 79, the first component of 4.(x) < —&;. It follows that for ¢
small, the first component of Pi.(z) = u.(z) is less than —&;/2. This implies that
the image of u. does not cover Y, and so degu, = degu = 0.

Reversing the roles of u and u + £, we conclude that deg(u + &) = 0. ]

Proof of Theorem 1. Suppose the assertion of the theorem is false. Then there exists
a sequence (v;) such that

lv; —ulleMmo — 0 and |degv; — degu| > 1.

Since the (v;) are compact in VMO, we know by Lemma 4 and (7) that
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dist(, .(z),Y) -0 ase—0

uniformly in j and in 2 € X. Hence there exists g > 0, such that
Uje = Plje
is well defined for all j and all £ < g9. By definition,

degv; = degw; . Vj, Ve <eq. (16)

& =fX(Uj —u).

/ |v; —u—&;| < Cllvy — ullBmo — 0.
X

Fix some ¢ < gg. Set

By Lemma 1,

For a subsequence, we may assume ¢; converges to some vector £, since Y is
bounded. Hence v; — u+ £ in L' and a.e. Therefore u + £ € Y a.e. and also

Tj,e = e +¢ uniformly on X as j — oo,

— recall that ¢ is fixed. Hence v;. — (u + &), as j — oo uniformly on X. For j
large it follows that degv; . = deg(u + &), and consequently

degv; = deg(u +¢)

by (16) and by definition of deg(u + £). By Lemma 5 the proof is complete. O

REMARK 5. We have defined deg u with the aid of particular approximations of u
by continuous functions tending to u in BMO, namely the u. (see Corollary 4), and
we set degu = degu.. The preceding theorem shows that we could have used any
approximation by continuous maps, tending to u in BMO. Theorem 1 is somewhat
subtle for various reasons:

1) BMO convergence is weaker than uniform counvergence but sironger than
any L?, p < oo (modulo constants). Degree is not preserved under small perturba-
tions in LP, p < co. For example, the following maps u; of S ! to S, have degree
one, but their LP limit is a constant — and thus has degree zero:

ui(f) = ' 4

where ¢;(6) =0 on (0,27 — %) and ¢; goes linearly from 0 to 27 on [27 — %, 27].
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2) Recall that when working with the C° norm, there is a uniform § > 0 such
that
|u —v|ge < § = deg(u, X,Y) = deg(v, X,Y).

For then, u is easily deformed to v via
P(tv + (1 — t)u).

Surprisingly, in Theorem 1, the § really depends on u. Here is an example for
X =Y = S showing that if v and v are maps of S to S which are close even in
H/2 | they need not have the same degree.

LEMMA 6. Given € > 0 there are two smooth maps, u,v of S* to S with
Hu — 'U”H1/2 < € (17)

such that
degu =0 anddegv=1. (18)

Proof. Step 1. We first construct u,v € C°(S?, S1) with u — v in H'/2, satisfying
(17) and (18). Recall that there is a continuous function p defined on R with support,
in[r—4&7+48,p0>0in (x— 6 m+4§), p symmetric about 7 nondecreasing on
(m — 8,7), p() = 2, and such that

“p”Hl/z < E.

Here & depends on ¢ (see Example 6 in Section 1.2).

Using p, we construct u and v of the form
u=el, y=¢lft9
on [0, 27] such that
f(0) = f(2m), g(2m) — g(0) = 2.

Thus we will have degu = 0,degv = 1.
We first define g as a continuous nondecreasing function on (0, 2m), with

o n [0, 7 — 4]
9(6) = {Q?T Zn [ + 6, 27],

and such that ‘
e — 1] = p(@) on [0,27].

This defines g in a unique manner.
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Next we define f on (7 — 6,7 +4) as f = —arg(e® — 1). Note that

f(9)—>—g as 0 N\, (7 - §),
f(@)—é—?%r as 0 S (m+6).

We then extend f to [0, 2] continuously so that f(0) = f(27). Any such extension
will do.

The point is that o
v—u=e’(e?-1)=p.

This is clear on (7 ~ d, 7 + §), and even clearer outside.

Step 2. We may approximate v in C° by smooth functions, and may ap-
proximate u — v by smooth functions in the C° N H'/? topology. The sum of these
approximates is an approximation of u in C°. O

REMARK 6. By a slight modification we may even construct two smooth maps u, v
of S* to St with
u— vl e <2

such that
degu=0 anddegv=%

(for any given integer k and any given ¢ > 0).

REMARK 7. We have defined the degree for VMO maps of X to Y. The degree
can, in fact, also be defined for v € BMO(X,Y), with u “close” to VMO. More
precisely, there is a § > 0 such that if v € BMO(X,Y), and

dist(u, VMO(X,Y)) := ciolgc ¥ d(u, v) <4,
vE B

then u has a well defined degree. The distance d, and hence the number §, depend
on a particular choice of Riemannian metric on X and on the embedding of Y.

§1.4. Some properties of degree

The setting is the same as in the previous section. We consider VMO maps from X
to Y and show that standard properties of degree carry over. Here are some:

Property 1, If degu 5~ 0 then
ess R(u) =Y.
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Here, ess R{u}, the essential range of u, has to be explained.

The notion of the range of a measurable map is not well defined, since the map
may always be modified on a set of measure zero, keeping the new map in the same
equivalence class. It is important to introduce a notion of the range of u which is
independent of the choice of representative in the class of equivalent maps.

DEFINITION (ess R). The essential range of a map w, ess R(u), is the smallest closed
set 3 in Y such that
u(z) € ¥ ae.

CrLAIM. This is well defined.

Proof. Let {£4)aca be the family of all closed sets (X,) in Y, such that Ve,

u(z) € Xy ace.

Set ¥ = [} X,. We assert that
ach

u(z) € X ae.
This follows easily from the general fact that there is a countable subset J C A such
that

=) Ze

acJ
To see this, let Oy =5 ; O = |J O, = Z° The open set O may be written
a€A

as a countable union of increasing compact subsets, K;, i = 1,2,... . Each K is
covered by a finite number of the O,. Hence O is the countable union of these. ¥
is the intersection of their complements. W

The notion of essential range for a complex-valued measurable function f is
commonly used in the theory of Banach algebras (see e.g. R. G. Douglas [1]). There
it is defined as the set of all A € C for which {z € X;|f(z) — A| < €} has positive
measure for every € > 0. It is easy to see that this notion is equivalent to our
definition when C is replaced by Y.

Proof of Property 1. We argue by contradiction. Suppose ess R(«) omits a point yo.
Then, for some r > 0,
ess B(u) N Bylyog) = ¢

Setting
E = Y\Br(yo),
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we clearly have u(z) € T a.e. Since u € VMO,

lim u —tUe(z)] =0 uniformly in z.
e—0 B.(z)

Therefore
dist(@.(z),X) — 0 uniformly in z,

which implies
dist(us{z), ) — 0 uniformly in z.

Consequently, for ¢ small, degu. = 0, contradicting the assumption that degu. =
degu # 0. U

Property 2 (Hopf). If u,v € VMO(S™, S™) and have the same degree, then they are
homotopic within VMO(S™, 5™).

Proof. By our construction, deg u, = degu = degv = degv.. The well known result
of Hopf says that u. and v, are homotopic within C°(S™, S™) and therefore within
VMO(S™, S™). On the other hand, u. is homotopic to © within VMO(S™, §™) (via
uts). O

Property 3 (Borsuk). Let U/ and V be symmetric open bounded neighbourhoods of
the origin in R", with smooth boundaries OU, 8V — each of which is connected.
Let u € VMO(9U, 8V) be an odd map. Then degu is odd.

Proof. One may simply apply Borsuk’s theorem to u. which is also an odd map.
|

Property 4. We return to the setting of Section 1.3. Let u € WH™(X|Y) so that
u € VMO(X,Y) — see Example 1 in Section 1.2. Then

degu/u:/ Hou (19)
Y X

where u is any smooth n-form on Y.

Observe that in local coordinates, the integrand involves the determinant of
the Jacobian of the map, and hence is integrable. Formula (19) is well known for
smooth maps (see e.g., L. Nirenberg [1]).

The proof relies on the following:

LEMMA 7. Given u € WH™(X,Y), there is sequence (u;) of smooth maps from X
to Y, converging to u in Whm,
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Lemma 7 follows R. Schoen and K. Uhlenbeck [1], and is proved in the Ap-
pendix — see Lemma A.11.

REMARK 8. In general, if p < n, smooth maps from X to Y are not dense in
WbP(X,Y). However, F. Bethuel [1] has shown that they are dense iff the homotopy
group 7 (V') is zero.

Assuming the lemma we give the

Proof of Property 4. Let (u;) be the sequence of Lemma 7. Then, by convergence

in Whn,
/;;ouj—>/you.
X X

On the other hand u; — v in BMO, by Example 1 in Section 1.2, and so, by Theorem
1, degu; = degu for j large. ]

Property 5. Let © be a bounded domain in R" with smooth connected boundary
A9 Suppose u € Whn(Q,R"™) (so its trace is defined on 82) and suppose that

w: 00— §7 L

Then L
deg(u,g, 00,5 = -———/ det J,. (20)
|B1| Ja

Formula {20) is a well known formula for the degree in case u is smooth. In the
more general situation, the right hand side makes sense because u € Wh™. The left
hand side makes sense because uj,,, belongs to Wl“%’”(aﬂ) which, by Example 2
in Section 1.2, is contained in VMO(0Q).

COROLLARY 8. Let Q be a bounded domain in R™ with smooth connected boundary
oN. Ifu e Whn(Q, 5" 1) then

dog (] 00, S = 0.

Returning to Property 5, we shall prove (20), as expected, via approximation;
namely, using the following -~— which we formulate more generally (see Lemma A.13):

LEMMA 8. Let Q@ C R™ be a domain with smooth connected boundary 9§, Let
Y be a compact manifold without boundary, smoothly embedded in RY. Let
u € WH(Q,RN) such that

w(0Q) C Y.
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Then there is a sequence (u;) of smooth maps of Q into RY such that
u; (8Q) C Y, Vi, and u; = u in WH™.
Assertion (20) is a simple consequence of Lemma 8, for the ujjsq converges
to ujpq iIn W1~ "(89) and hence in BMO. Thus
deg(u;j00, 02 Y) — deg(ujaq, 00,Y)

by Theorem 1. Furthermore, the integrals on the right of (20) for the u; tend to
that for u.

We use Corollary 8 to prove a stronger result:

THEOREM 2. Let Q and Z be smooth bounded domains in R with 0 and 07
connected. Let u € WH™ (0, R™) be such that

u(0)) C 0Z
and
deg(u|,g,,08,07) # 0. (21)
Then .
ess R{u) D Z.

Proof. Since ess R(u) is closed it suffices to show that ess R(u) D Z. Suppose not,
i.e., suppose that some zp € Z is not in ess R(u). Then a closed ball Br(zo)_lies in
Z and is disjoint from ess R(u). Let P be the nearest point projection onto B,.(z).
Set
v=Pou.
Clearly v € WH™(Q,R") and v(Q) C S,(z0), the sphere of radius r centred at zp.
Hence, by Corollary 8,
deg(v),q, 09, Sy) = 0. (22)
Next we claim that
deg(u'aﬂ7 897 8Z) = deg(?”f{?(?? 897 ST‘)' (23)

The conclusion of the theorem is then an immediate consequence of (21-23).

Proof of (23). We reduce it to the smooth case. Namely, by Lemma 8, with Y = 0Z,
we know that there is a sequence {u;) of smooth maps from Q into R” such that
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u;(0Q) € 87, and uj — w in W™, Since ujip0 — ujan in WE—%"(9Q) it also
converges in VMO(99Q). Set v; = Pu;. Applying Lemma A.8 we find that v; 50 —
vige it VMO(9Q). By Theorem 1 and Example 2 of Section 1.2, for j large,

deg(u;|yq, 08, 02) = deg(uy,,, 00, 07)

BQ7
and

deg(vj),q, 08, Sy) = deg(vjaq, 09, S»).

However, it is well known that
deg(ujipn, 00, 02) = deg(uy, 2, z0)

and
deg(vjjaq, 0, Sy) = deg(v;, 2, 20)-

Finally, the two degrees on the right hand sides are the same by the following
homotopy
Hi(z) = tuj(z) + (1 - t)v;(z), t€[0,1}

This completes the proof of (23). O

REMARK 9. The assumption that u belongs to W™ in Theorem 2 is sharp in that
it may not be replaced by v € WP with p < n — even if u is smooth near 9,
so that the degree of u|5q makes sense. Namely, for n > 2 and 2 = B1(0) the map
u(z) = z/|z] is in WHP(Q,R") for any p < n; moreover ujsq = Id and so has degree
one, but the conclusion of Theorem 2 does not hold since ess R(u) = S™~1.

The reader may ask if in Theorem 2, the condition u € W1"(Q,R") may
be replaced by u € VMO(Q, R™). This is a delicate issue, since maps in VMO()
do not in general admit a trace on 9. We will be led in Part II, Section 3, to
the notion of a special class of maps in VMO()) admitting a trace on 0, which
belongs again to VMO(8). For such a class, which includes W™ (Q2), we will have
a generalisation of Theorem 2 (in Part II, Section 4).

§L.5. Further comments

1. One may discuss BMO and VMO maps from compact X to compact ¥ even
if their dimensions are different, say maps of 8* to S*. The space of continuous
maps from X to Y decomposes naturally into its components C; namely, maps u
and v are in the same component if there is a homotopy within C°(X,Y’) of u to v.
Similarly, the space of VMO maps from X to Y also decomposes into components
via homotopy. There are two natural notions of homotopy for maps in VMO:
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a) Two maps u,v € VMO(X,Y) are said to be homotopic within VMO N L*
if there is some deformation H € C([0,1], VMON L) such that H(0) = u
and H(1) = v.

b) Two maps u,v € VMO(X,Y) are said to be homotopic within VMO if there
is some deformation H € C([0, 1], VMO) such that H{0) = v and H(1) = v.

Clearly, the first notion is stronger and, in general, it is strictly stronger (see
Remark A.6). Surprisingly, the two notions are equivalent in the special case where
Y = 8%k > 1, (see Lemma A.23).

Homotopy classes of VMO(X,Y) in the sense of definition a) — homotopy
within VMONL* — are in one-to-one correspondence with the homotopy classes
of C%(X,Y). They are simply the closures of the above C; in VMO N L (see Lemma
A.21).

In contrast, the spaces LP(X,Y), 1 < p < oo, and BMO(X,Y) are arcwise
connected. It suffices to prove this for p = co. We sketch a proof.

Step 1. Denote by PC(X,Y) the set of measurable maps from X to Y taking on
only a finite number of values in Y. Given any measurable map f : X — Y and
any ¢ > 0, there exists g € PC(X,Y’) such that ||f — gllr~ <e.

Step 2. For t € [0,1], tf{z)+(1—t)g(z) lies within € of Y. Hence h(z) = P(tf(z)+
(1 —t)g(z)) lies in ¥ and connects g to f continuously in ¢, within L*°(X,Y).

Step 3. Given go, 91 € PC(X,Y), they may be connected by a continuous arc within
L>*(X,Y). Namely, we may always assume that gg and g; have the form

90 = EXw; 0, 91 = LXw,bi

for some finite partition {(w;) of X, with a;,b; € Y. For each ¢ let ¢;(t),0 <t <1,
be a continuous arc in Y connecting a; to b;. Then the maps

9:(7) = Bxu, (B)pi(t) 0<t<1
connect gg to gy.

A continuous map from X to Y naturally induces a map from homology in X
to homology in Y. The same is true for a VMO map 4 — via approximation by u,.

2. A. Granas pointed out that several authors have previously considered fixed point
properties, and degree theory, for some classes of maps which are not continuous
(see O. H. Hamilton [1], J. Stallings [1], H. A. De Kleine and J. E. Girolo [1}).
A class which plays an essential role in their considerations is one introduced by
J. Nash [1] called “connectivity maps”. By this is meant that the graph of such
a map f over every connected subset of X, is a connected set. H. A. De Kleine
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and J. E. Girolo [1] developed a degree theory for a somewhat more general class
(“almost continuous” maps). However, their degree is a collection of integers. We
do not see how our degree is related to theirs.

We point out, however, that if v € VMO(X,Y) and A is a connected subset
of X then ¥ = ess R(uj4) is connected. This may be seen as follows: If £ is not
connected then > = ¥; U3y where Xy, Xo are nonempty disjoint closed sefs. Recall
that since u € VMO,

dist(uc(A),X) — as ¢ — 0.

On the other hand, u.(A) is connected. Therefore for & small, dist u.(A) to either ¥y

or s is < -g— = %dist(El, ¥2). Consequently, using a sequence £; — 0, we conclude

that ess R(u)4) is contained either in 3; orin X». Impossible.

3. Our degree theory holds in particular for a map u € H/2(S*, ). As remarked
earlier, L. Boutet de Monvel and O. Gabber previously defined a degree for such
maps, given by

1 27!'
. i du. 24
degu 27Ti/o adu (24)

This integral makes sense since @ € H*/? and @ € H~*/2. That u is in H'/2 may
be expressed in terms of its Fourier coefficients. If

[o. o]
— o130
=Y ase
hate o]
then

oo
ulldre =Y 13l lag]*.

I. M. Gelfand raised the question: what is degu in terms of its Fourier co-
efficients? More generally, for maps u : 87 — S", what is degu in terms of its
expansion coeflicients in spherical harmonics? 1t is easily seen from (24) that

degu =3 jlaP*. (25)

From the fact that |u(f)| = 1 it is not a priori clear that the right hand side of (25)
is an integer. The condition that |u(6)] = 1 on S* is equivalent to

> laP=1

Z djaj4r =0 for all integers &k # 0.

jm—oo
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For a continuous map {or VMO map) u : S* — S, its Fourier coefficients are
defined. But the series in (25) need not be absolutely convergent.

Open Problem: What summation process makes it summable so that (25) holds?
When working with maps from S™ to 8™ one would use the formula that

1
degu = —=— [ det(u,uz,,...,uy, )do
1S™] Jgn

computed using normal geodesic coordinates (z1,...,%y). If one represents u via
spherical harmonics, this leads to some complicated expressions.

4. Recently, M. Giaquinta, G. Modica and J. Soucek [1] introduced a notion of degree
for rectifiable currents and for approximately differentiable maps with Jacobian
determinant in L' (see also a related work by M. Esteban and S. Miiller [1]). We
do not know if it is related to our degree.

5. To every function ¢ € L®(S*,C) corresponds a Toeplitz operator T,, in the
Hardy space H?; see e.g. R. G. Douglas [1], Chapter 7. When ¢ € C°(§*,C), T, is
Fredholm if and only if |¢| > @ > 0; moreover

ind(T,) = — deg (‘%, st 51> .

A similar result holds assuming only ¢ € L*°(S,C) N VMO(S?,C); see Theo-
rem 7.36 in Douglas [1] (where it is stated in different terms). We will return to
this topic in Part I1.

§L.6. Lifting of BMO maps

This section is largely inspired by an interesting result in R. Coifman and Y. Meyer
[1].

One form of their result asserts that there exist constants 6, C > 0 such that
every u € BMO((0, 1), 5*) with

[ullemo < 6 (26)

may be lifted as
u = e*?, p € BMO((0,1),R)

”‘p”BMO < CHUHBMO
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We present variants of this result, in that we replace the interval (0,1) by our
compact n-dimensional manifold X without boundary. In addition, we will see that
(26) is not needed when working with VMO, as opposed to BMO.

Here is a first result:

THEOREM 3. Any u € VMO(X, S) which is homotopic within VMO(X,5*) to a
constant map may be uniquely written as

u = e with ¢ € VMO (X,R), 0 < f @ < 2. (28)
X

Furthermore, the map u — ¢ is continuous from VMONL' (respectively VMO)
into VMON L' (respectively VMO).

REMARK 10. (i) Note that we give no estimate of ||¢|smo. (ii) The converse of
Theorem 3 also holds, namely, any u of the form in (28) is homotopic to a constant
within VMO — because of Lemma A.8, via the homotopy €%°, 0 < ¢t < 1.
(iii) As a consequence of Theorem 3, and Property 2 in Section 1.4, we may assert
that any map u € VMO(S?, 51) with degree zero, may be written as e’ with
v € VMO(S',R), and conversely. More generally, any « € VMO(S?*, $*) may be

written as
u(&) — eik9+i¢p(0)

where k = degu, and ¢ € VMO(S, R). This is easily seen by considering e ~*%4(9).
(iv) If m1(X) = 0, then every map v € VMO(X, S') may be written as in (28).
This is a consequence of the corresponding fact for continuous maps: one repeats
the argument used in proving Theorem 3.

A variant which is closer to the result above of Coifman-Meyer is

THEOREM 4. There exists § > 0 (depending only on X ), such that if

u € BMO (X, 8

and
flullsmo <6, (29)
then .
u =€ with p € BMO(X,R),
and

lellBmo < 4flullsmo- (30)

The central idea in the proof of Theorem 3 and 4 is the same. We proceed as
follows: (i) We approximate u by our u. (using averaging, @, and projection on S*);
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(ii) We lift u. as ue = €*=, and derive estimates for ¢ — in case of Theorem 4 we
prove (30) for @,; (iil) Finally, we show that ¢. converges as ¢ — 0 to the desired
function ¢ € BMO(X, R).

Our proof of Step (ii) is very different from that in R. Coifman and Y. Meyer
[1]. It relies on the John-Nirenberg inequality, in the form described in Appendix B,
while they used estimates of commutators. We have been informed that L. Carleson,
in a personal communication to Y. Meyer in 1979, also proved Step (ii) using the
John-Nirenberg inequality rather than commutators.

There ig a result which includes Theorem 3 and part of Theorem 4; it involves
u € BMO(X, §') with small distance to VMO(X, S') — see Theorem 5.

Proof of Theorem 3. Since u € VMO(X, S?), there exists some £ > 0 such that for
every € < g9, e = P, is well defined, and converges to v in BMO N L! as £ — 0.
In what follows, we always take £ < g¢, and sometimes restrict ¢ further.

Step 1. There is some ¢; < gy such that for every ¢ < &1, u. may be written as
u, = e'¥* (31)
with ¢. € C°(X,R) and
0 Sf e < 2m. (32)
X
Proof. We rely on Lemma A.23 according to which u is homotopic to a constant
within VMO N L. Denote the homotopy by H(t),0 < ¢ < 1, with H(0) = u, H(1) =
a constant. Since H([0,1]) is a compact set in VMO, by Lemma 4, there is some
€1 < gg such that for every € < g1, H(t). is well defined. It yields a homotopy of u.
to a constant within C°(X, S1). Here we use the fact that ¢ — H(t) is continuous

in L'. We are therefore reduced to the classical continuous case, yielding (31). By
adding an appropriate integral multiple of 27 to ., we may achieve (32).

From now on, € < &1.
Step 2. There is a constant C depending only on X such that

Mi(pe) < 2My(ue) + CME(pe) Yt <ro, Ve<er. (33)

Proof. Since
) 1.
le?t —1 —it] < 5# vt € R, (34)

one easily finds that, for a,F € R,

ga—mgkmméﬂ+%m~ﬁﬂ (35)
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To verify (33) we recall that

Mt(soa)ésupf f le(y) — @e(2)]-
X JB.(2)  Bo(a)

Applying (35), with & = ¢:(y), 8 = ¢.(z) we find, as in (1”), that

zcX

M) < 2My(u >+-supfs()f( loe) — 0e(2)P. (36)

We now use Lemma B.4 to see that the last term in (36) is
< aMtz (pe);

(33) is proved.

Step 3. There is some a > 0 such that

Mi(pe) < AMy(u.) VE<a, Ve<ey. (37)

Proof. Since for € < ¢y, the family (u.) is compact in VMO, there is some a > 0,

by Lemma 4, such that

1
Ma(us) S —_— Ve S £
9C

We now claim that for such a, My(p.) < 5% ¥t < a — which yields (37} via (33).

Indeed, since M;(¢.) tends to zero as t — 0, we see by (33), that My(pe) < 55
in some neighbourhood of ¢ = 0. If the claim were false, then since Mg(yp.) is
continuous in ¢+ — see Lemma A.15 — there would be a first value of £ < a such
that 1

Mi(pe) = PYeh
But then by (33), for that ¢,

Impossible.

Step 4. Existence of . We make use of an elementary, but very useful, observation
of G. David (which simplifies our original presentation).
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LEMMA 9. Let f € C°((0,a),R), for some a > 0, and assume that lin%) ef(e) exists.
e~

Then gl_r% f(e) exists.

The proof of Lemma. 9 is obvious and relies on the connectedness of the range
of f.

Since u: € C°((0,21)x X, S') we may lift it as u. = €™ with . € C°((0,¢1) x
X,R). Recall that linr(l} u.(z) exists at every Lebesgue point z of u. By Lemma 9,
£t

olz) = lir% @.(z) exists at every such z, hence a.e. on X. Moreover u = .
e—

We now prove that ¢ € VMO. From (37) we deduce that, for every z € X,

f f 0e(y) — 0e(2)| < 8My(us) Vr<a, Ve<e..
Br("’) Br(x)

Recall (see Corollary 3) that
M (ue) < C(My(u) + M (u)).

We may then pass to limit as € — 0, using Fatou’s lemma, and conclude that

f el o) <s0M) Vr<a
(%) v Br(z)
It follows, by Sarason’s Lemma 3, that ¢ € VMO.

Step 5. Uniqueness. Suppose ¢; and g2 are solutions of (28). Then

1

= — (1 —3) EZ ace.
n 27r(<p1 ©2) a.e

On the other hand, since n € VMO, ess R(n) is connected, see Item 2 in Section I.5.
Hence ess R(n) is reduced to a point, i.e., 1 is constant; by (28), n = 0.

Step 6. Claim: There exists a > 0 depending only on X such if a < rg and
Ma(u) < o,

then
Ma(p) < AMo(u).

Here v is as in the theorem, and ¢ is the unique solution of (28).

Proof. We may take o = 1/(9C) of Step 3 and repeat the arguments of Steps 2 and
3, deleting € everywhere.
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Step 7. Continuous dependence of u — . At first, let (u;) be a sequence converging

in VMO to u, each homotopic to a constant. We have the corresponding ¢;. By
Lemma 4, we know that there exists some ag such that — for « in Step 6 —

Moo (uj) <o V5.

Hence for a < ag,
My(p;) < 4My(u;) Yy (38)

Since My(u;) — 0 as a — 0, uniformly in j, the same is true for M,(y;). Conse-
quently by Lemma 4, again, the (¢;) lie in a compact set in VMO. A subsequence,
still called (g;), converges in VMO to .

In view of the fact that 0 < fX ¢; < 27 we may assume that

£ (es=w) e

By Lemma 1, ¢; — ¢ + £ =: ¢ in L'. For a further subsequence, still denoted ¢,
0; = @ ae.

1. Continuity from VMO N L' into VMO N L. We suppose, then, in addition that
u; — u in L*. Consequently

u=e"%.

Convergence of the full sequence (p;) follows from the uniqueness of ¢.
2. Continuity from VMO to VMO. We established above that for a subsequence
@i, = @ in VMONL.
We can no longer infer that u = €'; we can only say that
u=e¥+c

for some constant ¢. We need only consider the case ¢ 3 0. In this case, u takes
its values in S N (8! + ¢), which consists of one or two points. Since ess R(u) is
connected (see paragraph 2 in Section 1.5), u must be a constant, thus also . Since
@; — ¢ in BMO it follows that ||¢;||smo — 0. Continuity is proved. O
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We turn now to the

Proof of Theorem 4. Given u € BMO(X,Y), recall that @, is defined for every
€ < ro; by (7),

dist(fie(z), Y) < Me(u) < JJullmo, ¥z € X.

Thus if ||u]lsmo < some small § (depending only on X)), we may define . = P,
for every £ < rg.

Now consider u € BMO(X, S') with |jullamo < 8. We will show that for &
sufficiently small, u = €%, with ||¢|mo < 4]lullBMo-

Step 1. According to Lemma A.18 there is a § depending only on X such that
if |jullemo < d, then for each £ < 79, u. is homotopic (within C°(X,S)) to a
constant. Hence we lift u. and write it as

ue =€, . € C°(X,R), (39)
with
0.<_f$95<271'- (40)
X
By Step 2 in the proof of Theorem 3, we have
My(p.) < 2Mi(u.) + CM2(p.) Vt<ry, Ve<ryo. (41)

Now
Mi(ue) < |luellsmo < Cllae|smo

by Lemma 2, for some constant C.
Using Corollary 2 we conclude that

Mt(us) < C*”U”BMO < C*6 Vi, e < ro. (42)

Next, arguing as in Step 3, we find that if

1
C*§ < —_, 43
o5 (43)
then
Mi{pe) < AMi(ue) Vi, e <rg. (44)

In particular, by (42),

lpellBMo < 4C7[ulBMo < 4C™6. (45)
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Step 2. Existence of . We see, as in the proof of Theorem 3 (Step 4}, that ¢(z) =
lin(l) ¢.(z) exists a.e., and that v = *?. From (45) we deduce that, for every B,(z),
e—

f f 02 () — ee(2)] < 8C" Jullmaro. (46)
B.(z} J By(x)

Using Fatou’s lemma we conclude that ¢ € BMO and
lellBmo < 8C™||ullBmo- (47)

Finally, we get rid of the factor C* in (47). Namely, as in Step 2 of the proof
of Theorem 3, applied to u and ¢, we find

lellemo < 2llullsmo + Cliellimo
< 2||ullBmo + 8C*Cé||¢llBMo

by (47). Assuming 16C*C§ < 1 we obtain the desired conclusion. a

REMARK 11. The reader may think that the space S* plays a special role in Theo-
rems 3 and 4. However this is not the case. One considers, in addition to the target
space Y, a covering space Z. For Y = §%, Z is R.

We denote by F the covering map of Z to Y, i.e., I is onto, and every point
in Z has a neighbourhood U such that F is a diffeomorphism of U onto F(U).

The proof of Theorem 3 extends to give the following:

THEOREM 3'. Any u in VMO(X,Y) which is homotopic within VMO(X,Y) N L*
to a constant map may be written as

u=~Fog for someyp e VMO(X, Z).

In the proof the following inequality replaces (35); here we use a Riemannian
metric on Y (and its lift to Z): For o, 8 € Z,

2
dist(a, 8) < dist(F(a), F(B)) + C dist(e, 8).
Similarly, one has an extension of Theorem 4:

THEOREM 4. There exists § depending on X,Y and Z such that if v € BMO(X,Y)
and Jjullsmo < 6, then u may be lifted to a map ¢ C BMO(X,Z), i.e., u=F oy
such that

lellemo < 4]lullBmo-
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REMARK 12. We have carried out lifting for VMO or BMO maps. Can one do the
same for Sobolev maps, say u € W*?(X, S!)? Some partial results are known (see
F. Bethuel and X. Zheng [1], F. Demengel [1], P. Mironescu in H. Brezis [1]), also
for X with boundary. If X is a bounded domain in R™ then the answer is positive
in the following cases: (a) sp > n (by Sobolev embedding) and (b) s=1,p=2,in
any dimension. However if s = 1 and p < 2, the answer is sometimes negative.

REMARK 13. We now present a lifting result related to both Theorems 3 and 4. In
doing so we consider the class C5 of maps u € BMO(X, 5*) such that

do(u) = dist(u, VMO(X,R?)) < 6 (48)
and such that there is continuous deformation h{t, z),
h € C([0,1],BMO(X, §Y) N L) satisfying
h{(0) = u, h(1) = constant and {49)

do(h(t)) <& Vte[0,1].

Recall that dy is equivalent to M (see Lemma 3'}; in fact My < dp < AM,.

THEOREM 5. There ezist §,C > 0 depending only on X (and o Riemannian metric
on it) such that for every u € Cs, there is a lifting ¢ € BMO(X,R) of u, i.e.,

u=e?, (50)

satisfying
do(p) < Cdo(u). (51)

Here, do(p) = dist(¢, VMO(X, R)).

We do not include the proof here. It follows the lines of that of Theorem 4,
but there are some additional technical points which the reader is spared.

Appendix A. Some useful estimates on BMO, et al.

We present some simple facts about BMO and Sobolev maps on manifolds. These
are well known to people working on the subject, but are not all easily found in the
literature. Unless stated otherwise, X is always assumed to be a connected compact
Riemannian manifold without boundary.
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LEMMA A.1. There exists a constant C depending on X, such that for every
u € BMO(X,R),

fullzsc) < Clulwo + | [ 4. (A1)

Proof. We may suppose that / u = 0. We argue by contradiction; suppose there
X

is no such C. Then there is a sequence u; with / u; = 0, such that
J x

”uj”BMO — 0 and HujHLl =1, (AQ)

Cover X by a finite number of balls B; = B, 2(x;). It follows from the definition of
BMO that a subsequence of the u; converges to a constant a.e., and in L', on each
B;. Necessarily, the constant is the same for all B;. Since / u; = 0, the constant

X
must be zero. This contradicts the second assertion in (A.2). O

LEMMA A.2. Let u € BMO(X,RN) and let F be a uniformly continuous mapping
from RY to RP. Then F ou € BMO(X,RP).

We shall make use of

LeMMA A.3. Let F be a uniformly continuous map of RN to RP. Then F has a
concave modulus of continuity w.

Proof. For t > 0, set
a(t) = sup |F(a)— F(b)].

la—bl<t
It is easy to verify that Vig > 0, JA = A(tg) such that
alt) < At for t > L.

(A depends on the function F'). Hence a(t) < At + afty) Vt > 0. Thus we may
introduce the concave hull w(t) of a(t), namely the least concave function > a.
Since w(t) < A(to)t + a(to) it follows that

li <

7:gr(l)w(t) < afty),

and consequently this limit must be zero. O
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Proof of Lemma A.2. We use (1) and (1”). For any B.(z) in X, € < rq,

fB " fB o [Fu(y)) — Flu(2))| < fB - fB » w(lu(y) — u(2)))
= (fBew) fssm uty) = W)g)

by the concavity of w. Hence, by (17),

1 o ullmo < 10 ully < w(llull+) < w (2f[ullBmo) -

We shall often make use of the following simple

LeEMMA A.4. Given two measurable sets A C B in a measure space, for any inte-

grable function f
ff -1 =11

AR

‘We often refer to this as Lemma A-B.

|B|

SV (A.3)

(A.4)

¥

Proof. Inequality (A.3) is obvious. The first term in (A.4) is bounded by

.,,fo

)

by (A.3). Finally, the second term in (A.4) is bounded by

= (Cm) b
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We now restate and prove Sarason’s Lemma 3’. Recall that for v € BMO
(X,RN) and 0 < a < ro(X)

M, = M,(u) = supf f — 2.(2)] < |[ullByos
B.(z)

eLa
z€X

Mo = Mo(u) = (1%\‘11}] Ma(u).

LEMMA A.5. There is a constant A depending on X (and its metric) such that if
u € BMO(X,RY), then

Mo(u) < dist{u, VMO(X,RY)) < AMy(u). (A.5)
In fact
llw — dellpmo < AM (u) Ve <ro. (A.6)

Proof. To prove the first inequality in (A.5), note that Yu,v € BMO(X,RY),
Mo (u) < My(v)+ M, (u—v) Vac€l[0,r).
For v € C°(X,RY), My(v) = 0 and thus
Mo(u) < Mo(u — v) < [[u —v||mo-
This yields the first inequality in (A.5). O

The other inequality in (A.5) is an obvious consequence of (A.6). The proof
of (A.6) relies on the following simple

LEMMA A.6. There is a number B depending only on X such that for any given
numbers €,8, 0 < ¢ < § < 1o, any ball Bs(x) in X may be covered by a finite
number of balls Be(z;), z; € Bs(z),1 = 1,...,K, such that dist(z;,z;) > ¢ for
i #7, and

K
> " |Be(@:)] < B|Bs(2). (A7)

1
Proof of Lemma A.6. Let B, js(z:),i=1,..., K, be a maximal collection of disjoint

balls with centres z; in Bs(x). From the maximality, it follows easily that
UB(z;) D Bs(x).
Since
Be2(%:) C Bsyej2(x) C Bas(x),

> " |Beja(@i)] < |Bas(x))-
> IBe(@:)] < CZ | Be/a(zi)]

< C[Bas(z)| < C|Bs(z)]-

Therefore
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‘We now return to the

Proof of (A.6). We first claim that
[ (y) — Ge(2)] < OM(u) Ve <1y, Vy,z€ X with d(y,z) <¢e/2, (A.8)
where C depends only on X.
Indeed, by Lemma A-B (i.e., Lemma A.4), the following inequalities hold:
|Te/2(y) — Be(z)] < CMe(u), (A.9)
[Tie/2(2) = Ge(z)] < CM(u) Ve <1y, VzeX. (A.10)

Their combination yields (A.8).
For & < ro we have to estimate ||u — %, ||smo; more precisely we want to show

that for any Bs(z) C X, § < 7o,

I= (u—a,) —-ﬁé(m)(u—~ﬂs)

< AM,(u). (A1)

Bj(z)

We distinguish two cases.

Case (i): § < e/4. We have

I gfw) ;u-afw ul '*fw me) 7 (y) — a(2)]

< Ms(u) + CM.(u) by (A.8),
< CM,(u) since § < e.

Case (ii): 6 > £/4. We now use the covering of Bs(z) by Bgja(z:), 1 = 1,..., K
given by Lemma A.6. Then

f<2i—l-— o — |
~ 4 |Bs(z)] v

Bs/2(zi)

50 that

K
<L, b ((0) = e a:)| + e ) — e )|+ ()~ 0]

‘ Bola )lM (u)ZiBs ()| by (A.10) and (A.8).

Using Lemma A.6 we conclude that

1 < CM.(u).
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A simple consequence of (A.8) is the following: For any two points y,z in X,
with d = dist(y, 2) > /2,

dist(y, z)

lg-(y) — @(2)| < C c

where C depends only on X. Indeed there is a chain of points ¥, ¥1,¥2, .- -, Y%—1, 2,
with =1+ [Za—d], such that the distance of any two successive ones is bounded by
/2. Adding the corresponding inequalities (A.8) we obtain (A.12).

Returning to Lemma A.2 we know that F ou is in BMO whenever u € BMO
and F is uniformly continuous. The same holds in VMO:

LEMMA A.7. Let u € VMO(X,RY) and let F be a uniformly continuous map from
RY to RP. Then
Foue VMO(X,RP).

Proof. Recall — see the proof of Lemma A.2 — that

fe(m)fe(@ |[F(u(y) — Fu(2))| <w (fsg(w) fgs(x) lu(y) — “(Z)I) ,

Since the right hand side goes to zero as ¢ —+ 0, we conclude by Sarason’s charac-
terization of VMO that F o € VMO(X,RP). O

We now take up a more delicate property, namely the continuity of the map
u > F(u). The map F induces a map ¥ from BMO(VMO) into BMO(VMO). We
show that ¥ is continuous at every point u € VMO. We show also that ¥ need not
be continuous outside VMO.

LEMMA A.8. Let F be o uniformly continuous map from RN to RP. Then ¥ is
continuous in the BMO N L* topology at every point u in VMO(X,RY).

Proof. Let u be in VMO(X,RY). Given ¢ we shall show that there exists 7 > 0,
depending on ¢ and u, such that if v € BMO(X,R") and |jv||smo + |[vfz: < 7,
then

[ F(u+v) — F(u)|]smo < e,

i.e., we show that for any ball Bs(z) in X, § < rg,

7= st(m) ﬁa(m) IF (u(y) +v(y)) ~ Fu(y))
— (P(u{z) + v(z)) — F(u(z))) | <e.

(A.13)
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For £ € X, p e RV, set

G(&;p) = F(u(€) +p) — F(u(¢))-

Given a measurable set A in X, we wish to estimate
[ f fA Gy, v(y)) — Gz, (=) dzdy. (A.14)
A

We make use of the concave modulus of continuity w of F' of Lemma A.3 and

establish two estimates for I:
<2 (f ;vi) (A.15)
A

I<2w <2f4fu—f/§uy) +w<2fA{v—fAv|). (A.16)

Since G(&,p) < w(lp|), we have

and

I< zfA Gy, v(w))] < 2fA w(lo())

(£

To prove (A.16), we rely on an obvious inequality:

1G(&,0) — G(n,9)] < 2w(lu(§) —uln)]) +w(lp — gl). (A.17)

IA

by concavity of w. We have proved (A.15).

Using (A.17) in (A.14) we find

s fAfA [2w(ju(y) — u(2)]) + w(lv(y) — v(2)))] dzdy

<2 (f f 1)~ )+ (f f o) - o021

This yields (A.16) (as in (1")).
Recall now that ¢ is fixed and we wish to find 7. Since u € VMO, there exists
b < rg, such that for every § < g and every x € X,

2w (Qf U -% U ) < f.
Bs () Bs(z) 2
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Hence, taking A = Bs(z), we see from (A.16) that

I< < +w Qf v —f v
2 Bs(«) Bs(=)

Now we explain how to choose 7. We first require that

2

) < = +w(llollsmo)- (A.18)

w(2r) < /2, (A.19)

so that, by (A.18), I < ¢ whenever § < §g. It remains to consider the case where
§ > 6g. Here we use (A.15) to conclude that

1< 2w (I—Bé(?)‘!) < 2w(ar)

where o = Sél)[g I_E;,l—(?v)—!' Choosing 7 > 0 such that 2w(a7) < &, we obtain the desired
T

conclusion, I < ¢, in both cases (6§ < g and § > &p). O

REMARK A.1. The following example shows that the map ¥ of Lemma A.8 need
not be continuous at a point u in BMO(X,RY). Here we take X = R, — it is not
compact, but our functions will all have support in [-1,1].

Let o be a positive function in VMO with support in [—1,1], even in z, de-
creasing and continuous on (0,1) and

lim o(z) = oo.

z—0
Consider
0 forz<0
u(z) = —1 for0<x<%
0 forz> %

Set F(s) = s, so that u™ = F(u) = 0. F is clearly Lipschitz but we claim
that for v; = 0/j,

1 F(u+ v;) — F(u)|lsmo > % for j large. (A.20)

To see this, observe that there is a unique §;,0 < 6; < 1, such that ¢(é;) = j. Then

v; for z <0,
Flu+wv;)=4qv;—1 for0<z<dy,

0 for z > §;.
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3;
J:f
8

3

Flu+ v, =—,f a—wzf v~ .
f-aj ( i) JJo 2 —3; 72
85 84 1

J:f vj+u—f v+ =

_s 5, 2

3 3

> fut 51 = lllawo

A

Set
s

Flu+v;) — ’ F(u+v;)

—&;

One checks that

Hence

= 5 = llvsliemo
which yields (A.20).

By a small modification of the F' above, we may prove that
1
IF(u+0;) = F(w)lanio > ¢

for j large — for a smooth function I for which the Lipschitz constant is 1. Namely,
take F to be any smooth nondecreasing function on R with ' < 1 such that

s fors>0
1

T ( —1.
3 or s <

Later we shall have need of an extension of Lemma A-B — where some aver-
ages are taken with respect to a positive weight function w satisfying

1
— < < C
Oo_w_ (3]

for some constant Cp > 0. For any measurable set X, and integrable function f on

%) we denote .
fz,wf:: (/E w) /wa‘ (A.21)

LEMMA A.9. Let A C B be measurable sets in X. Then

ﬁf—fq’wf ) 141

<ACE

il , (A.22)
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" £ -1 sl=wcizf {1 (A.23)
Proof. Using Lemma A-B repeatedly we find
A AR A A R
<Bflf+ () Ll-£)
<2f, =1+, f
<20+l
This proves (A.22).
Turning to (A.23), we have
U AR
SCAGE AN f
as above,
O

Next we establish the fact that the BMO notion is invariant under C? diffeo-
morphism. It is a simple but essential fact.

LEMMA A.10. Let ¢ : Xy — Xy be a C' diffeomorphism of a smooth com-

pact n-dimensional Riemannian manifold without boundary onto another Xs. If
f € BMO(X5) then f op € BMO(X:) and

I f o @llBmocxy) < CllfllBmoxs)- (A.24)

Here C depends only on the Riemannian manifolds X;, X,.

Proof. 1t is not difficult to verify that there are constants 9, X' > 0 depending only
on X and X, such that for every z € X1, and every ¢ < &g

BE/K(SO(J:)) c ‘P(Bs(x)) c BEK(‘P(:E))' (A'25)
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Here ¢¢ is less than the injectivity radius of X; and oK is less than that of Xs.

For f € BMO(X3), set g = f o. To prove that g € BMO(X;) it suffices, by
Remark 1 in Section 1.1, to show that V€ € X;, Ve <egg

sup f 19— 2:(6)| < Cl|fllsvto- (A.26)
B.(¢)

e<eq
£cXy

We proceed to estimate

J :fB o= a0

by changing variables; we require ¢ < g¢. Setting A, = (B, (£)) we see easily that

J=m€—l(§)|/Ae|f—§a(£)lw=fA

where w is a smooth positive function obtained by the change of variables.
On the other hand

5(6) =f35®g= IFI@/A fwdn:f/{wf

/ =B

Using Lemma A.9 and (A.25) we obtain the desired conclusion. O

'f - gs(§)|7

&

since

Here is another proof of Lemma A.10. In view of (1’) and (1”) we estimate

I= - z
fw fw @) — Fo(2)]
C
= TB.@P /sowe(w)) L(&(w)) I7m) = 76)

=¢ - (&), by (A.25),
stKW(ﬂU))fBEK(W(m)) Lf(m) — (&) y (A.25)
< C| fllsmo-

O

Next we take up the proofs of two approximation lemmas of Section 1.1: Lem-
mas 7 and 8. We restate them.

Let X,Y be our usual compact connected manifolds without boundaries. X
has a Riemannian metric, dimX = n, and Y is smoothly embedded in RY. (Here,
Y need not have the same dimension as X.)
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LeMMA A.11. Given u € WH(X,Y) i.e., u € WH™(X,RY) and u(z) € Y a.e.,
there exists a sequence (u’) of smooth maps from X to Y tending to u in W™,

Proof. We first construct a sequence (v/) C WH™(X,Y) N C%X,Y) tending to u
in WH™(X,RY). Cover X by a finite number of balls B, sa{ai) = B;. Let (; be a
subordinate partition of unity on X. Set u; = (u; clearly u; € WH™(X,RV). Let
¢ be the smooth diffeomorphism (given by geodesic normal coordinates) from the
Euclidean ball By, (0) onto By, (a:), ¢(0) = a;. Denote by v; the transplant of u; to
B,,(0), ie.,

vi(§) = wi(p(§)) for £ € By, (0)

v; has its support in B, /4(0) and belongs to W™ Denote by 7; () the Euclidean

average of v; in B(§)
Bie(€) = f Yi-
B:(§)

It has support in B, /5(0) if ¢ < ro/4, which we always assume. It is well known
that ¥; . — v; in WH™(R™). Carrying back ¥; . to X, we set

’é}ng,g(l') - 'Ei,s(@_l (.’E))

It has support in B, /5(a;), and converges to u; in Wi (X, RY). Set
U’é: friond Zui,g_ <A27)
Clearly u. € CO(X,R¥)N W™ and u, — u in WbH™ as e — 0.

CLAIM.
dist(uc(z),Y) =0 ase — 0, uniformly inz € X. (A.28)

The main ingredient in proving the claim is the assertion that for every i,

Je(x) ::f lui(y) — us o (z)|do(y) = 0 uniformly in z € X. {(A.29)

Assuming (A.29), the claim follows easily because

Zfs © lui(y) — wi(x)|do(y) — 0.

The left hand side majorizes

f () — ue()|do(y) > dist(ue(z), ¥).
B.(x)
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Then (A.28) holds.

Proof of (A.29). Note that J.(z) = 0 if z ¢ B, /2(a:).

We may write
1

RG] Ac(z)
where A.(z) = o(B.(£)) and £ = ¢~ (z).

Here w is a smooth function coming from the change of variables, and

Ui e (:E) U W

1
— < w<C
CO_W_ O3

with Cy depending only on X. Recall that

/ w = [B.(6)),
A (x)

so that, using the notation (A.21),

uie(z) = fAs ) ;. (A.30)

1

As in the proof of Lemma A.10, there are constants 0 < g; and K > 1, such
that
Be/K(x) C AE(LE) C BEK(HZ) Ve € Bm/g(ai), Ve < &1,

and we require that &1 K < rg/4.

Returning to J., we have

Je(o) = f

<C

O "
e,

BsK(-’E) (w),w

Applying (A.22) of Lemma A.9, we find

Je(z) < C’f U; —f Ui
BEK(‘”) BEK(W)

By Example 1 of Section 1.2, J.(z) — 0 as £ — 0 uniformly in z € X.
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To summarize, we have a family u, € WH™(X,RY) N C%X,RY) such that as
£ =0, ue — u in WH™ and dist(u.(z),Y) — 0 uniformly.

Using the projection P onto closest point in Y, the functions
e = Pu,

take values in Y and tend to u in W™, since in general, as is well known, u — F(u)
is continuous in WbP if F is Lipschitz and smooth. Letting ¢ — 0 through a sequence
g5, the functions

= g,
belong to C%(X,Y) N WH™(X,Y) and tend to v in WhH™.
For each fixed j there is a smooth map u/ from X to Y with

|

W — W Jppan + Ju? — 3o < =

o

~— by standard smoothing and projection on Y. O

REMARK A.2. R. Schoen and K. Uhlenbeck [1] use a slightly different, but natural,
approach in their proof (for n = 2). Namely, they embed X in some R, and extend
u to a tubular neighbourhood of X as constant on normals to X. They then mollify
the above extension .

REMARK A.3. In Lemma A.11 if « is merely in W3?(X,Y), 1 < p < n and also in
VMO(X,Y), then there is a sequence (u/) of smooth maps of X into Y, tending to u
in WP and in BMO. This is proved in essentially the same way as the lemma, using
in addition Lemma B.8 below. The latter is used to ensure that u; = (;u € VMO.

Essentially the same argument as in the proof of Lemma A.11 yields the fol-
lowing more general form:

LEMMA A.12. Assume u € WSP(X,Y) with sp = n, 0 < s < n (s may or may
not be an integer). Then there exists a sequence (u) of smooth maps from X toY
tending to u in W*P.

We use here Example 2 of Section 1.2 instead of Example 1, and standard
properties of W#P. A special case of Lemma A.12 occurs in F. Bethuel [2].

LEMMA A.13. Assume Q C R"™ is a smooth bounded domain with connected bound-
ary 00, Let u € WH(Q,RN) be such that

w0y CY
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where Y 1is, as usual, a compact connected manifold smoothly embedded in RN,
Then there exists a sequence (u;) of smooth maps from 2 to RN such that

w;(09) CY  Vj

and
u; > u in WHH(Q,RY).

Proof. Set ¢ = ujaq, so that ¢ € Wl_'vlf’”((‘?Q,Y). Applying Lemma A.12 with
X =08Q,s=1—1,p=n (note that dimX = n — 1), we obtain a sequence (¢’) of
smooth maps from 9 to Y such that

o = i Wimsm(9Q,RN).
Let v; be the harmonic extension of ¢ in . It is well known that
v; v in WLn(Q,RV),

where v is the harmonic extension of ¢ in .
Since u — v € Wy (€, RY) there is a sequence (w;) in C°(Q,RY) such that

w; — (u—v) in WH(Q,RV).
The sequence u; = v; + w; has the required properties. g

REMARK A.4. The same argument as in the proof of Lemma A.13 shows that if
u € WHP(Q,RY) with 1 < p < n and

w(0Q) CY

with ujan € VMO(O,Y'), then there exists a sequence (u;) of smooth maps from
Q0 to RY such that u;(0Q) CY Vj and u; — u in WHP.

If we do not make the assumption that ujsn € VMO(O9Q,Y) then the conclu-
sion may fail. Here is an example. Let Q = By C R?, let Y = S' and take p = 2.
We use coordinates z = (21, 2, z3) = (2', z3). Consider the map

/

o(z) = !—@7‘ defined on 89, with values in S*.
z
It is smooth except at the north and south poles. Near there, it belongs to W12(9(2)

for any ¢ < 2; in particular, it belongs to H*/2(6Q,R?) — by Sobolev. Hence ¢
admits an extension u into 2, belonging to H'(2,[R?). Suppose there is a sequence
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of smooth maps u; — » in H*(,R?) and u; : 82 — S*. Then on some disc
D = {z3 = constant} N Q, u; — u in H'(D), and therefore u — u in HY/2(4D).

By Theorem 1,
deg(u;,dD, ") = deg(u, 0D, S*) for j large.

Clearly the right hand side equals 1. On the other hand the left hand side is zero
because 9D is the boundary of a spherical cap on 02, which is mapped by u; into
St

The argument is related to one of R. Schoen and K. Uhlenbeck [1], in which
they prove that the map z/|z| of Q above into 5%, cannot be H'-approximated by
smooth maps into §2.

Returning to the function M; defined before Lemma 3/, we prove a useful fact:

LEMMA A.14. There is a constant A depending only on X, such that for
u € BMO(X,RY),
Mzt(u) < AMt(’U,) Vit < ’:"Q/2.

Proof. In view of (1), (1”) we estimate, for ¢ < § < 2¢,

- fBM fw) uly) - u(2)l

Using Lemma A.6, with ¢ = ¢, we cover Bs(z) by balls By(z;), with dist(z;,z;) >t
fori# j, and

> |Bi(ws)| < C|Bs(z)].
Thus

IBs [Z /Bt(m /Bt(mj) )~ ule) |+Z/ e /Bt(m,-) lu(y) —u(z)|

The last sum is bounded by

2M, (u Z|Bt 2> < CMy ()| Bs ()|
while the first sum is bounded by
>/ n / . [eum — ()| + () — Ba5)] + [me() — ()

< 2My(u) Y |Bi(@s)| [Beleg) + Y |e(w:) — @elz;)] |Belwi)] | Be(w)]-
i#j i
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Since dist(z;,z;) < 26 < 4¢, we find using (A.12) that the expression above is
bounded by
CMy(u) ) |Bu(2:)| |Bela)| < CMy(u)|Bs(2)P.
i#]

Thus we conclude that

O

LEMMA A.15. For any u € BMO(X,RY) the function t — My(u) is continuous in
{05 TO) .

The proof is left to the reader.

We now turn to the proof of Lemma 4 (the characterization of compact sets
in VMO), which we restate

LEMMA A.16. A set F in VMO(X,RY) is relatively compact if and only if

li_r)% M(u) holds uniformly in u € F.

After the statement of Lemma 4 we proved =>. Now, we prove <.

It suffices to show that for any given § > 0, F may be covered by a finite
number of balls in BMO of radius 6. We may assume that

/u:ﬂ Yu € F.
X

We denote by 4. the e-averaging iterated twice. Applying Lemma 3’ repeatedly we

flu — tellBmo < f|lu — GellBmo + ||@e — TellBmo
< AM,(u) + A M(c)
< AM.(u) + A M (@ —u) + A M. (u)
< 2A M, (u) + Al|Te — ullpmo < (24 + A?) M. (u).
By our hypothesis there exists £, 0 < € < rg such that
Hu - {753!}31\40 < 3AME(U> <6/2 YuelF.

Fiz this ¢. In view of Remark 1,

HU“BMO <C YuerF
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and then by Lemma 1,
lullzr € C Yue F.

(Here, and in what follows, all the constants C depend on ¢, which has been fixed.)
Consequently,
ez + (Bl <C Vu € F. (A.31)

We now claim that the family (%.), v € F, satisfies the conditions of the
Arzela-Ascoli theorem; more precisely, there is a constant C' such that

J = 8(2) — u.(y)| < C dist(z,y) Ve,yeX, VueF. (A.32)
Proof of (A.32). We distinguish two cases:
Case 1: dist(z,y) > £/100, In this case

J < 2|l < C.

Case 2: dist(z,y) < £/100. Then

I 1 B 1
|Be(z)]  |Be(w)l

] < C dist{z,y).
Thus

= /Ba(m fiele) /Bs(x) nele) - /Baw) wel?)

‘We have only to estimate the last term, K. Let S be the symmetric difference of
B.(z) and B.{y), i.e., S = (B:(z) U B:(y))\(B:(z) N B.(y)). Clearly,

SC (Be+dist($,y)(x)\B€($)) U (Be+dist(:c,y)(y)\Be(y)) .

11 “ 1
1Be(z)]  [B()l|  |B:(w)l

Hence
|S| < Cdist(z,y)

and therefore
K < C|S ez~ < Cdist(z,y) by (A.31).

The desired inequality {A.32) follows by combining this with the earlier estimate.
Returning to the proof of Lemma A.16, we may now assert that the family
(), u € F, is relatively compact in C°(X,RY) and thus in BMO(X,R"). We may
cover the family (%.) by a finite number of balls in BMO(X,RY) of radius §/2. The
concentric balls of radius  then cover F. O
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We mention a simple application of Lemma 3 to the sequence of truncates.
Given a real-valued function f on X and an integer k, set

k if flz)>k
ff) =4 flz) if-k<flz)<k
—k if f(z) < —k.

LEMMA A.17. For every f € VMO(X,R) the sequence (f*) converges to f in
BMO.

Proof. Given any 4§ > 0 we will show that there exists kg such that
Il = f¥llBmo < & for k > kq.

Consider any B(z) in X. We have

e . { PO RFCIE fBM fm ) - F) k.

It follows, with the aid of Lemma 3, that there exists g > 0, such that
£ W=-m-f (=MI<s fre<a,
B () Be(z)

Since f* — f in L', the same inequality holds for ¢ > eq provided k > ko, for some
ko depending on £g. O

REMARK A.5. If f € BMO(X,R) then {f*) need not converge to f in BMO. (It
is easy to construct an example using f(z) = log|z|; recall that this f belongs to
BMO, but not VMO — see Example 3 in Section 1.2).

We now present various results concerning homotopy properties for BMO
and VMO maps. They are used in the proofs of Theorems 3 and 4, as well as in
paragraph 1 of Section L.5. Let X, Y be our usual compact connected manifolds
with X Riemannian (X and ¥ need not have the same dimension.)

LemmA A.18. There exists § > 0 (depending on X,Y) such that for every
u € BMO(X,Y) with |lu|lsmo < & and every € € (0,70),ue is homotopic within
C%X,Y) to a constant.

Proof. First observe that

dist (G.(2),Y) < llullBmo Vz € X, Ve € (0,79) (A.33)
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and thus u, = P, is well defined for every & € (0,rp), provided |jullmo < & < g,
with 8y sufficiently small. Moreover, u, is homotopic to u. within C°(X,Y) for
every €,¢’ € (0,70), using the deformation useq (14,0 <t < 1.

Fiz any € € (0,r¢) — for example ¢ = r/2. We have, by Lemma A.1,

() -fxu] < I—If@ /X u —fxu‘ < Cllullsmos; (A.34)

here C also depends on ¢, but ¢ has been fixed and we do not stress the e-dependence.
Combining (A.33) and (A.34) we obtain

dist ((1 — B (x) + tf U, Y) <(C+1)|ullpmo VzeX, Vtel[0,1].
b'e

P((l—t)ﬂﬂutfu),ogtgl,
X

is well defined provided |ujlsmo < § < é; with §; sufficiently small. Hence u. is
homotopic within C°(X,Y’) to a constant, via ¢ € [0,1]. O

Thus

LEMMA A.19. Given u € VMO(X,Y) there exists § = d(u) > 0 such that every
v € VMO(X,Y) satisfying

v — ullsymo + lJv —ulz: < &

is homotopic to u within VMON LY. Moreover § is uniform when u lies in a compact
subset F of VMONL*.

Proof. We argue by contradiction and assume that there is a sequence (u;) in
VMO(X,Y) such that u; — u in VMONL! and each u; is not homotopic to u
within VMO N L.

In view of Lemma 4 and (7) we know that there is some ey > 0 such that u;,.
is well defined for every j and every € < . Fiz any ¢ < &¢. Since u; — u in L*,
we deduce that u;. — u. uniformly, as j — co. In particular, for j large, uj. is
homotopic to u, within C°(X,Y) — and thus within VMO N L.

On the other hand, u. is homotopic to u within VMO N L' (through wuy, by
Corollary 4), and similarly u;,. is homotopic to u; within VMO N L*. Therefore u;
is homotopic to w within VMO N L. A contradiction.

The fact that § is uniform when u € F is easy to establish by contradiction.
If not, there would exist equences (u;) in F and (v;) in VMO such that

flv; — ujllBmo + flv; — ullze — 0

and, for each j,u; is not homotopic to v; within VMON L.

Since F is compact we may assume, for a subsequence, that u; — u and
v; = u in VMON L. From the first assertion in the lemma we deduce that u; and
v; are homotopic to « within VMON LY, for j large. A contradiction. |
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LEMMA A.20. Assume u,v € C°(X,Y) are homotopic within VMONL'. Then
they are homotopic within C°(X,Y).

Proof. Let H(t) be a homotopy connecting v and v within VMON L. Since F =
H(]0,1]) is compact in VMO, we know by Lemma 4 that H(t). is well defined for
all € < gg and all ¢ € [0, 1]. Fix any ¢ < &¢. Since H € C([0,1}), L*) we deduce that
H(t). is a homotopy connecting u. to ve within C°(X,Y’). On the other hand, u. is
homotopic to u within C°(X,Y) (via us. ), and similarly for v and v.. Thus, u and
v are homotopic within C°(X,Y). a

Given a homotopy class C in C%X,Y) we denote by C its closure in the
VMO N L topology.

LEMMA A.21. Ifu,v € C, then u is homotopic to v within VMONL'. Conversely,
if u,v € VMO(X,Y) are homotopic within VMOnN L', then there exists a unique
homotopy class C in C°(X,Y) such that u,v € C.

Proof. The first assertion is clear from Lemma A.19. We turn to the proof of the
converse. Let (u;) be a sequence in C°(X,Y) such that u; — w in VMONL!
(we may for example take u, with ¢ = 1/j). Similarly, let (v;) be a sequence in
C°(X,Y) such that v; — v in VMON L. Applying Lemma A.19 we see that u;
is homotopic to v within VMO N L! for all j > N. Similarly, vy is homotopic to
v within VMONL! for all k¥ > N. Hence u; is homotopic to vy for all j,k > N,
within VMO N L. We deduce from Lemma A.20 that u; and vy are also homotopic
within C°(X,Y). Consequently there is a homotopy class C in C°(X,Y’) such that
uj,v; €C Vj > N. Thus u,v € C.

Finally we prove the uniqueness of C. It suffices to show that if C; and (5
are two homotopy classes in C%(X,Y) such that C; NCy # &, then C; = Co. Let
u € C1 NCy and let (u;) C Cr,(v;) C Co be sequences such that u; — u in
VMON LY, v; — w in VMO N LY. In view of Lemma A.19, we may assume that u;
and v; are homotopic to u within VMONL! for all j. By Lemma A.20 we know
that u; and v; are homotopic within C%(X,Y), i.e., C1 = Ca. O

In what follows we consider the special case where Y = S*, k > 1, and we show
that some of the properties concerning homotopy can be improved. One suprising
fact is that the notion of “homotopy within VMO” is equivalent to the notion of
“homotopy within VMO N L'” (see Lemma A.23).

Throughout the rest of Appendix A we take Y = S* k > 1. A basic ingredient
is

LEMMA A.22. Letu € VMO(X,Y) be such that for some constantc £ 0, u+c€Y
a.e. Then u is homotopic to a constant within VMONL. In particular, u is ho-
motopic to (u + ¢) within VMONL*.
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Proof. Set £ =Y N(Y — ¢); since ¥ # Y, it is contractible to a point in Y, ie.,
there is a continuous map h{t,o) : [0,1] X £ = Y such that h({0,0) =0 Yo € &
and h(1, o) is a constant.

Set
H(t,z) = h{t, u(z)).

It is easy to verify (using Lemma A.7) that
H ¢ ¢([0,1],VMO N LY);

moreover H(0,z) = u(z) and H(1,z) is a constant. 0

Next, an improvement of Lemma A.19.

LEMMA A.19". Given v € VMO(X,Y) there exists § = 6(u) > 0 such that every
ve VMO (X,Y) satisfying
v = ullBmo <4

is homotopic to u within VMON LY. Moreover 6 is uniform when u lies in a compact
subset F of VMO.

Proof. We argue by contradiction and assume that there is a sequence (u;) in
VMO(X,Y) such that u; — v in VMO and each u; is not homotopic to v within

VMONL!.
¢ :f(uj—u).
X

Set
Passing to a subsequence we may assume that ¢; — ¢. Then, by Lemma. 1, u; — u+tc
in L.

In view of Lemma 4 and (7) we know that there is some ¢¢ > 0 such that u, .
is well defined for every j and every ¢ < g¢. Fiz any ¢ < €q. Since u; — (u+¢) in
L! we deduce that u; . — (u + ¢). uniformly as j — oo.

In particular, for j large, ;. is homotopic to (u+ ¢). within C°(X,Y) — and
thus within VMO N L1,

On the other hand, (u + ¢). is homotopic to (u + ¢) within VMONL! and
similarly u;. is homotopic to u; within VMONL!. Therefore u; is homotopic to
(u + ¢) within VMONL? for j large.

Finally, we apply Lemma A.22 to assert that (u -+ ¢) is homotopic to v within
VMONL* (this is also true when ¢ = 0!). Hence u; is homotopic to u within
VMONL! for j large. A contradiction.

The fact that ¢ is uniform when u € F, a compact subset of VMO, is derived
as in the proof of Lemma A.19. O
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LEMMA A.23. Assume u,v € VMO(X,Y) are homotopic within VMO. Then u,v
are homotopic within VMONL*.

Proof. Let H(t) be a homotopy connecting u to v within VMO. Let F = H([0, 1]),
so that F is compact subset of VMO. Let ¢ be as in Lemma A.19’ (relative to F).

There is a chain u = ug, u1, . . . , Ug, Ug+1 = v in F such that |Ju;41 —u;llBmo < 6 for
i=0,1,...,k. Thus u;;; is homotopic to u; within VMONL! for i = 0,1,..., k.
Consequently v is homotopic to u within VMO N L. O

REMARK A.6. The conclusion of Lemma A.23 may fail for a general manifold Y.
Consider, for example, a manifold ¥ lying in R® diffeomorphic to a 2-d torus T2.
Assume that Y contains a circle ¥ contractible to a point in Y and another circle
Y = % + ¢ (for some constant ¢) such that £’ in not contractible to a point in
Y. Let X = ¥; the map u(x) = z is homotopic to a constant within VMON L}
and the map v(z) = z + ¢ (viewed as a map from X into Y) is not homotopic to
a constant within VMON L' (by Lemma A.20). On the other hand u and v are
clearly homotopic — in fact they are the same — within VMO.

LEmMMA A.24. Let C be a homotopy class in C°%(X,Y). Then its closure C in
VMON L' coincides with its closure C in VMO.

Proof. Clearly C C C. To prove the reverse inclusion, consider some u € C. There is
a sequence (u;) in C such that u; — » in VMO. By Lemma A.19', u; is homotopic
to u within VMON L for j sufficiently large. Applying Lemma A.21 we conclude
that u € C. 0

Appendix B. John-Nirenberg inequality on manifolds, et al.

We begin by stating of the John-Nirenberg inequality on a cube Qg in R* (with
edges parallel to the axes). It is inequality (3)” in John-Nirenberg [1]:

There exist 8, A > 0 depending only on n such that if u € BMO(Qo, R") and
llullsmo(@e) < 1, then

/ <eﬁ|u-ﬂczo1 — 1) <A lu — tig,| (B.1)
0 Qo

where G, = £, u-

Here, || ||smo(g,) refers to the sup in (1) taken over all parallel subcubes rather
than balls.



256 H. BrEzi8 AND L. NIRENBERG

An immediate consequence is: for p an integer > 2,

A
u— 1 Pg-—-—p!/ I T
/Qof al < ot [ jusal
The scaled version of this is
fQ \'U' -'EQin < H HBMO(QO)/ ﬂQoi
0

(B.2)
< o /Q Ju- g,

with C depending only on n. It follows directly that, for a different C, depending
only on n,

/O/ u(y) —u(2)|P < C’Pp'Hui BMO(QO)/O/QO [u(y) — u(z)|. (B.3)

We wish next to present corresponding inequalities on a compact manifold X,
without boundary. Here is a form of (B.3) on X.

LEMMA B.1. There exists a constant A depending only on X, such thatVt < ro/+/7,
Vz € X,

/ / ) —uP <MW [ [ ) -ue) (B4
Bi{z) J Bi(z) Bii(z) J Bre(z)

where k = /n.

Proof. We use geodesic normal coordinates in B;(z). Then one easily sees that

-/ By /B ) —uep < /Q /Q la(y) ~ (=)

where in the right hand side @ is a cube centred at the origin (in our coordinate
patch) with side length 2¢, and 4(y) represents the transplanted function. Here C
comes from the change of variables, and depends only on X. By (B.3),

1< 07820 //|u(y ) — iz (B.5)

CrAIM. There is a constant C depending only on X such that

allsmoo)y < C M(u). (B.6)
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Assuming that (B.6) holds, the proof of (B.4) is easily completed, since Q is
contained in the transplant of By:(z) so that

/Q/Qlﬁ(y)“—ﬁ(zﬂ SC/BW) /Bw) lu(y) — u(z)].

Proof of (B.6). We have to estimate for any parallel subcube 65 of @3, centred at £,

of side length 27,
= i) -ac)

in terms of M,(u). Q is contained in a ball By, (¢). Its transplant to X is contained
in a ball Bg, (%) and contains B, k(%) where Z is the transplant of £ and K is a
constant depending only on X (see Proof of Lemma A.10). Hence

J< Cfm@ me(@ lu(y) — u(z)| < 20 Mx(u). (B.7)

where C depends only on X.
By Lemma A.14 applied a number of times, we find that

J < C M, (u).

Inserting this in {B.7) we obtain (B.6).
Lemma B.1 is proved. ]

The next result is a more global form of Lemma B.1.

LEMMA B.2. For every t < ro//n, and for every integer p > 1, there is a finite
number of balls By(z;) in X, i=1,...,m, depending on t, such that

1
ulP < AP !Mp‘lu/ ul +2° "’_—/ )
/Xl [P < APpIME ™ (u) Xi i ;|Bt(mi)|7"1 By (z;)

where A depends only on X.
Before proving Lemma B.2 we present some more civilized corollaries.

P

(B.8)

LEMMA B.3. There is a constant A depending only on X such that for p > 1, an

integer,
[ lu= b < el = f ol
X X

Proof. We may assume [, u = 0. In (B.8) we choose t = ro/+/n. Then we have

[ b < arptlulgolul .+ 47l

The desired conclusion follows with the aid of Lemma 1. O
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Another consequence is

LEmMA B.4.

squ f [u(y) — u(2)|? < APpIMF (u), Vit <.
2€X J By(z) J By(x)

Proof. For t < r9/+/n, the claim follows immediately from Lemma B.1 with the aid
of Lemma A.14. Suppose 75/+/T < t < rp; we may assume that [ %= 0. Then the
desired result follows easily from Lemma B.3. O

Another simple consequence of Lemma B.3 is

LEMMA B.5. Given 8 > 0, there is a number 3 depending on 8 and on X such that

if lullBmo < 1, then
/X (e 1) <0 /X o —

We point out that Lemmas B.3 and B.5 may be proved in a more direct
fashion, not via Lemma B.2. Namely, one starts by proving, directly, Lemma B.5
using (B.1) locally and summing, as we did in the proof of Lemma B.1. Lemma B.3
follows from Lemma B.5.

where @ = fy u.

We now turn to the proof of Lemma B.2. We shall make use of the following
covering lemma:

LEMMA B.6. Given t,0 < t < rg and k > 1, there is a covering of X by a
finite number of balls Bi{z;), i = 1,...,m = m(t) with the property that every
y € X belongs to at most p balls By (z;), where i depends only on k and X. p is
independent of t.

Proof. Consider a maximal family of disjoint balls in X of radius /2 : By/2(z:),
i = 1,...,m. Clearly the By(x;) cover X. Suppose y € X belongs to u of the
Byi(2), say for ¢ = 1,..., u. Since dist(y, z;) < kt, i =1,..., 4, it follows that

Bt/z(xi) C B(k+%)t(y)7 7= 1, ey M

Since the balls B;/3(x;) are disjoint, we find on adding their measures, that

"
> |Byja(z)| < 1Brr2):)l-
i=1
Using the fact that
ar™ < |B,(z)] € gr™ Vr,

for some positive constants «, 3 depending only on X, we deduce a bound for p
which depends only on k and X. N
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Now the

Proof of Lemma B.2. Observe first that for any ball B = By(xz),

W) < (F e a@r) )
B B
< VB £ utw) - u(z)fp] @)

by the triangle inequality. Hence
P

[ups i [ [ uw-uers o) [ o]

By Lemma B.1, we find, with a different A4:

P @ p--1 uly) — ulz ——2p
/B P < M W /B » /B ) =)+
<apir ) [ | [

By (z)
Using the preceding covering lemma, and this last inequality, with B = By(z;),
and summing, we obtain the desired conclusion. O

p

[

LEMMA B.7. There are constant 8, C depending only on X such that for any mea-
surable set A C X, and every u € BMO(X,RY)

5%1 lul < [JullBmo (C+log %—D +5|fx u}

Proof. We may assume [, u = 0 and |jufmo < 1. Recall Young’s inequality: For
t>0,a>1,
at <et +aloga—a. (B.9)

We apply this with

—B(-lan = Pz
o = Ty and £ = Flu(z)

with 3 as in Lemma B.5, where we take 8 = 1. Integrating the inequality over A we
find
RY

mx% ] < /A o1+ X log 3t = X1

Bl _ 1) 4 log 151
of lul < f (= 1)+1og .

The desired conclusion follows with the aid of Lemmas B.5 and 1. £

Hence
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Next, a lemma on the effect of multiplying a BMO function by some function.

LEMMA B.8. Let a be a Lipschitz function on X and let | be in BMO(X) (respec-
tively VMO). Then af is in BMO (respectively VMO), and
£.4
b's

lafllzmo < € (|a|go + llalluip) I fllemo + lallzmo

where C depends only on X.

Proof. We may assume that | « [ = 0. We then have to evaluate

J= fm fm) la(y) (@) - a(2)1(2)]
< fw fw (@) — a(2)f(v) + a2 (f () - F())]

< 2e||a||mpf3 1 2alcel o

Using Lemma B.7, with A = B.(z), the desired estimate follows. The VMO
agsertion follows easily from Lemma 3. O

REMARK B.1. Note that in Lemma B.8, instead of assuming that ¢ is Lipschitz
continuous, we could have assumed that o is Holder continuous or even merely that

C
= 1+ |log dist(z, y)]

la(z) — a(y) vz #y.

D. Stegenga [1] has obtained necessary and sufficient conditions for a function a to
be a multiplier preserving BMO.

We conclude this Appendix with a lemma asserting that if © € BMO, then @,
is “almost” Lipschitz.

LEMMA B.9. For u € BMO(X,RV) and & < ro, there is a constant C. such that

J = |ae(z) — Te(y)] < CellullBmo dist(z,y) (1 + log diam X ) )

dist(z, y)

Proof. We may suppose that [, u = 0 and |lu/pmo = 1. Then by Lemma 1,
Sy lu| < C.
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Case 1. dist(z,y) > £/100. In this case

1 1
e /X i B /X ful < Ce-

Case 2. dist(z,y) < ¢/100. Then

< C. dist(z,y).

‘1 1
[B<(2)]  |B:(y)]

Thus

7= /Bs(m) ) /Bgu) ue) - /Bs(y) “e)

As in the proof of Lemma A.16 we introduce the symmetric difference S of B.(x)
and B.(y) and we have

11
|Be(z)|  [Be(y)|

1
| Be ()]

-+

1S| < C. dist(z, ).

Applying Lemma B.7 we see that

I/SU@I <08 (c+1og|l_?<§||>,

The desired inequality follows by combining this with the earlier estimate.
O
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