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MANIFOLDS WITH FREE ABELIAN FUNDAMENTAL GROUPS
AND THEIR APPLICATIONS

(Pontrjagin Classes, Smoothnesses, Multidimensional Knots)
S. P. NOVIKOV

In this paper we establish the topological invariance of rational Pontrjagin
classes of smooth and piecewise-linear manifolds and we draw a number of corol-
laries from this result. The methods are also applicable to other problems.

Introduction

As the author has shown in previous papers [10-13], the question of the
topological invariance of rational Pontrjagin classes is very closely related to
certain problems of homotopy and differential topology of non-simply-connected
manifolds and of their cévetings, namely, those in which the fundamental group is
free abelian. The reduction of the problem of the invariance of classes to homo-
topy problems in this group of papers by the author is linked by one general idea.
This idea consists in making judicious selections from the notion of *‘continuous
homeomorphism’’ by using special, non-simply-connected, open subsets which can
then be studied by the means of a purely smooth topology making use of the non-
simply-connectedness, although the fundamental group has no relation whatsoever
w the problems originally posed. Thus, in the very first reference [ 10] ([13))
special cases of this problem were solved with the aid of analogs of the Hirze-

bruch formula on coverings, which already led to distinguishing between homeo-

morphism and homotopy type. A direct development of this ‘signature” method
led the author to the proof of the topological invariance of the Pontrjagin-
Hirzebruch class Lk(M") for n <4k + 3. This intermediate discussion is indi-
cated in the appendix; it was found before the general result of reference [
and soon thereafter lost its interest © a great degree since the author succeeded
in giving a more general proof of the invariance of classes (published in brief in
[11]) which did not contain *‘signatre’’ arguments and analogs of the Hirzebruch
formula.

In the present paper the problem of the classes is solved by generalizing to
the non-simply-connected case the techniques of papers {3] and [ 4] for investi-
gating smoothnesses on manifolds of the type M™ x R, nl(M") =7 +-0+ 2, al-
though the reduction of the problem to such a problem in differential topology is,
of course, also to be found in the first paper [ 10] by the author on the topological
invariance of classes. A manuscript of W. Browder (later published in {41} ia
which the problem of smoothnesses on manifolds of type M x R was solved for
the simply-connected case 7{(M) =0, was submitted at the very same time as the
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2 S. P. NOVIKOV

present paper and proved to be very useful to the present author. Certain argu-
ments from [4] aided him during his work and he takes the opportunity here to
thank W. Browder.

The results of the work are formulated in §1. The central result is Theorem 1,
which establishes the topological invariance of rational Pontrjagin classes of
smooth and piecewise-linear manifolds.

§2is very important in the paper; it contains the reduction of Theorem 1 to
Theorem 3 and also interrelates the remaining results. It is here that use is made
of the fact that the manifolds M; and M, from Theorem 1 are homeomorphic.

Theorem 3 is proved in $83-8. Of separate interest in itself is $5 which
can easily be extended to a wider class of groups.

Theorem G from the theory of knots is proved in $9.

’§10 contains ( without proof) a generalization of Theorem 5.

A number of corollaries follow from Theotrem 1 of this paper together with
previously-known results of algebraic and differential topology.

Certain consequences of the invariance of classes:

1. The number of smooth structures on a simply-connected topological mani-

fold M™ n £ 4, is finite and does not exceed the constant ¢ (M™), where

n
dpt 3 by 3In c; + idék
ey <o “

moreover,

gn == In|07(dn) |, di=1In]Tor Hi(M"),

b; = maxrkH;(M", Z,), ¢; = aj|nn;(SV) ],
2

p=

a; = 1 when j# 1, 2 (mod 8) and a; = 2 when j=1, 2 (mod 8). This consequence
arises from a comparison of Theorem 1 with Bott periodicity and the author’s
tesults in the diffeomorphism problem (see [14]).

The finiteness and the bound (with other universal constants) hold, analo-
gously, for a number of combinatorial structures oa M" under the same restric-
tions. Here itis necessary to make use of the result of Cerf that o (diff 53) = 0.
Thus we have the Hauptvermutung with accuracy up to a finite number of possible
PL-structutes under our restrictions. This follows from reference [ 14l (see Appen-
dix 2 of [ 14]).

2. As has already been mentioned in [ 10], for dimensions of the form 4% + 2,
the difference between homeomorphism and homotopy type of closed simply-

connected manifolds follows from the invariance of Pontrjagin classes and from
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the results of the author and of Browder (see [3] and Appendix 1 of [14]). It
follows from Theorem 1 that for any simply-connected manifold ¥*, n > 6, in
which the homology group H4.(M™) is infinite for at least one k # 0, n/4, there
exist an infinite number of smooth, or smooth except at a point, manifolds M?

not pairwise homeomorphic but having a common homotopy type with M™. When the
above homological condition is not satisfied the number of such manifolds is auto-
matically finite, as follows from [14].

3. On the odd-dimensional spheres 52"+1, n > 3, there exist an infinite num-
ber of smooth, or smooth except at a point, operations on the circle S! without
fixed points, which are not topologically equivalent pairwise. This fact follows
as a result of applying the preceding paragraph to the factor-space 527*1/S! of
homotopy type CP", since topologically equivalent operations generate homeo-
morphic factor-spaces.

4. Since the Pontrjagin numbers are topologically invariant, two smooth mani-
folds belonging to different classes of oriented cobordisms {;, are always non-
homeomorphic.

5. All piecewise-linear manifolds with fractional Pontrjagin classes are non-
homeomorphic to smooth ones. Many such manifolds are known in each dimension
n > 8, and many of them (although not all) are homotopically equivalent to smooth
ones.

6. The SO,-fiber spaces with the sphere S** as base and the euclidean
space R", the disc D" or the sphere $""! when n> 4k + 1 as layer, are com-
pletely classified from the topological point of view by the Pontrjagin class of
this fiber. This is also true of a number of other examples. It has been long
known (Dold) that here there are only a finite number of different homotopy types.

7. If on a smooth closed manifold M" we are given an elliptic integro-
differential operator 4 which transforms a section of the fiber Fi, over M" into
sections of the fiber F, over ", then, as usual, it defines the “symbol’’ o {A).
This symbol is the isomorphism of fibers F; and F, extended onto #(4") and
then bounded on the subspace

“(M7) N\ M» = <(M"),
where 7(M") is the space of the tangent fiber over M" with layer R" and
M™ C7(M™) is the zero section. Since the space (M") and the section M" Z7(M")
do not depend on the smoothness on the manifold M", the ‘‘symbol of the operator
¢’’ is a topologically invariant concept; however, in different smoothnesses on
M" one and the same symbol o defines the operators Ay, 4, given in different
spaces but such that 0(4;) = 0{(4,) (the operators are defined nonuniquely but

with accuracy up to a completely continuous component in each of the smoothnesses).
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The well-known Atiyah-Singer formula expresses the index of the operator

in terms of invariance of the triple (F, F,, o), not dependent on smoothness,
and in terms of the Pontrjagin classes of the smooth manifold M". From Theorem
1 it follows that the index of the operator is determined only by the symbol, inde-
pendenty of smoothness on the manifold ¥"; the indices are the same for oper-
ators with a common (homotopy) symbol, given in different smoothnesses.

8. The nawral map 7;(BSO) — 7,;(B Top) is monomorphic, while the map
H* (B Top, Oy — H*(RSO, Q) is epimorphic.

9. The group of homotopy classes of the diffeomorphisms of a closed simply-
connected manifold of dimension not less than five, has a finite index in the ana-
logous group for the homeomorphisms (see Theorems 6.9 and 6.10 of [14]).

In conclusion I would like to thank V. A. Rohlin for advice and numerous use-
ful discussions. It should be noted that the proof found by the author for the invari-
ance of the Pontrjagin classes is to a considerable extent an extension of the line
of work by Rohlin and Thom [15,19] on this problem. I also thank S. P. Demu‘s’kin,
I. R. Safarevi& and Ju. 1. Manin for help in the many algebraic questions which
arose during the work, and A. V. Cemavskil for questions related to Theorem 6.

$1. Formulation of the results

The following theorems are basic to this paper from the point of view of
application.

Theorem 1. Let M, and M, be two smooth (or PL-) manifolds and let
h: My — M, be a continuous homeomorphism. Then

W' pi(Mz) = pi(dy),
where p;(M,), q =1, 2, are rational Pontrjagin classes of the manifolds M, and
M.

Theorem 2. Let M4* be a closed manifold, wmt4% g smooth closed manifold
of the homotopy type of M** x T™, where T™ is an m-dimensional torus, let
m M) = Z 4 ... Z, andlet h: WMH4E L MA%  T™ be a certain homotopy
equivalence. Then

(L (Wintin) R M%) @ 1) = t(3),
where L are the Hirzebruch polynomials and 7 is the signature of the manifold.

The condition 7y = Z + «+++ Z in Theorem 2 can undoubtedly be removed,
but we shall not do this here.

Now let W be an open smooth manifold of dimension n + 1, having the homo-
topy type of a closed n-dimensional manifold, and let us further be given a (pos-
sibly nonsmooth) transformation 7: W — W acting discretely and such that the

factor W/T is compact. The following theorem holds under these conditions.

Theorem 3. If n > 5 and if the group m; (W) is isomorphic to a free abelian

s

S
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group, then we can find a closed manifold V such that W is diffeomorphic to
V xR.

This theorem is proved in §§3-—8 and Theorems 1 and 2 for the smooth case
(see "§2) are derived from it. The case of PL-manifolds is entirely analogous
and requires only a combinatorial analog of Theorem 3, which is proved without
any changes with due regard to the author’s remarks in {14] (see {14], Appendix 2
on combinatorial Morse surgery).

Among other results which can be extracted from Theorem 3 and its analogs,
we mention the following.

Theorem 4. Let M" be a closed manifold such that 7 (™) is a free abelion
group of rank k. Then the smoothness on the direct product M™ x R with ¢>n
is completely determined by a stable tangent bundle which can take only a finite
number of values.

Theorem 5. Let M" be a smooth closed manifold, n\{M") = 7 a free abelian
group of rank k, and let M" have the homotopy type of a fiber bundle with torus
T' as base and layer M™™Y, where M"™' is a closed topological manifold. If
l<n~5, the covering H over M having the homotopy type of M*™* is diffeo-
morphic to the direct product M7 " x RY, where M? ™! is a closed smooth manifold.

Theorem 5 follows directly from Theorem 3.

The following theorem can be extracted in indirect fashion from Theorem 3 or
from a direct analog of it.

Theorem 6. Let S* CS™*2, n> 5, be a topological locally flat imbedding.
Then this imbedding is topologically equivalent to a smooth imbedding S* C §"*?
in some smoothness on S". In particular, the imbedding is locally flat.

The derivation of Theorem 6 from the preceding results will be given at the
end of the paper. In contrast to Theorems 1, 2, 4, S we shall here require some
additional discussion (see §9 ).

At the end of the paper ($10) ‘we shall also state without proof one gener-
alization of Theorem 5.

$2. Plan of the proofs of the fundamental theorems

1. The proofs of the fundamental theorems of the paper will be carried out
along the following plan:

1) We shall first prove Theorem 3 (see $43-8).

2) From Theorem 3 will be derived Theorem 1 for the simply-connected case,
and Theorems 2, 4, 5 (see §2). Itis well known that in Theorem 1 the general
case follows from the simply-connected one. Further, it suffices to prove Lemma

2.1 (below) only for the spheres G4k,
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3) At the end of the paper we shall give separately the proof of Theorem 6
on the basis of Theorem 3 and its generalizations ( see $$9, 10).

2. The proof of Theorem 3 will take up the main part of this paper. Here we
indicate the plan for deriving Theorem 1 for the simply-connected case and for
deriving Theorem 2, both from Theorem 3.

The following lemma is in essence contained in references [ 15, 16, 191, 1¢
was communicated to the author by V. A. Rohlin a rather long time ago.

Lemma 2.1. Let W be any smooth manifold homeomorphic to M** x R™,
where Y% is a simply-connected closed manifold. If the formula

(Le(W), [M*]) = v(M%),
always holds, then the rational Pontrjagin classes of smooth simply-connected
manifolds are topologically invariant.

Here L, are the Hirzebruch polynomials and 7 is the signature of the mani-
fold. We do not prove this lemma, considering it to be very well known from the
papers by Thom, Rohlin, $varc (see [15, 16, 17]), where it is used mainly, itis
true, for piecewise linear homeomorphisms.

Our aim is to prove the following assertion.

Lemma 2.2. The formula

(La(W), [M]) = (M%),
always holds under the hypotheses of Lemma 2.1. Moreover, this formula kolds
for piecewise linear manifolds and for “‘combinatorial’’ Pontrjagin classes.

From the conceprual point of view the derivation of Lemma 2.2 takes a
central place in the paper since it is precisely here that we use the fact that the
two manifolds are homeomorphic. The fact of the matter is that Theorem 3 by it
self has no relation whatever with the problem of invariance of Pontrjagin classes.

We here proceed with the derivation.

We use the topological structure of the manifold ¥ in the following way. The
ordinaty torus T™ ! can be smoothly realized in the euclidean space R™ D>
T™ ! x R; we consider the open submanifold i: ¥, C W, where W L= M4
T™ ! x R, where, moreover, the imbedding i: Wy CW is defined in accordance
with the homeomomphism W = M**¥ x R™ and the imbedding 7™ ! x R CR™. Itis
obvious that i*L; (W) = Ly (W) and that i«: H 4, (W) — H 4, (W) is an epimor-
phism. Therefore we can study the class of L (W) instead of the class of LyW).
Since ¥ is homeomomhic o (M4* x T™ 1) x R and since n;(M*4¥) = 0, Theorem
3 is applicable to W if £>1 orif k=1 but m > 1.

Later on below our discussion will be of a periodic nature. We indicate the

construction of the fitst period:

MANIFOLDS WITH FREE FUNDAMENTAL GROUPS 7

a) On the basis of Theorem 3 we can find a closed submanifold Vycw,,
such that W, is diffeomorphic to V| x R; therefore Ly(VW,) = L, (V D
b) We coansider the covering over the torus T™ 2 x R — T™ ! and from this

covering we construct the covering over V|, where V| has the homotopy type of
Mék x Tm~1
I’l — Vly

D1
and, moreover, V| has the homotopy type of ¥ 4% x T™"2 and 7 is the group of
the motions of the covering. Obviously, Ly(V;)=p} Ly(V ) and the map

Dis ¢ H&h(f/i) ‘*HAk(Vi)
is such that H (V) =Imp;, + A, where L;/4A =0 for a suitable choice of 4.
c) We now denote 171 by W, and we note that Theorem 3 is once again applic-
able to the manifold W, if £>1 orif m - 1> 1. Thus we have the “period’’:

WIDVI?—V1=W2DV2<;-V,=W3,
I S I * |

Itis significant that dim ¥, = dim W, — 1 while the class of L, is essentially
unaltered.

Further, from the manifold ¥, we once again seek, as in the first period, the
manifolds V, CW, and W;= [72 and we go on in this way until we reach the
simply-connected manifold ¥ ,, of dimension 4k + 1 of the homotopy type of M4¥

If 4k >4 we can once again apply Theorem 3 to W, =V, x R and note that

(Le(Vm), [Viml) = (La (W), [M**])
by construction, and that
(Le(Vm), [Vm]) = (M)
by the Hirzebruch formula, since by construction V,, has the homotopy type of
M** and is closed. Hence we obtain Lemma 2.2 for the case 4k > 4.

If, however, 4k = 4, then here we note that the manifold V-1 has the homo-
topy type of M4% x S!. Then from Theorem 1 of the author’s paper [ 131 it follows
that (L, (V -}, (MAH]) = 7(M*%), and once more we obtain Lemma 2.2 for k = 1.

Theorem 2 is derived analogously from Theorem 3.

3. Let us derive Theorem 4 from Theorem 3. We consider a smooth manifold
¥, homeomorphic to ™ x R™ for large m. We smoothly imbed M" CW (see [5]).
The neighborhood of " in W is the space of the SO-bundle 8 such that

B a(M) = a(W),
where a(X) is the tangent fiber of the smooth manifold X.

We denote by ¥ = V"*™71 the space of the SO-fiber B with the sphere 5™7!

over M as layer. From the manifold ¥ we discard the closed neighbothood of the
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manifold ¥" in ¥, homeomorphic to M™ x D™. What remains will be homeomorphic
to
Mr X Smt X R = W,.

By Theorem 3 W is diffeomorphic to ¥ x R, where V| is a smooth closed
manifold of the homotopy type of M" x S™ 1. However, ¥ is h-homologic to the
manifold V, the bundle space of the spheres 3. Since my=Z +++++Z, V,is
diffeomorphic to ¥ and the whole manifold W is diffeomorphic to the bundle space
of B with R™ over M™ as layer. The theorem is proved.

Note that for M* =S} the tangent fibers a(S1) and a(W) are always trivial.
Therefore ¥ =S!x R™

4. We note that Theorem 5 follows formally from Theorem 3 for the case when
the dimension of the torus is 1; for this we must examine the manifold W, being
the covering over M" with motion group Z. The general case is derived by apply-
ing Theorem 3 successively to this situation.

$3. A geometric lemma

The purpose of this section is to prove a lemma of a type which is rather
usual in the theory of smooth imbeddings. The single feature which distinguishes
it from the ordinary case is that we need it for the non-simply-connected case,
although this does not give rise to significant changes in the proof.

Lemma3.1.* Let (W**! V™ be a manifold in Wr*l = W, one of the compon-
ents of whose boundary is V™ = V; W**! can be open. If the imbedding m (V) —
m (W) is an isomorphism and if the group m (V) does not have a 2-torsion and all
the groups m;(W, V) are null when i <s, then every map of pairs, f; (DM, sh —
(W, V), is homotopic to a smooth imbedding if 3] +3<2n and 2l -n +1<s.
Furthermore, under the same restrictions on the dimensions, every finite collection
of maps fi: DY, SH W, V), i=1,---,q, is homotopic to a system of pair-
wise nonintersecting smooth imbeddings.

Proof. We begin by considering the first part of the lemma, on the mapping of
one object.

Let {: (D', SH— (W, V) be an arbitrary mapping of pairs. We consider the
universal covering ([f’, I;) and the covering pair map f: (D, Sl)ﬂ—v (W, V). Since
the pair ([f', l;) is simple-connected, we can take it that the map f is a smooth im-
bedding (see [23]1). Furthermore, the map f, from generality considerations, has

only two points of self-intersection. These points of self-intersection form a sub-

* The author is not certain that this lemma cannot be extracted directly from the work
of Haefliget 15| or of J. Levine. The lemma will be applied only for n =2l +1 and n = 21
(see {8), and thercfore the reader should not pay too much attention to it.
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manifold #* CD'*!, in general. with a boundary, where t = 2l —n + 1. The map
f/M* — W is a two-sheeted covering. Let us show that this covering is trivial,
i.e.

M= MU M,
FMi) = f(Mz).

and

Indeed, if there were a connected component M§ CM*® on which the map [ were
two-sheeted, then the image f(M}§) CW would be such that there would exist an
element € 7y (V) = 71 (W) such that
t {
R ~ (l(Mo ) = Mo ,
where a: W — W and a?/M} = 1; therefore we would have a2 =1, which contra-
dicts the hypotheses of the lemma.
Thus M* = M{ UM5 and (M) = f(MY.
On the manifold #f | we construct the Morse function g, equal to zero on the

boundary dM} CS'. After passing through the first critical point g = % the topo-

1

logy of the “‘region of large values” is changed. Let us show, by analogy with

Haefliger [5], that we can correspondingly change the map

fo (D, 8) — (W, V),

so that instead of
t
Mi={g=0={g=zn—2¢}
we shall have the self-intersection manifold

M—iz {g>z0+8}1 &> Oy
for the new map

f . (Dl+i’Sl) > (I,V’ V)’

homotopic to the map f.
Consider the region G = {g <x4 +¢}. Let the index of the point (g, = %,
grad g =0) be k. Then

G = M X I(0, 1) Dt X Dtk
h

h: 8D* X Dt-k —» oM! x 1,

Skt = R(8D* X 0) = oM},
Dg= k(D" X 0) = DM,
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Consider the disc D*¥*! ¢ D1 where AD**! DEUD® is such thar D**InMY =0,
D M= Dy

(in the general position) and

DM 9D+ — Df
(in the general position). Let T be a neighborhood of the disc f(D**!) in W and
Iet Int T be its interior. We set

W =W\ IntT.

Obviously W' is diffeomorphic to W; we have “squeezed out’’ the interior of
T from the boundary AW = V. Retaining the former notation we denote W' by W
and ¥’ by V.

Consider the abstract disc D and the submanifolds M}, M} in it. From
D! we remove the set Dk*1 cpitl together with its “envelope’ f !f(D**1),
and in so doing we also have removed the neighborhood of the disc

.3 ¢ =R
f(Do) N M, = D,

from D'l The topological effect of this operation is that the neighborhood of

1+1

the disc ¥ is removed from the disc D'*! in such a way that
9Dy = Dy () 9D,
Therefore the boundary of this new body is S* x S!™* and the body itself is
D¥*1 « S'%. we have
D' = DI (D) = D X S,
D' NOW’ = Sk X S+*,
The disc D¥*!1 0 CD ' defines an element of the group
i (W, 0W) = nppy(W,0W) =0, k+1<s.
We consider a disc D*¥*2 CW' =W such that
ODF+2 = D DR,
Dr+2 oW’ = Dh“)"z ,
DM (D) = Dipt = (DA X 0)
(all the intersections are transversal). We perform surgery on the manifold D'
along the disc DF*2 whereby the boundary undergoes Morse surgery over the base
cycle S x 0. After the surgery we again obtain a map of the disc, f—’_: Dt
W =W', while the manifold of the singularities is “diminished’’ by one critical
point of the function g: M} — R.
More precisely, we have the map ' : D' — W 'induced by the map f: D**! —
W, such that
f D" — W, OD" = Sk X Sn—h D/ = DhH X §n—k

and the singularity manifold for f' is diffeomorphic to the region fg>xy+elon
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M$. On the disc D*¥* x 0 the map ' is one-to-one and there exists a disc
D*¥*2CW' such thar
ADH+2 = f (DA X () U D+

and

D’;‘“ c oW, DEENFP (D)= F (DFH X Q).
We consider the abstract disc D**? x D}7* .where aD*%2 = pkn yDE*L
and we paste it on to D’ in the following manner:
A=D'UD"* x D"* h:Di*' x D'™* D' = D' x 87,

e .

where h(D’fJ'l x0) =DE*L 0 CD’; let
B = A\ [D*2 X Int DVR].

The result of the pasting is diffeomorphic to the disc B = D'*!, In a natural way
there arises the map f: D'*1 W,

D =B = A\ [D*2 X IntD*], A = D’ Dk42 X Di-k,
h

constructed in accordance with themap f': D' — ¥ ' and with the imbedded
disc D¥*2cw’,
It is easy to see that the pair map
Fi(DH,8Y) — (W, 0W') = (W,oW)
is homotopic to the map
f (DL SY) — (W, 0W)
and has self-intersections “more simply’” at one critical point of the function g
By iterating the process we arrive at a map without self-intersections, which
proves the first part of the lemma.
In a completely analogous way we can kill the intersections of the pair of
imbeddings
fi, fz: (D, 8Y) — (W, 0W).
This proves the second part of the lemma. The lemma is proved.
$4. Analog of the Hurewicz theorem
Let f: X — Y be amap of complexes such that
fo i 0 (X) > (Y)
is an isomorphism; let f itself and the corresponding covering map f X— 7 on
the universal coverings %, ¥, induce epimorphisms in all the dimensions:
Hi(X) 5 B (F) -0,
Hi(X) 5 my(7) 0.
The following lemma holds under these conditions.

Lemma 4.1. If the map f*: nl.(X)——» n],(Y) is @ monomorphism in all dimen-

sions j <k, then it is an isomorphism in dimensions j <k and is an epimorphism



L S. P. NOVIKOV

in dimension k, and the “Hurewicz theorem’ holds for the kernels:

a) Kor/( W Ke f(Hk)~Mk,

b) My/Zo () M, = Ker f7#,

where 7 =m,(X) =n(Y), 7.o(n) is the kernel of the augmentation e Z(m)y — 2
of the numerical group ring, and the homologic kernel M is interpreted as a
Z (7)-module.

Before proving this lemma we point out those situations in which it will be
applied.

1. Let f: M} — M3 be a mapping of closed manifolds of degree + 1 and let
71 (M) = n1(M3). Then the map f: 1, — M, of the universal (and of any other)
covering has degree + 1 as the natural map does. Therefore f induces the map

f. of open homologies and of f™-compact cohomologies; moreover,

iDFD () ==z, z=Hy(M3).

Consequently, . !
H,(01,) = Ker j. 52 4+ DJ*DH, ().
It is evident that Lemma 4.1 is applicable here.

2. Let W be the smooth manifold from Theorem 3 ( see €1y and let i: ¥V CW
be a connected submanifold separating W int two parts and realizing the base
cycle of the group H ,(¥) = Z, and, moreover, let it be such that 7,(V ) = 7,(W).
We denote the “‘right”” and “left’’ sides of W with respect to V, by 4 and B,
respectively, where

AUB=W, ANB=V,
Then, the assertions a) and b) following below are valid.

a) The imbeddings i;: V; C A4, i: ¥V CB andi: ¥V C W satisfy the hypo-
theses of Lemma 4.1.

b) On all the coverings we have the direct expansion

Keri, T HY — Ker i, 2% + Ker l(Hh)
and the maps
: Ker1\8W s H, (f?) .
fhe: Ker 00 5 H, (A)
are monomorphic, while the images LZ*Ker Ll,H’ﬂ) and L1 Ker i (Hk) coincide with
the kernels of the imbeddings Hk(A) — [{k(W) and Hk(B) — Hk(W)
We prove assertion a). Since
(W) = m(A4)*nwom(B)
and m,(W) = 7 ,(V ), we getthat 7y(4) = 7V ) and 7 (B} =7 (V).

We consider the basis xq,--+, ¥, € I/, (W), which we realize by the cycles
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z1.--+, 2, €EW. Then we can find an N so large that TNz (oo -, TNz all lie
wholly in B C¥. Since T, is an isomorphism, these cycles form the basis of the
group M, (7). Let x € H/1(A) and let z C A be acycle representing it. Then z
is homologous in ¥ to the linear combination Sa;T"z; by means of the membrane
¢ CW. The intersection ¢ (1 V, is the cycle Z CV; representing the class of
homologies ¥ € /1, (V]) such that x =ij,¥. The arguments for R and for the
whole of W are identical.

We now consider the coverings }i, ﬁ, f’l, ' and the covering imbeddings
£, . Note that the homologies H 4 (7)), H(A), Hy(B), H (P are finitely
generated Z (7;)-modules since 7 is a Noetherian group (my=Z ++-++7) Fur-
ther arguments are identical, but instead of the basis of the group we must choose
the 7,-basis of the module.

The same is true of all the intermediate coverings. Therefore Lemma 4.11s
applicable here.

We prove assertion b). If the intersection

Keri{## n Keri s (Hp)

is nonempty, we can find a cycle z C Vl which is homologous to zero in A and B.
The membranes define a cycle ¢ in I of dimension k + 1. This cycle ¢, accord-
ing to the above arguments, is homologous in 7 to the cycle & C such that
N Vl =6, by means of the membrane d C 7. The intersection d ) 7, is such
that

2NV, = enVy =z,
and z is homologous to zero. Therefore

Keri P nKeri{ =0
on all the coverings.

We now consider the kernel of the imbedding H y( 2) — [ k(ff’) Let z be a
cycle in 4, homologous to zero in W by means of the membrane c¢. Then, z =
cN V1 is such that z = L“zl and z; € Ker 12([;1) The assertion is proved.

Proof of Lemma 4.1. Let us first consider the “‘simply-connected’’ case of
the map f: % — 7. Let C denote the cylinder of the map f, shrinking down to 7.
We write down the exact sequences

Hy (R) — H; (9)— Hi (€, X) 5> Hia (X)
g tH 1H tH
7 (X) — i (F) = u (€, X) = miy (X).

Since f,: ni__l(,\?) — ni_l(,\’}) are monomorphisms when i < k,

8: 1 (C, X)—>my (X)
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trivially. Since fo 1l (X)—» i (Y) are epimorphisms, 9: I (C, 2y — H - (X) are
monomorphisms on the kernel Ker ftHi=1 Because HA = dH, then for the first i,
where 7{C, X) #0, we have
m (C, X) = Hi(C, X)
and 7/ is an isomorphism: . ..
n; (C, X)~Ker FHi-D,
But this can be so only when i > k + 1; otherwise, Hd = 0. When i =k +1,
Ker /( ® = Ker fH#

and when i <k +1 the map [ 1(X) —mi-(¥) is an epxmorphxsm

Following Serre, let us convert the map ¥ — ? into the fiber f X £ Y,
where X, Y are, respectively, of the homotopy type of X, Y, while f is of the
" homotopy type of f. From the exact sequence of this fiber in homotopies we see
that

n, (F) = Hy (F)

on the basis of the preceding results.

= Ker f{™,

We consider themap f: X — Y and convert it into a fiber; the layer F' is

of the same homotopy type as F, and
7, (F) = Ker f("”)

moreover, m;(F) =0, i <k.

Ker f(Hk) Mk;

Cousider the spectral sequence of this fiber. Obviously, Eg'k =M./Z (MM
and E9'' =0 when 0 <i <k
Since f,: Hy4y(X) — Hp+y(Y) is an epimorphism, the differential

dpas: EZH 0 Eg’k R E:“ O—Hk—H(Y)y

is trivial. Therefore
E%t = My/Zo(r) My
Obviously,
Bk = Ker f&n) = M./ Zy (1) M.
All the assertions of the lemma have been proved.
&5, The functor P = Hom, and its application to the study of the
homological properties of maps of degree 1

Let 7 be a Noetherian group, K a ring or a field, K(7) a group ring with
coefficients in K, ¢: K(7) — K an augmeatation, K(n) = Ker ¢. We shall take it
that K is either 7 or'a field. Let M be a finitely-generated K (#)-module.

Definition S.1. By the module PM = Hom (M, K) we mean the submodule
PM CHom (M, K) consisting of linear forms h: M — K such that for any element
x € M the function f; (a) = (h, ax), a € m, on the group is finite.

We note several simple properties of the functor P = Hom,.

A T
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1. The module PF is free for a free module F.
2. For a projective module there exists the natural isomorphism P2 M — Py,
3. There always exists a natural map PZ M —> P2M which, in general, is not
monomorphic and not epimorphic. We denote the kernel of this map by M_ <M
Then
0—> My — M — P*M — Coker P2— 0.

Example 1. Let p: # — M" be aregular covering with motion group mo i — .
The homologies H,(M, K) =N, are K{(n)modules, finitely generated if the group
7 is Noetherian and M" is a compact manifold. There exists the homomorphism

Ni/l\’ioo—->PNn_i,
established by the intersection index.
Example 2. Let f: M} — M3 be a map of degree + 1 and let
(M) = nu (Mg ).
By f: M, — i1, we denote the map of the coverings 1, — M7 and My, — M3
with motion group 7. We set
M; = Ker /% < H; (M)
By analogy with Example 1 we have
h
Mi/Mioo——*PM'n——iv
(ha,y) = 2oy,

Let us now consider derived functors of the functor P = Hom .. We shall
denote them by Extl, i > 0. Note that in contrast to the ordinary Hom, the functor
P =Hom, is not exact even for a field K. Therefore it is possible that

Exti(M,K) +0, i>0.
Example 3. Let My be a module with one generator u and let au = u for all

a€n If =7 +++++7 is afree abelian group with n generators, then

Exte (Mo, K) = M,
and )
Ext, (Mo, K)=0, i<<n
Let us prove this fact. Consider the triangulated torus T" and the covering
R™ — T" with the group 7w =Z + ++++ Z. Let F; denote the free 7 (m)module of

i-dimensional chains on R". We have

i 5] £
0> Fr o Froy 2 = Fy—> Fo—> My—0,

and, moreover, the sequence is exact since

Hy(Bn) =0, i>0, Hy(R*) = M,.
We apply the functor P to the resolvent: -
PF, < PFn_y< ...« PFy<PF,,

but PMg = 0 and the complex written down is a complex of compact cochains for



17 S. P. NOVIKOV

R"™. Therefore n
H? (B, Ky= Mo

and
HY(R", K)=0, i<n,
and, moreover,
H* (R, K) = Extc (Mo, K).

The following simple lemma holds.

Lemma S.1. If the module M is such that Exti(M, K)y=0, i>0, and if
7=7 4.4 7, then the module PM is stably free, i.e. one can find a free
module F such that PM + F is a free module.

Proof. Since 7 =7 ++-+«+ 7, we can find a free acyclic resolvent of finite

length

0 — /“/ —> ]"l_q---P P el 1'1\) - J, e O

But, by the hypothesis of the lemma, the sequence
() P/’H——PF(_M— .. .4-—PF0-<“'P:U
is exact. The functor P possesses the property that the modules PF; are free.
Furthermore, the functor P is “‘semi-exact from the right”’; it takes an epimor-
phism into a monomorphism. Therefore the kernel of the mapping PFy— PF; is
precisely PM. By virwe of the properties of a free module we have the equality
Pty 4 PFy == PI'y + PM,
provable by the usual means; moreover, the PF, are free. The lemma is proved.

Let C be a complex of free or projective modules:
. Lo 2 U4
C == (-‘-‘*1‘191‘174—&..—+F1——>Fn}.

Then the groups HAC) =N are m-modules. Consider the complex PC:
Al 6 . 6 6 +
{<~/’/’;<—-P/‘1.,.14—...‘—[’[[\}. §=Po
whose homologies we denote by I i(C) since they have the sense of ““cohomo-

logies with compact supports’’.

The following fact is known: the spectral sequence {E,, d.},

P, , r -
E= > E™? EP7=Ext(Ng K)
P20, im0
exists and the module S
>
pdg=l

is associated with 1/ (C).
This fact is ‘‘the formula of universal coefficients.”’
As is shown by examples, the functor P is such that the modules H;(C) =N,

influence the #5(0) for very large k (see Example 3). We shall be interested in

complexes which in some sense are manifolds and admit of some geometric reali-

zation.

T

]

e
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The following are the necessary and sufficient conditions for the realizability

of the complex
C = {FniFnM,i...—a*Fn}

as a covering with motion group 7 over a finite complex:

a) freeness: all the f; are free modules;

b) Hy(C) =M,y (see Example 3).

The necessary “‘geometric’’ requirement on the morphisms of complexes
f: Cy — C, is then that

Fo Iy = 11(Co)

is an isomorphism.

Later on we shall need manifolds and maps of degree 1. For realizability as
a homological manifold, of course, we must have that the complexes of modules

i

oo o
C A, - Fo=r oo~ Fy}

and

PC o A PF, e Plyy . . = P},
where 8 = PJ, are “homotopically equivalent’” in the algebraic sense (what this

means is very well known). This gives us the Poincaré duality laws:

DHA(C)= "7y, i=0.
Furthermore, if we wish to obtain the duality law in a form connected with coho-
mological multiplication and the cut operation, we should require that the complex
C be a coalgebra, etc. We shall not formalize exactly all concepts we need. Note
that for algebraic complexes obtained from the trian gul ation of manifolds we have
the following: for maps of degree A, f: ] — C% we can define the operator
Df*D: C3 — C1] such that
feDi*D: Ci—~Cy
is a multiplication by A; however, if A= 1, then
CF == Ker [+ Df*DCY
Therefore, here there arises the complex Ker f composed of projective modules
and such that the complex P(Ker f) is algebraically homotopic to it. Conse-

quently we have the duality law
D: Hy(Ker )= H" (Ker [y,
and, moreover,
H;(Ker f) = Ker f(72

and

HC"‘—'I' (Ke[‘ f) == Coker j'n(Hc,l_i)’
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where the kernels and the cokernels are taken for the map of the complexes them-
selves, [: C% — C3. Therefore we can apply separately the Poincaré duahty
laws and the ‘‘formula of universal coefficients’’ to the kernels Ker f o and to

the cokernels Coker f*(/]), as was already clear, of course.
The following theorem holds.

Theorem 5. 1. If f: M7 — M3 is a map of closed manifolds of degree + 1,
n =2k, while f: Ml — Mz is a covering map, where the M are regular covermgs
+ 7, and if the kernels M, = Ker f(Hs 0,

is a stably free Z (m)-module,

over M} with motion group m = 7 +
s <k, then the kernel My = Kerf
Proof. Since all the M, = 0 when s <k,
Exts (M, 2) =0, s<k,
and therefore, by virtue of the “formula of universal coefficients’”” mentioned
earlier in the form of a spectral sequence we get that

Coker f'(H o =0, sk

Since
Coker /'(H ) Kerf(H"“) 0, s<k,

all the M,__ =0 when s <k, n =2k, and all the M, = 0 except for ¢ = k.

Consequently, by virtue of the “‘formula of universal coefficients,”

Coker f‘(H = Exti(M,;, K).
But
Coker 7™ _ M, =0, ¢>0.
Therefore Exti(M;, Z) =0 for all ¢ >0. By Lemma 1 the module PM, is stably
free, PM, = M,. The theorem is proved.
_Inthe case of odd n = 2k + 1, we again have f: M} — M5 of degree + 1, and
f M, — M, is the map of regular coverings with Noetherian motion group 7.
Theorem 5.2. If M, = Ker ff”s
a) PMy == Mps.
b) Ext; (PMy, Z) = Extt" (M, Z), i=1.
c) The sequence
0—> Ext} (Ms, Z)— My "> PPMy— Extd (M4, Z)—0
(M0 = Extl (My, Z), Coker P? = Extc(My, Z))

.0, s<k, the following relations hold:

is exact.
If Exti(My, 7) =0, i >3, the module PMy,, = P?My is stably free
(m=7 +-0et 7).

The proof of this theorem is obtained very simply from the Poincaré duality

.0 R
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law
k+1)

D:M,= Coker/

D: Mg, = Coker f'(H )

and from the formula of universal coefficients in the form of a spectral sequence.
Indeed, since M; =0, j <k,
ot
Coker e’ = PMy = Mei,
and we get item a). The isomorphism in item b) is established by the differential

Jz, where

dz: E;Hl,i_>E;Z,i+2
, I o
Exty(My., Z) Bxtd® (M, Z),

o (HEYD
since My,; =0, j >2, and Coker f*"" ¢

from the spectral sequence of the formula of universal coefficients, since

P2M, = PMyy = Fk+1 o’

=0, /> 2. Item c) also is obtained

since the map

P:M, — Ext (M, Z)
is d,, and since the module

Kerd, + Exts (M, Z)

is associated with the module
'(Hki-l)

]l[k = COkOI‘f

The stable freeness of the module P2M; = PM) , follows from items a), b), ¢) and
from Lemma 5.1 if

Exti (PM,, Z) = Ext?* (M,, 2) =0, i>1.
Theorem 5.2 is proved.

Remark. For maps [: M} — M3 of degree + 1 the formula

e
Coker f'<H°) = Hom, (M, Z),

always holds on the coverings f: ﬂ}l — ﬂ}z if M; =0, j <k, whatever be n and k.
Corollary 5.1. If in the hypotheses of Theorem 5.2, w=Z + Z, the module
PMy .1 = P2M,. is stably free. (This fact is true also for the case w=Z, but it is
trivial.)
Proof. If n=Z7 + Z, then Extf_.(Mk', Z) =0 when { >3 for any module M. By

virtue of Theorem 5.2, we then obtain our assertion.
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£6. Stable freeness of modules of kernels under the hypotheses
of Theorem 3
Let V, EW be a connected submanifold separating W into two parts 4, B,
where
AQNB =YV, AUB=W.
We denote the imbeddings ¥, C 4 and V; CB, as we did in §4, by iy, i, and _
the imbedding of universal coverings over V; of W, A, B by 1: V{ CW, i;: v CA4,
b 171 CB. Here W is an (n + 1)-dimensional manifold having the homotopy type
of the closed manifold M", the group 7 = 7y (W) is Noetherian and a discrete

transformation T is given on W; moreover,
(Vi) = u(4) =m(B) = (W)
and the factor W/T is compact. The following lemma holds.

Lemma6.1. If w=Z + ...+ 7 and if the kernels M; = Ker i1 are trivial
when j <k, then when n =2k the modules
’ (8) " A
M, = Keriy, , Mp=Keri,.
are stably free. However, if n =2k +1 and if

(g
»

)
M= Keriy, =0, j<k,

7

Mj,-—': Kel‘iz(’:j)=0, ]<k+1,

then the kernels Mk' = Ker ig”,k), M,:“ = Ker iZ“aT"*’I) are stably free. In both
cases, under the hypotheses of the lemma there holds a natural isomorphism
established by the intersection index of the cycles M,: =PM’ Py
ne

Proof. Let n = 2k. By Theorem 5.1, under the hypotheses of Lemma 6.1 the
module M, = M) + M} (see $4) is stably free. Therefore both modules M, and
M) are projective, and since n=Z + «+++ Z, M; and M) are stably free. As we
know, M, is the kernel

2 (H (mg)
Ker i, k)zKerz k2

Since N
~(Hy) ~A*HT)
Ker ¢, k' — Cokeri ¢ = PM,

(see §5) and since both modules M,: and M,’; have a zero intersection index,
each one by itself, M, = PM; aad M = P, whence the lemma follows for
even n = 2k.

Now let n = 2k + 1. We first prove that under the hypotheses of the lemma,

the kernel
’ ~(H
My, = Keri,» ee)

e
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is trivial. Because
&(Hf) o

Ker i — My, = My + My, = Coker 7'’ = PM, = PMy,

we have
., h , ”
PMy=~ My, + M.y,
' " ' .
moreover, (hx, y) =x °y, where x € Mk+1 +Mk+'1’ ¥ €' M, =M, and x oy is ihe
intersection index. But the intersection index M, OMk+ is identically zero.

4
Therefore Mk+l =0.

Let us take a sufficiently large integer s. Then the intersecton TV, NV,

1

is empty. We denote the region between ¥V, and T°V| by Q and we denote T°V,
itself by V'; 30 =V, UV '. Here we have considered that T°V; C A.

Consider the imbeddings j: f}l C@, it V' C@ on the universal covering V.
We bave (for sufficiently large s):

N

My, q=Fk,
Kerj;(H‘l) :{0, g+k--1,

M}:«H’ q=k+17

Cokerj(‘Hq)z v(_)’ 9Fh
2s Mksz,

0, g=Fk+1
ie  Me= M, g=k4-1.

q= k,
Coker j:(Hq)z{

From the above equalities we easily get
H,(Q,Vi)=0, q=Fk k41,
Hk(Q, Vl)::-f’Hkﬂ(Qv Vl)leh
H,(Q,V)=0, qFk+1 k42
Hk+1(0, V’) szm(Qy Vl)leHl-
Therefore
A 0, k, k1,
Hz((),voz{ R
I M‘N-ly q:k,k+1,
A 0, k , k ,
Hf%(Q,V)z{ gkt k2
Mg, q=k4+1, k4 2.

By the formulas of universal coefficients for Ilg(@, V),

My, = PM, = H; (Q, V1),

dy: Exti(M1, Z)— Exti* (M}, 2)
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is an epimorphism when i =0 and an isomorphism when i > 0. Recall that

A

My~H(Q, V)= Hepa(Q, V1)
and
, , +2, g1
B = Ext? (H,,2), d:Ed 7 —>E T
Since 7=27 + ++-+Z, Ext! =0 when p > rkn. Therefore
i ’
Exte (Mg, Z)=10, i>0.

By Lemma 5.1 the module PM, is stably free. Since My = PM{,,, the same
is true also for ¥ . The lemma is proved.

Remark. In proving the acyclicity of the module M) we made use of the fact
that Exti = Exti‘rz and that Ext? = 0 when p >rkn. In reality, the triviality of
the modules Ext: (M), Z) when i > 0 can be proved differently for any Noetherian
group 7 under the hypotheses of Lemma 6.1.

$7. Homological effect of Morse surgery

Let ¥ have the same meaning as in the formulation of Theorem 3 (§1),
13
V,CW, W=A1JB, ANB =V;, and, moreover, let the imbeddings

i12V1CA., iz:V;CB
be such that

m(Vy) = m(d) = u(B) = m(W)

and
() ()

Keriy, =0, £k <'p, Keri,, =0, k<<n-—p.
We set
) )
Keriy,” = M., Keris. | = Mn_p.

Both modules M_, and M, are Z(a)-modules. According to Lemma 4.1,

’ ~(H_ ) “ A{Hp_p)
M,=TKeri.?, Mup=XKer Psa ' ¥

. . = 1 .
On the universal covering ¥ between M, and M,_, there exists a scalar prod-

uct, integral and n-invariant, generated by the intersection index of the cycles.

By virtue of Lemma 4.1,
,Hp) ' '
Keriy, = Mp/Zo(n)M)
and
(Hn_y

. ) 4 17
Ker iy, == Mn__ /Zo(ﬂl)Mn._p,

We choose a m-basis @, ---, & in MI:. Let p satisfy the hypotheses of

Lemma 3.1. We find discs D’;*l, e D‘;“ C A such that their boundaries

i
:

o AT
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dDP+1 C 94 = V| realize the elements @, ---, Oq € M,, and we paste on the

handles
B =BUT:U...UTq,
A = AN (IntTyU...Ulnt Tq),

where the T; are the neighborhoods of discs D;’“ in A. Then it is easy to see
that for ¥y =dB ' =34', the kernels
Keri i — M;
and
Kerf;(.HJ') = M;
will be arranged thus:

Ml=0, j<p, Mj=M; i>p+1
=0, j<n—p—1, a =M, j>n—p

We denote the scalar product between the modules M, and My_, by (,).
Let B,,--+, B, be the mgenerators of the module M, _,. The following lemma
then holds.

Lemma 7.1. The module I'l\l",',_p_l is described in the following manner: its
generators 851 ARRTN a'q are found in one-to-one correspondence with the generators
of the module M,, while the relations are given by the generators of the module

‘M "

n-p as follows:

2 (@5, om) aom=0.
m=1,...,q

Proof. The geometric meaning of the generators am is that they are the
spheres S%7P-1 C V, linked with the spheres aD,’,’l”’S V, removed from V. It
is obvious that the elements ’C\LJ,,, are 7-generators in M’r’-z—p—l since M:_p_l =0.

Let us consider the geometric situation on the universal covering W.A The
geometric meaning of the relations we have written is obvious, since on W O ¥
the cycle [3; has intersection indices with the cycles aa,,, a € 7, and after re-
moving the neighborhoods of the cycles @, from V; the cycle f3; determines the
relation indicated.

That this is a complete system of relations in our case ensues from the fact

that it is a complete system of relations in the module

11 Mppy C H, pa (A')~
The factis that A’ is obtained from A homotopically by a simple removal of the
discs D2+l It is easy to see that

np(A4, Vi) = Hpu(A, Vy).

~
. Y . . .
Since the relation in 1, M;l’ p_y arises at the expense of intersections of cycles
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from /{n_,,(,Z) with covering discs [3,’;*1 C/’i and since the map Hn_p(i;l) —
Il ,_,(A) is epimorphic, the system of relations written down in the lemma is com-
plete. The lemma is proved.
$8. Proof of Theorem 3

Let n >5. We retain all the notations for ViCW, A, B, iy, iq 8, iAl,iAZ, i
M M, etc.

The proof of the theorem is carried out in three stages.

Stage 1. We achieve that ¥y CW is connected and that

(V) = my (W).

Here no constraints are imposed on () except that it be finitely determined.

Stage 2. The homotopic kernels of the imbedding V,CW in the dimensions
k <[n/2] are killed by surgery, while on the basis of Lemma 3 the kernels
Rut ”
Ker i, = M,
also are killed for odd n =2t + 1. Here we use the fact that the fundamental
group is Noetherian.

Stage 3. By pasting the one-sided handles ¥V — Vit §t x §™~* onto the
manifold V; CW we "'stabilize’’ the module M — M, +F when n =2t ot
n =2t +1 and we achieve that the kernel M, becomes a free module over Z ().
Here we apply the results of Theorem 5.2. Next, applying Lemma 3.1, we remove
M, and M/, for n =2t +1 and M, and M, for n =2t by surgery on the =
free basis from M, . On the basis of Lemma 7.1 the kernels in the remaining di-
mensions (including M, _,_;) remain trivial. As a result of the surgery we obtain
a closed submanifold ¥ CW which is a deformation retract. Hence at this point
Theorem 3 follows trivially: we can find a number k such that T*V nv = f. The
neighborhood of the manifold TkV in W is homeomorphic to ¥ x R. According to
the preceding discussion, in this neighborhood we caa find a smooth v'cw
close to TkV, of the homotopy type of W. A smooth cobordism lies between |4
and V'. Therefore this region is ¥ x (0, 1) and V' =V because Whim) =0,
a=7 +.vo4 7 (see [1+2:2]). Setting up such regions for all k, we see that
W=VxR.

The theorem is proved.

Remark. If in stage 3 the surgery had been performed not on the free m-basis
in #, but on any other one in accordance with the projection F — M/, then
after the surgery we would have obtained the module of the relations R, 0 — R —
F — M,’ —»0, where R = (ﬂ\i,'“ (see $7) for the reconstructed manifold. By virtue
of Lemma 7.1, for this manifold we would have had that

M" 7= PMi, = PR.
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§9. Proof of Theorem 6

Let S™ C5"+2 be a topological locally flat jmbedding and let n >5. Note
thac the difference G = S™+2\S" is an open smooth manifold in which the “homo-
topy type at infinity” is that of S" x S1. We construct a smooth closed manifold
¥ C G of the homotopy type of S™ x S!, which bounds in §7+2 the manifold D of
the homotopy type of S”, containing the ‘‘knot’” §™ CD C §n+2,

In the case when we already know that the knot 5" C S7+2 s globally flat,
i.e. it has a neighborhood U D §" which is homeomorphic to §" x R2, this problem
is easily solved with the help of Theorem 3: namely, we set W =UN\S". Then W
is homeomorphic to 5" x S! x R and is smooth. By Theorem 3 we can find a
smooth V CW such that ¥ is diffeomorphic to ¥ x R. Obviously V bounds in
UDW>SV the manifold D of the homotopy type of S" CD, n>5.

However, if global flatness is pot known a priori, then we consider a de-

creasing sequence of smooth manifolds with boundary,
UoUy>...oU;>. ..,
such that U; > S™ and ;U;=S".

We set W, = Ui\S". Obviously the group H,,;(F;) # 0, and for a number j;
large in comparison with jo > 1 the image

Hart (W3) = Ho (W5,)
is isomorphic to the group Z.

If the numbers jj, j; are sufficiently large, we can realize the base cycle of
this image inside W;, by the submanifold ¥y CW; ; it is easy to see that for suf-
ficiently large j; = jo>> 1, the map of the imbedding V, CW;/ is ““made up’’ in
the same way as the map ¥} — 5" x S More precisely, this signifies that for a
large number j we can find a natural map W,--q—i) 5" x §1 (which in the case of
global flatness can be considered as a simple projection onto S" x § 1y which by
the same token induces the map g;, : Vi, — S* x S! for j; > j. The composition of
the imbedding ¥ CW; and of g;: W; — §" x S'isamap fi: Vi — 5" x St of de-
gree + 1.

It is easy to achieve, as we did before, that V| is connected and that
m(V}) = 7. Then V, separates W; into two parts A and B and the homotopy
kernels of the imbeddings ;: ¥ CA and iy: ¥y CB, have all the very same prop-
erties as the kernels featured in Theorem 3 (see §4-8), although here, in con-
trast to the proof of Theorem 3, one cannot make use of the epimorphicity of the
homological homomorphism of the imbeddings V, C Aand V; CB for the study of these
kernels. Note, however, that this epimorphicity holds with respect to the “inner’”’

part of 4 C Wi1 such that its closure in §7*2 contains S*. As before we denote
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the imbeddings ¥; C A and V| C B respectively by i) and 5.

In view of the local flatness of the knot S™ CS™*2, the manifold G possesses
the following property: we can find an ¢ >0 such that any map h: P — G of
any complex P is homotopic in G to the map k: P — G whose image lies at a
distance > ¢ from S™ in $"*2. We take it that all the W; being studied lie in the
e-neighborhood of the knot 5" C §7+2 j.e. that j is sufficiently large. But this just
implies that Lemm 4.1 is applicable to the inner part of A with respect to Vy. Itis
evident that Lemma 4.1 is applicable also to the map f;: V, — S* xSt

Just as we did in the proof of Theorem 3, we ﬁrst kill, by pasting handles on-
to V, inside G, the kernels Ker zl(, 9 and Ker zz(, when g <[n/2], and for
odd n +1 also Ker il(zq), 2g +1=n+1 (the dimension of ¥, here is n + 1).

Note further that
R ~(H )
Kerll.q = Keri,?

and

(=) S (Hp)
Ker /% = Kerf; T,

and also that
~(H )

A(H
Kerfj.? ﬁKerzl. ' b Keriz?,

~ Hq).

whence it follows that the “Hurewicz theorem’ from 84 is applicable to Ker i;,

Now, just as in the proof of Theorem 3, we perform surgery on Ker ié’,"I’ and
we apply Lemma 7.1 with n = 2¢ + 1. The case n =2q is analogous to Theorem 3
also by virtue of the remark made on the applicability of the *‘Hurewicz theorem”’
(Lemma 4.1) to the kemnel Ker L(Z,q).

Thus we have proved the following theorem.

Theorem 9.1. Under the hypotheses of Theorem 6 one can find a submanifold
¥ CS**I\S" of the homotopy type of S" x S such that the region A CSnH
bounded by V, has the homotopy type of S™.

This is also an analog of Theorem 3 for the case being considered.

Note that by virtue of the Browder-Levme theorem (see [201, $5) the mani-
fold V is a fiber bundle with layer Sne o (@ n) and basis S!. For even n the
group 9" (3 n) = 0. However, be that as it may, §" is PL-homeomorphic to S!
while V is PL-homeomorphic to S" x S}, since the group of PL-automorphisms
of the sphere S” is connected. Our subsequent discussions will be in terms of
PL-manifolds.

For the region 4,34 =V, we take the “dual region’’, PL-homeomorphic to
D"+ x S' and we paste together A U, Dl xSt where h D™+ xSt SV s
a PL-homeomorphism. ‘As we know, under our bypotheses A U, Do+l xSt is PL-
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llomeomorphic to S**2. The original sphere S” lies in A and the complement
ANS™ shrinks down to ¥ = dA. Therefore the pair (ZU WD SL S™ satisfies
the Stallings theorem [18]. Without loss of generality we can take it that the im-
bedding S” CS"*? is linear on a small simplex. From the method of reference [18]
we get at once a vaciant of the result, which we state below.

There exists a homeomorphism (a Pl -homeomorphism everywhere exceptin a
small neighborhood of S") transforming S" into the standard sphere. Consequent-
ly, on the manifold A we can give a new PL-structure such that:

a) it coincides with the old one on r?Z;

b) 94 =S™ x SY is h-cobordant to the boundary of the tubular neighborhood
T(S™) C 4.

Therefore in the new PL-structure we see that A is PL-homeomorphic to
§* « D? (see (.

Hence the inference on the global flamess of the knot S™ CS™+? js obvious
at this point.

Let us prove the rest of Theorem 6.

Everywhere except in the neighborhood of S” CA there exists the PL-

homeomorphism

d: A 8" X I?
d(Sm) = 85" X 0.

To S x D? we paste the closed complement Q) = (§"+?\4) in accordance
with the identification d/d4 = AQ. Then

M= S X D20,
d

where d: A0 — S® xS and d/dQ is a PL-homeomorphism. It is easy to see
that M is a homotopy sphere of dimension n + 2. Therefore we also obtaia the
joint transformation d': M — S"+2 where d' =d/A and d' =1/Q, taking the
“koot’ ’ into a PL-knot with the direct product 5" x D% CH. Ia such a situation

the PL-knot is smoothed out and a smoothness from 0" (3n) (= P+ see [7D)

arises on S" CM.
Theorem 6 is proved.
$10. One generalization of Theorem 5
Let K be a finite “Browder complex.” In the simply-connected case this
means that there exists an n-dimensional ‘“‘fundamental cycle” p € H,(K) such
that the map D: Z — Z (1 p is the isomorphism #’(K) — H,_; (K). If the complex
K is non-simply-connected and if p: K’ — K is a finite-sheeted cover with m

sheets, then it is necessary to require that Hn(K') = 7 and that the element

p e Ha(K), pty = my,
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be defined such that the map D: 7 — Z (\p' is an isomorphism. If the group
7,(K) is finite this gives us the definition of a Browder complex. In case nI(K)
is infinite this is clearly insufficient. Let K' — K be a cover with subgroup
7l Cx = n(K) and with layer F = n/n’, on which m acts as left displacements.
Let there be defined a- f, € m, { € F, and the groups HYUF), Ho(F), H?:(F), HO(O)(F)
on which 7 acts (here HS(F) are functions on F with values in Z, having a
finite carrier, Hé‘))(F) are the infinite linear combinations Xa;f, ¢, € Z, f; € F).
Then we have . 0
H*(K')= H*(K,H(F)), Hc(K')=H(K Hc(F)),
H. (K= H. (K, Ho(F)), HY (K= H.(EH (P),
and all the homologies are assumed with local coefficients.

Consider the generating element
(]
g= el (F).
i
Then the comparison Z — Z @ g takes ,(K) into
(o)
Hi(K,Hy (F)) = H (K').
If F consists of m elements, the composition pr(Z®g) isa multiplication
by m: Z —mZ.
Let us require that the maps D: Z7-ZNke®g), n€ H.(K), be isomor-

phisms:

D: HA(K') > Hai(K), ZeH(K'),
D: Hi(K") — HY(K), ZeH(K).

As before, the element y € H,(K) is a fundamental cycle in K and p ®g is the
fundamental open cycle in K'.

In this case the complex K is called a “‘Browder complex.”’

The following lemma holds.

Lemma 10.1. If W is an open smooth (n — 1)-dimensional manifold having the
homotopy type of a finite complex and if on W there acts a (possibly nonsmooth)
discrete transformation T: W — W such that the factor space is compact and that
the group I, (WY = Z, then W is a Browder complex relative to an n-dimensional
fundamental cycle.

We leave the lemma without proof.* Note that the condition on the existence

of the transformation T can be replaced by the simple condition on the “homotopy

*We remark that the proof is carried out by means of homologies with special families
of carriers, introduced by Rohlin in work as yet unpublished.
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type at infinite’” for W.

The following theorem is easily extracted from Lemma 10.1 on the basis of
Theorem 3, in which the hypothesis on the homotopy type of the closed manifold
is replaced by Lemma 10.1.

Theorem 10.1. Let M™ be a closed smooth manifold, let n{M™) =n =7 + ...
vov+ Z, and let the decomposition mw=n' +n" be given. Then the cover M with
fundamental group #' Cn is diffeomorphic to M=t x RY, where = rkn" and M™~!
is a closed smooth manifold, n - 1>5.

This theorem has been established by Browder and Levine (see [2°D) for the

case n =Z,n" =0.
APPENDIX 1

The signature formula

As in [!1°13] we consider a manifold M", n = m + 4k, and an indivisible
element z € Hyp(M", 7) such that Dz =y, Ym, yj € H'M™, Z), j=1,-+, m.
As has been shown in [1%13], there exists one canonical element € H“(ﬂ?, 2),
where M is the cover over M* with group Z + - -+ Z (m of them), under which

those and only those paths y CM", for which

(v, y1) = ... = (y, ym) =0

are covered by closed manifolds. Here we do not recall the algebraic definition of
the element z € H4k(il, 7) from the element z. Geometrically it is represented
thus: we realize the cycles Dy; by the submanifolds MP~1 CMH™ and the cycle
by their intersection
M =ML A MET

In this case the manifold M** is covered by a manifold closed in # and defines
the cycle z.

The following theorem holds when m = 2.

Theorem. The formula

(Ln (M), 2) =(2).

holds if the intersection index of the cycles on the group sz”(‘ﬁ) is identically
zero.

Note that if the gréup M (#, R) is finite dimensional the conditions of
our theorem are fulfilled. Consequently this theorem is a generalization of Theo-
rem 2 of [1°1.

Proof of the theorem. We consider the covering #, defined earlier, on which
lie the complete pre-images of the manifolds M7~ and M3~! under the projection

p: M — M**+2 n = 4k + 2. The base transformations of the group Z+7 of
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motions of the manifold # are denoted by Ty, Ty: f1 — f. Then, the complete
pre-image of the manifold M7~! is decomposed into the union U,—Mj( Y and the com-
plete pre-image p~YM2~1) is decomposed into the union UqMéz); moreover, M7,
where € = 1, 2, — o <5 <+ o0, separates the manifold M into two parts: A(SE) and
B(%), where

A

APYBY = f1, APNBY =M.

Furthermore, the notation chosen here is such that

1) (1) ) )
TtMs = Mg , TzMs = g,

2) ) 2) 2)
T2Ms =Ms ; Ti é =Ma(:+i

and for any s, M{? are Z-coverings over M'é_l. The complete pre-image of the
manifold 4% = M2~ M5! can be represented in the form
Pty = U (M AMP) = U M,
i iq
and, moreover, all the M** are diffeomorphic to the original MAE MMy
The cycle which M.‘tk defines in M}l) is denoted by ¢ € H4k(M,-(‘”), Tyt = ¢, and
the imbedding MV CH, by Aj. Obviously

Ajrt; = 3.
T(t;) = (M%)
holds on the basis of Theorem 1 of (1% (or of Theorem 2 of [131).

The formula

Let us prove that ~
T(4) = (2).
Let j=0, to € H,(M§1). We denote MY simply by M, to by ¢, AV by 4
and B§!’ by B. Then .
BnNA=M, BU4d=M.
We denote the manifold ¥{?’ by N. Then
MON = Moty = M.

We now recall the result of {131, If the equality (az, t) = 0 holds for any ele-
ment ¢ € H2¥M, R) such that the cycle B=a¢t€ H, (M) is homologous to
zero in A and in B, then the required formula

(t) = (2)
is valid.

Note that geometrically the cycle 8 = af1¢ lieson MA% - M NN and that the
self-intersection index B°f (on Miky equals (a2, t) in M. Furthermore, on MAE
the cycle B is intersected by the open disc Da€ Hﬁgll(M).

The membranes 8, CA and 8, C B span the cycle B such that 6, = d8, = 3.
Further, the pair ¥ and N divides # into four parts: Wy, Wy, W3, Wy, where

f
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NW; =M=,
YW= (W UW)N(WsU W) =M,
(WU W) 0 (WaU Ws) = N.

By J: C H2E+1i RyNt C Hap(M, R) we denote the subgroups consisting of ele-
ments which have representatives homologous to zero in WL.’ i=1, 2,3, 4. Ana-
logously, we introduce the subgroups j(e) CH2E+Y M RYNOt, €=1, 2, consisting

of elements homologous to zero in 4 for € =1 or in B for € =2.

Obviously,

Wl =1Jg, T:UJi=a.

We denote the group H2E+1Gf, Ryt by H. We introduce the operator P:H—H
by setting
P(ant) = (Tyea) Nt
Since T;, =t, P is an isomorphism. Note that H is a finite-dimensional space
over R.
The following relations hold:

Pk](g) c /s, P"h](i) c J;,

Prlg < I3, Ptrlg Ty
for sufficiently large k. in view of the finite dimensionality of H, J;, Jie). There-
fore (again because of {inite dimensionality) we have

](1) - ]1 == ]2, ](2) = ]3 == ]/,.
We now return to the element 8 = a(]t, homologous to zero in A and in B, lying
on M** and represented by the cycle B CM**. Since BE I N ](2), the cycle
E on T-2*M4% (k large), representing, naturally, P"ZkB, is homologous to zero
in the manifolds T~2%W, and T~2*W, if to this cycle we add the cycle h C T-2kpy 4k
homologous to zero in M. Because the group sz(M‘“‘) is finite dimensional, the
number k can be chosen so large that the membrane d~Y(h) can be selected so as
pot to intersect with T~*M*%. Then the cycle E C T-2*}** is homologous to
zero in the regions T-*W, and T~*W,.

We denote the corresponding membrances by 83 and 84:

S THW,, T+ W, 00;=08,= f?
Since o€ H2%M, R), it follows that Da€ Hz(gll(M, R) and Da is represented l)y

an open cycle in M, whose intersection with M** is B and with T -2ky4k s B.
The segment of this open cycle from /§ to B is denoted by d, da= B-B. We

set

gi=63_d+61,
g2 = 8, — d -+ 0,
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where g, and g, are (2k + 1)}dimensional cycles in fl. The cycle

B=dnT*M*
is such that it is homologous to zero in T~*W,, T- W, T~*W;, T-*W4 and its
self-intersection index in T %Y ** equals

and
g1°82=0
by the hypotheses of the theorem. Hence we conclude that from the condition

(aJyy, i) = (al@,t) =0

it follows that
(a?,t)=0.
By analogy with [10.13} the theorem is proved.
We now draw several conclusions from the theorem we have proved.
1. It is easy to show that if the condition N/Z o(m)N =0 is fulfilled, then
Noppt = Neo D Nili+1-

The important fact here is that each element 0 € N satisfies the polynomial
relation
(T, T2)o =1,
where T, T, are generators of 7 and €Q =1, ¢: Z (7} — Z. Indeed, if 0, -, 0
are generators of N over Z(n) and if N/Z (m)N = 0, then we can find a matrix
P = (P;;) with coefficients in Z(n) such that eP = E and %P0, = 0. But then
(detP)o; =10

and

Q =detP, eQ=1.

We can take it that
Q = [1+Po(T2)] 4 TsPu(T) + ...+ T1"Pn(T2),
where P, depends only on positive powers of T, and Py(0) = 0. Therefore the
polynomial () is invertible into formal series in T{ and T35, where j>0, s>
f(j) > = oo. Consequently the element o is homologous to zero in open homologies
and is orthogonal to N in the sense of the intersection index.
The sufficient condition stated here for the applicability of the theorem

(N/Z o(7)N = 0) is satisfied, for example, if the image

p.: How (M, R)~> Hyers (M", R)

is trivial and if the differential
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dy: E¥™*— EOM — NJZy(n) N,

Eg,zk — Héjknvariam — H-gk (1’&),
is trivial in the Cartan spectral sequence for the cover p: - um

2. Let us give another proof of the topological invariance of the class of
Liy(M™) when n <4k +3 and #;{M") = 0. Indeed, if " is homeomorphic to
M4 x R3, where M%* is simple-connected and closed, then, as in $2, we can
pick out a submanifold ¥ = M4* « T2 x R and realize the cycle M4 < T by a
13

smooth ¥ C ¥ such that the homomorphism of the imbedding ix: 7, (V) — 7 (W)

is an isomorphism when ¢ <2k, which is trivial Then V separates W into two
parts A and B, ANB =V, and i;: V CA, §: V CB. We set

. (Hapy1)
Map = Ker i, .

Since the intersection index on M5, = Ker i’;(‘”z”*l) is trivial, where Z,: Vci
(universal coverings), following Whitney we can realize the Z (n)-basis in M;;,,
by imbedded spheres and we can perform Morse surgery on them (the possibility
of the realization is proved identically to the Whitney proof; see [81 for details).
The surgery can be performed so that the Pontrjagin classes do not change; after
surgery we obtain a manifold V| t which we can now apply the theorem of this
appendix. Under the surgery it is evident that the '“signature of the cycle’’ on the
coverings over V and V, also does not change. By comparing what we have said
with the fundamental lemma of [!3] applied ©w the imbedding Pcw , with the above-
mentioned theorem of this appendix and with the equality of the “*signatures of the

cycle’” on ¥ and ¥,, we obtain our assertion in accordance with the scheme of
y 12
[13, 10]

APPENDIX 2
Unsolved problems related with the theory of characteristic classes

We mention here several problems directly connected with the results of the
work of the author [ 19-11:12] and of Rohlin, related mainly to Pontrjagin classes.

I. Topological problems.

1.* Does there exist a number n = n (k), depending only on k, such that for
all simple p > n(k) the Pontrjagin classes p; of modulus p" are topologically
invariant? This should follow from the fact that the groups (B Top) are finitely-
generated for all i < 4k. However, it is apparent that some generalization of the
method of this paper or of the author’ s paper [!3] is more suitable for answering

this question. Such a result would have a good application, for example, t the

* Added in proof. Problem 1 has been solved recently in an as yet unpublished paper
by the author and V. A. Rohlin.
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classical lenses of dimensions > 5. For example, p £7 for k=2 (see (8.

2. Are the rational Pontrjagin classes of complexes of rational homology
manifolds topological invariants? We have affirmative answers here only for
Ly(M™, n <4k + 2 (see [10-12]),

3. For the topological microbundles of Milnor can we determine rational
Pontrjagin classes p; € H4*(B Top, Q) satisfying the following axioms:

a) they coincide with the ordinary ones fotr 0 and PL-microbundles;

b) the Whimey formula for sums;

¢) the Hirzebruch formula for L; (M**) and the author’s formulas for Ly(M**+1h)
and sometimes for L; (M'“‘*'"), m>1 (see {19137 .and Theorem 2 of this paper).

II. Homotopy problems.

1. Let z € Hg,(M™) be an element such that Dz =y, ---y,,, m =n — 4k,

y: € HY(M™). s the scalar product (L (M™), z) a homotopy invariant? The author

has solved this probleni for m =1, partially for m = 2 (see [!?2!2] and Appendix

1 of this paper) and sometimes for m > 2 (see Theorem 2 of this paper). For m =2
the final solution has been obtained by Rohlin.

2. In those cases in which the preceding question has been answered affirma-
tively, there arises the problem of computing the classes of L; in terms of homo-
topy invariants. This problem has not been solved even in the case of the Rohlin
theotem for the codimension m = 2. Important special cases of this problem will
also be taken up in a later section, dealing with differential-topological questions.

II1. Stably-algebraic problems.

Before dicussing the problems we give an algebraic introduction. Let 7 be a
Noetherian group and let ¥ be a finitely-generated Z (r)-module.

The homomorphism of the modules k: M — PM, where PM = Hom (M, 7), is
called the scalar product (x, ¥) = hx (y). Symmetric and skew-symmetric cases
naturally arise.

We say that the scalar product is unimodular if % is an isomorphism.

If 7' Cn, thenon N =M/Zy{(s' M thete arises the bilinear form (px, py) =

. . . L P
S..en' (x, ay), being a scalar product in the same sense if 7 is a normal divisor.

Here p: M — N is anatural projection. We call this bilinear form the induced
scalar product.

We call a symmetric scalar product even, if (x, x) is divisible by 2 and
(x, ax) is divisible by 2 for all a € n, a? = 1.

For subgroups ' of finite index in 7 and of symmetric case, it makes sense
to speak of the signature of the (induced) scalar product on N = M/Zo(n')M, and

of the signature of the form on N defined as a function of the subgroup 7' Caz,
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7= 1(r'), if the index of 7’ in 7 is finite. We set (M) = 7(m); I(z') is the index
of 7'. Then we require that (n') = 7(M)] ().
Let the scalar product be skew-symmetric. We designate as an Arf-invariant
the map ¢: M — 7, such that ¢{ax) = #(x), a € 7, and
@z +y) =o(z) +o(y) + (z, y) mod 2.
Let #' Cw and N = M/Zy(#' )M, p: M — N. We designate as an induced

Arf-invariant the ma ,: N — 75 such that
p P, 2

¢ (pz) = qi2) + D) (2, az) mod 2,

"
as=
2

! 1 . i . -
where 7' /2 C 7' denotes a subsetin # which contains one and only one element

! is not essential since

from any pair of elements e, e ' € 7. The case a=a"
then (x, ax) = (a~x, x) = —(x, ax) = 0. For ¢+, the correctness and identity of
Arf'a are easily verified. If 7' has a finite index I{(z') in 7, then a ‘‘total’’
Arf-invariant @(n') € 7, is defined on M/ 7 (7' )M. We set (M) = ®(n). Then
we lec O(7')=SWNI").

Now let » be a finite or an abelian group. We say that the module ¥ with a
symmetric or skew-symmetric scalar product possesses Poincaré duality if for all
subgroups #' C 7 the induced scalar products are unimodular.

Let F; be a free module with two generators x, y € F; moreover, (x, ax) =
(y, ay) =0 forall a € m, (x, ay) =0 for a #1 and (x, y) = 1. Here we take the
scalar product to be symmetric or skew-symmetric. In the latter case we also re-
quire that ¢(x) = ¢(y) = 0, i.e., that there exists an Arf-invariant of a special
form in the module. Such a module we call a one-dimensional free module.

The sum F = F; 4+ ...+ F; with due regard to scalar product and Arf-invariant
(for the skew-symmetric case) is called a free module.

Our examination of the isomorphisms, direct sums, etc., preserves all the
existing structures.

Admissible classes of modules:

C,: projective modules with symmetric even scalar product and Poincaré
duality;

CY CC;: modules with zero signature r(¥) = 0;

C,: projective modules with skew-symmetric scalar product, Poincaré
duality and Arf-invariant;

€9 CC,: modules with zero Arf-invariant;

C,: as in C, but without reckoning Arf-invariant;

E,- CC;, i=1, 2: inverse modules M C E,- for which we can find a module M’
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such that ¥ + M' = F with due regard to all existing structures, where the module
F has been defined above.

The class C; C C, without reckoning Arf-invariant is defined analogously.

We denote the subclasses CY N C; by D,

With each class C,, Cy, C5, G, CY there is related in a natural way the
“Grothendieck group”

A(m)=R%(Cy), B(n) = K°(C»),

C(m)=K*(C;),  D(n)=K(CY),

E(n)= K%(C;).
The homomorphism B (7) — C (7) has been defined. The subclasses G, G,

G, Dy, D, define subgroups of ‘‘substantively inverse’’ elements.

The algebraic problem is to compute the groups A (n), B(n), C(n), D (n), E (n).

It would be of special interest to find these groups for 7 =Z + --++ Z and for

7 = Z,. For the latter case this is connected with the arithmetic of the number p,
since here even the ordinary functor K Z (7,,)), without regard to scalar products,
could be nontrivial for “‘bad’’ p.

For 7 =7 + Z, the ordinary ko(ﬂ) is trivial, but B (7) and C(n) are non-
trivial as shown by Example 2 in §3 of [13]. As will be seen from the subsequent
topological problems, all the 4, B, C, D, E are nontrivial for 7 = Z 4ot l.

In case #=Z + ---+ Z, we can take it that we are always dealing with
scalar products on algebraic free modules since projective modules are stably
free.

1V. Differential-topological problems.

Our questions will refer to the following two situations.

a) There is a commutative diagram of maps of degree + 1 and of (regular)
coverings

2n_f_’M:n
nt Pt
i, 2,
where the monodromy group of the coverings is n and where the element A€ K(;Q(MZ")
is given such that f*a € KO (MZ") is a “'stable tangent bundle.”” Let us assume
that the homologlcal kemels of the map f are trivial in dimensions <n. Then the
kernel M = Ker f. Hm) is a mmodule and determines an element of A(7) when
n =2k orof B(n) when n =2k + 1. When n =3 or 7, we need only the image
B (7) — C(n).
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Zn-1 and with

b) There is a membrane W?" with two boundaries MEn-1 M5
retractions r;: W2" — M27~! which are tangential maps. On r; we impose con-
itraints analogous to those on f in example a) for the coverings W — w2n
M, — M?"~!. Then the kernel M = Ker r( n)
n =2k, or of B(#m), n =2k + 1; moreover, here it is easy to reduce these elements

to D(m) for n=2k or o E(7) for n =2k + 1.

determines an element of A (n),

Problems.

1. The realizability of the elements x € 4 (m), B(m), C{m), D(m), E () in
the situations of examples a) and b).

2. The case in the preceding problem when in example a) the element
a€ K%(M%") is a “‘stable tangent bundle’’ to ,12", is of special interest.

3. The rational Pontrjagin classes: if in example a) the manifold Mg" is
the torus T2", then ¢ € Ker / and the Pontrjagin classes

f'pi(a)=pi(M> ),

are defined; moreover, w =7 + +-++ Z. As the author has proven, a stable tan-
gent bundle of manifolds of the homotopy type of 77 is always wivial (this fol-
lows easily from Theorem 2 of this paper, from the Bott periodicity for BO, from
the result of Adams on / ® Z,-homeomorphism and from the fact that the suspen-
sion over the torus T? has the homotopy type of a union of spheres). Therefore
the classes p;(Q) € H‘(Mg") are not trivial when @£ 0 and the invariant x(Q) €
A(n) for n =2k and x(@) € C(n) for n =2k + 1 is defined (possibly nonuniquely).
The equality x(a)= 0 implies the equality @ =0 by atheorem of the author. The

classes p; are linear forms in the exterior powers:

pi(a): A¥n—~2Z,
n=2Z%+...+2Z, Hom(Akn,Z)= A4,

In general, it is necessary to consider that p; (a) € A%y when =27 +--+ 2
(2n of them).

The problem is to compute p;(a) € A278-4i, as a function of the element
%(a) € A(n) or C(n). What we have said above shows that a connection between
pi(®) and x () definitely exists.

Finally, in this problem, instead of the torus T2n = M%" we can take the
product S*% x 72n-4 k and then the question will be that of number. This ques-
tion is closely related to problem 2 (‘‘homotopy problems’’).

4. The situation of non-Noetherian fundamental groups is vague to the author;
there are many geometric examples of ‘‘finite-dimensional groups’’ bere, and the

corresponding theory would have a number of applications. Of course, the functor
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13}

P = Hom, can be introduced with the help of “‘locally finite’’ classes of bases,
which are always geometric. However, in applications it is necessary that the
modules of the kernels be finite dimensional over Z (7). These questions, it is
true, are not connected with characteristic classes and the author has not investi-
gated them.

5. To investigate the odd-dimensional case ¢ = 2k + 1. The constraints on
the module which yield Theorem 5.2 of this paper are clearly insufficient.

Everywhere further on we shall denote kO(Z(n)) by ko(ﬂ).

Let us note in addition that the ordinary K%#), consisting of stable classes
of projective modules, is imbedded in D (#) and E (7} in the following way:

If o€ K%z), then Pa€ K%z), and there is a natural scalar product on the
module @+ Pa. We obtain the imbeddings

K(n)c D(n)c A(n),

K'(n)c E(n)< B(n),
by taking in the case of E (#) the Arf-invariant on aC @+ Pa andon PaC a+ Pa
to be trivial.

It is easy to prove the following theorem by using Poincaré duality, the form-
ula of universal coefficients and other factors besides P = Hom . ( , 7).

Theorem.® If in Theorem 3 and in $2 we replace the group 7y =Z ++--+Z
by another (Noetherian) group m =1, then the obstruction to the existence of
the submanifold V* CW"*! being a deformation retract in Wr+l lies in the
Grothendieck group K°(n), and the equality to zero of this obstruction is sufficient
for the existence of the deformation retract V™ CW"+L,

Remark. The question of the uniqueness of such a ¥ CW"*! leads to the &~
cobordism problem and by the same token to K (7) or, more precisely, to the fac-
tor-group Wh(n) (see [2]). Thus we have the following situation.

A. The problem of the type of Theorem 3 and of $2 is connected only with
K% (x) (or with its image in A(7) and B(r)) and with K!(#) — Wk (n). As we see
from the proof of Theorem 6 (see $9) and from the paper by Browder, Levine and
Livesay {211, these questions are analogous to the question of finding the bound-
ary of an open manifold.

B. The diffeomorphism problem divides into the following:

1) The J-functor, the KR-functor and the normal bundles of smooth manifolds;

*Added in proof. This theorem has been found independently by L. C. Siebenmana,
The obstruction to finding a boundary for an open manifold of dimension greater than five,
Thesis, Princeton Univ., Princeton, N. J., 1965. (Dissertation Abstracts 27B (1966), p.
2044-B).
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here, A (n) and B(#) play a role when n = 2k (see {3:22, 147 and Appendix 1).

2) The realizations of classes in a Thom complex for n = 2k (see problem 2);
here the torsions tor A{r) and tor B(7) play a role (see Theorem 1 of {22] for
my = 0).

3) The relations between h-cobordism and homotopy class in a Thom complex
(see Theorem 2 of [#21]); here the inverse elements from D (7), E (7) play a role
when n =2k - 1.

4) For n =2k —1 in 1) and 2) and for n = 2k in 3), there appear Exti,
whose role is not clear. They generalize torsion for m) = 0.

5) The relation between h-cobordism and diffeomorphism for n > 5 has been

well studied and is connected only with Wh(n) = KX=)/(n ) - n).
APPENDIX 3

Algebraic remarks on the functor P = Hom,

Here we consider the following questions.
1. The connection between Extf,(M, 7Z) and Exti(PM, 2.
2. The concept of the “‘reflexivity’’ of a module: P2 = M.
3. The functor  for open homologies.
We start by considering the first question. Let M be an admissible mmodule.
Consider the acyclic free (projective) resolvent ’
C={...5Fn—>...>F, 5 M0}
and apply the functor P:
PC = {0—PMES PFy—...—>PF,—.. .}
We obtain a sequence which is exact in the term PF,,.
Now consider the resolvent of the module PM,
C'={...>Fp—>...—>Fy5 PM—0}.

Let us paste together the complexes C and C':

C"={...>Fp—>...>Fo5PFo—...—>PFa—...}
\e’/P:
PM
7™
0 0

such that & = (Pe) o€ .
We set F = F. F!._i=PF, n>0. Obviously we have

Hi(C")=0, i=—1, H(C")=Ext. (M. 2), i

N
|

Furthermore, for the complex pC”,
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H}(C”)= Hi(PC") = Ext! (PM, Z), i> 0,
H_(C”) = Hy(PC") = Coker P> = P2M/m P2,
H:'(C")y= H_y(PC")= Ker P — M,

B (C"y=H_((PC") =0, iz +2.

All these equalities follow from the fact that P? is a natural isomorphism for
projective modules. Thus Ker P? and Coker P? acquire a homological meaning.
Since H{C') and Hi(C") are connected by the Cartan-Eilenberg-Grothendieck
spectral sequence, we can draw certain conclusions:
A. Let the homological dimension of the group # be n (for example, 7 =

Z ++«+++ 7). Then we always have
Ext™ (PM, Z) = Ext] " (PM, Z) = 0.

B. If Ext; (Ext; (M, Z),Z)=0, i>>0, then Ker P2 =,
c. 1f Ext"(Exte (M, Z), Z) =0, i>>0, then Coker P? = 0.

The modules M such that P2M = M are called reflexive, and the modules M’
such that PM’ ~ M’ are called selfadjoint Every reflexive module is a direct
sum of selfadjoint ones and vice versa, since in this case P(M + PM) =M + PM
and P is an additive functor.

Corollaries.

1. If Extt(M, Z)=0, i >0, and ifw=7 +--e+ Z, then M is stably free,
since PM is stably free by Lemma 5.1 and P2M = M.

2. If w=Z +Z, then for any module M the module PM is stably free, since
Ext}(PM, 7) = Ext2(PM, 7) = 0.

Note that this is not true even for # =7 + Z + Z, since there exists a module
M £ 0 which is reflexive and such that

Ext! (M, Z) = Ext. (M, Z) = 0,
1
Extc (Ext, (M, 2), Z) = Ext? (Ext (M, Z), Z) = 0,
1
Extc (M, Z) = Ext. (Ext, (M, Z), Z) =40,
We shall find such a module. Let My be a one-dimensional module with a

generator u € My such that Zg(#)ou = 0. The resolvent of My (see $5, Example

1) is three-dimensional,

d d d . .
O‘—>F3—->F2-—>F1—'>F0—)M0—_)07
and, moreover,

Exti(Mo, 2) =0, 0<i<2, Ext}(MoZ)= M,

MANIFOLDS WITH FREE FUNDAMENTAL GROUPS 41

Let M = Fy/Imd. We have

0—F3 5 Fy 5 M —0.
Therefore Exti(M, 7) =0, i> 1, and Ext},(M, 2) = Extg(MO, Z) = My. This
module M yields the required example of a module which is reflexive but not
projective for =2 +Z + Z.

Let us introduce a topology in 7Z (7): namely, as a base system of neighbor-
hoods of zero we take all linear spaces over Z, generated by the elements a €
7\4;, where A; is any finite set in 7.

In a finitely generated module the topology is introduced thus: if xy,---,x; € M
are 7-generators and if A, -+, A; are any finite sets in 7, then as a neighbor-
hood of zero in M we take all the x € M such that Ax = 3 ;A;a;;x, A £0, where
a; € 77\14]-, A, A;; € Z. Such neighborhoods generate a system of neighborhoods of
zero in M. In this topology the points are nonseparable, in general.

We have that the PM are continuous characters of the continuous group M in
Z (in the discrete topology), and moreover, PY is a topological Z (n)-module. The
Ker P2 are points in M, infinitely close to zero.

We define the complement Q: ¥ —+[l7. where ﬂ} is the compactification of ¥
and Ker P2 is equated to zero in ﬂ}.v The derived functors of functor ¢ correspond

to open homologies, so that for a field K we have

Q = Hom (Hom.(¥M, K), K),
Torg (M, K) = Hom (Ext; (M, K), K), i=0.
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EQUIVALENCE OF SYSTEMS OF INTEGER MATRICES

D. K. FADDEEYV

1° Statement of the problem. Let 4, and B, k=1,2,++,N, be two sets of
square integer matrices of the same order m. We will call these two systems equiva-
lent if there exists a unimodular integer matrix C such that

CA4,C = By, k=12,...,N.

In this article we will show that the problem of the equivalence of two given
systems of matrices can be reduced to the question of whether a certain ideal of
a Z-ring contained in a semi-simple algebra is principal (by a Z-ring we mean an
associative ring with identity whose additive group is a free abelian group of finite
rank).

2° The group &. We will write each system of N square matrices Ul’ w, Uy
of the same order m as a row (Ul, s, Up), defining in a natural way the addition
of such rows and the multiplication of a row by a scalar.

Furthermore, we define

C(Uy,...,Ux) = (CU,, ..., CUy)
and

(Us,...,Un)C = (UL, ..., UnC),
where C is any square matrix of order m.

Put
A= (44,...,4n), B = (By, ..., Bn),
where Al’ oo, AN and Bl’ vee, BN are systems of integer matrices for which the
question of equivalence is posed. Consider the set of rows
S = {AX — XB}

where X ranges over all rational matrices of order m. It is clear that S is a linear
space over the field ) of rational numbers and a basis over  can be found in a
finite number of steps. We denote by ¥ the set of rows {AX - XB}, where X
ranges over all integer matrices of order m. Obviously M is a lattice and its di-
mension is equal to the dimension of the space S, since S = MQ.

Also, we denote by N the set of all integer matrices contained in S. Clearly
N is alattice, SO N DM, and hence the dimension of N is also equal to the di-
mension of S. Consequently the group

&(4,B) =N/M
is finite. The exponent (i. e. the least common mul tiple of the orders of the ele-
ments) of this group is denoted by i(4, B). The construction of bases of the lat-

tices M and N, and hence the determination of the structure of the group &4, B)
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