HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I

S. P. NOVIKOV

In this paper we introduce a method for the investigation of smooth simply
connected manifolds of dimension n > 5 that permits a classification of them with
exactness up to orientation-preserving diffeomorphisms. This method involves a
detailed investigation of the properties of the so-called Thom complexes of normal
bundles and is based on a theorem of Smale concerning the equivalence of the
concepts of “h-cobordism” and “orientation-preserving diffeomorphism.” In the last
chapter we work out some simple examples. Appendices are given in which the
results of this paper are applied to certain other problems.

INTRODUCTION

This paper is devoted to a study of the following question: What are the invari-
ants that define the property of two smooth oriented manifolds of being diffeomor-
phic to each other? It is clear that for manifolds to be diffeomorphic it is necessary
that they be homotopically equivalent. A more refined necessary condition is given
by the tangent bundle of a manifold. Speaking in modern terms, to die manifold
M™ corresponds an Atiyah—Hirzebruch—Grothendieck functor

Kr(M™) = Z + Kr(M™),

and by a tangent bundle we mean a certain distinguished element 7(M™) €
K r(M™), the “stable tangent bundle” with the exception of its degree. Although
the ring Kr(M™) itself is homotopically invariant, it is well known that the
element 7(M™) is not homotopically invariant, and what is more, it can have
infinitely many values. For two manifolds M7, and M3 to be diffeomorphic it is

necessary that there exist a homotopy equivalence f: M{* — M3 such that
frr(M3) = 7(My),

where f*: Kp(My) — Kr(M}). If this latter necessary condition is fulfilled, then
the direct products M7 x RN and M} x RN are diffeomorphic (Mazur). But this
result of Mazur is of little help in determining whether or not M{* and M3 are
diffeomorphic. Even for n = 3 there exist nondiffeomorphic manifolds that satisfy
the indicated necessary conditions for manifolds to be diffeomorphic (lenses). To be
sure, these manifolds are not simply connected. For simply connected manifolds the
papers of Whitehead on simple homotopy type or the papers of Smale [17, 19] yield
a stronger result, namely, that the direct products by a ball MJ* x D and M3 x DY
are diffeomorphic. Nevertheless examples by Milnor [10] of differentiable structures
on spheres show that, for simply connected manifolds combinatorially equivalent to
a sphere, multiplication by a closed ball actually eliminates the existence of a finer
distinction between smooth structures.

Translated by Valentin Poenaru.
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In the papers by Milnor [9] and by Milnor and Kervaire [6] a more or less complete
classification was finally given of homotopy spheres with exactness up to h-homology
(J-equivalence) in terms of the standard homotopy groups of spheres.

The foundation for this classification was laid by papers of Smale [17, 19], who
demonstrated that, for simply connected manifolds of dimension n > 5, the con-
cepts of “h-homology” and “orientation-preserving diffeomorphism” coincide. In
addition, Smale proposed a method that permits this classification and Wall gave
a good classification of manifolds in certain simple examples (cf. [18, 27]).

In the present paper we investigate the class of smooth manifolds { M} that are
homotopically equivalent among themselves and such that for any pair ,j there
exists a homotopy equivalence f;: M;" — M} of degree +1, and also

frr(Mj) = (M),

where f*: RR(M;‘) — Kr(M?) and 7(M™) represents the stable tangent bundle.
Thus we consider the class of smooth manifolds having the same homotopy type
and tangent bundle. The basic problem is to give a classification of manifolds of
the class {M"} for n > 5, assuming that 71 (M) = 0. The approach used in this
paper is connected with a consideration of the Thom complex T of the stable
normal bundle for the manifold M{ belonging to the class {M]*}. The complex
Ty = Tn (M) is obtained by a contraction of the boundary of the e-neighborhood
UN*™ of the manifold M in the space RN+" into a point, i.e.,

TN _ UN+n/8UN+n,

and it is easily shown that the complex Ty of dimension n+ N is a pseudomanifold
with fundamental cycle [Ti], belonging to a form of the homomorphism of Hurewicz

H: 1 N(TN) = Hoon(TN).
The finite set A = H~!([Tw]) is examined. The group 7(My, SOx) acts on this

set, and on the set of orbits A/m (M, SON) there acts the group 7 (M, M) of
homotopy classes of mappings f: M§ — M of degree +1 and such that

[rr(Mg') = 7(Mg').
A proof of the following assertion is the main objective of Chapter 1.

Classification Theorem. There exists a natural mapping of sets {M!'} —
(A/m(ME, SON)) /7t (Mg, MY, possessing the following properties:
a) if under this mapping two manifolds M{* and M3 go into one and the same
element, then one can find a Milnor sphere S™ € 0(dw) such that M} = My # S
b) conversely, if M* = MY # 5™, then under this mapping they go into one and
the same element of the set (A/m(Mg,SON))/mt (M, M), where S™ € §™(dr);
c) if n # 4k + 2, then this mapping of sets is epimorphic.

From this theorem one can immediately draw certain conclusions. For example,
one can easily prove the following

Corollary. The homotopy type and the rational classes of Pontrjagin determine
a smooth simply connected manifold M™ to within a finite number of possibilities
for n > 5. If the groups Hy;(M™) are finite for 0 < 4i < n, then there exists a
finite number of orders of smoothness on the topological manifold M™ (a result of
the finiteness of the set A).
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In reality the solution of the problem obtained by the author is much more signif-
icant in homotopy terms than in the way it is formulated in the cited Classification
Theorem. A series of geometric properties of manifolds admits a natural interpre-
tation in terms of the homotopy properties of the space Tx. These properties are
studied at the end of Chapter I (Theorems 6.9 and 6.10) and throughout Chap-
ter II, which is also concerned with a development of the methods of numerical
calculation. We mention here a number of problems that are studied at the end of
Chapter I and in Chapter II.

1. The conditions under which a mapping f: M™ — M™ of degree +1 is homo-
topic to a diffeomorphism (Theorems 6.9 and 6.10).

2. A study of the action of the group 7+ (M{, M{') on the set A/m(M{, SON)
(57).

3. A determination of the obstructions d;(M?, M%) € H,—i(M?, 7n1:(S™)) to
the manifold M7 € {M*} being diffeomorphic to the manifold M{ (§8).

4. The connected sum of a manifold with a Milnor sphere and its homotopic
meaning (§9).

5. The variation in smoothness on a w-manifold along a cycle of minimal dimen-
sion (8§9).

6. Variation in smoothness and Morse’s reconstruction (§10).

In Chapter III the results of Chapters I and II are applied to the working out of
examples. The result of §14 was independently obtained by W. Browder [29].

In addition to the main text of the paper there is inserted at the end four appen-
dices, written quite concisely and not very rigorously. The reader can regard these
appendices (together with the results of §§10 and 12) as annotations of new results,
the complete proofs of which will be published in later parts of this article. How-
ever, in these appendices and in §§10 and 12 we have sketched out the proofs with
sufficient detail that a specialist might completely analyze them without waiting
for the publication of later parts.

In Appendix 1 the results of §14 are expressed in the language, suitable for
calculations, of the Atiyah—Grothendieck—Hirzebruch K- and J-functors, and there
is indicated an application of these results to Pontrjagin’s theory of classes.

Appendix 2 is devoted to (i) an extension of the results of the paper to com-
binatorial manifolds and (ii) an investigation of the relation between smooth and
combinatorial manifolds.

Appendix 3 is devoted to a study of the action of the Milnor groups §**~1(dr)
on manifolds and to the problem of singling out the group #**~1(dr) as a direct
summand in the group #*¢1.

In Appendix 4 we study the problem of determining the euclidean spaces in
which a nontrivial Milnor sphere can be embedded in such a way that its normal
bundle there is trivial.
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Chapter I

The fundamental construction !

§ 1. MORSE’S RECONSTRUCTION

The material of this section is largely borrowed from other papers (for exam-
ple, [9] and [5]) and is essentially a somewhat generalized account of them in a
terminology adapted to our present purposes.

Let M™ C R"*" be a smooth manifold with or without boundary, smoothly
situated in a euclidean space R"*M of sufficiently large dimension. Let S¢x D*~% C
M™ be a smooth embedding of the direct product S* x D*~% in M", where D"~*
is a ball in the space R"~* (of radius €) in the natural coordinate system. Consider
the diffeomorphism

h: D x D" — ST x DL ¢ M
such that h(x,y) = (z,h.(y)), where h, € SO, _;. The set of maps h,, € S,
defines a smooth map d(h): S* — SO,,_;, which completely defines the diffeomor-

phism h.
Let us put

1 ) )
B (h) = M" x I (o, ) Up DI x D,
(1) 2
M"™(h) = (M™\ S" x D' "YU, D"t x 9D,

The operation of going from M™ to M™(h) is called “Morse’s reconstruction.” It is
well known that:

1. 9B™Y(h) = M™ U (—M"(h)) if M™ is closed.

2. The manifolds B"*1(h) and M™(h) can be defined as smooth orientable
manifolds.

3. The subspace (M"™ x 1/2) U, D1 x 0 C B"T1(h) is a deformation retract of
Brt+l (h)

4. The manifold B"*1(h) is defined up to diffeomorphism by the homotopy class
d(h) of the smooth map d(h): S — SO,,_;; d(h) € Ti(SO,_;).

5. The manifold B"*1(h) can be so situated in the direct product R**V x (0, 1)
that

BT (h) N R™N x 1= M™(h),
B" " h) N RN x 0= M"

and B"*1(h) approaches the boundaries R"*V x 1 and R"*" x 0 orthogonally.

On the tubular neighborhood Ty (of radius 2¢) of the sphere S* C M™, where
Ty = S x D5, let there be given a frame field 77V continuous on T and normal
to the manifold in R"*". We have

Lemma 1.1. Suppose the inclusion homomorphism m;(SOyn—;) — Ti(SON1n—;) is
an epimorphism. Then the diffeomorphism

h: 0Dt x DI — S x DI ¢ M™
may be chosen in such a way that the frame field TV, which is normal to Tse in
RN*™ can be extended to a frame field 7 on (Tee x 1(0,1/2)) U D+ x Dr—t
that is normal to B"*1(h) in the direct product R™*N x I(0,1).

LChapter I is a detailed account of a note by the author [14].
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Proof. Let us choose on D! x 0 ¢ R"*" x I(0,1) some continuous frame field
" normal to D! x 0 in R"N x I(0,1), and let us consider its restriction
to the boundary

Six0c M™c RN %0,
which we shall also denote by Tév +n=% " Since the homomorphism i (SOp—;) —
7i(SON1n—i) is onto, we can cboose on the sphere S* x 0 C M™ an (n — i)-frame
field 77~ normal to the sphere S* x 0 in the manifold M™ and such that the
combined frame field (7V,7"%), normal to the sphere S* x 0 € RN*" x 0, is
homotopic to the field 7Y™ ~% which is induced by the (N 4 n — i)-frame field
70" on the ball

Dt x 0 c RNt x 1(0,1).
Hence the field (77, 77~%) may be extended onto the ball

D x 0 c RN x 1(0,1).

We shall denote this extension by (7, 7"~%), where 7% is the extension of the first
N-frame and 7"~¢ is the extension of the last (n — i)-frame. Let us now “inflate”
the ball
D x 0 c RN x I1(0,1).

by the last n — i vectors of the frame 7"~%, more exactly, by the linear space of
dimension n — ¢ defined by these n — ¢ vectors at each point of the ball. We shall
denote this inflation by Q. The vectors of the frame 7V will be normal to the
inflation @ and define an extension of the equipment of 7%V onto this inflation. The
frame field 77, which is normal to the sphere S* x 0 C M™, is different from the
original frame field on the sphere S x 0 that was defined by the original coordinate
system in the direct product S* x D"~ C M™. This difference is measured by
the “discriminating” map S° — SO,_;, which also defines the element d(h) €
(SO, —;) needed by us and the diffeomorphism

h: 0D x D — M™.
It is easy to see from (1) that

B"(h) = [(M\TQE) x I (o, ;)] U [<T2€ x I <0, ;)) Un Q} ,

and that the N-frame field is extended onto ). But
Q~ D" x DI,

where the sign &~ means a diffeomorphism.
The lemma is proved. (]

For convenience in applications of Lemma 1.1 we formulate the following state-
ment.

Lemma 1.2. a) Suppose i < n —i. Then the map
ﬂ'i(SOn—i) e 7T'i(SON-I—n—i)

is always an epimorphism.
b) Suppose i = 2k and i = n —i. Then the map

7ok (SO21) — T2k (SONt2k)

is also always an epimorphism.
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c) Suppose i =2k + 1, i =n —i. In this case the map is epimorphic if and only
ifi #1,3,7. If i = 1,3,7, then the factor group m;(SON4n—i)/mi(SO;), i =n —1,
has two elements.

The proof of a) and b) is contained in [20], and that of ¢) is in [1].

§ 2. RELATIVE m-MANIFOLDS

Let M™ be a smooth manifold, either closed or with boundary, and let W* C M™
be a submanifold of it. We shall denote by v~ (M") the normal bundle of the
manifold M™ C RN*" and by v"~¢(W? M™) the normal bundle of the manifold
Wtin M™.

Definition 2.1. Let f: M¥ — M} be a smooth map. We shall call Mf an (f,7)-
manifold mod M3 if

FroN(My) = vV (M),
Lemma 2.2. Suppose a sphere S C MY, that is smoothly situated in MY, is such
that the map f|S® — M3 is homotopic to zero. Then the bundle v*~*(S, MF) has
the following properties:

1) fori < k —i the bundle v*=*(S*, MF) is trivial;

2) fori =k —i, i = 2s the bundle v*=*(S*, MF) is trivial if and only if the
self-intersection number S* - S% is 0;

3) fori=k—i,i=1,3,7 the bundle v*=%(S*, M}) trivial;

4) fori=k—1i,1=2s+1,i# 1,3,7 the normal bundle is completely defined
by the invariant ¢(S?) € Zs.

If v € Ker f, C m;(MF), where z is the homotopy class of the embedding S* C
M¥, and the group 7 (MF) =0, then ¢ defines the single-valued map

¢: Ker f* — Z,
and

(2) ¢z +y) = o(x) + ¢(y) + [H(x) - H(Y)] mod 2,
where H: m;(M}) — H;(MF) is the Hurewicz homomorphism.

Proof. Let us consider the tubular neighborhood T of the sphere S* in the manifold
MF, which is the space of an SO},_;-bundle with base S*. The map foj: T — MZ
is homotopic to zero and, by assumption,
5 N (My) = v™(T),
where j is an embedding of S* C MF. Hence v~ (T) is trivial. Since the manifold
T is not closed the triviality of the bundle vV (T") implies that T is parallelizable.
Hence the normal bundle of a sphere S* in a manifold is completely defined by an
element o € Ker p,, where
p: SOk_; — SO
and
Pt Ti—1(SO0k—;) = mi—1(SO0x)

is a homomorphism of the natural embedding p. For i < k — ¢ the map p is
isomorphic, and this implies property 1).

Ifi =k—1i,7=2s, then

Kerp, = Z C m95-1(S024)
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and, as is well known, the bundles over the sphere $2° that are defined by elements
a € Kerp, C ma5-1(S095) are completely determined by the Euler class x(a),
where x(a) = 0 (mod 2). But the Euler class of a bundle is equal to the self-
intersection number S¢- S% and this implies property 2).

For i =1,3,7, i =k — i the kernel Ker p, = 0, and this implies property 3).

For i # 1,3,7, i = 2s + 1 the group Kerp, = Z3 (cf. [1]). Hence the normal
bundle v*~%(S% T) is defined by the invariant ¢(S?) C Zs.

Now 71 (MF) = 0. Hence by Whitney’s results two spheres Si, S5 C M which
define one and the same element x € m;(M}), i = k — i, are regularly homotopic
(cf. [25]). Hence

P(51) = o(S3).
Thus the map

¢: Ker f, — Zo
is defined since each element x € Ker f, may be realized by an embedded smooth
sphere S* C MF (cf. [9]). Let us now prove (2). Suppose there exist two cycles
x,y € Ker f.. We realize them by the spheres Si, S§ C M™, the number of points
of intersection of which is equal to the intersection number |H (x) - H(y)| (cf. [25]).
We form tubular neighborhoods 77 and T3 of the spheres Sl and 52 respectively in
the manifold M} and we denote by

T(.’I},y) = Tl U T2

a smooth neighborhood of the union Si U Si. The manifold T(z,y) is obviously
parallelizable, and

H,(T(z,y)=Z+Z.
If the spheres do not intersect our statement is obvious. Let us assume |H(x) -
H(y)| =1. Then

m(T(z,y)) =0,  Hj(T(z,y)) =
and the boundary 0T (x,y) is a homotopy sphere (cf. [ ])
Kervaire proved [4] that in the manifold T'(x,y)

J# 4

¢z +y) = o(x) + ¢(y) + [H(x) - H(Y)] mod 2,
which must also hold in M > T(x,y) since the sphere S* realizing = + y is in
T(x,y) and ¢ is an invariant of the normal bundle. If |H(x) - H(y)| > 1, then the
group
m|T(z,y)| = m (9T (x,y))

is free and the number of its generators is |H (z)- H(y)|—1; hence our argument does
not go through. But by the reconstructions of Morse described in §1 it is possible
to “seal up” the group m1(T'(z,y)) = m1(0T'(z,y)) and pass to a simply connected
manifold T'(z,y) C M{ such that:

a) T(z,y) = T(z,y) Uy, D?> x D*=2 Uy, --- Uy, D? x D*=2 where

t=|H(z) H(y) -1
and
hy: OD* x D*=% — 0T (2, y);

b) T(x,y) is parallelizable;

O Hi(T(w,9) = Z+ 2, H(T(0,)) =0, i £ j;

d) the spheres Si, Si C T(x,y) generate the group H;(T(x,y)) .
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For this we must carry out the reconstructions of Morse in the interior of the
manifold M}, which is possible if k& > 6. Then to the manifold 7(x,y) we may
apply Kervaire’s results [4] and get the equality (2):

Pz +y) = o) + o(y) + [H(z) - HY)]  (mod 2)-
(Concerning the reconstructions of Morse cf. papers [2] and [9].) Thus the lemma
is proved. We note that our description of the behavior of the normal bundles of a

sphere in a parallelizable manifold is not original and is contained in papers [9, 4]
and others. O

Definition 2.3. If the map f: M{* — M3 has degree +1, then we shall say that

)
the manifold M} is greater than or equal to MJ, and write Mp* > M3 .

f
Lemma 2.4. If M} > MY, then the map f*: H*(M¥, K) — H*(MP, K) is a
monomorphism for any field K.
Proof. Let x € HY(M%, K), x # 0; then there exists ay € H" 1(M%, K) such that
(xy, [M3]) = 1. Since
(f*(zy), IMT]) = (f 2 [Ty, [MT']) = (zy, [« [MT]) = (2y, [M3]) = 1,

it follows that f*zf*y # 0 and therefore f*x # 0.

The lemma is proved. O

f 9
Lemma 2.5. If my(M7') = 71 (M}) =0 and M{* > M3, MYy > M7, then the maps
f and g are homotopy equivalences.

Proof. The maps fog: My — MJ and go f: M]* — M are onto of degree
+1. Hence by Lemma 2.4 they induce an isomorphism of the cohomologies over
an arbitrary field K and hence an isomorphism of the integral cohomologies and
homologies. Whitehead’s theorem enables us to complete the proof. (I

Remark 2.6. Lemma 2.5 can also be stated as follows: if w1 (M7') = m (M3) =0,

f
the homologies of the manifolds M7 and M3 are isomorphic, and M > M3, then
they are homotopically equivalent.

§ 3. THE GENERAL CONSTRUCTION

Let M™ be a smooth closed simply connected oriented manifold and v™¥ (M™) its
stable normal bundle, the fiber of which is a closed ball DV, and let us suppose that
this bundle is oriented, i.e., the structural group is reduced to SOpx. We contract
the boundary ov™¥(M™) to a point and denote by Tn(M") the obtained space,
which is the Thom space of the bundle (cf. [22, 7]). We have

(3) Ty (M") = v (M")/ov™ (M™).
The Thom isomorphism
(4) ¢: Hi(M") — Hyi(Tn (M"))

is well known.
As usual, we denote by [M"] the fundamental cycle of the manifold M™ in the
selected orientation.

2t is also assumed that M3 is an (f, 7)-manifold modulo M7".
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Lemma 3.1. The homology class ¢[M™] belongs to the image of the Hurewicz
homomorphism H : 7n 1 (Tn(M™)) — Hyqn(Tn(M™)).

Proof. Let us construct an element © € w1, (Tny(M™)) such that H(z) = ¢[M™].
Let the manifold M™ be smoothly situated in the sphere SN+". Its closed tubular
neighborhood T' € SN+" is diffeomorphic to the space of the bundle vV (M™) in
the natural way, since 7T is canonically fibered by normal balls DV. We effect the
natural diffeomorphism 7" — v (M™) and consider the composition

T — vN(M™) — Tn(M");

the map T' — Tn(M™) transforms the boundary 0T into a point and is therefore
extended to the map SN*+" — T (M™) that transforms all of the exterior SN+ \
T into the same point. This map obviously represents the needed element z €
TN+n(Tn(M™)). The lemma is proved. O

In what follows an important role will be played by the set
H™'9[M"] C mnyn (T (M™)),
which we shall always denote by A(M™). We consider an arbitrary element a €
A(M™) and the map
for SN — Ty (M™)
representing it.

From the paper of Thom [22] there easily follows

Lemma 3.2. There exists a homotopic smooth map
fo: SNT o Ty (M™)

such that:

a) the inverse image fi;1(M™) is a smooth manifold M,
the sphere SN+t

b) for every point x € M2 the map fo transforms the e-ball Dy, normal to
M in SNt into the e-ball D}\i(m), normal to M™ in Tn(M™), and the map
fo: DY — D}\L(I) is a linear nonde generate map for all x € MJ;

c) the maps fo|M? — M™ and fo|DY — D%(I) have degree +1 for all x € M.

smoothly situated in

N

Proof. Points a) and b) are taken from Thom’s paper [22]. For the proof of point ¢)
we observe that the map fu: SN — Ty (M™) and hence f, have degree +1 (this
makes sense because Ty (M™) is a pseudomanifold with fundamental cycle [Tny] =
¢[M"]). Hence the map f, must have degree +1 in the tubular neighborhood of
M? = f7H(M™). We reduce the structural group of the bundle v (M) to SOy
so that all maps f: DY — D}\L (x) have determinants > 0. Then on the manifold
M7 there is uniquely defined an orientation which is induced by the orientations
of the sphere SV*" and the fiber D?. In this orientation the map f,: M? — M™"

has degree +1 since the degree of the bundle map
vN(ME) — v (M) — Ty (M")

is +1 and is equal to the product of the degrees of the map of the base M} and
fiber DY, z € M™; on the fiber DY as a result of the choice of its orientation,
this degree is equal to +1, from which follows the desired statement. The lemma

is proved. ([
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f
Corollary 3.3. The manifold M} > M™.
Proof. The map f, has degree +1 and is clearly such that
N (M) = o (M), O

Corollary 3.4. If my(M?) =0 and H;(M2) = H;(M"™),i=0,1,2,...,n, then the
map fo: M — M™ is a homotopy equivalence.

The proof follows from Corollary 3.3, Lemma 2.3 and Remark 1 on page 8.

We denote by A(M™) C A(M™) the subset consisting of those elements
a € A(M™) for which there exist representatives f,: SV — Ty (M™) satisfying
Lemma 3.2 and such that the inverse image f,'(M") = M is a manifold
homotopically equivalent to M™. The set A(M™) will be of interest to us below.
In studying it the three following important questions are appropriate:

1. What place is taken by the submanifold A(M™) in A(M™), i.e., in which
classes a € A(M™) € mnin(Tn(M™)) are there representatives f,: SN*" —
Tn(M™) for which the manifold

Mg = fo (M)

(03

is homotopically equivalent to M™ (in which classes a € A(M™) are there found
manifolds of the same homotopy type as M™)?
2. Suppose two manifolds M7 ;, and M} 5 are found in one and the same class

a € A(M™) and both are homotopically equivalent to M™. This means that there
are two homotopic maps of a sphere

.fa,i: SN+n d TN(Mn)

such that
foi(M™) =M}

x> i=1,2.
How are the manifolds M7, and M}, connected?

3. In which classes a; € A(M™) can one and the same manifold M} be found
that is homotopically equivalent to M™?

The following three sections will be devoted to the solution of these questions.

§ 4. A REALIZATION OF THE CLASSES

This section is devoted to a study of the question, in which classes o € A(M™)
are to be found the manifolds that are homotopically equivalent to M™. First we
prove a number of easy lemmas of algebraic character. We consider two arbitrary
finite complexes X,Y and a map f: X — Y. Let K be an arbitrary field. We will
assume that

7T1(X) = 7T1(Y) =0.
Lemma 4.1. Suppose for any K the map f.: Hi(X, K) — H;(Y, K) is epimorphic
fori < j+1 and isomorphic fori < j. Then f.: H{(X,Z) — H;(Y, Z) is epimorphic
fori < j+1 and isomorphic fori < j.
Proof. We consider the cylinder Cy = X x I(0,1) Uy Y, which is homotopically
equivalent to Y, and the exact sequence of the pair (C, X)

(5) Hy(X) 5 1Y) = Hi(Cp, X) S Hi_1(X) 5 By (Y)



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 11

for ¢ < j+1. From the sequence (5) it follows that H;(Cy, X, K) =0 for i < j+1.
Therefore

H,(Cy, X,Z) =0, i<j+1.
Returning to the exact sequence (5) (in the homologies over Z) we obtain all of the
statements of the lemma. The lemma is proved. ([l

Lemma 4.2. Suppose the map f: X — Y is such that the map f.: H;(X,Z) —
H,(Y,Z) is an epimorphism for i < j+ 1 and an isomorphism for i < j. Then
the map fo: ©7(X) — m(Y) is an isomorphism for i < j and an epimorphism for
1 < j+1, and conversely.

Proof. We consider two exact sequences which together with the Hurewicz homo-
morphism form the commutative diagram

Hi(X,Z) L= H(Y, Z) — > H{(Cy, X, Z) 2~ H,_\(X, Z)
T

mi(X) — L mi(Y) 7i(Cy, X) mi-1(X)

for i < j+ 1. It is easy to see that
H,(Cs, X,Z) =0, 1< j+ 1L
Since 11 (X) = m(Y) = 0, we have
mi(Cf, X) =0, i <j+1,

from which follows Lemma 4.2 (in the direct sense). The converse statement is
proved analogously. The lemma is proved. (I

For definiteness, in the sequel we will always denote the homomorphisms
mi(X) — m(Y) and H;(X) — H;(Y), corresponding to the map f: X — Y, by
fy”) and fiH)

Lemma 4.3. Under the same conditions as in Lemma 4.2 the homomorphism
H: Ker £+ Ker fH+0)

is an epimorphism.

Proof. The following diagram is commutative and its lines are exact:

mi42(Cr, X) — Ker fiﬂjﬂ) —0

o

Hj2(Cy, X, Z) — Ker fiH“l) —0.
From the proof of Lemma 4.2 we know that
H,(Cy, X)=m(C¢, X) =0, 1 <7+ 1
Therefore
Tj+2(Cr, X) = Hj12(Cy, X).
The simple diagram completes the proof. (]
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We now consider a map of manifolds f: M{* — M3 having degree +1. We will
be interested in the case when the kernels Ker £{™ are trivial for i < [n/2]. We

consider separately the cases of even and odd n. The following two lemmas hold.

Lemma 4.4. Suppose n = 2s and the groups Ker fim) are trivial for ¢ < s. Then

the group Ker ffHS) is free abelian, is singled out as a direct summand in the group

H (M}, Z), and the matriz of intersections of the base cycles of the group Ker fiHS)

s unimodular.

Lemma 4.4'. Suppose n = 2s + 1 and the groups Ker ffm) are trivial for i < s.
Then the group Ker f,EHSH) is free abelian, and both Ker f,EHS) and Ker f*(HS“)
are singled out as direct summands in the groups Hs(M{',Z) and Hgy1 (M7, Z)
respectively. The finite part Tor Ker ngHS) of the group Ker f*HS) is closed under
the duality of Alexander, i.e., the matriz of linkages of the gemerating elements
of order p* in a certain primary decomposition is unimodular modp® for a fized
value of the numbers p,i. The matriz of intersections of the groups Ker fiH”l) and

Ker fiHs)/ Tor Ker f*(Hs) s also unimodular.

We will conduct the proof of both lemmas simultaneously, starting from the
identity

(8) fo(ffeny) =20 fuy,
which holds for any continuous map f. In our case f,[M"] = [M3'] and the oper-
ation N[M7'] coincides with the isomorphism D of the duality of Poincaré. In this
way we get

f* Df* =D,
from which follow the direct sums
(9) H;(M™) = Ker ™ + Df* H" (M)
over any coefficient domain and for any values of i. Consequently, the singling out
as a direct summand is proved in all cases. The absence of torsion in the groups
Ker f*(HS) for n = 2s and Ker f*(H"'“) for n = 2s + 1 follows from the fact that
the groups Ker fiHS’l) are trivial in both cases, and from the principle of duality
of Alexsander, connecting the torsions of the groups H,_1(M7}) and H,,_,(M})
for both values of n. It remains to prove the unimodularity of the correspond-
ing matrices of intersections or linkages. We show that the groups Ker f,EHi) and
Df*H" (M%) are orthogonal to each other with respect to the operation of inter-
section of cycles for any values of ¢ and over any group of coefficients. In fact, let
r € H" (M%) and y € Ker FH) Then

(10) (ffzn[MP]) -y = (f*z,y) = (z, foy) =0
and any element of the group D f*H"~¢(M#) has the form
fran[My].
(H;)

Thus the groups Ker f; and Df*D~1H;(M%) are orthogonal. Applying this
orthogonality, we obtain the unimodularity of the matrices of intersections in all
the necessary cases. The statement concerning the matrices of linkages follows
from the fact that the linkages can be defined in terms of the intersections of cycles
modulo p®. Thus Lemmas 4.4 and 4.4’ are proved.

We note a useful supplement to Lemma 4.4.
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Lemma 4.5. The map H: Ker fiTFS) — Ker fiHS) for n = 2s is an isomorphism if
the groups Ker ™) =0 fori < s.

Proof. We consider, as in the proof of Lemma 4.3, the commutative diagram

n ~ n n 6
Hy 1 (M]') —— Hs 1 (M3') —— Hs41(Cy, M7') HKerfiHs) —0

TN

n 8 T
Top1(M]') —— o1 (M5) —— me41(Cy, Mj") —— Ker f™) ——0.

Since the maps f,EHi) for i < s are isomorphisms, the map fiHS“) is also an

isomorphism. From the exactness of the sequences we conclude that the map
0: He1(Cyp, M7') — KerfiHs)
is an isomorphism. Therefore the map
OH = HO: mey1(Cy, M7*) — Ker faEHS)
is an isomorphism and the map
H: Ker f™) — Ker f{*+)
is also an isomorphism. The lemma is proved. O
We now investigate an arbitrary element o € A(M™). We have the following

Lemma 4.6. For every element o € A(M™) there evists a map fo: SV —
Tn(M™) satisfying Lemma 3.2 and such that the inverse image M = f 7 (M™) C
SN+ possesses the following properties:

a) m (M) = 0;

b) the maps FH Hy (M) — Hs(M™) are isomorphisms for s < [n/2].
Proof. We will by induction construct the maps

sfa: SN+n - TN(Mn)a
satisfying Lemma 3.2, for which the groups
Hy(Mg,), Mgy, =af ' (M)

will be isomorphic to the groups H;(M"), i < s. Since the maps s fo: MJ , — M"
have degree +1, this isomorphism is established by the map s C(yfi). From Lemmas
4.1-4.3 it follows that the map g féHs) is an epimorphism and all of the base cycles
r1,...,7; € Keryg O(fs) can be realized by a system of smoothly embedded disjoint
spheres S7,...,S; C Mg ,, on which the map Sfa\S; is homotopic to zero. We
assume that the maps ; f, are already constructed for i < s and we construct the
map s11fa by reconstructing the map s f,.

Step 1. We deform the map s f, to the map , fa such that
sfal(T(5)) = go € M"
where gg is a point in the manifold M™. The deformation is assumed to be smooth,
and T'(S7) C M} ; denotes a smooth tubular neighborhood of the sphere S§ C M .
In the fiber DY C N (M™) we take the frame 73", which determines the orientation

of the fiber Dé\g. The inverse image f;TéV represents a continuous N-frame field 7V
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on T'(S) that is normal to T'(S5) € SN*™, since the map , fa, satisfies Lemma 3.2.
The arbitrariness in the choice of the frame 7’ is immaterial for our purposes.
Step 2. According to Lemma 2.1 the tube T'(55) is diffeomorphic to S5 x D%,
where € > 0 is a small number. We assign in T'(S§) the coordinates (z,y), « € S3,
y € DP7°. As a result of Step 1, on the tube T'(S5) there is constructed the field

7. We consider the direct product S™V*! x I(0,1). We will assume that
s.foz: SNHM % 0 — TN(Mn)a Mg,s c SN 0.
We construct a membrane B"*1(h) € SN+" x [(0,1), orthogonally approaching

the boundaries, such that the field 7V can be extended to a certain field 7V that
is normal to

1
B a2 A7) <1 (03]
in the direct product SV*" x I(0, 1), where
h: OD*F1 < DP™* = T(SF),  h(z,y) = (z,d(h)a(y)),
d(h): S; — SO, _s.
Such a choice of the membrane B"*!(h) is possible according to Lemmas 1.1
and 1.2.

Step 3. We extend the map Sfa MY
M™", putting

— M™ to asmooth map ¢ F,: B"T!(h) —

yS

sFo = sfal B"1 (R) N SNFT 0,
SFa(D¥FE X DE%) = go = s fa(T(SY))-
We extend the map

(12)

sFo: B"(h) — M"
to the map
sFo: T(B" T (h)) — Ty (M™),
where T(B"+1(h)) is a tubular neighborhood of B"*1(h) in S¥*! x I(0,1), accord-
ing to the frame field 7V that is normal to the part of B"**(h) in SN*" x I(0,1)
which is diffeomorphic to D¥*1 x D¢ € B"*1(h). On the remaining part

1
BT h)\ DTt x DT = MY x T (o, 2)
the extension of the map is trivial. In their intersection
1
My <1 (o, 2) N Dt x D=5 = T(S5)

these extensions are compatible with the general frame field 7%V. Further, by the
well-known method of Thom, we extend the map  F, onto the entire product
SN+ 5 1(0,1).

Now we put

sfo(tl) = sFa|SN+n x 1
Clearly, the map ,f(!) satisfies Lemma 3.2 and
ST M) = M (h):

Since 2s + 1 < n, we conclude that

Ker , (9*) = Ker g fo./(x1).
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Putting, iterating the construction,

S+1foz = sfo(él)v
we obtain the statement of the lemma. O

An analysis of the case s = [n/2] is more difficult and will be broken down into
the following cases:

1) n=4k, s =2k, k> 2;

Nn=4k+2,s=2k+1,k>1,k#1,3;

)n=4k+2,s=2k+1, k=1,3;

4)yn=4k+1, s =2k, k> 1;

5)n=4k+3,s=2k+1, k> 1.

Lemma 4.7. Let n = 4k. For every element o € A(M™) there exists a map
fo: SNH — T (M™), satisfying Lemma 3.2, such that the inverse image M =
L (M™) is homotopically equivalent to M™.

Proof. Applying Lemma 4.6, we can construct a map o, fo : SV" — T (M™) such
that
Kerop f09 =0, i< 2k,
where
ok fai MY =opf3 (M™) — M™.
According to Lemma 4.4 the group

Ker o £ = Loy € Hop (M o)

(e

is free abelian, singled out as a direct summand in the group Hay (M o), and the
matrix of intersections of the base cycles Iy, ..., C Lok is unimodular. We select

in the group H%(Mg%)/ Tor a base l1,...,lm,q1,...,qp such that
gol;=0, i=1,...,p, j=1,...,m
this can be done in view of the unimodularity of the matrix
(ljoly), jt=1,...,m.

The matrix (¢; 0g;) is equivalent to the matrix of intersections of the base cycles
of the group Hai(M™)/ Tor and, moreover,

(2k fax@i) © (2 faxgj) = i © g;.

Since
anfar™ (M™) = v (M)

and the map ok f, has degree +1 it follows from a formula of Hirzebruch [3] that
the indices (signatures) of the manifolds M ,, and M"™ are equal to each other.
Therefore the signature of the matrix (I; o l;), ¢,j = 1,...,m, is equal to zero
(the matrix of intersections of the manifold M ,, splits, by virtue of what has
been said above, into two matrices, one of which is identical to the matrix of
intersections of the manifold M™, and the other of which is the matrix (I; o l;),
i, =1,...,m). On the other hand, the self-intersection indices [; ol; are even. For
a proof of the evenness of the numbers /; o I; we realize the cycle [; by a smooth
sphere S?* C MY, 5, according to Whitney [25] and Lemma 4.3. Then we consider
the tubular neighborhood of the sphere, T(S?*) C M ,;, which is a parallelizable
manifold (cf. point 1) in the proof of Lemma 2.2). The self-intersection index of a
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sphere in a parallelizable manifold is always even, from which we obtain the desired
statement. Thus the signature of the matrix (I; o l;) is equal to zero and

According to [9] one can find a base l7,...,I/ , m = 2m/, such that
a)liol;=0,1<i<m;
b) Ly ol =1,i=0,1,...,m —1;
) lpol;=0 0therw1se i.e., the matrix can be reduced to the form
0 1
1 0 0
as
0 1
O 10

We realize the cycles I;, + = 1,...,m, by smoothly embedded spheres S?’C -
M o), in such a way that their geometric intersections correspond to the algebraic
intersection indices (the number of points of an intersection SP* N S?* is equal to
the index |S?¥ o S3¥[; this can be done for k > 1; cf. [26, 9]). According to Lemma
2.2 the normal bundles v2*(S2F, M2 2k) are trivial. Then we exactly repeat Steps
1, 2, 3 of the proof of Lemma 4.6, using Lemma 1.2. As a result of a reconstruction
of Morse, the manifold M7 o, is simplified (one reconstruction of Morse over the

. . 1 . .
sphere Si% obliterates the integral square <(1) O); cf. [9]). Iterating the operation,
we arrive at a map

fo: SNFR Tn(M™)

such that Ker f( ") = =0, i < 2k, and 7 (M2) = 0. According to the duality of
Poincaré,

Ker f17) = j > 2k,
and the groups H;(M2) and H;(M ") are 1bomorphic According to Lemma 2.4 and
Remark 1 on page 8, the manifold M?, is homotopically equivalent to the manifold
M™. The lemma is proved. (I

Now let n =4k +2,k# 1,3, k > 1.

Lemma 4.8. For every element o € A(M™) there exists a map fa SN+n
Tn(M™) satisfying Lemma 3.2 such that the inverse image M7 = f71(M™) pos-
sesses the following properties:

a) m(Mg) = 0;

b) H;(M2) = H;(M™), i # 2k +1;

¢) Ker f5+) = 7 + 7 or 0

d) denoting the base cycles of the group Ker fq.
Ker () = Z 4 Z, ¢(x) = ¢ly) = 1.

Hat) by oy, woy = 1, if

Proof. Using the results of Lemma 4.6, we consider the map

2kt1fa: CRRRE TN(Mn)
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satisfying Lemma 3.2 and such that
Hi(Mg gpy1) = Hi(M"),  i<2k+1,

Ker 2k+1fo(zl>k{2k+l) =Z+---+7Z
the matrix of intersections of the base cycles of the group Ker o 11 f,gf%“) is skew-
symmetric and unimodular. It can therefore be reduced to the base x1,...,2z9 €
Ker o1 féfz’““), the matrix of intersections of which has the form
0 1
-1 0
G T
0 1
-1 0
Thus we determine, the invariant ¢(z) € Zs, x € Ker gx41 féfz’““) , which is such
that
Pz +y) = d(x) + d(y) + (£ ©Y) moa 2
according to Lemmas 2.2 and 4.4. We put
!
P(2k+1fa) = Z¢(l’21‘—1)¢(f€2i)-
i=1
If ¢(2k+41fa) =0, then it is possible to choose a base zf, ..., x},; such that

o(x}) =0, i=1,...,2L

If ¢(2x+1fa) =1, then one can find a base z1,...,z}, such that

p(x1) = day) =1
and

o(x}) =0, 7> 2
(cf. [4]). We realize the cycles by smoothly embedded spheres kaH C M oy, that
intersect each other if and only if their intersection indices are different from zero,
and at not more than one point (cf. [9; 25]). If ¢(ak+1fa) = 0, then the normal
bundles u2k+1(53k+17M372k+1) are trivial. If ¢(ar41fa) = 1, then the bundles
p2htl(GZhFL M 5 41) are trivial only for i > 2. Repeating Steps 1, 2, 3 of Lemma
4.6 and using Lemmas 1.2 and 4.7, we employ the reconstructions of Morse to seal
the spheres ngfll, 1 > 2, each time killing the square (_01 (1)> If ¢(ak+1fa) =0,

then we also seal the sphere SZ*1 since its normal bundle in the manifold My ok 11
is trivial in this case. As a result we arrive at the map

fa: GN+n Tn(M"),

possessing the properties a)-d).
Thus the lemma is proved. (I

We now investigate the case n =6,14 =4k +2, k=1, 3.
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Lemma 4.8'. For every element @ € A(M™) there exists a map fo: SVT" —
Tn(M™) such that:
1) mi(Mg) = 0;
2) Hi(M2) = H;(M™), i #2k+1;
3) Ker £+ = 7 + 7 or 0.

Although the formulations of Lemmas 4.8 and 4.8' are analogous, it will be seen
from the proof that these cases are essentially distinct. As above, we construct the
map

2k+1fa: SN+n — TN(Mn)
We have
Ker 2k+1f(g*{i) =0, 1< 2k+1,

and the group Ker ogt1 fox (H2t41) g free abelian; in this last group we select base

cycles x1,...,x9, the matrix of intersections of which has the form (14). We
realize these cycles by the spheres S’zk+1 C M[ 9j41- It is possible to compute a
map 2541 fo such that

21 fa(S5TY) = ki1 fa (S5 = go € M™, t=1,...,1,

where go is a point in the manifold M™. On the spheres S2k+1 and S2k+1 there
appear the frame fields 73y _; and 7Y, which are normal to M" ok+1- The maps

j*t 7T3(503) — 7T3(SON+3)

and
gt m(SO7) — m7(SON47)
are not epimorphic. In fact,
Coker j, = Zs.

We select arbitrary frame fields 727!, 7251 that are normal to and

MY 5.1 (we recall that in this case the normal bundles 1/2k+1(52f+11, M 5;.41) and

p2htl(G2hHL o okr1) are trivial). Under an arbitrary variation of the fields Tkl

and 7'221-’““, the combined frame fields (72, 72F% 1) and (7Y, 7251 that are normal

to the spheres S3r ' and S3Ft! in SN*" distinguish the elements thg;1,102; €
Coker j.. If ¥9;_1 # 0 and 19; # 0, then an equipment cannot be extended onto
the balls D2F+2 D22 « GN+7 « [(0,1). There therefore appears an obstruction
to a carrying over of the equipments of 72 ; and 7JY under a reconstruction of

Morse (depending on 72211”11 or 7221’”1) with value in the group Coker j,, equal to

Pai1 = o1 (SaFHD)

52k+1 SQk-‘rl

and
77/121 - 7/}21 (52k+1)

It is easy to see that the invariants 1) depend only on the cycle zs € Ker 911 féfz’““)
and not on the sphere S2*+1 realizing the cycle x,, since

Ker o1 FH) — Ker 2kt 1 i)

according to Lemma 4.5, and the homotopy spheres of dimension 2k+1 in Mg, ,
are regularly homotopic (cf. [25]). Thus we determine the invariant

W(2) € Zy, @€ Kergpyr for ).
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We note further that by analogy with the invariant ¢ it is possible to find a base
xq,..., x5, such that ¥(z) =0, s > 2 (cf. [15]). It is therefore possible, following
the previous proofs, to seal the cycles 2, s > 3, by means of the reconstructions
of Morse. If 9(a}) # 0 and ¥(z) # 0, then it is not possible to carry out any
further resealing (the obstruction to a carrying over of the equipment is different

from zero). But if ¢(z) =0, s = 1 or 2, then it is possible to reseal the cycle 7,

killing the square ( 0 . As a result, in both cases we arrive at the statement

-1 0
of the lemma. The lemma is proved. [

Remark 4.9. A detailed analysis of the invariant ¢ and the reconstructions of
Morse in this case (for k£ = 0) is contained in a paper by L. S. Pontrjagin [15].

It remains for us to investigate the case of odd values of n. We note to begin with
that in this case the reconstructions of Morse, the carrying over of the equipments
(of frame fields) onto a membrane and the carrying over of maps does not meet
with any difficulties; but it is not clear that a manifold is simplified as the result
of a reconstruction of Morse (this question is resolved trivially in all remaining
cases). If n = 2i + 1, then under a reconstruction of Morse over a cycle (sphere)
of dimension 4 there is formed as a result a new cycle of the same dimension i,
that was previously homologous to zero. We consider an arbitrary closed simply
connected manifold Q~. Suppose the group H;(Q") has a torsion Tor H;(Q") # 0.
We select in the group Tor H;(Q™) a minimal system of generators z1,...,z; of
orders qi,...,q respectively. As is well known, for two cycles z,y € Tor H;(Q™)
there is defined a “linking coefficient” Lk(z,y) € Zg(q,4), Where ¢ and ¢ are the
orders of the elements  and y and d(q, ¢’) is their greatest common divisor. Namely,

(15) Lk(z,y) =0 (qx) oy = 200 *(¢'y) mod d(q,q’).
We formulate the Poincaré-Alexander duality.?
Suppose x1,...,2; € TorH;(Q™) is a minimal system of p-primary generators

of orders q, ..., q respectively. Then there exists a minimal system of generators
Y1, -,y € Tor H;(Q™) of orders gy, ..., q such that

(16) Lk(x'ﬂu yt) = Ot mod d(Qma Qt)'

We assume that the cycle z; is realized by the sphere Si C Q", and the bundle
vHL(SE QM) is trivial.

The tubular neighborhood T'(S%) of the sphere S? in Q™ is diffeomorphic to
Si x D1 ¢ > 0 being a small number.

We divide the reconstruction of Morse into two steps.

Step 1. Q" — Q" \ S} x DIt = Q™.

Step 2. Q" — Q" U, DI x St = Q"(h), where h: 9Dt x DI+ — Q™ (cf.
§1).

We consider the cycle

b(w1) =go x IDF C Q" go €S

Lemma 4.10. H,(Q") = Hy,(Q™) for s < i. There is defined an epimorphism
1. Hi(Q™) — H;(Q™), the kernel of which is generated by the cycle b(x1). In the
group H;(Q™) it is possible to select generators Ui = xf*lyj, 3 =1,...,1, such that

(17) b(r1) = q171-

3The meaning of linking coefficients and duality is not restricted to a system of p-generators.
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Proof. Hy(Q") = Hy(Q"), s < i, as long as n = 2i + 1 > 2s 4 1, and therefore
all s-dimensional cycles and (s + 1)-dimensional membranes can be assumed to be
nonintersecting with S%. For s = 1 we can assume that the s-dimensional cycles do
not intersect with Si. Therefore an embedding induces the epimorphism

r1.: Hi(Q") — Hi(QM).
But the membranes have dimension i + 1 and intersect with S? at isolated points.
Consequently, two cycles that are homologous in @™ will be homologous in Q"
modulo b(x71). Hence
Ker z1, = (b(x1)).

In the homology class y1 € H;(Q™, Z) one can find a cycle ; and a membrane
07 Y(qij1) such that the intersection index

a_l(qgl) 0T = 17

from which it follows that the cycle b(x;) is homologous to ¢;. Thus the lemma
is proved. ([

It is well known that the linkages Lk(z, y) are bilinear, symmetric for odd ¢ and
antisymmetric for even i. We select in the group Tor H;(Q™, Z) a p-primary system
of subgroups

H(p,sp) DH(p,s—1)D---D H(p,1),
where
Tor Hy(Q",Z) = > H(p,k)/H(p,k —1).*
p.k

Thus, to the group H(p,s,) are referred all elements of a group having orders
of the form p’, and to H(p,k)/H(p,k — 1) are referred all p-primary generators
of order p* and H(p,k)/H (p,k — 1) represents the subgroup H(p,k) C H,(Q", Z)
spanned by them.

Lemma 4.11. a) A decomposition of the group Tor H;(Q™, Z) into the direct sum
of groups H(p,k)/H(p,k — 1) can be performed by a suitable choice of p-primary
generators such that Lk(x,y) =0 if x € H(p,k —1), y € H(p, ka), k1 # ka;

b) in each group ﬁ(p, k) one can choose a system of p-primary generators
Tlyeeos T YLy -5 Yom € lff(p7 k) such that:

Lk(zs,y) =0, 1<s<t 1<1<2m,

(18) Lk(‘rsux&) = 07 S1 7£ 52,

Lk(yluylz) = 07 |ll - ZZ‘ > ]-7

Lk(yl17yll) - 07 ll + l2 = 1 (mod 4)7
(19) Lk(zs,x5) 0 (mod p), 1<s<t,
( ) Lk(ylayl)zo (mOd p)7 1§l§2m7
20

Lk(yai—1,921) =0 (mod p*), 1<1<m.

4The choice is such that H(p, k) = H(p, k)/H (p, k—1)+H (p, k—1), H(p, k) = H(p, k)/H(p, k—
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Proof. 1t is easily seen that for any choice of a system of p-primary generators in
the group H(p, sp) the matrix of linking coefficients for the generating elements of
order p°» (considered mod p®r) has a determinant that is relatively prime with p.
We put k = s, and consider the subgroup H(p, s, — 1) such that

Lk(z,y) =0,

where z € H(p,s, — 1) and y is a generator of order p*». Now one can choose a
new system of p-primary generators in which all generators of orders less than p®»
belong to the subgroup H(p, s, —1). We presuppose by induction that in the group
H(p, sp) there are chosen subgroups H(p, k) and a system of p-primary generators
such that:

a) all generators of order not greater than p* belong to H(p, k);

b) Lk(z,y) =0, z € H(p, k), y being a generator of order > p*.

We construct the group H(p,k — 1). We consider the subgroup H(p,k) and
assume that H(p, k — 1) consists of all elements € H(p, k — 1) such that

Lk(z,y) =0,

where © € H(p,k — 1) and y is a generator of order p¥. Since the matrix of
linking coefficients for the base cycles of order p* of the group H(p, k) (the linking
coefficients are assumed at this step to be determined mod p*) has a determinant
that is relatively prime with p it follows that the group H(p,k — 1) constructed
by us possesses all the necessary properties. Thus we have decomposed the group
H(p, sp) into the direct sum of the groups

H(p,k) = H(p,k)/H(p,k — 1)
so that
Lk(H(p,k1)7H(p’k2>) :Oa kl #k2

Point a) of the lemma is completely proved. For the proof of point b) we note that
each group H(p, k) represents a linear space over the ring Z,x with scalar product
Lk(z,y) having a determinant that is relatively prime with p. Consequently, either

1) in the original base one finds a generator Z; such that Lk(Z, Z2) # 0 (mod p),
or

2) one finds a pair of generators 1, g2 such that

Lk(g1,91) =0 (mod p), Lk(g2,92) =0 (mod p),
Lk(g1,92) Z0 (mod p).
If case 1) holds, then one must select a base (Z1,x2, ..., %Y1, -,Ys) such that
Lk(xj,&1) = Lk(y;,%1) =0, 7 >2.
If case 2) holds, then

Lk(g1,91)  Lk(1,92)
+ Lk(glv gl) Lk(g% g?)
we select a new base {x;, e, ¥}, | > 2, such that

Lk(wj’ gﬁ) = Lk(yl,ge) - 0, €= ]., 2.

paii a12
*ai2 pass

#0 (mod p);

In the second case we put
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Then in both cases we select the other required generators in subgroups that are
orthogonal to Z; (in the first case) and orthogonal to g1, g2 (in the second case) in
such a way that the relations (18)—(20) are fulfilled. The lemma is proved. O

In the sequel we will always compose a minimal system of generators of the
group Tor H;(Q", Z) from the p-primary generators constructed in Lemma 4.11.
We will select a minimal (with respect to the number of generators) system, and
the generating element = of aggregate order

g=[]r"
pel
will in a canonical manner be decomposed into a sum of primary generators x =
>, z(p) of orders pFr. We divide the set of indices J into two parts: in the first
part J; we put all p for which the elements z(p) satisfy condition (19), and in the
second part we put all p for which the x(p) satisfy condition (20). Putting

=) o), =) 20),
peJ1 pEJ2
we get that for T there exists a base element 7, independent of Z, such that the
number Lk(Z, §) is relatively prime to the order of Z (equal to the order of 7).

Lemma 4.12. Ifn = 2i+1 and i is even, then the order of the element T is equal
to 2 (if z #0).

It is evident that the proof of the lemma immediately follows from the antisym-
metry Lk(z,z) = — Lk(Z, Z) that must be relatively prime to the order of Z. The
lemma is proved. O

Suppose the cycle Z; is realized by the sphere Si C Q", i even. According to
Lemma 4.10, to the element Z; € H;(Q™) corresponds an element 7, € H;(Q")
such that b(Z1) = 2%;. One can assume that Z; lies on the boundary of the tubular
neighborhood A ‘ . ‘

T(S") cQ", T(S%) = S" x D1,
Lemma 4.13. The kernel of the homomorphism
H;(Q™) — Hi(Q"(R)),
for any h: 0D x D"t — T(S%) such that
h(w,y) = (x’hz(y))v hy € SOiy1,
is generated by the element (1 4+ 2X(h))Z1, where A(h) is a certain integer.

Proof. We consider the map d(h): St — SO, 1, defining a reconstruction of Morse,
and we denote by y(h) the homology class of the cycle §(h) € OT(S%), defined by
the first vector of the frame field d(h), normal to Si in Q", y(h) € H;(Q™). There
exists a number A(h) such that

y(h) = T1 + A(h)b(Z1)

8N

or
y(h) = (1+2X(h))z1.
Clearly, under the inclusion homomorphism H;(Q") — H;(Q") the kernel is gener-
ated by the element
y(h) = (1+ 2A(h))Z1.
The lemma is proved. (I
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Thus we have eliminated the element Z; of order 2. Therefore in the group
H;(Q™(h)) of generators not satisfying condition (20) there will be one less (for ¢
even), since all such generators have order 2 according to Lemma 4.12.

Suppose i is arbitrary (either even or odd) and that Z; is a generating cycle
71 € H;(Qm), satisfying condition (20) and realized by the sphere Si C Q™ with
trivial normal bundle v**1(S%, Q™). Suppose also that the cycle Zo € H;(Q™) is such
that Lk(Z1,Z2) = 1. We denote, as in Lemma 4.10, the generators corresponding
to them by a;cl,g;cg € H;(Q"), where b(Z;) = qlig, q1 is the order of the generators
Z1,T2 € H;(Q™) and 77 is the homology class in H;(Q™) of the cycle Z1(h) defined
by the first vector of an (i + 1)-frame field h: S* — SO, 1 on the boundary 0T'(S%)
for a fixed h. Then we have

Lemma 4.14. The kernel of the inclusion homomorphism H;(Q") — H;(Q"(h))
is generated by the element Z1, and the group H;(Q™(h)) has one generator less
than the group H;(Q™).

The proof of the lemma follows from the definition of Morse’s reconstruction and
the relation b(Z1) = ¢1Z2.

Remark. The element Ty € H;(Q"(h)) has order Aqi, where
A =Lk(Z1,Z1) (mod q1),

and the number Lk(§27 :%‘2) is relatively prime to Agq; if A # 0 (i.e., the element s
satisfies condition (19) in the manifold Q™ (h)).

Let ¢ be odd. We consider the element T; € H;(Q") realized by the sphere
Si C Q™ with trivial normal bundle v*T1(S%, Q™). The self-linking coefficient

Lk(Z1,Z1) = A (mod q),

where ¢ is the order of Z; and A is relatively prime to ¢. It follows from Lemma
4.10 that on the boundary 0T'(S}) one can find a cycle Z; such that the relation

)\b(.f?l) = qfcl
will be fulfilled in the homology group H;(Q").
We consider the map h: S¢ — SO, and the kernel of the embedding
j*I 7'('1'(501‘_,_1) — Wz(SOOO),

which is isomorphic to the group Z for i odd, Ker j, = Z.

We denote by y(h) the homology class in Q™ of the cycle defined on 9(S%) =
St x SY (b(71) = go x S, go € S, as above) by the first vector of the frame field h.
Let p € Kerj. = Z (@ a number).

Lemma 4.15. The kernel of the inclusion homomorphism
Hi(Q") — Hy(Q"(h))

is generated by the element y(h) = Ty +yb(Z1). The kernel of the inclusion homo-
morphism

Hy(Q") — Hi(Q"(h + 1)), ueKerj, =27,
is generated by the element y(h + p) = y(h) + 2ub(z1).
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The proof of Lemma 4.15 immediately follows from the definition of Morse’s
reconstruction and the structure of the homomorphism Ker j. — H;(S*) induced
by the map SO;,1 — S* (projection) under which the generator of the group Ker j,
goes over into the cycle 2[S?]. Therefore

y(h+ p) = y(h) + 2ub(21).
Let us prove that
y(h) = Z1 + vb(Z1).
To do this we consider the intersection index
[0 qy(h)] -1 = Amod q1 = A+ vq1.
On the other hand,
[0 0(z1)] - 71 = 1.
Therefore
[0 (qry(h) — @yb(21))] - Z1 = A,
from which it follows that one can put Z; = y(h) —vb(z). The lemma is proved. [

Lemma 4.16. One can choose a number u such that in the group H;(Q™(h + n))
we will have:

a) T1 =0, Ab(Z1) = 0 (v even),

b) 71 =b(71), (M — q1)71 =0 (7 odd),
where in both cases the order of the “new” element b(Z1) is less then qy; the number
Lk(b(Z1),b(Z1)) is relatively prime to the order of the element b(Z1).

Proof. Since A\b(Z1) = 171 in Q™ and &1 = y(h) — vb(Z), we have
y(h+ p) = y(h) + 2ub(1) = & +vb(21) + 20b(71).
In passing to Q™(h + ) the relation y(h + p) = 0 is imposed. Therefore
Fr = (- 20)b(@)  (in Q"(h+ ).
Ab(Z1) = 171 (in Q™),

from which follows the possibility of making such a choice of p (u = —v/2 for
even and 2u — 1 =~ for v odd).

Clearly, by virtue of Lemma 4.11, the element b(Z1) does not link with the other
base cycles.

Thus the assertion is proved. O

Now we apply the proved lemmas to a study of the maps
fo: SNT o T (M™),
where n = 2i 4 1.
Lemma 4.17. Let o € A(M™). There exists a map
far SN — T (M™)

such that the inverse image f;1(M™) = M is homotopically equivalent to M™.
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Proof. As above, we consider the map
ifa: SV — Ty (M™),
constructed according to Lemma 4.6, and the preimage
M lifH(M™),
on which the groups H, (M ;) are isomorphic to the groups Hs(M") for s < i and

m(MZ7,;) = 0. The group Ker;f&" is singled out in Hy(MZ7,), n = 2i + 1, as a

direct summand according to Lemma 4.4’. The group Ker; éf’i“) is free abelian,

according to Lemma 4.5. First we attempt by means of Morse’s reconstructions to
kill the group Tor Ker; ,(xfi), using the Poincaré—Alexander duality. If 7 is even,
then, on the basis of Lemmas 4.12 and 4.13, we kill all elements not satisfying con-
dition (20), without increasing the number of generators, and next, by Lemma 4.14,
we kill the elements satisfying condition (20), decreasing the number of generators
by 1 with each reconstruction. If ¢ is odd, then by means of Morse’s reconstructions
we successively kill the generators satisfying condition (20), each time decreasing
the number of generators by 1 (by Lemma 4.14), and next, by Lemmas 4.15-4.16,
we commence to decrease the order of some generator satisfying condition (19),
each time not increasing the number of generators yet reducing the order of this
generator (varying the reconstruction mod Ker j, C m;(50;41)), which preserves
the possibility of carrying over the frame fields (cf. the proofs of Lemmas 1.1 and
1.2). Thus, as a result we kill the group Tor Ker; C(yf’) Then, according to the
results in [4], we easily kill the elements of infinite order and so arrive at the needed

manifold M7 and the map
fo: SNT o Ty (M™)
by analogy with Lemmas 4.7, 4.8 and 4.9. The lemma is proved. ]
We collect the results of the lemmas into the following theorem.

Theorem 4.18. Ifn =4k, k > 2, or n = 2k + 1, then each element

o € AM™) C (T (M™),  AM™) = H- 6[M")
is represented by a map fo: SN — T (M™) that is t-regular and such that

m(My) =0,  Hi(My)=H;(M")

fori=2,...,n—2, where M7 = f71(M™). Thus the manifold M is homotopically
equivalent to M™ with degree +1 and v™N (M) = fivN(M™). If n =4k +2, k> 1,
then for any element o € A(M™) one can choose a map fo: SN — T (M™) of
the same homotopy class as o such that

m(Mg) =0,  Hi(MZ) = Hi(M")
for i > 2k, where M = f1(M™); moreover,
Ker f2+0) = 7 4 7

and there is defined an invariant ¢(a) € Zy forn =4k+2, k # 1,3, and ¥(«) € Zy
for n = 6,14, the equality of these invariants to zero being a sufficient condition

f(H2k+1)

for reseating the groups Ker = Z + Z by means of the reconstructions of

Morse.

The theorem is a formal unification of the preceding lemmas.
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§ 5. THE MANIFOLDS IN ONE CLASS
For any element o € A(M™) C A(M™) the map representing it
fo: NI Ty (M™)
is called admissible if it satisfies Lemma 3.2 and if the inverse image
o (M) = M
is homotopically equivalent to M™.

Theorem 5.1. Let fo;: SNt — Ty (M™), i = 1,2, be two admissible homotopic
maps and M[ ; = ;3 (M™). Ifn is even, then the manifolds M ; are diffeomorphic
with degree +1. If n is odd, then there exists a Milnor sphere Snoe 0™ (0m), which
is the boundary of a m-manifold, such that the manifolds M2, and M] o # S™ are
diffeomorphic with degree +1. 7 7

Proof. We consider the homotopy
F: SNt I — Ty(M™),

where F|SNT" x 0 = f,1 and F|SN*? x 1 = f, 5. We divide the proof into a
number of steps.
Step 1. We t-regularize the homotopy F. Then we consider the inverse image

FH(M™) ¢ SN % 1(0,1),
which is a manifold N"*! with boundary
ON™ = Mg,l U (*Mg,Q)a
and
VN(NnJrl) _ F*I/N(Mn).
Thus there is defined a map F|N"*! — M" which is a homotopy equivalence of
degree +1 on each of the boundaries. The manifold N"*! is an (F,n)-manifold

mod M™.
Step 2. We consider the decompositions into direct sums

Hy(N™) = Hy(M7,) + Ker F™) i =12,
(21) mi(N™T1) = (Mg ;) + Ker F,Sﬁj), 1=1,2,

HI(N™*1) = H/(M[,) + Coker F,, i=1,2,
that arise from the natural retractions of a membrane onto each of the boundaries:
(22) (fai)™H - F: N"™™H— MY,

where the maps (fa,i) ™" - fa,i: M} ; — M ; are homotopic to the identity maps.
It is evident that

Hy(N"™ M2) =Ker F™),i=1,2,
(23) (N M2 ) = Ker FU = 1,2,
HI(N™*' M7 ,) = Coker F,, i=1,2.

We have the following
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Lemma 5.2. Among the groups Ker Fij)/Tor and Ker FiH"“’j)/Tor there is
defined by means of the intersection index a nonsingular wimodular scalar product.

Among the groups Tor Ker FfH") and Tor Ker F*(H”’j) there is defined the Alexander
duality: for every minimal system of generators x1,...,x; € Tor Ker F,SHj) there

exists a minimal system of generators yi,...,y; € TorKer FfH’L’j) such that the
order of y; is equal to the order of x;, i =1,...,1, and Lk(z;,y;) = d;;.

Proof. Lemma 5.3 is an immediate consequence of the decompositions into direct
sums (21), the isomorphisms (23) between the various groups mod M? . and the

groups Ker F*(H’“), and the Poincaré—Alexander duality D:
D: Hy(N™, M) = HY T I(NH M),

(24)
Tor H;(N™*, M7 }) ~ Tor H,_j(N" ", M7 ,).

The lemma is proved. O

Step 3. By means of Morse’s reconstructions we successively kill the groups
7 (N™H1), Ker F*(Hz), ..., etc., reconstructing the map F onto the reconstructed
manifold and using in this regard all of the techniques proved in §4.

Case 1. If n is even, then n + 1 is odd and the successive reconstructions
of the groups Ker F*(HJ ) up to j = n/2 do not encounter obstructions. While if
Ker FH9) = 0 for j < n/2, then, by Lemma 5.3, Ker pitne-3) — (and 7 = 0).
Therefore the membrane N™*! contracts onto each of its boundaries, effecting by
the same token a J-equivalence (h-cobordism) of them. According to a theorem of
Smale [19] the manifolds M/} ; and My, , are diffeomorphic.

Case 2. If n =4k —1, then n+ 1 = 4k. By analogy with the preceding case one
can obtain the result that Ker £ = 0 for j < 2k and Ker FHD — 0 for j > 2k.
The matrix of intersections of the free abelian group Ker Fsz’“) will be unimodular
and will have even numbers on its diagonal (in exact analogy with Lemma 4.7), but
its signature, in contrast to the situation in Lemma 4.7, is not necessarily equal to
zero, since the formula of Hirzebruch [3] is applicable only for closed manifolds. We
denote this matrix of intersections by B = (b;;), where b;; = x; - x; and x1,..., %
is a base of the group Ker F*(HQ’“). We denote the signature of the matrix B by
7(B). It is known (cf. [8]) that 7(B) = 0 (modulo 8) since det B = +1 and b;; =0
(mod 2).

We construct, following Milnor [8], a m-manifold M"*(B) such that:

a) m (M"(B)) = 0;

b) H;(M"™+1(B)) =0, j # 0, 2k;

¢) OM"T1(B) is a homotopy sphere

S™ = dM"(B) € 6™(dn);

d) the matrix of intersections of the base cycles of the group Haor(M™1(B)) is
such that its signature

T(M"*(B)) = —7(B).
‘We now consider the manifold

(25) Nt Uy D x 1(0,1) Uy, M™(B) = N"T(B),
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where
fo: DI x0— M&z,
fi: D" x 1 — oM™ (B)
(fo, f1 are diffeomorphisms having the necessary degree, equal to £1). Clearly,
ON"H(B) = M, U (=M, # 5™).
In addition there are defined the retractions
Fi: N"TY(B) — M7,
Fi: N"PY(B) — M, # S™,
induced by the retractions (fo1)”' - F and (fa2)™' - F. Since M"TY(B) is a m-
manifold, it is easy to see that

FroN(Mg ) =vN(NTH(B)),  i=1,2.

(26)

By construction, the signature of the matrix of intersections of the base cycles of

Fi(fz’“), i=1,2, is equal to the sum of signatures

7(B) + 1(M™T(B)) = 0.

the group Ker

Further, we repeat completely the arguments of Lemma 4.7, we reconstruct by
the same method the group Ker Fi(*Hz"'), killing it, and we apply the theorem of
Smale (cf. Case 1). In this way. Case 2 is investigated.

Case 3. n =4k + 1, n+ 1 = 4k + 2. By analogy with Cases 1 and 2 and the
proofs of Lemmas 4.8 and 4.9 we will assume that the membrane N"*! is such that:

a) Ker I =0, j < 2k + 1,

b) 7 (N"H1) = 0,

c) Ker pHae) — 7 4 7 o 0, depending on which of the invariants ¢ (for
k #1,3) or ¢ (for k = 1,3) is obstructing a reconstruction of Morse.

In the first place, the invariant ¢ (for the cases k = 1,3) did not obstruct the
reconstructions of Morse but only the carrying over of the frame fields (cf. Lemma
4.9), which is of no concern to us at this point. Therefore we carry out these
reconstructions (without being concerned about the fields) and get that

Ker F2s+1) — g p=1,3

Thus the membrane contracts onto each of its boundaries and is therefore (cf. [19])
diffeomorphic to My, x I.

If k # 1,3, then on the base cycles x,y € Ker F*(H”“) is defined the invariant
o), 6(y).

If ¢(x) = 0 or ¢(y) = 0, then we carry out a reconstruction of Morse, recalling the
meaning of ¢ (an invariant normal to the bundle of an embedded sphere S2¢*+1 C
N4+2) Suppose ¢(z) # 0 and ¢(y) # 0. We construct, according to Kervaire [4],
a m-manifold M**+2(¢) such that:

a) the boundary dM**+2(¢) is a homotopy sphere;

b) i (MIFF2(0)) = H, (MIE+2()) = 0, j 0,2k + 1

¢) Hopr1 (M*+2(¢)) = Z + Z; and denoting the base cycles by 7,7,

d) 6(2) = 6(7) = 1.

As in Case 2 we pat

(27) N4n+2(¢) _ N4k+2 Ufo Dzlk+1 % I(O, 1) Ufl M4k+2<¢)’
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where
for DI 0 — A2k
fre DUl — M
are diffeomorphisms having the necessary degree, equal to +1. Then

E k
ON'ET2(g) = Mt U (= M5 # OMYH2(g)).
Using next the relation

¢(Z + t) = ¢(Z) + ¢(t) + Z - t‘ mod 2
F(H2k+1)
1x

)

we find a new base 1, T2, x3, 214 € Ker , where

Fl . N4k+2(¢) N Mifél-‘rl

is a natural retraction (here ¢(z;) = 0,7 =1,2,3,4), and we seal cycles by means of
Morse’s reconstructions. Then the theorem of Smale (cf. Case 1) is again applied.
The theorem is proved. ([l

§ 6. ONE MANIFOLD IN DIFFERENT CLASSES
We will consider only maps
far SN — Ty (M™)
that are admissible in the sense of §5.

Lemma 6.1. The homotopy class of an admissible map
fo: SNT o Ty (M™)

is completely defined by:

a) a manifold M7 that is homotopically equivalent to the manifold M™ with
degree +1 and such that M7 > M™;

b) some (arbitrary) embedding of M € SN+";

c) some (arbitrary up to homotopy) smooth map fu: MP — M™ of degree +1,
for which fXuN(M™) = vN(MD);

d) some (arbitrary up to homotopy) smooth map of SOn-bundles

Jor VN (MY) — N (™)
that covers the smooth map fa: M2 — M™.

Proof. If we are given a manifold M?, an embedding of M? C SN*" a map

o
fo: M — M™ and amap of bundles f,, : vV (M) — vN(M") covering fo, then the
map f, is completely defined on the tubular neighborhood T'(M[) C SN+ since
the tube T'(M") is the space of the normal bundle v (M"). In the construction of
the Thom complex T (M™) an extension of f, onto the rest of the sphere SN+ is
carried out trivially (in a neighborhood of a critical point of the Thom complex) and
uniquely to within homotopy. We now assume that the embedding M™ C S N+ s
subjected to isotopies, and the maps fa and fa are subjected to homotopies, where

all of the isotopies and homotopies are smooth, and a homotopy of the map fa is a
homotopy of maps of SO y-bundles that covers a homotopy of f,. These isotopies
and homotopies simultaneously define an embedding of

M2 x 1(0,1) ¢ SN x 1(0,1)
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and a map F' of the tubular neighborhood
T(M" x 1(0,1)) c SNt x T

(T(M x 1(0,1)) is diffeomorphic to v (M) x I(0,1)) into the space Tn(M™),
where F(M} x I) C M"™. Further, the map

F:T(M2xI)— Ty(M")
is extended in a well-known manner to the map
F: SNt I — Tn(M™),

where F|SV*" x 0 = f,. Consequently, the homotopy class a of the map f, does
not depend on the arbitrariness in choice of the embedding (all of the embeddings

are isotopic for N > n) and of the maps fa, fa in their homotopy classes.
The lemma is proved. ([l

Thus, for a fixed manifold M7 the homotopy class of an admissible map f,,
far SNF — T (M™),

is completely defined by the homotopy class of a map fa: M7} — M™ of degree +1
such that

N (M) = far™(M™),
and by the homotopy class of a map of SO y-bundles
Jar vV (M) = N (M)

that covers fa (in the sequel it will be assumed without further comment that the
embedding of M C SN*" is fixed).

Lemma 6.2. If two manifolds M, > M", i = 1,2, homotopically equivalent to
M™, have at one time been shown to be in one and the same class a € A(M"™) C
A(M™), then, for any class ay for which there exists an admissible map

fon1: SN — Ty (M™)

there exists another admissible map
fahgl SN+n b TN(Mn)

such that f;l{Q(M”) =My,.

such that f;l{l(M”) =M

a,ls

Proof. We consider the t-regular homotopy
F: SN % 1(0,1) — Tn(M™),
where F|SNT" x 0= f,1 and F|SVT" x 1 = f, 5. We put
Nt = = (Mmm) ¢ SN T,
where
vN(NTHY = PN (M),
Sirice the map F' becomes on the boundaries the homotopy equivalences fa,l

and f, 2, the membrane N"*! naturally retracts onto each of the boundaries. We
denote these retractions by

Fi=(fai) - F,  i=12
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According to Lemma 6.1 one can obtain the element «; in the following manner: on
the boundary My, C ON "1 we change the map f, 1 into f,, 1 and, analogously,
we change the bundle map fa’l into fa1,1~ Since the membrane N"*! retracts onto

a boundary and
vN (N = FroN (M),

we can extend the maps fal’l, fal’l to the maps
F: N M
and ~
F: vV (N = Ty (M™).
Then we extend this map F with tubular neighborhood T(N™t1) ¢ SN*" x I onto
the entire direct product SV*™ x I in the manner of Thom and we denote this
extension by
F: SNt I — Tn(M™).
Clearly,
FISNT X 0= fo, 1.
Putting
far2 = F|SNT" x 1,
if the extension F' is smooth on T(N"*1), and this property can always be attained,
we get the statement of the lemma. The lemma is proved. ([l

In addition we are now able to consider only one fixed manifold My > M",
M™ > My, and study the problem of determining the set of classes o; € A(M™) C
A(M™) in which it may lie. We denote by B(M?) the set of classes a; € A(M™)
for which there exist admissible maps

foi: ST T (M™)
such that

fal(M™) = My.

We denote by 7 (M, M™) the set of homotopy classes of maps f: M — M" of
degree +1 such that

N ) = v (M),
We denote by 7(X,Y) the set of homotopy classes of maps X — Y for any com-
plexes X,Y. In particular, the sets 7+ (M", M™) and 7(M",SOy) are groups,
where m(M",SOp) is an abelian group and the group 7=+ (M™, M™) acts without
fixed points and is transitive on 7 (M2, M™).

Lemma 6.3. The set B(M") C A(M™) splits into a union of disjoint sets
B(M) = Br (M7),
f
where f € ©t (Mg, M"™) and By(M(}) is the subset of the set B(M]}) that consists
of those classes o € A(M™) in which is found an admissible map
fo: SNT o Ty (M™)

such that f;1(M™) = M" and, when considered on M, having the homotopy class
of f € mt(M,M™).
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Proof. It has already been established that the set By(M}) is defined correctly,
i.e., to the homotopic maps M2} — M™ there correspond identical sets of homotopy
classes. Let us prove that if two sets By, (M[) and By, (M) intersect, then they
coincide. By analogy with the proof of Lemma 6.2 we consider an element
ag € By, (M) N By, (M)
and, corresponding to it, two admissible maps
fag,it SN — T (M™)

such that fo,1|MJ — M™ and fq,2|/M2 — M™ have the homotopy classes of
flan-

We consider their t-regular homotopy
F: SNt 1(0,1) — Ty (M™)
and the membrane
Nt = =Y (M™) € SN < 1(0, 1),

retracting onto each of two of its boundaries. By analogy with Lemma 6.2, on the
lower boundary we change the bundle map

v (Mg) — v (M7,
keeping the map fq,1|M7 — M™ fixed. We can extend this variation of a bundle
map to a variation of the bundle map

VN(Nn+1) _ VN(MTL)7
keeping it fixed on N"*! which can be done, starting from a retraction of the
membrane onto the boundary M? C SV*" x 0. Then, by means of a well-known
method, we extend the map varied in a tubular neighborhood onto all of the product
SN+n % 1(0,1). According to Lemma 6.1, by such a change we can obtain from aq
any other element a; € By, (M). Thus

By, (M) 2 By, (Mg).
By symmetry

By, (M) = By, (Mg).

The lemma is proved. (|
Lemma 6.4. The group m(MJ,SOnN) acts transitively on each set By(M7).

Proof. Suppose there exist two classes oy € By(M[), ¢ = 1,2, and, representing
them, admissible maps
fo: ST T (M™)
such that
fa (MM =Mg, i=12,
and the maps f,,|M2Y — M™ are homotopic. By means of the homotopy con-

structed in Lemma 6.1 we change the map f,, to an admissible map f(glz) that is
homotopic to it and such that

18 = far M.

Then the bundle maps 5 and fa, : vN(M7) — v¥(M™) differ on each fiber DY
over a point x € M by a discriminating orthogonal transformation h, € SO that
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is smoothly dependent on the point x € M. Consequently, there arises a smooth
map
h: Mg - SON,

discriminating the maps f{. and fa, in a neighborhood T(M?) C SN*" of the
manifold M?}. According to Lemma 6.1, if the map h: M} — SOy is homotopic to
zero, then the elements «; and as are equal to each other. Thus, the discriminator
h is defined to within homotopy and the map f,,, “twisted” in each fiber DY over

a point © € M} by a transformation h, € SOy, coincides with f((xz) On the set of
classes By (M) there acts the group m(MZ,SOn), and it is transitive. The lemma
is proved. (I

The lemmas combine into the following

Theorem 6.5. On the set
AM™) C A(M™) = H™'¢[M"] C wn o (T (M™))
there acts the group 7 (M™, SOy). On the orbit set
AM™) /7 (M™, SON)
there acts the group 7 (M"™, M"™). The elements of the orbit set
B =[A(M™)/x(M™,SO™)] /7T (M™, M™)
are found to be in a natural one-to-one correspondence with the classes of manifolds

MZP > M™, M"™ > M", with respect to a diffeomorphism of degree +1 modulo
0™ (0rm) for n odd and a diffeomorphism of degree +1 for n even.

Proof. According to Lemmas 6.3 and 6.4, to the manifold M™ corresponds a set
B(My) = U B,
fert (Mg, M™)
and the group w(M[,SOy) acts transitively on each set By(M7). But the
groups (M2, SOy) and 7w(M™,SOy) are isomorphic, and if a homotopy class
fent(MI M™) is given, then there corresponds to it an isomorphism
ffrom(M™,SON) — w(M2,SON).
Therefore on each set Bf(M[) there naturally acts the group w(M™, SOn); here
h(a) = f*h(x), a € By(M}), hen(M"™ SOn).

On the other hand, on the set of classes f € 7" (M2, M™) without fixed points
there acts the group 7+ (M™, M™) (and transitively). Therefore on the factor set
B(M!)/m(M™,SOy) there acts the group 7t (M™, M™), and transitively, i.e., the
factor set

[B(Mg)/m(M", SON)]/z* (M", M")
consists of one element. Using the action of the groups w(M", SOpy) and
7T (M™, M™) on each of the sets of B(M) for all manifolds M, where

M2 > M", M"™ > M7,
we obtain the action of these groups on all of the set A(M™), and the factor set with

respect to both of these groups is found to be in a natural one-to-one correspondence
with the set of manifolds, that are identified with each other if at least once (and
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consequently always according to Lemma 6.2) they lie in one and the same class
a € A(M™). Applying Theorem 5.2 we obtain the desired statement.
The theorem is proved. O

For subsequent applications it is convenient to note the following
Lemma 6.6. To the automorphism of the SOn-bundle
h: v™N(M™) — N (M™),
fixed on the base M™, or, what is the same thing, to the map
h: M" — SOy,
there corresponds the map
Th: Ty (M) — Ty (M");

to the homotopic maps h;: M™ — SOy, i = 0,1, there correspond the homotopic
maps Th;, and in the process there are the homotopies Thy, 0 <t < 1, the manifold
M™ C Tn(M™) is fized, and the normal ball DY, x € M™ C T (M™), is deformed
with the use of the maps hi(x) € SOn, 0 <t < 1. If h € #(M™,SOxN) and
a € Tntn(Tn(M™)), where o € A(M™), then

h(a) = Thy(a),
where m(M™, SOyN) acts on A(M™) according to Theorem 6.5.
Proof. The definition of the map
T: 7(M",SON) — m(Tn(M"),Tn(M"))

follows at once from the definition of the Thom space of the bundle vV (M™).
Let us prove the formula

h(a) = Th (o).
We recall how we defined the action of the group 7(M™, SOx) on the set AN (M™):
suppose f, is an admissible map SNt" — Ty (M™), fo1(M™) = M? and f,|M?
has the homotopy class of f € 7T (M, M™). The action of the group (M2, SOy)
and the isomorphism

f:m(M?,SON) — m(M™, SON)

are defined in the natural way. Let h € 7(M™, SOy) and f~'h € ©(M", SOy).
Then to an element h corresponds a “twisting” of the bundle v~ (M") in each fiber
DY on an element h, € SOy, x € M™. To this twisting corresponds a twisting f*
in the fiber D ;-1 ) on the same element h, € SOy at each point [t (x). This
defines the map
fo=f"tia(M",SON) — n(M},SON).

One can only define the action of the group m(M2,SOx) on the set By (M) in
such a way that it has the form fX(h), since the distinction between definitions
is removed in going over to homotopy classes, due to the fact that f,|M2 is a

homotopy equivalence and fa = fr~1 is an isomorphism.
The lemma is proved. (I
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Lemma 6.7. To every map f: M™ — M™ of degree +1 and such that f*v™ (M™) =
vN(M™) corresponds a nonempty set of maps

(Tf): Tn(M™) — T (M™).

Two maps Ty, Ty € (Tf) differ by an automorphism Th for some h: M™ — SOy .

To the homotopic maps f1, fa: M™ — M™ correspond the homotopic
modT (m(M™,SOy)) maps Tf1 and T fa: Tne(M™) — T (M™).

To the product f1 o fo corresponds the product

TfioTfy=Tf o fomodImT.
Suppose f € mT(M™, M™) and o € A(M™)/m(M™,SOy). Then
fl@) =T fi(a),

where
Tfe: mnin(Tn(M™)) = T 4n(Tn (M™)).

The proof of this lemma is analogous to the proof of Lemma 6.6 and follows
at once from the known definition of the action of the group 7+ (M™, M™) on
at(M?, M™) and the dependence of the element o € A(M")/mx(M™,SOy) on a
map M — M" of degree +1 (an element of the set 7 (M2, M™)) (cf. Lemmas
6.1, 6.3, Theorem 6.5 and their proofs).

We now consider the particular case when M" is a m-manifold. In this case the
bundle v (M™) is trivial. We define a frame field 7V that is smoothly dependent
on the point z € M™ and normal to M" in Ty (M™). According to [15], we call
the pair (7, M™) an “equipped manifold.” Then, as is easily seen, for any element
a € A(M™) and any admissible map

fo: SNHY o T (M™)
the manifold
M} = ft(M™)

[e3

receives the natural “equipment” f*7% and becomes an equipped manifold.
In this case we have the following

Lemma 6.8. There exists a single-valued homomorphism
To: 77 (M™, M™) — 7(Txy(M™), Tn(M™))

such that for any h € 7(M™,S0,), f € 7t (M™, M™) one has the following:
a) Th-Tof =Ty - Tf*h, where f*: n(M",SON) — m(M",SON);
b) To =T mod Im 7.

Proof. Let us construct the single-valued homomorphism Tp; for this purpose we
consider the automorphism

f:M"™— M",
fent(M™ M™), and we cover it in a single-valued manner with respect to a map
vN(M™) — N (M"Y,
assuming that the vector with coordinates

(A1,...,Ay) € DY, reM",
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defined by a frame of 72¥ in the fiber normal to the point x, goes over into the vector
with coordinates (A1,...,Ay) at the point f(x). Since the field 77 is smooth, we
obtain a (smooth if f is smooth) map

yN(0m) — o (M),
which gives the desired map
Tofl TN(MH) — TN(MH)

We have proved point a) of the lemma.

We consider a map h: M™ — SOy and the composition

h-Tof: vN(M"™) — vN(M™),
covering the map f: M™ — M™. The maps h - Tyf and Ty f differ at each point
x € M"™ by h, € SOy and at each point f~!(z) € M™ by
f*hf—l(l) € SOy, hy; € f*hf—l(w).
Thus - -
h-Tof =Tof - f*h

(f* is the automorphism f*: 7(M",SOxN) — 7(M"™,SOy) induced by f).

Further, we have B B

Th-Tof =Tof -Tf"h.

Formula b) is evident from the construction of the homomorphism 7.

The lemma is proved. [

We consider the set 7+ (M, M™) defined above. On it (from the left) acts the
group w1 (M™, M™) and (from the right) acts the group 7 (M2, M), where

ME > M", M™ > M2,
In other words, for every
f€7r+(Mn>Mn)> gE?TJr(Mg,Mn), f1€7r+(Mgng)
there is defined the composition
f-g-frent (M, M™).

And what is more, for every f € xT(M™ M™), g € #F (M2, M™) we have the
formula
(28) fra9=9-(9"1)
where g*: 7t (M™, M"™) — 7t (M, M) is an isomorphism defined by the element
gent(Mr, M").

We introduce the following notation: by means of

D*(M2) € (M2, M2)
we denote the subgroup consisting of those homotopy classes of maps in which there
is a representative
h: M2 — M7,
that is a diffeomorphism; by means of
D¥ cmt (M, M)

we denote the analogous subgroup in which a certain representative

h: M — M"
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is a diffeomorphism everywhere except a spherical neighborhood of one point, and
the obstruction to an extension of the diffeomorphism at this point belongs to the
group 6"(0m). In view of the canonical isomorphism of Smale 8™ = I'", one can
assume that 6" (9r) C I'™ for n > 5. By means of

AT (MY) C 6™ (0n)
we denote the subgroup such that for each element v € A" (M) there exists a map
hy: M2 — M,

homotopic to the identity map, that is a diffeomorphism everywhere except a spher-
ical neighborhood of one point, and the obstruction to an extension of the diffeo-
morphism at this point is equal to ~.

Theorem 6.9. The group DT (M) is a normal divisor in the group Dt (M™).
The factor group Dt (M™)/DV(M?) is isomorphically embedded in the group
0"(Or) /A (M?). If n is even, then DT (M?) = Dt(M?); if n is odd, then the
factor group DT (M™)/DH(M?™) is a finite cyclic group.

Proof. To a representative h: M o — M7 of an element of D we put in correspon-
dence the obstruction defined by it to an extension of a diffeomorphism at a point.
It is easy to see that the lack of uniqueness in the definition pertains to the group
A™(M), and the group DT (M) goes into zero. In this way the embedding

DY (M2)/DF (M) € 6" (9m) /A" (M)

is constructed. The rest of the assertion follows from the results in [6, 8] concerning
the groups 6™(9r). The theorem is proved. O

Theorem 6.10. The element g* f € 7+ (M?, M) belongs to the subgroup D+ (M)

if and only if Tf*(a) = a, where a € A(M™)/m(M™, SOx).

We note a certain consequence of Theorems 6.9 and 6.10. If M2 = M™, then
g*f = gfg~"; therefore from Theorem 6.10 follows

Corollary 6.11. The subgroup DT (M™) is a normal divisor in the group
7T (M™, M™); the factor group =+ (M™, M™)/D+(M™) is finite (though it is not
known whether or not it is abelian).

Corollary 6.12. The group DT (M™) has a finite index in 7+ (M™, M™).

Proof of Theorem 6.10. By definition the manifold M7 is obtained as follows: a
map

fo: SNF — Ty (M™)
is selected which represents one of the elements & of the class «; it is assumed to be
admissible if f;1(M™) > M™ and M™ > f;1(M™"), where f;! is the inverse image
of M™ under a map satisfying Lemma 3.2. Then we set

M7 = £ ().

[0}

Suppose fo|M? — M"™ has the homotopy class g € 7+ (M7, M™), and let f be
an element of the group ™ (M", M™) such that

Tf.(&) =amodImT.
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Since all our objects are defined to within a diffeomorphism of degree +1, from
the fact that ¢g* f is homotopic to a diffeomorphism of degree +1 it clearly follows
that the sets

By(Mg) € A(M™)
and
Byg*f(Mg) = Bf'H(MZ:)
are identical, from which follows one of the assertions of the theorem. We now show
that if
Tf.(a) = a, ac AM™)/n(M™,SOy),
then the map ¢* f is homotopic to a diffeomorphism (of degree +1). We divide the
proof into a number of steps.

Step 1. We consider homotopic admissible maps fo(f) and f(g”): SN+n
Tn(M™) such that

a) £ N (M) = (é’” M) = g,
’ n " n *
b) f Mz =g, fOIME =g -g"F = f - g.
We construct a homotopy F': SV x I(0,1) — Tx(M™) that is t-regular and such
that F|SN+m x 0 = £
Step 2. We define the membrane N1 = F=1(M™) c SN+ x [; clearly,
F*Z/N(Mn) _ I/N(Nn+1)
and
ON™ = MU (=MY).
By means of Morse’s reconstructions we kill the groups
(N, Ker P2 Ker I, i< {g} :

at the same time carrying over onto the “new membrane” N™*! the map F and
the “equipment” (in analogy with §§4, 5). Thus one can assume that

7T1(Nn+1) = O

and
. n
Ker FP) —0, i< H

Step 3. Case 1. If n is odd, then, following §4, we reconstruct the group
Ker FfH["/ 2 We will thereupon (see §5, Case 1) have a membrane that is diffeo-
morphic to M2 x I(0,1), according to Smale [19]. The theorem is proved.

Case 2. If n+1liseven (n+ 1 =4k + 2 or n+ 1 = 4k), then it is necessary
to make use of the fact that the boundaries of the manifold N1 are in this
case diffeomorphic. Next, by analogy with Cases 2 and 3 of yb it is necessary to
construct the membranes M"+!(B) and M"™*!(¢) in order to kill the obstructions
encountered to Morse’s reconstructions, and then to consider the unions

N"tY(B) = N"*' Uy, D" x 1(0,1) Uy, M"*1(B),
N" 1 (g) = N Uy, D™ x 1(0,1) Uy, M™H(9),

as in §5, Cases 2 and 3 (B is the intersection matrix of the membrane N"*! and ¢
is an invariant of Kervaire). The maps

F: N™tt— M
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define, ia a natural way, the maps

F(B): N""Y(B) — M"

and
F(¢): N"™H(¢) — M"
such that
F(B)'v™(M"™) = v™(N"1(B))
and

F(o)v™(M™) = v¥ (N (9)).
It is easy to see that
ON"Y(B) = [Mf # S"(B)] U (- M})

and
ONH(p) = [M # S™()] U (= M)

We reconstruct by means of Morse’s reconstructions the manifolds N"tY(B)
and N"*1(¢); the resultant manifolds N"*1(B) and N"*!(¢) will determine a
J-equivalence (diffeomorphism) of degree +1 between the manifolds M7, and
M7 # S™(B), M? and M7 # S"(¢), where S"(B),S"(¢) € 6"(dr). The maps
F(B), F(¢) reconstructed on the membranes N"™(B) and N™"!(¢) are denoted
by F(B),F(¢). Also, N(B) is diffeomorphic to M? x I (n = 4k — 1), N(¢) is
diffeomorphic to M? x I (n = 4k + 1) and F(B) = F|M? x 1 (n = 4k — 1),
F(¢)=F|M" x I (n=4k+1).
The map

F(B): M} — M"

is homotopic to the composition

F(B)g(B): M™ 220 poy 5o By PPy =k — 1,

o
and the map
F(¢): M7} x0— M"
is homotopic to the composition

n 9@ 2 n oGy PO
M? 22 MP# S™(¢) —— M™, n =4k + 1,

where g(B) and g(¢) are diffeomorphisms of degree 41, induced by a decomposition
into a direct product

N(B)=M"x1, N(¢)=M"xI.

The maps Fy(B) and Fj(¢) are respectively homotopic to the maps F|M? x 1
(n = 4k — 1 and n = 4k + 1), from which follows the desired statement.® The
theorem is proved. O

5Tt remains to add that the diffeomorphism g(B): M7 — M # 5™ (B) must be thought of as
a diffeomorphism modulo a point: M — M2. An analogous statement holds for g(¢).
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Chapter II
A processing of results

§ 7. THE THOM SPACE OF A NORMAL BUNDLE. ITS HOMOTOPY STRUCTURE

In order to understand and apply the results of §§1-6 we study the homotopy
structure of the Thom complex T (M™), where M™ is a simply connected manifold,
n > 4.

We select in the manifold M™ an (n — 2)-dimensional skeleton K™~2 such that

Hy(K"™?) = H;(M™), i< n.
Then the manifold M™ \ zg, zg € M™, is contracted onto K™~2. The embedding
j: K"=% C M™ induces the bundle j*v(M™) on K"~2, the Thom space of which

we denote by Trn 2. There exists the natural embedding T 2 C T (M"). In an
analogous way one can select skeletons of smaller dimension

K'=K'cK*cC---CcK"?
and form the Thom complexes
Ty =SNcT{ c---CcTR 2

The complex T} can be computed from the (N + i)-dimensional skeleton of the
complex Ty (M™), 1 =10,2,...,n— 2.

Lemma 7.1. The Thom complex T (M™) is homotopically equivalent to the union
SN+ T2,

Proof. Lemma 7.1 is an immediate consequence of Lemma 3.1 on the sphericity of
the cycle

SIM™] € Hy yn(Tn(M™)). 0

We consider the group m,(M™) and in it we select the subgroup #,(M"™) C
7 (M™) consisting of those elements v € 7, (M™) such that H(y) = 0. In the group
7 (M™) we select the even smaller subgroup 7% (M™) consisting of those elements
v € i (M™) such that, for any map g,: S™ — M™ representing the element ~, the
bundle g*N (M™) over the sphere S™ is trivial.

Now suppose L’ is an arbitrary i-dimensional complex, over which a vector SO -
bundle vV is given. We denote the Thom complex of this bundle by Tn(vV).
Suppose v € m,(L?), and the bundle 7*~ over the sphere S™ is trivial. We will
then say that v € 7, (L%, vV). For L* = M™ and vV = vV (M") we have already
defined such a group. Clearly, there is defined an epimorphism

T (K2, 0N (M™)) — 7(M™).
There is defined the natural embedding x: S" C T ~ (), corresponding to an
embedding of the point zo = L° C L?. We have

Lemma 7.2. There is defined the natural homomorphism

(29) TV 1, (L 0N ) = 1 N (T (V) / T k.

If there exist two bundles vi¥ , v over the complezes sz , Léz respectively and a map
F:v]N — vl is given, then there is defined a map

T(F): TN(V{V) — TN(VéV)
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such that the diagram
i N is N
T (L, v1") (L7, v3)

(30) iTN . lTN

TN (In (1)) / T ks ——= Ty n (T (13Y))/ T ki

18 commutative.

Proof. Tt is easy to see that to the bundle map F' corresponds a map
F,: Wn(Lil,l/{V) — Fn(Léz,Vév).

Namely, let the map F' on the bases L’f — ng be denoted by F. Then, clearly,
B (m (LY 1Y) © mal L, 1)

by the definition of an induced bundle. In this way the upper line of the diagram
is constructed. We will denote the constructed natural map

Wn(Llva{v) Hﬂn(ngaVé\”

by F,. The construction of the lower line of the diagram is obvious. Let us now
construct the homomorphism TV. For this purpose we consider an element 7, €
7 (Li,vN), s = 1,2, and the map

S
Vs S" — Lisv

representing the element ~,. The bundle 7Y over the sphere S” is trivial. Thus
there are defined the maps

v: SN+ TN(S”,’ySViV),

Ts: Tn (8™, 350N — Ty (L, v,

s717s

where T, is a natural map of the Thom complexes, corresponding to the bundle

map 7, — vY, and the map p is such that

pe[SVH] = [S"],

where ¢: H,(S") — H,in(Tn(S",7:vY)) is a Thom isomorphism. The cycle
¢[S™] is spherical according to Lemma 3.1, since a sphere is a m-manifold. According
to Lemma 7.1 the space T (S™,7:vYN) is homotopically equivalent to the union
SN+ v SN so that the homotopy class of the map g is defined uniquely mod
Tnin(SY) = Im k. The composition

THs - p: SNT — T (L, v

s§17s

also defines an element for us, which we denote by T%(v,) and is determined
uniquely mod Im k.. Once a definition is given the naturalness of it (the com-
mutativity of the diagram in Lemma 7.2) is obvious.

The lemma is proved. ([l

Remark. We will call the groups 7, (L%, ") the homotopy groups of the bundle
vV, and the homomorphism TV will be called a suspension homomorphism. This
nomenclature is justified by the following lemma.
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Lemma 7.3. If the bundle vN over the complex L' is trivial, then:

a) T, (L', vN) = 7, (LY) for all n;

b) the space Ty (Lt v™) is homotopically equivalent to the union SN v ENL?,
where EN is an N-multiple suspension;

c) the homomorphism TV coincides with the N -times-iterated suspension homo-
morphism

EN: 7, (LY) = Ty n (BN LY = mp o n (T (L, 0Y)) / Im s,

for N >n+1.
Proof. The Thom space of a trivial bundle of closed balls DV, vV = L? x DV,
clearly, is homo topic ally equivalent to a suspension for N > 1:
Ty (L vN) = Lix DN /L'x0DY = ETy_ (L, vV 1) = BE(L'x DN~ /Lix DN 1),

Further, for N =1 we have

Ty (L', v') = L' x 1(0,1)/L x 9I(0,1) = B(L* U z),

where LUz denotes the union of L! with the point zg. Since the space E(L!Uzg) is
homotopically equivalent to the union S'V EL? it follows that the space Ty (L, v™)
is homotopically equivalent to a suspension

EN-L(Stv ELY) =S8N v ENLE
The second part of the lemma follows trivially from the definition of a suspension
homomorphism and is actually a definition of it. The lemma is proved. ]

Suppose M™ is a smooth simply connected oriented manifold, v¥(M™) is its
normal bundle,
TN(Mn) = TN(Mn7 VN(Mn))v
j: K2 C M" is its (n — 2)-dimensional skeleton and
T (M™) = (K" 2, j*™N (M™))/ Ker j,.
According to Lemma 7.1,
(31) TN (TN (M) = Z + mpen (T 7).

The generator of the group Z = 7, y(SV+") depends on the choice of decompo-
sition in the union

Tn(M™) = SNty T2,
We will select this decomposition in such a way that the generator of the direct
summand Z = mn4,(SV") is the generator constructed in Lemma 3.1 (in the
proof of it). We denote this generator by

In4n € 7TN+n(SN+n) C TN(Mn)
We have the following

Lemma 7.4. For any element v € w¥,(M™) there exists a map g,: M"™ — M" of
degree +1 such that:

8) g (M) = VN (M™),

b) g, is fized on the skeleton K"~2,

c) the discriminator of the map g, and the identity map is different from zero
on only one simplex o™ C M™, and there it is equal to v € w4 (M™).
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Proof. We consider an identity map and change it on a simplex ¢” C M™ to an
element v € 7w} (M™). We denote the resultant map by g,. Since the degree of the
map 7: S™ — M™ representing -y is equal to zero by definition of the group 7% (M™),
the degree of the map g,: M™ — M"™ is equal to +1. We consider the bundles
givN(M™) and vN(M™), which we identify, as usual, with the homotopy classes
of the map v: M™ — Bgo, (for the bundle vV (M™)) and the map v - g,: M™ —
M,, — Bso, (for the bundle gzv™(M™)). The discriminator of the maps v and
v - g is concentrated on the same simplex o C M™ that the discriminator of the
map g, and the identity map is concentrated on, and it is equal, as is easily seen,
to the element

V*(’Y) e Tr'fL(BSON)a V*: ﬂ.n(MTL) e 7TTL(BSON)'

The bundle v*v¥ (M™) over the sphere S™, by definition of the group 7% (M™"), is
trivial and is defined by the composition

v-4: 8" = M" — Bsoy;

its triviality is equivalent to the condition

vi(7y) = 0.
Therefore the discriminator of the maps v: M" — Bgo, and v-g,: M"™ — Bgso,
is equal to zero, and they are homotopic. The lemma is proved. (I

From Lemma 7.4 follows

Lemma 7.5. There is defined a homomorphism g.: 7% (M™) — 7t (M™, M"), the
image of which is composed of all elements of the group ©(M™ M™) that have
representatives fived on the skeleton K"~ C M™.

Proof. The map g, has already been constructed in Lemma 7.4; namely, to the
element v € 77 (M™) must be put in correspondence the homotopy class of the map
gy: M™ — M™. The fact that it is a homomorphism is obvious. We calculate the
image
Img, C 7t (M™, M™).

We consider any map f: M™ — M™ of degree +1 representing some element of
the group 7+ (M™, M"™) and fixed on the skeleton K"~2.

The discriminator of it and the identity map is the cocycle

A(f) € H'(M™, 0 (M™)),

where one can assume that the cochain A(f) is different from zero on only one
simplex o™ C M™. Then

Af)lo"] € mn(M™).
Since the map f has degree +1, the degree of the map of the sphere S™ — M"™
representing the element

A(N)lo"] € mn(M™).
is equal to zero. Since

FoN (M) = v (Mm),
the discriminator of the maps
v: M" — BSON

and
l/‘ft M" — BSONa
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defining the bundles vV (M™) and f*v™N (M™), is equal to
v:A(f)[o"] € Tn(Bsoy)-

and
vA(f)[0"] = 0.
siace f*vN(M™) = vN(M™). Therefore
Af)[o") € mp(M™).

The lemma is proved. ]

We recall that in §6 we defined a map
T: 7t (M™, M™) — 7(Tn(M™), Ty (M™)),
homomorphic and single-valued modulo the action of the group 7(M"™, SOy), i.e.,
modulo the image of the homomorphism
T:w(M",SOn) — w(Tn(M™), Tny(M™)).
Lemma 7.6. The formula
(32) Tgy(Inin +0a) = Ingn +a+TNy (mod ImT UImk,)
is valid for all v € w4 (M™), where 14y, is the generator selected above and o is
an element of the group mnn(Th ) C T 1n(Tn(M™)).

Proof. The map g.7 is fixed on K"~2, and hence Tg,7y can be selected so that it
is fixed on T]’\l,_2 C Tn(M™). Consequently, the map
Tg.y: Tn(M™) — Tn(M™)

is completely defined by the map

Tgury|SVF" — T (M™)
and -

[Tg(a) = a
for all
a € 7TN+7L(TJT\Lf_2) C N4n (TN (M"™)).

Let us investigate the image [T'g.7]«(1n+n). The discriminator of the maps g, and

1: M™ — M™ is concentrated on the simplex ¢ C M™ and is equal to 7, the
complex M"™ \ o™ contracts onto K"~2. Therefore the discriminator of the map
Tgy: Tn(M™) — Tn(M")
and the identity map
1: TN(Mn) — TN(Mn)

can initially be regarded as maps of the Thom complex T (S™,v™) (v is a trivial
bundle) into the Thom complex T (M™), where on SV C T (S™,v™) the maps are
homotopic (equal). Therefore the discriminator of the maps T'g,y and 1 is TN~
by definition of the homomorphisin 7. The lack of uniqueness in the formula of
Lemma 7.6 arises in consequence of the lack of uniqueness in the definition of the
homomorphisms TV and T. The lemma is proved. O

N

Remark 7.7. For m-manifolds the definition of the homomorphism TV coincides
with that of EV and is therefore unique; the homomorphism 7 in this case also
admits a unique definition, according to Lemma 6.8, and the formula of Lemma 7.6
has the meaning of an exact equality instead of a congruence.



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I

45

We will not prove the assertion made in the remark since we will not make use

of it.

§ 8. OBSTRUCTIONS TO A DIFFEOMORPHISM OF MANIFOLDS HAVING THE SAME

HOMOTOPY TYPE AND A STABLE NORMAL BUNDLE

Let us consider a filtration

IN(M™) D Th 2> DTk DSV,

where T% is the Thom space of the i-dimensional skeleton K of a manifold M™
in minimal cell decomposition (the number of cells of dimension i is equal to the
number maxrk H*(M™, K) with respect to all fields K). We denote the numbers

maxrk Hi(M™, K) by b ... By T we mean

max*
TN =T /T, <.

In particular,
Dinax
Ty =\ sy
k=1
Clearly,
Dinax
Hy (T8, TN = Hy o SNt —Z4+...+Z
N+i(Tx, Ty ") = Hy+ k\_/lk ‘+b+,

i
max

The homomorphisms

O: Hyyi(Ti, TN ") = Hyyica (Tl ') = Hyioat (TR TR )

define a boundary operator in the complex T (M™) and its homologies and coho-
mologies. We will have in mind exactly this interpretation of boundary homomor-

phisms.

Definition of the obstruction to a diffeomorphism. We will identify mod-
ulo 0"(0m) the manifolds M2 > M"™, M™ > M} with the orbits of the groups
7(M™, SOy) and 7+ (M™, M™) in the set A(M™), according to the results of §§1-6.
To the manifold M corresponds an orbit B(M[) C A(M™). Suppose we are given

two manifolds My and M}, o € B(MY), 8 € B(Mp).
According to Lemma 7.1 the elements «,  have the form

a=1yi,+ 0, dEWN+n(TJT\l,72),
B=1Inwm+B  Bemn(Ty?).

Exact sequences (for the pairs T, TJ{,, j<i)

; ; P .
(33) = AN(TR) = AN (Tr) = 7TNgn(TN) = TN (TR) — -+

are defined.
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In particular, we have

binax
Ny Jo,2 2y A2 N+2
(34) o= ann(SY) T AN (TR) =2 v |V ST =
ko=1
| X i
i\ Jiitl i+1 i1 N4it+1
C— 7TN+n(T11\/') —_— 7TN+n(TN ) — TN+n \/ Ski+1 e
kiy1=1
bax
n—3y Jn—3,n-2 -2 n—2 N+n—2
- 7TN+n(TN ) 7TN+n(TN ) —— TN+n \/ Skn,z -
kn_2=1

We consider the difference @ — 3 € x4, (Tn ). We have

bn—2

max

An_g(@ — B) S Z 7TN+”(SI§:\,[1_Z_2)'
kn_2

Thus to every sphere S’gﬂt:*z corresponds an element dn,g(d,@kn,g) S
7rN+n(S£i t;“z) (corresponding to the number k,_» of a direct summand of the

element A,_»(& — f3)). The spheres S’,i\i 1“2 are found in a natural one-to-one
correspondence with the cells of dimension N + n — 2 of the complex Txn(M")
and, consequently, with the cells of dimension n — 2 of the complex M™. Therefore

(under variation of k,,_3) d,,_2(@, 3, k,_2) runs along the chain dn—2(@, ) of the
complex T (M™) with value in 7y, (SN+7~2). If the chain d,,_s(@,3) = 0, then
we put

dn—3(@, B, kn—3) = Mn—3 - Jr 25 5 _o(@ = )
(on the the sphere S,i\;”;j); if dp,—i—1)(a, B) = 0, then we define
i@, B) = M Yy iy dntsna(@ = B)
(on the sphere Sﬁi:‘_i the chain d,,_;(@, 3) has a value equal to the corresponding
direct summand of the element A,,_; 'jylli,nf(iq) e -j;fl3’n72(& - B)).
Clearly, the chain d,,—1(&, 8) is ambiguously defined with exactness up to
Ani-Ker(jn-3mn—2 Jn—in—(i-1)) = Qn—i-

Lemma 8.1. The chain d,—;(a,B) is defined if d,,—;(a,3) = 0, j < i, and is a
cycle with coefficients in the group mn 1, (SN0,

Proof. Let us prove that d,_;(a, () is a cycle. According to the definition of a
boundary operator in our complex T (M™) in the selected cell decomposition (cf.
above) it suffices to consider some element

j;—li,n—(i—l) N 'j;—ls,n—2(5‘ - /5_)) € 7TN+n(T17\LI_i)
and the boundary homomorphism

0: HN_,'_n_l.(T]T\}*i,nfifl) - HN+n_i_1(TIr\}7i71,n7i72).
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We consider the homomorphisms

0: (T ") —2s TNt (T ) ——— iy (TR 17072

i A

> 7TN+7L(S]JgV+n_i) > 7TN+n—1(Sl]g\fi::i_l)~

n—i

knf'i k?nfifl

&5}

Then we consider the chain d,,_;(&, 3). Since

i@ B) = Ani G2 imay I tan2(@ = B)
and from the exact sequences on page 45 it follows that Im A,,_; C Ker 9, and hence
od,,_i(a, 3) = 0.
The lemma is proved. (|
In this way,

dnfi(d; /5)) S HN+n7i(TN(Mn), 7TN+n(SN+n7i))v
or, by the Thom isomorphism ¢, we obtain the element
dn—i(@7 B) = ¢71dn—i(da B) S HN—i(Mn; 7TN+n(SN+n7i))7
defined with a large degree of ambiguity.

Definition of the minimal difference. We commence to arbitrarily vary the
elements o € B(M) and 3 € B(M}) in the sets B(M/y) and B(M}) corresponding
to the manifolds My and M in such a way that the difference

a—pBenyin(Ty?)
belongs to )
Im.jn—S,n—Z crt jnfi,nf(ifl) (7TN+7I(T]7\17_z))

for
i= maﬁxi[a € B(M}),B € B(Mg)]
and only then we define the (“minimal”) discriminator
dp—i (M2}, M) = dr—i(a0, Bo),
where ag € B(M) and fy € B(Mp) are elements such that the difference ap — Bo
belongs to
Imj,_3pn—2----- Jn—in—it1

for i largest possible. It is evident that:

1) the homology class of d,,—;(My, M) is defined ambiguously;

2) its degree of ambiguity has two causes:

a) generally speaking, the nontriviality of the group

Ker(jn—3n-2 " Jn—in—it1)
and
b) the ambiguity in choice of the elements ag, [y in the orbits B(M?) and

We will explain the situation more precisely in the appendices at the end of the
paper by analyzing examples.
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§ 9. VARIATION OF A SMOOTH STRUCTURE UNDER PRESERVATION
OF THE TRIANGULATION

We begin by recalling the results of Milnor, Smale, Kervaire (cf. [4, 6, 8, 9, 10,
17, 18]). Milnor [8] defined a group of smooth structures on a sphere of dimension
n, denoted by ", and introduced in it the filtration

0" > 0"(x) > ().

An element of the group 6™ is a smooth oriented manifold having the homotopy
type of a sphere. It has been shown that:

1) 7/0"(x) = 0, n # 8k + 1,8k +2, k > 2% 0"/0"(5) = Zy or 0 for n =
8k+1,8k+2, k> 2;

2) there is defined an inclusion homomorphism

0™ () /0™ (07) C Ty (SN)/J7, (SON),

which is an epimorphism for n # 4k + 2 and for n = 10;

3) for n = 4k 4 2 the subgroup 6"(7)/0™(0n) has index 2 or 1 in the group
TN 4n(SN)/Jm,(SON), and for n = 2,6, 14 it has index 2;

4) the group 0"(0r) is trivial for n even and for n < 6 (n # 3), n = 13; the
group 02*T1(9r) is always cyclic; for k even it contains not more than two elements
and 6°(071) = Zs, while for k odd its order rapidly increases, and it is nontrivial for
k=2s— 1, s> 2 (97(877) = Zgg, 911(87() = Zggg, RPN )

As already stated above, an element of the group 0™, n > 5, is a smooth orien-
tated manifold having the homotopy type of a sphere S™; the inverse element is the
same manifold with opposite orientation, and the group operation is the “connected
sum” of oriented manifolds (cf. [10]), which has a meaning, generally speaking, for
arbitrary manifolds (but the connected sum of topological spheres is a topological
sphere). We will denote the elements of the group 8™ by 5”[‘, emphasizing in this
way their topological structure. Our first goal is a study of the connected sum
M™# 8™ where M™ is an arbitrary simply connected manifold, n > 5. Clearly, for
n > 5 the manifolds M™ and M"™ # S™ are homeomorphic and even combinatorially
equivalent (cf. [17]), though possibly nondiffeomorphic if the smoothness on the
sphere S” is nonstandard (if S™ # 0 in the group 6™).

Below we will denote the stable group 7y, (S™) by G(n) for N > n+1. By an
embedding of Milnor,

07 (1) /0™ (O7) C x4 (SN)/ T J,
to every element S™ € 6™(r) corresponds a set B(S™) C G(n), where
B(S} # 83) = B(S7) + B(S3)
and o
B(S") =ImJ
if S e 0" (0m). We recall that, in the preceding sections, to every manifold M7 >
M™, M™ > M7, there is put in correspondence in a canonical manner the sets

B(M{) Cc A(M™) C A(M™) C tnyn(Tn(M™)).
In addition there is defined the natural embedding
w: SN C Tn(M™),

6 Adams [36] showed that 6™ /0™ (x) = 0 for all n.
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where SN =T (cf. §6).
Thus there arises the homomorphism
K*: G(n) = wnin (T (M™)).
We have the following

Lemma 9.1. B(M}* # S™) = B(M}") + k.B(S™).
Proof. Let us show that
B(M; 4 8™) D B(M}') + £.B(S™).
Suppose a € B(M]'), v € B(S™) and
for SNT" = Tp(M™),  fy: SN — SN
are some maps representing the elements o and +y, that are t-regular in the Thom—
Pontrjagin sense, where
fo (M) = MY
and

£ @wo) =8",  mee SV

We assume that the sphere S% lies in the Thom complex T (M™) in the standard
manner and that

fre SN Ty (M), F(SY) € mSYL LN = £ ().
Then there is defined a “connected sum of maps” (cf. [15, 8, 10])
Jatyt SN — Ty (M)
such that

Faiy(M™) = M7 # 5"

and the map f,4, by definition represents the element o + .. Let us show that
B(M{' # 5") C B(M{') + k. B(S™).
Suppose 3 € B(M7? # S™) and the map
fg: SN+n — TN(Mn)
represents the element (3, satisfies Lemma 3.2 and is such that
f[;1<Mn) _ Min # Srn c SN+”.
By definition of the connected sum #, there exists in the manifold M a sphere
Sp—t € M # S™ such that
(M7 # 8™\ Sy~ = (M \ DY) U (5™ \ DY)
where DI C M™ and D} C S™ are balls of radius €, given in some local coordinate
system by a canonical equation, and € > 0 is a small number. Since S™ is a
m-manifold (S™ C 0"(r)) it follows that every frame field 7V, that is normal to

S SN+ and defined everywhere except D ¢ SNt can be extended onto the
ball D?. We deform the smooth map fg to a map

fa: SNT — T (M™)
such that
f5 (o) D SM\DP D MP#5",  xo€ M"DTn(M™)
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(the map fs is assumed to be t-regular). We consider a frame 72V that is normal
to the manifold M™ D T(M™) at the point zo. The inverse image of the frame
under a t-regular map fg (cf. [15, 22]) provides a frame field
™ = f5 ()
that is normal to SN \ D™ in SN*". We now “cut” the manifold MJ* # S™ with
respect to a sphere Sg_l into two parts and extend the frame field 7V of the sphere
So ™t =(S"\D2)n(M{"\ DY)

onto the ball D?. More rigorously, we consider the membrane
~ 1
B"M(h) = (M # S™) x I (0, 2) Un DY x D,
where ~
h: D™ x D' — Sy~ x D' ¢ M} # S™,
h(z,y) = (z,y).
Clearly,
OB™ " (h) = (M # S™) U (=M U —S™).
Further, as in §1, we embed in the usual way the membrane B"*1(h) in the
direct product SN x I(0, 1), where

B (h) N SNTM % 0 = M # S™,
and extend the map f3|S™V*" x 0 up to the map
F: SNt I — T (M™),
where
F=H(M") = B""(h),
making use of the possibility of extending the field 7%V of the sphere ngl C SN+m %

0 onto the ball D* C SN+ x [(0,1). This extension can obviously be selected so
that

FYMmynsN+r x1=8"uMp,  S™c F(x).
Since
FYM™) NSVt x1=8"UMp,
it follows that the map F|S™*" x 1 is decomposed into a sum of maps fg) and

fé”), representing respectively elements of type 1 € B(M7") and (32 € K*B(Sn)
Thus it is established that

B(M;' # 5™) > B(M{') + k. B(5™),
B(M{' # S") C B(M{') + 5. B(S"),
The lemma is proved. (Il

We now investigate a more complicated operation for the variation of a smooth
structure. Suppose the manifold M™ is (k—1)-connected, where k < [n/2]. Clearly,

Hk(Mn) = Wk(Mn).

We consider an element z € Hy(M™) and a smooth sphere S¥ C M™ realizing it.
The tubular neighborhood T'(S*) € M™ of the sphere represents the SO,,_x-bundle
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of the balls D™ % over the sphere S*. We assume that this bundle is trivial. We
consider a map

g: S* — diff Sk

taking the entire sphere S* into a point g(S*) € diff S"~*~! (we note that according
to [23, 17, 8] there exists a natural isomorphism diff S”~%~1/j diff D"~% ~ gn~F,
n—k # 3,4). Therefore to the map g corresponds a smooth sphere Sn=k(g) e onk.
We will only consider those maps

g: S* — diff S k—1
for which S"~*(g) € 6" *(n).
We consider the automorphism *
g: 0T (S*) — a1 (S*%)
induced by the map
g(Sk): Snfkfl N Snfk71.

Namely, in each fiber of the bundle of (n — k — 1)-dimensional spheres T'(S*) over
Sk we give the automorphism g(S*). We put

M™M(S*, g) = (M"\ T(5%)) U T(S").
From the paper [17] and from the fact that S"*(g) € " *(x) follows

Lemma 9.2. The manifolds M™ and M™(S*,g) are combinatorially equivalent.
The combinatorial equivalence

flg): M™(S*,g) — M"™

can he selected so that:
a) f(g)*(M™) = v(M"(S*, g)),
b) f(g)|M™(S*,g) \ T(S*) is the identity map,
c) f(g)|S* is the identity map,
d) f(9)|T(S*) ¢ M™(S*,g) fiberwise.

Proof. The diffeomorphism g(S*): dD"~% — 9D"~* is extended up to a combina-
torial equivalence G: D"~* — D"~* which is a diffeomorphism everywhere except
the origin O € D"~*. We define a map

flg): M™(S*,g) — M"
in the following way:
flg) =1 on M"(S*,g) \ T(S*) = M"™ \ T(S"),
flg)=1on S* c M"(S*,g),

f(g) = G on the fiber D?~* over an arbitrary point € S*, where the identity
map is denoted by 1.

For such a constructed map f(g) the properties b)—d) are obvious. For the proof
of property a) it is necessary to make use of the fact that S %(g) € 0" *(x).

"We assume here that on the tube T(S*) are given coordinates, viz., a normal field of n — k
frames on the sphere S¥.
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Namely, it is found that the discriminator, of the “classifying” maps v; - f(g) and
Vo in
Mn(skag) 119) M™ V_l) BSON7
M™(S*,g) = Bsoy

of the bundles f(g)*v™ (M™) and v (M"(S*,g)) respectively assumes a value in
the group

Hn_k(Mn(Sk, g)’ 97L—k/9n—k(7_r)>7
where

Hn_k/en_k(w) - Wn,kfl(SON) = Wn,k(BSON)

(cf. [8]), and if this discriminator is equal to zero, then the maps vy - f(g) and v
are homotopic. And what is more, if S"*(g) € §7~%(x), then this discriminator
is equal to zero. From the definition of the map f(g) it follows at once that this
discriminator is an element

Z(g) € Hn_k(Mn(Skvg)aﬂ-n—k(BSON))

and that the equality of it to zero is sufficient for the homotopicity of the maps
v1 - f(g) and vo. The element z(g) is represented by a cocycle z(g) having the same
value on each fiber D% z € S¥ € M™(S*, g). This value (on a given fiber D?~*)
is by definition (cf. [8]) an element of the group 7, _;(Bso, ) defining the normal
bundle of the smooth sphere S"~*(g), i.e., an element of the group 0" /6" (r) that
is equal to zero if S"*(g) € 6" * ().

Thus all assertions of the lemma are proved. O

Now let M™ = Sk x S"~*_ In this case there exists the following

Lemma 9.3. The manifold M™(S*, g) is diffeomorphic with degree +1 to the man-
ifold S* x S"*(g).
Proof. Clearly,
M™(S*, g) = (S* x D"*) Ug (S* x D"F).
The diffeomorphism
g: Sk % Snfkfl N Sk X Sn7k717
constructed above, is such that
gz, y) = (x,9(5")y).
At the same time the diffeomorphism of
Sn—k<g) _ Dn—k Ug(Sk) Dn—l’c7 g(S’k): Sn—k—l _ Sn—}’c—l7

holds by definition. Thus the diffeomorphism g is a fiber diffeomorphism that
introduces a new structure of a direct product on a manifold S¥ x S"~*=1  As a
result of the gluing

k E —k E n—k
M"(S%, g) =8" x D""" Uy 8% x D"
we obtain the direct product
Sk x (D" R Uy gny D"F) = SF x SmR(g).

The lemma is proved. ([l
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We now define the operation “sums of manifolds along a cycle.” Suppose M7* and
M3 are manifolds and the S¥ C M, i = 1,2, are smoothly situated k-dimensional
spheres, the normal bundles v~ *(S¥ M), i = 1,2, of which are trivial. We
introduce in the tubular neighborhoods

T(SH)c My, i=12

the coordinates of a direct product

T(Sf) =Sk > Dy *
using the geodesies of an e-ball D*~* that are normal to the spheres S¥ C M in
some Riemannian metric. Then we put

[M* \T(ST)] Un [M3"\ T(S3)] = M"(SY, S5, h),
where
h: Sf x DPF — S5 x DIF,
h(x,y) = ('T’ hx(y))v hy € SOn—p,

d(h): S¥ — SO, _y.
Lemma 9.4. If £ < [7/2] and m(M7) = m(My) = 0, then the manifold
M"(Sk, Sk h) depends only on the homotopy classes a; of the embeddings of a
sphere SF C M?,i = 1,2, and the homotopy class d of the map d(h): S¥ — SO,,_.
Proof. If two spheres Sffl, SE’Q, 1 = 1,2, are smoothly situated in the manifold M
and are homotopic, then for k < [n/2] they are diffeotopic. From this fact and the
results of the paper [16] it follows that two embeddings

fig: SE; x DR — MY, i,j=1,2,

are defined to within diffeotopy of the pair (o, d;), where o; € mp(M]*) and d; €
7,(SO,—). From the fact that the manifold M™(S¥, S5 h) is completely defined
by the diffeotopy classes of the embeddings
figt SE;x DR — M, i,j=1,2,
it immediately follows that it depends only on the quadruple
(a1, dy, az, da), a; € m(M]"), d; € T (SOn—y).

Clearly, the quadruples (aq, di, as, Jg) and (aq, 0, ag, do — dl) define the same man-
ifolds. The lemma is proved. ([

Below we will denote the manifold M™ (S%, 8% h) by M™(ay,a,d), where o; €
Wk(MZn), i1=1,2,and d € Wk(SOnfk).

Remark. According to our definitions the bundles v™~*(S¥, M) must be trivial;
as a result, for 2k < n we have o; € mp(M™, vV (M™)) (cf. §7).

The following lemma is a consequence of the definition of a connected sum along
a cycle and Lemma 9.3.

Lemma 9.5. Suppose M = S* x S"*(g) and My is a (k — 1)-dimensional
manifold, a € m,(My,vN(My)), B € mm(MP), d € m(SO,_1), where § is a
generating element. Then the manifold M™(«, 3,d) is diffeomorphic with degree
+1 to the manifold My (e, g) (mod 6™) for any element d € mu(SOp_y).
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Proof. The element d e (80,,—) defines a diffeomorphism
h(d): S* x D"k — gk x Dbk
such that

h(d)(x,y) = (z, h(d)zy), h(d)z € SOn_,

where h(d): S*¥ — SO, _4, is a representative of d. The diffeomorphism h(d) is
extended to a diffeomorphism

h(d): S* x §"7F(g) — % x 5" H(g)
(everywhere except a point), since
Sk x §"7F(g) = (S*¥ x D"k Uy (S* x D"F),
where Sm_k(g) € 9", Therefore the result of the gluing
M"™(a, 8,d) = (M{"\ S* x D*"*) U, 5 (MF\ S* x D"7F)

does not depend (to within an element of 6") on the diffeomorphism h(d). But if
d = 0, then the equality
M" (e, 8,0) = My (o, 9)

is a tautology. The lemma is proved. |

We now examine the Thom complex T (S* x S™~*) and the subset
A(S* % §"7F) C (T (S7 x S™7F)).

The manifold S* x $"~*(g) is a 7-manifold, if $"~*(g) € 6"~ *(x), and is combina-
torially equivalent to the manifold S* x S"~*. There is therefore (cf. §§1-6) defined
the subset

B(S* x §"7k)) ¢ A(S* x snH).

In addition, to the smooth sphere S"~*(g) corresponds the subset
B(S"*(g)) € G(n — k), k<n-—k.
Lemma 9.6. The Thom complex T (S* x S"~%) is homotopically equivalent to
the union
SN+H vV SN+n7k v SN+I€ vV SN
The group
7TN+n(TN(Sk X Snik))
is isomorphic to the direct sum
Z 4+ G(k) + G(n — k) 4+ G(n).
The set A(S* x S"=*) consists of all elements of the form
INtn +7, Inyin €Z, v€ G(k)+ G(n—k)+ G(n),

where the element 1y, +0 € B(S* x S"=F),
The decomposition into a direct sum

TN +n (T (8" % 8"7F) = Z + G(k) + G(n — k) + G(n)

can be chosen in such a way that:

a) G(n) = ImKy;
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b) the subgroup G(n — k) belongs to the image of the inclusion homomorphism
Jut v en(TS) — T pn(Tn (S5 x §7F)), where
ju: Ty C T (S* x §*7F)

is the embedding constructed in §7, and Tk = SN*F v SN; the subgroup G(n — k)
is defined uniquely modG(n);

¢) B(S* x 8" #(g) #0™(7)) D Inyn + 5. B(S"*(g)) mod Im k.., where j: Th C
Tn(S* x S"7F) is the natural embedding.

Proof. The decomposition of the Thom space into a union of spheres follows from
E(§' x §7) = §itly gitly gititl
and Lemma 7.3. All assertions of the lemma, except the last, are trivial and imme-

diately follow from the natural decomposition of a Thom complex into a union of
spheres. Further, from Lemma 9.1 it follows that

B(S* x §"*(g) # 5) = B(S" x 8" *(g)) + . B(S™),

where S € #™(r). Therefore, for the proof of the lemma, it is sufficient to show
that
B(S* x S"7*(¢)) D 1n4n + 5. B(S"*(g)) mod Im k.
We consider the “auxiliary Thom complex”
Tn(SF) = SN*TE v SN c Ty (S x S %), Tk =Tn(S*), k<n-—k.

We also consider a map .

fi 8% x 8" (g) — S,
where )

fla,y) ==z, xes* yeSs ),
We extend the map f to a map
F: Sk x 5" F(g) x DV — §* x DV,

putting F' = f x 1. We extend the map F to a map F: SNt — T (S*) in the
usual way, so that

FIT(S* x 5" *(g)) = F,
since the tubular neighborhood T'(S% x §"~*(g)) € S¥*™ is diffeomorphic to S* x
S:”*k(g) x DN by virtue of the fact that S¥ x S"~%(g) is a m-manifold. The map
F factors into a composition of maps

F=10F: 8" x 8" *(g) x DN — 8% x DV — §* x DV,
where F~1(z9) = S"*(g), 2o € S*, and the maps are t-regular. Therefore the
induced map
F: SN T (S%)
factors into a composition of maps
F=FyoF: SNt o gN+k T (S),
where Fy 1(S*) = S*, Fy|S* =1 and F(20) = 5™ *(g), o € S*.
By definition (cf. Lemma 3.1) the map F5 represents a generating element of the
group
TNk (SVTE) C Nk (TR) = v k(T (S7)) = mngr (SV T v S7).
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The map Fj represents an arbitrary element of the set
B(S™ %) € mngn (SN = G(n — k).
We now consider the sum

Ingn + 5 B(S"7F(g)) C mvan(Tn(S* x S"7F)).

Let the map
g: SNH™ . T (SF x §mF)

represent, the element

Intn € TNan(SVT™) C wngn (T (S* x S™7F))

and the map

F: SNt Tk T (S* x §"7F)
represent an element of the set 7, B(S"*(g)) (the map F was constructed above).
We consider the “sum” of maps

(g+ F): SNt — Ty (8% x S™F),
where
(g+F)' (8" x 8" %) =g~ (" x S"F)U F1 (5% x §"7F)
= SPx 5" P U Sk x S (g).
We consider the product S¥ x D?F x I(0,1) and form the membrane B"*! C
SN % 1(0,1). We have

Bl =[Sk x S"TR U Sk x SR (g) x T <0, ;) Uny by S x DR % 1(0,1),

where
hi: S¥ x D"k x 0 — SF x D7k 8k x g
hy: S* x Dk x 1 — S* x D=k < §F x §nF(g),
and
hi(xz,y) = (x,hiz(y)), hix € SOp_g, i=1,2.
Clearly,

OB™! = [S% x §" R U S x SR (g)]u SF x §77H(g).
In addition, on the manifold
[SF x Sk U Sk x §nk(g)] = aB™ N SNF™ x 0
is given an N-frame field, normal to this manifold in the sphere SN¥*" and induced
by the map (g + F') of some a priori given and fixed N-frame field, normal to the
submanifold S* x "% in T (S* x S"~*) (cf. §§1-6). We will place the membrane

B™*1in the direct product SV x I(0,1) in a smooth manner and assume, as in
§61-6, that on SV x 0 is defined the map (g + F) and

B A SNt w0 = 9B TN SNt x 0 = (g + F)71(S* x §n7F),
Bt N gNHn 1 = 5k x SR (y),

where the membrane B™t! orthogonally approaches the boundaries of the direct
product S¥+7 % 1(0,1). Since the difference between the cycles S* x xg, zq € S*7F,
and S* x x1, 1 € S"7*(g), belongs to the kernel

Ker(g + F){™) ¢ Hy(S* x 7% U 8" *(g)),
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it is possible to extend the map of a submanifold
(g+ F)| Bt n SNt x 0
to the map
(g + F): B"FL = Sk 5 §n=F « Ty (SF x §nF).
In addition, it is always possible to choose maps hq, ho in such a way that the map
(g/_—it??) can be extended to the map

(g4 F): T(B"Y) — Ty (S* x S7F),

where T(B"*1) is a tubular neighborhood of the manifold B"*! C SN+m x I,
as in §§1-6 (or, what is the same thing, an N-frame field normal to the manifold
B"tINSN+7 %0 can be extended to an N-frame field normal to the entire membrane

B+l in §N+7 % [(0,1)). Then in the usual way we extend the map (g/+\/F) of the
tube T(B™*1) onto the entire direct product SV*" x I(0,1). As a result we arrive
at a certain map

(g+ F)|SV" x 1 — Tiy(SF x S"H),
that is homotopic to the map (g + F') and such that

(g+ F)"1(S* x k) n SN+ x 1 = 8% x §nF(g).

We have thus proved that in any homotopy class of the manifold 1n4, +
7« B(5" % (g)) there exists a representative

(g+F): SN x 1 — Ty (S* x S"F)
such that o
(9+F)7H(SH x 577F) = 5% x §77K(g).
Consequently,
Inn + 3-B(S"*(g)) € B(S* x S"7*(g)) mod Im k..

Comparing our results with Lemma 7.3, we obtain the desired statement. The
lemma is proved. ([

From Lemma 9.6 immediately follows

Lemma 9.7.
B(S* x S"7*(g) # 6" (n)) D B(S* x $" %) + j.B(S"*(g)) mod Im &,.

The proof formally follows from Lemma 9.6. It is only necessary to note that,

according to Lemma 9.6,
B(S* x S"7F(g) # 6™(n)) D 1n4n + B(S"*(g)) mod Im k.,
where 1x1p € TN (SVT?) C nin (T (S* x S?~F)); although the decomposition
Ty (S x §"7F) = gty ghan=hy gNHh y N

is chosen ambiguously. Namely, if we take another element of the set B(S* x S"~*)
as a new generator

1§V+n € 7TN+n(SN+n)
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and choose, according to the choice of this new generator, a new decomposition of
the Thom complex into a union, then under replacement of 1y, by 1%y, all the
arguments of Lemma 9.6 remain in force and we get that

B(S* x S"7F(g) # 0™ (n)) D Uy + 5 B(S"*(g)) mod Im &,

for any element 17y, € B(S* x S*=F).

The lemma is proved.

Combining the results of the preceding lemmas, we can state that there have
been introduced two elementary operations for changing the smoothness under
preservation of the triangulation: the connected sum with a Milnor sphere from
6" (m) and the “connected sum along a cycle” S¥ C M™, k < [n/2] (if the normal
bundle v ~*(S*, M™) is trivial), of the manifolds M™ and S* x S"~* where 5"~* €
6"~* (7). The homotopy meaning of these operations for the case M™ = S* x §7~*
was found in Lemmas 9.1-9.7.

We denote by B, s(M7) C B(M7") the subset consisting of those elements

a; € B, 5(M}') € B(M}) C A(M"™) C mysn(Ty(M™))

for which there are representatives f,,: S™VT™ — T (M™) that satisfy Lemma 3.2
and possess the following properties:

a) the manifolds f;'(M") are diffeomorphic to M{", though the map fo, | M7
need not be a diffeomorphism;

b) fa;«(6) =, where v € mp(M™), § € mp(M7).

Lemma 9.8. If there exists a diffeomorphism h: M — M7 of degree +1 such
that h.(01) = 02, with 61,02 € mp(M7{"), then the sets B, s, (M{") and B, s,(M{)
coincide.

The proof of the lemma follows immediately from the fact that we distinguish
all our objects only to within an equivalence induced by diffeomorphisms of the
manifold M7 onto itself of degree +1. The lemma is proved.

Below we will always denote a “connected sum along a cycle” of two manifolds
M7 and M3 in the following standard manner:

Mn(71772ﬂd>:M{L g M2na

Y172

where 7; € m, (M, vN (M), d € 7,(SO,_1). In the event that My = S*¥ x §7F,
v € mp(MP,vN (M) and B € mp(S* x S™7F) is a generating element, we then,
taking into account Lemma 9.5, use the notation

M7 #2 5 8% x S*F = M} #., 8% x 5% mod 0.

Theorem 9.9. Suppose M™ is a (k — 1)-connected manifold and ~,6 €
L (M™, vN(M™)), k <n —k. Then in the Thom complex Ty (M™) the relation

(33) B, s(M™) + B(S""(g))- TNy C B(M" #; S* x S"7*(g)) mod Im k.
is valid, where B(S"%(g)) C G(n — k) and
TN : 1 (M™, 0N (M™)) = wnan(Tn(M™))/ Im &,

is the homomorphism constructed in §7.
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Proof. We realize the element v € m,(M"™, vV (M™)) by a smoothly embedded
sphere 7: S¥ € M", which has a trivial normal bundle " ~*(S* M™) in the mani-
fold M™, since the bundle 7*v¥ (M™) (by condition) and the bundle
ank(sk’ Mn) o ,?*VN(Mn) — VN+n7k(Sk)
are trivial and k < n — k. The embedding 7: S¥ C M" determines in a natural
way the embedding
TN Tn(S*, 30N (M™)) c TN (M™).
By analogy with the proof of Lemmas 9.6 and 9.7 we consider two maps
FoSVE ST (MT), e Bys(M™),
F: SNt T (S* 3 0N (M™)) € T (M™),
having the following properties:
FeB(S" " g)oB(SY),  B(S*) C mnan(Tn (8%, 50N (M™)),
Tn(S*, 3N (M™)) = T (S*)
( f and F respectively denote the homotopy classes of the maps fand F).
It is easy to see that f~1(M™) = M™ and F~1(S*) = Sk x S"F(g) .
Further, we consider the map
(f +F): SN - Ty (M™)
representing the element f + TNYF e TN+n(Tn(M™)). Clearly,
(f+ F)"Y(M™) = M™ U S* x 5" F(g) c SN+™,

the element f_!(y) — F,!(y) belongs to the kernel Ker(f + F)., and § = f. (7).
By analogy with the proof of Lemma 6.9 we construct a membrane B**+1 ¢ SN+1 x
1(0,1) such that:

a) BN SN x 0 = (f + F)~ Y (M™),

b) BN SN w1 = M™ 45 SF x Snk,
) B"+1 (f + F)~Y(M™) x 1(0,1/2) Up, 1, S* x D2=F x 1(0,1),

d) h X DR 0 — M™ x 1/2,

)hg S’“XD" Fx1— 8k x Sk x1/2,

£) hi(z,y,i 1) (@, hiz (y)),
where i = 1,2, h;, € SO(n — k), x € Sk, y € DP=F.

The membrane is chosen in such a way that the map

(f + F)ISY %0

o

can be extended to a map
Fy: SNt 1(0,1) — Ty (M™)
such that
FyH(M™) = B™
The choice of the membrane is effected by the choice of the map h;,, i = 1,2, as in
Lemma 9.6, and can always be effected for k < n — k. On the upper boundary the

map F;|SN+" x 1 defines a map (f + F) such that

(J+F) " (M™) = M" #5 5% x 5"*(g).
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We have thus shown that the sum f + TNFF belongs to the set
B(M™ #5 S* x §"7*(g))
when f € B, 5(M™) and
FeBE" ) o B(SY),  TV4F € B *(g)) - TV,
From the definition of a homomorphism,
TN 1 (M™, 0N (M™)) = wngn (T (M™))/ Im k.
The theorem is proved. (|

§ 10. VARIATION OF SMOOTHNESS UNDER PRESERVATION OF THE
TRIANGULATION. THE RECONSTRUCTION OF MORSE®

We assume that the manifold M™ is (k — 2)-connected and is a m-manifold for
k<n—k—1k—22>1. We select in the group
Hya(M™) = mp 1 (M™) = mppy (M, 0N (M™))
some element 1, realize it by a sphere S¥~! C M™ having by virtue of the (k — 1)-

parallelizibility of the manifold M™ a trivial normal bundle v~ *+1(S*=1 M™) and
form the manifold

1
B"(h)=M" x 1 (o, 2) Up D¥ x DP=F 1,

where

h: OD* x DR+ — T(SM1) = §h7 1 ppoi

h(:L'7y) = (‘Ta hr(y))v hy € SOn—k+1-
We select the diffeomorphism h so that the manifold B"*1(h) is also a w-manifold,
which is possible (cf. §§1-2 or §9). Clearly,
OB™ (k) = M™ U (—M"(h))
and
Hy,(B"* (h), M") = Hyy1—(B"" (h), M"™ (h)) = Z,
Hy(B"t'(h),M™) = Hp1—i(B" " (h),M™(h)) =0, i#k.

Let us vary the smoothness on the manifold M™(h), keeping fixed the normal bundle
vN(M™(h)) and the triangulation. We denote the resultant manifold by M7 (h).
To this variation of smoothness, according to the results of §8, there corresponds
the set of elements (c;) € T4, (T ) representing the set of all differences

B(M"(h)) = B(M{'(h)), Ty > C In(M"(h)).

We denote the standard combinatorial equivalence by ¢: M7*(h) — M"™(h). In
the set B(M7*(h)) we select the subset B(@ (M (h)) consisting of those elements
a € B (M7 (h)) which have t-regular representatives

fa: SN — T (M™(R))

such that
fo H(M™(h)) = M} (R)

8The principal theorem of this section, Theorem 10.2, is proved here incompletely. The reader
can omit this section, since its results are not used later. A detailed proof of Theorem 10.2 will
be given in the second part of the paper.



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 61

and
fo|M{*(h) = q.
We fix the standard element 1y, € B(M™(h)), constructed for the proof of
Lemma 3.1, and consider the subset of the set of differences of the form
{Inin = BODMW)} € myan(Th?), T C Tn(M"(R)).

We extend the smoothness of the manifold M{'(h) onto the entire membrane
B"T1(h). In this connection there arise the obstructions

¢s c Hs(Bn—H(h),Mn(h),@n_s), s c gn=s

with coefficients in Milnor groups (cf. [12, 23]). But since
H*(B"*(h), M™(h)) = 0, s#En+1—k,

there arises only one obstruction

¢n+17k c Hn+17k(Bn+l(h), ‘]\471(}1)7 onflc) — enflc'

Thus, to every manifold M™(h) that is combinatorially equivalent to the manifold

M™(h) there corresponds an element ¢"*t1=% € §"=*_ According to certain results
of Munkres [12], if ¢"*!1=* = 0, then the variation of smoothness can be extended

onto B"*1(h) with boundary M™(h) without varying the triangulation on it.
We select in the group

kal(Mn) = 7Tk,1<M”>

a minimal system of generators ~i,...,7;; and realize them by spheres
Sffl, PN Slkf1 C Mm™, that are smoothly embedded and mutually disjoint.
For each of these spheres the bundles V"‘k‘*‘l(Sf*l, M™),i=1,...,l, are trivial.

We form the manifold

1
Bt =30 1 (0,3 ) Une [(DF % D274 U U (DF D40,

where
hi: ODF x Dr=RFL s gh=l o proktl oy i=1,...,1,
so that
hi(z,y) = (x, hiz(v)), ze Sk y € DR hiz € SOp_k11-
We select the diffeomorphism h; according to §§1-2 so that the manifolds

Mln(h) = (Mn \ UT(Szkl)> Uny,...l [U Df X Sgk]

and Bf“(h) are m-manifolds, which is possible for £ < n — k. Clearly,
OB (h) = M"™ U (=M} (h))
and
HA (B (), M) = H™H 5B (), MP(h) =0, s # k.
Since k < n — k — 1, the manifold M]*(h) is (k — 1)-connected. By analogy with

the above, to every variation of smoothness on M;'(h) without variation of the
triangulation there corresponds an element

¢n+1fk c Hn+1fk(Bln+1(h)’Mln(h)’anfk) _ a?ﬁk R 0'&)—16
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Let
H;(M*(h)) =0, i<k+p (p=0)
and
Hiyopp (M (h)) = Thyp (M (R)) # 0,
where k+p <n—k —p—1. On the manifold M;*(h) we vary a smooth structure,
using the results of §9; namely, we select in the group 71, (M]*(h)) a base 61, ...,
and consider the sum

M (h) #s, S™P 5 SPTFTP dts, o gt

where 5:;;’“—? € 0" F=P(r). Let us attempt to “carry over” the new smoothness
with respect to the membrane B]'™(h) on M. There arises an obstruction

gnti=k cgn=k 4 ... 4 gn-k (I terms);

this obstruction defines a map

k+ Sn—k—
SkFP 5 Gn—h—p,

m

m

l
(35) PR N g Zl 07"
i

i=1
(to the variation of smoothness of the manifold M;*(h) by an element

6 € S, 0""F7P corresponds an obstruction ¢"F17F(9) € 22:1 9?_]“). If

0 € Ker¢"t'=* then the variation of smoothness by # permits a carrying over.
We now study the homotopy nature of the constructed map ¢"*'~* in terms of a
Thom complex. In this connection we recall the filtration of a Thom complex

Tn(M™) DTN 22 DTy DSV =1T%.

If the manifold M™ is (k — 2)-connected, then

k—

T =Ty = =Te =Ty ="
and
TR 2 =...=Tnk+
In general, we will always select a filtration
Tj = Tn (K 5 v (M™)),

where K® is the i-dimensional skeleton in a minimal triangulation and j: K C M™

(the number of cells o C M" is equal to maxrk H*(M™, k) with respect to all
fields k). To each cell 0° C M™ corresponds a cell

Tny' C Ty C Tn(M™),
and the boundary operators in the complexes M™ and T (M™) are applied identi-
cally: . 4
GTN(%) = TN(aUz).
It was proved in §7 that, if M™ is a m-manifold, then the space Tn(M™) is
homotopically equivalent to the union
EN(M™) v SN = EN(M™ U ),
where xq is a point. In this case we can assume that
EN(K'Uxg) = ENK'v SN = T4,
and
Tn(M™) = SNty ENKn=2 v SN,
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Let us consider the Thom complex T (B;"t'(h)), which is a pseudomanifold
with boundary
OTn (B (h)) = Tv(M™) V T (M[ (h)).
As is well known (cf. §1), the space B;""'(h) contracts to its part

1
M™ x 3 Yniseooh (D¥ x0U---UDF x0).

The homotopy type of a Thom complex depends only on the homotopy type of the
base. Therefore the Thom complex T (B]""!(R)) is homotopically equivalent to
the Thom complex

Tn(M™) Uryh,,....on (DY TR U U D),
where
Tyxhi: ODNTF - ENKgF=1 ¢ i1 i=1,...,1
In this connection it is evident that
_ k— k—
KFt=g8ftv...vgFt
and
Tyhi: ODNTE — EN Gk = grrk—1

if the spheres Sf 1 ¢ K¥1 are chosen according to the previously selected system
of generators 71, ..., of the group

kal(Mn) = kal(Mn)
for the definition of the manifold

BIYh), b= (hi,.. ).

We now investigate the Thom complex Ty (M[*(R)). If an element v, is an
element of infinite order, then, under passage from M™ to M;*(h) of a cycle 7, €
H,,_4+1(M™) such that 7, - vs = 1, a neighborhood of a point that is orthogonal to
the sphere S*~1 C M™ will be discarded. If for all generators of cycles of infinite
order

’yi17 AR 7’yi3 e Trk_l(M/n)
there exists a system of dual generators
FirseovsVie € Hppm1 (M™)
such that
Yi; * Yie = Ojt
and each generating element ¥;, is defined by precisely one cell 0;-1_]“'1 c M",

then, under passage from M" to M;*(h) of the interior of each cell o;‘_kﬂ, a small

spherical neighborhood of a point will be discarded, and the complement can be
contracted to K™ *. If an element 7, has a finite order ¢, then there exists an
element

3 € H MM, Z,,)
such that

Ye -5 =1 (mod gy);
if the element 7; is also defined by a single cell

UZL—k—&-l c anerrl C M™
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(which can always be assumed if n — k 4+ 1 # k — 1), then, under passage from M"
to M[*(h) of this cell, only one spherical neighborhood of a point of intersection of

affkﬂ and S{“l will be discarded, and after this operation the complement can
be contracted onto the boundary 80?_’“'1 C K" *. Furthermore the entire group

mr—1(M™) goes into zero under passage from M™ to M*(h) (a ball D¥ is stretched
onto each sphere Sffl, i=1,...,1, that is shifted onto the boundary of a tubular
neighborhood dT(SF~') € M™). Thus we have obtained the following statement.

Lemma 10.1. The complex Ty (B} (h)) is homotopically equivalent to the Thom
complex

TN(Mn) — SNJrn Vv ENankJrl vV SN
with cone stretched onto the (N + k — 1)-dimensional subcomplex
ENKF-D = gNHR=Ly oy gV ¢ pN gntk=1 Ty (M™).

Ifk—1<n—(k—1)—1, then the Thom complex Ty (M]*(h)) is a subcomplex of
the complexr Tn (B} (h)) and contracts on itself to the subcomplex

(SN+n BN gk Ny pN k=1
of the complex
Tn (B (h)) = (SN v EN K=k Ly Ny /EN k=t
The proof of Lemma 10.1 is obtained from the arguments preceding the formu-
lation (passage to Thom complexes).
The lemma is proved.
We have already considered in §8 the exact sequences (33) and (34) of the form
o s (TR V) = i (TRHP) = i (TR TEY) S iy (TEY) — -+
for i =n, p > 0. In our case
Ti = ENK v SN,
TRt = SN th=ty .y GNHR=Ly gN = pN k=1 gN,
Now suppose again that ¢ = n. We consider the exact sequence
(36) Ty an(EYKEY) o my g (BVERP) (BN K542 /BN 51
2 Nt (BNEM) = w1 (BYNER), p>0,
corresponding to the exact sequences (33) and (34), since
% = ENK™ v SN,
In order to emphasize the dependence on a manifold, we will write
Ty =T§(M") CTy(M™), Ty (M[*(h)) C Tn (M (h)),
TR (B (h) € Tn (B ().
It follows from Lemma 10.1 that
TR (M (h)) = TR (BT (h)) = (BYK™ [ENKF1) v 8V
for m <n —k and
TN (Bt () = (EN K" F  EN KR v N,
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We will also write
K™(M{"(h)) € M{*(h),  K™(Bj*'(h)) C B! (h),

denoting the skeletons of dimension m of the corresponding manifolds M™, M;*(h)
or Blnﬂ(h) by symbols depending on the manifold. We note in addition that

TNan—1(ENK* Y =Gn—k)+---+G(n—k) (I terms).
We rewrite the exact sequence (36) in the form

l
(37) Y Giln—k+1) = mnn(BEVEMP(M™) & 7 (BN K2 (BT (h)))
i=1

23 Giln = k) = w1 (BNERP(M7),
i=1
where, if £ +p < n — k, then
ENKMP(BrT () = BN KM (M (h).
In accordance with the notation of §8, we obtain from Lemma 10.1
TN M) = T MY () = Ty (B + (h),
k—1<n—k-—2, p >0, k+p<n-—k.

Let us now consider the “equipped” smooth spheres S ¢ SN+1 in the sense of
Pontrjagin [15]. In this case a sphere S with normal frame field 7 (“equipment”)
in SN+ defines an element of the group G(i). We will also always carry out the
operation of a “connected sum along a cycle,” defined in §9, for “equipped” m-
manifolds M7, M3 C SN+ so that the manifold

Mln ii)’l;’)’z MQn
receives the natural equipment for a suitably chosen element d. Since an “equipped”
smooth sphere S; defines only one element a(S?,7V) C G(i), we obtain a new
formulation for Theorem 9.9:

Every element 8 € B, s(M]') C A(M™) represents

a) an “equipped’” manifold M7 plus

b) a fized to within homotopy map f: M} — M™ of degree +1 such that

f«0 =1, v € mp(M™, vN (M™)), § € mp(M7, vN);
on the manifold M #5 S* x Sk appears the natural equipment and the natural
map R .
fo M #5 S5 x S*7F — M™,;
this equipment and map f jointly define an element
B+ a(S"F, V) o TNy € By (M7 #5 S* x §"7F),

where
a(S"F Ny e B(S"TF), B e B,s(MP).

This new formulation is somewhat stronger than the old one, but it is proved
in essentially the same way. We will call this (stronger) assertion Theorem 9.9’
In addition, in carrying over a smooth structure with respect to the membrane
Bl”Jrl (h) we will attempt to carry over the new “equipment” obtained in varying the
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boundary M;*(h) onto the “equipped” smooth sphere Sn=k=p p >0 (the manifold
M™ is (k — 2)-connected and the manifold M;*(h) is (k + p — 1)-connected). We
recall that the manifold M™ was “equipped” and, according to §2, we defined the
membrane Bl”H(h) in such a way that the “equipment” given on the manifold M™
was extended to the “equipment” of the membrane

Bt (h) SN < 1(0,1),  M™cC 5" <0,
M (h) c SNt x 1
In this case an obstruction to the carrying over of the new “equipment” (together

with the smoothness) of the boundary M;*(h) onto the membrane B} (h) will be
the class of cohomologies

oI € WTITE(BIT (), MY (h); G(n — k)
=Gn—k)+---+Gn—k) (I terms).
This obstruction to extending the smoothness and equipment of a boundary onto

a membrane falls into the following parts:
1) There is defined on the boundary 9o 1% = S"=* of each simplex
O_n+l—k c Banrl(h)
a new smoothness
Svnfk(o_n+1fk) c anfk
(cf. [12, 23]).

2) There is defined on the boundary do"*'=* a frame field 7 that is normal
to the entire membrane B]""!(h) C SN*™ x I(0,1), which has meaning, since the
new smoothness is already defined, simultaneously with the new “equipment” of
the membrane B;""'(h), on a neighborhood of the (n — k)-dimensional skeleton.

3) There is defined on do"+1=* a frame field normal to do"+1=* in B***(h) (in
the new smoothness). We denote this frame field by 7%; it must have meaning in
the new smoothness.

4) The smoothness S"~* on o™ '~* and of the field (7V,7*) jointly define an
element

(e k) e G(n —k);
if the smoothness and equipment of (77, 7%) are extended from a neighborhood of
the boundary onto a neighborhood of the simplex ¢™*1~* and define a “smoothness

with equipment” on a neighborhood of the (n — k)-dimensional skeleton plus a
neighborhood of the simplex (cf. [12, 23]), then

ale" 1Ry = 0.

According to the preceding results, we can vary the smoothness and equipment on
the (k + p)-dimensional skeleton of the manifold M;*(h) onto an element

a€ ZGi(n—k—p),g

i=1
where m is the number of generators of the group

Hip(M[ (1)) = mip (M ().

9t is important to note that equipped smooth spheres do not take up the entire group G(z)
for i = 4q + 2, so that $"t1=* is not defined everywhere.
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To an element a € .1 | Gj(n — k — p) corresponds an element

I a) €

J

1
Gj(n— k) = H™ R (BPF (h), M7 (); Gn — ).

=1

On the other hand, we have constructed an exact sequence (37)

l
s T (BN KR (M™) 25 oy (BN KR (M (R))) 2 > Gitn—k)— ...,
=1

where
m

w1 (BN KM (My(R) = Gi(n — k —p),
=1
so that

0: ZGi(n— k—p) — ZGi(n— k).
There occurs the following

Theorem 10.2. The homomorphism
l

0: ZG(n—k—p)HZGi(n—k).

j=1 i=1

of the exact sequence (37) coincides in the common domain of definition with the
the map "1k,

Sketch of the proof. The definition of the homomorphism 0 bears an algebraic char-
acter, whereas the map q?)"“_k was defined in terms of geometric concepts. Conse-
quently, in order to establish a connection between them it is necessary to translate
the definition of the homomorphism QNS”“*’“ into algebraic language. Let us con-

sider the manifold
l
(M" U T(éf‘l)) - B,

i=1
where l
oB" = | JSpF x sFL
Clearly, -
M[*(h) = B" Up,....h, [LZJ Srk x Df]
and =

M"™ =B"U

1
U Dyt x Skll
K3 1 N
i=1

We vary in the manner described above the smoothness of the manifold M;*(h)
(together with the equipment if it exists) onto an element

aEZGj(n—k—p), a:Zaj, a; € Gij(n—k—p).

j=1 J
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Thus the smoothness and equipment are varied only in a neighborhood of the cycles
S]’-C'H) C M[*(h). The intersection
k+ —k
S; Pognh = Mf';.

represents a smooth submanifold M% C Sinflﬂ equipped in the sphere S{‘*k by
a frame field that is induced by the coordinate system in a neighborhood of the
sphere S;“p ; we assume that the spheres Sfﬂ) and Sf_k are orthogonal to each
other at the common points of intersection. This equipped manifold defines an
element f;; € Tn—x(S"¥7P); under variation of the smoothness of the manifold
M (h) in a neighborhood of the cycle S;-H'p by a sphere S;l_k_p(aj) € onk=r(m)
the smoothness on the sphere S7'~* C M/*(h) is varied in a tubular neighborhood
of the manifold M}, C S7=F: namely,
—k
T(Mf) C 577,
—k—
T(Mf;.) = MZ x DR
OT(MP) = MP, x Sp—k=p=t,
Let us consider the map

g: ME, — diff SpFr 1
induced by the map

g: Sf"'p — diff Szl_k_p_l
taking the entire sphere S;H'p into the point 9(5]’?‘*‘17 ), where

Gn—k— k+ Sn—k—
STTETP(g(87TP)) = ST (oy).

Further, we set

(38) St (ay) =[S 7P\ T(M])] Ug T(MP),

]

where
g: OT(M};) — OT (M),
g(x,y) = (2,9(MF)oy),  weMf, yes
The following lemma clarifies the meaning of the elements §;; € G(p).

Lemma 10.3. The complex T;f,ﬂ)(M") is homotopically equivalent to the union
k+p+N _
SN\/ (U Di+p+ ) U,Bij \/Szjv+k 1 ’
j=1 i=1
where Bij € TN 1k1p—1 (SN T = G(p).
Proof. Clearly,

M™=B"U

)

U DR 5 ghtl
;

where

BY = Mp(h) \ (U 81 x Df) ;
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the manifold M” C 5]'~" represents the intersection
_ k . .
SpTRLSTP C MPM(h),  i=1,...,1, j=1,...,m.
We will assume without further ado that the spheres S * and SJ]-HP intersect at

right angles at each point of the manifold Mf; We consider a tubular neighborhood
T(MF) € S5*P of the manifold M?, in the sphere S; 7. Clearly,
Py _ AfP k
T(Mij) = M;; X Dg;
and
P\ _ AfP k—1 k+p

BT(Mij) = M;; x 5577 C 5.
We note that on the manifold Mf;- there is equipment normal to Mf';- in Si”_k , on
the entire manifold MZ. X 52_1 there is equipment normal to MZ- X SZ_l in the
manifold

AT (S k) =8k x §ht)

and on Mipj x S¥~1 there is an N-frame field normal to the manifold M;*(h) in the
sphere SN*". We consider the Thom complex TN(Sf[l) and note that the sphere
S* =" < B™ defines in general a nontrivial cycle in the homologies Hy,(M™), where
the group Hy(M™) is generated by the cycles 52—1 C B™, formed under a passage
from M]*(h) to B® C M™ as a result of discarding the tubular neighborhoods
T(SI*) € M]*(h). The pair of equipments on the manifold

MP % SEHc M (h) € SV
mentioned above, define together with the natural projection

p: MI x SF7— gFt
a map
F(ﬂ”) SN-H@—i—p—l _ TN(Slkfl) _ SN Vi SN—HC—I’
satisfying Lemma 3.2 and such that
F(By) N (S =Ml x SF7Y F(Bi;) = p/MF x SF71,

and the map F(3;;) is defined on a tubular neighborhood of the manifold M} x S k=1
by the pair of equipments constructed above, that are normal to Mz-pj X 5571 -
SP=k x SF71 and to Mj*(h) € SN*™. Tt is easy to see that the map

F(Bij): SN — Ty (SP1)

has the homotopy class 3;; o Tny;, where ; is a generating element of the group
Th_1 (Sffl). We recall that the equipment normal to M]*(h) was given on the entire
membrane
Bt (h) ¢ SN x 1(0,1)
and consequently on the manifold M™ C SN*" x 0, where
M (h) c SNt x 1.

Therefore the constructed map

D F(Big): SN — Ty (\/ 559_1)
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is homotopic to zero in the complex T (M™), since the equipment of

UMP x SFtc B c M
is already extended onto the membrane

(Sk-i-p\U M}D XDk ) c B®

by definition of this equipment, and the equipment normal to the entire manifold
M[*(h) is extended onto the membrane B}"!(h). Therefore the element

Z Bij o TN € Tninap—1(Th P (M™))

is equal to zero. It is easy to see that every element
8 € N thrp1(Ty H(M™))
belonging to the kernel of the inclusion homomorphism
- k
TJ/\C] I(Mn) c TN+p(Mn),

is a linear combination of the elements ), 3;; o Tﬁ , from which also follows the
desired statement. The lemma is proved. (I
Remark. If p = 0, then the manifold MZ represents a collection of points and
there is defined the index of the intersection
k - . .
@-j:Sj+p'Si" k i=1,...,0,j=1,....m

The proof of Lemma 10.3 is trivial in this case, and the boundary operator in
the complex Tllf,ﬂ’ (M™) can be expressed in terms of the indices of the intersections
S]]?er - S77F (the elements 3;; € G(0) = Z represent integers).

Let us study how the smoothness on the spheres S;" k5 MZ is varied under the
variation of the smoothness in a tubular neighborhood

T(ME) = MP x D"~ FP,

described above. Namely,
SR = (SR T(M]) Uy T(MF}), "

g: MF, — diff S»~Fr
and g(M}}) consists of one point (one diffeomorphism) corresponding to the sphere
Sn=k=p(g) € §"~*=P(7). We consider separately the manifold

MJ; x 8P (g)
and on it we assign the equipment 7V in the sphere SV*”~* in such a way that
the equipped manifold
My x Sn—k=r(g) c GN+n—k

has defined an element of the set

Bijo B(S"*7P(g)) € G(n — k).

10The operation indicated here for varying the smoothness depends essentially on the choice
of the map Mipj — 8Oy, __p defining the normal coordinates.
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On the sphere S"~* C SV*" we initially assign the null equipment 7¥. We consider
the equipped map
MR = (S"7F U M x S"TRR(g))

in the sphere SN+~ % 0 and the membrane

Ny~ = MR U, DR 1(0,1) x MY,

where
q=(q0,q1),
qo: DVETP M x0— Sk
qi: D" ME x 1 — ME x §"TRr(g),
and

gi(z,y,19) = (qiy(2),y,19), 1=0,1, giy € SOp—p—p.
We will assume that
Ny =R+ gNHn=k 5 1(0, 1),
where it is evident that
N;sz+1 A SN+=k 0 = Mk
N;’lfkﬂ’l nN+n—k 1 = Gn—k,

and the membrane N, ;_k“ orthogonally approaches the boundaries.

Lemma 10.4. The maps q;: Mf; — SOp—_k—p, 1 = 0,1, can be chosen in such a
way that the equipment 7™ U T, given on the manifold M™% C SNk » 0, can
be extended onto the entire membrane N;”’”l c SN+n=k » 1(0,1).

Proof. Since, by condition, the number p is small in comparison to the number
n — k — p, the natural inclusion homomorphism

w(MF., SOn_k—p) — w(MF,, SON)

1] ) 1) ’
is an epimorphism. Therefore for a fixed map

q0: MZ - Son—k—p
it is possible to select a map ¢,

qi: MZ - SOn—k—pa

such that the equipment 7V U Tév is extended from M™% onto the membrane
NP=F+1 g = (qo,q1), since the membrane NJ™'~* always contracts to the sub-
complex
MU, 0 x ME, % 1(0,1),
and it is sufficient to extend the equipment only onto this subcomplex, which is
done in exact analogy with the proof of Lemma 2.1.
The lemma is proved. (|

Thus Lemma 10.4 gives us information on the new smoothnesses and equipments
on the spheres Sl-”fk, i=1,...,1, under a variation of the smoothness and equip-
ment on the original manifold M;*(h). Namely, under a variation of the smoothness
(and equipment) on the jth base cycle of the group

Hyyp (M (h)) = mrpp (M ()
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onto the Milnor sphere S"~*~P(a;) € §"~*~P(r) (which, together with the equip-
ment, is the element «; of the group G(n — k — p)), the smoothness and equipment
on the sphere Sffk define the element

Zﬂij owj € G(nfk:)
J

Since the homomorphism
0t T 4n(TEP(MP (1)) = Tt (T (M),

constructed above, is defined, as is well known in homotopy topology, so that
a— Y ajo By,
0,J

where a = ) o for all
a€ ) Gj(n—k—p)=myia(Ty" (M (h))),
j=1

and the elements
l
Bij € Gi(p) C TNikip1 (TN H(M™))
j=1

possess the properties indicated in Lemma 10.3, our theorem is proved. (]

Summarizing the results of Chapter II, we can state that we have partially
studied the homotopy structure of a Thom complex, the action of the group
7T (M™, M™), the operation of the connected sum of a manifold with a Milnor
sphere, and the variation of the smoothness along a cycle of minimal nonzero
dimension (for the case of m-manifolds). In addition, we observed the variation
in the homotopy sturcture of a Thom complex under Morse reconstructions and,
finally, we studied the connection between a variation of the smoothness in a
reconstructed manifold and a homomorphism in a certain exact sequence that is
closely connected with the homotopy structure of a Thom complex. The study of
this latter connection was conducted only for elementary operations of varying the
smoothness, but in a forthcoming paper the author will conduct a more complete
investigation of the operations of varying the smoothness on manifolds and their
connection with the homomorphisms of type 0.

In the next chapter we turn to the derivation of corollaries of the established
general theorems and an analysis of examples.

Chapter IIT
Corollaries and appendices

§ 11. SMOOTH STRUCTURES ON A DIRECT PRODUCT OF SPHERES
Let us apply the results of the preceding sections to the important example
MP=8Fx8s"F  n—k>k
From §7 it follows that
Tn(M™) = §NHmy gNHn=ky gN+ky gl



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 73

and
7rN+n(TN) =7 + G(k) + G(TL — k) + G(n)
The set A(M™) consists of all possible elements of the form
INtn + @, In4n € Z, a € Gk)+Gn—k)+ G(n),

where 1y, +0 € B(S* x Sn=F).
We will study the action of the group m(M™, SOy) on the set A(M™). It is easy
to see that the sequence

(39) Tn(SON) — ©(M™,SON) L 1 _1(SON) + 7 (SON) — 0
is exact.

Lemma 11.1. Ifb € m,(SON) C 7(M™, SOx), then for each element 11, +a €
A(M™) we have

(40) b(1ntn + @) = Inyn +a+ J(b).
Proof. We discern two maps
fi: SNH T (M), i=1,2,
representing respectively the elements 1x4, + @ and b(1y4, + «) where
JH M) = f (M) = M
and
HIIME = fo| M.

But in a tubular neighborhood T'(M7) the maps f1 and f; are discriminated by an
element

bem,(SON) Cm(M"™,SON),

and this discriminator is concentrated near a point zo € MJ. It is also possible
to say: the manifold M is equipped in two distinct ways 77V, i = 1,2, and these
equipments differ only near the point g by the element b € 7,,(SOy). In this case
there exists on the sphere S™ the equipment 7%V, corresponding to the element b,
such that for the equipped manifolds (73V, M?), (t2¥, M), (7, S™) we have

[0

(TleMn) # (TN7Sn) = (T2Nan)'

(e (o3

Therefore the equipments 7V, i = 1,2, on the manifold M? are discriminated by
an equipped sphere S™, and in the homotopy groups 7y 4, (Tn)

b(1N+n + Ol) = ].N+n + o+ J(b)
The lemma is proved. u

Lemma 11.2. Ifa € 7(M",SON) and p(a) € m,—k(SON), then for each element
Iny4n +a € B(Sk X Sn_k)

(41) a(lngn +a) =1n4n +a+ J(p(a)) (mod Imk, € G(n)).
Proof. Suppose, as above,

fir SN — Ty (M™), i=1,2,
represent the elements a(1x4y, + @) and 1y4, + @, where the manifold

Mg:fi_l(Mn)v i:]-v?a
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is diffeomorphic to the manifold S* x S™~* and is equipped in two distinct ways.
These equipments 7V, i = 1,2, are discriminated by the base cycle Sn—k < M2
and, moreover,

AIME = fol M.

We select the standard frame 7§, that is tangent to S* at the point xo € S*, and

discern the frame fields (77¥, 7%) on the sphere

zo x S"F ¢ M™,
that are discriminated by an element j.p(«), where
Ju: Tk (SON) = Tk (SON+k).
We discern separately the manifold
SFx snh c g

and assign on the cycle 2o x S" ¥ the equipment 7V**  defined by the element
j«p(a), where the last k vectors are tangent to the factor S*, and the first N
vectors are normal to S¥ x S"~* (also given on zg x S"~*). We extend this frame
field 7, defined by the first N vectors of the frame 7V+* onto all of the manifold

SFx snh c g,
which is possible; then we define a map
F: 8% x 877k 5 §F x yy  SF x §"7F,

putting F(x,y) = z. We discern an element 3 of the group 7y, (Tk(M™")), defined
by the extended equipment and the map F' and representable, clearly, by a map

fo: SVTT - TR

such that
f5H(S*) =Sk x§m R flSt x SR = F.

It is easy to see that the sum 1y4, + a + (3 is represented by the map
(f2+ f5): SN — T,
where
(fa+ f5) 71 (S*F x S"7F) = (SF x S"F) U (S% x §"7F)
= fiN(SF x SP TR U f (SR x SR,
In analogy with §10 we make use of the “connected sum
SFx §nk g Sk % gnk

along a cycle” v = S* for the equipped manifolds S¥ x S™~* and S*¥ x $"~F to
construct the map

(fg + fg): SgN+n TN
of homotopy class 154, + a + § such that

(fo+ o) H(S* x 5"7F)
= (% x Sk 4 Sk x §nF) = SF % §"F mod 6™

The map (fQ/—T—/fg), considered on S*¥ x S"~F coincides with both of the maps fi
and f, on S¥ x S"~F and in a tubular neighborhood is different from f; only in the
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neighborhood of a point (the discrinainator between them has a value in dimension
n, since we killed the discriminator p(a) on the (n — k)-dimensional skeleton). Thus
we conclude that

InN4n +a+ B =a(l+a)modImk, C G(n)

according to Lemma 1. By virtue of Theorem 9.9 (or its modification, Theorem
9.9/, given in §10),
B = Jp(a)o Eiv mod Im &,

where 7 is the fundamental class of the sphere S*.
The lemma is proved. ]

We will now study the action of the group 7=+ (M™, M™) on the set A(M™),
beginning with the results of §7.
It is easy to see that

T (S* x SFY = 1, (S* x §"F) = 71, (S*) + 7, (8™ )
and that the sequence
0 — T, (S*) + 7, (S"7F) — 7T (SF x s"7F)
is exact. Since n — k > k, the homomorphism
TN = EVN: 71,(8%) = G(k) C wngn(Tn(M™))/G(n)

constructed in §7, is an epimorphism. Applying Lemma 7.6, we obtain the following
statement.

Lemma 11.3. The set B(M) contains all elements of the form
INtn+a+ 8 (mod G(n)),
where B € G(k), o € G(k) + G(n — k) + G(n).

Proof. Let y € 7,(S"%) C 7+ (M"™, M™). According to §6, the group 7+ (M™, M™)
acts on the set
B(lyin+a) C AM™)
and, according to §7 (Lemma 7.6), we have
Y(AN4n +a) = EN7 +1n4n +a (mod G(n));

but the homomorphism E is an epimorphism, from which follows the desired
statement. The lemma is proved. ([l

A comparison of Lemmas 11.2 and 11.3 and the results of §10 leads to the
following lemma.

Lemma 11.4. For each smooth sphere S"~% C 0" %(r) the set
B(S* x Sk ¢ A(M™)
contains all elements of the form
Ingn + B(S™) + G(k) (mod G(n)),
where to the element 1 x4, + 0 corresponds the manifold
M" = Sk x gk,
and the set B(S™*) represents a coset mod Im J in the group G(n — k).

The proof of the lemma consists of a formal comparison of the preceding lemmas.
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Theorem 11.5. 1) If n —k # 2 mod 4, then each element of the set A(M") mod
G(n) belongs to one of the sets B(S* x S"=F), Sn=k € 9"=F(x), and there exists
the following embedding
(42) B(S* x 8" %) 5 1n4p + B(S" ) + G(k) mod G(n).

For any pair S* € 0% (), S"~% € 0"*(x) there exists a smooth sphere ST~* €
6% () such that
(43) B(S* x §"7%) = B(S* x 577%) mod G(n).

2) If a manifold M7 is such that

B(M}) # B(S* x §"7%) mod G(n)

for Sk € 0k, Sk € 9"k then the manifold M7 is not combinatorially equivalent
to the manifold M™ = Sk x S"~F,

3) If B(M}) = B(M}) mod G(n), then the manifolds M] and MY are diffeo-

morphic modulo a point. !

Proof. If n—k # 2 mod 4, then é(n— k) = G(n—k) and, according to Lemma 11.4,
every element of the set A(M™) belongs to one of the sets of the form
B(S* x S77%) mod G(n),
from which follows assertion 1). )
Ifn—k=2mod4 and G(n — k)/0(n — k) = Zs (cf. [6]), then it is possible to
have a situation such that
B(M}) # B(S* x §"7%) mod G(n)
for S¥, 8"=* guch that S* x "% is a m-manifold. We assume in the latter case,
arguing by contradiction, that M7 is combinatorially equivalent to S* x S~ and
some map
f: M — SFx §gnk
effects this combinatorial equivalence. According to [11] there arises a first obstruc-
tion
pr(f) € H"F(MY,0%) = 6",
i.e., pF(f) € 0¥ and to the element p*(f) corresponds the sphere S* € §*.
We consider the standard combinatorial equivalence
fo: SFx "k S'f x Snk, Sf = —p*(f),
such that ~
p*(fo) = —p"(f) = St € 6*.
Clearly,
PF(foo f) =p"(f) + " (fo) = 0.
We consider the second obstruction
P (fo - f) € HE(MT, 0" 7F) = 0",
the sphere 3
Sih =" (o f)
and the map ~ 3 }
fi: SF xSk SF x Spk,

Hg(n — k) € G(n — k) consists of equipped Milnor spheres.
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Clearly,
P (frofor £)=p" T (f) + " (fo - £) = 0.
According to the results of the papers [9, 11, 17] the manifolds M}* and S¥ x S7—*
are diffeomorphic modulo a point, and from §9 we have
B(M7) = B(S¥ x S77%) mod G(n).

Thus we arrive at a contradiction with our assumption, and therefore assertion 2)
is proved. As to assertion 3), it was essentially proved in §9 (cf. Lemma 9.1).
The theorem is proved. '2 ([

Remark. Since it is always possible to smoothly realize a sphere S % 6" —*(om)
in the space R for k > 2, it follows from a paper of Smale [19] that Sn—k x DF+1
is diffeomorphic to S»~* x D¥t1 [ > 2. Therefore S % x S* is diffeomorphic to
Sk % Sk,

Corollary 11.6. If n — k # 2mod 4, then every direct product S* x S’{L_k is
diffeomorphic modulo a point to a direct product S* x S’;“k for some sphere Sgik,
where

SFeoF(r),  SrReonRm), i=1,2, k>2 n—k>k
This fact immediately follows from Theorem 11.5 and Lemma 9.1.

Example 1. Let M" = 5% x S6. Then 7(M",SOy) = Z, and the sequence

0 — ms(S?) + ms(S%) — 77(5? x 59,52 x 89 L 76(S?) + Zo — 0
is exact. Further,

T (S? x §8) = §N+8 \/ GN+6\ GN+2y/ N
the set A(M"™) = A(M™) consists of all elements of the form
InN4n + G(2) + G(6) + G(8)
and
B(S? x §%) D 1y4n +0.

What is the action of the group 7+ (M™, M™)? If a € m5(S?) and b € 75(S°), then,
according to §7, we have

(44) (b+a)(Ingn + @) = Inpn +a+ EVNa+ ENbmod G(8).
We discern the subgroup Zy € 7t (M™, M™), generated by a diffeomorphism
f:8%x8%— 5% xs°
such that f(z,y) = (—z, —y).
According to §6 we have
(45) TN f(Anyn + @) = Inyn — a mod G(8).

We know that mg(S?) = Z12; let n be a generating element of the group 74(5?) =
Z12 and 7] € ¢~ 1(n). Let also a € G(2) + G(6). We will show that

ﬁ(1N+n + &) = 1N+n + a mod G(Q) + G(S)

1211 part II it will be proved that if the factor group G(n)/6(n) = Zs, then for all M™ the set

A(M™) contains half (and only half) of the set A(M™), n = 4k + 2.
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According to the results of §6 the map
fi: 8% x 8% x 52 x S°,
representiag the element 7j € 7+ (5% x §6, 52 x S%), induces a map
ENfz: EN(S? x §%) — EN (52 x S9)
and, since T (S? x S%) = SN v EN (82 x §9), it follows from §6 that
EN fi.(In4n + @) = 1(1n4n + @) mod G(8).
We consider the map
fa: EN(S% x S%) — EN(S% x S9).

We note that the space E(S? x S%) is homotopically equivalent to the complex
S$3v 87V S? and that

mo(E(S? x 5%) = m9(5°) + (") + 9 (S”) + Ker EN 7,
where
71'9(53) = Z37 7T9(S7) = ZQ, 779(59) =Z.
It is evident that

Efi(Ao) = Xo + pl? + ul?  (mod Ker EN-1),

where
st € mo(S%),  p €my(ST), Ao € mo(B(S? x S°)).
Since
EN f3(Iyn +a) = vy + o+ BVl + )
and
BN uy =0, BN € G(2),
we get that

i(lN4n +@) = Inin +a  (mod G(2) + G(8)).

We have thus proved that the set A(S? x S85) decomposes into the following sets:
a) Ugscgs B(S? x SO # S%) = 1n4n + G(2) + G(8).
b) Since G(6) = Z, and G(6) # Im EVN~1mg(S?), the set

A(S? x 89\ | B(S® x SO # 5%
S8¢cps

is not empty. There exists a m-manifold M* of the homotopy type of S? x S%, that
is not diffeomorphic to S% x S% mod 6% .

c) Since 62 = 6% = 0, we find that the manifold M} is not combinatorially
equivalent to S2 x S™.

Corollary 11.7. There exist simply connected manifolds, which are not combina-
torially equivalent, having the homotopy type of S% x S6.
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§ 12. MANIFOLDS OF SMALL DIMENSION.'® THE CASE n = 4,5,6,7.

Let M™ be a simply connected manifold of dimension n. We consider the Thom
complex T (M™) and the Thom isomorphism

¢: H(M™) — HNTYTn(M™)),  i>0.

As usual, uy € HY(Ty) denotes the fundamental class of the Thom complex. Let
w; € HY(M™, Z3) be the Stiefel-Whitney normal classes. A well-known fact is the
following

Lemma 12.1. There exists the formula
(46) ¢(w;) = Sq'un.

The proof of this lemma belongs (in the case of a tangent bundle and its Thom
complex) to Thom [21] and Wu [26] and is analogous for the Thom complexes of
any bundle (in our case a normal one).

If p; € HY(M™, Z3) denotes the Pontrjagin class of a normal bundle, reduced
modulo 3, then (for n > 6) there exists the analogous formula
(46 B0m) = Plux
where

PY: H*(z, Z3) — H* "k (x, Z3)
is a Steenrod square. For n = 4 the Pontrjagin class is equal to 7/3, where 7 is the
signature of the manifold M™ (cf. [16, 3]) and for n = 5 the class p; is equal to zero
in view of the simple connectedness of the manifold M?°.

Let n = 4. Then there holds the following

Le41nma 12.2. The group m(M*,SOy) is trivial for any simply connected manifold
M=.
The proof of the lemma follows from the fact that
m(SON) = m4(SON) = 0.
It is also easy to prove
Lemma 12.3. The map
T (MO 0™ (M) = mga (T3 (M)

is an epimorphism for any simply connected manifold M*; the group ITm x* (7 14(S™))
is equal to zero.

Proof. Since the group G(4) is equal to zero, the image Im k. is trivial. Inasmuch
as the suspension homomorphism

EN: m4(5?%) — G(2)
is an epimorphism, the map
TV : my(K2(M*Y), oY) — TH(MY),
which easily reduces to a suspension homomorphism, is also an epimorphism (we
note that my (K2(M*),v™) = m4(K?(M*)). Since the natural map
ma(K2(M), oY) = ma(M*, 0N (™)

13A detailed proof of the theorem of this section will be given in a subsequent part of the
paper.
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is an epimorphism, the lemma is proved. O

Taking into account the fact that
Tn(M*) =T:(M™) v SV,
we obtain the following statement.

Theorem 12.4. The set B(M*) C A(M*) C map44(Tn) coincides with the whole
set A(M*). Therefore

A(M*) = A(M*) = B(M*)
and every two simply connected homotopically equivalent four-dimensional mani-
folds are J-equivalent.

The proof of the theorem is obtained directly from Lemma 12.3 and the results
of §7.

Lemma 12.5. 1) If n = 5,6, then there is defined a canonical epimorphism
H3(M™, Z) — n(M™,SOy).
2) If n =17, then the sequence
Z = m7(SON) — (M"7,SON) — H*(M",Z) — 0
15 exact.

Proof. Since
7T7(SON) = 7T3(SON) =7
and
TQ(SON) = 7T4(SON) = 7T5(SON) = 7T6(SON) = 0, 7T1(Mn) = 0,

the lemma is trivial, as follows from the theory of obstructions to homotopy maps.
O

Let us investigate the action of the group w(M™, SOp) on the set
AM™) C mnpn(Tn(M™).
We note that the filtration
Iy DT 2> DTy o8N

for n < 7 consists of not more than six terms. Taking into account the fact that
G(4) = G(5) =0, we find that there are defined the exact sequences

l
n—3, A® n—2y A
TN+n (TN 3) —— mn4a(Ty 2) - ZGi@)’
i=1

n—ay A® n— -
(T ) == mv (TR %) = Y G4(2),
j=1

lZI‘kHQ(Mn,ZQ), m:rng(M",Z24),
G(n) — Ty 4a(T ) =0,

G(n) = mna(T ) = Y G4(3),
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for n < 7. These exact sequences are induced by the exact sequences (33)—(34).

We note that
G(2) = ZQ, G<3) = Z24 =Im J,

G(6) = Z27 G(?) = Z240 =ImJ.
One easily proves
Lemma 12.6. Forn = 6 the set A(M™) contains half as many elements as the set
A(M™). )
Ifa € A(M™) and B € G(6), B#0, then a+ 5 € A(M™), but «+ 3 ¢ A(M™).

Proof. We consider an admissible map
for SNTO — T (M)
such that the manifold M = f71(M?5) is homotopically equivalent to M®. We also
consider a map
Fg: SN+6 _, gN
such that
Fﬁ_l(xo) = 5% x 83,
where zo € SV. The inverse image
Fgl(xo) =83 x 83 c sNF6
is an equipped manifold, and on the cycles
¥ xxcCS*S?
and
yx8®c8xs?
is defined an invariant ¢ € Zs, obstructing the carrying over of equipment under a
Morse reconstruction (cf. §§2, 4). The sum of maps
(F + fa): SNT6 — Ty (M)
represents the element o + § and
(Fp + fo) H(M®) = 8% x $3 U MS.
By means of a Morse reconstruction it is possible to vary the map (F, + f,) in such

—~—

a way that the inverse image of the manifold M® under the new map (f, + Fj),
homotopic to (Fg + f), is an equipped connected sum

M = MS # 53 x 3

in analogy with §§4 and 9. There is defined on the cycles y x S and S —x C M}
an invariant ¥ € Zs, obstructing a Morse reconstruction. There is defined an
invariant ¢ (a + ) # 0, obstructing a simplification of the inverse image M{ by
Morse reconstructions (in view of the obstruction 1 to a carrying over of frame
fields). It is easy to see that the invariant 1 is defined correctly, and the class
a+ B¢ AMPO).

The lemma is proved. O

Since G(3) = Im J and G(7) = Im J, from Lemma 12.5 and the definition of the
homomorphism J we easily obtain the following statement.
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Lemma 12.7. For each element o € A(M™) the orbit 7(M™,SON) o o for n <7
contains all elements of the form o + 3, where

B e AP TN n(TH) C Tnen(TH2) C Tnen (T (M™))
(here Ay is an inclusion homomorphism A: T]’\’f‘g C T(N™2) in the exact sequence
(33)).

The proof follows from the fact that the sequence
G(n) = T (T3 = 3 G4(3)
J

is exact for n <7, and from Lemma 12.6 (for the case n = 6).

Lemma 12.8. The image of the composition of homomorphisms
l
ATV i (M™) =Y Gi(2)
i=1

coincides with the image of the homomorphism A.

The proof of the lemma easily follows from the form of nonstable homotopy
groups of spheres in small dimensions (< 7), die structure of the suspension ho-
momorphism EV, and the definition of the homomorphism 7'V, having all the
properties that are analogous to the properties of a suspension homomorphism (cf.
87).

Comparing the lemma and the results of §§1-7, we obtain the following state-
ment.

Theorem 12.9. Forn <7 the sets A(M™) and B(M™) C A(M™) coincide.

Remark. A more extensive investigation of the properties of the homomorphism
TN and of the connection of the homomorphism J with the action of the group
m(M™, SOpN) will be carried out in a following paper.

§ 13. THE CONNECTED SUM OF A MANIFOLD WITH A MILNOR SPHERE

Using the results of §9, we will study the problem of determining when the
manifolds M™ and M™ # S™ are diffeomorphic with degree +1 (mod 6™(d7)).

According to Lemma 9.1, for this purpose it is necessary to study the struc-
ture of the homomorphism k. : G(n) — TN (Tn(M™)), where k: SN C Ty (M™)
represents the natural embedding of a fiber

DY c vV (M™), reM",

of which the boundary DY contracts to a point under passage to the complex
Tn(M™). According to Lemma 9.1 we have

B(M™ # 5%) = B(M™) + s, B(3"),
where B(S™) C G(n) represents a coset mod Im.J. There holds the following

Lemma 13.1. If in the set B(S™) there exists an element 3 € B(S™) C G(n) such
that k., = 0, then the manifolds M™ and M™ # S™ are diffeomorphic mod#™(dr);
in this case there exists a sphere SP € 0™(dm) such that the manifolds M™ and
M™ # (S™ # ST are diffeomorphic with degree 1.



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 83

Proof. Let k. = 0, where 8 € B(S™). Then the intersection B(M™)N\B(M"#5™)
is not empty and therefore

B(M™) = B(M™ # 5™).
Applying the results of §6, we obtain the first of the statements of the lemma.

The second statement of the lemma follows from the associativity of the opera-
tion #. The lemma is proved. [

We now attempt to find examples of manifolds M™ for which the homomorphism
K+« has a nontrivial kernel.

We consider an SO-bundle v with fiber S™ and with base S!, where m > 1+ 1.
The bundle v is defined by a certain element A € m_1(SO;,4+1). We denote by
means of M™ the space of the bundle v, h = m + [. There holds

Lemma 13.2. The complex T%(M™) is homotopically equivalent to the complex
DN+t Uy, SN where Jh € G(1 —1).

Proof. We consider the bundle j*v(M™), which is a restriction of the normal
bundle on the skeleton '
K'(M™) = 8" & M™
of dimension . It is easy to see that the normal bundle j*vV(M") is defined by an
invariant
+h € ’/Tl_l(SON) ~ 7Tl_1(SOm+1)

since m > [ + 1. Clearly, the complexes T4 (M™) and Ty (S', j*v™ (M™)) coincide,
and, by the definition of Milnor [7] of the homomorphism J, we obtain the desired
statement. The lemma is proved. O

Lemma 13.3. Suppose, as above, h € m_1(SOpm41), m > 1+1 and o € G(m+1),
where the element - Jh ¢ ImJ. Then there exists a Milnor sphere SmHl such
that - Jh € B(S™) and the manifolds M™ and M™ # S™t!, n = m + 1, are
diffeomorphic with degree +1 modulo 0™(dr). 14

Proof. Clearly, the element « - Jh belongs to the kernel Ker k.. If n Z 2 mod 4,
then the lemma follows from the preceding statements and the results of Milnor
and Kervaire (cf. [6, 8]). If m # 1 mod 4, then it is also possible to compute the
element & € G(m + 1) by an equipped smooth sphere 5;’”‘1, and the element
a - Jh by an equipped direct product S+ §l=1. in this case it is possible by a
Morse reconstruction to kill the cycles of dimensions [ — 1 and m + 1, after which
the element « - Jh is realized by an equipped homotopy sphere, and the lemma is
proved. If m 4+ 1 =2 mod 4 and m 4+ 1 = 2 mod 4, then the element « is realized
by an equipped manifold Q™*! such that

m+1

(@™ +1)=1,  H(Q") =0, i#0,—— m+1

and the group
Hup (QmY) = Z + 2,

where on the base cycles Z1, Z € H(y,41)/2 is defined the Kervaire invariant
Q™) = ¢(a) € Z;

141n this regard cf. also the paper [32].
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(or Y(a) € Zy if m+ 1 = 6,14). The element « - Jh is realized by an equipped
direct product Q™! x S'=!. By means of Morse reconstructions we seal the cycle

Zi®1 € Hma (QMH x 871
2

and then a cycle of dimension [ —1 < m + 1. Since the homologies are torsion-free,
no new cycles are formed; it is possible to carry out the Morse reconstructions and
the carrying over of equipment since (m + 1)/2 < [n/2] and I — 1 < [n/2]. The
element « - Jh will be realized by a smooth sphere with equipment. The lemma is
proved. 0

In the paper [13] there is indicated a multiplication table for homotopy groups
of spheres. In particular,
G)=ImJ =Zs, G(8)=2Zs+ Zo >ImJ = Zs,
G9) =22+ Zy+ Zy DImJ = Zs, G(10)=Zy+ Z3 D ImJ =0.

The product G(1) - G(8) C G(9) and the product G(1) - G(9) C G(10), where
G()-G(8) = Zy+ Zs, G(1)-G(9) = Zs.

Analogously, G(13) = Z3, and G(3) = Z24 = Im J, where
G(13) = G(3) - G(10), G(13) DImJ = 0.

Comparing the cited information on the groups G(i) and Im J C G(i) with the
preceding statements, we obtain the following theorem.

Theorem 13.4. a) There exist manifolds M™ of dimensions n = 9 and n = 10
such that 1) wo(M™) # 0 and 2) there is a Milnor sphere S™ C 6™(w) such that
M™ = M"™ 4 S",

b) there exists a manifold M3 such that 1) py(M*?) # 0 (mod 3) and 2) for
every Milnor sphere S C 03 () = Zz the manifolds M*® and M3 # S13 gre
diffeomorphic with degree +1.

Remark. Theorem 13.4 is valid for any manifold M? (or M'?) such that wq # 0,
w1 = 0; analogously for dimension 13.

Proof. For the manifolds M?® (M) it is necessary to take the space of the bundle
v of spheres of dimension 7 (or 8) over a sphere S? with wq(v) # 0. Comparing
Lemma 13.3 with the information on the groups G(¢), Im J cited above, we obtain
the desired statement.

For dimension 13 the proof is analogous. The theorem is proved. O

In conclusion the author conjectures that for 7-manifolds (and all manifolds that
are homotopically equivalent to them) a connected sum with a Milnor sphere always
varies the smoothness modulo 6(07).

§ 14. NORMAL BUNDLES OF SMOOTH MANIFOLDS. '°

In exact analogy with the proofs of the theorems of §4 on the realization of
the classes of the set A(M™) C n1n(Tn(M™)) one can prove the three following
assertions.

15T he results of this section were independently obtained by Browder [29].
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Theorem 14.1. Let M?**1 be a smooth simply connected manifold. In order that
the SOn-bundle v over the manifold M?***1 be the normal bundle of a certain
smooth manifold M2+ that is homotopically equivalent to M?**T1 it is necessary
and sufficient that the Thom complex T (M?*T1 1) possess the following property:
the cycle ¢[M> 1] is spherical.

Theorem 14.2. Let M** k > 1, be a smooth simply connected manifold. In
order that the SOn-bundle v be the normal bundle of some manifold M** that
is homotopically equivalent to M** it is necessary and sufficient that the Thom
complex Ty (M**, 1) possess the following properties:

1) the cycle p|M™] is spherical;

2) if p™) =1+ p1(WN) + -+ pr(WN) and

p™) =p(™) Tt =14 pr o+ By
then the Hirzebruch polynomial Ly (py,...,Dx) is equal to the signature 7(M™).

Theorem 14.3. Let n = 4k + 2, M™ be a smooth manifold, m (M") = 0, vV
be a vector SOn-bundle and Ty (M™,vN) be the Thom complex of it. If the cycle
¢[M™] is spherical, then there exists a manifold M} with boundary M = Sl e
O"=1(07) such that there exists a map

fo (M7, 0MT) — (M",z0), o € M",
for which the map
f*: m(Ml",aMI”) — Wi(Mn,SC())
is an isomorphism when i <n and f*v™ = vN(Mp).

The proofs of these three theorems are analogous to the proofs of the theorems of
84 and make use of the properties of maps of degree 1 and the properties of Thom
complexes.

Remark. It is possible to attach a combinatorial character to Theorems 14.1—
14.3 (in the formulation of these theorems one need not require smoothness of the
manifold M™; namely, if M™ is a combinatorial manifold in the Brower—-Whitehead
sense, then the Thom concept of t-regularity is extended to the combinatorial case,
and the inverse images f~'(M™) C SV*™ for a map

£ 8N Ty (M, v

will be combinatorial subrnanifolds of the sphere SN*" situated in the sphere
with a transverse field in the sense of Whitehead [25]. Therefore on the manifold
f7H(M™) C SN*" there arises a canonical smooth structure, where

N (M) = froR
Then the reasoning of §§1—4 is applied. In this way Theorems 14.1-14.3 may be

considered as theorems on the determination, for a combinatorial manifold, of an
analogous manifold that is smooth and homotopically equivalent to it.

Appendix I
Homotopy type and Pontrjagin classes

a. There are known quite a number of relations of the homotopy invariance of
classes, which are cited with respect to this or that modulus (Thom, Wu), i.e.,
relations of the type of a congruence. In addition, for manifolds of dimension 4k
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the Thom—-Rohlin-Hirzebruch formula expresses the index in terms of Pontrjagin
numbers and gives to these numbers a relation of invariance for rational classes. A
collection of counterexamples by Dold, Milnor and Thom shows that the Pontrja-
gin classes and numbers are “in general” not hornotopically invariant. Moreover,
J. Milnor in a personal conversation showed the author a number of examples from
which it follows that among the Pontrjagin numbers a linear subspace of homotopi-
cally invariant numbers a fortiori has a dimension not greater than half for k > 2,
n = 4k.

b. A particular case is the class p;(M?®) or, what is more general, the class
Li(p1,- -, pp)(M* 1) considered as rational. Rohlin [35] proved the topological
invariance of these classes. However the homotopy invariance is neither proved nor
disproved. The author can show that classes are not defined in this case by any
cohomology invariants. Nothing else is known here.

c. In §14 we gave a necessary and sufficient condition for an SO-bundle to
be normal for some homotopically equivalent manifold when n > 4, n # 4k + 2
(n = 6 and n = 14 being allowed). Translating this result into the terminology of
Atiyah and Hirzebruch (cf. [37]), we have the manifold M, the Atiyah—Hirzebruch—
Grothendieck functors

Kr(Mg') = Z + Kr(Mg')
and

Jr(Mg') = Z + Jr(My')
and the natural epimorphism Jg: Kp — Jg.

We denote in terms of o € K r(M{) the normal bundle to the same M{ minus
its degree. Our theorem reads: an element 3 € K (M) corresponds to the normal
bundle of some M{" of the homotopy type of M{ for n # 4k, 4k +2 or n = 6,
n = 14 if and only if J(§) = J(a) (Atiyah proved that the Thom complex T () of
the bundle 5+ N is reducible if and only if J(3) = J(a), where a+ N is a normal
bundle); for n = 4k one must add the Rohlin-Thom—Hirzebruch condition on the
Pontrjagin classes of the element 3. For actual calculations the method of Adams is
recommended, its operations ®% and the “generalized characteristic classes” giving
in a number of cases an exact calculation of the functor Jg (cf. [28, 36]).

d. Let X be a finite complex and

Hiy(X) =) HY(X,Z),
i>0
where
ﬁ4i(X7 7Z) = HY(X, Z)/2-torsion.
In the ring A, (1y(X) we consider elements of the form
4o+ +x+...,

where z; € H* (X, Z). The set of these elements forms a group A(X) with respect
to multiplication. There is defined a group homomorphism

P: Kr(X) — A(X),
putting in correspondence to a stable SO-bundle (we consider the homomorphism
P only on elements of the class w; = 0) its Pontrjagin polynomial.

It is easily proved that the group Im P has a finite index in the group A(X).
The papers of Bott permit one to calculate the image Im P in the group A(X).
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e. Let X = Mg and let o, as above, be an element in Kpg corresponding to
a normal SO-bundle of M. The kernel Ker J consists of SO-bundles. It is easy
to see that the group Im P(Ker.J) has a finite index in A(X). We denote it by
AN(X) = P(Ker J). From the preceding follows

Theorem. Ifn is odd or n = 6,14, then the Pontrjagin polynomials of the normal
bundles of manifolds of the same homotopy type as My traverse the residue class of
an element P(a) € A(X) with respect to a subgroup A'(X) having a finite index in
A(X). For n = 4k they do not traverse the entire residue class of an element P(«)
but only that part of it which satisfies the Thom—Rohlin—Hirzebruch condition.

From this theorem one may derive by analyzing a sufficiently large number of
examples the fact that for simply connected manifolds of dimension n > 6, n #
4k + 2 no polynomial of the Pontrjagin classes, except Lj(M**), is homotopically
invariant.

f. The case n = 4k + 2, n # 6, 14 is complicated. But under certain homological
constraints on the manifold My, for example, if the group

H2k+1(M61k+2, Z) ® 22

is trivial, this case can be analyzed. In the case n = 4k + 2 there corresponds to
every element 3 € Kr(Mg) such that J(8) = J(a) an invariant ¢(3) € Z,, where
¢(B) = 0 if there exists a manifold M{”HQ of the homotopy type of MS“€+2 with
normal bundle S+ N, and ¢(8) = 1 otherwise. We put 3 = a++y, where v € Ker J.
It is possible, by analogy with the author’s paper [33], to show that

Pla+71 +72) = ¢(@) + dla+7) + dla + 72),
where 71,72 € Ker J. Since ¢(a) = 0, we define a homomorphism ¢: KerJ — Zs,
where ¢(7) = ¢p(a +7), v € Ker J (it is assumed that H2*+1(M*2 7))@ Zy = 0).
Thus either -
Ker ¢ = Ker J,
or
Ker ¢ = % Ker J.

In the statement of the preceding subsection e one should replace the group N (X)
by the group P(Ker @), which coincides with the group A’(X) or has in it the
index 2.

Appendix II
Combinatorial equivalence and Milnor’s theory of microbundles

Is it possible to perform a construction in the class of combinatorial manifolds
that is analogous to the construction performed by the author in the present paper
in connection with the problem of a diffeomorphism of smooth manifolds (under
the same restrictions on the dimensionality and under the condition of simple con-
nectedness)?

a. First of all we require the notion of a stable normal bundle. Milnor suggested
in connection with the problem of the smoothability of combinatorial manifolds that
one consider “combinatorial microbundles” over complexes (cf. [31, 34]), Roughly
speaking, a microbundle is a bundle over a complex, the fiber of which is the
euclidean space R™, and the structural group of which is the group of “microauto-
morphisms,” i.e., piecewise linear automorphisms with a common fixed point and
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being identified in the event they coincide in a neighborhood of this point. More-
over, there is included in the definition the combinatorial structure of the bundle
space (the description given here of the concept of a microbundle is not entirely
precise). Milnor proved that the defined stable normal microbundle exists in a
unique manner, even though the simple normal bundle does not always exist.

b. Thus one should consider the class of simply connected combinatorial man-
ifolds {M"} for n > 5 of common homotopy type and with the same, as also in
the smooth case, stable normal microbundle. As before, we can consider the Thom
complex T of a normal microbundle for one of the manifolds M} € {M}. A
further analogy requires the concept of t-regularity in the combinatorial case. This
concept bears a rather local character, and since the concept of transversality has
meaning for combinatorial manifolds, t-regularity is extended without restriction.
The cycle

O[MZ] € Hy 1n(T)

is spherical, as also for a smooth M and therefore the inverse images
M) € SV

for a t-regular f: SN*" — Ty will possess good properties. An analogous result
holds for the inverse images under a homotopy

F: 8N+t 5 [ — T

c. We need to study Morse reconstructions in a new situation, desiring to kill
the kernels of maps
M}L — My,
where M} = f~1(Mg), or
VV}l 1, My,
where F: SN x I — MP. Here we have a number of difficulties:

1) a sphere S* C My or S iC W;H does not in general have a normal microbun-
dle in the manifold;

2) if a sphere S C My, St c WI?H has a normal microbundle, then it is not
necessarily trivial,

3) even if a Morse reconstruction is possible, can one carry over the “equip-
ments”?

We remark that in solving points 2) and 3) we made considerable use of the rapid
stabilization of the embeddings SOy C SOky1 C ... and the results of Bott, which
do not have a combinatorial analogue. In order to resolve all of these difficulties we
will introduce “local smoothnesses” and equipments in a neighborhood of the cycle
being investigated. We recall that a neighborhood of this cycle may be regarded
as an inverse image of a point x¢o € M{. Therefore it is possible to assign a
smoothness and an equipment on this neighborhood. The cycle being investigated
will be a smooth sphere in this smoothness. The latter remark resolves all difficulties
connected with Morse reconstructions.

d. Thus all results go through without restriction. One should replace SOy by
PL in all statements, and also tidy up the group 6™(9), consisting of ordinary
spheres in the combinatorial sense, which enters into certain formulations. The
group 1 (MJ', M) must be altered in a corresponding manner.

e. If the manifold M} is smooth, then one can apply to it a construction that is
both smooth and combinatorial. As a result we have the possibility of studying the
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relation between a smooth and a combinatorial manifold by the method of Thom
complexes.

f. For the application of combinatorial theory it is important to be acquainted
with the homotopy groups 7;(SO), 7;(PL) and the embedding

m;(SO) — m;(PL).
Recently Mazur (cf. [31]) showed that
7(PL,SO) =T

(the Milnor-Thom groups). '® Asis known (cf. [17]), ' = 6§ fori # 3,4, % = 0 and
the group I'* is unknown. Since the embedding 7;(SO) — m;(PL) is monomorphic
in all dimensions (Bott [1], Thom, Rohlin-Svarc, Adams), we have

We cite a table for groups m;(PL) and the embeddings 7;(SO) C m;(PL) for i < 14:

i= 0|1 [2[3|4|5/6[7|8[97[10]11]|12]13]14
Zy
Z | Zy| + Z
7T,L(PL) =10 Zg 0|2 F4 010 + + ZQ Z6 + 0 Zg ZQ
Zy | 2o | + Zg
Qa4

An inclusion homomorphism 7;(SO) C m;(PL) for i < 14 is trivially defined by a
theorem on the monomorphicity of an embedding and the structural groups T'; (cf.
[6]), except for the case i = 7,11. Here we have:

7T7(SO) :Z, 7T7(PL) =Z+Z4,

and uspo = Tupr + vpr, where upy, is a generator of infinite order and vpy, is a
generator of order 4;

m11(50) = Z, m1(PL) = Z + Zs,

and uspo = 124upy, + vpr, where, analogously, vpy, is a generator of order 8.

g. The Whitehead homomorphism Jpz,: 7;(PL) — mn1:(S™) '® is an epimor-
phism for i # 4k + 2 or i = 10 and the factor group my4;(SY)/Im Jpr contains
two elements for ¢ = 2,6,14 and not more than two in the remaining cases. We
note that for ¢ = 9

Ker Jpr, = Zo ~ 6°(07).
Conjecture. For i =4k — 1 the group m;(PL) has the form
mi(PL) = Z + Zx, + mn4i(SY)/Im Jso,

where A\, perhaps, is a power of 2.

16T his result is also obtained independently by M. Hirsch [38].

Q4 = Z4 or Zo + Zs.

18The definition of the homomorphism Jp;, was not given earlier, although it can be given by
analogy with the ordinary J-homomorphism.
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It is not excluded that this conjecture can be proved by an arithmetical treatment
and by a comparison of the L-genus coefficients, the almost parallelizable Milnor
manifolds M* with index 8, the results of Bott on the divisibility of the Pontrjagin
classes of SO-bundles over a sphere and the results of Adams on the stable J-
homomorphism, in particular, on the singling out of the image Im Jgo as a direct
summand in 7y 4_1(S"). We assume that

JPL(Z + Z>\k) =ImJso

and that
7TN+;€,1(SN) = JPL(Z + Z,\k) + 7TN+4k,1(SN)/Im Jso.

From this it would follow that the group #**+1(9r) C 6*~1 is singled out as a
direct summand. Moreover, the group

7T4k_1(SO) =7 C 7T4k_1(PL)
must be embedded thus:
uso = Opupr +vpr,

where upy, is a generator of infinite order and vpy, is a generator of order \;. The
order of the group **~1(9r) is then equal to d;\g. If the conjecture is true, then
one can extend Bott’s theorem to the combinatorial case:

Let ar = 1 if k is even, and a; = 2 if k is odd; let

123

Lk(plv"'7pk):§pk‘+"'7

where t;, s are relatively prime. Since Lk(Mék) = &, we have
Sk
pMMﬁﬁzsr.
k

For SO-bundles over a sphere the class py is divided by ax(2k — 1)!. We reduce
the numbers 8s/tg, and ay(2k — 1)! to the least common denominator #, which
is a divisor of t; (and is equal to tx,tr/2,tx/4 or ti/8 if t is divisible by the
corresponding power of 2). After this we find the greatest common divisor dj of
the numerators of the resultant irreducible fractions.

Conjecture. The Pontrjagin class of a stable microbundle over a sphere S** is a
multiple of the number dy /ty, and there exists a microbundle with such a class.

In particular, for k = 2, 3 this conjecture is proved by the author:
da 6 dz 2-5!

L7 1y 124
Thus we have the proved

Corollary. The Pontrjagin classes of microbundles over the spheres S® and S'? are
multiples of the numbers 6/7 and 2-5!/124 respectively, and there exist microbundles
with such classes.

Remark. The results of §11 naturally connect up with point e of this appendix,
concerning the problems of the relationship between smooth and combinatorial
manifolds (under the condition that the normal bundles coincide). In particular,
an analysis of the example S? x S showing the nontriviality of combinatorial
theory, is essential. But this is connected with the fact that G(6)/Im Jpy, = Z5.
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Conjecture. If the simply connected manifolds M7 and M3, n > 7, are such that
they have the same homotopy type and normal bundle and Hypio(M]', Z2) = 0,
2 <4k +2 < n, then they are combinatorially equivalent (it is perhaps sufficient to
require only that k = 1,3).

Appendix IIT
On the groups §*~1(dr)

a. Starting from the formula of Hirzebruch and the results of Milnor and Kervaire
[6], the order of the group §**~1(97) can be expressed in terms of the order of the
image of the Whitehead homomorphism

Js0: Tar-1(SON) — Tayar—1(SV).
In recent papers Adams has calculated the image Im Jgo completely for even k
and to within a factor, equal to 1 or 2, which in all known cases is equal to 1, for
even k + 1. Moreover, from the papers of Adams it follows that the order of the
image Im Jgo is completely determined by the integral properties of the A-genus of
Borel and Hirzebruch [30] (to within the indicated factor). From a comparison of
the papers of Milnor and Kervaire [5] and Adams [28] it is seen that the odd factor

of the order of Im Jgp is completely determined by the L-genus of Hirzebruch.
Combining these results, one can obtain the following assertion.

Theorem 1. The odd part of the group 0**~1(dm) C 6**~1 is singled out as a direct
summand in 61,

For the proof it is necessary to construct a homomorphism
h: 94k—1 N éll]c—l(87_(_)7

where §**~1(9r) is the odd part of the group #**~1(9r). The homomorphism A is
constructed sufficiently simply. It is necessary to stretch the membrane W4* onto
the sphere S4%~1 c 9% ~1 to fill the boundary W4 = §4~1 1y a ball and of the
obtained combinatorial manifold W{* to take the value of the combinatorial class
pe(W3F) mod 1. If
S’v4k71 C 64k71(6ﬂ'),

then the constructed homomorphism can identify only those elements whose order
is of the form 2¢; this follows from the results of Adams.

b. A study of the even part 3"~ (dr) C **~1(dr) is more complicated. In this
regard we consider the homomorphism

pogq: 0% 1 Loy 1 (SV)/ImJso & Vi,

where ¢ is a Milnor homomorphism and p is a homomorphism for the “removal of

the equipment” of homotopy groups of spheres in “spinor cobordisms,” constructed
only on simply connected manifolds with the condition Ws = 0. It is evident that

9*+=1(0r) C Ker(po q).

Putting together the results of Adams, one can prove the following assertion.

Theorem 2. If k is even, then the subgroup 9?2]“)_1(6@ C Ker(p o q) is singled out

as a direct summand. If k is odd, then either

03" 1(07) C Ker(p o q)
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is singled out as a direct summand or
0351 (0r)/Z> C Ker(po q)/Zs
is singled out as a direct summand.

The proof is analogous to Theorem 1, but one must stretch the membranes with
W5 = 0 and in place of the class pi one must take an A-genus for even k and an
(A/2)-genus for odd k (modulo 1). We note that for dimensions 9 and 10 (as well
as 17, 18) the image of the homomorphism p o ¢ is nontrivial (cf. [33]).

Conjecture. For dimensions of the form 4k — 1 the homomorphism poq is trivial.

c. A study of the action of the group §*~1(97r) on manifolds constitutes a
difficult problem that is not amenable to our usual methods. We shall discuss some
comparatively simple cases and thereby shed some light on this problem. Suppose
the manifold M**~! (not necessarily simply connected) is such that the groups
HAY(M*=1 Q) are trivial (I = 1,2,... and Q is the field of rational numbers).

Theorem 3. 'Y If the sphere S*~1 ¢ 6*~1(9n) has odd order in the group
0*%=1(0r), then the manifolds M*=1 and M*=1 # S* =1 gre not diffeomorphic
with degree +1.

For the proof of the theorem we adopt the following plan:

1. A membrane W4 oWt = (—M**=1) y (M**~1 4 §4%—1) is constructed
such that

Hy(W** M*=1)y =0,  i#2k.
and a retraction F': W4 — M*~1 is given such that
F*VN(M4I€—1) _ I/N(W4k),

where vV (M) is the normal bundle of the manifold M.

2. Let a diffeomorphism

h: M4k—1 _ M4k:—1 #§4k—1

of degree +1 be given. We identify the boundary of the membrane W**~1 according
to the diffeomorphism h. The resultant orientable closed manifold is denoted by
Vik,

3. It is possible to show that the groups H¥(V4* Q) = 0,1 =1,...,k — 1,
[ # k/2, but when [ = k/2 the group

HQk(V4k7Q) _ HQk(W4k,M4k_1,Q) + B, I(B) —0.

4. If the sphere S*~1 ¢ #**~1(dr) has odd order, then the class py (V) will
be fractional by analogy with Theorem 1. The resultant contradiction proves the
theorem.

If in addition Hy (M*~1) =0 and Wy(M**~1) = 0, then for S*~1 c §*~1(an)
it is possible by analogy with Theorems 2 and 3 to prove, using the A-genus of
Hirzebruch and theorems of Adams, that the sphere S**~1 varies the smoothness
after an addition to M**~1 (it should be noted that Wo(W**) = 0 and Wy(V*F) =
0, where instead of the class py one must take A[V**] if k is even and A.[V*¥]/2
if k is odd).

19An example by the author shows that Theorem 3 is already inapplicable if H4(M7,Q) # 0
and p1 # 0.
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d. If n = 4k+1, then, as was mentioned above, the image of the homomorphism
V4k‘+1

spin

pog: 94k—1_>

may be nontrivial. For example, when k£ = 2 the image Imp o ¢ = Z5. Moreover
(cf. Appendix II), the group mg(PL) = Zs + Zs + Q4, where Q4 = Z4 or Zs + Zs.
By making use of analogous arguments it is possible to show that the group

Kerpoq= Zo+ Zo C 6°
and the group 0°(9r) C Ker(p o q) is singled out as a direct summand. Moreover,
one can show that
Im JPL = G(9),
where G(i) = mn4:(SY), while
Jpr(Za+ Z2) = G(1)G(8) = Zy + Z5

and

JpL(Q4) = G(9)/G(1)G(8) = Zo,

Im Jpy, = Zy = 0°(97) C mo(PL)
(namely, J;iJSO = Zy+ Zy and 6°(0m) = J;ijso/ﬂg(SO)). Since

09/ Ker(p © Q) = ZQ?

an attempt to prove the singling out of the group 6°(dm) as a direct summand will
be unsuccessful.

Conjecture. 0° = Zy + Z, and wg(PL) = Zy + Zy + Zy.

Appendix IV
The embedding of homotopy spheres in euclidean space and the
standard suspension homomorphism

As is known, an ordinary sphere S™ is situated in a standard way in euclidean
space R"T1. Moreover, from the papers of Smale it follows that a homotopy sphere
S" for n # 3,4 is diffeomorphic to a standard sphere S™ if and only if it can be
smoothly embedded in R"*!. From papers of Milnor, Kervaire and Hirsch [6, 19] it
follows that a homotopy sphere S™ is the boundary of a m-manifold if and only if it
can be embedded in R"*2. On the other hand, Haefliger showed that any homotopy
sphere S™ is approximately inserted into the space R"*/ for j > n/241. 2° We will
only consider the embeddings of homotopy spheres S™ C R*# for 2 < k <n—1
that have a trivial normal bundle, viz., the “m-embeddings.” It is easy to extract
certain necessary conditions for the existence of a m-embedding 5™ C R™t* from
the homotopy groups of spheres.

Let us consider a set B(S™) C 7wnin(SY), representing a coset modulo
JW,L(SON).

Lemma 1. If there exists a m-embedding Sm c Rk then there is an element
a € B(S™) such that o € EN7%(7,,1(S%)), where E is a suspension.

The proof of the lemma trivially follows from an interpretation of a suspen-
sion homomorphism in terms of equipped manifolds. As to the sufficiency of the
condition of Lemma 1, there holds the following

20A normal bundle o € 7n—1(S0;) has order 2" for j > n/2 + 1.
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Theorem 1. If there exists an element a € B(S™) such that o € Im EN=F then
there exists a w-embedding S™ C R™HF+1L,

The proof of the theorem is extracted from the results of §11 concerning differ-
entiable structures on a direct product of spheres and follows from Lemmas 1, 2, 3
of this appendix.

Lemma 2. Under the conditions of Theorem 1 the sets B(S™ x S¥) and
B(S x §%) € A C nyyn(Tn(S™ x S*))
coincide to within Im k., where k: S™ C Ty

Lemma 3. If the sets B(M}*) and B(M™) C A coincide modulo Im k., then the
manifolds M and M™ are diffeomorphic modulo ™ ().

The proof of Lemma 3 is given in §9 in all cases except m = 2 (mod 4). For the
proof of Lemma 3 when m = 2 (mod 4) cf. the paper [33].

Lemma 4. If the manifold M"** is diffeomorphic to S™ x S* mod 6", where
M"tE = S x Sk then the homotopy sphere S™ admits a w-embedding in R*F+1,

The proof of Lemma 4 is trivial.
Let us consider the special case k = 3. There holds

Lemma 5. 2! If a sphere S™ is m-embedded in a sphere S™3, then it bounds a
manifold Wnt1 C S"+3 | the normal bundle of which is an SOg-bundle with Chern
class ¢y € H?(W"HL) such that ¢ = 0.

Proof. We give on a sphere S™ a frame field 75, that is normal to the sphere in
S+3 and we copy it onto the boundary S2 x S™ of a tubular neighborhood with
the use of the first vector of this frame field. The resultant manifold S™ c 52 x S™
is homologous to zero in the complement

SN\ Int D? x S™,
and one can compute the membrane, stretched onto it, by the manifold Wt with
boundary S™ C §2 x S™ = 9(S"*+3 \ Int D3 x S™). Incidentally, from the paper of
Smale [19] it trivially follows that

73\ Int D? x S™
is diffeomorphic to S? x D™t!. The membrane W"*! realizes a base cycle of the
group

H,1(5% x D"t 9(S? x D"™1)) = Z.
The normal bundle of the membrane W™+t in $"*3 is an SO5-bundle and is defined
by a Chern class ¢; € H2(Wn"*1). Let us show that ¢ = 0. We will assume that
n > 3. Then
H, 1(S* x D"*1) =0.
The self-intersection
Wn+1 . Wn+1 C Sn+3 \ Int D3 % S«n
defines an (n — 1)-dimensional cycle modulo the boundary and is a submanifold
V=l c Wn—1. Since } y
oWwntl = 8n  §2 x 8™,

21The idea for the proof of Lemma 5 is taken from a paper of V. A. Rohlin.
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one can assume that V"~ ! lies strictly inside W™t and is closed (it is easily seen
that in the dimension n — 1 we have H,,_;(S% x D"*1) = H,,_1(S? x D"*! 9(S? x
Dn+1)) — 0)

We denote in terms of

Dy Hj(M,0M) — H'™7 (M)
the isomorphism of the Poincaré duality and in terms of 4 we denote the embedding
Wntl ¢ 5743\ Int D® x S™.
Then
et =i { Dy WY = i* Do {i* (W) i [WhH Y = i Dy [V = 0,

where M = §73\ Int D? x S™,
The lemma is proved. (I

From the lemma it immediately follows that the connected submanifold
anl _ W’n+1 . WTL+1

where V=1 ¢ W”*1 has a trivial normal bundle in the manifold W"*+1. Moreover,
if we give on the boundary S C $2 x S™ a 2-frame field 75, that is normal to S™ in
52 % S", and extend it inside the manifold W+, then under a suitable choice of the
field and the extension (which we also denote by 72) the manifold of the singularities
of the field 7 inside W™*! coincides with the manifold V*~! ¢ W1, The tubular
neighborhood D x V"~ of the manifold V! in W"*! has the boundary S'x V"1,
on which this field 75 is defined and is nonsingular. To the field 75/S! x V"1 we
add a radius vector of the interior of the ball D? so that it is normal to the boundary
St = 0D? at each point. We obtain a 3-field 73 on S' x V"L,
The following lemma is obvious.

Lemma 6. The equipped manifolds (S™, 73) and (S* x V"1, 73) define one and the
same element of the group m,,3(S) (for the membrane connecting these equipped
manifolds one must take W™+ \ Int D? x V=1,

Conjecture. If a sphere S™ is w-embedded in a space S™3, then there exists on
this sphere a normal frame field T3 such that the equipped manifold (5’", 73) defines
an element of the group m,+3(S®), which decomposes into a composition Boc, where
a € Tpy3(Sh) and B € ma(S3) = Z.

Corollary. In a group G, the set B(S’”) C G, contains an element af3, where
a € Gp_1, B € Gy (so that the element af3 has an order not greater than two), if
S™ is mw-inserted into S™F3.

Since the image of a suspension that is far removed from the groups 7, 13(S?%)
contains elements of odd order p, not belonging to the group Jr,(SOx), it follows
that for k = 2 and £ = 3 in Theorem 1 one cannot get rid of the differences in
identity between the necessary condition (Lemma 1) and the sufficient condition
(Theorem 1).
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