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NONCOMMUTATIVE LOCALIZATION AND CHAIN COMPLEXES

I. ALGEBRAIC K- AND L-THEORY

AMNON NEEMAN AND ANDREW RANICKI

Abstract. The noncommutative (Cohn) localization σ−1R of a ring R is defined

for any collection σ of morphisms of f.g. projective left R-modules. We exhibit σ−1R

as the endomorphism ring of R in an appropriate triangulated category. We use this

expression to prove that if TorR

i (σ−1R, σ−1R) = 0 for i ≥ 1 then every bounded f.g.

projective σ−1R-module chain complex D with [D] ∈ im(K0(R) −→ K0(σ
−1R)) is

chain equivalent to σ−1C for a bounded f.g. projective R-module chain complex C,

and that there is a localization exact sequence in higher algebraic K-theory

. . . −→ Kn(R) −→ Kn(σ−1
R) −→ Kn(R,σ) −→ Kn−1(R) −→ . . . ,

extending to the left the sequence obtained for n ≤ 1 by Schofield. For a noncom-

mutative localization σ−1R of a ring with involution R there are analogous results

for algebraic L-theory, extending the results of Vogel from quadratic to symmetric

L-theory.
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Introduction

This is the first of a series of papers on the algebraic K- and L-theory of noncommu-

tative localizations of rings. We adopt throughout the following convention. Suppose

R is an associative ring. Unless otherwise specified, by R-module we shall mean left

R-module.

Let σ ⊂ R be a multiplicative set of elements in the centre Z(R) of the ring R. It is

very classical to define σ−1R as the ring of fractions r/s, with r ∈ R and s ∈ σ. The ring

σ−1R is called the commutative localization of R with respect to the multiplicative set σ.

Note that the rings R and σ−1R are not assumed commutative; the only commutativity

hypothesis is that σ ⊂ Z(R). The localization exact sequences relating the algebraic K-

and L-groups of R and σ−1R are basic computational tools.

More recently, it has turned out to be useful to generalise the notion of rings of

quotients, in which much more general σ’s are allowed. From now on, the elements of

σ will be maps s : P −→ Q, with P and Q f.g. projective R-modules, and localization

will invert these maps. The classical case of a multiplicative set σ ⊂ R is just the special

case where P = Q = R, in other words P and Q are free R modules of rank 1. The

morphisms s : R −→ R to be inverted are given by right multiplication by s ∈ σ. If all

s ∈ σ lie in the centre of R, we are in the traditional situation.

Noncommutative localization is characterized by the following universal property. A

ring homomorphism R −→ S is called σ-inverting if 1 ⊗ s : S ⊗R P −→ S ⊗R Q is an

S-module isomorphism for every s : P −→ Q in σ. The category of σ-inverting ring

homomorphisms R → S has an initial object, denoted R −→ σ−1R. This means that

any σ-inverting ring homomorphism R −→ S factors uniquely as R −→ σ−1R −→ S.

The ring σ−1R is called a noncommutative localization or a universal localization of R

inverting σ.

Noncommutative localization was pioneered by Ore [22] and Cohn [9], in order to

study embeddings of noncommutative rings in skewfields. See Ranicki [25] for some of

the applications of the algebraic K- and L-theory of noncommutative localization to the

topology of codimension 2 submanifolds, such as knots.

In Part I of the paper we study the algebraic K- and L-theory of a noncommutative

localization σ−1R by means of triangulated categories, generalizing the work of Vogel

[32] and Schofield [27]. In Part II we shall obtain a chain complex interpretation of the

normal form of Gerasimov [13] and Malcolmson [19] for elements of σ−1R.

The ring homomorphism R −→ σ−1R gives σ−1R the structure of a right R-module

in the usual manner, and we have a functor

σ−1 = σ−1R⊗R − : {R-modules} −→ {σ−1R-modules} ;

M 7→ σ−1M = {σ−1R} ⊗RM .
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A σ−1R-module is induced f.g. projective if it is of the form σ−1P for a f.g. projective

R-module P .

The chain complex lifting problem is to decide if a bounded chain complex D of induced

f.g. projective σ−1R-modules is chain equivalent to σ−1C for a bounded chain complex

C of f.g. projective R-modules. The problem has a trivial affirmative solution for a

commutative localization, by the clearing of denominators, whenD is actually isomorphic

to σ−1C. In Part I of the paper we apply triangulated categories to study the problem

for a noncommutative localization σ−1R.

A systematic solution of the chain complex lifting problem leads to the extensions to

the noncommutative case of the localization exact sequences for the algebraic K- and

L-groups of a commutative localization. It turns out that the problem has a systematic

solution if and only if σ−1R is ‘stably flat over R’, and that there are homological

obstructions to stable flatness in general. Here is what we mean by stably flat over R.

Definition 0.1. Let R −→ S be a ring homomorphism. The ring S is called stably flat

over R if :

(i) the multiplication map µ : S ⊗R S −→ S is an isomorphism,

(ii) TorRi (S, S) = 0 for all i ≥ 1.

2

Remark 0.2. In the case of a noncommutative localization R −→ σ−1R, it is always

true that µ : S⊗R S −→ S is an isomorphism, and that TorR1 (σ−1R,σ−1R) = 0. A proof

may be found on page 58 of Schofield [27], or also in Corollary 3.27 of this article. In

general TorRi (σ−1R,σ−1R) 6= 0 for i ≥ 2.

2

In fact, Schofield has constructed examples of noncommutative localizations σ−1R

which are not stably flat over R, with TorR2 (σ−1R,σ−1R) 6= 0. These examples pinpoint

the difference between commutative and noncommutative localization. In commutative

localization σ−1R is always a flat R-module (Example 0.3 below); Schofield’s examples

show that in noncommutative localization the ring σ−1R need not even be stably flat

over R. We shall describe these examples in Part II.

Example 0.3. Let σ ⊂ R be a multiplicatively closed subset with 1 ∈ σ, such that the

elements s ∈ σ are central in R or more generally satisfy the Ore conditions :

(i) for all r ∈ R, s ∈ σ there exist q ∈ R, t ∈ σ such that rt = sq ∈ R,

(ii) if r ∈ R, s ∈ σ are such that sr = 0 ∈ R then rt = 0 ∈ R for some t ∈ σ.

The Ore localization σ−1R is the ring of fractions r/s (r ∈ R, s ∈ σ), which are the

equivalence classes of pairs (r, s) with

(r, s) ∼ (q, t) if there exist u, v ∈ R such that ru = qv ∈ R, su = tv ∈ σ.
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An Ore localization σ−1R is flat (Stenström [28], Prop. II.3.5) and hence stably flat over

R.

2

Example 0.4. Recall that a ring R is called hereditary if all R-modules have projective

dimension ≤ 1. A noncommutative localization of a hereditary ring R is a hereditary

ring σ−1R (Bergman and Dicks [4]). In this case, the vanishing of TorRi (σ−1R,σ−1R)

with i ≥ 2 follows just from the fact that every R-module has projective dimension ≤ 1.

Thus σ−1R is stably flat over R.

2

Example 0.5. For µ ≥ 1 let Fµ be the free group on µ generators. Given a commutative

ring k let R = k[Fµ], and let σ be the set of all R-module morphisms s : Rn −→ Rn (n ≥

1) inducing k-module isomorphisms ǫ(s) : kn −→ kn via the augmentation ǫ : R −→ k.

The noncommutative localization σ−1R is flat for µ = 1 (when it is commutative), but is

not flat for µ ≥ 2. If k is a principal ideal domain Farber and Vogel [11] identified σ−1R

with the ring of rational functions in µ non-commuting variables, and proved that σ−1R

is stably flat over R. (If k is a field then k[Fµ] is hereditary by Cohn [8], and the stable

flatness is given by Example 0.4).

2

Now that we have seen some examples of stably flat localizations R −→ σ−1R, it is

time for a comment. The main results of the article are about stably flat localizations.

We do have some weak results that hold without the hypothesis of stable flatness; but

the powerful theorems assume that σ−1R is stably flat over R. It becomes interesting to

find equivalent formulations of the hypothesis that σ−1R is stably flat over R.

Equivalent Formulation 0.6. Let R −→ S be a ring homomorphism. The ring S is

stably flat over R if and only if

(i) the multiplication map µ : S ⊗R S −→ S is an isomorphism,

(ii) for all S-modules M and all i ≥ 1, we have TorRi (S,M) = 0.

The if implication is trivial; if TorRi (S,M) vanishes for all S-modules M , then it vanishes

in particular for M = S. The only if implication may be found in Lemma 3.30.

2

Remark 0.7. (i) Equivalent Formulation 0.6 should explain the terminology. S is flat

as a right R-module if and only if TorRi (S,M) vanishes for all R-modules M , while S is

stably flat over R if and only if TorRi (S,M) vanishes for all S-modules M . In 0.13 we

shall see an equivalent formulation of stable flatness, this time in terms of Vogel’s chain

complex E(C). It seems natural to postpone this equivalent formulation until we are

ready to discuss Vogel’s construction.
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(ii) A ring homomorphism R −→ S such that TorRi (S,M) = 0 for all S-modules M and

all i ≥ 1 is called a lifting by Dicks [10] (p. 565).

2

Let C be a triangulated category. We say that C satisfies [TR5] if arbitrary coproducts

exist in C. An object c in a triangulated category C satisfying [TR5] is called compact if

C

(
c,
∐

λ∈Λ

tλ

)
=
⊕

λ∈Λ

C(c, tλ)

for every collection {tλ |λ ∈ Λ} of objects in C. Let Cc ⊂ C be the full subcategory of

all the compact objects in C. For the derived category D(R) of unbounded R-module

chain complexes, the compact category D(R)c = Dc(R) ⊂ D(R) has for its objects the

bounded f.g. projective R-module chain complexes, and any objects isomorphic to these.

Let D(R,σ) ⊂ D(R), Dc(R,σ) ⊂ Dc(R) be the subcategories generated by σ. The

objects of Dc(R,σ) are the bounded f.g. projective R-module chain complexes C such

that H∗(σ
−1C) = 0 (Proposition 5.3). We shall be working with triangulated categories

and functors

Ac = Dc(R,σ) //

��

Bc = Dc(R)
π //

��

Cc
T //

��

D
c = Dc(σ−1R)

��
A = D(R,σ) // B = D(R)

π // C = D(R)/D(R,σ)
T // D = D(σ−1R)

The unnamed maps are inclusions. The natural map Bc/Ac −→ Cc is an idempotent

completion (see 3.9.4). The functor π : B −→ C = B/A is the projection to the quotient.

The functor

Tπ : B −→ D ; X 7→ {σ−1R}L⊗R X = σ−1P

is given by the tensor L⊗R in the derived category, constructed using a sufficiently nice

projective R-module chain complex P with a homology equivalence P −→ X. And

the functor T is determined as the unique factorization of Tπ through π. We shall be

particularly concerned with the extent to which T = σ−1 : Cc −→ Dc is an equivalence

of triangulated categories.

Here is our main result (Theorem 10.8) :

Theorem 0.8. The following conditions on a noncommutative localization R −→ σ−1R

are equivalent :

(i) σ−1R is stably flat over R,

(ii) the functor T : Cc −→ Dc is an equivalence of categories.

2

Our main Theorem 0.8 has an immediate consequence (Theorem 10.10) :
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Theorem 0.9. If σ−1R is stably flat over R then the chain complex lifting problem can

always be solved : for every bounded chain complex D of induced f.g. projective σ−1R-

modules there exists a bounded f.g. projective R-module chain complex C with a chain

equivalence σ−1C ≃ D. 2

Without the stable flatness hypothesis there are Toda bracket obstructions to lifting

chain complexes; we explain this briefly in Section 6. A much fuller treatment will come

in Part II of this series.

Let H(R,σ) be the exact category of σ-torsion R-modules T of projective dimension

1, i.e. the R-modules with a f.g. projective R-module resolution

0 // P
s // Q // T // 0

such that σ−1s : σ−1P −→ σ−1Q is an isomorphism (e.g. if s ∈ σ). We shall only be

dealing with H(R,σ) in the special case of a noncommutative localization σ−1R when

each morphism s : P −→ Q in σ is injective. This happens, for example, if R −→ σ−1R

is injective (see Proposition 11.2 for details).

The algebraic K-theory localization exact sequence for an injective Ore localization

R −→ σ−1R

. . . −→ Kn(R) −→ Kn(σ
−1R) −→ Kn(R,σ) −→ Kn−1(R) −→ . . .

was obtained by Bass [2] for n = 1 and Gersten [14], Quillen [23] and Grayson [15],

[16] for n ≥ 2, with K∗(R,σ) = K∗−1(H(R,σ)). Schofield [27] established the algebraic

K-theory localization exact sequence in the classical dimensions 0,1

K1(R) −→ K1(σ
−1R) −→ K1(R,σ) −→ K0(R) −→ K0(σ

−1R)

for any injective noncommutative localization R −→ σ−1R. It is easy to extend the exact

sequence to the right, using the lower K-groups K−∗ of [2].

Waldhausen [33] identified the algebraic K-groups of Dc(R) with the Quillen [23]

algebraic K-groups of R

K∗(D
c(R)) = K∗(R) .

By the localization theorem of [33], for any R,σ there is defined a long exact sequence

in algebraic K-theory

. . . −→ Kn(R) −→ Kn(D
c(R)/Dc(R,σ)) −→ Kn(R,σ) −→ Kn−1(R) −→ . . . .

with

K∗(R,σ) = K∗−1(D
c(R,σ)) (definition) .

The idempotent completion Dc(R)/Dc(R,σ) −→ Cc induces an isomorphism on higher

K–theory, so that

K∗(D
c(R)/Dc(R,σ)) = K∗(C

c) .
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The map T : Cc −→ Dc(σ−1R) induces a map on Waldhausen’s K–theory

K(T ) : K(Cc) −→ K(Dc(σ−1R)) = K(σ−1R) .

In Sections 8 and 9 we show that this map is an isomorphism on K0 and K1, without any

hypothesis on σ. If we assume that σ−1R is stably flat over R, then Theorem 10.8 tells

us that T : Cc −→ Dc = Dc(σ−1R) is an equivalence of categories, and as a corollary we

deduce Theorem 10.11 :

Theorem 0.10. If σ−1R is stably flat over R the functor T : Cc −→ Dc = Dc(σ−1R)

induces isomorphisms

T : K∗(C
c) = K∗(D

c(R)/Dc(R,σ)) −→ K∗(D
c) = K∗(σ

−1R)

and there is a localization exact sequence in algebraic K-theory

. . . −→ Kn(R) −→ Kn(σ
−1R) −→ Kn(R,σ) −→ Kn−1(R) −→ . . . . 2

In Theorem 11.10 we shall prove :

Theorem 0.11. If each morphism in σ is injective the Waldhausen K-groups of Dc(R,σ)

are just the Quillen K-groups of H(R,σ)

K∗(R,σ) = K∗−1(D
c(R,σ)) = K∗−1(H(R,σ)) .

If in addition σ−1R is stably flat over R there is defined a localization exact sequence in

algebraic K-theory

. . . −→ Kn(R) −→ Kn(σ
−1R) −→ Kn−1(H(R,σ)) −→ Kn−1(R) −→ . . . . 2

However, in general the morphisms s : P −→ Q, R −→ σ−1R are not injective and,

except in section 11 and parts of section 12, we do not assume this to be the case.

In section 12 we consider the L-theory of noncommutative localizations, obtaining the

following results (Theorems 12.4, 12.5, 12.9) :

Theorem 0.12. Let R −→ σ−1R be a noncommutative localization of a ring with invo-

lution R, such that σ is invariant under the involution.

(i) There is a localization exact sequence of quadratic L-groups

. . . // Ln(R) // LIn(σ
−1R)

∂ // Ln(R,σ) // Ln−1(R) // . . .

with I = im(K0(R) −→ K0(σ
−1R)), and Ln(R,σ) the cobordism group of σ−1R-contractible

(n− 1)-dimensional quadratic Poincaré complexes over R.

(ii) If σ−1R is stably flat over R there is a localization exact sequence of symmetric

L-groups

. . . // Ln(R) // LnI (σ
−1R)

∂ // Ln(R,σ) // Ln−1(R) // . . .

with Ln(R,σ) the cobordism group of σ−1R-contractible (n − 1)-dimensional symmetric

Poincaré complexes over R.
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(iii) If R −→ σ−1R is injective then Ln(R,σ) (resp. Ln(R,σ)) is the cobordism group of

n-dimensional symmetric (resp. quadratic) Poincaré complexes of σ-torsion R-modules

of projective dimension 1. 2

The L-theory exact sequences of Theorem 0.12 for an injective Ore localization R −→

σ−1R were obtained in Ranicki [24]. The quadratic L-theory exact sequence of 0.12 (i)

for arbitrary R −→ σ−1R was obtained by Vogel [31], [32]. The symmetric L-theory

exact sequence of 0.12 (ii) is new.

We shall now give yet another equivalent formulation of stable flatness. However, in

Part I, we will use Definition 0.1 as the working definition.

Recall that a right R-module S is flat if and only if, for any chain complex C of left

R-modules

H∗(S
L⊗RC) = S ⊗R H∗(C)

where SL is a projective right R-module resolution of S.

Equivalent Formulation 0.13. For any noncommutative localization σ−1R and any

chain complex of R-modules C, we define a contravariant functor

[[−, C]] : {R-module chain complexes} −→ {Z-modules} ;

A 7→ [[A,C]] = lim−→
(B,β)

[A,B]

with [A,B] the Z-module of chain homotopy classes of chain maps A −→ B, and the

direct limit taken over all the R-module chain complexes B with a chain map β : C −→

B such that the mapping cone of β is quasi-isomorphic to a bounded complex of f.g.

projective R-modules, and H∗(S
L⊗RC) ∼= H∗(S

L⊗RB) with S = σ−1R. (A chain

map is a quasi-isomorphism if it induces isomorphisms in homology). This functor is

representable. That is

[[A,C]] = [A,E(C)]

for some R-module chain complex E(C) = lim−→B. Such a complex E(C) was first

constructed by Vogel in his paper [32]. There is a map of R-module chain complexes

C −→ E(C) inducing S-module isomorphisms

H∗

(
SL⊗RC

)
∼= H∗

(
SL⊗RE(C)

)

and such that for each i ∈ Z

Hi(E(C)) = [[ΣiR,C]] = lim−→
(B,β)

Hi(B)

is an S-module. Furthermore, H0(E(R)) = S. If Hi(C) are S-modules for all i ∈ Z,

then the map C −→ E(C) is a quasi-isomorphism. There is a map of R-module chain

complexes E(C) −→ SL⊗RC inducing S-module morphisms

H∗(E(C)) −→ H∗(S
L⊗RC) ∼= H∗

(
SL⊗RE(C)

)
.
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Here is the equivalent formulation : the noncomutative localization S = σ−1R is stably

flat over R if and only if E(R) −→ SL⊗RR = S is a quasi-isomorphism. The proof of

this assertion is the equivalence of (i) and (ii) in Theorem 10.8, coupled with the fact

that E(R) = GπR. If S is stably flat then E(C) −→ SL⊗RC is a quasi-isomorphism

for any R-module chain complex C. The proof of this statement comes from the fact

that the full subcategory on which the map is an isomorphism is triangulated and closed

under coproducts, coupled with Lemma 3.5. In Part II of this series we plan to explore

in far greater depth the relation between our work and the earlier work in the subject,

especially the important contributions of Vogel.

2

So far, we have used chain complexes and homology. This makes the notation above

consistent with the the usage standard in the L–theory literature. For triangulated

categories, it is more usual to work with cochain complexes and cohomology, and in Part

I we shall be working with these (except in the L-theory section 12). The sole object is

to make it easier for the reader to check our references to the literature.

The basic tool in the proof of our main Theorem 0.8 is the fact that

π : B = D(R) −→ C = D(R)/D(R,σ)

admits a Bousfield localization. That is, π has a right adjoint G : C −→ B, meaning

B(x,Gy) = C(πx, y)

for any objects x ∈ B, y ∈ C. The R-module cochain complex GπR (which is essentially

the same as Vogel’s E(R); see Equivalent Formulation 0.13 above) has the following

properties :

(i) H−i(GπR) is the group of morphisms ΣiR −→ R in C. Such morphisms are equiv-

alence classes of pairs of R-module chain maps (α : R −→ Y, β : ΣiR −→ Y ) with

Y ∈ Dc(R), C(α) ∈ Dc(R,σ). The fact that Y may be taken to be inDc(R) ⊂ D(R)

is not supposed to be trivial: see 3.9.4.

(ii) The groups H∗(GπR), TorR∗ (σ−1R,σ−1R) are σ−1R–σ−1R bimodules, and there is

a cohomology spectral sequence

Ei,j2 = TorR−i(σ
−1R,Hj(GπR)) =⇒ H∗({σ−1R}L⊗R GπR) = σ−1R ,

with σ−1R concentrated in degree 0. In particular

H0(GπR) = σ−1R .

(iii) H i(GπR) = 0 for i 6= 0 if and only if σ−1R is stably flat over R.
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1. Noncommutative localization of a ring

Given a ring R and a collection σ of morphisms s : P −→ Q of f.g. projective R-

modules we recall the universal property of the noncommutative localization σ−1R, and

the original construction.

Definition 1.1. (i) A ring homomorphism R −→ S is σ-inverting if for every s : P −→

Q in σ the induced S-module morphism 1⊗ s : S ⊗R P −→ S ⊗R Q is an isomorphism.

(ii) A ring homomorphism R −→ S is universally σ-inverting if it is σ-inverting, and any

other σ-inverting morphism R −→ S′ has a unique factorization R −→ S −→ S′.

2

Any two universally σ-inverting ring homomorphisms R −→ S, R −→ S′ are related by

a canonical isomorphism S −→ S′ such that R −→ S′ is the composite R −→ S −→ S′.

Theorem 1.2. (Cohn [9])

For any R, σ there exists a universally σ-inverting ring morphism R −→ σ−1R. 2

As in the introduction, for any R-module M we define σ−1M = {σ−1R} ⊗R M .

Because R −→ σ−1R is σ-inverting, every s : P −→ Q in σ induces an isomorphism

s : σ−1P −→ σ−1Q.

The original construction of σ−1R in [9] was for a set σ of R-module morphisms

s : Rn −→ Rn, i.e. for a set of square matrices s, with σ−1R obtained from R by

adjoining one generator for each component of a formal inverse s−1 and the relations

given by

ss−1 = s−1s = I .

Gerasimov [13], Malcolmson [19] and Schofield [27] constructed σ−1R for any σ as the

ring of equivalence classes of triples of morphisms of f.g. projective R-module morphisms
(
f : P −→ R , s : P −→ Q , g : R −→ Q

)

with s ∈ σ. The triple (f, s, g) represents fs−1g ∈ σ−1R.

2. Bousfield localization in triangulated categories

In section 3 we shall express a noncommutative localization σ−1R of a ring R as the

endomorphism of R in the triangulated category Cc = (D(R)/D(R,σ))c

σ−1R = EndCc(R) .

The main tool is Bousfield localization, which we review in this section. We give careful

statements of what is known, and refer elsewhere for the proofs.

Definition 2.1. Let B be a triangulated category. A triangulated subcategory is a non-

empty full subcategory A ⊂ B closed under suspension and triangles; that is, given a

distinguished triangle in B

X −−−→ Y −−−→ Z −−−→ ΣX ,
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if X and Y lie in A then so do all their suspensions, and so does Z.

2

Definition 2.2. Let B be a triangulated category. A triangulated subcategory A ⊂ B

is called thick (or épaisse) if it contains all direct summands of its objects.

2

And now we get to the first theorem :

Theorem 2.3. (Verdier localization). Let B be a triangulated category, A ⊂ B

a triangulated subcategory. There is a quotient triangulated category C = B/A, and a

natural triangulated functor B −→ C. The composite functor

A −−−→ B −−−→ C = B/A

takes every object in A to an object isomorphic in C to zero. The functor B −→ B/A is

universal among the functors B −→ D taking the objects of A to objects isomorphic to

zero. Furthermore, if A ⊂ B is thick, then all the objects in B whose images in C = B/A

are isomorphic to zero lie in A.

Proof. The theorem is due to Verdier, and may be found in his thesis [30]. For a very

complete and detailed proof, see Theorem 2.1.8, on page 74 of [20]. The full proof

occupies pages 75-99 op. cit.

Suppose C = B/A is as in Theorem 2.3. It may happen that the functor π : B −→ C

has a right adjoint, that is a functor G : C −→ B such that for every object x in B and

every object y in C

B(x,Gy) = C(πx, y) .

We shall be working in the following situation :

Definition 2.4. Let B be a triangulated category, and let A ⊂ B be a thick subcategory.

Let C = B/A be the quotient of Theorem 2.3. We say that a Bousfield localization

functor exists for the pair A ⊂ B if the natural functor π : B −→ C has a right adjoint

G : C −→ B.

2

Remark 2.5. The adjoint G, if it exists, must be a triangulated functor. Adjoints of

triangulated functors are always triangulated. See Lemma 5.3.6 of [20].

2

Let us next summarise some useful facts about Bousfield localizations. This is not an

exhaustive list; later on in the article we shall cite more properties. What comes here is

a handy list of basic, core properties.
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Theorem 2.6. Let B be a triangulated category, and let A ⊂ B be a thick subcategory.

Suppose a Bousfield localization functor exists for the pair A ⊂ B. That is, the functor

π : B −→ C = B/A has a right adjoint G : C −→ B. Then the following statements are

true.

2.6.1. Coproducts in B of objects of A must lie in A.

2.6.2. The functor G is fully faithful.

2.6.3. For any two objects x and y in B, we have an isomorphism

B(Gπx,Gπy) −→ B(x,Gπy) ; α 7→ αηx ,

where η is the unit of adjunction, and αηx is the composite

αηx : x
ηx

−→ Gπx
α
−→ Gπy .

The assertion is really that any β : x −→ Gπy factors uniquely as αηx.

2.6.4. If b ∈ B lies in the image of G : C −→ B, then ηt : b −→ Gπb is an isomorphism.

2.6.5. Let b ∈ B be any object. The unit of adjunction gives a map ηb : b −→ Gπb.

Complete it to a triangle

a −−−→ b
η

b−−−→ Gπb −−−→ Σa .

Then the object a lies in A ⊂ B.

Proof. To prove 2.6.1, just observe that the functor π : B −→ C has a right adjoint, and

therefore takes coproducts to coproducts. Now π takes objects of A to zero, and hence

takes any coproduct of objects in A to zero. But because A is thick, Theorem 2.3 tells us

that any object of B whose image in C vanishes must lie in A. Hence any B-coproduct

of objects of A lies in A.

Now for 2.6.2. In the proof of Lemma 9.1.7 of [20] we see that, for all x ∈ B, the

map επx is an isomorphism. Any object of C is of the form πx, hence ε : πG =⇒ 1 is an

isomorphism. But then Lemma A.2.9 of [20] tells us that G is fully faithful.

Next comes 2.6.3. We have

B(x,Gπy) = C(πx, πy) by adjunction,

= B(Gπx,Gπy) because G is fully faithful.

Finally, 2.6.4 may be found in Lemma 9.1.7 of [20], while 2.6.5 may be found in Propo-

sition 9.1.8 loc. cit.

It might be useful to illustrate these properties in the case of most interest to us,

with B = D(R) the (unbounded) derived category of chain complexes of left R-modules.

When we refer to the object R ∈ D(R), we mean the chain complex which is R in degree

0, and zero elsewhere. Let us make an observation.
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Proposition 2.7. Let B = D(R) be the derived category of a ring R. Let A ⊂ B =

D(R) be a thick subcategory. Suppose a Bousfield localization functor exists for the pair

A ⊂ D(R). That is, the functor π : B −→ C = B/A has a right adjoint G : C −→ B.

Then GπR is a chain complex in D(R). We assert that S = H0(GπR) has a natural

structure of an algebra over R, i.e. there exists a ring homomorphism R −→ S.

Proof. We note first that H0(X) = B(R,X) for every object X ∈ B = D(R). Applying

this to X = GπR, we have

H0(GπR) = B(R,GπR) by the above,

= B(GπR,GπR) by 2.6.3.

Now S = B(GπR,GπR) is a ring, being the endomorphism ring of an object in an

additive category. The fact that Gπ is an additive functor gives us a ring homomorphism

B(R,R) −−−→ B(GπR,GπR) = S .

Let us agree that we shall view R and GπR as right modules for, respectively, B(R,R)

and B(GπR,GπR). Then B(R,R) = R with the usual right action, and we have a

homomorphism of rings

R −−−→ B(GπR,GπR) = S .

Lemma 2.8. Let the situation be as in Proposition 2.7. We remind the reader: B =

D(R) is the derived category of a ring R. Let A ⊂ B = D(R) be a thick subcategory.

Suppose a Bousfield localization functor exists for the pair A ⊂ D(R). That is, the

functor π : B −→ C = B/A has a right adjoint G : C −→ B. The unit of adjunction

ηR : R −→ GπR induces a map

H0(ηR) : R = H0(R) −→ H0(GπR) .

We assert that it agrees with the ring homomorphism of Proposition 2.7.

Proof. Recall that R can be viewed as HomR(R,R), acting on the right. For any r ∈ R,

right multiplication by r is a left-module homomorphism. We denote this homomorphism

as r : R −→ R.

The naturality of η gives a commutative square

R
η

R−−−→ GπR
yr

yGπr

R
η

R−−−→ GπR
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Taking H0, we have a commutative square

R
H0(η

R
)

−−−−→ H0(GπR)
yr

yGπr

R
H0(η

R
)

−−−−→ H0(GπR)

Since this commutes for any r ∈ R, we deduce that H0(ηR) : R −→ H0(GπR) is a

homomorphism of right R-modules. Here, R is a right R-modules in the obvious way,

while S = H0(GπR) is a right module over the ring S = B(GπR,GπR), and the ring

homomorphism R −→ S of Proposition 2.7 turns it into a right R-module. To prove

that the R-module homomorphism H0(ηR) : R −→ H0(GπR) agrees with the ring

homomorphism R −→ S, we need only check that 1 ∈ R maps to 1 ∈ S.

But this is easy. For any element s ∈ S, the identifications

s ∈ S = H0(GπR) = B(R,GπR) = B(GπR,GπR)

are quite explicit. Given α ∈ B(GπR,GπR), that is a morphism α : GπR −→ GπR, the

isomorphism

B(R,GπR) = B(GπR,GπR)

of 2.6.3 sends it to the composite

R
η

R−−−→ GπR
α

−−−→ GπR .

In particular, if α = 1S , then it is sent to ηR. The isomorphism

H0(GπR) = B(R,GπR)

sends ηR ∈ B(R,GπR) to the image of 1R ∈ R = H0(R) under the map

H0(ηR) : R −−−→ H0(GπR) .

We conclude that under the natural isomorphisms, 1S = H0(ηR)(1R). This proves that

H0(ηR) takes 1 ∈ R to 1 ∈ S.

3. Noncommutative localization using triangulated categories

In Lemma 2.8 we learned that, given a suitable subcategory A ⊂ B = D(R) for which

the projection π : B −→ C = B/A has a right adjoint G : C −→ B, there is a canonical

ring homomorphism R −→ H0(GπR). In this section we shall show that given a set σ

as in section 1 and an appropriate choice of A, this is the noncommutative localization

R −→ H0(GπR) = σ−1R considered in section 1.

The first step is to give sufficient conditions for the Bousfield localization G to exist.

We shall state a general existence theorem, and then narrow it to the case of inter-

est. To state the general theorem, we need to remind the reader of compact objects in

triangulated categories satisfying [TR5]. We recall the definitions.
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Definition 3.1. A triangulated category C is said to satisfy [TR5] if arbitrary coproducts

exist in C.

2

Example 3.2. If R is an associative ring and D(R) is its unbounded derived category,

then D(R) satisfies [TR5]. If a triangulated category satisfies [TR5], then coproducts of

distinguished triangles are distinguished; see Proposition 1.2.1 and Remark 1.2.2 of [20].

2

Definition 3.3. Let C be a triangulated category satisfying [TR5]. An object c ∈ C is

called compact if the functor C(c,−) respects coproducts. Equivalently, c is compact if

every map

c −−−→
∐

λ∈Λ

tλ

factors through a finite coproduct.

2

Remark 3.4. In the derived category D(R) of Example 3.2, the object R ∈ D(R) is

compact. By R ∈ D(R) we mean the chain complex which is zero in all dimensions but

0, and is R in dimension 0. The proof that R is compact is the following. For any object

X ∈ D(R),

D(R)
(
R,X

)
= H0(X) .

Since H0(−) is a functor commuting with coproducts, the compactness follows. All

suspensions of a compact object are compact.

2

It is useful to recall the following fact.

Lemma 3.5. With the notation as in Remark 3.4, the category D(R) contains an object

R (the complex with R in degree zero, and zero in all other degrees). Any triangulated

subcategory of D(R), closed under coproducts and containing R ∈ D(R), is all of D(R).

Proof. By Remark 3.4, the object R is compact. In the terminology of [20], R is an

ℵ0-compact object in D(R). Also, if for every n ∈ Z we have

D(R)
(
ΣnR,X

)
= D(R)

(
R,Σ−nX

)
= H−n(X) = 0 ,

then X is acyclic and vanishes in D(R). This makes the set {ΣnR,n ∈ Z} an ℵ0-compact

generating set for D(R), as in Definition 8.1.6 of [20]. But then Theorem 8.3.3 loc. cit.

tells us that

〈{ΣnR,n ∈ Z}〉 = D(R) ,

that is any triangulated subcategory of D(R), closed under coproducts and containing

R ∈ D(R), is all of D(R).
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Definition 3.6. Let C be a triangulated category satisfying [TR5]. The subcategory

Cc ⊂ C is defined to be the full subcategory of all compact objects in C.

2

Remark 3.7. The subcategory Cc ⊂ C is always a thick subcategory.

2

Example 3.8. If R is an associative ring and B = D(R) is its unbounded derived cate-

gory, then Bc turns out to be the full subcategory of all objects isomorphic in D(R) = B

to bounded complexes of f.g. projective R-modules. In the notation of the representation

theorists, what we have been denoting D(R) would be written B = D(R-Mod), and Bc is

Db(R−proj). The proof that Db(R−proj) is precisely Bc goes as follows. It is clear that

Db(R − proj) is a triangulated subcategory of B, and Proposition 3.4 in [5] proves that

it is also closed under direct summands. That is, Db(R− proj) is a thick subcategory of

B. Example 1.13 of [21] shows that every object in Db(R− proj) is compact; that is,

Db(R− proj) ⊂ B
c .

But R is an object of Db(R − proj), and by Lemma 3.5 any triangulated category of B

closed under coproducts and containing R is all of B. The fact that the inclusion

Db(R− proj) ⊂ B
c

is an equality now follows from Lemma 4.4.5 of [20], more precisely from the case where

α = β = ℵ0 in that Lemma.

In the rest of this article, to keep the notation as simple as possible, we write B = D(R)

for D(R-Mod), and Bc = Dc(R) for Db(R− proj).

2

Next we state the main existence theorem for Bousfield localizations. The theorem

gives sufficient conditions for the existence of a right adjoint G to the functor π : B −→

C = B/A. It also tells us how the subcategories of compact objects, that is Ac, Bc and

Cc, are related to each other.

Theorem 3.9. Let B be a triangulated category satisfying [TR5]. Suppose there are two

sets of compact objects A,B ⊂ Bc so that

(i) Every triangulated subcategory of B, closed under coproducts containing B ⊂ Bc,

must equal all of B.

(ii) The smallest triangulated subcategory of B, closed under coproducts and containing

A ⊂ Bc, will be denoted A.

We have an inclusion A ⊂ B. Let C = B/A be the quotient. The following is true

3.9.1. A Bousfield localization functor exists for the pair A ⊂ B. If G is right adjoint

to the natural projection π : B −→ C = B/A, then G respects coproducts.
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3.9.2. The categories Ac, Bc and Cc are all essentially small.

3.9.3. Ac = A∩Bc. Furthermore, Ac can also be described as the smallest thick subcat-

egory of Bc containing A.

3.9.4. The natural map Bc/Ac −→ C is fully faithful, and factors through Cc ⊂ C. The

functor

πc : B
c/Ac −→ C

c

is almost an equivalence of categories. It is fully faithful by the above, and every object

of Cc is a direct summand of an object in the image of πc.

Proof. For the proof of 3.9.1, see for example Lemma 1.7, Remark 1.8 and Proposition 1.9

in [21]. The proof of 3.9.4 may be found in Theorem 2.1 loc. cit.

For 3.9.3, observe that the inclusion A ∩ Bc ⊂ Ac is obvious. An object of A which

is compact as an object in the larger B must be compact in A. The reverse inclusion,

Ac ⊂ A ∩Bc, may be found in Lemma 2.2 of [21], where it is also proved that Ac is the

smallest thick subcategory containing A.

Finally, for 3.9.2 we need to show that Ac, Bc and Cc are all essentially small. For Ac,

this is obvious by 3.9.2; after all, Ac is obtained from the set A of objects by completing

with respect to triangles and direct summands. For B, we deduce it from the previous

case by choosing A = B, and therefore A = B and Ac = Bc. Now we know that Bc

and Ac are essentially small. Hence so is Bc/Ac, and Cc is obtained from it by splitting

idempotents. Therefore Cc is also essentially small.

Example 3.10. The case of most interest to us here is where B = D(R) is the derived

category of the ring R; we remind the reader, this means the derived category of all

chain complexes of left R-modules. By Lemma 3.5, we know that we can let the set B be

B = {R}. Every triangulated subcategory of B, closed under coproducts and containing

B ⊂ Bc, is all of B.

What Theorem 3.9 tells us is that we may choose any set of objects A ⊂ Bc, and all

the statements of the theorem hold. Let us begin by specialising to the case we wish to

study.

2

Notation 3.11. Suppose that we are given a ring R. Let B = D(R) be the derived

category of chain complexes of left R-modules. Let σ be a set of objects in Bc = Dc(R)

of the form

. . . −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ . . .

That is, there exists an integer ℓ so that the only non-zero terms in the complex occur

in dimensions ℓ and ℓ+ 1. And the R-modules cℓ and cℓ+1 are both f.g. and projective.

Note that we shall freely confuse the set of complexes σ with the set of maps

cℓ −→ cℓ+1 .



18 AMNON NEEMAN AND ANDREW RANICKI

Both sets will be called σ. We henceforth apply Theorem 3.9 to B = D(R) with A = σ

and B = {R}. Let A = D(R,σ) be the smallest triangulated subcategory of B which is

closed under coproducts and contains A = σ ⊂ Bc. We shall write the full subcategory

of Bc = Dc(R) consisting of the compact objects in A as

A
c = Dc(R,σ) .

With C = B/A as in Theorem 3.9, the functor π : B −→ C has a right adjointG : C −→ B.

2

It is now time to recall another well-known fact about Bousfield localization. We begin

with a definition.

Definition 3.12. Let B be a triangulated category satisfying [TR5]. Let σ be a set of

objects in B. An object X is called σ-local if, for every object s ∈ σ and every integer

n ∈ Z, B(s,ΣnX) = 0.

2

Remark 3.13. The full subcategory of all σ-local objects is triangulated.

2

Lemma 3.14. Let the notation be as in 3.11. That is, B = D(R), σ is a set of objects

in Bc, and A = D(R,σ) is the smallest triangulated subcategory of B containing σ and

closed under coproducts. Suppose x ∈ B is σ-local. Then the unit of adjunction

ηx : x −−−→ Gπx

is an isomorphism.

Proof. Fix a σ-local object x ∈ B. Consider the full subcategory T ⊂ B of all objects

t ∈ B so that, for every n ∈ Z,

B(t,Σnx) = B(Σ−nt, x) = 0 .

Because x is σ-local, T must contain σ. But from its definition, it is clear that T is closed

under coproducts and triangles. Hence it must contain A. We conclude that, for every

object a ∈ A and any integer n ∈ Z, B(Σna, x) = 0.

This means that, in the notation of Definition 9.1.10 of [20], x lies in ⊥A. By Corol-

lary 9.1.9 loc. cit, the unit of adjunction

ηx : x −−−→ Gπx

is an isomorphism.
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Remark 3.15. The next lemmas will make use of the standard t-structure on B = D(R).

The reader will find an excellent exposition of this topic in Chapter 1 of [3]. We recall

that the full subcategory B≤n is defined by

Ob(B≤n) = {X ∈ Ob(B) | Hr(X) = 0 for all r > n} .

2

Lemma 3.16. As in Notation 3.11, let B = D(R), let σ be a set of objects in Bc =

Dc(R) of the form

. . . −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ . . .

If x is a σ-local object, then so are its t-structure truncations x≤n and x≥n.

Proof. Pick a σ-local object x and an integer n ∈ Z; without loss of generality we may

assume n = 0. Let us begin by proving that x≥0 is σ-local. Take any s ∈ σ, that is a

chain complex

. . . −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ . . .

and any integer m ∈ Z. By Definition 3.12, it suffices to show that any map Σ−ms −→

x≥0 vanishes. That is, we must prove that any map from

. . . −→ 0 −→ cℓ+m −→ cℓ+m+1 −→ 0 −→ . . .

to x≥0 must vanish in B. If ℓ+m+1 < 0, then there is no problem. We have Σ−ms ∈ B<0

while x≥n ∈ B≥0, and hence any map Σ−ms −→ x≥0 must vanish. Assume therefore

that ℓ+m+ 1 ≥ 0.

We have a triangle

x<0 −−−→ x −−−→ x≥0 w
−−−→ Σx<0 .

The composite

Σ−ms −−−→ x≥0 w
−−−→ Σx<0

is a map from a bounded above complex of projectives Σ−ms to some object in B = D(R),

and hence it is represented by a chain map. But the chain complex Σ−ms lives in degrees

ℓ + m and ℓ + m + 1, both of which are ≥ −1, while the complex Σx<0 lies in B≤−2.

Hence the map vanishes. From the triangle we deduce that the map Σ−ms −→ x≥0 must

factor as

Σ−ms −−−→ x −−−→ x≥0 .

But x is σ-local by hypothesis, and hence any map Σ−ms −→ x vanishes.

This proves that x≥0 is σ-local. In the triangle

x<0 −−−→ x −−−→ x≥0 w
−−−→ Σx<0 .

we now know that both x and x≥0 are σ-local, and Remark 3.13 permits us to deduce

that x<0 is also σ-local.
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Lemma 3.17. As in Notation 3.11, let B = D(R), let σ be a set of objects in Bc =

Dc(R) of the form

. . . −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ . . .

and let A = D(R,σ) be the smallest triangulated subcategory of B containing σ and

closed under coproducts. We assert that if x ∈ B≤n, then so is Gπx.

Proof. We may assume without loss that n = 0. Pick any x ∈ B≤0. For any s ∈ σ and

any n ∈ Z, we have by adjunction

B(Σ−ms,Gπx) = C(πΣ−ms, πx)

which vanishes since πΣ−ms = 0. Hence Gπx is σ-local, and by Lemma 3.16 so is

{Gπx}≤0.

Now the unit of adjunction ηx : x −→ Gπx is a map from an object x ∈ B≤0, and

therefore factors (uniquely) as

x
α

−−−→ {Gπx}≤0 f
−−−→ Gπx .

Since {Gπx}≤0 is σ-local, Lemma 3.14 coupled with 2.6.3 tell us that the map α factors

(uniquely) as

x
ηx

−−−→ Gπx
g

−−−→ {Gπx}≤0 .

The composite

x
ηx

−−−→ Gπx
g

−−−→ {Gπx}≤0 f
−−−→ Gπx

is ηx, and the uniqueness statement in 2.6.3 says that fg : Gπx −→ Gπx is the identity.

The identity factors through an object in B≤0.

But then the identity must induce the zero map on all Hn(Gπx) with n > 0. That is,

for n > 0 we have Hn(Gπx) = 0. In other words, Gπx ∈ B≤0.

Remark 3.18. The derived tensor product is defined for any R − R bimodule S to be

the triangulated, coproduct-preserving functor

D(R) −→ D(R) ; X 7→ SL⊗RX = S ⊗R P

with P a sufficiently nice projective R-module chain complex quasi-isomorphic to X.

The existence of this functor may be found, for example, in Theorem 2.14 of Bökstedt

and Neeman [5]. The following are sufficiently nice :

(a) bounded above chain complexes of projectives,

(b) coproducts of the above,

(c) mapping cones of chain maps between the above.

In this article, we consider tensor products both in the category of modules and in the

derived category. We try to be careful to distinguish them in the notation.

2
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Proposition 3.19. As in Notation 3.11, let B = D(R), let σ be a set of objects in

Bc = Dc(R) of the form

. . . −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ . . .

and let A = D(R,σ) ⊂ B be the smallest triangulated subcategory containing σ and closed

under coproducts.

By Lemma 2.8, we have a ring homomorphism H0(ηR) : R −→ S, with S = H0(GπR).

Let g : R −→ T be a ring homomorphism such that for every s ∈ σ ⊂ Bc we have

TL⊗Rs = 0. Then g factors uniquely through the ring homomorphism H0(ηR) : R −→ S,

as below :

S

∃! f

��
R

H0(ηR)

BB
�

�
�

�
�

�
�

�
�

�
� g

// T

Proof. For any object X ∈ D(R) = B, we have

D(R)
(
X,T

)
= D(T )

(
TL⊗RX,T

)
.

By hypothesis, TL⊗Rs vanishes for all s ∈ σ. Since

D(R)
(
Σrs, T

)
= D(T )

(
TL⊗RΣrs, T

)
= 0

for all r ∈ Z and all s ∈ σ, it follows that T ∈ D(R) is σ-local, and by Lemma 3.14 the

unit of adjunction

ηT : T −→ GπT

is an isomorphism. But then

B(R,T ) = B(R,GπT ) because ηT is an isomorphism

= B(GπR,GπT ) by 2.6.3.

This concretely translates to saying that the map R −→ T = GπT factors uniquely

through ηR : R −→ GπR. Applying H0 to this, we have a factorization

R
H0(η

R
)

−−−−→ H0(GπR) = S
f

−−−→ T .

To see that the factorization is unique note that, by Lemma 3.17, we know that GπR ∈

B≤0. The homomorphism R −→ S therefore factors, in the derived category D(R) = B,

as the composite

R
η

R−−−→ GπR −−−→ {GπR}≥0 = H0(GπR) = S .

Given any morphism of R-modules f ′ : S −→ T we can form the composite

R
η

R−−−→ GπR −−−→ {GπR}≥0 = H0(GπR)
f ′

−−−→ T .
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If this composite agrees with g, then by the uniqueness of the factorization through

R −→ GπR above, the composites

GπR −−−→ {GπR}≥0 f
−−−→ T

GπR −−−→ {GπR}≥0 f ′

−−−→ T

must agree. But T ∈ B≥0. Therefore any map GπR −→ T factors uniquely through the

t-structure truncation

GπR −−−→ {GπR}≥0 −−−→ T .

Hence f = f ′. We have proved that there exists a unique map f of left R-modules

making the triangle commute

S

∃! f

��
R

H0(ηR)

BB
�

�
�

�
�

�
�

�
�

�
� g

// T

Now consider the functor

D(R) −→ D(T ) ; X 7→ TL⊗RX .

By the hypothesis on T , this functor annihilates all complexes s ∈ σ. Hence it annihilates

the subcategory A = D(R,σ) ⊂ B = D(R). The functor factors as

D(R)
π

−−−→ C = D(R)/D(R,σ) −−−→ D(T )

Hence we have ring homomorphisms

EndD(R)(R)
α

−−−→ EndC(πR)
β

−−−→ EndD(T )(T ) .

In Lemma 2.8, we checked that α agrees with the homomorphism H0(ηR) : R −→

H0(GπR) = S, while from the definition of the functor D(R) −→ D(T ) by tensor

products, the composite βα is nothing other than the given map g : R −→ T . It follows

that there is a commutative diagram of ring homomorphisms

S

∃ f ′

��
R

H0(ηR)

BB
�

�
�

�
�

�
�

�
�

�
� g

// T

But we already know that f ′ is unique, even as a map of R-modules. There is a unique

ring homomorphism rendering commutative the triangle.

Lemma 3.20. The ring S = H0(GπR) satisfies the property that, for all s : P −→ Q

in σ the induced S-module morphism 1⊗ s : S ⊗R P −→ S ⊗R Q is an isomorphism.
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Proof. By Lemma 3.17, GπR ∈ B≤0. Hence S = H0(GπR) = {GπR}≥0. By Lemma 3.16,

{GπR}≥0 is σ-local.

But then, for all {cℓ −→ cℓ+1} ∈ σ, the map

HomR(cℓ+1, S) −−−→ HomR(cℓ, S)

is an isomorphism. Applying the functor HomS(−, S) to this isomorphism, and recalling

that

HomS

[
HomR(A,S) , S

]
= S ⊗R A ,

we deduce that S ⊗R c
ℓ −→ S ⊗R c

ℓ+1 is an isomorphism.

Theorem 3.21. With the notation as above, the ring homomorphism R −→ S = H0(GπR)

satisfies the universal property of R −→ σ−1R.

Proof. Lemma 3.20 and Proposition 3.19.

Notation 3.22. We have now proved that, with R a ring, B = D(R) its derived cat-

egory, and σ ⊂ Bc, A = D(R,σ) ⊂ B and C = B/A as in Notation 3.11, the ring

homomorphism ηR : R −→ H0(GπR) satisfies Cohn’s universal property. From now on,

we shall freely confuse H0(GπR) = σ−1R.

2

The object GπR in D(R) is isomorphic to a chain complex E(R) of free R-modules

bounded above by 0. We shall prove that σ−1E(R) is isomorphic to σ−1R. In fact,

Vogel [32] gave a direct construction for E(R) as the direct limit of successive mapping

cones. This construction is very reminiscent of Bousfield’s original proof of the existence

of a Bousfield localization; see Bousfield’s [6] and [7]. By now, of course, there are other

proofs of the existence of G.

Remark 3.23. The universal property of σ−1R is self-dual in the following sense. We

are given a set σ of morphisms of f.g. projective left R–modules. If s : P −→ Q is an

element of σ, we can look at the dual map s∗ : Q∗ −→ P ∗. Here, X∗ = HomR(X,R). To

say that

1⊗ s : S ⊗R P −−−→ S ⊗R Q

is an isomorphism is equivalent to saying that

s∗ ⊗ 1 : Q∗ ⊗R S −−−→ P ∗ ⊗R S

is an isomorphism. In other words, we can proceed to do the entire construction of σ−1R

in terms of right R–modules, just by replacing σ by the set σ∗ of maps s∗ : Q∗ −→ P ∗.

Every theorem we prove has a dual version for right modules.

2
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Proposition 3.24. Let M be a right R–module so that, for all s : P −→ Q in σ, 1⊗R s :

M ⊗R P −→M ⊗RQ is an isomorphism. Then the map 1L⊗R ηR : M −→M L⊗RGπR

is an isomorphism.

Proof. Form the triangle

a −−−→ R
η

R−−−→ GπR −−−→ Σa .

By 2.6.5, a ∈ A. Now the set of objects x ∈ B = D(R) such that ML⊗Rx vanishes is a

triangulated category containing σ, and closed under coproducts. It must contain all of

A. Therefore M L⊗R a = 0. The triangle

M L⊗R a −−−→ M
M L⊗

R
η

R−−−−−−→ M L⊗RGπR −−−→ M L⊗RΣa

tells us that M L⊗R ηR must be an isomorphism.

Remark 3.25. Dually as in Remark 3.23, given any left module M so that, for any s∗ :

Q∗ −→ P ∗ in σ∗, the map s∗⊗1 is an isomorphism, then η′R
L⊗R1 : M −→ G′π′RL⊗RM

is an isomorphism. [Here, G′, π′ and η′ are the duals of G, π and η in the derived

category of right R-modules]. Note that

P ∗L⊗RM = HomR(P,R)⊗RM = HomR(P,M) .

We deduce that s∗ ⊗ 1M is an isomorphism if and only if B(Σns,M) = 0 for all n ∈ Z.

The M ’s for which s∗ ⊗ 1M are isomorphisms whenever s ∈ σ are precisely the σ–local

objects, as in Definition 3.12. Summarising: whenever M is a left R-module, which as

an object of B = D(R) happens to be σ–local, then the dual of Proposition 3.24 asserts

that η′R
L⊗R1 : M −→ G′π′RL⊗RM is an isomorphism.

2

Proposition 3.26. Let M be any right R-module so that, for all s : P −→ Q in σ,

1 ⊗R s : M ⊗R P −→ M ⊗R Q is an isomorphism. Then the map 1 ⊗H0(ηR) : M −→

M ⊗R {σ
−1R} is an isomorphism. Furthermore,

TorR1 (M,σ−1R) = 0 .

Proof. There is a spectral sequence computing the cohomology of ML⊗RGπR. The E2

term is

Ei,j2 = TorR−i
(
M,Hj(GπR)

)
.

By Lemma 3.16, Hj(GπR) = 0 for all j > 0. And TorR−i vanishes for i > 0. This spectral

sequence is concentrated in negative degrees. Because all the differentials in and out of

the following terms vanish, we conclude that, in the spectral sequence, E0,0
2 = E0,0

∞ and

E−1,0
2 = E−1,0

∞ .
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By Proposition 3.24, we have that ML⊗RGπR = M . The above spectral sequence

converges to H i+j(M), which is M if i + j = 0 and zero otherwise. We immediately

conclude that

E0,0
2 = M ⊗R σ

−1R = M

and

E−1,0
2 = TorR1 (M,σ−1R) = 0 .

Corollary 3.27. The natural multiplication map σ−1R ⊗R σ
−1R −→ σ−1R is an iso-

morphism, and

TorR1 (σ−1R,σ−1R) = 0 .

Proof. In Proposition 3.26, putM = σ−1R. We immediately deduce that TorR1 (σ−1R,σ−1R) = 0 .

We also have that the map

1⊗H0(ηR) : σ−1R −−−→ {σ−1R} ⊗R {σ
−1R}

is an isomorphism. But the composite

σ−1R
1⊗H0(η

R
)

−−−−−−→ {σ−1R} ⊗R {σ
−1R}

multiplication
−−−−−−−−→ σ−1R

is clearly the identity, and hence the multiplication map must be the two–sided inverse

of the invertible map 1⊗H0(ηR).

Remark 3.28. The result TorR1 (σ−1R,σ−1R) = 0 is due to Schofield [27], p.58.

2

Corollary 3.29. Suppose M is a left R-module, which as an object of B = D(R) is

σ–local (see Definition 3.12). Then the R-module structure of M extends, uniquely, to a

σ−1R-module structure.

Proof. The uniqueness of the extension is clear: to say that M is a left R-module is to

give a homomorphism

R −→ Hom
Z
(M,M),

and the universal property of the noncommutative localization tells us that the factor-

ization of this ring homomorphism through σ−1R is certainly unique, if it exists.

It remains to prove existence. By the dual of Proposition 3.26, the map

M = R⊗RM
H0(η

R
)⊗

R
1

−−−−−−−→ {σ−1R} ⊗RM

is an isomorphism. Thus M is isomorphic, as a left R–module, to {σ−1R} ⊗R M , and

{σ−1R} ⊗RM is certainly a module over σ−1R.

In the remainder of this section, we want to relateHn(GπR) for n < 0 to TorR∗ (σ−1R,σ−1R).

First we prove a lemma.
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Lemma 3.30. Suppose R −→ S is a ring homomorphism such that the multiplication

map S ⊗R S −→ S is an isomorphism. Suppose also that for some n ≥ 1

TorRi (S, S) = 0 (1 ≤ i ≤ n) .

Then for every S-module M , we have

3.30.1. The multiplication map S ⊗RM −→M is an isomorphism.

3.30.2. TorRi (S,M) = 0 for all 1 ≤ i ≤ n.

Proof. Choose a resolution of M by free S-modules

· · · −−−→ Q−2 −−−→ Q−1 −−−→ Q0 −−−→ M −−−→ 0 ,

and a resolution of S by free R-modules

· · · −−−→ P−2 −−−→ P−1 −−−→ P 0 −−−→ S −−−→ 0 .

The tensor product P⊗Q gives a double complex whose cohomology computes TorR−i−j(S,M).

But there is a spectral sequence for it, whose E1 term is

Ei,j1 = TorR−j(S,Q
i)

Now Ei,01 = S ⊗R Q
i = Qi, since Qi is free and, by hypothesis, S ⊗R S −→ S is an

isomorphism. In E2, we have

Ei,02 =

{
M if i = 0

0 otherwise.

But by hypothesis, we also have TorR−j(S, S) = 0, for all 1 ≤ −j ≤ n, and since Qi are

free, this gives TorR−j(S,Q
i) = 0, for all i and for all 1 ≤ −j ≤ n. In other words, Ei,j1 = 0

if 1 ≤ −j ≤ n, and hence Ei,j2 = 0 if either j = 0, i 6= 0, or if 1 ≤ −j ≤ n. The assertions

of the Lemma immediately follow.

Corollary 3.31. Let the notation be as in Notation 3.11. Suppose TorRi (σ−1R,σ−1R) =

0, for all 1 ≤ i ≤ n. Then for all 1 ≤ i ≤ n− 1 we have H−i(GπR) = 0, and

TorRn+1(σ
−1R,σ−1R) = H−n(GπR) .

Proof. The proof is a slightly more sophisticated computation with the same spectral

sequence we saw in Proposition 3.26. Recall that we have a spectral sequence whose E2

term is

Ei,j2 = TorR−i
(
σ−1R,Hj(GπR)

)
,

which converges to H i+j(σ−1R). Now we know that GπR is σ–local. By Lemma 3.16 so

are its t–structure truncations Hj(GπR) =
{

[GπR]≤j
}≥j

. Corollary 3.29 now tells us

that Hj(GπR) are all left σ−1R–modules. Lemma 3.30 now applies, and we deduce that

if 1 ≤ −i ≤ n then Ei,j2 = 0. This forces the differential

E−i−1,0
2 −→ E0,−i

2
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to be an isomorphism, for all 1 ≤ i ≤ n. For 1 ≤ i ≤ n−1 we read off thatH−i(GπR) = 0.

For i = n, we deduce that

TorRn+1(σ
−1R,σ−1R) = H−n(GπR) .

4. A bound on the length of complexes in Dc(R,σ)

Notation 4.1. Our notation stays as in Notation 3.11. D(R) = B is the derived cate-

gory of a ring R, and we are given a set σ of maps of f.g. projective R-modules. The

category A = D(R,σ) is the smallest triangulated subcategory of B containing σ and

closed under coproducts. Let C = B/A. Let π : B −→ C be the projection, G : C −→ B

the fully faithful right adjoint. Identify R −→ σ−1R with R −→ H0(GπR).

2

For any f.g. projective R-modules M,N a morphism πM → πN in C is an equivalence

class of diagrams

M
β

// Y N
αoo

with α a morphism in B which becomes an isomorphism in C. Later in the article, we

will need to have bounds on the length of Y . In this section we carry out the preparatory

technical work.

Definition 4.2. The full subcategory of all objects in B = D(R) which vanish outside

the range [m,n] will be denoted B[m,n]. We allow m or n to be infinite; the categories

B[m.∞) and B(−∞, n] have the obvious definitions.

2

Remark 4.3. The reader should note that the categories B[n,∞) and B(−∞, n] should

not be confused with B≥n and B≤n. It is true that every object in B≤n is isomorphic in

B to a chain complex

· · · −→ Xm −→ Xm+1 −→ · · · −→ Xn−1 −→ Xn −→ 0 −→ 0 −→ · · ·

An isomorphism in B = D(R) is after all just a homology isomorphism. For any object

in B≤n, there is an object in B(−∞, n] homology isomorphic to it. But for once we want

to have a name for the complexes which are actually supported on the interval [m,n],

not just isomorphic in B to such objects.

2

Definition 4.4. The category S will be the smallest full subcategory of B such that

4.4.1. Every suspension of every object in σ lies in S. That is, S contains all the com-

plexes

· · · −→ 0 −→ cℓ+n −→ cℓ+n+1 −→ 0 −→ · · ·
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4.4.2. Given any chain map of objects in S

· · ·
∂

−−−→ Xi−1 ∂
−−−→ Xi ∂

−−−→ Xi+1 ∂
−−−→ · · ·

f
i−1

y f
i

y f
i+1

y

· · ·
∂

−−−→ Y i−1 ∂
−−−→ Y i ∂

−−−→ Y i+1 ∂
−−−→ · · ·

then the mapping cone

· · · −−−→ Xi ⊕ Y i−1


 −∂ 0

fi ∂




−−−−−−−−−→ Xi+1 ⊕ Y i


 −∂ 0

fi+1 ∂




−−−−−−−−−−→ Xi+2 ⊕ Y i+1 −−−→ · · ·

also lies in S.

As in Remark 4.3, we mean equality of chain complexes, not homotopy equivalence.

2

Definition 4.5. The subcategories S[m,n] are defined as the intersection

S[m,n] = S ∩B[m,n] .

As in Definition 4.2, we allow m and n to be infinite.

2

Lemma 4.6. Suppose n ∈ Z is an integer. Then every object Z ∈ S can be expressed as

a mapping cone on a chain map Z1 −→ Z2, as below

· · ·
∂

−−−→ Zn−1
1

∂
−−−→ Zn1

∂
−−−→ Zn+1

1 −−−→ 0 −−−→ · · ·
y fn

y f
n+1

y
y

· · · −−−→ 0 −−−→ Zn2
∂

−−−→ Zn+1
2

∂
−−−→ Zn+2

2
∂

−−−→ · · ·

that is, Z1 ∈ S(−∞, n + 1] and Z2 ∈ S[n,∞).

Proof. Let T be the full subcategory of S containing the objects for which the assertion

of the lemma holds. That is, an object Z ∈ S belongs to T if and only if, for every n ∈ Z,

there exist Z1 ∈ S(−∞, n+ 1] and Z2 ∈ S[n,∞) and a chain map Z1 −→ Z2 so that Z is

equal to the mapping cone. It suffices to prove that T = S, for which we need only show

that any suspension of an object of σ lies in T, and that mapping cones on maps in T lie

in T.

Assume therefore that we are given a complex s below

· · · −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ · · ·

which is some suspension of an object in σ. Choose any n ∈ Z. If n ≤ ℓ, then s ∈ S[n,∞),

and s is the mapping cone of the chain map 0 −→ s. If n ≥ ℓ+1, then Σ−1s ∈ S(−∞, n+1]

and s is isomorphic to the mapping cone on the chain map Σ−1s −→ 0. Either way, s ∈ T.
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Next suppose we are given two object X and Y in T, and a chain map f : X −→ Y .

Let Z be the mapping cone of f . We need to show that Z is in T. For every integer

n ∈ Z, we need to express Z as a mapping cone on a map of objects Z1 −→ Z2, with

Z1 ∈ S(−∞, n + 1] and Z2 ∈ S[n,∞). Without loss of generality, assume n = 0.

Because X ∈ T, we may express it as a mapping cone on a map X1 −→ X2, with

X1 ∈ S(−∞, 2] and X2 ∈ S[1,∞). Because Y ∈ T, we may express it as the mapping

cone on a map Y1 −→ Y2, with Y1 ∈ S(−∞, 1] and Y2 ∈ S[0,∞). We have a diagram,

where the rows are short exact sequences of chain complexes

0 −−−→ X2 −−−→ X −−−→ ΣX1 −−−→ 0

f

y

0 −−−→ Y2 −−−→ Y −−−→ ΣY1 −−−→ 0

The composite

X2 −−−→ X

f

y

Y −−−→ ΣY1

is a chain map from X2 ∈ S[1,∞) to ΣY1 ∈ S(−∞, 0], and therefore must vanish. It

follows that we may complete to a commutative diagram of chain complexes

0 −−−→ X2 −−−→ X −−−→ ΣX1 −−−→ 0

f1

y f

y Σf2

y

0 −−−→ Y2 −−−→ Y −−−→ ΣY1 −−−→ 0

Let Z1 be the mapping cone on f1 : X1 −→ Y1, and let Z2 be the mapping cone on

f2 : X2 −→ Y2. Then Z1 ∈ S(−∞, 1] while Z2 ∈ S[0,∞). Furthermore, Z, which is

the mapping cone on f : X −→ Y , can also be expressed as a mapping cone on a map

Z1 −→ Z2.

Lemma 4.7. Let S̃ be the full subcategory of all objects in B isomorphic to objects in

S. That is, any object of B = D(R) isomorphic to a chain complex in S lies in S̃. The

subcategory S̃ ⊂ B is triangulated.

Proof. The point is that the objects of S are bounded chain complexes of projectives. Let

f : X −→ Y be a morphism in D(R), between objects in S. Because X is a bounded-

above complex of projectives, there is a chain map representing the morphism. The

mapping cone on this chain map completes f : X −→ Y to a triangle, and lies in S. Up

to isomorphism in B = D(R), the third edge is unique. Therefore in any triangle

X
f

−−−→ Y −−−→ Z −−−→ ΣX

we have Z ∈ S̃.
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Lemma 4.8. The category S is contained in Ac. Furthermore, the inclusion is nearly

an equality. Every object in Ac is a direct summand of an object isomorphic in D(R) to

an object in S.

Proof. The inclusion S ⊂ Ac is easy. The category Ac contains σ and is closed under

mapping cones, and S is the smallest such.

Next observe that, by 3.9.3, the category Ac is the smallest thick subcategory of B

containing σ, and hence Ac is the smallest thick subcategory containing the triangulated

subcategory S̃ of Lemma 4.7. Now Corollary 4.5.12 of [20] tells us that, for every object

X ∈ Ac, the object X ⊕ ΣX lies in S̃. In particular X ∈ Ac is a direct summand of an

object isomorphic in B to an object in S.

Lemma 4.9. The natural map Bc/S̃c −→ C is fully faithful.

Proof. By 3.9.4, the functor

B
c/Ac −→ C

c ⊂ C

is fully faithful. Now by Lemma 4.8, the thick closure of S̃ is all of Ac, and hence

Bc/Ac = Bc/S̃c.

Remark 4.10. One way we shall use the results of this section is as follows. Suppose

x −→ y is a morphism in Bc, which maps to zero in C = B/A. By Lemma 4.9, the map

vanishes already in Bc/S̃. By Lemma 2.1.16 of [20], x −→ y must factor as x −→ s −→ y

with s ∈ S. The results of this section will enable us to replace s by shorter complexes.

2

In section 12 we will need the following result

Proposition 4.11. Let M and N be any f.g. projective R–modules, which we view as

objects in the derived category B = D(R), concentrated in degree 0. Then any map in

C(πM,πN) can be represented as α−1β, for some α, β as below

M
β
−→ Y

α
←− N

The map α : N −→ Y fits in a triangle

X −−−→ N
α

−−−→ Y −−−→ ΣX

and X may be chosen to lie in S[0, 1].

Proof. Both M and N are assumed to be objects of Bc, and by Lemma 4.9 the map

B/S̃c −→ C if fully faithful. Hence

C(πM,πN) = {Bc/S̃c}(M,N).

Any morphism may be represented by a diagram

M
β
−→ Y

α
←− N
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so that in the triangle

X −−−→ N
α

−−−→ Y −−−→ ΣX

X may be chosen to lie in S.

By Lemma 4.6, there exists a triangle in Ac

X ′ −−−→ X −−−→ X ′′ −−−→ ΣX ′

with X ′ ∈ S[1,∞) and X ′′ ∈ S(−∞, 1]. The composite X ′ −→ X −→ N is a map from

X ′ ∈ S[1,∞) to N ∈ S[0, 0], which must vanish. Hence we have that X −→ N factors as

X −→ X ′′ −→ N . We complete to a morphism of triangles

X −−−→ N
α

−−−→ Y −−−→ ΣX
y 1

y γ

y
y

X ′′ −−−→ N
γα
−−−→ Y ′′ −−−→ ΣX ′′

and another representative of our morphism is the diagram

M
γβ
−→ Y ′′ γα

←−− N

We may, on replacing Y by Y ′′, assume X ∈ S(−∞, 1].

Applying Lemma 4.6 again, we have that any X ∈ S(−∞, 1] admits a triangle

X ′ −−−→ X −−−→ X ′′ −−−→ ΣX ′

with X ′ ∈ S[0, 1] and X ′′ ∈ S(−∞, 0]. Form the octahedron

X ′ −−−→ N
α′

−−−→ Y ′ −−−→ ΣX ′

y 1

y γ

y
y

X −−−→ N
α

−−−→ Y −−−→ ΣX
y

y

ΣX ′′ 1
−−−→ ΣX ′′

The composite M −→ Y −→ ΣX ′′ is a map from M ∈ S[0, 0] to ΣX ′′ ∈ S(∞,−1], and

must vanish. The map β : M −→ Y therefore factors as M
β′

−→ Y ′ γ
−→ Y , and our

morphism in C has a representative

M
β′

−→ Y ′ α′

←− N

so that in the triangle

X ′ −−−→ N
α′

−−−→ Y ′ −−−→ ΣX ′

X ′ may be chosen to lie in S[0, 1].
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5. The functor T : (D(R)/D(R,σ))c → Dc(σ−1R)

Let R −→ S be a ring homomorphism. There is a triangulated functor D(R) −→

D(S), taking X ∈ D(R) to SL⊗RX. In this section, we shall study this functor in the

case where R is a ring, and S = σ−1R is the noncommutative localization of R inverting

σ.

Proposition 5.1. The functor

B = D(R) −→ D = D(σ−1R) ; X 7→ {σ−1R}L⊗RX

factors uniquely (up to canonical natural isomorphism) through B −→ C = D(R)/D(R,σ).

The unique factorization will be written as

B
π

−−−→ C
T

−−−→ D .

The functor T : C −→ D takes Cc ⊂ C to Dc = Dc(σ−1R) ⊂ D = D(σ−1R).

Proof. Let cℓ −→ cℓ+1 be a map in σ. Tensoring with σ−1R takes it to an isomorphism.

Hence tensoring with σ−1R takes the chain complex

· · · −→ 0 −→ cℓ −→ cℓ+1 −→ 0 −→ · · ·

to an acyclic complex. Therefore the functor X 7→ {σ−1R}L⊗RX : B −→ D kills all

the objects in σ. Since derived tensor product preserves triangles and coproducts, the

subcategory of B annihilated by X 7→ {σ−1R}L⊗RX must be closed under triangles and

coproducts, and therefore contains all of A = D(R,σ). By the universal property of the

Verdier quotient C = B/A, there is a unique factorization

B
π

−−−→ C
T

−−−→ D .

It remains to show that T takes Cc ⊂ C to Dc ⊂ D.

It is clear that the map Tπ : B −→ D takes a bounded complex of f.g. projective

R-modules to a bounded complex of f.g. projective σ−1R-modules; the map just tensors

with σ−1R. In other words, the functor Tπ obviously takes Bc to Dc ⊂ D. By 3.9.4,

every object in Cc is a direct summand of an object in the image of π : Bc −→ Cc.

Therefore the functor T takes any object in Cc to a direct summand of an object in Dc.

But by Proposition 3.4 of [5], any direct summand of an object in Dc lies in Dc.

Proposition 5.2. For any two projective R-modules P and Q, one has

C(πP, πQ) = D(TπP, TπQ) = Homσ−1R(σ−1P, σ−1Q) .

Proof. The identity D(TπP, TπQ) = Homσ−1R(σ−1P, σ−1Q) is just by definition. We

have defined TπP = {σ−1R} ×R P = σ−1P .

There is a natural map, induced by the functor T ,

C(πP, πQ) −−−→ D(TπP, TπQ).
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We need to prove it an isomorphism. The case where P = Q = R is easy; we have

C(πR, πR) = B(R,GπR) by adjunction

= H0(GπQ)

= σ−1R by Theorem 3.21

= D(TπR, TπR) .

But the collection of all P and Q for which the map T : C(πP, πQ) −→ D(TπP, TπQ)

is an isomorphism is clearly closed under direct sums and direct summands, and hence

contains all projective modules.

In Section 8, we shall need to know that the only object of Cc annihilated by T is the

zero object. The next two propositions prove this.

Proposition 5.3. For any object X in Bc = Dc(R), we have the implication
{
{σ−1R}L⊗RX = 0

}
=⇒ {X ∈ A

c}.

Proof. Take any X ∈ Bc. Since X ∈ Bc = Dc(R), we know that X is isomorphic to a

bounded complex of f.g. projective R-modules. Up to suspension, X may be written as

a complex

−→ 0 −→ X0 −→ X1 −→ · · · −→ Xn−1 −→ Xn −→ 0 −→

If {σ−1R}L⊗RX = 0, then the complex

−→ 0 −→ σ−1X0 −→ · · · −→ σ−1Xn −→ 0 −→

must be contractible. There are maps σ−1Xi −→ σ−1Xi−1 so that, for each i, the sum

of the two composites
σ−1Xi −−−→ σ−1Xi+1

y
y

σ−1Xi−1 −−−→ σ−1Xi

is the identity on σ−1Xi. By Proposition 5.2, the contracting homotopy may be lifted

to the complex

−→ 0 −→ πX0 ∂
−→ πX1 ∂

−→ · · ·
∂
−→ πXn−1 ∂

−→ πXn −→ 0 −→

For each i there are maps πXi −→ πXi−1, so that the two composites

πXi ∂
−−−→ πXi+1

D

y
yD

πXi−1 ∂
−−−→ πXi

add to the identity on πXi.

Now let Y i ∈ Bc be the complex

−→ 0 −→ X0 −→ X1 −→ · · · −→ Xi−1 −→ Xi −→ 0 −→
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For each i, there is a triangle

Σ−i−1Xi+1 −−−→ Y i+1 −−−→ Y i −−−→ Σ−iXi+1.

The functor π is triangulated, and hence for each i we deduce a triangle

Σ−i−1πXi+1 −−−→ πY i+1 −−−→ πY i
ρ

i−−−→ Σ−iπXi+1 .

We shall prove, by induction on i, that

(i) The map

πY i
ρ

i−−−→ Σ−iπXi+1

is a split monomorphism in B = D(R).

(ii) For each i we shall produce an explicit splitting; that is, we shall produce a map

Σ−iπXi+1 θ
i−−−→ πY i

so that θiρi is the identity on πY i.

(iii) 1− ρiθi is an endomorphism of Σ−iπXi+1. We shall show it to be the composite

Σ−iπXi+1 Σ∂
−−−→ Σ−iπXi+2 ΣD

−−−→ Σ−iπXi+1

with ∂ and D as above, satisfying 1 = D∂ + ∂D.

Note that for i < −1, Xi+1 = Y i = 0, and there is nothing to do. We may assume that

(i)-(iii) hold for some i. We only need to show the induction step; that is, if it holds for

i then it holds also for i+ 1.

It is easy to compute, in the derived category D(R), the composite αβ, with α and β

the morphisms in the triangles below

Σ−i−1Xi+1 β
−−−→ Y i+1 −−−→ Y i −−−→ Σ−iXi+1

Σ−i−2Xi+2 −−−→ Y i+2 −−−→ Y i+1 α
−−−→ Σ−i−1Xi+2

The morphism αβ is just Σ−i−1 applied to the differential Xi+1 −→ Xi+2. Applying the

functor π we conclude the following. By the part (iii) of the induction hypothesis, the

composite

Σ−i−1πXi+1 ∂
−−−→ Σ−i−1πXi+2 D

−−−→ Σ−i−1πXi+1

is equal to 1− Σ−1(ρiθi). By the above, it factors further as

Σ−i−1πXi+1 πβ
−−−→ πY i+1 πα

−−−→ Σ−i−1πXi+2 D
−−−→ Σ−i−1πXi+1

Now look at the longer composite

Σ−i−1πXi+1 πβ
−−−→ πY i+1 D◦(πα)

−−−−→ Σ−i−1πXi+1 πβ
−−−→ πY i+1

It is equal to (πβ)
[
1− Σ−1(ρiθi)

]
. The distinguished triangle

Σ−i−1πXi+1 πβ
−−−→ πY i+1 −−−→ πY i

ρ
i−−−→ Σ−iπXi+1

coupled with the fact that ρi is a split monomorphism, guarantees that the triangle is

really a split exact sequence in C

0 −−−→ Σ−1πY i
Σ−1ρ

i−−−−→ Σ−i−1πXi+1 πβ
−−−→ πΣY i+1 −−−→ 0 .
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But then πβ is a split epimorphism, and its composite with Σ−1ρi vanishes. ¿From the

vanishing of {πβ}{Σ−1ρ} it follows that

(πβ)
[
1− Σ−1(ρiθi)

]
= πβ,

and hence that [
1− (πβ) ◦D ◦ (πα)

]
(πβ) = 0 .

Since πβ is a split epimorphism, we conclude that

(πβ) ◦D ◦ (πα) = 1 .

But πα : πY i+1 −→ Σ−i−1πXi+2 is nothing other than the map ρi+1, and if we put

θi+1 = (πβ) ◦D, then we have proved parts (i) and (ii) for i+ 1.

It only remains to establish (iii). But by construction, Σρi+1Σθi+1 is given by the

composite

Σ−iπXi+2 D
−−−→ Σ−iπXi+1 πα

−−−→ πΣY i+1
Σρ

i+1
−−−→ Σ−iπXi+2,

which is nothing other than a suspension of ∂D. Hence this equals 1−D∂.

This completes the induction. Now choose i > n. The complex Y i is nothing other

thanX ∈ B, and by (i) we conclude that πX is a direct summand of πXi+1 = 0. It follows

that πX = 0. This forcesX ∈ A, but we know that X ∈ Bc. Hence X ∈ A∩Bc = Ac.

Proposition 5.4. Suppose x is an object in Cc, and suppose Tx = 0, where

Tπ : B = D(R) −→ D = D(σ−1R) ; x 7→ σ−1x

is the functor induced by tensor with σ−1R, as in Proposition 5.1. Then x = 0.

Proof. By Proposition 5.3 we know that if x ∈ Bc, and if

Tπx = {σ−1R}L⊗Rx = 0 ,

then x ∈ Ac, in other words πx = 0. The Proposition is therefore true for all objects

πx ∈ Cc, with x ∈ Bc.

By 3.9.4, the map Bc/Ac −→ Cc is fully faithful, and Cc is the smallest thick sub-

category containing Bc/Ac ⊂ Cc. By Corollary 4.5.12 of [20] we conclude the follow-

ing. For any object t ∈ Cc there exists an object x ∈ Bc with t ⊕ Σt ≃ πx. Then

0 = Tt⊕ ΣTt ≃ Tπx, and by the above this means πx = 0. But t is a direct summand

of πx; hence t = 0.

6. Chain complex lifting

We consider the chain complex lifting problem of deciding if a bounded complex D of

f.g. projective σ−1R-modules is chain equivalent to σ−1C for a bounded complex C of

f.g. projective R-modules. In terms of the functor

Tπ : B = D(R) −→ D = D(σ−1R) ; X 7→ {σ−1R}L⊗RX

the problem is to decide if a compact object D in D lifts to a compact object C in B.
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To have any chance, we must start with a complex of induced f.g. projective σ−1R-

modules, of the form

D : · · · −−−→ σ−1xi−1 −−−→ σ−1xi −−−→ σ−1xi+1 −−−→ · · ·

with the xi’s f.g. projective R-modules. We can write D as

D : · · · −−−→ Tπxi−1 −−−→ Tπxi −−−→ Tπxi+1 −−−→ · · · .

By Proposition 5.2, this may be lifted uniquely to a chain complex of objects in Cc

D̃ : · · · −−−→ πxi−1 −−−→ πxi −−−→ πxi+1 −−−→ · · ·

with C = B/A = D(R)/D(R,σ). Because all the objects lie in the image of π : Bc −→ Cc

and because the functor Bc/Ac −→ Cc is fully faithful (see 3.9.4), we may view the chain

complex D̃, uniquely, as lying in Bc/Ac. The next results discuss lifting this to Bc.

Lemma 6.1. Given any diagram in Bc/Ac of the form

πx0 −−−→ πx1

|

y≀

πy0

where the vertical map is an isomorphism, we may complete to a commutative square

πx0 −−−→ πx1

|

y≀ |

y≀

πy0 πf
−−−→ πy1

where both vertical maps are isomorphisms in Bc/Ac, and πf : πy0 −→ πy1 is obtained

by applying the functor π to some map f : y0 −→ y1.

Proof. In Bc/Ac, we have a map πy0 −→ πx1. Such maps are equivalence classes of

diagrams in Bc

x1

yα

y0 f
−−−→ y1

with πα an isomorphism. Taking π of this, we get our commutative square.

After these preliminaries, we return to the problem of lifting a bounded chain complex

of induced f.g. projective σ−1R modules

D : · · · −−−→ σ−1xi−1 −−−→ σ−1xi −−−→ σ−1xi+1 −−−→ · · ·

to a bounded chain complex of f.g. projective R-modules C with a chain equivalence

σ−1C ≃ D. We shall only treat the special case of a complex of length 3 in detail, but

the general case is similar to this one.
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We begin with

D : −−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ σ−1x2 −−−→ σ−1x3 −−−→ 0 −−−→

In the derived category Dc = Dc(σ−1R), we have several distinguished triangles. We

wish to consider three of them. They are given by the mapping cones

−−−→ 0 −−−→ 0 −−−→ σ−1x0 −−−→ 0 −−−→
y

y
y

y

−−−→ 0 −−−→ 0 −−−→ σ−1x1 −−−→ 0 −−−→
y

y
y

y

−−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ 0 −−−→

and

−−−→ 0 −−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ 0 −−−→
y

y
y

y
y

−−−→ 0 −−−→ 0 −−−→ 0 −−−→ σ−1x2 −−−→ 0 −−−→
y

y
y

y
y

−−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ σ−1x2 −−−→ 0 −−−→

and

−−−→ 0 −−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ σ−1x2 −−−→ 0 −−−→
y

y
y

y
y

y

−−−→ 0 −−−→ 0 −−−→ 0 −−−→ 0 −−−→ σ−1x3 −−−→ 0 −−−→
y

y
y

y
y

y

−−−→ 0 −−−→ σ−1x0 −−−→ σ−1x1 −−−→ σ−1x2 −−−→ σ−1x3 −−−→ 0 −−−→

The more abstract way of stating this is as follows. In the derived category Dc(σ−1R),

the map σ−1x0 −→ σ−1x1 may be completed to a triangle

σ−1x0 −−−→ σ−1x1 −−−→ X1 −−−→ Σσ−1x0 .

This is the first of our three distinguished triangles above. Because the composite

σ−1x0 −→ σ−1x1 −→ σ−1x2 vanishes, we may factor the map σ−1x1 −→ σ−1x2 as

σ−1x1 −→ X1 −→ σ−1x2. The factorization X1 −→ σ−1x2 is unique, since its ambiguity

is up to a map Σσ−1x0 −→ σ−1x2, which must vanish because it is a map from an object

in D(σ−1R)
≤−1

to an object in D(σ−1R)
≥0

. The composite X1 −→ σ−1x2 −→ σ−1x3

must be zero, because it is the unique factorization of the zero map σ−1x1 −→ σ−1x2 −→

σ−1x3 through σ−1x1 −→ X1. Next complete X1 −→ σ−1x2 to a triangle

X1 −−−→ σ−1x2 −−−→ X2 −−−→ ΣX1 .
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This is the second of our three triangles above. The vanishing of the composite X1 −→

σ−1x2 −→ σ−1x3 tells us that the map σ−1x2 −→ σ−1x3 must factor as σ−1x2 −→

X2 −→ σ−1x3. The factorization is unique up to a morphism Σ−1X1 −→ σ−1x3, and all

such maps vanish because Σ−1X1 ∈ D(σ−1R)
≤−1

while σ−1x3 ∈ D(σ−1R)
≥0

. Finally,

we may complete X2 −→ σ−1x3 to a triangle

X2 −−−→ σ−1x3 −−−→ X3 −−−→ ΣX2 .

This gives the third triangle above. The question is whether this construction can be

lifted to Dc(R). Since in Dc(σ−1R) the choices of factorizations were all unique, any

lifting of the triangles and factorizations to Dc(R) will map, under the functor Tπ, to

the above. The question is only whether the diagram of distinguished triangles just

constructed exists in Dc(R). We treat first the problem of lifting by the functor π. The

obstructions are the well-known Toda brackets (= Massey products) – see Chapter IV.3

of Gelfand and Manin [12]. We give a detailed treatment of this only in the simplest

case, of a 3-dimensional complex.

Theorem 6.2. Let D be a 3-dimensional chain complex of induced f.g. projective σ−1R-

modules

D : σ−1x0 −−−→ σ−1x1 −−−→ σ−1x2 −−−→ σ−1x3 ,

which we rewrite as

D : Tπx0 −−−→ Tπx1 −−−→ Tπx2 −−−→ Tπx3 .

By Proposition 5.2, D may be lifted uniquely to a chain complex in Cc

D̃ : πx0 f
−−−→ πx1 g

−−−→ πx2 h
−−−→ πx3 .

There is defined an element

θ(D) ∈
Cc(Σπx0, πx3)

Im{Cc(Σπx0, πx2)⊕ Cc(Σπx1, πx3)}

such that the following conditions are equivalent :

(i) θ(D) = 0.

(ii) There exist three triangles in Cc

πx0 f
−−−→ πx1 α

−−−→ X1 −−−→ Σπx0

X1
β

−−−→ πx2 γ
−−−→ X2 −−−→ ΣX1

X2
δ

−−−→ πx3 −−−→ X3 −−−→ ΣX2

such that g = βα and h = δγ.
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(iii) There exist three triangles in Bc = Dc(R)

y0 f̃
−−−→ y1 α

−−−→ Y1 −−−→ Σy0

Y1
β

−−−→ y2 γ
−−−→ Y2 −−−→ ΣY1

Y2
δ

−−−→ y3 −−−→ Y3 −−−→ ΣY2

and an isomorphism of chain complexes in Cc

πx0 f
−−−→ πx1 g

−−−→ πx2 h
−−−→ πx3

|

y≀ |

y≀ |

y≀ |

y≀

πy0 πf̃
−−−→ πy1 π(βα)

−−−→ πy2 π(δγ)
−−−→ πy3

In particular, Y3 is a bounded f.g. projective R-module chain complex such that σ−1Y3 ≃

D, solving the lifting problem.

Proof. In the first instance, we define θ(D). We may always complete f to a triangle

πx0 f
−−−→ πx1 α

−−−→ X1 −−−→ Σπx0 .

The fact that gf = 0 permits us to factor g as

πx1 α
−−−→ X1

β
−−−→ πx2 .

But β is not well-defined; we may change our choice by any element φ ∈ Cc(Σπx0, πx2).

Now we may study the maps

πx1 α
−−−→ X1

β
−−−→ πx2 h

−−−→ πx3 .

The composite hβα = hg = 0. We cannot be certain that hβ vanishes, but we know that

hβ composes with α to give zero. From the triangle above, it follows that hβ factors

through

X1 −−−→ Σπx0 θ
−−−→ πx3 .

The composite hβ will vanish if and only if the map θ factors further as

Σπx0 Σf
−−−→ Σπx1 ψ

−−−→ πx3 .

We deduce that there is an obstruction to continuing the process, given by θ ∈ Cc(Σπx0, πx3).

And this θ is well defined up to adding a φ ∈ Cc(Σπx0, πx2) and a ψ ∈ Cc(Σπx1, πx3).

The element defined by

θ(D) = [θ] ∈
Cc(Σπx0, πx3)

Im{Cc(Σπx0, πx2)⊕ Cc(Σπx1, πx3)}

is such that θ(D) = 0 if and only if we may choose β so that hβ = 0.

We now prove (i) ⇐⇒ (ii) ⇐⇒ (iii).
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(iii) =⇒ (ii) =⇒ (i) Obvious.

(i) =⇒ (ii) As above, factor g as βα so that hβ = 0. Complete β to a triangle

X1
β

−−−→ πx2 γ
−−−→ X2 −−−→ ΣX1 .

Because hβ = 0, we may factor h as

πx2 γ
−−−→ X2

δ
−−−→ πx3 .

Complete δ to a triangle

X2
δ

−−−→ πx3 −−−→ X3 −−−→ ΣX2,

and we are done.

(ii) =⇒ (iii) We may assume that we are given three triangles in Bc/Ac

πx0 f
−−−→ πx1 α′

−−−→ X1 −−−→ Σπx0

X1
β′

−−−→ πx2 γ′

−−−→ X2 −−−→ ΣX1

X2
δ′

−−−→ πx3 −−−→ X3 −−−→ ΣX2

such that g = β′α′ and h = δ′γ′. Put y0 = x0. Applying Lemma 6.1 to the diagram

πx0 f
−−−→ πx1

1

y

πy0

we may complete to a commutative square

πx0 f
−−−→ πx1

1

y |

y≀

πy0 πf̃
−−−→ πy1 .

Form the triangle

y0 f̃
−−−→ y1 α

−−−→ Y1 −−−→ Σy0 .

Applying the functor π, we have a commutative diagram

πx0 f
−−−→ πx1 α′

−−−→ X1 −−−→ Σπx0

1

y |

y≀ |

y≀

πy0 πf̃
−−−→ πy1 πα

−−−→ πY1 −−−→ Σπy0

which may be extended to an isomorphism of triangles. We have a commutative diagram

πx1 α′

−−−→ X1
β′

−−−→ Σπx2

|

y≀ |

y≀

πy1 πα
−−−→ πY1
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which, again by Lemma 6.1, we may extend to

πx1 α′

−−−→ X1
β′

−−−→ πx2

|

y≀ |

y≀ |

y≀

πy1 πα
−−−→ πY1

πβ
−−−→ πy2 .

Now complete β to a triangle

Y1
β

−−−→ y2 γ
−−−→ Y2 −−−→ ΣY1 .

Again, we have a commutative diagram

X1
β′

−−−→ πx2 γ′

−−−→ X2 −−−→ ΣX1

1

y |

y≀ |

y≀

πY1
πβ
−−−→ πy2 πγ

−−−→ πY2 −−−→ ΣπY1

which we extend to an isomorphism of triangles. Lemma 6.1 allows us to extend the

commutative diagram

πx2 γ′

−−−→ X2
δ′

−−−→ πx3

1

y |

y≀

πy2 πγ
−−−→ πY2

to the diagram

πx2 γ′

−−−→ X2
δ′

−−−→ πx3

1

y |

y≀ |

y≀

πy2 πγ
−−−→ πY2

πδ
−−−→ πy3

Finally, we form the triangle

Y2
δ

−−−→ y3 −−−→ Y3 −−−→ ΣY2

Lemma 6.3. Let M and N be f.g. projective R-modules. There is a natural isomorphism

C
c(ΣπM,πN) ∼= TorR2 (σ−1M∗, σ−1N).

In this formula, M∗ = HomR(M,R) is the dual of M .

Proof. By Corollary 3.27, TorR1 (σ−1R,σ−1R) = 0. The case n = 1 of Corollary 3.31 then

tell us that

TorR2 (σ−1R,σ−1R) = H−1(GπR)

= B(ΣR,GπR)

= C
c(ΣπR, πR).
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All we are doing is extending this isomorphism first to free modules, then to their direct

summands.

Remark 6.4. Lemma 6.3 permits us to write the obstruction class θ(D) of Theorem 6.2

as lying in the group

TorR2 (σ−1{x0}
∗
, σ−1x3)

Im{TorR2 (σ−1{x0}∗, σ−1x2)⊕ TorR2 (σ−1{x1}∗, σ−1x0)}
.

Note that if TorR2 (σ−1R,σ−1R) = 0 this group is 0.

2

Remark 6.5. It is easy to generalize this to longer complexes. Given a bounded f.g.

projective R-module chain complex

D : · · · −→ σ−1xi−1 −→ σ−1xi −→ σ−1xi+1 −→ · · ·

there is a series of obstructions to lifting all the associated triangles to Dc(R)

θi,j(D) ∈
Cc(Σj−2πxi, πxi+j)

Im{Cc(Σj−2πxi, πxi+j−1)⊕ Cc(Σj−2πxi+1, πxi+j)}

for j ≥ 3. As in Remark 6.4 these are related to Tor-groups by a spectral sequence, and

are 0 if TorR∗ (σ−1R,σ−1R) = 0 for ∗ ≥ 2.

2

7. Waldhausen’s approximation and localization theorems

We have been studying noncommutative localization using derived categories tech-

niques. Next we want to apply our results to deduce K-theoretic consequences. In order

to do so, we briefly review some results of Waldhausen’s.

Let C be a category with cofibrations and weak equivalences. Out of C Waldhausen

constructs a spectrum, denoted K(C). In Thomason’s [29], the category C is assumed

to be a full subcategory of the category of chain complexes over some abelian category,

the cofibrations are maps of complexes which are split monomorphisms in each degree,

and the weak equivalences are the quasi-isomorphisms. We shall call such categories

permissible Waldhausen categories.

Remark 7.1. Thomason’s term for them is complicial biWaldhausen categories.

2

Given a permissible Waldhausen category C, one can form its derived category; just

invert the weak equivalences. We denote this derived category by D(C). We have

two major theorems here, both of which are special cases of more general theorems of

Waldhausen.
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Theorem 7.2. (Waldhausen’s Approximation Theorem). Let F : C −→ D be an

exact functor of essentially small permissible Waldhausen categories (categories of chain

complexes, as above). Suppose that the induced map of derived categories

D(F ) : D(C) −→ D(D)

is an equivalence of categories. Then the induced map of spectra

K(F ) : K(C) −→ K(D)

is a homotopy equivalence.

In this sense, Waldhausen’s K-theory is almost an invariant of the derived categories.

To construct it, one needs to have a great deal more structure. One must begin with a

permissible category with cofibrations and weak equivalences. But the Approximation

Theorem asserts that the dependence on the added structure is not strong.

Theorem 7.3. (Waldhausen’s Localization Theorem). Let A, B and C be essen-

tially small permissible Waldhausen categories. Suppose

A −→ B −→ C

are exact functors of permissible Waldhausen categories. Suppose further that the induced

triangulated functors of derived categories

D(A) −→ D(B) −→ D(C)

compose to zero, and that the natural map

D(B)/D(A) −−−→ D(C)

is an equivalence of categories. Then the sequence of spectra

K(A) −→ K(B) −→ K(C)

is a homotopy fibration. 2

To obtain a homotopy fibration using Waldhausen’s localization theorem, we need to

produce three permissible Waldhausen categories, and a sequence

A −→ B −→ C

so that

D(B)/D(A) −−−→ D(C)

is an equivalence of categories. In particular, we want to find triangulated categories

Ac = D(A), Bc = D(B) and Cc = D(C) so that Cc = Bc/Ac. Of course, it is not enough

to just find the triangulated categories Ac, Bc and Cc; to apply the localization theorem,

we must also find the permissible Waldhausen categories A, B and C, and the exact

functors

A −→ B −→ C .
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In Theorem 7.2, we learned that the K-theory is largely independent of the choices of

A, B and C. In this article, we shall allow ourselves some latitude. Thomason is careful

to check, in [29], that the choices of permissible Waldhausen categories can be made;

we shall consider this a technical point, and explain only how to produce Ac = D(A),

Bc = D(B) and Cc = D(C). We shall also commit the notational sin of writing K(Ac)

for K(A), where Ac = D(A), and similarly K(Bc) for K(B), and K(Cc) for K(C).

As the notation of the previous paragraph was designed to suggest, we want to apply

the results Ac ⊂ Bc and Cc, with A, B and C as we have seen them in the previous

sections. That is, B = D(R) is the derived category of a ring R, A is generated by a set

σ of morphisms in Bc, and C = B/A. By the discussion above, we have a fibration in

K–theory

K(Ac) −−−→ K(Bc) −−−→ K(Bc/Ac) .

In Theorem 3.9 we learned that the natural map Bc/Ac −→ Cc is fully faithful, and that

up to splitting idempotents it is an equivalence. Grayson’s cofinality theorem then tells

us that the map

K(Bc/Ac) −−−→ K(Cc)

induces an isomorphismKi(B
c/Ac) −→ Ki(C

c) when i > 0, whileK0(B
c/Ac) −→ K0(C

c)

is injective. We conclude that, up to the failure of surjectivity in π0,

K(Ac) −−−→ K(Bc) −−−→ K(Cc)

is a homotopy fibration.

We know also that Bc = Dc(R), and in Proposition 5.2 we produced a functor T :

Cc −→ Dc = Dc(σ−1R). For any ring S, we have K(S) = K(Dc(S)); Waldhausen’s

K–theory of the derived category agrees with Quillen’s K–theory of S. Applying this to

the rings R and σ−1R, we have

Theorem 7.4. In the diagram

K(Ac) −−−→ K(Bc) −−−→ K(Cc)

|

y≀ K(T )

y

K(R) K(σ−1R)

not only is the top row a fibration up to the failure of surjectivity on π0, but K(Bc)

agrees with Quillen’s K(R), and T : Cc −→ Dc = Dc(σ−1R) induces a morphism K(T ) :

K(Cc) −→ K(σ−1R). 2

In particular, Theorem 7.4 gives a long exact sequence

. . . −→ Kn(R) −→ Kn(C
c) −→ Kn(R,σ) −→ Kn−1(R) −→ . . . ,

with K∗(R,σ) = K∗−1(A
c). In the coming sections, we shall study the range in which

the map K(T ) : K∗(C
c) −→ K∗(σ

−1R) induces an isomorphism in homotopy.
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8. T induces a K0-isomorphism

Let the notation be as in Theorem 7.4. In this section, we shall prove that the functor

T : Cc −−−→ Dc = Dc(σ−1R)

induces an isomorphism in K0. We shall do it through a sequence of lemmas. We remind

the reader that B = D(R) has a standard t-structure, and that the functor Gπ behaves

well with respect to it. See Remark 3.15 and Lemma 3.17.

Lemma 8.1. Let n be an integer. Let X ∈ Bc be an object of B≤n, and let P be a

f.g. projective R-module. Then the functor T : Cc −→ Dc of Proposition 5.1 gives a

homomorphism

Cc(πΣ−nP, πX) −−−→ Dc(TπΣ−nP, TπX) .

We assert that this map is an isomorphism.

Proof. By translation, we may assume n = 0. We need to prove the map injective and

surjective. Let us prove surjectivity first. Recall that X ∈ B≤0 is isomorphic to a chain

complex of f.g. projectives

−→ Xm −→ Xm+1 −→ · · · −→ X−1 −→ X0 −→ 0 −→ 0 −→

This makes TπX the chain complex

−→ σ−1Xm −→ σ−1Xm+1 −→ · · · −→ σ−1X−1 −→ σ−1X0 −→ 0 −→ 0 −→

Let P be a f.g. projective R-module, concentrated in degree 0. Now the complex of

σ−1R-modules TπP is a single projective module σ−1P , concentrated in degree 0. Any

map in the derived category, from the bounded above complex of projectives σ−1P =

{σ−1R}⊗R P to the complex {σ−1R}L⊗RX, can be represented by a chain map. There

is a map σ−1P −→ σ−1X0 inducing it. By Proposition 5.2, this comes from a map

πP −→ πX0. But then the composite

πP −−−→ πX0 −−−→ πX

gives a map πP −→ πX in Cc, inducing TπP −→ TπX.

This proved the surjectivity. For the injectivity, note that there is a short exact

sequence of chain complexes

−→ 0 −→ 0 −→ · · · −→ 0 −→ X0 −→ 0 −→ 0 −→

↓ ↓ ↓ ↓ ↓ ↓

−→ Xm −→ Xm+1 −→ · · · −→ X−1 −→ X0 −→ 0 −→ 0 −→

↓ ↓ ↓ ↓ ↓ ↓

−→ Xm −→ Xm+1 −→ · · · −→ X−1 −→ 0 −→ 0 −→ 0 −→

Write the corresponding triangle as

X0 −−−→ X −−−→ Y −−−→ ΣX0.
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We have a triangle

πX0 −−−→ πX −−−→ πY −−−→ πΣX0.

Let P be a f.g. projective R-module, concentrated in degree 0. Suppose we are given a

map πP −→ πX. Composing to Y , we deduce a map

πP −−−→ πX −−−→ πY .

By adjunction, this corresponds to a map

P −−−→ GπY ,

which must vanish. After all, Y ∈ B≤−1, and by Lemma 3.17 it follows that GπY is also

in B≤−1. The map from a projective object P in degree 0 to the complex GπY ∈ B≤−1

must vanish.

It follows that the map πP −→ πX must factor as

πP −−−→ πX0 −−−→ πX.

Now assume that the map vanishes in Dc = Dc(σ−1R). That is, the composite

σ−1P −−−→ σ−1X0 −−−→ {σ−1R}L⊗RX

vanishes in Dc. Then it must be null homotopic. The map σ−1P −→ σ−1X0 must factor

as

σ−1P −−−→ σ−1X−1 −−−→ σ−1X0.

By Proposition 5.2, this tells us that the map πP −→ πX0 must factor as

πP −−−→ πX−1 −−−→ πX0

and hence the map

πP −−−→ πX−1 −−−→ πX0 −−−→ πX

must vanish.

Lemma 8.2. Let n be an integer. Let Z be an object of Cc, and suppose for all r ≥ n,

Hr(TZ) = 0. Then there is an object X ∈ Bc, that is a bounded complex of projective

R-modules

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ Xℓ−1 −→ Xℓ −→ 0 −→

so that Z is a direct summand of πX, and ℓ ≤ n.

Proof. By suspending, we may assume n = 0. By 3.9.4, we may certainly find an X with

Z a direct summand of πX. What is not clear is that we may choose X to be a complex

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ Xℓ−1 −→ Xℓ −→ 0 −→

with ℓ ≤ 0. Assume therefore that ℓ > 0, and we shall show that we may reduce ℓ by 1.
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We recall the short exact sequence of chain complexes

−→ 0 −→ 0 −→ 0 −→ · · · −→ 0 −→ Xℓ −→ 0 −→

↓ ↓ ↓ ↓ ↓ ↓

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ Xℓ−1 −→ Xℓ −→ 0 −→

↓ ↓ ↓ ↓ ↓ ↓

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ Xℓ−1 −→ 0 −→ 0 −→

It gives a triangle which we write as

Σ−ℓXℓ −−−→ X
a

−−−→ Y −−−→ Σ−ℓ+1Xℓ.

We also have that Z is a direct summand of πX. That is, there are maps

πX
b

−−−→ Z
c

−−−→ πX

so that bc = 1Z . Now we wish to consider the composite

πΣ−ℓXℓ −−−→ πX
b

−−−→ Z
c

−−−→ πX .

We know that Xℓ is a f.g. projective R-module, and X ∈ B lies in B≤ℓ. The conditions

are as in Lemma 8.1. In order to prove that the composite vanishes, it suffices to prove

that T of it vanishes, in Dc = Dc(σ−1R).

But in Dc the map becomes the composite

TπΣ−ℓXℓ −−−→ TπX −−−→ TZ −−−→ TπX .

We assert that already the shorter composite, TπΣ−ℓXℓ −→ TπX −→ TZ must vanish.

After all, it is a map

TπΣ−ℓXℓ −−−→ TZ

By hypothesis, TZ vanishes above degree 0. It is quasi-isomorphic to a complex of σ−1R-

modules in degree ≤ 0. And TπΣ−ℓXℓ = Σ−ℓσ−1Xℓ is a single projective σ−1R-module,

concentrated in degree ℓ > 0. Hence the vanishing. The composite

πΣ−ℓXℓ −−−→ πX
b

−−−→ Z
c

−−−→ πX

must therefore vanish. Since c is a split monomorphism, we deduce that the composite

πΣ−ℓXℓ −−−→ πX
b

−−−→ Z

also vanishes.

But now the triangle

πΣ−ℓXℓ −−−→ πX
a

−−−→ πY −−−→ πΣ−ℓ+1Xℓ

tells us that the map b : πX −→ Z must factor as

πX
a

−−−→ πY
β

−−−→ Z.

The composite

Z
c

−−−→ πX
a

−−−→ πY
β

−−−→ Z
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is the identity, and hence Z is a direct summand of πY , with Y the complex

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ Xℓ−1 −→ 0 −→ 0 −→

Lemma 8.3. Let n be an integer. Let Z be an object of Cc, and suppose for all r ≥ n,

Hr(TZ) = 0. Given any f.g. projective R-module P , and any map

TπP = σ−1P
a

−−−→ Hn(TZ) ,

there is a map in Cc

πΣ−nP
µ

−−−→ Z

so that Hn(Tµ) = a.

Proof. By translating, we may assume n = 0. Let Z be an object of Cc, and suppose for

all r ≥ 0, Hr(TZ) = 0. By Lemma 8.2, there exists a complex X ∈ Dc(R)

−→ 0 −→ Xm −→ Xm+1 −→ · · · −→ X−1 −→ X0 −→ 0 −→

so that Z is a direct summand of πX. We have two maps

πX
b

−−−→ Z
c

−−−→ πX

so that bc = 1Z . This gives us two maps

TπX
Tb
−−−→ TZ

Tc
−−−→ TπX

with (Tb)(Tc) = 1. Given any map

σ−1P
a

−−−→ H0(TZ),

we can form the composite

σ−1P
a

−−−→ H0(TZ)
H0(Tc)
−−−−→ H0(TπX) .

Of course, TπX is just the chain complex

· · · −→ σ−1X−1 −→ σ−1X0 −→ 0 −→

and any map from a projective σ−1P to H0(TπX) lifts to a map

σ−1P −−−→ TπX .

By Lemma 8.1, the above map is Tγ, for a (unique) map

πP
γ

−−−→ πX .

Now let µ be the composite

πP
γ

−−−→ πX
b

−−−→ Z .

Applying the functor H0 ◦ T , we compute H0(Tµ) to be the composite

σ−1P
a

−−−→ H0(TZ)
H0(Tc)
−−−−→ H0(TπX)

H0(Tb)
−−−−→ H0(TZ),
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which is nothing other than the map a.

Lemma 8.4. For any f.g. projective σ−1R-module M , there is a canonically unique

object M̃ ∈ Cc so that

8.4.1. H0(TM̃ ) = 0 for n 6= 0.

8.4.2. H0(TM̃ ) = M .

The functor H0(T−) is an equivalence of categories between the full subcategory of objects

M̃ ∈ Cc and f.g. projective σ−1R-modules.

Proof. Let us first prove existence. LetM be a f.g. projective σ−1R-module. There exists

a σ−1R-module N , so that M ⊕ N ∼= {σ−1R}
r
. There is an idempotent {σ−1R}

r
−→

{σ−1R}
r

which is the map

M ⊕N
1

M
⊕0

N−−−−−→ M ⊕N .

Write this map as 1M ⊕ 0N : TπRr −→ TπRr. By Proposition 5.2, there is a unique

lifting e : πRr −→ πRr. The uniqueness of the lifting allows us to easily show that

e2 = e. But idempotents split in C, by Proposition 1.6.8 of [20]. Define M̃ by splitting

the idempotent e.

Then Hn(TM̃) is computed by splitting the idempotent Hn(Te) on Hn(σ−1Rr); this

gives us zero when n 6= 0, and M when n = 0. We have proved the existence of a M̃

satisfying 8.4.1 and 8.4.2.

Now suppose X is an object of Cc, and that

(i) Hn(TX) = 0 for n 6= 0,

(ii) H0(TX) = M .

We wish to produce an isomorphism M̃ −→ X. In any case, we have a map

σ−1Rr −−−→ M = H0(TX) ,

namely the projection to the direct summand. By Lemma 8.3, there is a map

πRr −−−→ X ,

which induces the projection. We may form the composite

M̃ −−−→ πRr −−−→ X,

and it is very easy to check that the map

TM̃ −−−→ TX

is a homology isomorphism, hence an isomorphism in Dc(σ−1R). If we complete M̃ −→

X to a triangle in Cc

M̃ −−−→ X −−−→ Y −−−→ ΣM̃,
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then TY = 0. But by Proposition 5.4 it then follows that Y = 0, and M̃ −→ X is an

isomorphism.

Finally it remains to check that C(M̃, Ñ) = Homσ−1R(M,N). By the construction of

M̃ and Ñ as direct summands of πRr and πRs, this reduces to knowing that

C(πRr, πRs) = D(TπRr, TπRs) .

But we know this from Proposition 5.2.

Theorem 8.5. The map T : Cc −→ Dc of Proposition 5.1 induces a K0-isomorphism.

Proof. We have maps of categories

P(σ−1R)
a

−−−→ Cc
T

−−−→ Dc

with P(σ−1R) the category of f.g. projective σ−1R-modules. The map T is given by

Proposition 5.1; the map a takes a f.g. projective σ−1R-module M to a(M) = M̃ . In

K-theory, the composite

K0(σ
−1R) −→ K0(C

c) −→ K0(D
c)

is clearly an isomorphism. To prove that both maps are isomorphisms, it suffices to show

that the map K0(a) : K0(σ
−1R) −→ K0(C

c) is onto. This is what we shall do.

Let Z be an object of Cc. We want to show that its class [Z] ∈ K0(C
c) lies in the image

of K0(a). We shall prove this by induction on the length of TZ. In any case, TZ is an

object of Dc = Dc(σ−1R); it is a bounded complex of f.g. projective σ−1R-modules.

Suppose the length of TZ is zero. Replacing Z by a suspension, this means that

Hn(TZ) = 0 unless n = 0. But then H0(TZ) = M must be a f.g. projective σ−1R-

module, and by Lemma 8.4 we know that Z is (canonically) isomorphic to M̃ . Thus Z

is in the image of a.

Suppose now that we know the induction hypothesis. We are given n ≥ 0. We know

that if Z is an object of Cc so that the length of TZ is ≤ n, then the class [Z] ∈ K0(C
c)

lies in the image of K0(a). Let Z be a complex of length n + 1 ≥ 1. Replacing Z by

a suspension, this means that Hr(TZ) = 0 unless −n − 1 ≤ r ≤ 0. Now H0(TZ) is a

finitely presented σ−1R-module; we may choose a f.g. free R-module F , and a surjection

σ−1F −→ H0(TZ). By Lemma 8.3, there is a map

πF −−−→ Z

lifting this surjection. Form the triangle in Cc

πF −−−→ Z −−−→ Y −−−→ ΣπF.

It is easily computed that the length of TY is ≤ n, so by induction [Y ] lies in the image

of K0(a) : K0(σ
−1R) −→ K0(C

c). Clearly [πF ] = [σ̃−1F ] also lies in the image of K0(a),

and the triangle tells us that [Z] = [Y ] + [πF ].
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9. T induces a K1-isomorphism

In Proposition 5.1 we produced a triangulated functor of triangulated categories

T : C
c −→ D

c = Dc(σ−1R) .

In Section 8 we proved that the induced map K0(T ) : K0(C
c) −→ K0(D

c) is an isomor-

phism. The main result of this section is that so is K1(T ) : K1(C
c) −→ K1(D

c). First

we must address a point concerning Waldhausen K–theory.

Let B be the category whose objects are all bounded chain complexes of f.g. projective

R-modules. The morphisms in B are the chain maps. The cofibrations are the maps

which are split monomorphisms in each degree. The weak equivalences are the homology

isomorphisms. Clearly, B is a model for the triangulated category Bc = Dc(R).

Let A be the full subcategory of all objects in B whose image in Bc is contained in

A. Then A is a model for the triangulated category Ac, and the inclusion A −→ B

is a model for the map Ac −→ Bc. Let C be the same category as B, with the same

cofibrations, but different weak equivalences. The weak equivalences in C are the maps

in C = B whose mapping cone lies in A ⊂ B. We have exact functors of Waldhausen

categories

A −→ B −→ C

which induce the maps of triangulated categories

A
c −→ B

c −→ B
c/Ac .

Let D be the Waldhausen category of all bounded chain complexes of f.g. projective

σ−1R-modules. The cofibrations are the maps which are split monomorphisms in each

degree. The weak equivalences are the homology isomorphisms. The functor X 7→ σ−1X

is clearly an exact functor of Waldhausen categories B −→ D. In Proposition 5.2 we

showed that it factors as

B −→ C −→ D .

Waldhausen’s localization theorem tells us that there is a homotopy fibration in Wald-

hausen K-theory

K(A) −→ K(B) −→ K(C) ;

somewhat loosely, we have been referring to this homotopy fibration as

K(Ac) −→ K(Bc) −→ K(Bc/Ac) .

The map we have been calling K(Bc/Ac) −→ K(Cc) is an isomorphism except possibly

on K0. Since this section deals only with K1, there is no point in explaining what this

map is, on the level of Waldhausen models. There is also a map K(C) −→ K(D). This

is the map we have loosely been referring to as K(Bc/Ac) −→ K(Dc).

In the proof of Theorem 8.5, we also introduced a functor P(σ−1R) −→ Cc. We

do not know a Waldhausen model for this map. But in the following discussion we

shall show that there is an induced map on K1. The group K1(σ
−1R) is generated by
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determinants of automorphisms of free (or projective) modules. Certainly, the following

generate: given any projective R-module P , and an automorphism φ : σ−1P −→ σ−1P ,

the determinant of φ is an element of K1(σ
−1R), and the collection of all determinants

of all φ’s generates K1(σ
−1R). We want to produce a map K1(σ

−1R) −→ K1(C); to

define the map, it suffices to say what it does on all φ’s as above.

To define what the map does to φ, let us remind ourselves that the zero-space of the

spectrum K(C) has a Gillet-Grayson model (see [17]) , which we denote GG(C). That

is, there is a homotopy equivalence

GG(C) ≃ Ω∞K(C) .

The space GG(C) is an H-space, and hence

K1(C) = π1K(C) = π1GG(C) = H1GG(C) .

Starting with an automorphism φ : σ−1P −→ σ−1P , we need to produce a class in the

first homology group H1GG(C).

We note that, by Proposition 5.2, φ : σ−1P −→ σ−1P corresponds to a unique auto-

morphism

ϕ : πP −→ πP .

This is an automorphism defined in Bc/Ac, and C is a Waldhausen model for Bc/Ac. It

follows that there exist weak equivalences a : Q −→ P and b : Q −→ P , with ϕ = ab−1.

But then P andQ are 0-cells in the Gillet-Grayson model GG(C). The weak equivalences

a : Q −→ P and b : Q −→ P are 1-cells. Now [a] − [b] is a cycle, that is an element in

H1

(
GG(C)

)
= π1

(
GG(C)

)
= K1(C). We leave it to the reader to check that the map

sending φ to [a]− [b] extends to a well-defined homomorphism K1(σ
−1R) −→ K1(C).

The composite K1(σ
−1R) −→ K1(C) −→ K1(D) is easily seen to be an isomorphism;

in our looser notation, it is the map

K1(σ
−1R) −→ K1(B

c/Ac) = K1(C
c) −→ K1(D

c) .

To prove that both maps are isomorphisms it suffices therefore to check thatK1(σ
−1R) −→

K1(C) is epi. We have a localization exact sequence

K1(B) −−−→ K1(C) −−−→ K0(A) −−−→ K0(B) .

Note that K(B) = K
(
Dc(R)

)
= K(R). The composite K1(R) −→ K1(σ

−1R) −→

K1(C) is easily computed to agree with the natural K1(R) = K1(B) −→ K1(C); we

deduce a commutative diagram where the bottom row is exact

K1(R) −−−→ K1(σ
−1R)

1

y ψ

y

K1(R) −−−→ K1(C) −−−→ K0(A) −−−→ K0(R) .
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To prove ψ epi, it suffices to show that the composite

K1(σ
−1R)

ψ

y

K1(C) −−−→ K0(A)

surjects to the kernel of K0(A) −→ K0(R). But the composite is easy to compute. Take

an automorphism φ : σ−1R⊗ P −→ σ−1R⊗ P as above, which corresponds as above to

an automorphism

ϕ : πP −→ πP .

Choose weak equivalences a : Q −→ P and b : Q −→ P , with ϕ = ab−1. Then φ gets

sent to [A]− [B], where

A : . . . −→ 0 −→ Q
a
−→ P −→ 0 −→ . . . ,

B : . . . −→ 0 −→ Q
b
−→ P −→ 0 −→ .

It will therefore suffice to show that every element in the kernel of the map K0(A) −→

K0(R) can be expressed as a difference [A] − [B], as above. We shall prove something

stronger.

Theorem 9.1. Every element in K0(A) = K0(A
c) is a linear combination of complexes

of length ≤ 1. That is, it may be written as
∑
±[Ai], with Ai ∈ Ac being complexes of

f.g. projective R-modules of the form

. . . −→ 0 −→ X −→ Y −→ 0 −→ . . . . 2

Note that with K0, it makes no difference whether we compute K0 of a triangulated

category, or K0 of its model; from now on we can forget all about models. Before the

proof of Theorem 9.1, let us state the main corollary

Corollary 9.2. Every object in the kernel of the map K0(A
c) −→ K0(B

c) = K0(R) is

of the form [A]− [B], where A is a complex

. . . −→ 0 −→ Q
a
−→ P −→ 0 −→ . . .

and B is a complex

. . . −→ 0 −→ Q
b
−→ P −→ 0 −→ . . .

By the discussion preceding Theorem 9.1, this means that the map T : Cc −→ Dc induces

a K1-isomorphism.

Proof that Corollary 9.2 follows from Theorem 9.1. Suppose we have an element of the

kernel of the map K0(A
c) −→ K0(B

c) = K0(R). By Theorem 9.1, just by virtue of being

an element of K0(A
c), it has an expression as

∑
±[Ai], with Ai ∈ Ac being complexes of

f.g. projective R-modules of the form

. . . −→ 0 −→ Xi −→ Yi −→ 0 −→ . . .
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Recalling that [ΣAi] = −[Ai], up to changing signs in the sum we may assume that all

the Xi are in degree −1, all the Yi in degree 0. Collecting together all the terms of equal

sign, we may rewrite the sum as

[⊕Ai]− [⊕Bj ].

That is, we have an element [A] − [B] in the kernel of K0(A
c) −→ K0(B

c) = K0(R),

where A,B are complexes of the form

A : . . . −→ 0 −→ A−1 a
−→ A0 −→ 0 −→ . . . ,

B : . . . −→ 0 −→ B−1 b
−→ B0 −→ 0 −→ . . . .

The fact that [A] − [B] lies in the kernel of the map K0(A
c) −→ K0(B

c) = K0(R) tells

us that, in K0(R), there is an identity

[A−1] + [B0] = [B−1] + [A0] .

This in turn says that there is a projective R-module X, and an isomorphism

A−1 ⊕B0 ⊕X ∼= B−1 ⊕A0 ⊕X .

The object [A] ∈ Ac is isomorphic to the complex

. . . −−−→ 0 −−−→ A−1 ⊕B0 ⊕X
a⊕1

B0
⊕1

X

−−−−−−−→ A0 ⊕B0 ⊕X −−−→ 0 −−−→ . . .

while the object [B] ∈ Ac is isomorphic to the complex

. . . −−−→ 0 −−−→ B−1 ⊕A0 ⊕X
b⊕1

A0
⊕1

X

−−−−−−−→ B0 ⊕A0 ⊕X −−−→ 0 −−−→ . . .

Put Q = A−1⊕B0⊕X ∼= B−1⊕A0⊕X, and P = A0⊕B0⊕X. Then A is isomorphic

in Ac to a complex

. . . −→ 0 −→ Q
α
−→ P −→ 0 −→ . . .

and B is isomorphic in Ac to a complex

. . . −→ 0 −→ Q
β
−→ P −→ 0 −→ . . .

as required. 2

Proof of Theorem 9.1. It remains to prove Theorem 9.1. Let X be an object of Ac.

We need to show that the class [X] in K0(A
c) can be written as a linear combination of

classes of objects of length ≤ 1.

Because X ∈ Ac ⊂ Bc, we have that X is a bounded complex of f.g. projective

R-modules. Suspending suitably, we may assume it has the form

−→ 0 −→ X−m −→ X−m+1 −→ · · · −→ X−1 −→ X0 −→ 0 −→

If m ≤ 1 we are done; the complex has length ≤ 1. The proof is by induction. Assume we

are given an integer n ≥ 1. Assume further that, for every X ∈ Ac of length m ≤ n, [X]

is equal in K0(A
c) to a linear combination of complexes of length ≤ 1. Take a complex

X as above, with m = n + 1 ≥ 2. We need to show that it can also be expressed as a

linear combination of complexes of length ≤ 1.
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By Lemma 4.8, we have that every object of Ac is isomorphic to a direct summand of an

object in S, with S defined as in Definition 4.4. Choose a chain complex Y ∈ S and maps

X −→ Y −→ X composing to the identity on X. Clearly, the map H0(Y ) −→ H0(X)

must be surjective.

By Lemma 4.6, there exist exists a triangle

U −−−→ Y −−−→ V −−−→ ΣU

with U ∈ S[1,∞) and V ∈ S(−∞, 1]. The composite

U −−−→ Y −−−→ X

is a map from U ∈ S[1,∞) to X ∈ B≤0, which must vanish. It follow that Y −→ X

factors as Y −→ V −→ X. And since H0(Y ) −→ H0(X) is epi and factors through

H0(V ), we deduce that H0(V ) −→ H0(X) must be epi. Replacing Y by V , we may

assume Y ∈ S(−∞, 1].

Next we apply Lemma 4.6 again, this time to deduce that Y ∈ S(−∞, 1] can be

expressed as the mapping cone on a map U −→ V , with U ∈ S(−∞, 0] and V ∈ S[−1, 1].

There is a triangle

U −−−→ V −−−→ Y −−−→ ΣU ,

hence an exact sequence

H0(V ) −−−→ H0(Y ) −−−→ H1(U) = 0 .

The map H0(V ) −→ H0(Y ) −→ H0(X) is the composite of two epis, hence is epi.

Replacing Y −→ X by the composite V −→ Y −→ X, we may assume Y ∈ S[−1, 1].

The last time we apply Lemma 4.6 is to express Y as the mapping cone of a map

U −→ Z, with U ∈ S[0, 1] and Z ∈ S[0, 1]. The only observations we wish to make is

that H1(Z) −→ H1(Y ) is epi, and that in K0(A
c), [Z] and [Y ] = [Z]− [U ] are both linear

combinations of objects in A of length ≤ 1. Let us summarize: we have constructed maps

Z −→ Y −→ X, with

(i) Z ∈ S[0, 1], Y ∈ S[−1, 1],

(ii) H0(Y ) −→ H0(X) epi,

(iii) H1(Z) −→ H1(Y ) epi,

(iv) both [Y ] and [Z] are linear combinations of objects in A of length ≤ 1.

Form the mapping cone on the map Y −→ X, to obtain a triangle

Y −−−→ X −−−→ X ′ −−−→ Y .

Since Y ∈ S[−1, 1] while X ∈ Ac is supported on the interval [−m, 0] with m ≥ 2, the

mapping cone X ′ is an object of Ac supported in [−m, 0]. The long exact sequence in

homology gives

H0(Y ) −−−→ H0(X) −−−→ H0(X ′) −−−→ H1(Y ) −−−→ H1(X) .



56 AMNON NEEMAN AND ANDREW RANICKI

We have H1(X) = 0, while H0(Y ) −→ H0(X) is an epimorphism. Hence H0(X ′) =

H1(Y ). But we know that the map H1(Z) −→ H1(Y ) is an epimorphism, by (iii). And

Z is a complex of the form

. . . −→ 0 −→ Z0 −→ Z1 −→ 0 −→ . . .

that is a complex of length ≤ 1. It follows that we can extend the epimorphism β :

H1(Z) −→ H0(X ′) to a map from the presentation Z; there is a map ΣZ −→ X ′,

inducing β in H0. We may form the mapping cone, obtaining a triangle

ΣZ −−−→ X ′ −−−→ X ′′ −−−→ Σ2Z .

Since ΣZ ∈ S[−1, 0] and X ′ is supported on [−m, 0], we conclude that X ′′ is supported

on [−m, 0] But now the long exact homology sequence

H0(ΣZ)
α

−−−→ H0(X ′) −−−→ H0(X ′′) −−−→ H1(ΣZ)

has α surjective, while H1(ΣZ) = 0. We conclude that H0(X ′′) = 0. The complex

X ′′ is supported in the interval [m,−1]. By induction, its class in K0(A
c) is a linear

combination of complexes of length ≤ 1.

But now the triangles above give the identities

[X] = [X ′] + [Y ], [X ′] = [X ′′]− [Z]

and hence [X] = [X ′′] + [Y ] − [Z], and all the terms on the right may be expressed as

linear combinations of complexes of length ≤ 1. 2

10. T is an equivalence if and only if the Tor-groups vanish

In Proposition 5.1 we constructed a functor

T : C
c = (D(R)/D(R,σ))c −→ D

c = Dc(σ−1R) .

In Sections 8 and 9 we showed that T induces an isomorphism in K0 and K1. For higher

K-theory, the useful result we have is a necessary and sufficient conditions for the functor

T to be an equivalence of categories. An equivalence of categories trivially induces an

isomorphism in K–theory. It is very easy to see a necessary condition:

Lemma 10.1. If T : Cc −→ Dc is an equivalence then, for all n 6= 0, Hn(GπR) = 0.

Proof. Suppose T is an equivalence. We have isomorphisms

Hn(GπR) = B
c(R,ΣnGπR)

= C
c(πR,ΣnπR)

= D(TπR,ΣnTπR) .

But TπR = σ−1R, and in the category D = D(σ−1R), the maps σ−1R −→ Σnσ−1R all

vanish, whenever n 6= 0.
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Remark 10.2. The main result of this section is that the converse of Lemma 10.1 holds.

The condition is also sufficient.

2

Proposition 10.3. The groups {Hn(GπR), n 6= 0} all vanish if and only if the groups

{TorRn (σ−1R,σ−1R), n 6= 0} all vanish.

Proof. By Lemma 3.17, the groups Hn(GπR) vanish when n > 0, while the groups

TorRn (σ−1R,σ−1R) clearly vanish when n < 0. By Corollary 3.27, TorR1 (σ−1R,σ−1R) =

0. By Corollary 3.31, the smallest non-zero integer n for which H−n(GπR) 6= 0 is equals

the smallest integer n 6= −1 for which TorRn+1(σ
−1R,σ−1R) 6= 0.

Corollary 10.4. Suppose Hn(GπR) = 0 for all n 6= 0. Put S = σ−1R. We assert

10.4.1. S ⊗R S = S via the multiplication map, and

10.4.2. TorRi (S, S) = 0 for all i > 0.

Proof. 10.4.2 is immediate from Proposition 10.3, while 10.4.1 follows from Corollary 3.27.

Next we shall formally study the consequences of 10.4.1 and 10.4.2. Let us begin

with an easy general observation, about natural transformations of functors respecting

coproducts.

Lemma 10.5. Let S and T be triangulated categories, let F and G be triangulated func-

tors S −→ T, and let ρ : F =⇒ G be a natural transformation commuting with the

suspension. Define the full subcategory I ⊂ S by the formula

Ob(I) = {x ∈ Ob(S) | ρx is an isomorphism} .

Then the category I is triangulated. If furthermore both F and G commute with coprod-

ucts, then I contains all coproducts in S of its objects.

Proof. Left to the reader.

Lemma 10.6. Let R −→ S be a ring homomorphism such that R and S satisfy the

hypotheses 10.4.1 and 10.4.2; we remind the reader

10.4.1: S ⊗R S = S via the multiplication map, and

10.4.2: TorRi (S, S) = 0 for all i > 0.

Define the functor

Θ : D(S) −→ D(S) ; X 7→ SL⊗RX .

Multiplication defines a natural transformation µ : Θ =⇒ 1. We assert that µ is an

isomorphism.
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Proof. The functors Θ and 1 are triangulated functors respecting coproducts, and the

natural transformation µ commutes with the suspension. By Lemma 10.5, the full sub-

category of all x ∈ D(S) for which µ is an isomorphism is triangulated category closed

under coproducts. By 10.4.1 and 10.4.2, it also contains the object S ∈ D(S). From

Lemma 3.5, it follows that µx is an isomorphism for all x ∈ D(S).

Theorem 10.7. Let α : R −→ S be a ring homomorphism such that R and S satisfy

the hypotheses 10.4.1 and 10.4.2; we remind the reader

10.4.1: S ⊗R S = S via the multiplication map, and

10.4.2: TorRi (S, S) = 0 for all i > 0.

Put B = D(R), D = D(S). There is a functor π : B −→ D taking X ∈ D(R) to

SL⊗RX ∈ D(S). The functor π has a fully faithful right adjoint G : D −→ B. The unit

of adjunction η : 1 =⇒ Gπ is identified by saying that the two maps below are naturally

isomorphic

X
η

X−−−→ GπX , RL⊗RX
α⊗X
−−−→ SL⊗RX .

The functor G respects coproducts. Finally, there exists a thick subcategory A ⊂ B so

that the pair of adjoints π,G are a Bousfield localization for the pair A ⊂ B.

Proof. The functor

π : B = D(R) −→ D = D(S) ; X 7→ SL⊗RX

is left adjoint to the forgetful functor G : D −→ B taking a complex of S-modules and

just viewing it as a complex of R-modules. This is just the derived category version of

the classical fact that for any R-module M and S-module N

HomR(M,N) = HomS(S ⊗RM,N) .

The functor G clearly respects coproducts, and the unit of adjunction clearly identifies

as

RL⊗RX
α⊗X
−−−→ SL⊗RX.

The first statement that requires proof is that G is fully faithful. Suppose therefore

that X and Y are complexes of S-modules. Then

HomD(R)(X,Y ) = HomD(S)(S
L⊗RX,Y ) because π is left adjoint to G

= HomD(S)(X,Y ) by Lemma 10.6, SL⊗RX = X.

Since the homomorphisms are the same in D(S) = D as in D(R) = B, the inclusion G

is fully faithful.

This means that the fully faithful inclusion G : D −→ B has a left adjoint, and hence,

by Proposition 9.1.18 in [20], a Bousfield colocalization exists for the pair D ⊂ B. Put

A = D⊥, in the notation of Chapter 9 loc. cit. By Corollary 9.1.14 loc. cit. a Bousfield

localization functor exists for the pair A ⊂ B, with D = ⊥A, in other words G : D −→ B

is the right adjoint of the quotient map. The quotient map must be the left adjoint of

G, that is π : D(R) −→ D(S), as above.
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It remains to apply Theorem 10.7 to the special case of Corollary 10.4, that is where

S = σ−1R.

Theorem 10.8. Let R be a ring, σ a set of morphisms of f.g. projective R-modules. Set

A = D(R,σ) , B = D(R) , C = D(R)/D(R,σ) , D = D(σ−1R)

with A ⊂ B the subcategory generated by σ. Let π : B −→ C = B/A be the projection,

G : C −→ B its right adjoint. The following conditions are equivalent :

(i) Hn(GπR) = 0 for all n 6= 0,

(ii) TorRi (σ−1R,σ−1R) = 0 for i ≥ 1,

(iii) the natural functor T : C −→ D, of Proposition 5.1, is an equivalence of categories,

(iv) the natural functor T : Cc −→ Dc = Dc(σ−1R) is an equivalence of categories.

Proof. The equivalence of (i) and (ii) is given by Proposition 10.3.

The implication (iv) =⇒ (i) is Lemma 10.1.

The implication (iii) =⇒ (iv) is obvious.

It remains to prove (ii) =⇒ (iii). The composite Tπ is the functorX 7→ {σ−1R}L⊗RX,

and by (ii) and Theorem 10.7 we know that it is a projection B −→ B/⊥D. Suppose we

could show that ⊥D = A. Then both Tπ and π would be identified as the projection

B −→ B/A = B/⊥D, and by the universal property of the Verdier quotient, T would be

an equivalence. We are reduced to showing ⊥D = A.

The category ⊥D is very explicit: it is the kernel of the functor Tπ. That is, ⊥D is

the collection of all X ∈ B with {σ−1R}L⊗RX = 0. By Lemma 3.20, A ⊂ ⊥D. We must

prove the reverse inclusion. Suppose therefore that {σ−1R}L⊗RX = 0; we need to show

that X ∈ A.

We may form a triangle

a −−−→ X
η

X−−−→ GπX −−−→ Σa.

By 2.6.5 we have that a ∈ A, and hence {σ−1R}L⊗Ra = 0. We are assuming {σ−1R}L⊗RX =

0; the triangle tells us that {σ−1R}L⊗RGπX = 0. We want to prove that X ∈ A, in

other words we want to prove that GπX = 0. It clearly suffices to prove that GπX is

isomorphic to {σ−1R}L⊗RGπX. We shall prove, more precisely, that the natural map

RL⊗RGπX
fL⊗

R
1

Gπ−−−−−−→ {σ−1R}L⊗RGπX

is an isomorphism, where f : R −→ σ−1R is the natural map ηR : R −→ H0(GπR) =

GπR.

The map fL⊗R1Gπ is a natural transformation between triangulated functors respect-

ing coproducts, and fL⊗R1Gπ commutes with the suspension. Form the full subcategory

I given by

Ob(I) = {x ∈ Ob(D) | fL⊗R1Gπx is an isomorphism} .

We wish to show that I is all of B = D(R). By Lemma 10.5, we know that I is a

triangulated subcategory of B, closed under coproducts. By Lemma 3.5, it suffices to
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show that R ∈ I. But fL⊗R1GπR is the map fL⊗R1 : σ−1R −→ {σ−1R}L⊗R{σ
−1R}.

Now (ii) tells us that the multiplication map µ : {σ−1R}L⊗R{σ
−1R} −→ σ−1R is a

homology isomorphism, hence an isomorphism in the derived category. It is clear that

the composite

σ−1R
fL⊗

R
1

−−−−→ {σ−1R}L⊗R{σ
−1R}

µ
−−−→ σ−1R

is the identity, forcing fL⊗R1 to be the two-sided inverse of the invertible map µ.

As in the Introduction :

Definition 10.9. A noncommutative localization σ−1R is stably flat over R if it satisfies

the equivalent conditions of Theorem 10.8.

2

Theorem 10.10. Suppose we are given a chain complex D ∈ Dc(σ−1R), that is a

bounded chain complex of f.g. projective σ−1R modules. Suppose every module in the

chain complex is induced; that is, they are all of the form σ−1P , with P a finitely gen-

erated projective R-module. If σ−1R is stably flat over R then there exists a complex

C ∈ Dc(R) and a homotopy equivalence D ∼= σ−1C.

Proof. We are assuming that σ−1R is stably flat over R. By Theorem 10.8 this means

that the functor T : Cc −→ Dc is an equivalence. By 3.9.4, the map Bc/Ac −→ Cc = Dc

is fully faithful, and Cc = Dc is the smallest thick subcategory containing Bc/Ac. Now

note that the objects of the Verdier quotient Bc/Ac are the same as the objects of Bc,

and the projection map π : Bc −→ Bc/Ac induces a surjective map in K0. Combining

this with Proposition 4.5.11 of [20], an object D ∈ Dc = Dc(σ−1R) is in the image of

the functor Tπ : Bc −→ Dc if and only if the class of [D] in K0(D
c) lies in the image

of the map K0(Tπ) : K0(B
c) −→ K0(D

c). The functor Tπ is by definition the functor

taking a complex C ∈ Bc = Dc(R) to σ−1C ∈ Dc = Dc(σ−1R). We chose our complex

D to be a complex of induced modules. The class of [D] most certainly lies in the image

of K0(Tπ) : K0(B
c) −→ K0(D

c). We conclude that there exists a C with D isomorphic

in Dc(σ−1R) to σ−1C.

Theorem 10.11. If σ−1R is stably flat over R then the functor T : Cc −→ Dc =

Dc(σ−1R) induces isomorphisms

T : K∗(C
c) = K∗(D

c(R)/Dc(R,σ)) −→ K∗(D
c) = K∗(σ

−1R)

and there is a localization exact sequence in algebraic K-theory

. . . −→ Kn(R) −→ Kn(σ
−1R) −→ Kn(R,σ) −→ Kn−1(R) −→ . . .

Proof. Combine Theorems 7.4 and 10.8.

In Theorem 10.10 we saw that, if σ−1R is stably flat over R and D ∈ Dc(σ−1R) is a

complex of induced modules, then there exists a complex C ∈ Dc(R) and a homotopy

equivalence σ−1C ∼= D. Now we want a more precise version of this.
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Proposition 10.12. If C ∈ Dc(R) is a bounded complex of f.g. projective R-modules,

and if σ−1C is homotopy equivalent to a complex D ∈ Dc(σ−1R) vanishing outside an

interval [0, n] with n ≥ 1, then there exists a B ∈ Dc(R), vanishing outside [0, n], with

σ−1B homotopy equivalent to D ∼= σ−1C.

Proof. We need to show that C can be shortened. Suppose therefore that C is the

complex

· · · −−−→ 0 −−−→ C−1 −−−→ C0 −−−→ · · · −−−→ Cn −−−→ 0 −−−→ · · ·

and assume that there is a homotopy equivalence of σ−1C with a shorter complex, that

is a commutative diagram

−−−→ 0 −−−→ σ−1C−1 ∂
−−−→ σ−1C0 −−−→ · · · −−−→ σ−1Cn −−−→ 0 −−−→

y
y

y
y

y

−−−→ 0 −−−→ 0 −−−→ D0 −−−→ · · · −−−→ Dn −−−→ 0 −−−→
y

y
y

y
y

−−−→ 0 −−−→ σ−1C−1 ∂
−−−→ σ−1C0 −−−→ · · · −−−→ σ−1Cn −−−→ 0 −−−→

so that the composite is homotopic to the identity. In particular, there is a map d :

σ−1C0 −→ σ−1C−1 so that d∂ : σ−1C−1 −→ σ−1C−1 is the identity.

By Proposition 5.2, the map d : σ−1C0 −→ σ−1C−1 lifts uniquely to a map d′ :

πC0 −→ πC−1. By Proposition 4.11, the map d′ can be represented as α−1β, where α

and β are, respectively, the chain maps

−−−→ 0 −−−→ 0 −−−→ C−1 −−−→ 0 −−−→
y

y
y

y

−−−→ 0 −−−→ X
r

−−−→ Y −−−→ 0 −−−→

and

−−−→ 0 −−−→ 0 −−−→ C0 −−−→ 0 −−−→
y

y g

y
y

−−−→ 0 −−−→ X
r

−−−→ Y −−−→ 0 −−−→

The fact that σ−1α is an equivalence tells us that the map σ−1r : σ−1X −→ σ−1Y

is injective, with cokernel σ−1C−1. The fact that α−1β agrees with d′ means that the

composite

σ−1C0 σ−1g
−−−→ σ−1Y −−−→ Coker(σ−1r)

is just the map d : σ−1C0 −→ σ−1C−1. Let B be the chain complex

−−−→ 0 −−−→ C0 ⊕X


∂ 0

g r




−−−−−−→ C1 ⊕ Y −−−→ · · · −−−→ Cn −−−→ 0 −−−→
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There is a natural map f : B −→ C, and σ−1f is a homology isomorphism of bounded

complexes of projectives, hence a homotopy equivalence. Thus σ−1B is homotopy equiv-

alent to σ−1C ∼= D.

This permits us to shorten on the left. Shortening the complex on the right is dual.

11. Torsion modules

Until now all our theorems were general, in the sense that we did not impose any

restrictions on the ring R or on the set of maps σ.

Hypothesis 11.1. In this section, we assume that all the morphisms in σ are injections.

2

The main theorem of this section is that, under the above restriction, the higher Wald-

hausen K–theory of the triangulated category Ac = Dc(R,σ) agrees with the higher

Quillen K–theory of the exact category E = H(R,σ) of σ-torsion R-modules with pro-

jective dimension ≤ 1.

Proposition 11.2. If R −→ σ−1R is an injection then every s : P → Q in σ is an

injection, i.e. Hypothesis 11.1 is satisfied.

Proof. Since R −→ σ−1R is a monomorphism and P is projective and therefore flat, we

deduce that

R⊗R P −−−→ {σ−1R} ⊗R P

is a monomorphism. In other words, the map P −→ σ−1P is mono. Consider the

commutative diagram

P
s //

��

Q

��

σ−1P
σ−1s // σ−1Q

By the above, P −→ σ−1P is an injection. Now σ−1s : σ−1P −→ σ−1Q is an iso-

morphism. From the commutativity of the square we deduce that s : P → Q is an

injection.

Example 11.3. The converse of Proposition 11.2 does not hold in general. The set

σ = {0 −→ R} satisfies Hypothesis 11.1, but R −→ σ−1R = 0 is not injective.

2

Definition 11.4. An (R,σ)-module T is an R-module which admits a f.g. projective

R-module resolution of length 1

0 // P
s // Q // T // 0
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with σ−1s : σ−1P −→ σ−1Q a σ−1R-module isomorphism. Let E = H(R,σ) be the full

subcategory of the category of R-modules with objects the (R,σ)-modules.

2

Remark 11.5. An R-module T is an (R,σ)-module if and only if :

(i) TorRi (σ−1R,T ) = 0 for all i ∈ Z. In particular, σ−1T = TorR0 (σ−1R,T ) = 0 .

(ii) T has projective dimension ≤ 1.

(iii) T is finitely presented.

2

Lemma 11.6. The category E of (R,σ)-modules, as in Definition 11.4, is closed under

extensions and kernels. Furthermore, it is idempotent complete; concretely, any direct

summand of an object in E lies in E.

Proof. Suppose we are given a short exact sequence of R-modules

0 −−−→ T ′ −−−→ T −−−→ T ′′ −−−→ 0 .

The long exact sequence for Tor tells us that if two of the terms lie in E, then for all

i ∈ Z

TorRi (σ−1R,T ′) = TorRi (σ−1R,T ) = TorRi (σ−1R,T ′′) = 0 .

It is clear that if T ′′ and T are finitely presented R-modules of projective dimension

≤ 1 then so is T ′, and that if T ′′ and T ′ are finitely presented R-modules of projective

dimension ≤ 1 then so is T . Hence E is closed under kernels and extensions.

Suppose now that T is an object of E, and that as R-modules, T = A⊕B. Since

0 = TorRi (σ−1R,T ) = TorRi (σ−1R,A)⊕ TorRi (σ−1R,B) ,

we deduce that, for all i ∈ Z, TorRi (σ−1R,A) = TorRi (σ−1R,B) = 0. The projective

dimensions of A and B are bounded above by the projective dimension of T , which is

≤ 1. Furthermore, we have an exact sequence

T
e

−−−→ T −−−→ A −−−→ 0

where e is an idempotent map on T . This expresses A as a quotient of two finitely

presented modules. Hence A is finitely presented. Thus A lies in E.

Definition 11.7. The bounded derived category of the exact category E, denotedDb(E),

is defined as follows. The objects are bounded chain complexes of objects of E. The

morphisms are obtained from the chain maps by formally inverting that maps whose

mapping cones are acyclic (as complexes of R-modules). There is an obvious functor

i : Db(E) −→ D(R).

2
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Lemma 11.8. The functor i : Db(E) −→ D(R) is fully faithful.

Proof. Let us begin by showing that, for any objects T, T ′ ∈ E and any n ∈ Z,

{Db(E)}(T,ΣnT ′) = {D(R)}(T,ΣnT ′) .

Take a map in Db(E) of the form T −→ ΣnT ′. There exists a bounded complex in E which

we call X, a quasi–isomorphism g : X −→ T , and a map of complexes f : X −→ ΣnT ′

so that our map is fg−1. That is, we have a complex

· · · −−−→ X−2 −−−→ X−1 −−−→ X0 ∂0−−−→ X1 −−−→ · · ·

There is a quasi–isomorphism X −→ T ; in particular H0(X) = T . We have an exact

sequence

−−−→ X−1 −−−→ ker(∂0) −−−→ T −−−→ 0 .

But T ∈ E means that T is of projective dimension ≤ 1. There is an exact sequence

0 −−−→ P
s

−−−→ Q −−−→ T −−−→ 0

with P and Q f.g. projective. Since P and Q are projective R-modules, there exists a

map

P −−−→ Q −−−→ T −−−→ 0
y

y 1

y

X−1 −−−→ ker(∂0) −−−→ T −−−→ 0

Let Z be given by the pushout square

P −−−→ Q
y

y

X−1 −−−→ Z.

The short exact sequence

0 −−−→ X−1 −−−→ Z −−−→ T −−−→ 0

establishes that Z ∈ E and that the complex X−1 −→ Z is quasi-isomorphic to T . We

deduce a quasi–isomorphism h : X ′ −→ X of complexes, given below:

· · · −−−→ 0 −−−→ X−1 −−−→ Z −−−→ 0 −−−→ · · ·
y

y
y

y
y

· · · −−−→ X−2 −−−→ X−1 −−−→ X0 −−−→ X1 −−−→ · · ·

It follows that the map fg−1 : T −→ ΣnT ′ is equal to the map {fh}{gh}−1. Since X ′

is concentrated in degrees 0 and 1, it follows that fh vanishes unless n = 0 or 1. Unless

n = 0 or 1, we have proved that {Db(E)}(T,ΣnT ′) vanishes. As for

{D(R)}(T,ΣnT ′) = ExtnR(T, T ′) ,
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it must vanish since the projective dimension of T is ≤ 1. In other words, for n 6= 0, 1

the equality

{Db(E)}(T,ΣnT ′) = {D(R)}(T,ΣnT ′)

is just because both sides vanish.

We leave to the reader to check that the two sides are equal also when n = 0 or 1. For

n = 0 both sides identify as E(T, T ′), while for n = 1 both sides identify as Ext1R(T, T ′).

Let T be an object of E. Consider next the full subcategory T ⊂ Db(E) defined by

Ob(T) =



 Y ∈ Ob(Db(E))

∣∣∣∣∣∣

∀n ∈ Z,

{Db(E)}(T,ΣnY ) −→ {D(R)}(T,ΣnY )

is an isomorphism



 .

By the above, T contains E, and clearly it is triangulated. Hence T contains all of Db(E).

Next, take any Y in Db(E), and consider the full subcategory R ⊂ Db(E) given by

Ob(R) =



 X ∈ Ob(Db(E))

∣∣∣∣∣∣

∀n ∈ Z,

{Db(E)}(X,ΣnY ) −→ {D(R)}(X,ΣnY )

is an isomorphism



 .

By the above, E ⊂ R, and R is clearly triangulated. Hence R contains Db(E).

Lemma 11.9. Assume that maps in σ are all injections. The natural map Db(E) −→

D(R) factors through Ac = Dc(R,σ) ⊂ D(R), and the induced map Db(E) −→ Ac is an

equivalence of categories.

Proof. Every object of E is quasi–isomorphic to a complex 0 −→ P −→ Q −→ 0 of f.g.

projectives; that is, E ⊂ Bc. Furthermore, every object e ∈ E satisfies {σ−1R}L⊗Re = 0,

and by Proposition 5.3 this means e ∈ A. Therefore e ∈ A ∩Bc = Ac.

By Lemma 11.8, Db(E) is a full, triangulated subcategory of B = D(R). Clearly, it is

the smallest full, triangulated subcategory containing E. Since Ac contains E, it follows

that Db(E) ⊂ Ac.

We also know that the maps in σ are injections. If s : P −→ Q lies in σ, then its

cokernel lies in E, and hence Db(E) ⊂ Ac contains all s ∈ σ. By 3.9.3, Ac is the smallest

thick subcategory of B containing σ. If we could prove that Db(E) is thick, it would

follow that Ac ⊂ Db(E); we are reduced to proving that Db(E) is thick. But Lemma 11.6

tells us that E is idempotent complete, and Theorem 2.8 of Balmer and Schlichting’s [1]

allows us to deduce that Db(E) is idempotent complete, hence thick.

Theorem 11.10. Suppose every morphism in σ is injective. Then the algebraic K–

theory of the Waldhausen category Ac = Dc(R,σ) is isomorphic to the algebraic K–theory

of the exact category E = H(R,σ)

K∗(R,σ) = K∗−1(D
c(R,σ)) = K∗−1(H(R,σ)) .
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Proof. By Lemma 11.9, the natural map Db(E) −→ D(R) induces a triangulated equiv-

alence of Db(E) with Ac. Hence the induced map in K–theory is an isomorphism. But

Waldhausen’s Ki(D
b(E)) agree with Quillen’s Ki(E).

12. Algebraic L-theory

We now extend our results to the algebraic L-theory of rings with involution. We refer

to Ranicki [24], [25] more detailed expositions of algebraic L-theory.

An involution on a ring R is an anti-automorphism

R −→ R ; r 7→ r .

The involution is used to regard a left R-module M as a right R-module by

M ×R −→M ; (x, r) 7→ rx .

The dual of a (left) R-module M is the R-module

M∗ = HomR(M,R) , R×M∗ −→M∗ ; (r, f) 7→ (x 7→ f(x)r) .

The dual of an R-module morphism s : P −→ Q is the R-module morphism

s∗ : Q∗ −→ P ∗ ; f 7→ (x 7→ f(s(x))) .

If M is f.g. projective then so is M∗, and

M −→M∗∗ ; x 7→ (f 7→ f(x))

is an isomorphism which is used to identify M∗∗ = M .

Hypothesis 12.1. In this section, we assume that

(i) R is a ring with involution,

(ii) the duals of morphisms s : P −→ Q in σ are morphisms s∗ : Q∗ −→ P ∗ in σ,

(iii) ǫ ∈ R is a central unit such that ǫ = ǫ−1 (e.g. ǫ = ±1).

The noncommutative localization σ−1R is then also a ring with involution, with ǫ ∈ σ−1R

a central unit such that ǫ = ǫ−1. 2

We review briefly the chain complex construction of the f.g. projective ǫ-quadratic

L-groups L∗(R, ǫ) and the ǫ-symmetric L-groups L∗(R, ǫ). Given an R-module chain

complex C let the generator T ∈ Z2 act on the Z-module chain complex C ⊗R C by the

ǫ-transposition duality

Tǫ : Cp ⊗R Cq −→ Cq ⊗R Cp : x⊗ y 7→ (−1)pqǫy ⊗ x .

Let W be the standard free Z[Z2]-module resolution of Z

W : . . . −→ Z[Z2]
1−T
−−→ Z[Z2]

1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2] .
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The ǫ-symmetric (resp. ǫ-quadratic) Q-groups of C are the Z2-hypercohomology (resp.

Z2-hyperhomology) groups of C ⊗R C

Qn(C, ǫ) = Hn(Z2;C ⊗R C) = Hn(HomZ[Z2](W,C ⊗R C)) ,

Qn(C, ǫ) = Hn(Z2;C ⊗R C) = Hn(W ⊗Z[Z2] (C ⊗R C)) .

The Q-groups are chain homotopy invariants of C. There are defined forgetful maps

1 + Tǫ : Qn(C, ǫ) −→ Qn(C, ǫ) ; ψ 7→ (1 + Tǫ)ψ ,

Qn(C, ǫ) −→ Hn(C ⊗R C) ; φ 7→ φ0 .

For f.g. projective C the function

C ⊗R C −→ HomR(C∗, C) ; x⊗ y 7→ (f 7→ f(x)y)

is an isomorphism of Z[Z2]-module chain complexes, with T ∈ Z2 acting on HomR(C∗, C)

by θ 7→ ǫθ∗. The element φ0 ∈ Hn(C ⊗R C) = Hn(HomR(C∗, C)) is a chain homotopy

class of R-module chain maps φ0 : Cn−∗ −→ C.

An n-dimensional ǫ-symmetric complex over R (C,φ) is a bounded f.g. projective

R-module chain complex C together with an element φ ∈ Qn(C, ǫ). The complex (C,φ)

is Poincaré if the R-module chain map φ0 : Cn−∗ −→ C is a chain equivalence.

Example 12.2. A 0-dimensional ǫ-symmetric Poincaré complex (C,φ) over R is essen-

tially the same as a nonsingular ǫ-symmetric form (M,λ) over (R,σ), with M = (C0)
∗ a

f.g. projective R-module and

λ = φ0 : M ×M −→ R

a sesquilinear pairing such that the adjoint

M −→M∗ ; x 7→ (y 7→ λ(x, y))

is an R-module isomorphism.

2

See pp. 210–211 of [25] for the notion of an ǫ-symmetric (Poincaré) pair. The boundary

of an n-dimensional ǫ-symmetric complex (C,φ) is the (n − 1)-dimensional ǫ-symmetric

Poincaré complex

∂(C,φ) = (∂C, ∂φ)

with ∂C = C(φ0 : Cn−∗ −→ C)∗+1 and ∂φ as defined on p. 218 of [25]. The n-

dimensional ǫ-symmetric L-group Ln(R, ǫ) is the cobordism group of n-dimensional

ǫ-symmetric Poincaré complexes (C,φ) over R with C n-dimensional. In particular,

L0(R, ǫ) is the Witt group of nonsingular ǫ-symmetric forms over R.

An n-dimensional ǫ-symmetric complex (C,φ) over R is σ−1R-Poincaré if the σ−1R-

module chain map σ−1φ0 : σ−1Cn−∗ −→ σ−1C is a chain equivalence, in which case

σ−1(C,φ) is an n-dimensional ǫ-symmetric Poincaré complex over σ−1R.
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The n-dimensional ǫ-symmetric Γ-group Γn(R −→ σ−1R, ǫ) is the cobordism group

of n-dimensional ǫ-symmetric σ−1R-Poincaré complexes (C,φ) over R such that σ−1C

is chain equivalent to an n-dimensional induced f.g. projective σ−1R-module chain com-

plex. The n-dimensional ǫ-symmetric L-group Ln(R,σ, ǫ) is the cobordism group of

(n− 1)-dimensional ǫ-symmetric Poincaré complexes over R (C,φ) such that C is σ−1R-

contractible, i.e. σ−1C ≃ 0.

Similarly in the ǫ-quadratic case, with groups Ln(R, ǫ), Γn(R −→ σ−1R, ǫ), Ln(R,σ, ǫ).

The ǫ-quadratic L- and Γ-groups are 4-periodic

Ln(R, ǫ) = Ln+2(R,−ǫ) = Ln+4(R, ǫ) ,

Γn(R −→ σ−1R, ǫ) = Γn+2(R −→ σ−1R,−ǫ) = Γn+4(R −→ σ−1R, ǫ) ,

Ln(R,σ, ǫ) = Ln+2(R,σ,−ǫ) = Ln+4(R,σ, ǫ) .

Proposition 12.3. For any ring with involution R and noncommutative localization

σ−1R there is defined a localization exact sequence of ǫ-symmetric L-groups

. . . // Ln(R, ǫ) // Γn(R −→ σ−1R, ǫ)
∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . .

Similarly in the ǫ-quadratic case, with an exact sequence

. . . // Ln(R, ǫ) // Γn(R −→ σ−1R, ǫ)
∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . .

Proof. The relative group of Ln(R, ǫ) −→ Γn(R −→ σ−1R, ǫ) is the cobordism group

of n-dimensional ǫ-symmetric σ−1R-Poincaré pairs over R (f : C −→ D, (δφ, φ)) with

(C,φ) Poincaré. The effect of algebraic surgery on (C,φ) using this pair is a cobordant

(n − 1)-dimensional ǫ-symmetric Poincaré complex (C ′, φ′) with C ′ σ−1R-contractible.

The function (f : C −→ D, (δφ, φ)) 7→ (C ′, φ′) defines an isomorphism between the

relative group and Ln(R,σ, ǫ).

Define

I = im(K0(R) −→ K0(σ
−1R)) ,

the subgroup of K0(σ
−1R) consisting of the projective classes of the f.g. projective

σ−1R-modules induced from f.g. projective R-modules. By definition, LnI (σ
−1R, ǫ) is

the cobordism group of n-dimensional ǫ-symmetric Poincaré complexes over σ−1R (B, θ)

such that [B] ∈ I. There are evident morphisms of Γ- and L-groups

σ−1Γ∗ : Γn(R −→ σ−1R, ǫ) −→ LnI (σ
−1R, ǫ) ; (C,φ) 7→ σ−1(C,φ) ,

σ−1Γ∗ : Γn(R −→ σ−1R, ǫ) −→ LIn(σ
−1R, ǫ) ; (C,ψ) 7→ σ−1(C,ψ) .

In general, the morphisms σ−1Γ∗, σ−1Γ∗ need not be isomorphisms, since a bounded f.g.

projective σ−1R-module chain complex D with [D] ∈ I need not be chain equivalent to

σ−1C for a bounded f.g. projective R-module chain complex C (cf. the chain complex

lifting problem considered in sections 6 and 10).
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It was proved in Chapter 3 of Ranicki [24] that if R −→ σ−1R is an injective Ore local-

ization then the morphisms σ−1Q∗, σ−1Q∗, σ
−1Γ∗, σ−1Γ∗ are isomorphisms, so that there

are defined localization exact sequences for both the ǫ-symmetric and the ǫ-quadratic L-

groups

. . . // Ln(R, ǫ) // LnI (σ
−1R, ǫ)

∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . ,

. . . // Ln(R, ǫ) // LIn(σ
−1R, ǫ)

∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . .

Special cases of these sequences were obtained by Milnor-Husemoller, Karoubi, Pardon,

Smith, Carlsson-Milgram.

For any bounded f.g. projective R-module chain complex C the natural R-module

chain map

lim−→
(B,β)

B = Gπ(C) −→ σ−1C

induces morphisms

σ−1Q∗ : lim−→
(B,β)

Qn(B, ǫ) = Qn(Gπ(C), ǫ) −→ Qn(σ−1C, ǫ) ,

σ−1Q∗ : lim−→
(B,β)

Qn(B, ǫ) = Qn(Gπ(C), ǫ) −→ Qn(σ
−1C, ǫ)

with the direct limits taken over all the bounded f.g. projective R-module chain com-

plexes B with a chain map β : C −→ B such that σ−1β : σ−1C −→ σ−1B is a σ−1R-

module chain equivalence. The natural projection D ⊗R D −→ D ⊗σ−1R D is an iso-

morphism for any bounded f.g. projective σ−1R-module chain complex D (since this is

already the case for D = σ−1R), so the Q-groups of σ−1C are the same whether σ−1C

is regarded as an R-module or σ−1R-module chain complex.

Theorem 12.4. (Vogel [32], Theorem 8.4) For any ring with involution R and noncom-

mutative localization σ−1R the morphisms

σ−1Γ∗ : Γn(R −→ σ−1R, ǫ) −→ LIn(σ
−1R, ǫ) ; (C,ψ) 7→ σ−1(C,ψ)

are isomorphisms, and there is a localization exact sequence of ǫ-quadratic L-groups

. . . // Ln(R, ǫ) // LIn(σ
−1R, ǫ)

∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . .

Proof. By algebraic surgery below the middle dimension it suffices to consider only the

special cases n = 0, 1. In effect, it was proved in [32] that σ−1Q∗ is an isomorphism for

0- and 1-dimensional C.

It was claimed in Proposition 25.4 of Ranicki [25] that σ−1Γ∗ is also an isomorphism,

assuming (incorrectly) that the chain complex lifting problem can always be solved.

However, we do have :
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Theorem 12.5. If σ−1R is a noncommutative localization of a ring with involution R

which is stably flat over R, there is a localization exact sequence of ǫ-symmetric L-groups

. . . // Ln(R, ǫ) // LnI (σ
−1R, ǫ)

∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . . .

Proof. By Theorem 10.8 for any bounded f.g. projective R-module chain complex C the

natural R-module chain map Gπ(C) −→ σ−1C induces isomorphisms in homology

H∗(Gπ(C)) ∼= H∗(σ
−1C) .

Thus the natural Z[Z2]-module chain map

Gπ(C)⊗R Gπ(C) −→ σ−1C ⊗R σ
−1C = σ−1C ⊗σ−1R σ

−1C

induces isomorphisms of ǫ-symmetric Q-groups

σ−1Q∗ : lim−→
(B,β)

Qn(B, ǫ) −→ Qn(σ−1C, ǫ)

(and also isomorphisms σ−1Q∗ of ǫ-quadratic Q-groups). By Proposition 10.12 every

n-dimensional induced f.g. projective σ−1R-module chain complex D is chain equivalent

to σ−1C for an n-dimensional f.g. projective R-module chain complex C, with

Qn(D, ǫ) = Qn(σ−1C, ǫ) = lim−→
(B,β)

Qn(B, ǫ) .

It follows that the morphisms of ǫ-symmetric Γ- and L-groups

σ−1Γ∗ : Γn(R −→ σ−1R, ǫ) −→ LnI (σ
−1R, ǫ) ; (C,φ) 7→ σ−1(C,φ)

are also isomorphisms, and the localization exact sequence is given by Proposition 12.3.

Hypothesis 12.6. For the remainder of this section, we assume Hypothesis 12.1 and

also that R −→ σ−1R is an injection. 2

As in Proposition 11.2 it follows that all the morphisms in σ are injections.

We shall now obtain the L-theoretic analogue of the algebraic K-theory identification

K∗(R,σ) = K∗−1(H(R,σ)) obtained in section 11, with H(R,σ) the exact category of

(R,σ)-modules. We generalize the results of Ranicki [24] and Vogel [31] to prove that

under Hypotheses 12.1,12.6 the relative L-groups L∗(R,σ, ǫ), L∗(R,σ, ǫ) in the L-theory

localization exact sequences are the L-groups of H(R,σ) with respect to the following

duality involution.

Define the torsion dual of an (R,σ)-module M to be the (R,σ)-module

M̂ = Ext1R(M,R) ,

using the involution on R to define the left R-module structure. If M has f.g. projective

R-module resolution

0 −→ P1
s
−→P0 −→M −→ 0
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with s ∈ σ the torsion dual M̂ has the dual f.g. projective R-module resolution

0 −→ P ∗
0

s∗
−→ P ∗

1 −→M̂−→ 0

with s∗ ∈ σ.

Proposition 12.7. Let M = coker(s : P1 −→ P0), N = coker(t : Q1 −→ Q0) be (R,σ)-

modules.

(i) The adjoint of the pairing

M ×M̂−→ σ−1R/R ; (g ∈ P0, f ∈ P
∗
1 ) 7→ fs−1g

defines a natural R-module isomorphism

M̂−→ HomR(M,σ−1R/R) ; f 7→ (g 7→ fs−1g) .

(ii) The natural R-module morphism

M −→M̂̂ ; x 7→ (f 7→ f(x))

is an isomorphism.

(iii) There are natural identifications

M ⊗R N = TorR0 (M,N) = Ext1R(M ,̂N) = H0(P ⊗R Q) ,

HomR(M ,̂N) = TorR1 (M,N) = Ext0R(M ,̂N) = H1(P ⊗R Q) .

The functions
M ⊗R N −→ N ⊗RM ; x⊗ y 7→ y ⊗ x ,

HomR(M ,̂N) −→ HomR(N ,̂M) ; f 7→ f̂
determine transposition isomorphisms

T : TorRi (M,N) −→ TorRi (N,M) (i = 0, 1) .

(iv) For any finite subset V = {v1, v2, . . . , vk} ⊂M ⊗R N there exists an exact sequence

of (R,σ)-modules

0 −→ N −→ L −→ ⊕kM̂−→ 0

such that V ⊂ ker(M ⊗R N −→M ⊗R L).

Proof. (i) Apply the snake lemma to the morphism of short exact sequences

0 // HomR(P0, R) //

s∗

��

HomR(P0, σ
−1R) //

s∗1
��

HomR(P0, σ
−1R/R) //

s∗2
��

0

0 // HomR(P1, R) // HomR(P1, σ
−1R) // HomR(P1, σ

−1R/R) // 0

with s∗ injective, s∗1 an isomorphism and s∗2 surjective, to verify that the R-module

morphism

M̂ = coker(s∗) −→ HomR(M,σ−1R/R) = ker(s∗2)
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is an isomorphism.

(ii) Immediate from the identification

s∗∗ = s : (P0)
∗∗ = P0 −→ (P1)

∗∗ = P1 .

(iii) Exercise for the reader.

(iv) Lift each vi ∈M ⊗R N to an element

vi ∈ P0 ⊗R Q0 = HomR(P ∗
0 , Q0) (1 ≤ i ≤ k) .

The R-module morphism defined by

u =




s∗ 0 0 . . . 0

0 s∗ 0 . . . 0

0 0 s∗ . . . 0
...

...
...

. . .
...

v1 v2 v3 . . . t




: U1 = (⊕kP
∗
0 )⊕Q1 −→ U0 = (⊕kP

∗
1 )⊕Q0

is in σ, so that L = coker(u) is an (R,σ)-module with a f.g. projective R-module

resolution

0 −→ U1
u
−→ U0 −→ L −→ 0 .

The short exact sequence of 1-dimensional f.g. projective R-module chain complexes

0 −→ Q −→ U −→ ⊕kP
1−∗ −→ 0

is a resolution of a short exact sequence of (R,σ)-modules

0 −→ N −→ L −→ ⊕kM̂−→ 0 .

The first morphism in the exact sequence

TorR1 (M,⊕kM )̂ −→M ⊗R N −→M ⊗R L −→M ⊗R (⊕kM )̂ −→ 0

sends 1i ∈ TorR1 (M,⊕kM )̂ = ⊕kHomR(M ,̂M )̂ to vi ∈ ker(M ⊗RN −→M ⊗R L).

Given an (R,σ)-module chain complex C define the ǫ-symmetric (resp. ǫ-quadratic)

torsion Q-groups of C to be the Z2-hypercohomology (resp. Z2-hyperhomology) groups

of the ǫ-transposition involution Tǫ = ǫT on the Z-module chain complex TorR1 (C,C) =

HomR(C ,̂C)

Qntor(C, ǫ) = Hn(Z2; TorR1 (C,C)) = Hn(HomZ[Z2](W,TorR1 (C,C))) ,

Qtor
n (C, ǫ) = Hn(Z2; TorR1 (C,C)) = Hn(W ⊗Z[Z2] (TorR1 (C,C))) .

There are defined forgetful maps

1 + Tǫ : Qtor
n (C, ǫ) −→ Qntor(C, ǫ) ; ψ 7→ (1 + Tǫ)ψ ,

Qntor(C, ǫ) −→ Hn(TorR1 (C,C)) ; φ 7→ φ0 .

The element φ0 ∈ Hn(TorR1 (C,C)) is a chain homotopy class of R-module chain maps

φ0 : Cn−̂−→ C.
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An n-dimensional ǫ-symmetric complex over (R,σ) (C,φ) is a bounded (R,σ)-module

chain complex C together with an element φ ∈ Qntor(C, ǫ). The complex (C,φ) is Poincaré

if the R-module chain maps φ0 : Cn−̂ −→ C are chain equivalences.

Example 12.8. A 0-dimensional ǫ-symmetric Poincaré complex (C,φ) over (R,σ) is

essentially the same as a nonsingular ǫ-symmetric linking form (M,λ) over (R,σ), with

M = (C0)̂ an (R,σ)-module and

λ = φ0 : M ×M −→ σ−1R/R

a sesquilinear pairing such that the adjoint

M −→M̂ ; x 7→ (y 7→ λ(x, y))

is an R-module isomorphism.

2

The n-dimensional torsion ǫ-symmetric L-group Lntor(R,σ, ǫ) is the cobordism group of

n-dimensional ǫ-symmetric Poincaré complexes (C,φ) over (R,σ), with C n-dimensional.

In particular, L0
tor(R,σ, ǫ) is the Witt group of nonsingular ǫ-symmetric linking forms

over (R,σ).

Similarly in the ǫ-quadratic case, with torsion L-groups Ltor
n (R,σ, ǫ). The ǫ-quadratic

torsion L-groups are 4-periodic

Ltor
n (R,σ, ǫ) = Ltor

n+2(R,σ,−ǫ) = Ltor
n+4(R,σ, ǫ) .

Theorem 12.9. If R −→ σ−1R is injective the relative L-groups in the localization exact

sequences of Proposition 12.3

. . . // Ln(R, ǫ) // Γn(R −→ σ−1R, ǫ)
∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . .

. . . // Ln(R, ǫ) // Γn(R −→ σ−1R, ǫ)
∂ // Ln(R,σ, ǫ) // Ln−1(R, ǫ) // . . .

are the torsion L-groups

L∗(R,σ, ǫ) = L∗
tor(R,σ, ǫ) ,

L∗(R,σ, ǫ) = Ltor
∗ (R,σ, ǫ) .

Proof. For any bounded (R,σ)-module chain complex T there exists a bounded f.g.

projective R-module chain complex C with a homology equivalence C −→ T . Working

as in [31] there is defined a distinguished triangle of Z[Z2]-module chain complexes

ΣTorR1 (T, T ) −→ C ⊗R C −→ T ⊗R T −→ Σ2TorR1 (T, T )

with Z2 acting by the ǫ-transposition Tǫ on the Z-module chain complex TorR1 (T, T ) and

by the (−ǫ)-transpositions T−ǫ on C ⊗R C and T ⊗R T , inducing long exact sequences

. . . // Qntor(T, ǫ) // Qn+1(C,−ǫ) // Qn+1(T,−ǫ) // Qn−1
tor (T, ǫ) // . . .

. . . // Qtor
n (T, ǫ) // Qn+1(C,−ǫ) // Qn+1(T,−ǫ) // Qtor

n−1(T, ǫ) // . . . .
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Passing to the direct limits over all the bounded (R,σ)-module chain complexes U with

a homology equivalence β : T −→ U use Proposition 12.7 (iv) to obtain

lim−→
(U,β)

Qn+1(U,−ǫ) = 0 ,

lim−→
(U,β)

Qn+1(U,−ǫ) = 0

and hence
lim−→
(U,β)

Qntor(U, ǫ) = Qn+1(C,−ǫ) ,

lim−→
(U,β)

Qtor
n (U, ǫ) = Qn+1(C,−ǫ) .

Remark 12.10. The identification L∗(R,σ, ǫ) = Ltor
∗ (R,σ, ǫ) for noncommutative σ−1R

was first obtained by Vogel [31].

2
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