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Abstract. Given a ring R, it is known that the topological space BGl(R)+ is an infinite
loop space. One way to construct an infinite loop structure is to consider the category
F= of free R-modules, or rather its classifying space BF=, as food for suitable infinite loop

space machines. These machines produce connective spectra whose zeroth space is (BF=)+ =

Z×BGl(R)+. In this paper we consider categories C=
1

(F=) = F=, C=
1

(F=), . . . of parameterized

free modules and bounded homomorphisms and show that the spaces (BC=
0

)+ = (BF=)+,

(BC=
1

)+, . . . are the connected components of a nonconnective Ω-spectrum BC=(F ) with

KiBC=(F ) = Ki(R) even for negative i.

0. Introduction

Given a ring R, let F
=

be the category of finitely generated R-modules and isomorphisms.

Form the “group completion” category F
=
−1F

=
of F

=
(see [5]); it is known that its classifying

space BF
=
−1F

=
is the algebraic K-theory space BGl(R)+×Z. The purpose of this paper is to

produce a nonconnective delooping of BGl(R)+ ×K0(R) by using a parameterized version
C
=

0

(F
=

) = F
=

, C
=

1

(F
=

), . . . of F
=

given in [11]. Our main result is this:

Theorem A. Write Bi for the classifying space of the category C
=
−1C

=
, except that B0 =

BGl(R)+. Then the spaces Bi are connected, and for i ≥ 0 we have

ΩBi+1 = Bi ×K−i(R).

Thus the sequence of spaces B̂i = Bi×K−i(R) forms a nonconnective Ω-spectrum B̂
=

with

homotopy groups

πi(B̂=
) = Ki(R), i any integer.

In particular, the negative homotopy groups of B̂
=

are the negative K-groups of Bass [2].

The second author was partially supported by an NSF grant .
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Actually, we work in the generality of a small additive category A, rather than just the
additive category F of finitely generated free R-modules. For example, one could take P ,
the category of finitely generated projective R-modules. The category P is the idempotent

completion of F , and we recover the same spectrum B̂
=

if we replace F by P . Note that

BP
=
−1P

=
is BGl(R)+ ×K0(R), where P

=
is the category of isomorphisms in P .

Given A, we consider the additive category Ci(A) of Zi-graded objects and bounded homo-
morphisms (see section 1 for details). If A = F this definition specializes to the categories Ci

of [11]. Let Ĉi be the idempotent completion of Ci(A), and let A
=

, C
=

i

, Ĉ
=

be the sub-categories

of isomorphisms in A, Ci and Ĉi, respectively. Our second result is this

Theorem B. Write B̂i for the classifying space of the category Ĉ
=
−1

i

Ĉ
=

i

and Bi for the classifying

space of C
=
−1

i

C
=

i

. Then

ΩB̂i+1 = B̂i

ΩiB̂i = B̂0 = “group completion” (BA
=

)+ of BA
=

.

The connected component of B̂i is Bi (except for i = 0), and the sequence of spaces B̂0, B̂1, . . .

is a nonconnective Ω-spectrum. In particular, B̂i is an i-fold delooping of (BA
=

)+.

The outline of this paper is as follows. In section 1 we give the definitions of the Zi-graded
category Ci(A). In section 2, we recall the passage from categories to spectra, and review
the main points of Thomason’s paper [13] that we need. In section 3, we prove Theorems A
and B.

The authors would like to thank Bob Thomason for his lucid exposition in [13], which
clarified a number of technical points.

The second author would also like to thank the Danish Natural Science Research Council
and Odense University for its hospitality during the writing stage.

1. The categories Ci

In this section we give the definition of the categories Ci(A) associated to a small additive
category A. We also review the notions of filtered additive categories and of the idempotent
completion of A for the convenience of the reader.

1.1. Definition. An additive category is said to be filtered if there is an increasing filtration

F0(A,B) ⊆ F1(A,B) ⊆ . . . ⊆ Fn(A,B) ⊆ . . .

on hom(A,B) for every pair of objects A, B of A. Each Fn(A,B) is to be a subgroup
of hom(A,B) and we must have ∪Fn(A,B) = hom(A,B). We require 0A and 1A to be



A NONCONNECTIVE DELOOPING OF ALGEBRAIC K-THEORY 3

in F0(A, B), and assume that the composition of morphisms in Fm(A,B) and Fn(A,B)
belongs to Fm+n(A, C). We also assume that the projections A ⊕ B → A, and inclusions
A → A⊕B and coherence isomorphisms all belong to F0. If φ is in Fd(A,B) we say that φ
has filtration degree d.

The reason for concerning ourselves with filtered categories is that the categories Ci come
with a natural filtration. Of course every additive category has a trivial filtration, obtained
by setting F0(A,B) = hom(A, B).

1.1.1. Example. Given a Z-graded ring A such as R[t, t−1], letA be the category of graded A-
modules. We can filter A by legislating that homogeneous maps of degree ±d have filtration
degree d.

We now give our definition of the filtered category Ci. Let the distance between points
J = (j1, . . . , ji) and K = (k1, . . . , ki) in Zi be given by

||J −K|| = max
s
|js − ks|.

1.2. Definition. Let A be a (filtered) additive category. We define Ci(A) to be the category
of Zi-graded objects and bounded homomorphisms. This means that an object A of Ci is
a collection of objects A(J) in A, one for each J in Zi. A morphism φ : A → B in Ci of
filtration degree d is a collection

φ(J,K) : A(J) → B(K)

of A-morphisms, where we require φ(J,K) = 0 unless ||J −K|| ≤ d. If A is filtered, we also
require each φ(J,K) to have filtration ≤ d. Composition of φ : A → B with ψ : B → C is
defined by

(ψ ◦ φ)(J, L) =
∑
K

ψ(K,L) ◦ φ(J,K).

Note that composition is well-defined because only finitely many elements in this sum are
different from 0. It is easily seen that C0(A) = A.

1.2.1. Example. If F is the category of finitely generated free R-modules (with trivial
filtration), the category Ci(F) is the same as the category Ci(R) constructed in [11]. In that
paper it was proven that

K1(Ci+1(R)) = K−i(R), i ≥ 0.

This indicated that Ci+1 might be a delooping of K-theory, and was the original motivation
for this paper. That it cannot be exactly the case follows from (1.3.1) below.

1.2.2. Example. Since Ci(A) is filtered, we can iterate the construction. It is easy to see
that

Ci(Cj(A)) = Ci+j(A).

However, if we forget the filtrations on Cj(A) this is no longer the case.
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1.2.3. Remark. If V is any metric space, we can define a category CV (A) in a way generalizing
the case V = Zi. An object A of CV is a collection of objects A(v), one for each v in V ,
subject to the following constraint: for every d > 0 and v, A(w) 6= 0 for only finitely many
w of distance less than d from v. Morphisms are defined as for Ci. It is easy to see that if
V = Ri then CV is naturally equivalent to its subcategory Ci. This shows that the difference
between Ci and Ci+1 is the rate of growth of the number n(d, J) of points K within a distance
of d from J .

1.2.4. Example. If we take V = (0, 1, 2, . . .) then we will let C+(A) denote CV (A). This is
the full subcategory of C1(A) whose objects satisfy A(j) = 0 for j < 0. Similarly, if we take
V = (0,−1,−2, . . .), we will write C−(A) for CV (A). We can identify C+(A)∩C−(A) with A
in the obvious way.

There is a shift functor T : C1(A) → C1(A) sending A to TA with TA(j) = A(j − 1), and
T restricts to an endofunctor of C+(A). There is an obvious natural isomorphism t from A
to TA in both C1 and C+. We include the following result here for expositional purposes,
and will generalize it in section 3 below.

1.3. Lemma. Every object in C+(A) is stably isomorphic to 0. In particular, the Grothendieck
group K0(C+) is zero.

Proof. Given A in C+, let B =
∑

T nA. That is, B(j) = A(j) ⊕ A(j − 1) ⊕ . . . ⊕ A(0). It
is clear that A ⊕ TA = B. The result follows from the observation that t : B ∼= TB is an
isomorphisms in C+(A). ¤
1.3.1. Corollary. If i 6= 0 then every object of Ci(A) is stably isomorphic to 0. In particular,
K0(Ci) = 0.

Proof. By (1.2.2) we can assume that i = 1. But every object of C1 can be written A+⊕A−
with A+ in C+ and A− in C−. Hence K0(C1) is a quotient of K0(C+)⊕K0(C−) = 0. ¤
1.4. Definition. (see, e. g., [3, p. 61]). Let A be an additive category. The idempotent

completion Â of A has as objects all morphisms p : A → A from A satisfying p2 = p. An

Â-morphism from p1 to p2 is an A-morphism φ from the domain A1 of p1 to the domain A2

of p2 satisfying that φ = p2φp1. It is easily seen that Â is an additive category and that

hom(p1, p2) is a subgroup of hom(A1, A2). Hence Â inherits any filtered structure that A
might have. There is a full embedding A in Â sending A to 1A; if this is an equivalence of
categories, we say that A is idempotent complete.

1.4.1. Example. The idempotent completion of the category F of free R-modules is equiv-
alent to the category P of projective R-modules.

1.4.2. Lemma. The categories A and Ci(A) are cofinal in their idempotent completions Â
and Ĉi(A). Moreover, Ci(A) is cofinal in Ci(Â).
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Proof. This is an easy computation. For example, if p is an object of Ci(Â), define q by
q(J) = 1− p(J). Then p⊕ q belongs to Ci(A). ¤

To compute the K-theory of A, we need to know which sequences are “exact”: a different
embedding of A in an ambient Abelian category will result in a different family of short
exact sequences (see [12]). In particular, we cannot talk about K1(Ci(A)) unless we know
which sequences in Ci are “exact”. It is not clear what the notion of “exact” should be,
unless either (a) all exact sequences in A split (we insist the same is true of Ci), or (b) A is

embedded in an Abelian category Ã closed under countably infinite direct sum ( for then Ci

is embeddable in Ã. In either case, it follows from (1.4.2) and Theorem 1.1 of [6] that

Kn(Ci(A)) = KnCi(Â) = Kn(Ĉi(A)), n ≥ 1.

Note that our proofs of theorem A and B only to situation (a).

1.5. Example. Let p− be the idempotent natural transformation in C1(A) given by

(p−)A : A → A, p−(j, k) =

{
1 if j = k ≤ 0

0 otherwise

Given an object A of A, let A− denote the image of p− on the constant object A(j) = A of
C1(A). Thus A−(j) = 0 if j > 0 and A−(j) = A if j ≤ 0. The map t is an endomorphism of
the constant object A ∼= TA; write s for the restriction of p−t to A−. Then 1− s : A− → A−
is both a monomorphism and an epimorphism in C1(A), but not an isomorphism. This is
because the “inverse”

∑
sn is not bounded. In particular, C1(A) can never be an Abelian

category, even if A is.

We conclude this section with the following result, which provides motivation for our
Theorem B. It is also a consequence of Theorem B. Since we will not use this result, we
merely sketch the proof.

1.6. Proposition. If all short exact sequences in A split, then K1(Ci+1(A)) = K0(Ĉi(A)).

In particular, K1C1(A) = K0(Â).

Sketch of proof. This is proven in section 1 of [11], modulo terminology.
First of all we can assume that A is idempotent complete and that i = 0 by (1.4.2) and

(1.2.2). The map from K0(A) to K1C1(A) sends the object A of A to the shift automorphism
of the constant object A(j) = A of C1(A). The map φ : K1(C1) → K0(A) is defined by
sending the class of α ∈ Aut(A) to the difference (for d À 0) in K0(A):

φ(α) = [(αp−α−1)(
2d⊕

j=−2d

A(j))]− [p−(
2d⊕

j=−2d

A(j))].
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If α has filtration degree less than d, one shows as in [11, 1.11] that this map φ is well-defined
and independent of d. Clearly the composition is the identity on K0(A). The proof of [11,
(1.20)] applies to show that φ is monic, which proves the proposition. ¤

1.6.1. Example. Again, let F be the category of finitely generated free R-modules. Then

for i ≥ 1 we have K0Ci(R) = 0 but K0Ĉi(R) = K1Ci+1(R) = K−i(R).

Note. Example (1.6.1) follows from [11], not from (1.6).

2. The passage to topology

In this section we recall various results on the passage from the categories A, Ci etc.
to infinite loop spaces and spectra. We also recall Thomason’s simplified double mapping
cylinder from section 5 of [13]. We urge the reader to consult [13] for more details.

A symmetric monoidal category S
=

is a category together with a functor ⊕ : S
=
× S

=
→ S

=
and natural isomorphisms

α : (A⊕B)⊕ C ∼= A⊕ (B ⊕ C)

γ : A⊕B ∼= B ⊕ A.

These natural isomorphism are subject to coherence conditions that certain diagrams com-
mute. We refer he reader to [10] for a more detailed definition, contending ourselves with:

2.1. Example. If A is an additive category then A is a symmetric monoidal category under
⊕ = direct sum. The subcategory A

=
of the isomorphisms in A is also symmetric monoidal

under ⊕ = direct sum. It follows that Ci(A) and its category C
=

i

(A) of isomorphisms are

also symmetric monoidal.

There is a functor Spt from the category of small symmetric monoidal categories to the
category of connective Ω-spectra ( i. e. sequences of spaces Xn with Xn being (n − 1)-
connected and with Xn = ΩXn+1). This functor satisfies

(a) A functor A
=
→ B

=
preserving ⊕ up to coherent natural transformation, a “lax”

functor, induces a map Spt(A
=

) → Spt(B
=

) of infinite loop spectra.

(b) The zeroth space Spt0(A=
) is the “group completion” of BA

=
, the classifying space of

the category A
=

.

The construction of Spt is basically due to May and Segal, and Spt is unique up to
homotopy equivalence. See [1]. One description of Spt may be found in the Appendix of
[13].
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2.2. Lemma. Suppose that A
=
→ B

=
is a lax functor of small symmetric monoidal categories,

and that BA
=
→ BB

=
is a homotopy equivalence of topological spaces. Then Spt0(A=

) →
Spt0(B=

) is a homotopy equivalence.

Proof. See (2.3) of [13]. ¤

2.3. Lemma. Suppose that A
=

is a full, cofinal subcategory of the small symmetric monoidal

category B
=

. Then the connected components of Spt0(A=
) and Spt0(B=

) are homotopy equiva-

lent.

Proof. This is well-known. The point is that

H∗[Spt0(A=
)0] = Colim

A∈A=
H∗B Aut(A)

= Colim
B∈B=

H∗B Aut(B)

= H∗[Spt0(B=
)0].

¤

2.4. Lemma. (Quillen). Let S
=

be a small symmetric monoidal category in which all mor-

phisms are isomorphisms, and assume that all translation S⊕ : S
=
→ S

=
are faithful. Then

there is a category S
=

S
=
−1 whose objects are pairs (S1, S2) of objects in S

=
, such that BS

=
S
=
−1

is homotopy equivalent to Spt0(S=
).

Proof. See [5, p. 221] or p. 1657 of [13]. ¤

2.4.1. Corollary. IfA is a small additive category, let A
=

denote the category of isomorphisms

in A. Then BA
=

A
=
−1 is homotopy equivalent to Spt0(A=

).

2.4.2. Example. Let R be a ring for which Rm ∼= Rn implies that m = n, and let F
=

be the

category of finitely generated free R-modules and isomorphisms. The basepoint component
of F

=
−1F

=
has objects Rm = (Rm, Rm) and

hom(Rm, Rm+n) = Glm+n ×Gln(R) Glm+n(R).

In particular, hom(0, Rm) is Glm(R). The family of the hom(0, Rm) gives a map from BGl(R)
to the basepoint component BGl+(R) of BF

=
−1F

=
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The main ingredient in the proof of Theorem B is the simplified mapping cylinder construc-
tion of R. W. Thomason, described in (5.1) of [13]. Let A

=
be a symmetric monoidal category

with all morphisms isomorphisms and u : A
=
→ B

=
, v : A

=
→ C

=
strong functors of symmetric

monoidal categories (i. e. functors preserving direct sum up to natural isomorphism). Define
P
=

= (P
=

(A
=

, B
=

, C
=

, u, v) to be the category with objects triples (B,A, C) with A an object of A
=

,

B of B
=

, and C of C
=

. A morphism (B, A,C) → (B′, A′, C ′) is a 5-tuple (ψ, ψ1, ψ2, U.V ) where

U, V are objects of A, ψ : A ∼= U⊕A′⊕V , ψ1 : B⊕uU → B′ and ψ2 : C⊕vV → C ′. U and V
may be varied up to isomorphism. Composition of (ψ, ψ1, ψ2, U, V ) : (B,A, C) → (B′, A′, C ′)
with (ψ, ψ1, ψ2, U.V ) : (B′, A′, C ′) → (B′′, A′′, C ′′) is given by

A ∼= U ⊕ A′ ⊕ V ∼= (U ⊕ U)⊕ A′′ ⊕ (V ⊕ V )

B ⊕ u(U ⊕ U) ∼= (B ⊕ uU)⊕ uU) → B′ ⊕ uU → B′′

v(V ⊕ V )⊕ C ∼= vV ⊕ vV ⊕ C → vV ⊕ C ′ → C ′′

and direct sum in P
=

is induced by direct sum in A
=

, B
=

and C
=

. We then have

2.5. Theorem. R. W. Thomason [13, (5.2)]. Up to homotopy the diagram

Spt0 A
=

²²

// Spt0 B
=

²²
Spt0 C

= // Spt P
=

0

is a pullback diagram

3. The proof of Theorem A and B

In this section we prove Theorems A and B. We make the standing assumption that A
is a small filtered additive category and that A

=
is the (symmetric monoidal) category of

isomorphisms of A. Similarly we write C
=

i

, C
=

+

, and C
=−

for the categories of isomorphisms

of Ci(A), C+(A) and C−(A). The idea is to show that the diagram

A
=

²²

// C=
+

²²
C
=−

// C=
1

induces a pullback diagram of spectra, and use the following result:
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3.1. Proposition. Spt0(C=
+

) and Spt0(C=−
) are contractible.

Proof. By symmetry it is enough to consider C
=

+

. Recall from the discussion before (1.3)

that there is a shift functor T : C
=

+

→ C
=

+

and a natural transformation t from A to TA.

The category C
=

+

has an endofunctor
∞∑

n=0

T n with

(
∞∑

n=0

T n)A(j) =

j⊕
n=0

A(j − n).

(Recall that A(j) = 0 for j < 0.) We can define
∞∑

n=1

T n similarly. The natural isomorphism

t induces a natural isomorphism t from
∞∑

n=0

T nA to
∞∑

n=1

T nA. But as endofunctors of C
=

+

we

have 1⊕
∞∑

n=1

T n ∼=
∞∑

n=0

T n. Hence as self maps of the H-space BC
=

+

we have

1 ∼ (
∞∑

n=0

T n)− (
∞∑

n=1

T n)
t∼ 0.

This shows that B is contractible. But then Spt(C
=

+

) is contractible by Lemma (2.2). ¤

Proof that Theorem B implies Theorem A. Write B̂i for Spt0(Ĉ=
i

). Since we have π0(B̂i) =

K−i(R) by (1.6.1) and since translations are faithful in Ĉ
=

i

, it follows that B̂i is homotopy

equivalent to Bi ×K−i(R). Since ΩBi = ΩB̂i, the result is now immediate. ¤

We now begin the proof of theorem B by making a series of reductions. Since

π0(Bi) = π0 Spt0(A=
i

) = K0(A=
i

),

connectedness of the Bi for i 6= 0 follows from (1.3.1). Noq C
=

i

is full and cofinal in C
=

i
by (1.4.2), so by (2.3) the connected space Bi = Spt(C

=
i

). By construction (or by (2.4.1)),

B̂0 = Spt0(Â=
) is the group completion of BÂ

=
. Thus the proof of Theorem B is reduced to

showing that ΩB̂i+1 = B̂i for i ≥ 0.

Next , observe that Ĉi+1(A=
) = Ĉ1Ĉi(A=

), so that B̂i+1 = Spt0(Ĉ=
1

(Ĉi(A)) and B̂i = Spto(Ĉi(A)).
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Since we can replace A by Ĉi(A), it is enough to prove that ΩB̂i+1 = B̂0 = Spt(Â
=

). There

is also no loss in generality in assuming that A
=

is idempotent complete, since

ΩB̂1 = Ω Spt0(Ĉ1(A)) = Ω Spt0(Ĉ=
1

(Â))

by (2.3). In fact by (2.3) we also have

Ω Spt0(Ĉ=
1

) = Ω Spt0(C=
1

).

Therefore, Theorem B will follow from:

3.2. Theorem. Let A be a small, filtered additive category which is idempotent complete.
Then Ω Spt(C

=
1

) is homotopy equivalent to Spt0(A=
).

3.3. Lemma. Let A be a small filtered additive category. Recall that C
=

+

and C
=−

are sub-

categories of C
=

+

whose intersection is A
=

. Let P
=

be the simplified double mapping cylinder

construction applied to A
=
→ C

=−
and A

=
→ C

=
+

. Then Ω Spt0(P=
) is homotopy equivalent to

Spt0(A=
).

Proof. This is immediate from Thomason’s Theorem (2.5), since by (3.1) the spaces Spt0(C=
+

)

and Spt0(C=−
) are contractible. ¤

By the universal mapping property of P
=

(see p. 1648 of [13]), there is a strong symmetric

monoidal functor Σ : P
=
→ C

=
1

. This functor is defined on objects by

Σ(A−, A, A+) = A− ⊕ A⊕ A+

where A−, A, A+ are objects of C
=

+

, A
=

and C
=−

, respectively. A morphism (ψ−, ψ, ψ+, U−, U+)

is P
=

from (A−, A,A+) to (B−, B,B+) is sent by Σ to the composite

A− ⊕ A⊕ A+ 1⊕ψ⊕1−−−−→ A− ⊕ U− ⊕ A⊕ U+ ⊕ A+ ψ−⊕1⊕ψ+−−−−−−→ B− ⊕B ⊕B+.

3.4. Theorem. Let A be idempotent complete, and let P
=

be the double mapping cylinder of

Lemma (3.3). Then the functor Σ : P
=
→ C

=
1

induces a homotopy equivalence between the

classifying spaces BP
=

and BC
=

1

.

Note that Theorem (3.4) immediately implies Theorem (3.2) by (3.3) and (2.2). Thus we
have reduced the proof of Theorem B to the proof of Theorem (3.4).
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Proof. We will show that this functor satisfies the conditions of Quillen’s Theorem A from
[12]. Fix an object Y of C

=
1

; we need to show that Y ↓ Σ is a contractible category. To do

this, we use the bound d for C1(A=
) to filter Y ↓ Σ as the increasing union of sub-categories

Fild, and show that each Fild has an initial object ∗d. Therefore Fild is contractible; their
union Y ↓ Σ must also be contractible by standard topology.

The category Fild is the full subcategory of all α : Y → Σ(A−, A, A+) where both α and
α−1 are bounded by d. Define Yd, Y −

d and Y +
d in A

=
, C
=−

and C
=

+

respectively by setting

Yd = Y (−d)⊕ . . .⊕ Y (d) in A
=

Y −
d = Y (j) if j < −d, and = 0 otherwise

Y +
d = Y (j) if j > −d, and = 0 otherwise.

The obvious isomorphism σ : Y ∼= Y −
d ⊕ Yd ⊕ Y +

d in C
=

1

is bounded by d, and forms the

object ∗d : Y → Σ(Y −
d , Yd, Y

+
d ) of Fild. We will show that ∗d is an initial object of Fild.

Given an object α : Y → ∑
(A−, A, A+), we have to show that there is a unique morphism

η = (ψ, ψ−, ψ+, e−(Yd), e+(Yd)) : (Y −
d , Yd, Y

+
d ) → (A−, A,A+)

in P
=

so that Σ(η) = ασ−1 in C
=

1

. Let pr−, pr, pr+ be the projections of Σ(A−, A, A+) onto

A−, A and A+, respectively. Since α−1 is bounded by d, α−1(A) is contained in Yd, or rather
in the image σ−1(Yd) of Yd in Y . Hence it makes sense to let e be σα−1(pr)ασ−1 restricted
to Yd, and it is clear that e is an idempotent of Yd. Similarly σα−1(A−) is contained in
Y −

d ⊕ Yd, and α−1(A+) is contained in Yd ⊕ Y +
d . Let e− and e+ be σα−1(pr−)ασ−1 and

σα−1(pr+)ασ−1 restricted to Yd. These maps are also idempotents of Yd, and it is easy to
see that e− + e + e+ = 1. Since A is idempotent complete, the composition

Yd
∼= e−(Yd)⊕ e(Yd)⊕ e+(Yd)

makes sense in A. Define ψ to be the composite

Yd
∼= e−(Yd)⊕ e(Yd)⊕ e+(Yd)

1⊕α⊕1−−−−→ e−(Yd)⊕ A⊕ e+(Yd)

Similarly, define maps

ψ− : Y −
d ⊕ e−(Yd)

ασ−1−−−→ A− in C
=−

ψ+ : e+(Yd)⊕ Y +
d

ασ−1−−−→ A+ in C
=

+

.

This completes the definition of the map η : (Y −
d , Yd, Y

+
D ) → (A−, A, A+) in P

=
. By definition

of Σ we have Σ(η) = ασ−1. Because all maps in A
=

, C
=−

and C
=

+

are isomorphisms, it is an
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easy task to verify that η is the unique map with Σ(η) = ασ−1. It follows that ∗d is an initial
object of Fild ¤

4. An overview

To place our construction in perspective, it is appropriate to review a little history. The
definition of the functors K−i(R) was given by Bass [2] in 1966 during an attempt to formalize
his decomposition of K1(R[t1, t

−1
1 , . . . .tn, t

−1
n ]). In 1967, Karoubi [8] gave another definition

of K−i(R) by defining K−i(A) for any Abelian category. A third and fourth definition of
K−i(R) were given independently by Karoubi Villamayor [9] using the ring S(R) and by
Wagoner [14] using the subring µ(R) of S(R). Happily all these definitions were shown to
agree by Karoubi’s axiomatic treatment in [7].

In 1971, Gersten [4] constructed a nonconnective delooping of K0(R) × BGl+(R) using
the fact that ΩBGl+(S(R)) = K0(R) × BGl+(R). Wagoner [15] then constructed the Ω-
spectrum K0(µ

i(R)) × BGl+(µi(R)) and showed that the inclusions µ(R) → S(R) induced
an equivalence of spectra. To our knowledge, nonconnective deloopings of K-theory of other
additive categories besides F has not been studied until now.

The construction in [11] is very much in the spirit of the early definitions of K−i(R), but
works for any additive category. Needless to say, an open question in our work is whether
or not the ΩBQCn(A

=
)∧ yield a nonconnective delooping of any (idempotent complete) ad-

ditive category with exact sequences. A major difference between the categories Ci(A) and
Karoubi’s categories SiA is that SA is defined as a quotient of the flasque category CA (see
[7]) while C1(A) may be viewed as an enlargement of the flasque category C+(A). It would
be interesting to see if the natural inclusion of CA in C+(A) could be made to induce an
isomorphism between K-groups.
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