A NONCONNECTIVE DELOOPING OF ALGEBRAIC K-THEORY

ERIK KJÆR PEDERSEN AND CHARLES A. WEIBEL

ABSTRACT. Given a ring R, it is known that the topological space $BGl(R)^+$ is an infinite loop space. One way to construct an infinite loop structure is to consider the category $\underline{\underline{F}}$ of free R-modules, or rather its classifying space $B\underline{\underline{F}}$, as food for suitable infinite loop space machines. These machines produce connective spectra whose zeroth space is $(B\underline{\underline{F}})^+ = \mathbb{Z} \times BGl(R)^+$. In this paper we consider categories $\underline{\underline{C}}_1(\underline{\underline{F}}) = \underline{\underline{F}}, \underline{\underline{C}}_1(\underline{\underline{F}}), \ldots$ of parameterized free modules and bounded homomorphisms and show that the spaces $(B\underline{\underline{C}}_0)^+ = (B\underline{\underline{F}})^+,$ $(B\underline{\underline{C}}_1)^+,\ldots$ are the connected components of a nonconnective Ω -spectrum $B\underline{\underline{C}}(F)$ with $K_iB\underline{\underline{C}}(F) = K_i(R)$ even for negative i.

0. INTRODUCTION

Given a ring R, let $\underline{\underline{F}}$ be the category of finitely generated R-modules and isomorphisms. Form the "group completion" category $\underline{\underline{F}}^{-1}\underline{\underline{F}}$ of $\underline{\underline{F}}$ (see [5]); it is known that its classifying space $B\underline{\underline{F}}^{-1}\underline{\underline{F}}$ is the algebraic K-theory space $BGl(R)^+ \times \mathbb{Z}$. The purpose of this paper is to produce a nonconnective delooping of $BGl(R)^+ \times K_0(R)$ by using a parameterized version $\underline{\underline{C}}_0(\underline{\underline{F}}) = \underline{\underline{F}}, \underline{\underline{C}}_1(\underline{\underline{F}}), \dots$ of $\underline{\underline{F}}$ given in [11]. Our main result is this:

Theorem A. Write B_i for the classifying space of the category $\underline{\underline{C}}^{-1}\underline{\underline{C}}$, except that $B_0 = BGl(R)^+$. Then the spaces B_i are connected, and for $i \ge 0$ we have

$$\Omega B_{i+1} = B_i \times K_{-i}(R).$$

Thus the sequence of spaces $\widehat{B}_i = B_i \times K_{-i}(R)$ forms a nonconnective Ω -spectrum $\underline{\widehat{B}}$ with homotopy groups

$$\pi_i(\underline{B}) = K_i(R), \quad i \text{ any integer.}$$

In particular, the negative homotopy groups of $\underline{\widehat{B}}$ are the negative K-groups of Bass [2].

The second author was partially supported by an NSF grant .

Actually, we work in the generality of a small additive category \mathcal{A} , rather than just the additive category \mathcal{F} of finitely generated free *R*-modules. For example, one could take \mathcal{P} , the category of finitely generated projective *R*-modules. The category \mathcal{P} is the idempotent completion of \mathcal{F} , and we recover the same spectrum $\underline{\hat{B}}$ if we replace \mathcal{F} by \mathcal{P} . Note that

 $B\underline{P}^{-1}\underline{\underline{P}}$ is $BGl(R)^+ \times K_0(R)$, where $\underline{\underline{P}}$ is the category of isomorphisms in \mathcal{P} .

Given \mathcal{A} , we consider the additive category $\mathcal{C}_i(\mathcal{A})$ of \mathbb{Z}^i -graded objects and bounded homomorphisms (see section 1 for details). If $\mathcal{A} = \mathcal{F}$ this definition specializes to the categories \mathcal{C}_i of [11]. Let $\widehat{\mathcal{C}}_i$ be the idempotent completion of $\mathcal{C}_i(\mathcal{A})$, and let $\underline{\underline{A}}, \underline{\underline{C}}_i, \underline{\underline{C}}$ be the sub-categories of isomorphisms in $\mathcal{A}, \mathcal{C}_i$ and $\widehat{\mathcal{C}}_i$, respectively. Our second result is this

Theorem B. Write \widehat{B}_i for the classifying space of the category $\underline{\widehat{C}}_i^{-1} \underline{\widehat{C}}_i$ and B_i for the classifying space of $\underline{\underline{C}}_i^{-1} \underline{\underline{C}}_i$. Then

$$\Omega \widehat{B}_{i+1} = \widehat{B}_i$$

$$\Omega^i \widehat{B}_i = \widehat{B}_0 = \text{ "group completion" } (B\underline{\underline{A}})^+ \text{ of } B\underline{\underline{A}}$$

The connected component of \widehat{B}_i is B_i (except for i = 0), and the sequence of spaces $\widehat{B}_0, \widehat{B}_1, \ldots$ is a nonconnective Ω -spectrum. In particular, \widehat{B}_i is an *i*-fold delooping of $(\underline{B}\underline{A})^+$.

The outline of this paper is as follows. In section 1 we give the definitions of the \mathbb{Z}^i -graded category $\mathcal{C}_i(\mathcal{A})$. In section 2, we recall the passage from categories to spectra, and review the main points of Thomason's paper [13] that we need. In section 3, we prove Theorems A and B.

The authors would like to thank Bob Thomason for his lucid exposition in [13], which clarified a number of technical points.

The second author would also like to thank the Danish Natural Science Research Council and Odense University for its hospitality during the writing stage.

1. The categories C_i

In this section we give the definition of the categories $C_i(\mathcal{A})$ associated to a small additive category \mathcal{A} . We also review the notions of filtered additive categories and of the idempotent completion of \mathcal{A} for the convenience of the reader.

1.1. Definition. An additive category is said to be <u>filtered</u> if there is an increasing filtration

$$F_0(A, B) \subseteq F_1(A, B) \subseteq \ldots \subseteq F_n(A, B) \subseteq \ldots$$

on hom(A, B) for every pair of objects A, B of A. Each $F_n(A, B)$ is to be a subgroup of hom(A, B) and we must have $\cup F_n(A, B) = \text{hom}(A, B)$. We require 0_A and 1_A to be in $F_0(A, B)$, and assume that the composition of morphisms in $F_m(A, B)$ and $F_n(A, B)$ belongs to $F_{m+n}(A, C)$. We also assume that the projections $A \oplus B \to A$, and inclusions $A \to A \oplus B$ and coherence isomorphisms all belong to F_0 . If ϕ is in $F_d(A, B)$ we say that ϕ has filtration degree d.

The reason for concerning ourselves with filtered categories is that the categories C_i come with a natural filtration. Of course every additive category has a trivial filtration, obtained by setting $F_0(A, B) = \text{hom}(A, B)$.

1.1.1. Example. Given a \mathbb{Z} -graded ring A such as $R[t, t^{-1}]$, let \mathcal{A} be the category of graded A-modules. We can filter \mathcal{A} by legislating that homogeneous maps of degree $\pm d$ have filtration degree d.

We now give our definition of the filtered category C_i . Let the distance between points $J = (j_1, \ldots, j_i)$ and $K = (k_1, \ldots, k_i)$ in \mathbb{Z}^i be given by

$$||J - K|| = \max_{s} |j_s - k_s|.$$

1.2. **Definition.** Let \mathcal{A} be a (filtered) additive category. We define $\mathcal{C}_i(\mathcal{A})$ to be the category of \mathbb{Z}^i -graded objects and bounded homomorphisms. This means that an object A of \mathcal{C}_i is a collection of objects A(J) in \mathcal{A} , one for each J in \mathbb{Z}^i . A morphism $\phi : A \to B$ in \mathcal{C}_i of filtration degree d is a collection

$$\phi(J,K):A(J)\to B(K)$$

of \mathcal{A} -morphisms, where we require $\phi(J, K) = 0$ unless $||J - K|| \leq d$. If \mathcal{A} is filtered, we also require each $\phi(J, K)$ to have filtration $\leq d$. Composition of $\phi : A \to B$ with $\psi : B \to C$ is defined by

$$(\psi \circ \phi)(J,L) = \sum_{K} \psi(K,L) \circ \phi(J,K).$$

Note that composition is well-defined because only finitely many elements in this sum are different from 0. It is easily seen that $C_0(\mathcal{A}) = \mathcal{A}$.

1.2.1. Example. If \mathcal{F} is the category of finitely generated free *R*-modules (with trivial filtration), the category $\mathcal{C}_i(\mathcal{F})$ is the same as the category $\mathcal{C}_i(R)$ constructed in [11]. In that paper it was proven that

$$K_1(\mathcal{C}_{i+1}(R)) = K_{-i}(R), \quad i \ge 0.$$

This indicated that C_{i+1} might be a delooping of K-theory, and was the original motivation for this paper. That it cannot be exactly the case follows from (1.3.1) below.

1.2.2. Example. Since $C_i(\mathcal{A})$ is filtered, we can iterate the construction. It is easy to see that

$$\mathcal{C}_i(\mathcal{C}_j(\mathcal{A})) = \mathcal{C}_{i+j}(\mathcal{A})$$

However, if we forget the filtrations on $\mathcal{C}_i(\mathcal{A})$ this is no longer the case.

1.2.3. Remark. If V is any metric space, we can define a category $\mathcal{C}_V(\mathcal{A})$ in a way generalizing the case $V = \mathbb{Z}^i$. An object A of \mathcal{C}_V is a collection of objects A(v), one for each v in V, subject to the following constraint: for every d > 0 and $v, A(w) \neq 0$ for only finitely many w of distance less than d from v. Morphisms are defined as for \mathcal{C}_i . It is easy to see that if $V = \mathbb{R}^i$ then \mathcal{C}_V is naturally equivalent to its subcategory \mathcal{C}_i . This shows that the difference between \mathcal{C}_i and \mathcal{C}_{i+1} is the rate of growth of the number n(d, J) of points K within a distance of d from J.

1.2.4. Example. If we take V = (0, 1, 2, ...) then we will let $\mathcal{C}_+(\mathcal{A})$ denote $\mathcal{C}_V(\mathcal{A})$. This is the full subcategory of $\mathcal{C}_1(\mathcal{A})$ whose objects satisfy A(j) = 0 for j < 0. Similarly, if we take V = (0, -1, -2, ...), we will write $\mathcal{C}_-(\mathcal{A})$ for $\mathcal{C}_V(\mathcal{A})$. We can identify $\mathcal{C}_+(\mathcal{A}) \cap \mathcal{C}_-(\mathcal{A})$ with \mathcal{A} in the obvious way.

There is a shift functor $T : \mathcal{C}_1(\mathcal{A}) \to \mathcal{C}_1(\mathcal{A})$ sending A to TA with TA(j) = A(j-1), and T restricts to an endofunctor of $\mathcal{C}_+(\mathcal{A})$. There is an obvious natural isomorphism t from A to TA in both \mathcal{C}_1 and \mathcal{C}_+ . We include the following result here for expositional purposes, and will generalize it in section 3 below.

1.3. Lemma. Every object in $C_+(A)$ is stably isomorphic to 0. In particular, the Grothendieck group $K_0(C_+)$ is zero.

Proof. Given A in C_+ , let $B = \sum T^n A$. That is, $B(j) = A(j) \oplus A(j-1) \oplus \ldots \oplus A(0)$. It is clear that $A \oplus TA = B$. The result follows from the observation that $t : B \cong TB$ is an isomorphisms in $C_+(A)$.

1.3.1. Corollary. If $i \neq 0$ then every object of $C_i(\mathcal{A})$ is stably isomorphic to 0. In particular, $K_0(C_i) = 0$.

Proof. By (1.2.2) we can assume that i = 1. But every object of C_1 can be written $A_+ \oplus A_-$ with A_+ in C_+ and A_- in C_- . Hence $K_0(C_1)$ is a quotient of $K_0(C_+) \oplus K_0(C_-) = 0$.

1.4. **Definition.** (see, e. g., [3, p. 61]). Let \mathcal{A} be an additive category. The idempotent completion $\widehat{\mathcal{A}}$ of \mathcal{A} has as objects all morphisms $p: A \to A$ from \mathcal{A} satisfying $p^2 = p$. An $\overline{\mathcal{A}}$ -morphism from p_1 to p_2 is an \mathcal{A} -morphism ϕ from the domain A_1 of p_1 to the domain A_2 of p_2 satisfying that $\phi = p_2\phi p_1$. It is easily seen that $\widehat{\mathcal{A}}$ is an additive category and that hom (p_1, p_2) is a subgroup of hom (A_1, A_2) . Hence $\widehat{\mathcal{A}}$ inherits any filtered structure that \mathcal{A} might have. There is a full embedding \mathcal{A} in $\widehat{\mathcal{A}}$ sending A to 1_A ; if this is an equivalence of categories, we say that \mathcal{A} is idempotent complete.

1.4.1. Example. The idempotent completion of the category \mathcal{F} of free *R*-modules is equivalent to the category \mathcal{P} of projective *R*-modules.

1.4.2. Lemma. The categories \mathcal{A} and $\mathcal{C}_i(\mathcal{A})$ are cofinal in their idempotent completions \mathcal{A} and $\widehat{\mathcal{C}}_i(\mathcal{A})$. Moreover, $\mathcal{C}_i(\mathcal{A})$ is cofinal in $\mathcal{C}_i(\widehat{\mathcal{A}})$.

Proof. This is an easy computation. For example, if p is an object of $C_i(\widehat{\mathcal{A}})$, define q by q(J) = 1 - p(J). Then $p \oplus q$ belongs to $C_i(\mathcal{A})$.

To compute the K-theory of \mathcal{A} , we need to know which sequences are "exact": a different embedding of \mathcal{A} in an ambient Abelian category will result in a different family of short exact sequences (see [12]). In particular, we cannot talk about $K_1(\mathcal{C}_i(\mathcal{A}))$ unless we know which sequences in \mathcal{C}_i are "exact". It is not clear what the notion of "exact" should be, unless either (a) all exact sequences in \mathcal{A} split (we insist the same is true of \mathcal{C}_i), or (b) \mathcal{A} is embedded in an Abelian category $\widetilde{\mathcal{A}}$ closed under countably infinite direct sum (for then \mathcal{C}_i is embeddable in $\widetilde{\mathcal{A}}$. In either case, it follows from (1.4.2) and Theorem 1.1 of [6] that

$$K_n(\mathcal{C}_i(\mathcal{A})) = K_n\mathcal{C}_i(\widehat{\mathcal{A}}) = K_n(\widehat{\mathcal{C}}_i(\mathcal{A})), \quad n \ge 1.$$

Note that our proofs of theorem A and B only to situation (a).

1.5. Example. Let p_{-} be the idempotent natural transformation in $\mathcal{C}_{1}(\mathcal{A})$ given by

$$(p_{-})_{A}: A \to A, \qquad p_{-}(j,k) = \begin{cases} 1 & \text{if } j = k \leq 0\\ 0 & \text{otherwise} \end{cases}$$

Given an object A of \mathcal{A} , let A_{-} denote the image of p_{-} on the constant object A(j) = A of $\mathcal{C}_{1}(\mathcal{A})$. Thus $A_{-}(j) = 0$ if j > 0 and $A_{-}(j) = A$ if $j \leq 0$. The map t is an endomorphism of the constant object $A \cong TA$; write s for the restriction of $p_{-}t$ to A_{-} . Then $1 - s : A_{-} \to A_{-}$ is both a monomorphism and an epimorphism in $\mathcal{C}_{1}(\mathcal{A})$, but not an isomorphism. This is because the "inverse" $\sum s^{n}$ is not bounded. In particular, $\mathcal{C}_{1}(\mathcal{A})$ can never be an Abelian category, even if \mathcal{A} is.

We conclude this section with the following result, which provides motivation for our Theorem B. It is also a consequence of Theorem B. Since we will not use this result, we merely sketch the proof.

1.6. Proposition. If all short exact sequences in \mathcal{A} split, then $K_1(\mathcal{C}_{i+1}(\mathcal{A})) = K_0(\widehat{\mathcal{C}}_i(\mathcal{A}))$. In particular, $K_1\mathcal{C}_1(\mathcal{A}) = K_0(\widehat{\mathcal{A}})$.

Sketch of proof. This is proven in section 1 of [11], modulo terminology.

First of all we can assume that \mathcal{A} is idempotent complete and that i = 0 by (1.4.2) and (1.2.2). The map from $K_0(\mathcal{A})$ to $K_1\mathcal{C}_1(\mathcal{A})$ sends the object \mathcal{A} of \mathcal{A} to the shift automorphism of the constant object $\mathcal{A}(j) = \mathcal{A}$ of $\mathcal{C}_1(\mathcal{A})$. The map $\phi : K_1(\mathcal{C}_1) \to K_0(\mathcal{A})$ is defined by sending the class of $\alpha \in \text{Aut}(\mathcal{A})$ to the difference (for $d \gg 0$) in $K_0(\mathcal{A})$:

$$\phi(\alpha) = [(\alpha p_{-} \alpha^{-1})(\bigoplus_{j=-2d}^{2d} A(j))] - [p_{-}(\bigoplus_{j=-2d}^{2d} A(j))].$$

If α has filtration degree less than d, one shows as in [11, 1.11] that this map ϕ is well-defined and independent of d. Clearly the composition is the identity on $K_0(\mathcal{A})$. The proof of [11, (1.20)] applies to show that ϕ is monic, which proves the proposition.

1.6.1. Example. Again, let \mathcal{F} be the category of finitely generated free *R*-modules. Then for $i \geq 1$ we have $K_0 \mathcal{C}_i(R) = 0$ but $K_0 \widehat{\mathcal{C}}_i(R) = K_1 \mathcal{C}_{i+1}(R) = K_{-i}(R)$.

Note. Example (1.6.1) follows from [11], not from (1.6).

2. The passage to topology

In this section we recall various results on the passage from the categories \mathcal{A} , \mathcal{C}_i etc. to infinite loop spaces and spectra. We also recall Thomason's simplified double mapping cylinder from section 5 of [13]. We urge the reader to consult [13] for more details.

A <u>symmetric monoidal category</u> \underline{S} is a category together with a functor $\oplus : \underline{S} \times \underline{S} \to \underline{S}$ and natural isomorphisms

$$\begin{array}{rcl} \alpha & : & (A \oplus B) \oplus C \cong A \oplus (B \oplus C) \\ \gamma & : & A \oplus B \cong B \oplus A. \end{array}$$

These natural isomorphism are subject to coherence conditions that certain diagrams commute. We refer he reader to [10] for a more detailed definition, contending ourselves with:

2.1. Example. If \mathcal{A} is an additive category then \mathcal{A} is a symmetric monoidal category under \oplus = direct sum. The subcategory $\underline{\mathcal{A}}$ of the isomorphisms in \mathcal{A} is also symmetric monoidal under \oplus = direct sum. It follows that $\mathcal{C}_i(\mathcal{A})$ and its category $\underline{\underline{C}}_i(\mathcal{A})$ of isomorphisms are also symmetric monoidal.

There is a functor Spt from the category of small symmetric monoidal categories to the category of connective Ω -spectra (i. e. sequences of spaces X_n with X_n being (n-1)-connected and with $X_n = \Omega X_{n+1}$). This functor satisfies

- (a) A functor $\underline{\underline{A}} \to \underline{\underline{B}}$ preserving \oplus up to coherent natural transformation, a "lax" functor, induces a map $\operatorname{Spt}(\underline{A}) \to \operatorname{Spt}(\underline{B})$ of infinite loop spectra.
- (b) The zeroth space $\operatorname{Spt}_0(\underline{\underline{A}})$ is the "group completion" of $B\underline{\underline{A}}$, the classifying space of the category $\underline{\underline{A}}$.

The construction of Spt is basically due to May and Segal, and Spt is unique up to homotopy equivalence. See [1]. One description of Spt may be found in the Appendix of [13].

2.2. Lemma. Suppose that $\underline{\underline{A}} \to \underline{\underline{B}}$ is a lax functor of small symmetric monoidal categories, and that $\underline{B}\underline{\underline{A}} \to \underline{B}\underline{\underline{B}}$ is a homotopy equivalence of topological spaces. Then $\operatorname{Spt}_0(\underline{\underline{A}}) \to \operatorname{Spt}_0(\underline{\underline{B}})$ is a homotopy equivalence.

Proof. See (2.3) of [13].

2.3. Lemma. Suppose that $\underline{\underline{A}}$ is a full, cofinal subcategory of the small symmetric monoidal category $\underline{\underline{B}}$. Then the connected components of $\operatorname{Spt}_0(\underline{\underline{A}})$ and $\operatorname{Spt}_0(\underline{\underline{B}})$ are homotopy equivalent.

Proof. This is well-known. The point is that

$$H_*[\operatorname{Spt}_0(\underline{\underline{A}})_0] = \operatorname{Colim}_{A \in \underline{\underline{A}}} H_*B\operatorname{Aut}(A)$$
$$= \operatorname{Colim}_{B \in \underline{\underline{B}}} H_*B\operatorname{Aut}(B)$$
$$= H_*[\operatorname{Spt}_0(\underline{\underline{B}})_0].$$

2.4. Lemma. (Quillen). Let \underline{S} be a small symmetric monoidal category in which all morphisms are isomorphisms, and assume that all translation $S \oplus : \underline{S} \to \underline{S}$ are faithful. Then there is a category $\underline{S} \underline{S}^{-1}$ whose objects are pairs (S_1, S_2) of objects in \underline{S} , such that $B \underline{S} \underline{S}^{-1}$ is homotopy equivalent to $\operatorname{Spt}_0(\underline{S})$.

Proof. See [5, p. 221] or p. 1657 of [13].

2.4.1. Corollary. If \mathcal{A} is a small additive category, let $\underline{\underline{A}}$ denote the category of isomorphisms in \mathcal{A} . Then $B\underline{\underline{A}}\underline{\underline{A}}^{-1}$ is homotopy equivalent to $\operatorname{Spt}_0(\underline{\underline{A}})$.

2.4.2. Example. Let R be a ring for which $R^m \cong R^n$ implies that m = n, and let $\underline{\underline{F}}$ be the category of finitely generated free R-modules and isomorphisms. The basepoint component of $\underline{\underline{F}}^{-1}\underline{\underline{F}}$ has objects $R^m = (R^m, R^m)$ and

$$\hom(R^m, R^{m+n}) = Gl_{m+n} \times_{Gl_n(R)} Gl_{m+n}(R).$$

In particular, hom $(0, \mathbb{R}^m)$ is $Gl_m(\mathbb{R})$. The family of the hom $(0, \mathbb{R}^m)$ gives a map from $BGl(\mathbb{R})$ to the basepoint component $BGl^+(\mathbb{R})$ of $B\underline{\underline{F}}^{-1}\underline{\underline{F}}$

The main ingredient in the proof of Theorem B is the simplified mapping cylinder construction of R. W. Thomason, described in (5.1) of [13]. Let $\underline{\underline{A}}$ be a symmetric monoidal category with all morphisms isomorphisms and $u: \underline{\underline{A}} \to \underline{\underline{B}}, v: \underline{\underline{A}} \to \underline{\underline{C}}$ strong functors of symmetric monoidal categories (i. e. functors preserving direct sum up to natural isomorphism). Define $\underline{\underline{P}} = (\underline{\underline{P}}(\underline{\underline{A}}, \underline{\underline{B}}, \underline{\underline{C}}, u, v)$ to be the category with objects triples (B, A, C) with A an object of $\underline{\underline{A}},$ B of $\underline{\underline{B}}$, and C of $\underline{\underline{C}}$. A morphism $(B, A, C) \to (B', A', C')$ is a 5-tuple $(\psi, \psi_1, \psi_2, U.V)$ where U, V are objects of $A, \psi: A \cong U \oplus A' \oplus V, \psi_1: B \oplus uU \to B'$ and $\psi_2: C \oplus vV \to C'. U$ and Vmay be varied up to isomorphism. Composition of $(\psi, \psi_1, \psi_2, U, V): (B, A, C) \to (B', A', C')$ with $(\overline{\psi}, \overline{\psi}_1, \overline{\psi}_2, \overline{U}.\overline{V}): (B', A', C') \to (B'', A'', C'')$ is given by

$$A \cong U \oplus A' \oplus V \cong (U \oplus \overline{U}) \oplus A'' \oplus (\overline{V} \oplus V)$$
$$B \oplus u(U \oplus \overline{U}) \cong (B \oplus uU) \oplus u\overline{U}) \to B' \oplus u\overline{U} \to B''$$
$$v(\overline{V} \oplus V) \oplus C \cong v\overline{V} \oplus vV \oplus C \to v\overline{V} \oplus C' \to C''$$

and direct sum in $\underline{\underline{P}}$ is induced by direct sum in $\underline{\underline{A}}$, $\underline{\underline{B}}$ and $\underline{\underline{C}}$. We then have

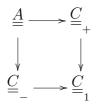
2.5. Theorem. R. W. Thomason [13, (5.2)]. Up to homotopy the diagram

$$\begin{array}{ccc} \operatorname{Spt}_{0} \underline{A} & \longrightarrow & \operatorname{Spt}_{0} \underline{B} \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{Spt}_{0} \underline{C} & \longrightarrow & \operatorname{Spt} \underline{P}_{0} \end{array}$$

is a pullback diagram

3. The proof of Theorem A and B

In this section we prove Theorems A and B. We make the standing assumption that \mathcal{A} is a small filtered additive category and that $\underline{\mathcal{A}}$ is the (symmetric monoidal) category of isomorphisms of \mathcal{A} . Similarly we write $\underline{\mathcal{C}}_i$, $\underline{\mathcal{C}}_+$, and $\underline{\mathcal{C}}_-$ for the categories of isomorphisms of $\mathcal{C}_i(\mathcal{A})$, $\mathcal{C}_+(\mathcal{A})$ and $\mathcal{C}_-(\mathcal{A})$. The idea is to show that the diagram



induces a pullback diagram of spectra, and use the following result:

3.1. Proposition. $\operatorname{Spt}_0(\underline{\underline{C}}_+)$ and $\operatorname{Spt}_0(\underline{\underline{C}}_-)$ are contractible.

Proof. By symmetry it is enough to consider $\underline{\underline{C}}_+$. Recall from the discussion before (1.3) that there is a shift functor $T : \underline{\underline{C}}_+ \to \underline{\underline{C}}_+$ and a natural transformation t from A to TA. The category $\underline{\underline{C}}_+$ has an endofunctor $\sum_{n=0}^{\infty} T^n$ with

$$\left(\sum_{n=0}^{\infty} T^n\right)A(j) = \bigoplus_{n=0}^{j} A(j-n).$$

(Recall that A(j) = 0 for j < 0.) We can define $\sum_{n=1}^{\infty} T^n$ similarly. The natural isomorphism t induces a natural isomorphism t from $\sum_{n=0}^{\infty} T^n A$ to $\sum_{n=1}^{\infty} T^n A$. But as endofunctors of $\underline{\underline{C}}_+$ we have $1 \oplus \sum_{n=1}^{\infty} T^n \cong \sum_{n=0}^{\infty} T^n$. Hence as self maps of the H-space $B\underline{\underline{C}}_+$ we have $1 \sim (\sum_{n=0}^{\infty} T^n) - (\sum_{n=0}^{\infty} T^n) \stackrel{t}{\simeq} 0$

$$1 \sim (\sum_{n=0}^{\infty} T^n) - (\sum_{n=1}^{\infty} T^n) \stackrel{t}{\sim} 0.$$

This shows that B is contractible. But then $\operatorname{Spt}(\underline{\underline{C}}_{+})$ is contractible by Lemma (2.2). Proof that Theorem B implies Theorem A. Write \widehat{B}_i for $\operatorname{Spt}_0(\underline{\underline{\widehat{C}}}_i)$. Since we have $\pi_0(\widehat{B}_i) = K_{-i}(R)$ by (1.6.1) and since translations are faithful in $\underline{\underline{\widehat{C}}}_i$, it follows that \widehat{B}_i is homotopy equivalent to $B_i \times K_{-i}(R)$. Since $\Omega B_i = \Omega \widehat{B}_i$, the result is now immediate. \Box

We now begin the proof of theorem B by making a series of reductions. Since

$$\pi_0(B_i) = \pi_0 \operatorname{Spt}_0(\underline{\underline{A}}_i) = K_0(\underline{\underline{A}}_i),$$

connectedness of the B_i for $i \neq 0$ follows from (1.3.1). Noq $\underline{\underline{C}}_i$ is full and cofinal in $\underline{\underline{C}}_i$ by (1.4.2), so by (2.3) the connected space $B_i = \operatorname{Spt}(\underline{\underline{C}}_i)$. By construction (or by (2.4.1)), $\widehat{B}_0 = \operatorname{Spt}_0(\underline{\underline{A}})$ is the group completion of $B\underline{\underline{A}}$. Thus the proof of Theorem B is reduced to showing that $\Omega \widehat{B}_{i+1} = \widehat{B}_i$ for $i \geq 0$.

showing that $\Omega \widehat{B}_{i+1} = \widehat{B}_i$ for $i \ge 0$. Next, observe that $\widehat{C}_{i+1}(\underline{A}) = \widehat{C}_1 \widehat{C}_i(\underline{A})$, so that $\widehat{B}_{i+1} = \operatorname{Spt}_0(\widehat{\underline{C}}_i(\mathcal{A}))$ and $\widehat{B}_i = \operatorname{Spt}_o(\widehat{C}_i(\mathcal{A}))$. Since we can replace \mathcal{A} by $\widehat{\mathcal{C}}_i(\mathcal{A})$, it is enough to prove that $\Omega \widehat{B}_{i+1} = \widehat{B}_0 = \operatorname{Spt}(\underline{\widehat{A}})$. There is also no loss in generality in assuming that \underline{A} is idempotent complete, since

$$\Omega \widehat{B}_1 = \Omega \operatorname{Spt}_0(\widehat{\mathcal{C}}_1(\mathcal{A})) = \Omega \operatorname{Spt}_0(\underline{\widehat{C}}_1(\widehat{\mathcal{A}}))$$

by (2.3). In fact by (2.3) we also have

$$\Omega\operatorname{Spt}_0(\underline{\widehat{\underline{C}}}_1) = \Omega\operatorname{Spt}_0(\underline{\underline{\underline{C}}}_1).$$

Therefore, Theorem B will follow from:

3.2. **Theorem.** Let \mathcal{A} be a small, filtered additive category which is idempotent complete. Then $\Omega \operatorname{Spt}(\underline{\underline{C}}_{1})$ is homotopy equivalent to $\operatorname{Spt}_{0}(\underline{\underline{A}})$.

3.3. Lemma. Let \mathcal{A} be a small filtered additive category. Recall that $\underline{\underline{C}}_{+}$ and $\underline{\underline{C}}_{-}$ are subcategories of $\underline{\underline{C}}_{+}$ whose intersection is $\underline{\underline{A}}$. Let $\underline{\underline{P}}$ be the simplified double mapping cylinder construction applied to $\underline{\underline{A}} \to \underline{\underline{C}}_{-}$ and $\underline{\underline{A}} \to \underline{\underline{C}}_{+}$. Then $\Omega \operatorname{Spt}_{0}(\underline{\underline{P}})$ is homotopy equivalent to $\operatorname{Spt}_{0}(\underline{\underline{A}})$.

Proof. This is immediate from Thomason's Theorem (2.5), since by (3.1) the spaces $\operatorname{Spt}_0(\underline{\underline{C}})$ and $\operatorname{Spt}_0(\underline{\underline{C}})$ are contractible.

By the universal mapping property of $\underline{\underline{P}}$ (see p. 1648 of [13]), there is a strong symmetric monoidal functor $\Sigma : \underline{\underline{P}} \to \underline{\underline{C}}_1$. This functor is defined on objects by

$$\Sigma(A^-, A, A^+) = A^- \oplus A \oplus A^+$$

where A^- , A, A^+ are objects of $\underline{\underline{C}}_+$, $\underline{\underline{A}}_=$ and $\underline{\underline{C}}_-$, respectively. A morphism $(\psi^-, \psi, \psi^+, U^-, U^+)$ is $\underline{\underline{P}}_=$ from (A^-, A, A^+) to (B^-, B, B^+) is sent by Σ to the composite

$$A^{-} \oplus A \oplus A^{+} \xrightarrow{1 \oplus \psi \oplus 1} A^{-} \oplus U^{-} \oplus A \oplus U^{+} \oplus A^{+} \xrightarrow{\psi^{-} \oplus 1 \oplus \psi^{+}} B^{-} \oplus B \oplus B^{+}$$

3.4. Theorem. Let \mathcal{A} be idempotent complete, and let $\underline{\underline{P}}$ be the double mapping cylinder of Lemma (3.3). Then the functor $\Sigma : \underline{\underline{P}} \to \underline{\underline{C}}_1$ induces a homotopy equivalence between the classifying spaces $B\underline{\underline{P}}$ and $B\underline{\underline{C}}_1$.

Note that Theorem (3.4) immediately implies Theorem (3.2) by (3.3) and (2.2). Thus we have reduced the proof of Theorem B to the proof of Theorem (3.4).

Proof. We will show that this functor satisfies the conditions of Quillen's Theorem A from [12]. Fix an object Y of $\underline{\underline{C}}_{\perp}$; we need to show that $Y \downarrow \Sigma$ is a contractible category. To do this, we use the bound d for $\mathcal{C}_1(\underline{\underline{A}})$ to filter $Y \downarrow \Sigma$ as the increasing union of sub-categories Fil_d , and show that each Fil_d has an initial object $*_d$. Therefore Fil_d is contractible; their union $Y \downarrow \Sigma$ must also be contractible by standard topology.

The category Fil_d is the full subcategory of all $\alpha: Y \to \Sigma(A^-, A, A^+)$ where both α and α^{-1} are bounded by d. Define Y_d, Y_d^- and Y_d^+ in $\underline{\underline{A}}, \underline{\underline{C}}$ and $\underline{\underline{C}}$ respectively by setting

> $Y_d = Y(-d) \oplus \ldots \oplus Y(d)$ in $\underline{\underline{A}}$ $Y_d^- = Y(j)$ if j < -d, and = 0 otherwise $Y_d^+ = Y(j)$ if j > -d, and = 0 otherwise.

The obvious isomorphism $\sigma : Y \cong Y_d^- \oplus Y_d \oplus Y_d^+$ in $\underline{\underline{C}}_{_{1}}$ is bounded by d, and forms the object $*_d : Y \to \Sigma(Y_d^-, Y_d, Y_d^+)$ of Fil_d. We will show that $*_d$ is an initial object of Fil_d. Given an object $\alpha : Y \to \Sigma(A^-, A, A^+)$, we have to show that there is a unique morphism

$$\eta = (\psi, \psi^{-}, \psi^{+}, e_{-}(Y_{d}), e_{+}(Y_{d})) : (Y_{d}^{-}, Y_{d}, Y_{d}^{+}) \to (A^{-}, A, A^{+})$$

in $\underline{\underline{P}}$ so that $\Sigma(\eta) = \alpha \sigma^{-1}$ in $\underline{\underline{C}}_1$. Let pr_- , pr , pr_+ be the projections of $\Sigma(A^-, A, A^+)$ onto A^- , A and A^+ , respectively. Since α^{-1} is bounded by d, $\alpha^{-1}(A)$ is contained in Y_d , or rather in the image $\sigma^{-1}(Y_d)$ of Y_d in Y. Hence it makes sense to let e be $\sigma \alpha^{-1}(\operatorname{pr}) \alpha \sigma^{-1}$ restricted to Y_d , and it is clear that e is an idempotent of Y_d . Similarly $\sigma \alpha^{-1}(A^-)$ is contained in $Y_d^- \oplus Y_d$, and $\alpha^{-1}(A^+)$ is contained in $Y_d \oplus Y_d^+$. Let e_- and e_+ be $\sigma \alpha^{-1}(\mathrm{pr}_-) \alpha \sigma^{-1}$ and $\sigma \alpha^{-1}(\mathrm{pr}_{+})\alpha \sigma^{-1}$ restricted to Y_d . These maps are also idempotents of Y_d , and it is easy to see that $e_{-} + e_{+} = 1$. Since \mathcal{A} is idempotent complete, the composition

$$Y_d \cong e_-(Y_d) \oplus e(Y_d) \oplus e_+(Y_d)$$

makes sense in \mathcal{A} . Define ψ to be the composite

$$Y_d \cong e_-(Y_d) \oplus e(Y_d) \oplus e_+(Y_d) \xrightarrow{1 \oplus \alpha \oplus 1} e_-(Y_d) \oplus A \oplus e_+(Y_d)$$

Similarly, define maps

$$\psi^{-}: Y_{d}^{-} \oplus e_{-}(Y_{d}) \xrightarrow{\alpha \sigma^{-1}} A^{-} \text{ in } \underline{\underline{C}}_{-}$$
$$\psi^{+}: e_{+}(Y_{d}) \oplus Y_{d}^{+} \xrightarrow{\alpha \sigma^{-1}} A^{+} \text{ in } \underline{\underline{C}}_{+}.$$

This completes the definition of the map $\eta: (Y_d^-, Y_d, Y_D^+) \to (A^-, A, A^+)$ in $\underline{\underline{P}}$. By definition of Σ we have $\Sigma(\eta) = \alpha \sigma^{-1}$. Because all maps in $\underline{\underline{A}}, \underline{\underline{C}}_{-}$ and $\underline{\underline{C}}_{\perp}$ are isomorphisms, it is an easy task to verify that η is the unique map with $\Sigma(\eta) = \alpha \sigma^{-1}$. It follows that $*_d$ is an initial object of Fil_d

4. AN OVERVIEW

To place our construction in perspective, it is appropriate to review a little history. The definition of the functors $K_{-i}(R)$ was given by Bass [2] in 1966 during an attempt to formalize his decomposition of $K_1(R[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}])$. In 1967, Karoubi [8] gave another definition of $K_{-i}(R)$ by defining $K_{-i}(\mathcal{A})$ for any Abelian category. A third and fourth definition of $K_{-i}(R)$ were given independently by Karoubi Villamayor [9] using the ring S(R) and by Wagoner [14] using the subring $\mu(R)$ of S(R). Happily all these definitions were shown to agree by Karoubi's axiomatic treatment in [7].

In 1971, Gersten [4] constructed a nonconnective delooping of $K_0(R) \times BGl^+(R)$ using the fact that $\Omega BGl^+(S(R)) = K_0(R) \times BGl^+(R)$. Wagoner [15] then constructed the Ω spectrum $K_0(\mu^i(R)) \times BGl^+(\mu^i(R))$ and showed that the inclusions $\mu(R) \to S(R)$ induced an equivalence of spectra. To our knowledge, nonconnective deloopings of K-theory of other additive categories besides \mathcal{F} has not been studied until now.

The construction in [11] is very much in the spirit of the early definitions of $K_{-i}(R)$, but works for any additive category. Needless to say, an open question in our work is whether or not the $\Omega BQC_n(\underline{A})^{\wedge}$ yield a nonconnective delooping of any (idempotent complete) ad-

divice category with exact sequences. A major difference between the categories $C_i(\mathcal{A})$ and Karoubi's categories $S^i\mathcal{A}$ is that $S\mathcal{A}$ is defined as a quotient of the flasque category $C\mathcal{A}$ (see [7]) while $C_1(\mathcal{A})$ may be viewed as an enlargement of the flasque category $\mathcal{C}_+(\mathcal{A})$. It would be interesting to see if the natural inclusion of $C\mathcal{A}$ in $\mathcal{C}_+(\mathcal{A})$ could be made to induce an isomorphism between K-groups.

References

- 1. J.F. Adams, Infinite Loop Spaces, Annals of Mathematics Studies, vol. 90, Princeton Univ. Press, 1978.
- 2. H. Bass, Algebraic K-theory, Benjamin, 1968.
- 3. P. Freyd, Abelian Categories, Harper and Row, New York, 1966.
- 4. S. Gersten, On the spectrum of algebraic K-theory, Bull. Amer. Math. Soc. (N.S.) 78 (1972), 216-219.
- 5. D. Grayson, *Higher algebraic K-theory: II (after D. Quillen)*, Lecture Notes in Mathematics, vol. 551, Springer, 1976.
- 6. _____, Localization for flat modules in Algebraic K-theory, J. Algebra 90 (1984), 461–475.
- 7. M. Karoubi, Foncteur dérivés et K-théorie, Lecture Notes in Mathematics, vol. 136, Springer, 1970.
- 8. _____, La périodicité de Bott en K-théorie générale, Ann. Sci. École Norm. Sup. (4) 4 (1971), 63–95.
- M. Karoubi and O. Villamayor, K-théorie algébrique et K-théorie topologique, C. R. Acad. Sci. Paris Sér. I Math. 269 (1988), 416–419.
- 10. S. MacLane, *Categories for the working mathematician*, Graduate Texts in Mathematics, vol. 5, Springer, 1971.
- 11. E. K. Pedersen, On the K_{-i} functors, J. Algebra **90** (1984), 461–475.

12

- D. G. Quillen, *Higher algebraic K-theory I*, Algebraic K-theory, I: Higher K-theories, (Battelle Memorial Inst., Seattle, Washington, 1972), Lecture Notes in Mathematics, vol. 341, Springer, Berlin, 1973, pp. 85– 147.
- 13. R. W. Thomason, First quadrant spectral sequences in algebraic K-theory via homotopy colimits, Comm. Algebra 10 (1982), 1589–1668.
- 14. J. Wagoner, On K₂ of the Laurent polynomial ring, Amer. J. Math. 93 (1971), 123–138.
- 15. _____, Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349–370.

MATEMATISK INSTITUT, ODENSE UNIVERSITET, ODENSE DENMARK

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY