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Degree theory and BMO; 
Part I: Compact Manifolds without Boundaries 

H. BREZIS AND L. NIRENBERG 

§I.O. Introduction 

In this paper we consider degree theory for mappings u from one compact smooth 
n-dimensional manifold X to a connected compact smooth manifold Y of the same 
dimension. These are manifolds without boundary and which are oriented. 

The classical degree counts the "number of times" Y is covered by u(X),  taking 
into account algebraic multiplicity. For instance, if u E C 1 and y E Y is a regular 
value of the map u, i.e., u - l ( y )  consists of a finite number of points x l , . . .  ,xk at 
each of which the Jacobian of the map, d~, in terms of local coordinates (with the 
given orientation), is nonsingular, then 

deg(u, X, Y) = ~ sgn det J~(x D. 
J 

A basic fact is that this degree is independent of the choice of the regular value y, 
and we then denote this degree by deg(u, X, Y). 

Degree extends to continuous maps u from X to Y because of the fundamental 
fact that if u, v E C I ( X ,  Y ) ,  and are close in the C o topology, then they have the 
same degree. Degree theory is often defined directly for continuous maps via the 
action of the map on nth degree homology. 

One of the important properties of degree is that if it is not zero then the 
map is onto Y. Another basic fact is that the degree is i~variant under conth~uous 
deformation of the map (homotopy). 

For a Cl-map there is an integral formula for the degree. Namely, if # is a 
smooth n-form on Y then 

deg(u,X,Y) f u= fxuou. (0.1) 
(see e.g., L. Nirenberg [1]). This m a y  be expressed using local coordinates by 

j x  f (U  det J ~ ( x ) d x l  A . . . A dx~ , 
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if # = f(y)dyl A . . .  A dyn. In particular, if X and Y are Riemannian manifolds, 
then 

deg(u, X, Y) - vol(Y) det J~(x)da(x) (0.2) 

where da is the volume element on X, and J~ is computed using geodesic normal 
coordinates at x and geodesic normal coordinates at u(z). 

Specializing further, consider X = Oft, where ft is a smooth bounded domain 
in R ~+1 , and Y = S n. Consider u C CI(X,  Y)  and let g be any Cl-extension inside 
ft with values in R n+* . There is another integral formula for the degree of u: 

deg(u, 0~,  S ~) = ~-~ det J ~ d z l . . .  dxn+l, (0.3) 

where IBI is the volume of the unit ball B in R ~+1. Since det Je is a divergence 
expression, using Green's theorem, one easily obtains the equality of the two integral 
fbrmulas. 

Formulas (0.2), (0.3) suggest the possibility of extending degree theory to an- 
other class of maps - -  which need not be continuous - -  namely, maps in appropriate 
Sobolev spaces. This was done in the 80's: 

(a) In connection with their proof of tile existence of "large" harmonic maps, 
H. Brezis and J. M. Coron [1] (see also H. Brezis [2]) were led to consider degree 
for H 1 maps from S 2 to S 2. This degree is given by the integral on the right hand 
side of (0.2). To prove that this integral is an integer relies on the fact that smooth 
maps from S 2 to S 2 are dense in H l ( S  2, S 2) (see R. Schoen and K. Uhlenbeck [1]). 

(b) Motivated by a question concerning the Ginzburg-Landau equation (see 
Boutet de Monvel-Berthier, Ceorgescu and Pro'ice [1]), L. Boutet de Monvel and 
O. Gabber introduced a degree for maps u C HI/2(S 1, $1). It is the familiar case 
of (0.2), namely the "change in argument" 

lfsdU-l/sedu. (0.4) deg(u ,S  1,S 1 ) = ~  ~ ~t 27ri 

Using the duality between H 1/2 and H -1/2 one sees that this is well defined. (The 
degree may also be expressed in terms of the Fourier coefficients of u; see Section 1.5. 
It is then transparent that degree makes sense for u E H1/2.) That the expression 
(0.4) (or the analogue in terms of the Fourier coefficients) is an integer for u C 
H 1/2 is proved by approximation, as above. Alternatively, one may extend u C 
H 1 / 2 ( S 1 , S  1) to ~ C HI(B,R2),  and then use formula (0.3). This H 1/2 degree is 
also used in Bethuel, Brezis and H61ein [1]. 

The natural generalization of (a) is to maps in the Sobolev space WI'~(X, Y), 
while (b) extends degree to maps in W~--~-r'~+t(cgft, S ~) - -  a space slightly larger 
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than W 1,~. These are borderline spaces: embedding into continuous functions just 
fails. 

In connection with degree for H1/2(S t, $I) ,  L. Boutet de Monvel and O. Gab- 
ber made the interesting observation that the notion of degree for maps from S 1 to 
S 1 makes sense for maps in the class VMO: the closure in the BMO(= bounded 
mean oscillation) topology of smooth maps. However they did not establish the basic 
properties of VMO degree, such as stability under homotopy within VMO, surjec- 
tivity if deg ¢ 0, etc. The VMO degree is not defined by an integral formula; it is de- 
fined via approximation. More precisely, they pointed out that if u C VMO(S 1, S 1) 
and 

1 fo 0+~ u ( s )d s ,  = 

then t~e(0)t --+ 1 uniformly in 0 - - d e s p i t e  the fact that u need not be continuous. 
Then, for ~ small, 

~,~(0)- ~(O) 
l~(0) l  

has a well defined degree, which is independent of e. This is their definition of the 
degree. 

In this paper we develop this concept for maps between n-dimensional mani- 
folds X, Y, and establish its basic properties. The degree is defined via approxima- 
tion, in the BMO topology, by smooth maps from X to Y. 

A natural related question is: Are smooth maps from X to Y dense in 
WI'P(X,Y), with I < p < ec? Here X and Y might have different dimensions. 
For p > dim X the answer is always yes. For p < dim X the answer was given by 
F. Bethuel [1]: a necessary and stffiicient condition for density is that H[p](Y) = 0, 
where H denotes the homotopy class and [p] is the integral part  of p. 

We now describe the organization of the paper. 

In Section 1.1 we recall the notion of BMO maps in Euclidean spaces and 
describe its extension to maps between manifolds. For this purpose it is convenient 
to put  a Riemannian metric on X and to embed Y smoothly into some NN. However, 
the notion of BMO(X, Y) is independent of the particular metric or embedding - -  
as will be the degree. 

The BMO (semi) norm of a map u from X to RN is 

iI rI,Mo = s u p  t (Y) - 
~cx  ~(~) 

where 

(o.6) = 
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Here, for ai\v x E X ,  B~(x) is the geodesic ball centered at x with radius e < to, 
the injectivity radius of X and fA u denotes the average of u in a set A. A very 
convenient equivalent (semi) norm is 

ltulI* = sup ~B ~ l u ( y ) -u ( z ) l&r (y )d° ( z ) "  
s<r 0 

(0.7) 

(Incidentally, (0.7) suggests a notion of BMO for maps into a general metric space 
Y. Such maps enjoy some of the basic properties of BMO maps, e.g. the John- 
Nirenberg [1] inequality holds - -  via the usual proof.) 

The space VMO(= vanishing mean oscillation) is the completion of smooth 
maps in the BMO norm. This space was introduced by Sarason [1] who established 
a useful characterization (see Lemma 3). In the same section we present some of 
the properties of VMO maps, such as the effect of left composition by a Lipschitz 
map F (see Lemma 2' and the more general Lemma A.7 in Appendix A). The map 

: u ~ F o u, for u E BMO(X, JRN), need not be continuous in its dependence on 
u - -  as a map from BMO to BMO - -  but it is continuous at every u E VMO (see 
Lemma A.8 and Remark A.1). Lemma 4 gives a characterization of compact sets 
in VMO - -  an adaptation of Arzel~-Ascoli to VMO. 

The proofs of many technical statements are given in Appendix A. 

Section 1.2 takes up ~arious examples of BMO and VMO maps. In addition 
to contimlous maps, VMO contains all the "borderline" Sobotev spaces W *'p for 
1 <p,  s p = n .  

The degree for VMO maps is defined in Section 1.3. The first main result, The- 
orem 1, deals with its stability under perturbation in VMO: given u E VMO(X, Y), 
there exists 5 depending on u such that, for v E VMO(X, Y) with lt - vl!gMo < 
it has the same degree as u; this implies in turn the invariance of degree under 
homotopy within VMO. 

Surprisingly the 5 really depends on u (see Lemma 6). This is in contrast to 
the standard perturbation of continuous maps; there the 5 is uniform. We point out 
in Remark 7 that the degree can also be defined for u in BMO(X, Y) provided u is 
"close" to VMO. 

In Section 1.4 we carry over standard properties of degree to VMO. For ex- 
ample, we prove that if degu ¢ 0, then u is "onto" Y. This is more subtle than 
for the contimlous case because u may be changed on a set of measure zero. We 
are ted to a notion of "essential range" of at which is independent of the choice of 
representatives in the class of equivalent maps. 

The formulas (0.2), (0.3) extend when u is in some appropriate "borderline" 
Sobolev space (see Properties 4 and 5). 

In Section 1.5 we take up a natural question concerning maps from X to Y,  not 
necessarily of the same dimension. BMO(X, Y) - -  as well as LP(X, Y) ,  1 <_ p <_ cc 
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- -  is arcwise connected, while VMO(X, Y) has components which are simply the 
closures of the components of C o maps. 

Section 1.6 deals with a question first considered by R. Coifman and Y. Meyer 
[1], namely the possibility of lifting a map u E BMO(X, S 1) to BMO(X,]R). The- 
orem 3 asserts that this can be done with VMO if and only if u is homotopic to a 
constant within VMO. In Theorem 4, which is directly related to a result in Coil- 
man and Meyer [1], we show that any u ~ BMO(X, S 1) with small BMO norm may 
be written as u = e ie with 99 e BMO(X,N) and lt991tBiVio _~ 41tUIIBMO. The proofs 
are quite technical. They make use of the John-Nirenberg inequality; various forms 
of this inequMity for manifolds are presented in Appendix B. 

Of course degree theory extends to maps on domains or manifolds with bound- 
ary. In Part  II we will consider this situation for VMO maps. A new feature is that 
VMO maps in a domain need not have a trace on the boundary. This makes the 
theory more delicate. 

The plan of the paper is the ibllowing: 

1.1. BMO and VMO 

1.2. Some examples of BMO and VMO functions 

1.3. Degree for VMO maps 

1.4. Some properties of degree 

1.5. Further comments 

1.6. Lifting of VMO maps 

Appendix A. Some useful estimates on BMO, et al. 

Appendix B. John-Nirenberg inequality on manifolds, et at. 

We wish to express our thanks to a number of colleagues for interesting discus- 
sions and encouragement: L. Boutet de Monvel, F. Browder, S. Chanillo, G. David, 
H. Furstenberg, I. M. Gelfand, A. Granas, Y. Meyer and P. Mironescu, with special 
thanks to P. Jones. 

§I.1. BMO and VMO 

Let X be a smooth n-dimensional compact manifold without boundary. In this 
section we recall the notion of BMO and VMO functions and maps defined on X 
and we state some of their properties. There is much literature on BMO, but mainly 
defined in Euclidean space; e.g., E. Stein [1] where many references may be found. 
People have worked with BMO on some manifolds, but the subject is mainly folklore 
to people in the field. 

DEFINITION OF B M O  FOR REAL FUNCTIONS ON X .  W e  first put a smooth Rie- 
mannian metric on X.  (Later ,aTe shall show that the notion of BMO is independent 
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of the choice of metric.) Consider a real function f in LI(X), using the measure 
associated to the metric. Set 

IIf]IBMO = sup ~B If(Y) - L(x)tdcr(Y), 
~<~o ~(~) 
xEX 

(1) 

where r0 = ro(X), the injeetivity radius of X (see e.g., M. P. do Carmo [1]), cr is 
the element of volume on X, B~(x) denotes the geodesic ball in X of radius e < r0, 
centred at x, and 

]~(x) = ,IB///~(x) f(z)dcr(z). 

1 As usual, fA f = TN fA f denotes the average of f on A. BMO(X, R) - -  often 
denoted by BMO - -  consists of those functions with IIflIBMo < oc. For these, (1) 
defines a norm on BMO - -  modulo constants, (see E. Stein [1]) - -  and BMO is 
complete under this norm. 

Clearly 

~B~(~) 'f(Y) - f~(x),d~(y) < ~ ( ~ )  ~ ( x )  ,f(y) - f(z),&r(z)d~(y) 

<_ 2/~ if(y) - fdx) ld~(y) .  
dB ~(~) 

Consequently, the following is an equivalent norm on BMO: 

HfN* = sup ~ ~B ,f(y)-f(z),dz(y)&r(z); (1') 
~<~o ~(x) ~(x) 
xffX 

in fact, 
llfHBMO ~ lifil. ~ 2IIfIIBMO" 

A first simple but useful property is 

(1") 

LEMMA 1. There exists a constant C, depending on X (and the metric) such that 
for every f C BMO, 

Hf[Ic~-< CIIfIIBMO + [/X f ' 

This is proved in the Appendix; see Lemma A.I. 
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REMARK 1. If  we replace r0 by any positive r l  < r0 we get a new norm ItfIIx. The 
two norms are equivalent. 

Indeed, ]lftll -< IlfllBMO =: lift]0- Conversely, if r l  _< ~ < r0 then 

If - f~(z)l < - 2 /  Ill 
~(x) B~(~) 

-< IB~(x)l l f l -<c ffl- 

We now use Lemma 1. Since we may suppose f x  f = 0, we obtain the desired 
conclusion 

I]fll~ <- CItftlo. 

If one changes the Riemannian metric on X one obtains an equivalent BMO 
norm. More generally, if X1 and X2 are two smooth compact  Riemannian manifolds 
of dimension n, without boundary, and qD : X1 --+ X2 is a C ~ diffeomorphism, then 
f ff BMO(X2) implies that f o ~ C BMO(X~) and 

IIf o ~IIBMO(X1) --< CIIflIBMO(X2) 

(see Lemma A.10 in the Appendix; a more general form, where ~ is only quasi- 
conformal and X1 = X2 = ]R n, was proved by H. M. Reimann [1]). 

If  t2 is an open subset of X,  we set 

IIfliBMO(a) = the sup in (1) taken over all balls B~(x) in ft, with e < r0. 

An L 1 map u : X ~ ]R N belongs to B M O ( X , N  N) provided each component 
of u is in BMO. As norm, we use the definition (1), except that the absolute value 
refers to the Euclidean norm in IR N. 

DEFINITION OF B M O  MAPS INTO A MANIFOLD. Let Y be a compact  manifold 
without boundary which we always take to be smoothly embedded in some NN. We 
say that a map u belongs to B M O ( X , Y ) ,  i f u  ff B M O ( X , ~  N) and u(x) E Y a.e. 

CLAIM. The notion of BMO(X,  Y )  is independent of the metric on X and of the 
embedding of Y .  

That  it does not depend on the metric in X follows from a previous consider- 
ation. To verify its independence of the embedding of Y,  we use the following 

LEMMA 2. Let F be a Lipschitz map from I~ N i n t o  ]t~ D and let u C BMO(X,  RN). 
Then F o u is in BMO(X,  ]R D ) and 

IIF o UlIBMO ~ 211rllZ~ptl~itBMO- 
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This follows immediately from (lU); see also the more general Lemma A.2. 

Proof of Claim. Suppose Pl and #2 are smooth embeddings of Y into IR N and R D . 
Then r / = ~2 o ~-~  is a smooth map of ~ ( Y )  onto p2(Y). Let F be a Lipschitz 
continuous extension of r/ as a map from R N to N D. Using Lemma 2 we see that 
the BMO norm using ~2, is bounded by a constant times the BMO norm using F1. 
Thus the norms are equivalent. [] 

Having chosen a Riemannian metric on X,  and a smooth embedding of Y in 
some IR N , BMO(X,  Y) is equipped with a metric 

d(u, v) = Ir~ - V l I B M O ( X S ) "  

A different choice of the Riemannian metric on X and of the embedding of Y in 
some IR D yields an equivalent metric. Thus it makes sense to say that a sequence 
of maps uj : X ~ Y converges to u in BMO(X,  Y), independently of the choice of 
metric on X and embedding of Y. 

In view of (Y) there is a natural notion of BMO of a map from X into any 
metric space Y, namely 

Itult. = sup ~ ~ dist(u(y),u(z))da(YDdc~(z). 
x c X  

It  is clear that C°(X)  c BMO(X);  other examples of BMO functions will be 
given later (see Section 1.2). In particular, the examples show that smooth functions 
are not dense in BMO. I t  is therefore natural to introduce the following definition 
(see D. Sarason [q). 

DEFINITION OF V M O  FUNCTIONS AND MAPS, VMO is the completion of smooth 
functions in the BMO norm, namely, a real function f on X belongs to VMO(X,  JR) 
if f E BMO(X,  IR), and there is a sequence (f j )  of smooth functions such that 
lily - flIBMO -+ 0. In view of Lemma 1 we may also suppose that Ilfj - filL1 ~ O. 

VMO is equiped with the BMO norm. 

REMARK 2. In the definition of VMO(X,  R) one could use continuous f j  instead of 
smooth f j .  This follows easily from two facts: 

(i) C ~ ( X , N )  is dense in C°(X,R) ,  

(ii) C°(X,?R) C BMO(X,R)  and 

IIflIBMO <-- 21flc°" 
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Similarly, one defines VMO(X,  NN). Furthermore, a map u : X --+ NN belongs 
to V M O ( X , Y )  i f u  6 V M O ( X , R  N) and u(x) 6 Y a.e. x 6 X.  

As above, VMO(X,  Y) is independent of the Riemannian metric on X.  The fact 
that it is also independent of the choice of embedding of Y in some Euclidean space 
follows from a variant of L e m n ~  2. In view of this fact, unless we say otherwise, 
from now on we fix a Riemannian metric on X,  and an embedding of Y in R N . The 
variant of Lemma 2 is: 

LEMMA 2 t. Let F be a Lipschitz map ofX~ N into ]~D and let u C VMO(X,]RN). 
Then F o u C VMO(X,  RD). 

For proof, see the more general Lemma A.7. A naturM way to prove the lemma 
would be to take a sequence of smooth maps uj tending to u in BMO M L I and to 
show that  Fouj  -+ Fou in BMO. Indeed, this method of proof works, but it is more 
delicate than it would appear. In fact u ~-~ F o u is not continuous in BMO M L ~; it 
is however continuous at points u in VMO. See Lemma A.8 and Remark A.1. The 
proof  of Lemma 2' that we present is different; it relies on Saxason's characterization 
of VMO: 

LEMMA 3 (D. Sarason [1]). u E VMO(X,]R N) i f fu 6 B M O ( X , R  N) and 

lira f - = 0  nifo tv in x e X .  
~--+O J B~(x ) 

(2) 

Again. in view of (1'). property (2) is equivalent to 

ff/ /f~ tu (y ) -  u(z)I = 0 uniformly in x E lim X. 
e-+0 JB.(x) ,]13,(x) 

(2') 

The implication: VMO ~ (2) is easy. Indeed, given 5 > 0, there is a 
v 6 C°(X,X~ N) such that 

- <1BMO < a/2 .  

Write 

l u - ~ ( x ) , < ~ B  , ( u - v ) - ( ~ ( x ) - ~ ( x ) ) , + ~  l . - ~ ( x ) ,  
~(x) ~(x) ~(x) 

5 5 

provided c is sufficiently small (depending on v). Proper ty  (2) follows easily. 

The converse implication is more delicate. It  is in fact a consequence of a more 
general form of Lemma 3. Lemma 3' below. First some notation: 



206 H. BaEzm AND L. NIRENBEP~G 

For u E BMO(X, IR N) and 0 < a < ro(X), set 

Mo = Mo(u) = sup 3 c I ~ -  ~ (x ) i  _< Jlull,~o 
~-<~ .)/3~(~) ~EX 

Mo = Mo(~,) = lira Mo(~). 
aN0 

LEMMA 3' (D. Sa¢ason [1]). There is a constant A depending only on X (and choice 
of Riemannian metric), such that, if u E BMO(X, RN), then 

Mo(u) < dist(u, VMO(X, RN)) _< AMo(u).  (3) 

Here distance is measured using the BMO norm. More precisely, 

IIU--gellBIVlo<A~le(u) V e < r 0 ,  V u e B M O ( X ,  RN). (4) 

This is Lemma A.5. 

Note that (2) says that Mo(u) = 0; hence (3) yields the implication ~ in 
Lemma 3. In addition we have 

COROLLARY 1. For any u C VMO(X, IRN), 

I t~- -uHBzo ~ 0, ~ > u i n  L l as e >0. (5) 

The first assertion follows from (3) and (4); the last assertion is well known. 
Another consequence of (4) is: 

COROLLARY 2. There is a constant A depending only on X (and choice of metric), 
such that 

tI~e[tBMO ~ 2~IlUllBIvlO V¢ < r0, VU e BMO(X,I~N). (6) 

If u E C° (X ,Y) ,  the map x ~-+ g~(x) maps X into R N, but not into Y. 
ttowever, for ¢ small it lies close to Y. (This is clear since ue --+ u uniformly.) 
Surprisingly the same is true for u E VMO(X, Y) - -  even though u need not be 
continuous. Indeed we have 

f. 
dist(ge(x), Y)  <_ ~ ]u(y) - g~(x)l <_ M~(u). 

JB ~(~) 
(7) 

and ?vG(u) tends to 0, by (2). 
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REMARK 3. Note that (7) holds if Y is any closed set in ] ~ N  _ _  not just a smooth 
manifold. 

This fact is at the heart of the paper, because it allows us to project ~ ,  for e 
small, onto its nearest point in Y. 

As pointed out in the introduction, the role of VMO maps in conjunction with 
(7) was first observed by L. Boutet de Monvel and O. Gabber. 

Denote by P the projection operator in ~N to tile nearest point on Y (this is 
well defined in a tubular neighbourhood of Y). For e less than some eo, 

ue(x) = P~te(x) is well defined. (8) 

Here is one more 

COROLLARY 3. There is a constant C depending only on X such that for any 
a ~ TO,E <_ Co~ 

Mo(u ) < C(Mo( ) +Me(u)) W C VMO(X,Z). 

Proof. We have 
Ma(U¢) <_ CMa(ue) 

since P is Lipschitz continuous. On the other hand, 

M o ( ~ )  <_ M o ( ~  - u) + Ms(u) 

< AM~(u) + Ma(u) 

by (4). [] 

Presumably, in the assertion of the corollary, the term CMe(u) could be omit- 
ted. This is clear in Euclidean space. 

We will be considering families of maps in VMO(X, Y). Let Y C VMO(X, Y) 
be a collection of maps. For each individual map u C 9 v we have 

lim dis t (G(x) ,  Y) = 0 (9) 
--)-0 

uniformly in x E X,  but  this does not hold uniformly with respect to the map 
u. However, if b v is a compact subset of VMO(X, Y), then (9) holds uniformly in 
x E X and u C 5C This is an immediate consequence of (7) and the following: 

LEMMA 4 (Characterization of compact sets in VMO). Assume 7: is a compact 
subset of VMO(X,]~N). Then 

lim M~(u) = 0 holds uniformly in u C S .  (10) 
e-->O 
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Conversely, if 7 z is any collection of maps in VMO(X,  IR N) such that (10) holds, 
then • is contained in a compact subset of t&~IO(X, RN). 

Proof  of the first assertion (tile second, which is more delicate, is proved in 
the Appendix; see Lemma A.16): 

Given any (~ > 0 we may cover ~- by a finite number of balls 

£ 

.*- c U Ba/~(v,~) 
i =1  

(where B refers to balls for the BMO norm). 

For each i there is some ei > 0 such that Ve < ei, 

Mc(vi) < 5/2. (11) 

Set ¢o = min ¢i. Given v E ~ ,  there is some i such that 
l < i < k  

Ilv - v i l lgMo < 5 /2 .  

Then Ve < e0 

M~(~) <_ f ~ ( ~  - v~) + M~(~0  _< liv - ~IIBMO + M~(~d 

_< (5 /2)  + (5 /2)  by(11) .  

Some further consequences of Lemma 3' and Corollary 1 are: 

COaOLLAaY 4. Given u E VMO(X,  Y), 

llu~ - <IBMO ---+ 0, u~ ~ u a.e. as e -~ 0. 

[]  

Pro@ We have 

<_ II~ - ~ IIBMO + 2 sup d i s t ( ~ ( x ) ,  Y)  
x 

--~0 as~-~O, 

by (5) and (9). [] 
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COROLLARY 5. Given u E VMO(X,  Y), there exists a sequence uj C Ca(X, Y) 
such that uj --+ u in BMO and a.e. 

Pro@ Since C~(X,Y)  is dense in C°(X,Y) tile result follows with the aid of 
Corollary 4. [] 

§I.2. Some examples of BMO and VMO functions 

As we have said in Remark 2, continuous functions f on X belong to VMO and 

][flIBMO --< 21flco. (12) 

A less obvious class consists of functions in Sobolev spaces corresponding to 
limiting cases - -  where tile embedding is into L p for every p < oc, but not into 
Lo% 

EXAMPLE 1. WI"n(X) C VMO(X)  with continuous embedding. 

Proof. We first prove that Wl'~(X) C BMO(X) ,  with continuous embedding. By 
Poincar6's inequality - -  which even holds on a manifold - -  we have, for e < r0, 

fB~(~) ,u -- ~(x), < Ce fT IVu'" Be(s) 

Hence 

and thus 

lu - ~ ( x ) l  _< C IVul ~' (13) 
,(~) ~(~) 

which implies the desired conclusion. The embedding in VMO now follows easily 
from (13) and Lemma 3. [] 
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More generally, we have: 

EXAMPLE 2. W~'P(X) C VMO(X) in the limiting case of the Sobolev embedding, 
i.e., sp = n, 0 < s < n (s may or may not be an integer). 1 

Pro@ We distinguish two cases: 

Case 1: s > 1. Then, by the Sobolev embedding, (see e.g., R. A. Adams [1], Theorem 
7.57), 

w ,p(x) c wl, (x) 

and the conclusion follows from Example 1. 

Case 2 : 0  < s < 1. Recall that 

t (x) -  (y)t p < oo} 
WS'P(X) = {u; Ix  Ix  t dist(x,Y)' sp+n 

and in our case sp = n, so that 

W ~ ' P ( X ) = { u ;  / x  Ix  tu(x)- dist(x,y),2n < o c } .  

As befbre, we first prove that 

W ~'p C BMO with continuous injection. (14) 

To prove (14), we compute for e <_ r0, 

which yields (14). It then follows, as above, that W ~'p C VMO. [] 

1) For the definition and general properties of fractional Sobolev spaces, see e.g., R. A. Adams 
[1], Chapter VII. 
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Next we present some specific functions in BMO or VMO. The functions 
are defined on some bounded domain ~ in R ~ containing the origin; ft may be 
considered as an open subset of a compact manifold X.  

EXAMPLE 3. The function log Ix[ belongs to BMO(ft), for any n (see F. John and 
L. Nirenberg [1] or E. Stein[I], Chapter IV, Section 1.1.2). However, log ]x t is not 
in VMO. To see this, observe that 

I=~B~(O)]I°glY[--,~B~(o)t°g[xt]=~BKO) l°g ]Y] -- ~ K 0 )  l°g Ix] ' 

and thus I does not tend to zero as c -+ 0. 

EXAMPLE 4. The function f(x) = tog I log Ixll is in VMO(ft).  An easy way to verify 
this is to observe that f belongs to Wl,~(f~), when n >_ 2, because 

C 
[Vfl Ixl] log Ixll 

For n = 1, f is the trace on ]R of the function log ] log lxll in N 2 ..... which belongs 
to W t'2 = H 1 in any bounded region on R 2. Consequently its trace belongs to 
H1/2(ft) = W½'2(f~). By Example 2, this function is then in VMO. 

Applying Lemma 2' we see that the functions exp(i log I log Ixll) or sin(log [ log lxll) 
also belong to VMO. 

EXAMPLE 5. The function f(x) = ]log txl I s, for 0 < < 1 is in VMO(ft).  

Proof. Observe first that f C W~k; ~ in case n > 1/(1 - (~). If n _< 1/(1 - a) ,  fix an 
l~m frt integer m > 1/(1 - a). Then the function f(x) belongs to Wlo c ( ]R) .  Consequently 

its trace on R m-x belongs to Wl lo~"~(R '~- l ) .  Continuing to take traces, we find 

that f C Wl~'m(N~). Again by Example 2, f E VMO(ft).  [] 

We conclude this section with a particular, but useful sequence of VMO func- 
tions in ]R. 

EXAMPLE 6. In R, consider the sequence 

1 
1 if IxI _< j-~ 

1 log Ixl if ~ _< Ix[ _< _ 
f i (x )  = - 1  log j  j 

1 
0 if ]x[ _> =. 

3 
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Then 

IIf llH1/  - - + 0  as j oc. 

In particular, [Ifi[]BMO -+ 0. 

Pro@ Consider the sequence for x C R 2. One easily verifies that 

The desired result then follows by taking trace. [] 

The reader may prefer a direct argument showing that IlfillBMO ~ 0, an 
argument which does not rely on trace. Here is one: fj may be written as 

fj(x)=min{1,mmx{O,-1 l°g Ixl 

Since F(t) = max{0, t} is Lipschitz with Lipschitz constant 1, it follows from 
Lemma 2 that 

max{0 , -1  loglxl} BMO < 2 - log--7 - log-U IIl°glxlllBM° 
C < - -  

- logj  

Similarly, 
C 

ttfstlB o -< log---j" 

This argument shows that for any n, fj as defined above, in tR '~ , satisfies 

C 
tlfjlIBMO ~ log-----j" 

[2 

REMARK 4. In Example 6 it seems natural to replace f~ by a simpler sequence of 
functions, in which fj is linear on ( ~ ,  ½). However, the reader may verify that, then 

llt)llgMO does not tend to zero. Our sequence (fj) is the kind of sequence which is 
commonly used to prove that in two dimensions, a point has zero capacity. 



DEGREE THEORY AND BMO 213 

§I.3. Degree for VMO maps 

This is our main topic. We consider VMO maps from X to Y. Here, X and Y 
are smooth n-dimensional compact  manifolds without boundaries - -  which we now 
assume to be oriented manifolds. We shall define a degree for such maps and show" 
that it has some of the usual properties of a degree. 

We first put a Riemannian metric on X and consider Y as smoothly embedded 
in some R N . Recall that for a C 1 mapping u : X --+ Y, 

1 fx det deg u - vol Y 

where J~(x) is the Jacobian at x of the map u computed in terms of geodesic 
normal coordinates at x and at u(x). This integral clearly makes sense for a map in 
WI,'~(X, Y) .  We shall prove later that for such a map, this expression is indeed an 
integer. This fact suggests that degree theory, which extends to continuous maps, 
extends also to maps in WI '~ (X,  Y). In an at tempt  to find a general class of maps 
including both of these, the natural candidate seems to be the class VMO. 

We now proceed to define the degree for a VMO map u : X --+ Y. 

DEFINITION. Let u C VMO(X,  Y). For 0 < s small, recall 

and u d x )  = 

Define 
deg(u, X, Y) = deg(u¢, X, Y) 

for e small, w e  claim that this is independent of c. Indeed for s small, since ue is 
continuous, deg(ue, X, Y) is defined. Furthermore, using the deformation ute+(1-t)e', 
for s , s  ~ small, 0 < t < 1, we see that degue = degu~,. 

In principle, deg(u, X, Y) depends on the choices of metric on X and of the 
embedding of Y. We shall see soon that it is independent of these choices. We 
first establish an important  fact about this degree, namely, that it is stable under 
perturbat ion in VMO: 

THEOREM 1. Let u C VMO(X,  Y) .  Then there exists 5 > 0 depending on u, such 
that if v C VMO(X,  Y)  and 

d(u, v) < 5, 

then 
deg v = deg u. (15) 
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Recall that d(u, v) refers to the metric induced by the norm of BMO(X,  R N) 
once an embedding of Y has been chosen. Easy consequences of Theorem 1 are 

COROLLARY 6. Let Ht(.) be a one-parameter family of VMO maps from X to Y, 
depending continuously in the BMO topology, on the parameter t. Then 

degHt( . )  is independent oft. 

COROLLARY 7. deg(u, X, Y) is independent of the choices of Riemannian metric 
on X and of the embedding of Y.  

Pro@ Suppose we have another metric on X and a smooth embedding of Y in some 
R D . We then obtain another family gc mapping X --+ Y. There is a corresponding 
degree d. By Corollary 4, g~ --+ u in BMO(X,  Y) as e --~ 0. Applying Theorem 1 we 
obtain tile desired conclusion. [] 

In the proof of Theorem 1 we shall use 

LEMMA 5. Consider u 
~ R  iv, 

Then 

VMO(X,  Y). Suppose 

u ( z ) + ~ c Y  a.e. 

deg(u + ~) = deg u. 

that for some constant vector 

Proof of Lemma 5. We need only consider ~ ¢ 0, and, in fact, in this case we will 
also prove that  both degrees are zero. We may suppose ~ = (~1,0,0), ~l > 0 and 
also that 0 C Y, and that Yl -< 0 Vy C Y. Then 

ui (x)  < -~ l ,  a.e. on X. 

Consequently for s < r0, the first component of g~(x) < - ~ l .  I t  follows that for e 
small, the first component of P~t~(x) = u~(x) is less than -~1/2 .  This implies that 
the image of u~ does not cover Y, and so deg u~ = deg u --- 0. 

Reversing the roles of u and u + ~, we conclude that deg(u + ~) = 0. [] 

Proof of Theorem 1. Suppose the assertion of the theorem is false. Then there exists 
a sequence (vj) such that 

]]vj - ulIBMO - - +  0 and I degvj  - degu I > 1. 

Since the (vj) are compact in VMO, we know by Lemma 4 and (7) that 
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dist(~j,~(x),Y) -+ 0 as e -+ 0 

uniformly in j and in x C X.  Hence there exists eo > 0, such that 

vj,e -= P~;j,e 

is well defined for all j and all e _< Co. By definition, 

degvj  = degvj,~ Vj, Ve <_ e0. (16) 

Fix some e < Co. Set 
/ ,  

= - u ) .  

By Lemma 1, 

fxl j - - -<  -  IIBMO - +  0 .  U 

For a subsequence, we may assume ~j converges to some vector (, since Y is 
bounded. Hence vj -+ u + ~ in L 1 and a.e. Therefore u + ~ C Y a.e. and also 

Vj,~ -+ ~ + ~ uniformly on X as j -+ co, 

- -  recall that e is fixed. Hence vj,~ -+ (u + ~)~ as j -+ ec uniformly on X.  For j 
large it follows that deg vj,~ = deg(u + ~)~ and consequently 

degvj  = deg(u + ~) 

by (16) and by definition of deg(u + ~). By Lemma 5 the proof is complete. [] 

REMARK 5. We have defined deg u with the aid of particular approximations of u 
by continuous functions tending to u in BMO, namely the u~ (see Corollary 4), and 
we set deg u = deg ue. The preceding theorem shows that we could have used any 
approximation by continuous maps, tending to u in BMO. Theorem 1 is somewhat 
subtle for various reasons: 

1) BMO convergence is weaker than uniform convergence but stronger than 
arty L p, p < ec (modulo constants). Degree is not preserved under small perturba-  
tions in L p, p < oo. For example, the following maps uj of S 1 to S 1, have degree 
one, but their Lp limit is a constant - -  and thus has degree zero: 

u~ (0 )  = e i ~ ( ° )  

where (pj(O) = 0 on (0, 27r - 7) and y)j goes linearly from 0 to 27c on [27c- 7' 27r]. 
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2) Recall that when working with the C o norm, there is a uniform 5 > 0 such 

that 
lu - vlco < 5 ==~ d e g ( u , X , Y )  = d e g ( v , X , Y ) .  

For  then,  u is easi ly deformed  to v v ia  

P ( t v  + (1 - t )u) .  

Surpris ingly,  in Theo rem 1, the 5 rea l ly  depends  on u. Here is an example  for 
X = Y = S 1 showing tha t  if u and  v are  maps  of S 1 to S 1 which are  close even in 

H 1/2, they  need not  have the same degree.  

LEMMA 6. Given e > 0 there are two smooth maps, u, v of  S 1 to S 1 with 

Itu - ~11 .~ -  < ~ (17) 

such that 
d e g u  = 0 and d e g v  = 1. (18) 

Pro@ Step  1. We first cons t ruc t  u , v  E C ° ( S  *, S 1) with  u - v in H 1/2, sat isfying 

(17) and  (18). Recal l  tha t  there  is a cont inuous  funct ion p defined on N with  suppor t ,  
in [~r - 5, ~ + 5], p > 0 in (~r - 5, 7r + 5), p symmet r i c  abou t  7r nondecreas ing  on 

(~ - 5, ~ ) ,  p(~)  = 2, and such that 

fPA.~J2 < ~. 

Here 5 depends  on e (see E x a m p l e  6 in Sect ion 1.2). 

Using  p, we cons t ruc t  u and  v of the  form 

on [0, 2~r] such tha t  

U = e i f ,  V = e i(f+g) 

f ( 0 )  = f ( 2 ~ ) ,  9 ( 2 ~ )  - g (o)  = 2 . .  

Thus  we will have deg u = 0, deg v = 1. 

We first define 9 as a cont inuous  nondecreas ing  funct ion on (0, 27c), wi th  

; 0 on [0, ~ - 5] 
9(0) 27r on  [~r + 5, 2~r], 

and such that 
le ~g(°) - 11 = p(O) on  [0, 27r]. 

Th is  defines g in a unique  manner .  
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Next  we define f on (re - ($, rc + 5) as f = - arg(e ig - 1). Note tha t  

7r f(O) --+ - ~  as 0 "N (re - 5), 

3re 
f(O) --+ - T  as 0 A (re + or). 

We then  extend f to [0, 2re] continuously so tha t  f (0 )  = f(2re). Any  such extension 
will do. 

The  point  is tha t  
v -  u = e~/(e i g -  1) -- p. 

This  is clear on (re - ~, re + d), and even clearer outside. 

Step 2. We m a y  approx imate  v in C O by smooth  functions, and m a y  ap- 
proximate  u - v by smooth  functions in the C O n H 1/2 topology. The  sum of these 
approximates  is an approximat ion  of u in C °. [] 

REMARK 6. By a slight modificat ion we m a y  even construct  two smooth  maps  u, v 
of S 1 to S 1 with 

- vH lj2 < 

such that  
d e g u = 0  a n d d e g v = k  

(for any  given integer k and any  given e > 0). 

REMARK 7. We have defined the degree for V M O  maps  of X to Y. T h e  degree 
can, in fact,  also be defined for u C B M O ( X ,  Y),  with u "close" to VMO.  More  
precisely, there is a 5 > 0 such that  if u E B M O ( X ,  Y),  and 

dist(u, VMO(X,Y) )  := inf d(u,v) < 5, 
vCC°(X,Y) 

then u has a well defined degree. The  distance d, and hence the number  5, depend 
on a par t icular  choice of R iemannian  metr ic  on X and on the embedding  of Y. 

§I.4. Some properties of  degree  

T h e  sett ing is the same as in the previous section. We consider V M O  maps  f rom X 
to Y and show tha t  s t andard  proper t ies  of degree car ry  over. Here  are some: 

Property 1. If  deg u ~k 0 then 
e s s /~ (u )  = Y. 
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Here, ess R(u), the essential range of u, has to be explained. 

The notion of the range of a measurable map is not well defined, since the map 
may always be modified on a set of measure zero, keeping the new map in the same 
equivalence class. I t  is important  to introduce a notion of the range of u which is 
independent of the choice of representative in the class of equivalent maps. 

DEFINITION (ess R). The essential range of a map u, ess R(u), is the smallest closed 
set E in Y such that 

~(.) e r a.e. 

CLAIM. This is well defined. 

Proof. Let (Ea)~ca  be the family of all closed sets (E~) in Y, such that ga ,  

u(x)  c ~ a.e. 

Set E = N Ea.  VVe a~ssert that  
c~cA 

u(x)  ~ ~ a.e. 

This follows easily from the general fact that there is a countable subset J C A such 
that 

E =  N E ~ .  
(~6J 

To see this, let O~ = E~ ; O = U O~ = EL The open set O may  be written 
aEA 

as a countable union of increasing compact  subsets, Ki, i = 1, 2, . . . .  Each Ki is 
covered by a finite number of the O~. Hence O is tile countable union of these. E 
is the intersection of their complements. [] 

The notion of essential range for a complex-valued measurable function f is 
commonly used in the theory of Banach algebras (see e.g.R.G. Douglas [I]). There 
it is defined as the set of all A E C for which {x C X; If(x) - A I < c} has positive 
measure for every c > 0. It is easy to see that this notion is equivalent to our 
definition when C is replaced by Y. 

Proof of Property 1. We argue by contradiction. Suppose ess R(u) omits a point Y0. 
Then, for some r > 0, 

ess R ( ~ )  n B,~(yo) = ¢. 

Setting 
r = Y\B,-(yo), 
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we clearly have u(x)  ¢ P, a.e. Since u C VMO, 

l i m 4  lu-gze(x) l  = 0  
e-~O JB~,(x) 

Therefore 

uniformly in z. 

d i s t (~ (x) ,  E) -÷ 0 uniformly in x, 

which implies 
dist(ue(x),  E) --~ 0 uniformly in x. 

Consequently, for ~ small, deg u~ = 0, contradicting the assumption that deg u~ -- 
deg u ¢ 0. [] 

Proper ty  2 (Hopf). If u, v C VMO(S ~, S n) and have the same degree, then they are 
homotopic within VMO(S ~, S~). 

Proof. By our construction, deg u~ = (leg u = (leg v = deg v~. The well known result 
of Hopf says that ue and ve are homotopic within C°(S  ~, S ~) and therefore within 
VMO(S ~, sn) .  On the other hand, ue is homotopic to u within VMO(S ~, S n) (via 

ute ). [] 

Proper ty  a (Borsuk). Let U and V be symmetric open bounded neighbourhoods of 
the origin in IR n , with smooth boundaries OU, OV - -  each of which is connected. 
Let u E VMO(0U, OV) be an odd map. Then deg u is odd. 

Pro@ One may simply apply Borsuk's theorem to ue which is also an odd map. 
[] 

Proper ty  4. We return to the setting of Section 1.3. Let u E wI'n(x, }z) SO that 
u E VMO(X, Y) - -  see Exaxnple 1 in Section 1.2. Then 

degu f p= fx~ou (19) 

where # is any smooth n-form on Y. 

Observe that in local coordinates, the integrand involves the determinant of 
the Jacobian of the map, and hence is integrabte. Formula (19) is welt known for 
smooth maps (see e.g., L. Nirenberg [1]). 

The proof relies on the following: 

LEMMA 7. Given u ¢ Wa'~(X,  Y ) ,  there is sequence (uj) of smooth maps from X 
to Y, converging to u in W 1,n. 
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Lemma 7 follows R. Schoen and K. Uhlenbeck [1], and is proved in the Ap- 
pendix - -  see Lemma A.11. 

REMARK 8. In general, if p < n, smooth maps from X to Y are not dense in 
W~,P(X, Y) .  However, F. Bethuel [1] has shown that they are dense iff the homotopy 
group ~ko] (Y) is zero. 

Assuming the lemma we give the 

Proof of Property 4- Let (uj) be the sequence of Lemma 7. Then, by convergence 
in W 1'~, 

On the other hand uj -~ u in BMO, by Example I in Section 1.2, and so, by Theorem 
1, deguj  = degu for j large. [] 

Proper ty  5. Let ft be a bounded domain in N~ with smooth connected boundary 
Oft. Suppose u c wl '~( f t ,  ]R n) (so its trace is defined on Oft) and suppose that 

u : Oft -+ S ~- l .  

Then 1£ 
deg(uloa, Oft, S n- l )  = ~ det J~. (20) 

Formula (20) is a well known formula for the degree in case u is smooth. In the 
more general situation, the right hand side makes sense because u E W l'n. The left 
hand side makes sense because uto a belongs to W 1- ~'n(0ft) which, by Example 2 
in Section 1.2, is contained in VMO(0ft) .  

COROLLARY 8. Let ft be a bounded domain in FP with smooth connected boundary 
Oft. If  u E Wl'n(f t ,  S n - l )  then 

deg(uloa, Oft, S n-z) = 0. 

Returning to Property 5, we shall prove (20), as expected, via approximation; 
namely, using the following - -  which we formulate more generally (see Lemma A.13): 

LEMMA 8. Let f~ C R ~ be a domain with smooth connected boundary Oft. Let 
Y be a compact manifold without boundary, smoothly embedded in R N. Let 
u c Wl'~(ft ,  lR N) such that 

 (oft) c y. 
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Then there is a sequence (uj) of smooth maps of-~ into R N such that 

uj(O~) C II, Vj, and uj --+ u in W 1,n. 

221 

Assertion (20) is a simple consequence of Lemma 8, for the ujio~ converges 

to UlOa in WI-~'~(O~) and hence in BMO. Thus 

deg(ujlaa, 0~,  Y) --+ deg(ulaa, Oft, Y) 

by Theorem 1. Furthermore, the integrals on the right of (20) for the uj tend to 
that for u. 

We use Corollary 8 to prove a stronger result: 

TttEOREM 2. Let ~ and Z be smooth bounded domains in N ~ with Oft and OZ 
connected. Let u E WI '~ (~ ,R  ~) be such that 

 (aa) c az 

and 

Then 

deg(uloa, 0~, OZ) # O. 

ess R(u) Z. 

(21) 

Proof. Since ess R(u) is closed it suffices to show that ess R(u) D Z. Suppose not, 
i.e., suppose that some zo E Z is not in ess R(u). Then a closed ball Br(zo) lies in 
Z and is disjoint from ess R(u). Let P be the nearest point projection onto B~(Zo). 
Set 

v = P o u .  

Clearly v E Wl'~(gt, N ~) and v(~) C S~(zo), the sphere of radius r centred at z0. 

Hence, by Corollary 8, 
deg(vloa, Oft, St) = 0. (22) 

Next we claim that 

deg(uloa, 0~, OZ) = deg(vfo~, Oft, S,.). (23) 

The conclusion of the theorem is then an immediate consequence of (21-23). 

Proof of (23). We reduce it to the smooth case. Namely, by Lemma 8, with Y = OZ, 
we know that there is a sequence (uj) of smooth maps from ~ into R n such that 
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uj(Oft) C OZ, and uj --~ u in W l'n. Since Ujloa -~ uloa in WZ-¼,~(Oft) it also 
converges in VMO(cgft). Set vj = Puj .  Applying Lemma A.8 we find that Vjloa -+ 
Vto a in VMO(0ft ) .  By Theorem 1 and Example 2 of Section 1.2, for j large, 

deg(ujloa, 0ft, OZ) = deg(uloa, Oft, DZ) 

and 
deg(vjloa, Oft, S~) = deg(vl0a, Oft, S~). 

However, it is well known that 

deg(ujtoa, Oft, OZ) = deg(uj, f~, z0) 

and 
deg(vjloa , Oft, S%) = deg(vj, ft, z0). 

Finally, the two degrees on the right hand sides are the same by the following 
homotopy 

Ht(x) = tuj(x)  + (1 - t )vj(x) ,  t E [0, 1]. 

This completes the proof of (23). [2] 

REMARK 9. The a~ssumption that u belongs to W l'n in Theorem 2 is sharp in that 
it may not be replaced by u E W I'p with p < n -~ even if u is smooth near 0[~, 
so that the degree of uloa makes sense. Namely, for n >_ 2 and ft = BI(0) the map 
u(x) = x / Ix  I is in WI'P(ft ,  R n) for any p < n; moreover Ulo a = Id and so has degree 
one, but  the conclusion of Theorem 2 does not hold since ess R(u) = S ~-1. 

The reader may ask if in Theorem 2, the condition u C Wl '~(f t ,  F ' )  may 
be replaced by u c VMO(ft ,  Rn). This is a delicate issue, since maps in VMO(ft)  
do not in general admit  a trace on 0ft. We will be led in Par t  II, Section 3, to 
the notion of a special class of maps in VMO(f~) admitting a trace on Oft, which 
belongs again to VMO(0ft) .  For such a class, which includes Wl '~(f t ) ,  we will have 
a generalisation of Theorem 2 (in Par t  II, Section 4). 

§I.5. Further comments 

1. One may discuss BMO and VMO maps from compact X to compact Y even 
if their dimensions are different, say maps of S ~ to S k. The space of continuous 
maps from X to Y decomposes naturally into its components Ci namely, maps u 
and v are in the same component if there is a homotopy within C ° ( X , Y )  of u to v. 
Similarly, the space of VMO maps from X to Y also decomposes into components 
via homotopy. There are two natural notions of homotopy for maps in VMO: 
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a) Two maps u, v E VMO(X,  Y) are said to be homotopic within VMO A L 1 
if there is some deformation H E C([0, 1], VMO ~ L 1) such that  H(0)  = u 
and H(1) = v. 

b) Two maps u, v C VMO(X,  Y) are said to be homotopic within VMO if there 
is some deformation t t  E C([0, 1], VMO) such that H(0)  = u and H(1)  = v. 

Clearly, the first notion is stronger and, in general, it is strictly stronger (see 
Remark A.6). Surprisingly, the two notions are equivalent in the special case where 
Y = S k, k > 1, (see Lemma A.23). 

Homotopy classes of VMO(X,  Y) in the sense of definition a) - homotopy 
within VMO N L ~ - -  are in one-to-one correspondence with the homotopy classes 
of C°(X,  Y) .  They are simply the closures of the above Ci in VMO n L 1 (see Lemma 
A.21). 

In contrast,  the spaces LP(X, Y), 1 < p _< oo, and BMO(X,  Y) are arcwise 
connected. I t  suffices to prove this for p = oc. We sketch a proof. 

Step 1. Denote by PC(X,  Y) the set of measurable maps from X to Y taking on 
only a finite number of values in Y. Given any measurable map f : X --+ Y and 
any e > 0, there exists g • P C ( X , Y )  such that llf - g l i L ~  < e .  

Step 2. For t C [0, 1], t f ( x ) + ( 1 - t ) 9 ( x )  lies within e of Y. Hence ht(x) = P ( t f ( x ) +  
(1 -t)g(x)) lies in Y and connects g to f continuously in t, within L~°(X, Y) .  

Step a. Given go, gl • PC(X, Y), they may  be connected by a continuous arc within 
L ~ (X, Y). Namely, we may always assume that 90 and gl have the form 

9o = E x ~ a i ,  91 = Ex~b i  

for some finite parti t ion (w~) of X ,  with a~,bi C Y .  For each i let ~ i ( t ) ,0  < t < 1, 
be a continuous arc in Y connecting ai to bi. Then the maps 

9 (x) = 0 < t < 1 

connect 9o to 91- 

A continuous map from X to Y naturally induces a map from homology in X 
to homology in Y. The same is true for a VMO map u - -  via approximation by ue. 

2. A. Granas pointed out that several authors have previously considered fixed point 
properties, and degree theory, for some classes of maps which are not continuous 
(see O. H. Hamilton [1], J. Stallings [1], H. A. De Kleine and J. E. Girolo [1]). 
A class which plays an essential role in their considerations is one introduced by 
J. Nash [1] called "connectivity maps".  By this is meant that  the graph of such 
a map f over every connected subset of X,  is a connected set. H. A. De Kleine 
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and J. E. Girolo [1] developed a degree theory for a somewhat more general class 
("almost continuous" maps). However, their degree is a collection of integers. We 
do not see how our degree is related to theirs. 

We point out, however, that if u E VMO(X,  Y) and A is a connected subset 
of X then E = essR(UlA ) is connected. This may be seen as follows: If  E is not 
connected then E = E1 U E2 where Et ,  E2 are nonempty disjoint closed sets. Recall 
that since u E VMO, 

dist(u~(A), E) ~ as e - -+  0. 

On the other hand, ue(A) is connected. Therefore for ~ small, dist u~(A) to either E1 
1 dist(E~, E2). Consequently, using a sequence c~ -+ 0, we conclude or E2 is < ~ = 

that ess R(UlA ) is contained either in ~1 or in E2. Impossible. 

3. Our degree theory holds in particular for a map u C H1/2(S~, Si). As remarked 
earlier, L. Boutet de Monvel and O. Gabber  previously defined a degree for such 
maps, given by 

I /02~ deg u = ~ ~ du. (24) 

This integral makes sense since g E H I/2 and g C H -I/2. That u is in H I/2 may 
be expressed in terms of its Fourier coefficients. If 

OO 

= E a j e i j O  

then 
O 0  

- - (2<)  

I. M. Gelfand raised the question: what is deg u in terms of its Fourier co- 
effleients? More generally, for maps u : S ~ --+ S n, what is degu in terms of its 
expansion coefficients in spherical harmonics? It is easily seen from (24) that 

OO 

• 2 deg u = E J]aj] " (25) 
- - O O  

From the fact that [u(0)l = 1 it is not a priori clear that the right hand side of (25) 
is an integer. The condition that lu(0)[ = 1 on ,91 is equivalent to 

lajl 2 = 1  

ctjaj+ k : 0 
j ::~: - -  O 0  

for all integers k 7~ 0. 
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For a continuous map (or VMO map) u : S 1 -+ S 1, its Fourier coefficients are 
defined. But the series in (25) need not be absolutely convergent. 

Open Problem: What summation process makes it summable so that (25) holds? 

When working with maps from S ~ to S ~ one would use the formula that 

1 / s  det(u, ux,~)d(7 d e g u =  ~ - ~  . ux~,..., 

computed using normal geodesic coordinates ( x l , . . . ,  x~). If one represents u via 
spherical harmonics, this leads to some complicated expressions. 

4. Recently, M. Giaquinta, G. Modica and J. Soucek [1] introduced a notion of degree 
for rectifiable currents and for approximately differentiable maps with Jacobian 
determinant in L 1 (see also a related work by M. Esteban and S. Miiller [1]). We 
do not know if it is related to our degree. 

5. To every function ~ E L°°(S1,C) corresponds a Toeplitz operator T~ in the 
Hardy space H2; see e . g . R . G .  Douglas [1], Chapter 7. When ~ E C°(S 1, C), T~, is 
Fredholm if and only if I~1 >- c~ > 0 ; moreover 

i n d ( T ~ ) : - d e g ( ~ ] , S 1 , S 1 )  . 

A similar result holds assuming only ~ E L°~(S1,C) N VMO(S1,C); see Theo- 
rem 7.36 in Douglas [1] (where it is stated in different terms). We will return to 
this topic in Part II. 

§I.6. Lifting of BMO maps 

This section is largely inspired by an interesting result in R. Coifman and Y. Meyer 
[1]. 

One form of their result asserts that there exist constants 5, C > 0 such that 
every u e BMO((0, 1), S 1) with 

II ll Mo < (26) 

may be lifted as 
u = e c BMO((O, 1), X) 

II IIBMo CIMIBMo. 
(27) 
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We present variants of this result, in that we replace the interval (0, 1) by our 
compact n-dimensional manifold X without boundary. In addition, we will see that 
(26) is not needed when working with VMO, as opposed to BMO. 

Here is a first result: 

THEOREM 3. A n y  u E VMO(X, S 1) which is homotopic within V M O ( X ,  S ~) to a 
constant map may  be uniquely writ ten as 

u = e ~ with ~ E VMO (X, R), 0 _< ~ < 27c. (28) 

Furthermore, the map u ~ ~ is continuous f rom V M O N  L 1 (respectively VMO)  
into V M O A  L 1 (respectively VMO).  

REMARK 10. (i) Note that we give no estimate of IIPlIBMO. (ii) The converse of 
Theorem 3 also holds, namely, any u of the form in (28) is homotopic to a constant 
within VMO - -  because of Lemma A.8, via the homotopy e its', 0 <_ t <_ 1. 
(iii) As a consequence of Theorem 3, and Property 2 in Section 1.4, we may assert 
that any map u E VMO(S1,S  1) with degree zero, may be written as e i~' with 

E VMO(SI ,R) ,  and conversely. More generally, any u E VMO(S1,S  1) may be 
written as 

u(O)  = e i k°+~ ' ( ° )  

where k = deg u, and p E VMO(S 1 , R). This is easily seen by considering e-~k°u(O). 
(iv) If 7el(X) = 0, then every map u E VMO(X, S 1) may be written as in (28). 
This is a consequence of the corresponding fact for continuous maps: one repeats 
the argument used in proving Theorem 3. 

A variant which is closer to the result above of Coifman-Meyer is 

THEOREM 4. There exists 5 > 0 (depending only on X ) ,  such that i f  

u E BMO (X, S 1) 

and 

then 

and 

{!UllBMO _< a, 

u = e ~ with ~p E BMO(X, R), 

II IIBMO --< 4llUlIBMO. 

(29) 

(30) 

The central idea in the proof of Theorem 3 and 4 is the same. We proceed as 
follows: (i) We approximate u by our ue (using averaging, fi~, and projection on $1); 
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(ii) We lift u~ as ue = e i~ ,  and derive estimates for ~ - -  in case of Theorem 4 we 
prove (30) for ~ ;  (iii) Finally, we show that ~ converges as s --+ 0 to the desired 
function ~ C BMO(X,  R). 

Our proof  of Step (ii) is very different from that in R. Coifman and Y. Meyer 
[1]. It  relies on the John-Nirenberg inequality, in the form described in Appendix B, 
while they used estimates of commutators.  We have been informed that L. Carleson, 
in a personal communication to Y. Meyer in 1979, also proved Step (ii) using the 
John-Nirenberg inequality rather than commutators. 

There is a result which includes Theorem 3 and part of Theorem 4; it involves 
u C BMO(X, S ~) with small distance to VMO(X, S ~) -- see Theorem 5. 

Proof of Theorem 3. Since u E VMO(X,  $1), there exists some So > 0 such that for 
every" s < so, u~ = P ~  is well defined, and converges to u in BMO M L 1 as s --+ 0. 
In what follows, we always take s < So, and sometimes restrict s further. 

Step 1. There is some sl _~ So such that for every s _~ s l ,  u~ may  be written as 

u~ = e i~  (31) 

with ~ E C°(X,R)  and 

0 <_ ~ wE < 2~. (32) 

Proof. We rely on Lemma A.23 according to which u is homotopic to a constant 
within VMO M L 1. Denote the homotopy by H(t ) ,  0 < t < 1, with H(0) = u, H(1) = 
a constant. Since H([0, 1]) is a compact set in VMO, by Lemma 4, there is some 
51 _< e0 such that for every ¢ _< el,  H(t)e is well defined. It yields a homotopy of u~ 
to a constant within C°(X, $1). Here we use the fact that t ~+ H(t) is continuous 
in L 1. We are therefore reduced to the classical continuous case, yielding (31). By 
adding an appropriate integral multiple of 2~r to Pe, we may achieve (32). 

F r o m  n o w  o n ,  s _~ g l -  

Step 2. There is a constant C depending only on X such that 

M~(~)  _< 2Mt(u~) + U M ~ ( ~ )  Vt < r0, Vc _< c1. (33) 

Proof. Since 

le i t - l - i t  t<_ 2 t2 Vt C R, 

one easily finds that, for a,/3 E R, 

1 I~ - ~J - I~ ~ - ~"J + ~(~ - 9) 2. 

(34) 

(35) 
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TO verify (33) we recall that 

Mt(~o~) < sup j ~  B ~ [ ~ ( y )  - ~oe(z)[. 
~_<e 

Applying (35), with a = ~ ( y ) , / 3  = ~ ( z )  we find, as in (1"), that 

sup I ~ ( y )  - ~(~)?-  M~(~) < 2M~(~) + ~ ~ ~(~) ~(~) 
r<t  

We now use Lemma B.4 to see that the last te rm in (36) is 

_< UM~(~); 

(33) is proved. 

Step 3. There is some a > 0 such that 

M , ( ~ )  < 4 M ~ ( ~ )  

(36) 

Vt __- a, Ve _< el. (37) 

Proof. Since for ~ < el, the family (u~) is compact in VMO, there is some a > 0, 
by Lemma 4, such that 

Ma(u~) <_ ---=_1 Vc <_ e~. 
9C 

1 We now claim that for such a, Mt(~o~) < 7~ Vt < a ....... which yields (37) via (aa). 

Indeed, since M t ( ~ )  tends to zero as t -+ 0, we see by (33), that Mt (~ )  < 1 
2C 

in some neighbourhood of t = 0. If  the claim were false, then since Me(~o~) is 
continuous in t - -  see Lemma A.15 - -  there would be a first value of t < a such 
that 

1 
M~(w~) = ~. 

But then by (33), for that t, 

1 4 
- M t ( ~ )  < 4Mt(u~) < 7"~. 

2C 

Impossible. 

Step 4. Existence of ~o. We make use of an elementary, but very useful, observation 
of G. David (which simplifies our original presentation). 
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LEMMA 9. Let f E C°((O, a), R), for some a > 0, and assume that lira e if(~) exists. 
~-+0 

Then lira f (c )  exists. 
~-+0 

The proof of Lemma 9 is obvious and relies on the connectedness of the range 
of f .  

Since u~ E C°((0, el) x X, S 1) we may lift it as u~ = e ~ with ~e e C°((0, cl)  x 
X, R). Recall that lim u~(x) exists at every Lebesgue point x of u. By Lemma 9, 

e-+0 
p(x)  = lim ~ ( x )  exists at every such x, hence a.e. on X.  Moreover u = e i~'. 

c--+0 

We now prove that p e VMO. From (37) we deduce that,  for every x E X ,  

4 c 4 # Vr_<a, < gZ- 
dB ~(x) aBe(x) 

Recall (see Corollary 3) that 

Mr(u~) <_ C(Mr(u)  + M~('u)). 

We may then pass to limit as s --+ 0, using Fatou's lemma, and conclude that 

4 c SeMi(,.) Vr _< a. 
JB ~(,~) JB~(~) 

I t  follows, by Sarason's Lemma 3, that ~ C VMO. 

Step 5. Uniqueness. Suppose ~1 and ~2 are solutions of (28). Then 

/] = I ( ) p l  - -  ~)2) E % a . e ,  

On the other hand, since rl E VMO, ess R(~) is connected, see I tem 2 in Section 1.5. 
Hence essR(~) is reduced to a point, i.e., r / is constant; by (28), r / = 0. 

Step 6. Claim: There exists a > 0 depending only on X such if a < ro and 

then 

_< 

Ma(~) _< 4_Ma(u). 

Here u is as in the theorem, and p is the unique solution of (28). 

Proof. We may take a = 1/(9C) of Step 3 and repeat the arguments of Steps 2 and 
3, deleting e everywhere. 
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Step 7. Continuous dependence ofu ~-~ ~.  At  first, let (uj) be a sequence converging 
in V M O  to u, each homotopic  to a constant .  We have the corresponding pj .  By  
Lemma 4, we know that  there exists some a0 such that  - -  for a in Step 6 - -  

Hence for a < ao, 

Mo0(  j) _< vj. 

Ma(~j) <_ 4M~(uj) Vj. (38) 

Since Ma(uj) "-~ 0 as a --+ 0, uniformly in j ,  the same is t rue for M a (p j ) .  Conse- 
quently by Lemma 4, again, the (~y) lie in a compact  set in VMO.  A subsequence, 
still called (cpj), converges in VMO to ¢. 

In view of the fact that  0 < ~;z ~J ~-- 271" we may  assume that  

By Lemma 1, qpj -+ ~ + ~ = :  ~ in L 1. For a further subsequence, still denoted ~j ,  
~j  - ~ p  a.e. 

1. Cont inui ty  f rom VMO N L 1 into V MO n L 1. We suppose,  then, in addit ion that  
uj ~ u in L I. Consequently 

u = e ip. 

Convergence of the full sequence (~j)  follows from the uniqueness of ~. 

2. Cont inui ty  f rom V M O  to VMO.  We established above that  for a subsequence 

~jk - - ~  i n V M O N L  1. 

We can no longer infer that  u = ei~; we can only say that  

u = e i~ + e 

for some constant  c. We need only consider the case c ¢ 0. In this case, u takes 
its values in S 1 N (S 1 + e), which consists of one or two points. Since ess R(u) is 
connected (see pa ragraph  2 in Section 1.5), u must  be a constant ,  thus also ~. Since 
~j  ~ ~ in B M O  it follows that  ll j IIBMo 0. Continui ty is proved. [] 



DEGaEE THEORY AND B M O  231 

We turn now to the 

Proof of Theorem ~. Given u ¢ BMO(X, Y), recall that fi~ is defined for every 
e < r0; by (7), 

d i s t (~ (x ) ,Y)  <_ M¢(u) < tlUIIBMO, Vx c X. 

Thus if IIUIIBMO ~ some small 5 (depending only on X), we may define u~ = P~,~ 
for every ¢ < r0. 

Now consider u E BMO(X, S 1) with I[U[iBMO _< 5. We will show that for 5 
sufficiently small, u = e ~ ,  with HPlIBMO --< 41[U[[BMO. 

Step 1. According to Lemma A.18 there is a 6 depending only on X such that 
if [lUlIBMO _< 5, then for each e < ro, u~ is homotopic (within C°(X, S1)) to a 
constant. Hence we lift u~ and write it as 

u~ = e i~ ,  ~ C C°(X,N), (39) 

with 

Now 

0 _< ~x ~ < 21r. (40) 

By Step 2 in the proof of Theorem 3, we have 

Mt(7~e) <_ 2Mt(u~) + C.hlt2(7~e) Vt < ro, Vs < ro. (41) 

by Lemma 2, for some constant C. 

Using Corollary 2 we conclude that 

Next, arguing as in Step 3, we find that if 

1 
C'5 < -- 

9-~ 

then 

In particular, by (42), 

Vt, e < to. 

Mt(~8) ~ 42~ft(uc) Vt, e < ro. 

(42) 

(43) 

(44) 

I[¢p~HBMO _< 4C*HuIIBMO _< 4C'6. (45) 
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Step 2. Existence of ~.  We see, as in the proof of Theorem 3 (Step 4), that p(x) = 
lira p~(x) exists a.e., and that u = e ~'. From (45) we deduce that, for every B~(x), 
c--+0 

~B~(~) ~,(~)I~(Y) -- ~(~)l ~ 8C*IluI[BMO. (46) 

Using Fatou's lemma we conclude that ~ E BMO and 

II~llgMo --< 8C*IIulIBMo. (47) 

Finally, we get rid of the factor C* in (47). Namely, as in Step 2 of the proof 
of Theorem 3, applied to u and ~, we find 

II~IIBMO < 2]]uitgMo + Ull~ll~go 
_< 2IlulIBMO + 8C*C6tI~IIBMo 

by (47). Assuming 16C*Cd < 1 we obtain the desired conclusion. D 

REMARK 11. The reader may think that the space S 1 plays a special role in Theo- 
rems 3 and 4. However this is not the case. One considers, in addition to the target 
space Y, a covering space Z. For Y = S 1, Z is R. 

We denote by F the covering map of Z to Y, i.e., F is onto, and every point 
in Z has a neighbourhood U such that F is a diffeomorphism of U onto F(U).  

The proof of Theorem 3 extends to give the following: 

THEOREM 3'. Any u in VMO(X,  Y )  which is homotopic within VMO(X,  Y )  n L 1 
to a constant map may be written as 

u = F o ~  for s o m e ~ E V M O ( X , Z ) .  

In the proof the following inequality replaces (35); here we use a Riemannian 
metric on Y (and its lift to Z): For a,/3 E Z, 

2 

dist(c~,/3) < dist(F(c~), F(~))  + C dist(c~,/3). 

Similarly, one has an extension of Theorem 4: 

THEO!aEM 4'. There exists 5 depending on X ,  Y and Z such that i f  u E BMO(X, Y) 
and ItUIIBMO < 5, then u may be lifted to a map ~ C BMO(X, Z),  i.e., u ---- F o 
such that 

II~IIBMo --< 411ulIBMo- 
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REMARK 12. We have carried out lifting for VMO or BMO maps. Can one do the 
same for Sobolev maps, say u C W~'P(X, $1)? Some partial results are known (see 
F. Bethuel and X. Zheng [1], F. Demengel [1], P. Mironescu in H. Brezis [1]), also 
for X with boundary,. If X is a bounded domain in R ~ then the answer is positive 
in the following cases: (a) sp > n (by Sobolev embedding) and (b) s = 1, p = 2, in 
any dimension. However if s = 1 and p < 2, the answer is sometimes negative. 

REMARK 13. We now present a lifting result related to both Theorems 3 and 4. In 
doing so we consider the class Ca of maps u E BMO(X, S t) such that 

do(u) = dist(u, VMO(X,]R2)) < 5 (48) 

and such that there is continuous deformation h(t, x), 

h C C([0, 1] ,BMO(X,S  1) n L 1) satisfying 

h(0) = u, h(1) = constant and 

do(h(t)) <_ 5 V t e  [0,1]. 

(49) 

Recall that do is equivalent to Mo (see Lemma 3'); in fact Mo < do <_ AMo. 

THEOREM 5. There exist 5, C > 0 depending only on X (and a Riemannian metric 
on it) such that for every u E g~, there is a lifting ~o E BMO(X,~)  of u, i.e., 

u = e ~ ,  (50) 

satisfying 
do(W) <_ Cdo(u). (51) 

Here, d0(9~) = dist(~, VMO(X, JR)). 

We do not include tile proof here. It follows the lines of that of Theorem 4, 
but there are some additional technical points which the reader is spared. 

Appendix A. Some useful estimates on BMO,  et al. 

We present some simple facts about BMO and Sobolev maps on manifolds. These 
are well known to people working on the subject, but are not all easily found in the 
literature. Unless stated otherwise, X is Mways assumed to be a connected compact 
Riemannian manifold without boundary. 



234 H. BREZIS AND L. NIR,ENBERG 

LEMMA A.1. There exists a constant C depending on X ,  
u c BMO(X, R), 

_< CllulIBMo + / u ItullL, CX) m 

J x  

such that for every 

(i.1) 

Pro@ We may suppose that f u = 0. We argue by contradiction; suppose there 
x 

is no such C. Then there is a sequence uj with / uj = 0, such that 
, X 

IlujlIBMO -~ 0 and Ilujll/~ = 1. (A.2) 

Cover X by a finite number of balls Bi = B~o/2(xi ). It follows from the definition of 
BMO that a subsequence of the uj converges to a constant a.e., and in L 1, on each 

Bi. Necessarily, the constant is the same for all B~. Since ~/xUJ = 0, the constant 

must be zero. This contradicts the second assertion in (A.2). [] 

LEMMA A.2. Let u E BMO(X, R N) and let F be a uniformly continuous mapping 
from ]R N to N D. Then F o u E BMO(X, RD). 

We shall make use of 

LEMMA A.3. Let F be a unifo'r~nly continuous map of R N to R u .  Then F has a 
concave modulus of continuity w. 

Pro@ For t > 0, set 
a ( t ) =  sup I f ( a ) - F ( b ) l .  

la--bt<t 

It is easy to verify that Vt0 > 0, 3A = A(to) such that 

a(t) < At  f o r t > t o .  

(A depends on the function F) .  Hence a( t )  _< At  + a(to) Vt > O. Thus we may 
introduce the concave hull w(t) of a(t) ,  namely the least concave function >_ a. 
Since w(t) <_ A(to)t + a(to) it follows that 

lim w(t) <_ c~(to), 
t'-~0 

and consequently this limit must be zero. [] 
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Proof of Lemma A.2. We use (1/) and (1"). For any B~(x) in X, e < r0, 

~(~) ~(x) 

by the concavity of ~. Hence, by (1"), 

IIF o uli~Mo <_ t i t  ° uLl. <- ~ ( iMI . )  -< ~ (211uliBMo) • 

We shall often make use of the following simple 

235 

[] 

LEMMA A.4. Given two measurable sets A C B in a measure space, for any inte- 
grable function f 

(A.3) 

(A.4) 

We often refer to this as Lemma A-B. 

Pro@ Inequality (A.3) is obvious. The first term in (A.4) is bounded by 

- i A i J B  

by (A.3). Finally, the second term in (A.4) is bounded by 

[] 
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We now restate and prove Sarason's Lemma 3'. Recall that for u C BMO 
(x,~a N) and 0 < a < to(X) 

M~ = M ~ ( u ) =  sup ~ ;  I u - g e ( x ) l  _< IlulIBeo, 
zzCX 

Mo = Mo(u) = lira M~(u). 
a'~O 

LEMMA A.5. There is a constant A depending on X (and its metric) such that if 
u E BMO(X, IRN), then 

Mo(u) < dist(u, VMO(X, IRN)) _< AMo(u).  (A.5) 

In fact 
Ilu - ~2~tlBMO _< AM¢(u) Ve < ro. (A.6) 

Proof. To prove the first inequality in (A.5), note that Vu, v E BMO(X, RN), 

Ma(U) <_ Ma(v) ~- Ma(~t- v) Va C [0,ro). 

For v E C° (x ,  RN), Mo(v) = 0 and thus 

Mo(~) <_ Mo(~ - ~) _< II~ - VlIBMO- 

This yields the first inequality in (A.5). [] 

The other inequality in (A.5) is an obvious consequence of (A.6). The proof 
of (A.6) relies on the following simple 

LEMMA A.6. There. is a number B depending only on X such that for any given 
numbers e, 5, 0 < e <_ 5 < to, any ball B6(x) in X may be covered by a finite 
number of balls Be(x~), xi E B~(x) , i  = 1 , . . . , K ,  such that dist(x~,xj) > e for 
i # j ,  and 

K 
IB~(x~)l _< BIBa(x)I. (a.7) 

1 

Proof of Lemma A.6. Let B~/2(x~), i = 1 , . . . ,  K,  be a maximal collection of disjoint 
balls with centres xi in Ba(x). From the maximality, it follows easily that 

Since 

Therefore 

i 

<_ ClB2~(x)I <_ ClB~(x)l. [] 
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We now return to the 

Prvof of (A.6). We first claim that 

Ift~(y) - fte(z)l <_ CM~(u) W < ro, Vy, z E X with d(y, z) < e/2, (A.8) 

where C depends only on X. 

Indeed, by Lemma A-B (i.e., Lemma A.4), the following inequalities hold: 

t~/2(y) - ft~(z)l <_ CMe(u), (A.9) 

1~/2(x) - G(x)I < CMe(u) Ve < to, Vx E X. (A.10) 

Their combination yields (A.8). 

For e < ro we have to estimate flu -~2~IIBMO; more precisely we want to show 
that for any Ba(x) C X,  5 < ro, 

I = ~ a ( ~ )  ( u - u ¢ ) - ~ a ( ~ ) ( u - u ~ )  -< AM~(u). (A.11) 

We distinguish two cases. 

Case (i): 5 < e/4. We have 

< Ma(u) + CM~(u) by (A.8), 

<_ CMe(u) since 5 < e. 

Case (ii): 5 > e/4. We now use the covering of Ba(x) by Be/2(xi), i = 1, . . . ,  K 
given by Lemma A.6. Then 

so that 

2 
I ~  iBa(x) 1 

K 

IBa(x)l ~ . ( <  

fB=/2(x0 [lu(Y)- ~/2(x~)l + 1~/2(x~)- ~(x~)l + I~(xd- ~(y)l] 
K 

1 

by (A.10) and (A.8). 

Using Lemma A.6 we conclude that 

I < CM~(u). 

[] 
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A simple consequence of (A.8) is the following: For any two points y, z in X,  
with d = dist(y, z) _> e/2, 

Ifie(y) - ~ ( z ) l  <_ C dist(y '  Z) M~(u), (A.12) 
£ 

where C depends only on X.  Indeed there is a chain of points y, Yl, y 2 , . . . ,  Yk-1, z, 
2d with k = 1 + [-g], such that the distance of any two successive ones is bounded by 

~/2. Adding the corresponding inequalities (A.8) we obtain (A.12). 

Returning to Lemma A.2 we know that F o u is in BMO whenever u E BMO 
and F is uniformly continuous. The same holds in VMO: 

LEMMA A.7. Let u C VMO(X,]~ N) and let F be a uniformly continuous map from 
]R N to ]R D. Then 

F o u  E V M O ( X , ~ D ) .  

Proof. Recall - -  see the proof of Lemma A.2 - -  that 

Since the right hand side goes to zero as e -+ 0, we conclude by Sarason's charac- 
terization of VMO that F o u E VMO(X, ~D). [] 

We now take up a more delicate property, namely the continuity of the map 
u ~+ F(u). The map F induces a map ~ from BMO(VMO) into BMO(VMO). We 
show that ~ is continuous at every point u C VMO. We show also that • need not 

be continuous outside VMO. 

LEMMA A.8. Let F be a uniformly continuous map .from ]R N to IR D. Then iIE is 
continuous in the BMO M L 1 topology at every point u in VMO(X,  ]RN). 

Proof. Let u be in VMO(X,  IRN). Given e we shall show that there exists r > 0, 
depending on e and u, such that if v E BMO(X,]R N) and IIVlIBMo + [IVI1L~ < r, 
then 

]]F(u + v) - F(U)]IBMo < ¢, 

i.e., we show that for azly ball B~(x) in X,  5 < ro, 

~(x) ~(x) (A.13) 

- + - l < 
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For ~ E X, p C ]~N, set 

c(~,p) = F ( ~ ( ~ )  + p )  - F ( ~ ( ~ ) ) .  

Given a measurable set A in X,  we wish to estimate 

We make use of the concave modulus of continuity w of F of Lemma A.3 and 
establish two estimates for I: 

I < 2o~ ( fA  ,v,) (A.15) 

and 

I~_2W(2J~AlU--J~AUl)+W(2J~A]V--J~AV]). (1.16) 

Since G(~,p) <_ ~(tPl),  we have 

I < IG(v, 

by concavity of w. We have proved (1.15). 

To prove (A.16). we rely on an obvious inequality: 

[O(~,p) - G(% q)l -< 2~(lu(¢) - u(•)l) + ~(IP - q[). (A.17) 

Using (A.17) in (1.14) we find 

dzdy 

This yields (A.16) (as in (1")). 

Recall now that e is fixed and we wish to find T. Since u C VMO, there exists 
5o < ro, such that for every 5 _< 5o and every x c X,  

2w 2 - u < - .  
~(x) ~(x) 2 
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Hence, taking A = Bs(x) ,  we see f rom (A.16) that  

I _< ~ + ~ 2 ~(~) - ~(x) v _ < ~ + ~'(21tvlIBMo). (A.18) 

Now we explain how to choose T. We first require that  

w(2~-) <_ e/2,  (A.19) 

so that ,  by (A.18), I _< c whenever 5 < 5o. I t  remains  to consider tile case where 
5 > 5o. Here  we use (A.15) to conclude tha t  

x < 2 ~  IB~o(X - 

1 where a = Sup ~ .  Choosing ~- > 0 such that  2w(a~-) < e, we obta in  the desired xCX 
conclusion, I < e, in bo th  cases (5 _< 30 and 5 > 50). [] 

REMARK A. 1. The  following example  shows that  the m a p  • of  L e m m a  A.8 need 
not be continuous at a point  u in B M O ( X ,  RN).  Here we take X = R, - -  it is not  
compac t ,  bu t  our functions will all have suppor t  in [ -1 ,  1]. 

Let  a be  a posit ive function in V M O  with suppor t  in [ -1 ,  1], even in x, de- 
creasing and continuous on (0, 1) and 

Consider  

l im c~(x) = oc. 
x--+0 

0 f o r x < 0  1 

u ( x ) =  - 1  f o r O < x <  

0 for x > ½. 

Set F ( s )  = s +, so that  u + -- F(u)  =-- O. F is clearly IApschitz but  we claim 
that  for vj -- a / j ,  

1 
HF(u + vj) - F(U)IIBMO >__ -~ for j large. (A.20) 

To see this, observe that  there is a unique 5j,O < 5j < 1, such tha t  cr(Sj) = j .  Then  

I Vj for X ~ O, 

F(u  + vj)  = vj --1 for O < x < Sj, 

0 f o r x > S j .  
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Set 

One checks that 

Hence 

• F(u f ~  vs) J = + vj) - F(u + . 
5j  5 5 

f F F ( u + v j )  ! J 1 1 
-~ ~7-- ~ V j  . 

a~ J Jo 2 as 2 

~ s  vj ~ 5  1 J =  + u -  Vj +-~ 
5j 5j 

>- I u + ~ l -  IlvjllgMO 5j 
1 

= ~ -IlvjIIBMo 

which yields (A.20). 

By a small modification of the F above, we may prove that 

1 IlF(u + vs) - F(U)[IBMO _> g 

for j large - -  for a smooth fimction F for which the Lipschitz constant is 1. Namely, 
take F to be any smooth nondecreasing function on R wi th /~  _< 1 such that 

s for s > 0 

Y(s) = 1 
- ~  for s < - 1 .  

Later we shall have need of an extension of Lemma A-B - -  where some aver- 
ages are taken with respect to a positive weight function w satisfying 

1 
- -  < w <_ Co, 
Co-  

for some constant Co > 0. For any measurable set E, and integrable function f on 
E we denote 

jlo.d) -- i  
J Q ~ f : : ( =  ) £ f w .  (A.21) 

LEMMA A.9. Let A C B be measurable sets in X .  Then 

f - ~ , ~ f  < 4  '~21Bt ~; f - - ~ B f  - ,1o IAIJ~ (A.22) 
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and 

~A,~o f --~A,~, f < ~'~21BI f/ f - ~  f (A.23) 

Pro@ Using Lemma A--B repeatedly we find 

< ~IBI(I f f 

This proves (A.22). 

Turning to (A.23), we have 

as above~ 

<4 p~lel~ f-~f 
- 

[] 

Next we establish the fact that the BMO notion is invariant under C 1 diffeo- 
morphism. It is a simple but essential fact. 

LEMMA A.10. Let ~ : X1 -+ X2 be a C 1 diffeomorphism of a smooth com- 
pact n-dimensional Riemannian manifold without boundary onto another X2. If 
f E BMO(X2) then f o ~o E BMO(X1) and 

IIf o ~]IBMO(Xx) ~ C[[fllBMO(X2). (A.24) 

Here C depends only on the Riemannian manifolds X1, X2. 

Proof. It is not difficult to verify that there are constants Go, K > 0 depending only 
on X1 and X2 such that for every x C X1, and every c < Go 
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Here co is less than the injectivity radius of XI and CoK is less than that of X2. 

For f E BMO(X2), set g = f o qo. To prove that g C BMO(X1) it suffices, by 
Remark 1 in Section 1.1, to show that V~ E X1, ge < So 

4/; 19 - g~(~)l -< CNfIIBMO. (A.26) s u p  
~<~o JB~(~) 
~CX1 

We proceed to estimate 

J = ~B~(~)Ig - .0~(()1 

by changing variables; we require e < e0. Setting A~ = ~o(B~(~)) we see easily that 

e s , w  

where w is a smooth positive function obtained by the change of variables. 

On the other hand 

~ ( ~ )  = g --  f w d r l  = f 

since £ w = IB~(~)I. 
e 

Using Lemma A.9 and (A.25) we obtain the desired conclusion. [] 

Here is another proof of Lemma A.10. In view of (1') and (1") we estimate 

c L £ I f 0 7 )  - f (<~) i  -<tB~(x)l - - - ~  (.:(~)) (-:(~)) 

_< C4/5 ¢ I f ( " ) -  f(~)l, by (A.25), 
JB  ~K(~o(x)) JB~(~o(x)) 

_< C]lfllgMo. 
[] 

Next we take up the proofs of two approximation lemmas of Section 1.1: Lem- 
mas 7 and 8. We restate them. 

Let X, Y be our usual compact connected manifolds without boundaries. X 
has a Riemannian metric, dimX = n, and Y is smoothly embedded in IR N. (Here, 
Y need not have the same dimension as X.) 
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LEMMA A.11. Given u E W~'~(X,Y)  i.e., u C WI'~(X,]R N) and u(x) C Y a.e., 
there exists a sequence (u j) of smooth maps from X to Y tending to u in W t,n. 

Proof. We first construct a sequence (u j) C Wl ' r~(X,Y)~ C°(X, Y)  tending to u 
in WI '~ (x ,  NN). Cover X by a finite number of balls B~o/4(ai ) = Bi. Let ~ be a 
subordinate partition of unity on X. Set ui = ¢iu; clearly ui C WI'~(X, RN). Let 

be the smooth diffeomorphism (given by geodesic normal coordinates) from the 
Euclidean ball B~ o (0) onto B~ o (ai), ~(0) = ai. Denote by vi the transplant of ui to 
B~o (0), i.e., 

= for  e B o(0). 

vi has its support in Bro/4(0 ) and belongs to W 1,~. Denote by V~,e(~) the Euclidean 
average of vi in B~(~) 

/ *  

= vi .  

It has support in B~o/2(O ) if e < ro/4, which we always assume. It is well known 
that Vi,~ -~ v~ in WI'~(R~). Carrying back Vi,~ to X, we set 

= 

It has support in B~o/2(a,i), and converges to u~ in W~,~(x, NN). Set 

u~ = E ui,E. (A.27) 
i 

Clearly ue C C°(X, IR N) A W l'n and ue -~ u in W l'n as e --+ 0. 

CLAIM. 

dist(us(x), Y)  -~ 0 as e -+ O, uniformly in. x E X .  (A.28) 

The main ingredient in proving the claim is the assertion that for every i, 

Je(x) : = / ~  tui(y) - ui,~(x)ld~(y ) -+ 0 uniformly in x e X. (A.29) 
JB ~(~) 

Assuming (A.29), the claim follows easily because 

~ ~ ( x )  ,u~(y) - u~,~(x),d~(y) -+ O. 

The left hand side majorizes 

tu(y) - u~(x)tda(y ) >_ dist(u~(x), Y). 
~(~) 
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Then (A.28) holds. 

Proof of (A.29). Note that 4 ( x )  = 0 if x ~ Bro/2(ai). 
We may write 

UiW 

where A~(x) = ~(B~(~)) and ~ = ~ - l (x ) .  

Here w is a smooth function coming from the change of variables, and 

1 
- -  < w < _ C o ~  
Co-  

with Co depending only on X. Recall that 

~(~) 

so that, using the notation (A.21), 

u~,~(x) = J~4~  ui. (A.30) 

As in the proof of Lemma A.10, there are constants 0 < ci and K > i, such 
that 

B~/K(x) C A~(x) C B~K(x) Vx C B~o/2(ai ), Vs < ~1, 

and we require that e l K  < ro/4. 
Returning to J~, ,aTe have 

J~(x)----~B~(x) ui(Y) -- ~&(x),w ui 

< CJ~B~K(x) U~ -- ~A~(~),,o ui " 

Applying (A.22) of Lemma A.9, we find 

JE(x) <_ C~K(~)  ui -- ~B~K(x)Ul . 

By Example 1 of Section 1.2, J~(x) --+ 0 as c -+ 0 uniformly in x E X. 
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To summarize, we have a family u,  E W~'~(X,  R N) N C°(X ,  N N) such that as 
e -~ O, u~ --+ u in W 1,n and dis t (ue (x ) ,Y )  -+ 0 uniformly. 

Using the projection P onto closest, point in Y, the functions 

g~ = Pue 

take values in Y and tend to u in W 1,n, since in general, as is welt known, u ~-~ F(u)  
is continuous in W 1,p if F is Lipschitz and smooth. Letting e -+ 0 through a sequence 
e j, the functions 

~J = ~ j  

belong to C°(X ,  Y )  A WX'n(X,  Y )  and tend to u in W l'n. 

For each fixed j there is a smooth map vJ from X to Y with 

1 

J 

- -  by standard smoothing and projection on Y. [] 

REMARK A.2. R. Schoen and K. Uhlenbeck [1] use a slightly different, but natural, 
approach in their proof ( ib rn  -- 2). Namely, they embed X in some N M , and extend 
u to a tubular neighbourhood of X as constant on normals to X.  They then mollify 
the above extension ~. 

REMARK A.3. In Lemma A.11 if u is merely in WI 'P(X,  Y), 1 _ p < n and also in 
VMO(X,  Y), then there is a sequence (u j)  of smooth maps of X into Y, tending to u 
in W 1,p and in BMO. This is proved in essentiMty the same way as the lemma, using 
in addition Lemma B.8 below. The latter is used to ensure that ui = ¢iu C VMO. 

Essentially the same argument as in the proof of Lemma A.II yields the fol- 

lowing more general form: 

LEMMA A.12. Assume u E W * ' P ( X , Y )  with sp = n, 0 < s < n (s may or may 
not be an integer). Then there exists a sequence (uJ) of smooth maps from X to Y 
tending to u in W ~,p. 

We use here Example 2 of Section 1.2 instead of Example 1, and standard 
properties of W *'p. A special case of Lemma A.12 occurs in F. Bethuel [2]. 

LEMMA A.13. Assume ~ C ]R n is a smooth bounded domain with connected bound- 
ary 0~2. Let u C WI'~(~] ,R N) be such that 

u(Oa) c z 



DEGaEE THEORY AND B M O  247 

where Y is, as usual, a compact connected manifold smoothly embedded in R N. 
Then there exists a sequence (uj) of smooth maps from -Q to ]R N such that 

uj(Of~) C Y Vj 

and 
uj -+ u in WI'~( f~ ,RN) .  

Pro@ Set ~ = Uloa, so that  ~ C WI-~'n(O~,Y). Applying Lemma A.12 with 

X = 0f],  s = 1 _ g,pl = n (note that  d i m X  = n - 1), we obtain a sequence (~J) of  
smooth  maps  f rom 0f~ to  Y such that  

qz j -+ ~ in Wl-~'n(Of~,R'~).  

Let vj be the harmonic  extension of ~J in fh It  is welt known that  

vj --+ v in wl 'n(~,]I~N) ,  

where v is the harmonic  extension of ~ in fh 

Since u - v C w~'n(f~,R N) there is a sequence (wj) in C ~ ( f l ,  R N) such that  

wj -+ ( u - v )  in wl,'r (a, aN). 

The sequence uj -~ Vj -t- Wj has the required properties. [] 

REMARK A.4.  The same argument  as in the proof  of  L e m m a  A.13 shows that  if 
u C WI 'P( f~ ,R N) with 1 _<p < n and 

u(o~) c Y 

with ulo a E VMO(0f~, Y), then there exists a sequence (uj) of smooth  maps f rom 

to N N such that  uj(Of~) C Y Vj and uj -+ u in W I'p. 

I f  we do not  make the assumption that  Ulo a E VMO(0f~, Y) then the conclu- 
sion may  fail. Here is an example. Let  f~ = B1 C R 3, let Y = S ~ and take p = 2. 
We use coordinates x = (xl ,  x2, x3) = (x', xa). Consider the map 

X r 
~(x) = ~ defined on 0fl,  with values in S 1. 

I t  is smooth  except at the nor th  and south poles. Near  there, it belongs to Wl'q(Of~) 
for any q < 2; in particular,  it belongs to  Ht/2(Of~,N 2) - -  by Sobolev. Hence 
admits  an extension u into f~, belonging to Hl(f~,  1R 2 ). Suppose there is a sequence 
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of smooth maps uj --~ u in H l ( f t , ~  2) and uj : OR -+ S 1. Then on some disc 
D = {x3 = constant} A ~, uj --+ u in Hi(D), and therefore u -+ u in H1/2(OD). 

By Theorem 1, 

deg(uj, OD, S 1) = deg(u, OD, S 1) for j large. 

Clearly the right hand side equals 1. On the other hand the left hand side is zero 
because OD is the boundary of a spherical cap on 0~t, which is mapped by uj into 
S 1 . 

The argument is related to one of R. Schoen and K. Uhlenbeck [1], in which 
they prove that the map x/Ix I of ~ above into S 2, cannot be H~-approximated by 
smooth maps into S 2. 

Returning to the function M~ defined before Lemma 3 ~, we prove a useful fact: 

LEMMA A.14. There is a constant A depending only on X,  such that for 
u E BMO(X,~N),  

Met(u) <_ AM~(u) Vt < to~2. 

Proof. In view of (1'), (1") we estimate, for t < 5 < 2t, 

Using Lemma A.6, with e = ~, we cover Bs(x) by balls Bt(xi), with dist(x~, xj) > t 
for i ~ j, and 

Z IB (x )l _< CIB ( )i 
Thus 

The last sum is bounded by 

2M~(u) ~ IB~(x~)l ~ < CM~(u)lB~(x)l ~ 
i 

while the first sum is bounded by 

/'B~(x~) /B~(xj) [ 'u(y) - ~(x~)] + I~'~(xi) - ftt(xj)I + I~t(xj) - U(Z)I] 
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Since dis t (x i ,x j )  < 25 < 4t, we find using (A.12) that the expression above is 
bounded by 

CM~(',) ~ IBt(x~)l IB~(xj)I < CM~(u)lB~(x)5 
i#j 

Thus we conclude that 
I _< c 

[] 

LEMMA A.15. For any u C B M O ( X , ~  N) the function t ~-+ Mr(u) is continuous in 
[0, r0). 

The proof is left to the reader. 

We now turn to the proof of Lemma 4 (the characterization of compact sets 
in VMO), which we restate 

LEMMA A.16. A set jr in VMO(X,]~ N) is relatively compact if and only if 

lira ~/~(u) holds uniformly in u C jr. 
6-+0 

After the statement of Lernma 4 we proved o .  Now, we prove ~ .  

It suffices to show that for any given 5 > 0, f may be covered by a finite 
number of balls in BMO of radius £ We may assume that 

x u = O  Vu E jr. 

We denote by ~ the s-averaging iterated twice. Applying Lemma 3 t repeatedly we 
find 

IIu - U~tIBMO --< t]U -- U~I]BMO + IlU~ -- UdIBMO 

< AM~(u) + A M ~ ( ~ )  

< AMc(u) + AM~(~t~ - u) + AM~(u) 

< 2 A M ~ ( u ) + A I I ~ -  UlIBMO _< (2A+A2)M~(u).  

By our hypothesis there exists s, 0 < s < r0 such that 

Ilu-- ~t~tlBMO < 3AM~(u) < 5/2 Vu ~ .7". 

Fix this s. In view of Remark 1, 

IlUllBMO _< C Vu c j r  
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and then by Lemma I, 

(Here, and in what follows, all the constants C depend on e, which has been fixed.) 
Consequently, 

If  llL  + II  IIL  _< C w e f .  (A.31) 

We now claim that the family (ue), u E }', satisfies the conditions of the 
Arzela-Ascoli theorem; more precisely, there is a constant C such that 

J = 1~(x) - u~(Y)l < C dist(x,y) gx, y e X, Vu E ~. (A.32) 

Proof of (A.32). We distinguish two cases: 

Case 1: dist(x, y) > e/100. In this case 

J 211  llz  c ,  

Case 2: dist(x, y) < e/100. Then 

IB (x)l 

Thus 

/B 1 1 
J _< l~(z)]  IB~(x)] IB~(y)I ~(~) 

1 
I e( )I'B~Y "' <-C dist(x,y).  

We have only to estimate the last term, K. Let S be the symmetric difference of 
Be(x) and Be(y), i.e., S = (Be(x) U Bc(y))\(Be(x) 71 BE(y)). Clearly, 

Hence 

and theretbre 

S C (B¢+dist(x,y)(x)\Se(x)) U (Be+di~t(x,y)(y)\B~(y)). 

ISt _< Cdis t (x ,y)  

K < CIS I IIfi~IILoo < Cdist(x,y) by (A.31). 

The desired inequality (A.32) follows by combining this with the em'lier estimate. 

Returning to the proof of Lemma A.16, we may now assert that the family 
( ~ ) ,  u E 2F, is relatively compact in C°(X, R N) and thus in BMO(X, RN). We may 
cover the family (~e) by a finite number of balls in BMO(X, IR N) of radius 5/2. The 
concentric balls of radius 5 then cover Y. [] 
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We mention a simple application of Lemma 3 to the sequence of truncates. 
Given a real-valued function f on X and an integer k, set 

k if f(x) > k 

fk(x) = f(x) i f - k  < f(x) < k 

- k  if f(x) <_ -k .  

LEMMA A.17. For every f C VMO(X,R) the sequence (fk) converges to f in 
BMO. 

Pro@ Given any 5 > 0 we will show that there exists ko such that 

I l f - - fk l [BMO<6 f o r k > k 0 .  

Consider any Be (x) in X. We have 

L~(~) ~B~(x) I fk(Y)-  fk(z)l <- ~B~(x) ~B~(x) If(Y) -- f(z)l Vk. 

It follows, with the aid of Lemma 3, that there exists Co > 0, such that 

L I ( f - f k ) - L  ( f - f k ) l < 5  f o r e < c o ,  Vk. 
~(~) ~(~) 

Since fk _+ f in L I, the same inequality holds for e >_ eo provided k > k0, for some 
ko depending on Co. [] 

REMARK A.5. tf  f C BMO(X, IR) then (f~) need not converge to f in BMO. (It 
is easy to construct an example using f(x) = log Ixl; recall that this f belongs to 
BMO, but not VMO - -  see Example 3 in Section 1.2). 

We now present various results concerning homotopy properties for BMO 
and VMO maps. They are used in the proofs of Theorems 3 and 4, as well as in 
paragraph 1 of Section 1.5. Let X, Y be our usual compact connected manifolds 
with X Riemannian (X and Y need not have the same dimension.) 

LEMMA A.18. There exists 5 > 0 (depending on X , Y )  such that for every 
u 6 BMO(X, Y) with IiullBMO < 6 and every e E (0, ro), u~ is homotopic within 
C°(X, Y) to a constant. 

Pro@ First observe that 

dist ( ~ ( x ) , Y )  < IIUlIBMO Vz C X, Vs C (0, ro) (A.33) 
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and thus ue = Pg~ is welt defined for every e E (0,ro), provided tlUftBMO _< 5 < 50, 
with 50 sufficiently small. Moreover, us is homotopic to 'u~, within C°(X,  Y )  for 
every e ,e '  C (0,to),  using the deformation ue~+(i_t)~,,0 < t < 1. 

Fix any e E (0, r0) - -  for example e = ro/2. We have, by Lemma A.1, 

here C also depends on e, but  e has been fixed and we do not stress the e-dependence. 
Combining (A.33) and (A.34) we obtain 

dist ( ( 1 - t ) ~ ( x ) + t j ~  x u ,  Y )  _< (C + I) ],U,IBMO V x C X ,  Vte[O,  1]. 

Thus 

P ( ( 1 -  t)~t~ + t~xU ) , O < t < 1, 

is well defined provided tI IIBMo _< ~ < 01 with 51 sufficiently small. Hence u~ is 
homotopic within C°(X,  Y )  to a constant, via t c [0, 1]. [] 

LEMMA A.19. Given u E VMO(X,Y)  there exists 5 = 5(u) > 0 such that every 
v E VMO(X, Y )  satisfying 

-  tlBMo + Itv - -  < 

is homotopic to u within VMO N L 1. Moreover ~ is uniform when u lies in a compact 
subset 2 r of }q~#ON L 1. 

Proof. We argue by- contradiction and assume that there is a sequence (uj) in 
VMO(X, Y) such that uj --+ u in VMO N L 1 and each uj is not homotopic to u 
within VMO N L 1. 

In view of Lemma 4 and (7) we know that there is some e0 > 0 such that uj,e 
is well defined for every j and every e < Co. Fix any e < Co. Since uj -+ u in L l, 
we deduce that uj,~ --+ u~ uniformly, as j -+ co. In particular, for j large, uj,~ is 
homotopic to u~ within C°(X,  Y )  - -  and thus within VMO N L ~. 

On the other hand, u~ is homotopic to u within VMO N L 1 (through ut~, by 
Corollary 4), and similarly uj,~ is homotopic to u a- within VMO N L 1. Therefore uj 
is homotopic to u within VMO N L 1. A contradiction. 

The fact that 5 is uniform when u C 5 c is easy to establish by contradiction. 
If not, there would exist equences (uj) in 9 c and (vj) in VMO such that 

t}vj -  jltBMO + llvj --  Jlt- -+ 0 

and, for each j, uj is not homotopic to vj within VMO N L 1 . 

Since ~- is compact we may assume, for a subsequence, that uj --+ u and 
vj --+ u in VMO N L 1. Prom the first assertion in the lemma we deduce that uj and 
vj are homotopic to u within VMO N L 1, for j large. A contradiction. [] 
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LEMMA A.20. Assume u ,v  E C ° ( X , Y )  are homotopic within V M O M L  1. Then 
they are homotopic within C°(X,  Y). 

Proof. Let H(t)  be a homotopy connecting u and v within VMO N L 1. Since j r  = 
H([0, 1]) is compact  in VMO, we know by Lemma 4 that H(t ) ,  is well defined for 
all ~ < Co and all t C [0, 1]. Fix any c < Co. Since H E C([0, 1]),L 1) we deduce that  
H(t)~ is a homotopy connecting u~ to v~ within C°(X,  Y). On the other hand, u,  is 
homotopic to u within C°(X,  Y )  (via ut~), and similarly for v and v~. Thus, u and 
v are homotopic within C°(X ,  Y) .  [] 

Given a homotopy class G in C ° ( X , Y )  we denote by C its closure in the 
VMO N L 1 topology. 

LEMMA A.21. I f  u, v E -C, then u is homotopic to v within P~t/IOM L 1. Conversely, 
if u, v E V M 0 ( X ,  Y)  are homotopic within VMOM L l, then there exists a unique 
homotopy class C in C°(X,  Y )  such that u, v E C. 

Proof. The first assertion is clear from Lemma A.19. We turn to the proof of the 
converse. Let (uj) be a sequence in C ° ( X , Y )  such that uj -+ u in V M O M L  1 
(we may  for example take u~ with ~ = 1/j) .  Similarly, let (vj) be a sequence in 
C ° ( X , Y )  such that  vj ~ v in V M O N L  1. Applying Lemma A.19 we see that uj 
is homotopic to u within VMO n L ~ for all j >_ N. Similarly, vk is homotopic to 
v within VMO M L i for all k > N.  Hence uj is homotopic to vk for all j ,  k > N,  
within VMO N L 1. We deduce from Lemma A.20 that uj and vk are also homotopic 
within C°(X,  Y) .  Consequently there is a homotopy class C in C°(X,  Y) such that 
uj, vj E C Vj >_ N. Thus u, v E C. 

Finally we prove the uniqueness of C. I t  suffices to show that if C1 and C2 
are two homotopy classes in C°(X,  Y )  such that  C1 M C2 ~ ¢, then C1 = C2. Let 
u E ~1MC2 and let (u j) C Cl,(vj)  C C2 be sequences such that uj -~ u in 
VMO M L 1, vj -~ u in VMO n L 1. In view of Lemma A.19, we may assume that uj 
and vj are homotopic to u within VMO (1 L 1 for all j .  By Lemma A.20 we know 
that uj and vj are homotopic within C°(X,  Y) ,  i.e., C1 = d2. [] 

In what follows we consider the special case where Y = S k, k > 1, and we show 
that some of the properties concerning homotopy can be improved. One suprising 
fact is that the notion of "homotopy within VMO" is equivalent to the notion of 
"homotopy within VMO M L 1'' (see Lemma A.23). 

Throughout  the rest of Appendix A we take Y = S k, k k 1. A basic ingredient 
is 

LI~MMA A.22. Let u E VMO(X,  Y )  be such that for some constant c ~ 0, u + c E Y 
a.e. Then u is homotopic to a constant within VMOML 1. In particular, u is ho- 
motopic to (u + c) within VMO M L 1. 
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Proof. Set E = Y M (Y - c); since E ~ Y, it is contractible to a point in Y, i.e., 
there is a continuous map h(t, ~r) : [0, 1] × E --+ Y such that h(O, a) = a V~ C E 
and h(1, or) is a constant. 

Set 
H(t,  x) = h(t, 

It  is easy to verify (using Lemma A.7) that 

H E C([O, 1], VMO M L1); 

moreover H(0,  x) = u(x) and H(1,  x) is a constant. 

Next, an improvement of Lemma A.19. 

[] 

LEMMA A.19q Given u E V M O ( X , Y )  there exists 5 = 5(u) > 0 such that every 
v C VMO (X, Y )  satisfying 

is homotopie to u within VMO N L 1 . Moreover 5 is uniform when u lies in a compact 
subset ~ of I&leiO. 

Proof. We argue by contradiction and assume that there is a sequence (uj) in 
VMO(X,  Y) such that uj --+ u in VMO and each uj is not homotopic to u within 
VMO A L 1. 

Set 
0 

=  (uj - ej 

Passing to a subsequenee we may assume that cj -+ c. Then, by Lemma 1, uj -+ u+e  
in L 1. 

In view of Lemma 4 and (7) we know that there is some co > 0 such that uj,~ 
is well defined for every j and every e < co. Fix any a < Co. Since uj --+ (u + c) in 
L 1 we deduce that uj,s --+ (u + c)~ uniformly as j -+ oo. 

In particular, for j large, uj,e is homotopic to (u + e)e within C°(X ,  Y )  - -  and 
thus within VMO M L 1. 

On the other hand, (u + c)e is homotopic to (u + c) within V M O a L  ~ and 
similarly uj,~ is homotopic to uj within VMONL 1. Therefore uj is homotopic to 
(u + c) within VMO M L 1 for j large. 

Finally, we apply Lemma A.22 to assert that (u + c) is homotopic to u within 
VMOML 1 (this is also true when c = 0!). Hence uj is homotopic to u within 
VMO N L 1 for j large. A contradiction. 

The fact that 5 is uniform when u C F', a compact subset of VMO, is derived 
as in the proof of Lemma A.19. [] 
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LEMMA A.23. Assume u, v E VMO(X,  Y )  are homotopie within VMO. Then u, v 
are homotopic within VMO N L 1. 

Proof. Let H(t)  be a homotopy connecting u to v within VMO. Let J~ ----- H([0, 1]), 
so that 9 r is compact subset of VMO. Let ~ be as in Lemma A.19' (relative to ~ ) .  
There is a chain u = Uo, u l , . . . ,  u~, uk+l = v in j r  such that Itu~+l --UiltBMO < 5 for 
i = 0, 1 , . . . ,  k. Thus ui+l is homotopic to u~ within VMO n L I  for i = 0, 1 , . . . ,  k. 
Consequently v is homotopic to u within VMO N L 1. [] 

REMARK A.6. The conclusion of Lemma A.23 may fail for a general manifold Y. 
Consider, for example, a manifold Y lying in R 3 diffeomorphic to a 2-d torus T 2. 
Assume that  Y contains a circle E contractible to a point in Y and another circle 
E '  -- E + c (for some constant c) such that E '  in not contractible to a point in 
Y. Let X = E; the map u(x) = x is homotopic to a constant within VMO n L 1 
and the map v(x)  -- x + c (viewed as a map from X into Y) is not homotopic to 
a constant within VMO N L 1 (by Lemma A.20). On the other hand u and v are 
clearly homotopic - in fact they are the same - -  within VMO. 

LEMMA A.24. Let g be a homotopy class in C ° ( X , Y ) .  Then its closure -J in 

VMO N L 1 coincides with its closure g in VMO. 

Proof. Clearly g C C. To prove the reverse inclusion, consider some u C g. There is 
a sequence (uj) in g such that uj -~ u in VMO. By Lemma A.19', uj is homotopic 
to u within VMO N L 1 for j sufficiently large. Applying Lemma A.2t we conclude 
that u E C. [] 

Appendix B. Jolm-Nirenberg inequality on manifolds, et al. 

We begin by stating of the John-Nirenberg inequality on a cube Q0 in L~ ~ (with 
edges parallel to the axes). It  is inequality (3)" in John-Nirenberg [1]: 

There exist f3, A > 0 depending only on n such that if u E BMO(Q0,IR N) and 
IlUltBMO(Qo) __~ 1, then 

where UQo = ~Qo u. 

Here, II NBMO(Qo) refers to the sup in (1) taken over all parallel subcubes rather 
than balls. 
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An immediate consequence is: for p an integer _> 2, 

j; lu - {Qol p -< p p -  tu - {Qol- 
o o 

The scaled version of this is 

(B.2) 
p--1 ./Q 

--- C"P II IIBMo<Qo)  Qol, 
o 

with C depending only oi1 n. It follows directly that, for a different C, depending 
o n l y  o n  n ,  

We wish next to present corresponding inequalities on a compact manifold X, 

without boundary. Here is a form of (B.3) on X. 

LEMMA B.1. There exists a constant A depending only on X, such that Vt < ro/ v~, 
Vx C X, 

fB iB [u(y)-u(z)IP<-APP' M~-~(u) f IR ,u(y)-u(z), (B.4) ~(~) ~(~) ,ss~k~(~) k~(~) 

where k = V~. 

Proof. We use geodesic normal coordinates in Bt(x). Then one easily sees that 

I =  JB ]B ]u(y) - u(z)'P < C ]Q JQ ]{t(Y) -- U(Z)'P 

where in the right hand side Q is a cube centred at the origin (in our coordinate 
patch) with side length 2t, and ~%(y) represents the transplanted function. Here C 
comes from the change of variables, and depends only on X. By (B.3), 

CLAIM. There is a constant C depending only on X such that 

11~i1~Mo(Q) <- CM~(~). (B.6) 
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Assuming that (B.6) holds, the proof of (B.4) is easily completed, since Q is 
contained in the transplant of Bkt(x) so that 

£ /q  ,~(v) - ~(z)l _< c/.~(~) f.~(~)lu(y) -'a(z)l. 

Proof of (B.6). V~e have to estimate for any parallel subcube ~) of Q, centred at ~, 
of side length 2T, 

in terms of Mr(u). Q is contained in a ball Bk,(~). Its transplant to X is contained 
in a ball BK,-(bc) and contains B,/K(bC) where 2 is the transplant of ~ and K is a 
constant depending only on X (see Proof of Lemma A.10). Hence 

J <_ C / f  i f  tu (y ) -  u(z)I <_ 2C MK~(U). (B.7) 
J S  eK.(e) JBK.(~) 

where C depends only on X. 

By Lemma A.14 applied a number of times, we find that 

J < CM,(u) .  

Inserting this in (B.7) we obtain (B.6). 

Lemma B.1 is proved. [] 

The next result is a more global form of Lemma B.1. 

LEMMA B.2. For every t < ro/x/-~, and for every integer p > 1, there is a finite 
number of baUs Bt(xi) in X,  i = 1, . . . ,  m, depending on t, such that 

1 
J ;  'ulP <- APp!MtP-I (u) f x  'u' + 2P ~ IBt(xi)' p-1 [ SB~(~) u ~  (B.8) 

where A depends only on X.  

Before proving Lemma B.2 we present some more civilized corollaries. 

LEMMA B.3. There is a constant A depending only on X such that for p > 1, an 
integer, 

I,< _< A.p, llullg::o ilu - 

Proof. We may assume J~. u = 0. In (B.8) we choose t = ro/v/n. Then we have 

jx  lup _< A~p~ii~ll~5~oll~fl. + A~llu.ll~. 
The desired conclusion follows with the aid of Lemma 1. [] 
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Another consequence is 

LEMMA B . 4 .  

sup4 ~ 4 ~ lu(y)- ~(z)l~_< A~p!Mt(,,), vt < ro 
x@X J Bt(X) J Bt(x) 

Proof. For t < ro /v~ ,  the claim follows immediately from Lemma B.1 with the aid 
of Lemma A.14. Suppose ro/v/-n < t < ro; we may assume that f x  u = 0. Then the 
desired result follows easily from Lemma B.a. [] 

Another simple consequence of Lemma B.3 is 

LEMMA B.5. Given ~ > O, there is a number/3 depending on 0 and on X such that 
if 11~11~o <- i, then 

£ (e"~-<-1) <_0£ t~-< 
where ~t = f x u. 

We point out that Lemmas B.3 and B.5 may be proved in a more direct 
fashion, not via Lemma B.2. Namely, one starts by- proving, directly, Lemma B.5 
using (B.1) locally and summing, as we did in the proof of Lemma B.1. Lemma B.3 
follows from Lemma B.5. 

We now turn to the proof of Lemma B.2. We shall make use of the following 
covering lemma: 

LEMMA B.6. Given t,O < t < ro and k > 1, there is a covering of X by a 
finite number of balls Bt(&),  i = 1 , . . . , m  = re(t) with the property that every 
y C X belongs to at most # balls Bkt(xi) ,  where # depends only on k and X .  tt is 
independent of t. 

Proof. Consider a maximal family of disjoint balls in X of radius t /2  : Bt/2(xi),  
i = 1 , . . . , m .  Clearly the Bt(xi)  cover X.  Suppose y E X belongs to # of the 
Bkt(x~), say for i = 1 , . . .  ,#.  Since dist(y, x~) <_ kt, i = 1 , . . . ,  #, it follows that 

B~/2(x~) c B(k+~)~(y), i = 1 , . . . , ~ .  

Since the balls Be/2(xi) are disjoint, we find on adding their measures, that 

tt 

i=1 

Using the fact that 
~ r  ~ _< IB~(x)l  _< 9 r  T~ Vr, 

for some positive constants a , ~  depending only on X,  we deduce a bound for # 
which depends only on k and X.  [] 
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Now the 

Proof of Lemma B.2. Observe first that for any ball B = Bt(x), 

(~B lUlP) lip ~ (~B ltt -- ~tt(x)'P) l/P -J- lttt(X)' 

_< I~(v) - ~ ( z ) y j  + I~ (~ ) I  

by the triangle inequality. Hence 

2 p 2 p P 

S.""'- J; + l.' 
By Lemma B.1, we find, wi~h a different A: 

APP ! ~ .p-1 ~ , 2P 

_ 2 p P. 

< APp'M~ l(u) i ~ ( . )  lul + ~ fBu 

Using the preceding covering lemma, and this last inequality, with B = Bt(xi), 
and summing, we obtain the desired conclusion. [] 

LEMMA B.7. There are constant/3, C depending only on X such that for any mea- 
surable set A C X,  and every u E B M O ( X , R  N) 

/3ff/~'AIUI<I[U][BMO(C+log~) +/3ff/~XU. 

Proof. We may assume Jx  u = 0 and IlttlIBM O ~_ 1. Recalt Young's inequality: For 
t > 0, ee _> 1, 

a t  < e t + a log a -- a. (B.9) 

We apply this with 

= ~ and ~ = /31~(x)l 

with/3 as in Lemma B.5, where we take 0 = 1. Integrating the inequality over A we 
find 

/31xf~ [ul <_ fAe;~'~t + lx[log lf-Ail - txl. 
Hence 

9f~ lul < ~f (e~l-I- 11 + log IXl 
- . x  IAI" 

The desired conclusion follows with the aid of Lemmas B.5 and 1. [] 
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Next, a lemma on the effect of multiplying a BMO function by some function. 

LEMMA B.8. Let a be a Lipschitz .function on X and let f be in IrJMO(X) (respec- 
tively VMO). Then a f is in BMO (respectively VMO), and 

IlaflIBMo _< C (iaic0 + IlallLip)IIfllBMo + tlallBMo f ~  f .  

where C depends only on X .  

Proof. We may assume that f x  f = 0. We then have to evaluate 

J = - 

< __ ~ ( x >  _ ~ ( ~ ) I ( a ( y ) -  a(z))f(y) + a ( z ) ( f ( y )  - f(z))l 

Ifl + 21aIc°IIflIBMO" _< 2ellallL~ o(~) 

Using Lemma B.7, with A = Bs(x), the desired estimate follows. The VMO 
assertion follows easily from Lemma 3. [] 

REMARK B.i. Note that in Lemma B.8, instead of assuming that a is Lipschitz 
continuous, we could have assumed that a is HSlder continuous or even merely that 

C 
la(x) - a(y)l _< ] + i logdist(x,y)l  Vx 7~ y. 

D. Stegenga [1] has obtained necessary and sufficient conditions for a function a to 
be a multiplier preserving BMO. 

We conclude this Appendix with a lemma asserting that if u E BMO, then g~ 
is "almost" Lipschitz. 

LEMMA B.9. For u E BMO(X,R  N) and c < to, there is a constant C~ such that 

( diamX ) 
J = I~(~) - ~(y)t -< C~IlutlBMO dist(x,y) 1 + log dist(x,y) " 

Proof. We may suppose that f x u  = 0 and IlulIBMO = 1. Then by Lemma 1, 

.fx lul _< c .  
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Case 1. dist(x, y) _> s/lO0. In this case 

J -< [B~(x)-----~ lul + - -  

Case 2. dist(x, y) < s/100. Then 

1 
IB~(x)l 

Thus 

IB~(y)l lu[ ~ C~. 

1 
iB~(y)l ~ C¢dist(x,y). 

261 

1 1 

As in the proof of Lemma A.16 we introduce the symmetric difference S of B~(x) 
and B~ (y) and we have 

1SI < C~ dist(x,y). 

Applying Lemma B.7 we see that 

The desired inequality follows by combining this with the earlier estimate. 
[] 
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