
HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I

S. P. NOVIKOV

In this paper we introduce a method for the investigation of smooth simply
connected manifolds of dimension n ≥ 5 that permits a classification of them with
exactness up to orientation-preserving diffeomorphisms. This method involves a
detailed investigation of the properties of the so-called Thom complexes of normal
bundles and is based on a theorem of Smale concerning the equivalence of the
concepts of “h-cobordism” and “orientation-preserving diffeomorphism.” In the last
chapter we work out some simple examples. Appendices are given in which the
results of this paper are applied to certain other problems.

Introduction

This paper is devoted to a study of the following question: What are the invari-
ants that define the property of two smooth oriented manifolds of being diffeomor-
phic to each other? It is clear that for manifolds to be diffeomorphic it is necessary
that they be homotopically equivalent. A more refined necessary condition is given
by the tangent bundle of a manifold. Speaking in modern terms, to die manifold
Mn corresponds an Atiyah–Hirzebruch–Grothendieck functor

KR(Mn) = Z + K̃R(Mn),

and by a tangent bundle we mean a certain distinguished element τ(Mn) ∈
K̃R(Mn), the “stable tangent bundle” with the exception of its degree. Although
the ring K̃R(Mn) itself is homotopically invariant, it is well known that the
element τ(Mn) is not homotopically invariant, and what is more, it can have
infinitely many values. For two manifolds Mn

1 , and Mn
2 to be diffeomorphic it is

necessary that there exist a homotopy equivalence f : Mn
1 →Mn

2 such that

f∗τ(Mn
2 ) = τ(Mn

1 ),

where f∗ : K̃R(Mn
2 ) → K̃R(Mn

1 ). If this latter necessary condition is fulfilled, then
the direct products Mn

1 ×RN and Mn
2 ×RN are diffeomorphic (Mazur). But this

result of Mazur is of little help in determining whether or not Mn
1 and Mn

2 are
diffeomorphic. Even for n = 3 there exist nondiffeomorphic manifolds that satisfy
the indicated necessary conditions for manifolds to be diffeomorphic (lenses). To be
sure, these manifolds are not simply connected. For simply connected manifolds the
papers of Whitehead on simple homotopy type or the papers of Smale [17, 19] yield
a stronger result, namely, that the direct products by a ball Mn

1 ×DN and Mn
2 ×DN

are diffeomorphic. Nevertheless examples by Milnor [10] of differentiable structures
on spheres show that, for simply connected manifolds combinatorially equivalent to
a sphere, multiplication by a closed ball actually eliminates the existence of a finer
distinction between smooth structures.

Translated by Valentin Poenaru.
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In the papers by Milnor [9] and by Milnor and Kervaire [6] a more or less complete
classification was finally given of homotopy spheres with exactness up to h-homology
(J-equivalence) in terms of the standard homotopy groups of spheres.

The foundation for this classification was laid by papers of Smale [17, 19], who
demonstrated that, for simply connected manifolds of dimension n ≥ 5, the con-
cepts of “h-homology” and “orientation-preserving diffeomorphism” coincide. In
addition, Smale proposed a method that permits this classification and Wall gave
a good classification of manifolds in certain simple examples (cf. [18, 27]).

In the present paper we investigate the class of smooth manifolds {Mn
i } that are

homotopically equivalent among themselves and such that for any pair i, j there
exists a homotopy equivalence fi : Mn

i →Mn
j of degree +1, and also

f∗τ(Mn
j ) = τ(Mn

i ),

where f∗ : K̃R(Mn
j ) → K̃R(Mn

i ) and τ(Mn) represents the stable tangent bundle.
Thus we consider the class of smooth manifolds having the same homotopy type
and tangent bundle. The basic problem is to give a classification of manifolds of
the class {Mn

i } for n ≥ 5, assuming that π1(Mn
i ) = 0. The approach used in this

paper is connected with a consideration of the Thom complex TN of the stable
normal bundle for the manifold Mn

0 belonging to the class {Mn
i }. The complex

TN = TN (Mn
0 ) is obtained by a contraction of the boundary of the ε-neighborhood

UN+n
ε of the manifold Mn

0 in the space RN+n into a point, i.e.,

TN = UN+n/∂UN+n,

and it is easily shown that the complex TN of dimension n+N is a pseudomanifold
with fundamental cycle [TN ], belonging to a form of the homomorphism of Hurewicz

H : πn+N (TN ) → Hn+N (TN ).

The finite set A = H−1([TN ]) is examined. The group π(Mn
0 , SON ) acts on this

set, and on the set of orbits A/π(Mn
0 , SON ) there acts the group π+(Mn

0 ,M
n
0 ) of

homotopy classes of mappings f : Mn
0 →Mn

0 of degree +1 and such that

f∗τ(Mn
0 ) = τ(Mn

0 ).

A proof of the following assertion is the main objective of Chapter I.

Classification Theorem. There exists a natural mapping of sets {Mn
i } →

(A/π(Mn
0 , SON ))/π+(Mn

0 ,M
n
0 ), possessing the following properties:

a) if under this mapping two manifolds Mn
1 and Mn

2 go into one and the same
element, then one can find a Milnor sphere S̃n ∈ θ(∂π) such that Mn

1 = Mn
2 # S̃n;

b) conversely, if Mn
1 = Mn

2 # S̃n, then under this mapping they go into one and
the same element of the set (A/π(Mn

0 , SON ))/π+(Mn
0 ,M

n
0 ), where S̃n ∈ θn(∂π);

c) if n 6= 4k + 2, then this mapping of sets is epimorphic.

From this theorem one can immediately draw certain conclusions. For example,
one can easily prove the following

Corollary. The homotopy type and the rational classes of Pontrjagin determine
a smooth simply connected manifold Mn to within a finite number of possibilities
for n ≥ 5. If the groups H4i(Mn) are finite for 0 < 4i < n, then there exists a
finite number of orders of smoothness on the topological manifold Mn (a result of
the finiteness of the set A).
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In reality the solution of the problem obtained by the author is much more signif-
icant in homotopy terms than in the way it is formulated in the cited Classification
Theorem. A series of geometric properties of manifolds admits a natural interpre-
tation in terms of the homotopy properties of the space TN . These properties are
studied at the end of Chapter I (Theorems 6.9 and 6.10) and throughout Chap-
ter II, which is also concerned with a development of the methods of numerical
calculation. We mention here a number of problems that are studied at the end of
Chapter I and in Chapter II.

1. The conditions under which a mapping f : Mn →Mn of degree +1 is homo-
topic to a diffeomorphism (Theorems 6.9 and 6.10).

2. A study of the action of the group π+(Mn
0 ,M

n
0 ) on the set A/π(Mn

0 , SON )
(§7).

3. A determination of the obstructions di(Mn
1 ,M

n
0 ) ∈ Hn−i(Mn

1 , πN+i(SN )) to
the manifold Mn

1 ∈ {Mn
i } being diffeomorphic to the manifold Mn

0 (§8).
4. The connected sum of a manifold with a Milnor sphere and its homotopic

meaning (§9).
5. The variation in smoothness on a π-manifold along a cycle of minimal dimen-

sion (§9).
6. Variation in smoothness and Morse’s reconstruction (§10).
In Chapter III the results of Chapters I and II are applied to the working out of

examples. The result of §14 was independently obtained by W. Browder [29].
In addition to the main text of the paper there is inserted at the end four appen-

dices, written quite concisely and not very rigorously. The reader can regard these
appendices (together with the results of §§10 and 12) as annotations of new results,
the complete proofs of which will be published in later parts of this article. How-
ever, in these appendices and in §§10 and 12 we have sketched out the proofs with
sufficient detail that a specialist might completely analyze them without waiting
for the publication of later parts.

In Appendix 1 the results of §14 are expressed in the language, suitable for
calculations, of the Atiyah–Grothendieck–Hirzebruch K- and J-functors, and there
is indicated an application of these results to Pontrjagin’s theory of classes.

Appendix 2 is devoted to (i) an extension of the results of the paper to com-
binatorial manifolds and (ii) an investigation of the relation between smooth and
combinatorial manifolds.

Appendix 3 is devoted to a study of the action of the Milnor groups θ4k−1(∂π)
on manifolds and to the problem of singling out the group θ4k−1(∂π) as a direct
summand in the group θ4k−1.

In Appendix 4 we study the problem of determining the euclidean spaces in
which a nontrivial Milnor sphere can be embedded in such a way that its normal
bundle there is trivial.
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Chapter I
The fundamental construction 1

§ 1. Morse’s reconstruction

The material of this section is largely borrowed from other papers (for exam-
ple, [9] and [5]) and is essentially a somewhat generalized account of them in a
terminology adapted to our present purposes.

Let Mn ⊂ Rn+N be a smooth manifold with or without boundary, smoothly
situated in a euclidean space Rn+M of sufficiently large dimension. Let Si×Dn−i

ε ⊂
Mn be a smooth embedding of the direct product Si ×Dn−i

ε in Mn, where Dn−i
ε

is a ball in the space Rn−i (of radius ε) in the natural coordinate system. Consider
the diffeomorphism

h : ∂Di+1 ×Dn−i
ε → Si ×Dn−1

ε ⊂Mn

such that h(x, y) = (x, hx(y)), where hx ∈ SOn−i. The set of maps hx, x ∈ Si,
defines a smooth map d(h) : Si → SOn−i, which completely defines the diffeomor-
phism h.

Let us put

(1)
Bn+1(h) = Mn × I

(
0,

1
2

)
∪h D

i+1 ×Dn−i
ε ,

Mn(h) = (Mn \ Si ×Dn−i
ε ) ∪h D

i+1 × ∂Dn−i
ε .

The operation of going from Mn to Mn(h) is called “Morse’s reconstruction.” It is
well known that:

1. ∂Bn+1(h) = Mn ∪ (−Mn(h)) if Mn is closed.
2. The manifolds Bn+1(h) and Mn(h) can be defined as smooth orientable

manifolds.
3. The subspace (Mn × 1/2)∪h D

i+1 × 0 ⊂ Bn+1(h) is a deformation retract of
Bn+1(h).

4. The manifold Bn+1(h) is defined up to diffeomorphism by the homotopy class
d̃(h) of the smooth map d(h) : Si → SOn−i; d̃(h) ∈ πi(SOn−i).

5. The manifold Bn+1(h) can be so situated in the direct product Rn+N×I(0, 1)
that

Bn+1(h) ∩Rn+N × 1 = Mn(h),

Bn+1(h) ∩Rn+N × 0 = Mn

and Bn+1(h) approaches the boundaries Rn+N × 1 and Rn+N × 0 orthogonally.
On the tubular neighborhood T2ε (of radius 2ε) of the sphere Si ⊂ Mn, where

T2ε = Si ×Dn−i
2ε , let there be given a frame field τN continuous on T2ε and normal

to the manifold in Rn+N . We have

Lemma 1.1. Suppose the inclusion homomorphism πi(SOn−i) → πi(SON+n−i) is
an epimorphism. Then the diffeomorphism

h : ∂Di+1 ×Dn−i
ε → Si ×Dn−i

ε ⊂Mn

may be chosen in such a way that the frame field τN , which is normal to T2ε in
RN+n, can be extended to a frame field τ̃N on (T2ε × I(0, 1/2)) ∪h D

i+1 × Dn−i
ε

that is normal to Bn+1(h) in the direct product Rn+N × I(0, 1).

1Chapter I is a detailed account of a note by the author [14].
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Proof. Let us choose on Di+1 × 0 ⊂ Rn+N × I(0, 1) some continuous frame field
τN+n−i
0 , normal to Di+1 × 0 in Rn+N × I(0, 1), and let us consider its restriction

to the boundary
Si × 0 ⊂Mn ⊂ Rn+N × 0,

which we shall also denote by τN+n−i
0 . Since the homomorphism πi(SOn−i) →

πi(SON+n−i) is onto, we can cboose on the sphere Si × 0 ⊂ Mn an (n − i)-frame
field τn−i, normal to the sphere Si × 0 in the manifold Mn and such that the
combined frame field (τN , τn−i), normal to the sphere Si × 0 ∈ RN+n × 0, is
homotopic to the field τN+n−i

0 which is induced by the (N + n − i)-frame field
τN+n−i
0 on the ball

Di+1 × 0 ⊂ RN+n × I(0, 1).
Hence the field (τN , τn−i) may be extended onto the ball

Di+1 × 0 ⊂ RN+n × I(0, 1).

We shall denote this extension by (τ̃N , τ̃n−i), where τ̃N is the extension of the first
N -frame and τ̃n−i is the extension of the last (n − i)-frame. Let us now “inflate”
the ball

Di+1 × 0 ⊂ RN+n × I(0, 1).
by the last n − i vectors of the frame τ̃n−i, more exactly, by the linear space of
dimension n − i defined by these n − i vectors at each point of the ball. We shall
denote this inflation by Q. The vectors of the frame τ̃N will be normal to the
inflation Q and define an extension of the equipment of τN onto this inflation. The
frame field τn−i, which is normal to the sphere Si × 0 ⊂Mn, is different from the
original frame field on the sphere Si×0 that was defined by the original coordinate
system in the direct product Si × Dn−i

ε ⊂ Mn. This difference is measured by
the “discriminating” map Si → SOn−i, which also defines the element d̃(h) ∈
πi(SOn−i) needed by us and the diffeomorphism

h : ∂Di+1 ×Dn−i
ε →Mn.

It is easy to see from (1) that

Bn+1(h) =
[
(M \ T2ε)× I

(
0,

1
2

)]
∪
[(
T2ε × I

(
0,

1
2

))
∪h Q

]
,

and that the N -frame field is extended onto Q. But

Q ≈ Di+1 ×Dn−i
ε ,

where the sign ≈ means a diffeomorphism.
The lemma is proved. �

For convenience in applications of Lemma 1.1 we formulate the following state-
ment.

Lemma 1.2. a) Suppose i < n− i. Then the map

πi(SOn−i) → πi(SON+n−i)

is always an epimorphism.
b) Suppose i = 2k and i = n− i. Then the map

π2k(SO2k) → π2k(SON+2k)

is also always an epimorphism.
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c) Suppose i = 2k + 1, i = n− i. In this case the map is epimorphic if and only
if i 6= 1, 3, 7. If i = 1, 3, 7, then the factor group πi(SON+n−i)/πi(SOi), i = n− i,
has two elements.

The proof of a) and b) is contained in [20], and that of c) is in [1].

§ 2. Relative π-manifolds

Let Mn be a smooth manifold, either closed or with boundary, and let W i ⊂Mn

be a submanifold of it. We shall denote by νN (Mn) the normal bundle of the
manifold Mn ⊂ RN+n and by νn−i(W i,Mn) the normal bundle of the manifold
W i in Mn.

Definition 2.1. Let f : Mk
1 →Mn

2 be a smooth map. We shall call Mk
1 an (f, π)-

manifold mod Mn
2 if

f∗νN (Mn
2 ) = νN (Mk

1 ).

Lemma 2.2. Suppose a sphere Si ⊂Mk
1 , that is smoothly situated in Mk

1 , is such
that the map f |Si →Mn

2 is homotopic to zero. Then the bundle νk−i(Si,Mk
1 ) has

the following properties:
1) for i < k − i the bundle νk−i(Si,Mk

1 ) is trivial ;
2) for i = k − i, i = 2s the bundle νk−i(Si,Mk

1 ) is trivial if and only if the
self-intersection number Si · Si is 0;

3) for i = k − i, i = 1, 3, 7 the bundle νk−i(Si,Mk
1 ) trivial ;

4) for i = k − i, i = 2s + 1, i 6= 1, 3, 7 the normal bundle is completely defined
by the invariant φ(Si) ∈ Z2.

If x ∈ Ker f∗ ⊂ πi(Mk
1 ), where x is the homotopy class of the embedding Si ⊂

Mk
1 , and the group π1(Mk

1 ) = 0, then φ defines the single-valued map

φ : Ker f∗ → Z2

and

(2) φ(x+ y) = φ(x) + φ(y) + [H(x) ·H(y)] mod 2,

where H : πi(Mk
1 ) → Hi(Mk

1 ) is the Hurewicz homomorphism.

Proof. Let us consider the tubular neighborhood T of the sphere Si in the manifold
Mk

1 , which is the space of an SOk−i-bundle with base Si. The map f ◦ j : T →Mn
2

is homotopic to zero and, by assumption,

j∗f∗νN (Mn
2 ) = νN (T ),

where j is an embedding of Si ⊂ Mk
1 . Hence νN (T ) is trivial. Since the manifold

T is not closed the triviality of the bundle νN (T ) implies that T is parallelizable.
Hence the normal bundle of a sphere Si in a manifold is completely defined by an
element α ∈ Ker p∗, where

p : SOk−i → SO∞

and
p∗ : πi−1(SOk−i) → πi−1(SO∞)

is a homomorphism of the natural embedding p. For i < k − i the map p is
isomorphic, and this implies property 1).

If i = k − i, i = 2s, then

Ker p∗ = Z ⊂ π2s−1(SO2s)
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and, as is well known, the bundles over the sphere S2s that are defined by elements
α ∈ Ker p∗ ⊂ π2s−1(SO2s) are completely determined by the Euler class χ(α),
where χ(α) ≡ 0 (mod 2). But the Euler class of a bundle is equal to the self-
intersection number Si · Si, and this implies property 2).

For i = 1, 3, 7, i = k − i the kernel Ker p∗ = 0, and this implies property 3).
For i 6= 1, 3, 7, i = 2s + 1 the group Ker p∗ = Z2 (cf. [1]). Hence the normal

bundle νk−i(Si, T ) is defined by the invariant φ(Si) ⊂ Z2.
Now π1(Mk

1 ) = 0. Hence by Whitney’s results two spheres Si
1, S

i
2 ⊂ Mk

1 which
define one and the same element x ∈ πi(Mk

1 ), i = k − i, are regularly homotopic
(cf. [25]). Hence

φ(Si
1) = φ(Si

2).
Thus the map

φ : Ker f∗ → Z2

is defined since each element x ∈ Ker f∗ may be realized by an embedded smooth
sphere Si ⊂ Mk

i (cf. [9]). Let us now prove (2). Suppose there exist two cycles
x, y ∈ Ker f∗. We realize them by the spheres Si

1, S
i
2 ⊂ Mn, the number of points

of intersection of which is equal to the intersection number |H(x) ·H(y)| (cf. [25]).
We form tubular neighborhoods T1 and T2 of the spheres Si

1 and Si
2 respectively in

the manifold Mk
1 and we denote by

T (x, y) = T1 ∪ T2

a smooth neighborhood of the union Si
1 ∪ Si

2. The manifold T (x, y) is obviously
parallelizable, and

Hi(T (x, y)) = Z + Z.

If the spheres do not intersect our statement is obvious. Let us assume |H(x) ·
H(y)| = 1. Then

π1(T (x, y)) = 0, Hj(T (x, y)) = 0, j 6= i,

and the boundary ∂T (x, y) is a homotopy sphere (cf. [8]).
Kervaire proved [4] that in the manifold T (x, y)

φ(x+ y) = φ(x) + φ(y) + [H(x) ·H(y)] mod 2,

which must also hold in Mk
1 ⊃ T (x, y) since the sphere Si realizing x + y is in

T (x, y) and φ is an invariant of the normal bundle. If |H(x) ·H(y)| > 1, then the
group

π1|T (x, y)| = π1(∂T (x, y))
is free and the number of its generators is |H(x)·H(y)|−1; hence our argument does
not go through. But by the reconstructions of Morse described in §1 it is possible
to “seal up” the group π1(T (x, y)) = π1(∂T (x, y)) and pass to a simply connected
manifold T̃ (x, y) ⊂Mk

1 such that:
a) T̃ (x, y) = T (x, y) ∪h1 D

2 ×Dk−2 ∪h2 · · · ∪hi
D2 ×Dk−2, where

t = |H(x) ·H(y)| − 1

and
hq : ∂D2 ×Dk−2 → ∂T (x, y);

b) T̃ (x, y) is parallelizable;
c) Hi(T̃ (x, y)) = Z + Z, Hj(T̃ (x, y)) = 0, i 6= j;
d) the spheres Si

1, S
i
2 ⊂ T (x, y) generate the group Hi(T̃ (x, y)) .
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For this we must carry out the reconstructions of Morse in the interior of the
manifold Mk

1 , which is possible if k ≥ 6. Then to the manifold T̃ (x, y) we may
apply Kervaire’s results [4] and get the equality (2):

φ(x+ y) = φ(x) + φ(y) + [H(x) ·H(y)] (mod 2).

(Concerning the reconstructions of Morse cf. papers [2] and [9].) Thus the lemma
is proved. We note that our description of the behavior of the normal bundles of a
sphere in a parallelizable manifold is not original and is contained in papers [9, 4]
and others. �

Definition 2.3. If the map f : Mn
1 → Mn

2 has degree +1, then we shall say that

the manifold Mn
1 is greater than or equal to Mn

2 , and write Mn
1

f

≥Mn
2 .2

Lemma 2.4. If Mn
1

f

≥ Mn
2 , then the map f∗ : H∗(Mk

2 ,K) → H∗(Mn
1 ,K) is a

monomorphism for any field K.

Proof. Let x ∈ Hi(Mn
2 ,K), x 6= 0; then there exists a y ∈ Hn−1(Mn

2 ,K) such that
(xy, [Mn

2 ]) = 1. Since

(f∗(xy), [Mn
1 ]) = (f∗xf∗y, [Mn

1 ]) = (xy, f∗[Mn
1 ]) = (xy, [Mn

2 ]) = 1,

it follows that f∗xf∗y 6= 0 and therefore f∗x 6= 0.
The lemma is proved. �

Lemma 2.5. If π1(Mn
1 ) = π1(Mn

2 ) = 0 and Mn
1

f

≥Mn
2 , Mn

2

g

≥Mn
1 , then the maps

f and g are homotopy equivalences.

Proof. The maps f ◦ g : Mn
2 → Mn

2 and g ◦ f : Mn
1 → Mn

1 are onto of degree
+1. Hence by Lemma 2.4 they induce an isomorphism of the cohomologies over
an arbitrary field K and hence an isomorphism of the integral cohomologies and
homologies. Whitehead’s theorem enables us to complete the proof. �

Remark 2.6. Lemma 2.5 can also be stated as follows: if π1(Mn
1 ) = π1(Mn

2 ) = 0,

the homologies of the manifolds Mn
1 and Mn

2 are isomorphic, and Mn
1

f

≥Mn
2 , then

they are homotopically equivalent.

§ 3. The general construction

Let Mn be a smooth closed simply connected oriented manifold and νN (Mn) its
stable normal bundle, the fiber of which is a closed ball DN , and let us suppose that
this bundle is oriented, i.e., the structural group is reduced to SON . We contract
the boundary ∂νN (Mn) to a point and denote by TN (Mn) the obtained space,
which is the Thom space of the bundle (cf. [22, 7]). We have

(3) TN (Mn) = νN (Mn)/∂νN (Mn).

The Thom isomorphism

(4) φ : Hi(Mn) → HN+i(TN (Mn))

is well known.
As usual, we denote by [Mn] the fundamental cycle of the manifold Mn in the

selected orientation.

2It is also assumed that Mn
2 is an (f, π)-manifold modulo Mn

1 .
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Lemma 3.1. The homology class φ[Mn] belongs to the image of the Hurewicz
homomorphism H : πN+n(TN (Mn)) → HN+n(TN (Mn)).

Proof. Let us construct an element x ∈ πN+n(TN (Mn)) such that H(x) = φ[Mn].
Let the manifold Mn be smoothly situated in the sphere SN+n. Its closed tubular
neighborhood T ∈ SN+n is diffeomorphic to the space of the bundle νN (Mn) in
the natural way, since T is canonically fibered by normal balls DN . We effect the
natural diffeomorphism T → νN (Mn) and consider the composition

T → νN (Mn) → TN (Mn);

the map T → TN (Mn) transforms the boundary ∂T into a point and is therefore
extended to the map SN+n → TN (Mn) that transforms all of the exterior SN+n \
T into the same point. This map obviously represents the needed element x ∈
πN+n(TN (Mn)). The lemma is proved. �

In what follows an important role will be played by the set

H−1φ[Mn] ⊂ πN+n(TN (Mn)),

which we shall always denote by A(Mn). We consider an arbitrary element α ∈
A(Mn) and the map

f̃α : SN+n → TN (Mn)
representing it.

From the paper of Thom [22] there easily follows

Lemma 3.2. There exists a homotopic smooth map

fα : SN+n → TN (Mn)

such that:
a) the inverse image f−1

α (Mn) is a smooth manifold Mn
α , smoothly situated in

the sphere SN+n;
b) for every point x ∈ Mn

α the map fα transforms the ε-ball DN
x , normal to

Mn
α in SN+n, into the ε-ball DN

fα(x), normal to Mn in TN (Mn), and the map
fα : DN

x → DN
fα(x) is a linear nonde generate map for all x ∈Mn

α ;
c) the maps fα|Mn

α →Mn and fα|DN
x → DN

fα(x) have degree +1 for all x ∈Mn
α .

Proof. Points a) and b) are taken from Thom’s paper [22]. For the proof of point c)
we observe that the map f̃α : SN+n → TN (Mn) and hence fα have degree +1 (this
makes sense because TN (Mn) is a pseudomanifold with fundamental cycle [TN ] =
φ[Mn]). Hence the map fα must have degree +1 in the tubular neighborhood of
Mn

α = f−1
α (Mn). We reduce the structural group of the bundle νn(Mn

α ) to SON

so that all maps fα : DN
x → DN

fα(x) have determinants > 0. Then on the manifold
Mn

α there is uniquely defined an orientation which is induced by the orientations
of the sphere SN+n and the fiber Dn

x . In this orientation the map fα : Mn
α → Mn

has degree +1 since the degree of the bundle map

νN (Mn
α ) → νN (Mn) → TN (Mn)

is +1 and is equal to the product of the degrees of the map of the base Mn
α and

fiber DN
x , x ∈ Mn; on the fiber DN

x , as a result of the choice of its orientation,
this degree is equal to +1, from which follows the desired statement. The lemma
is proved. �
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Corollary 3.3. The manifold Mn
α

f

≥Mn.

Proof. The map fα has degree +1 and is clearly such that

f∗αν
N (Mn) = νN (Mn

α ). �

Corollary 3.4. If π1(Mn
α ) = 0 and Hi(Mn

α ) = Hi(Mn), i = 0, 1, 2, . . . , n, then the
map fα : Mn

α →Mn is a homotopy equivalence.

The proof follows from Corollary 3.3, Lemma 2.3 and Remark 1 on page 8.
We denote by Ā(Mn) ⊂ A(Mn) the subset consisting of those elements

α ∈ Ā(Mn) for which there exist representatives fα : SN+n → TN (Mn) satisfying
Lemma 3.2 and such that the inverse image f−1

α (Mn) = Mn
α is a manifold

homotopically equivalent to Mn. The set Ā(Mn) will be of interest to us below.
In studying it the three following important questions are appropriate:

1. What place is taken by the submanifold Ā(Mn) in A(Mn), i.e., in which
classes α ∈ A(Mn) ∈ πN+n(TN (Mn)) are there representatives fα : SN+n →
TN (Mn) for which the manifold

Mn
α = f−1

α (Mn)

is homotopically equivalent to Mn (in which classes α ∈ A(Mn) are there found
manifolds of the same homotopy type as Mn)?

2. Suppose two manifolds Mn
α,1, and Mn

α,2 are found in one and the same class
α ∈ Ā(Mn) and both are homotopically equivalent to Mn. This means that there
are two homotopic maps of a sphere

fα,i : SN+n → TN (Mn)

such that
f−1

α,i (M
n) = Mn

α,i, i = 1, 2.

How are the manifolds Mn
α,1 and Mn

α,2 connected?
3. In which classes αi ∈ Ā(Mn) can one and the same manifold Mn

1 be found
that is homotopically equivalent to Mn?

The following three sections will be devoted to the solution of these questions.

§ 4. A realization of the classes

This section is devoted to a study of the question, in which classes α ∈ A(Mn)
are to be found the manifolds that are homotopically equivalent to Mn. First we
prove a number of easy lemmas of algebraic character. We consider two arbitrary
finite complexes X,Y and a map f : X → Y . Let K be an arbitrary field. We will
assume that

π1(X) = π1(Y ) = 0.

Lemma 4.1. Suppose for any K the map f∗ : Hi(X,K) → Hi(Y,K) is epimorphic
for i ≤ j+1 and isomorphic for i ≤ j. Then f∗ : Hi(X,Z) → Hi(Y, Z) is epimorphic
for i ≤ j + 1 and isomorphic for i ≤ j.

Proof. We consider the cylinder Cf = X × I(0, 1) ∪f Y , which is homotopically
equivalent to Y , and the exact sequence of the pair (Cf , X)

(5) Hi(X)
f∗→ Hi(Y ) → Hi(Cf , X) ∂→ Hi−1(X)

f∗→ Hi−1(Y )
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for i ≤ j + 1. From the sequence (5) it follows that Hi(Cf , X,K) = 0 for i ≤ j + 1.
Therefore

Hi(Cf , X, Z) = 0, i ≤ j + 1.

Returning to the exact sequence (5) (in the homologies over Z) we obtain all of the
statements of the lemma. The lemma is proved. �

Lemma 4.2. Suppose the map f : X → Y is such that the map f∗ : Hi(X,Z) →
Hi(Y, Z) is an epimorphism for i ≤ j + 1 and an isomorphism for i ≤ j. Then
the map f∗ : π(X) → πi(Y ) is an isomorphism for i ≤ j and an epimorphism for
i ≤ j + 1, and conversely.

Proof. We consider two exact sequences which together with the Hurewicz homo-
morphism form the commutative diagram

(6)

Hi(X,Z)
f∗ // Hi(Y, Z) // HI(Cf , X, Z) ∂ // Hi−1(X,Z)

πi(X)
f∗ //

H

OO

πi(Y ) //

H

OO

πi(Cf , X) ∂ //

H

OO

πi−1(X)

H

OO

for i ≤ j + 1. It is easy to see that

Hi(Cf , X, Z) = 0, i ≤ j + 1.

Since π1(X) = π1(Y ) = 0, we have

πi(Cf , X) = 0, i ≤ j + 1,

from which follows Lemma 4.2 (in the direct sense). The converse statement is
proved analogously. The lemma is proved. �

For definiteness, in the sequel we will always denote the homomorphisms
πi(X) → πi(Y ) and Hi(X) → Hi(Y ), corresponding to the map f : X → Y , by
f

(πi)
∗ and f (Hi)

∗ .

Lemma 4.3. Under the same conditions as in Lemma 4.2 the homomorphism

H : Ker f (πj+1)
∗ → Ker f (Hj+1)

∗

is an epimorphism.

Proof. The following diagram is commutative and its lines are exact:

(7)

πj+2(Cf , X) //

H≈
��

Ker f (πj+1)
∗

//

��

0

Hj+2(Cf , X, Z) // Ker f (Hj+1)
∗

// 0.

From the proof of Lemma 4.2 we know that

Hi(Cf , X) = πi(Cf , X) = 0, i ≤ j + 1.

Therefore
πj+2(Cf , X) ≈ Hj+2(Cf , X).

The simple diagram completes the proof. �
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We now consider a map of manifolds f : Mn
1 → Mn

2 having degree +1. We will
be interested in the case when the kernels Ker f (πi)

∗ are trivial for i < [n/2]. We
consider separately the cases of even and odd n. The following two lemmas hold.

Lemma 4.4. Suppose n = 2s and the groups Ker f (πi)
∗ are trivial for i < s. Then

the group Ker f (Hs)
∗ is free abelian, is singled out as a direct summand in the group

Hs(Mn
1 , Z), and the matrix of intersections of the base cycles of the group Ker f (Hs)

∗
is unimodular.

Lemma 4.4′. Suppose n = 2s + 1 and the groups Ker f (πi)
∗ are trivial for i < s.

Then the group Ker f (Hs+1)
∗ is free abelian, and both Ker f (Hs)

∗ and Ker f (Hs+1)
∗

are singled out as direct summands in the groups Hs(Mn
1 , Z) and Hs+1(Mn

1 , Z)
respectively. The finite part TorKer f (Hs)

∗ of the group Ker f (Hs)
∗ is closed under

the duality of Alexander, i.e., the matrix of linkages of the generating elements
of order pi in a certain primary decomposition is unimodular modpi for a fixed
value of the numbers p, i. The matrix of intersections of the groups Ker f (Hs+1)

∗ and
Ker f (Hs)

∗ /TorKer f (Hs)
∗ is also unimodular.

We will conduct the proof of both lemmas simultaneously, starting from the
identity

(8) f∗(f∗x ∩ y) = x ∩ f∗y,
which holds for any continuous map f . In our case f∗[Mn] = [Mn

2 ] and the oper-
ation ∩[Mn

1 ] coincides with the isomorphism D of the duality of Poincaré. In this
way we get

f∗Df
∗ = D,

from which follow the direct sums

(9) Hi(Mn) = Ker f (Hi)
∗ +Df∗Hn−i(Mn

2 )

over any coefficient domain and for any values of i. Consequently, the singling out
as a direct summand is proved in all cases. The absence of torsion in the groups
Ker f (Hs)

∗ for n = 2s and Ker f (Hs+1)
∗ for n = 2s + 1 follows from the fact that

the groups Ker f (Hs−1)
∗ are trivial in both cases, and from the principle of duality

of Alexsander, connecting the torsions of the groups Hs−1(Mn
1 ) and Hn−s(Mn

1 )
for both values of n. It remains to prove the unimodularity of the correspond-
ing matrices of intersections or linkages. We show that the groups Ker f (Hi)

∗ and
Df∗Hn−i(Mn

2 ) are orthogonal to each other with respect to the operation of inter-
section of cycles for any values of i and over any group of coefficients. In fact, let
x ∈ Hn−i(Mn

2 ) and y ∈ Ker f (Hi)
∗ . Then

(10) (f∗x ∩ [Mn
1 ]) · y = (f∗x, y) = (x, f∗y) = 0

and any element of the group Df∗Hn−i(Mn
2 ) has the form

f∗x ∩ [Mn
1 ].

Thus the groups Ker f (Hi)
∗ and Df∗D−1Hi(Mn

2 ) are orthogonal. Applying this
orthogonality, we obtain the unimodularity of the matrices of intersections in all
the necessary cases. The statement concerning the matrices of linkages follows
from the fact that the linkages can be defined in terms of the intersections of cycles
modulo pi. Thus Lemmas 4.4 and 4.4′ are proved.

We note a useful supplement to Lemma 4.4.
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Lemma 4.5. The map H : Ker f (πs)
∗ → Ker f (Hs)

∗ for n = 2s is an isomorphism if
the groups Ker f (πi)

∗ = 0 for i < s.

Proof. We consider, as in the proof of Lemma 4.3, the commutative diagram

(11)

Hs+1(Mn
1 ) ≈ // Hs+1(Mn

2 ) // Hs+1(Cf ,M
n
1 ) ∂ // Ker f (Hs)

∗
// 0

πs+1(Mn
1 ) //

OO

πs+1(Mn
2 ) //

OO

πs+1(Cf ,M
n
1 ) ∂ //

OO

Ker f (πs)
∗

// 0.

Since the maps f (Hi)
∗ for i < s are isomorphisms, the map f

(Hs+1)
∗ is also an

isomorphism. From the exactness of the sequences we conclude that the map

∂ : Hs+1(Cf ,M
n
1 ) → Ker f (Hs)

∗

is an isomorphism. Therefore the map

∂H = H∂ : πs+1(Cf ,M
n
1 ) → Ker f (Hs)

∗

is an isomorphism and the map

H : Ker f (πs)
∗ → Ker f (Hs)

∗

is also an isomorphism. The lemma is proved. �

We now investigate an arbitrary element α ∈ A(Mn). We have the following

Lemma 4.6. For every element α ∈ A(Mn) there exists a map fα : SN+n →
TN (Mn) satisfying Lemma 3.2 and such that the inverse image Mn

α = f−1
α (Mn) ⊂

SN+n possesses the following properties:
a) π1(Mn

α ) = 0;
b) the maps f (Hs)

∗ : Hs(Mn
α ) → Hs(Mn) are isomorphisms for s < [n/2].

Proof. We will by induction construct the maps

sfα : SN+n → TN (Mn),

satisfying Lemma 3.2, for which the groups

Hi(Mn
α,s), Mn

α,s = αf
−1
s (Mn)

will be isomorphic to the groups Hi(Mn), i < s. Since the maps sfα : Mn
α,s →Mn

have degree +1, this isomorphism is established by the map sf
(Hi)
α∗ . From Lemmas

4.1–4.3 it follows that the map sf
(Hs)
α is an epimorphism and all of the base cycles

x1, . . . , xl ∈ Ker sf
(Hs)
α∗ can be realized by a system of smoothly embedded disjoint

spheres Ss
1 , . . . , S

s
l ⊂ Mn

α,s, on which the map sfα|Ss
j is homotopic to zero. We

assume that the maps ifα are already constructed for i ≤ s and we construct the
map s+1fα by reconstructing the map sfα.

Step 1. We deform the map sfα to the map sf̃α such that

sf̃α(T (Ss
1)) = g0 ∈Mn

where g0 is a point in the manifold Mn. The deformation is assumed to be smooth,
and T (Ss

1) ⊂Mn
α,s denotes a smooth tubular neighborhood of the sphere Ss

1 ⊂Mn
α,s.

In the fiber DN
g0
⊂ νN (Mn) we take the frame τN

0 , which determines the orientation
of the fiber DN

g0
. The inverse image sf̃

∗
ατ

N
0 represents a continuous N -frame field τN
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on T (Ss
1) that is normal to T (Ss

1) ⊂ SN+n, since the map sf̃α, satisfies Lemma 3.2.
The arbitrariness in the choice of the frame τN

0 is immaterial for our purposes.
Step 2. According to Lemma 2.1 the tube T (Ss

1) is diffeomorphic to Ss
1×Dn−s

ε ,
where ε > 0 is a small number. We assign in T (Ss

1) the coordinates (x, y), x ∈ Ss
1 ,

y ∈ Dn−s
ε . As a result of Step 1, on the tube T (Ss

1) there is constructed the field
τN . We consider the direct product SN+1 × I(0, 1). We will assume that

sf̃α : SN+n × 0 → TN (Mn), Mn
α,s ⊂ SN+n × 0.

We construct a membrane Bn+1(h) ∈ SN+n × I(0, 1), orthogonally approaching
the boundaries, such that the field τN can be extended to a certain field τ̃N that
is normal to

Bn+1(h) \
[
(Mn

α,s \ T (SN
1 ))× I

(
0,

1
2

)]
in the direct product SN+n × I(0, 1), where

h : ∂Ds+1 ×Dn−s
ε → T (Ss

1), h(x, y) = (x, d(h)x(y)),

d(h) : Ss
1 → SOn−s.

Such a choice of the membrane Bn+1(h) is possible according to Lemmas 1.1
and 1.2.

Step 3. We extend the map sf̃α : Mn
α,s →Mn to a smooth map sFα : Bn+1(h) →

Mn, putting

(12)
sFα = sfα|Bn+1(h) ∩ SN+n × 0,

sFα(Ds+1 ×Dn−s
ε ) = g0 = sfα(T (Ss

1)).

We extend the map
sFα : Bn+1(h) →Mn

to the map
sFα : T (Bn+1(h)) → TN (Mn),

where T (Bn+1(h)) is a tubular neighborhood of Bn+1(h) in SN+1×I(0, 1), accord-
ing to the frame field τ̃N that is normal to the part of Bn+1(h) in SN+n × I(0, 1)
which is diffeomorphic to Ds+1 ×Dn−s

ε ⊂ Bn+1(h). On the remaining part

Bn+1(h) \Ds+1 ×Dn−s
ε = Mn

α,s × I

(
0,

1
2

)
the extension of the map is trivial. In their intersection

Mn
α,s × I

(
0,

1
2

)
∩Ds+1 ×Dn−s

ε = T (Ss
1)

these extensions are compatible with the general frame field τN . Further, by the
well-known method of Thom, we extend the map sFα onto the entire product
SN+n × I(0, 1).

Now we put
sf

(1)
α = sFα|SN+n × 1

Clearly, the map sf
(1) satisfies Lemma 3.2 and

sf
(1)−1

α (Mn) = Mn
α,s(h).

Since 2s+ 1 < n, we conclude that

Ker sf
(1)
α∗ = Ker sfα∗/(x1).
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Putting, iterating the construction,

s+1fα = sf
(l)
α ,

we obtain the statement of the lemma. �

An analysis of the case s = [n/2] is more difficult and will be broken down into
the following cases:

1) n = 4k, s = 2k, k ≥ 2;
2) n = 4k + 2, s = 2k + 1, k ≥ 1, k 6= 1, 3;
3) n = 4k + 2, s = 2k + 1, k = 1, 3;
4) n = 4k + 1, s = 2k, k ≥ 1;
5) n = 4k + 3, s = 2k + 1, k ≥ 1.

Lemma 4.7. Let n = 4k. For every element α ∈ A(Mn) there exists a map
fα : SN+n → TN (Mn), satisfying Lemma 3.2, such that the inverse image Mn

α =
f−1

α (Mn) is homotopically equivalent to Mn.

Proof. Applying Lemma 4.6, we can construct a map 2kfα : SN+n → TN (Mn) such
that

Ker 2kf
(Hi)
α∗ = 0, i < 2k,

where
2kfα : Mn

α,k = 2kf
−1
α (Mn) →Mn.

According to Lemma 4.4 the group

Ker 2kf
(H2k)
α∗ = L2k ⊂ H2k(Mn

α,2k)

is free abelian, singled out as a direct summand in the group H2k(Mn
α,2k), and the

matrix of intersections of the base cycles l1, . . . , lm ⊂ L2k is unimodular. We select
in the group H2k(Mn

α,2k)/Tor a base l1, . . . , lm, q1, . . . , qp such that

qi ◦ lj = 0, i = 1, . . . , p, j = 1, . . . ,m;

this can be done in view of the unimodularity of the matrix

(lj ◦ lt), j, t = 1, . . . ,m.

The matrix (qi ◦ qj) is equivalent to the matrix of intersections of the base cycles
of the group H2k(Mn)/Tor and, moreover,

(2kfα∗qi) ◦ (2kfα∗qj) = qi ◦ qj .
Since

2kf
∗
αν

N (Mn) = νN (Mn
α,k)

and the map 2kfα has degree +1 it follows from a formula of Hirzebruch [3] that
the indices (signatures) of the manifolds Mn

α,2k and Mn are equal to each other.
Therefore the signature of the matrix (li ◦ lj), i, j = 1, . . . ,m, is equal to zero
(the matrix of intersections of the manifold Mn

α,2k splits, by virtue of what has
been said above, into two matrices, one of which is identical to the matrix of
intersections of the manifold Mn, and the other of which is the matrix (li ◦ lj),
i, j = 1, . . . ,m). On the other hand, the self-intersection indices li ◦ lj are even. For
a proof of the evenness of the numbers li ◦ lj we realize the cycle li by a smooth
sphere S2k

i ⊂ Mn
α,2k according to Whitney [25] and Lemma 4.3. Then we consider

the tubular neighborhood of the sphere, T (S2k
i ) ⊂ Mn

α,2k, which is a parallelizable
manifold (cf. point 1) in the proof of Lemma 2.2). The self-intersection index of a
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sphere in a parallelizable manifold is always even, from which we obtain the desired
statement. Thus the signature of the matrix (li ◦ lj) is equal to zero and

li ◦ lj ≡ 0 (mod 2).

According to [9] one can find a base l′1, . . . , l
′
m, m = 2m′, such that

a) l′i ◦ l′i = 0, 1 ≤ i ≤ m;
b) l′2i+1 ◦ l′2i+2 = 1, i = 0, 1, . . . ,m′ − 1;
c) l′k ◦ l′j = 0 otherwise, i.e., the matrix can be reduced to the form

(13)


0 1
1 0 0

. . . . . . . . . . .

. . . . . . . . . . .

0
0 1
1 0


We realize the cycles li, i = 1, . . . ,m, by smoothly embedded spheres S2k

i ⊂
Mn

α,2k in such a way that their geometric intersections correspond to the algebraic
intersection indices (the number of points of an intersection S2k

i ∩ S2k
j is equal to

the index |S2k
i ◦ S2k

j |; this can be done for k > 1; cf. [26, 9]). According to Lemma
2.2 the normal bundles ν2k(S2k

i ,Mn
α,2k) are trivial. Then we exactly repeat Steps

1, 2, 3 of the proof of Lemma 4.6, using Lemma 1.2. As a result of a reconstruction
of Morse, the manifold Mn

α,2k is simplified (one reconstruction of Morse over the

sphere S2k
i obliterates the integral square

(
0 1
1 0

)
; cf. [9]). Iterating the operation,

we arrive at a map
fα : SN+n → TN (Mn)

such that Ker f (Hj)
α∗ = 0, i ≤ 2k, and π1(Mn

α ) = 0. According to the duality of
Poincaré,

Ker f (Hj)
α∗ = 0, j > 2k,

and the groups Hi(Mn
α ) and Hi(Mn) are isomorphic. According to Lemma 2.4 and

Remark 1 on page 8, the manifold Mn
α , is homotopically equivalent to the manifold

Mn. The lemma is proved. �

Now let n = 4k + 2, k 6= 1, 3, k > 1.

Lemma 4.8. For every element α ∈ A(Mn) there exists a map fα : SN+n →
TN (Mn) satisfying Lemma 3.2 such that the inverse image Mn

α = f−1
α (Mn) pos-

sesses the following properties:
a) π1(Mn

α ) = 0;
b) Hi(Mn

α ) = Hi(Mn), i 6= 2k + 1;
c) Ker f (H2k+1)

α∗ = Z + Z or 0;
d) denoting the base cycles of the group Ker f (H2k+1)

α∗ by x, y, x ◦ y = 1, if
Ker f (H2k+1)

α∗ = Z + Z, φ(x) = φ(y) = 1.

Proof. Using the results of Lemma 4.6, we consider the map

2k+1fα : SN+n → TN (Mn)
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satisfying Lemma 3.2 and such that

Hi(Mn
α,2k+1) = Hi(Mn), i < 2k + 1,

Ker 2k+1f
(H2k+1)
α∗ = Z + · · ·+ Z;

the matrix of intersections of the base cycles of the group Ker 2k+1f
(H2k+1)
α∗ is skew-

symmetric and unimodular. It can therefore be reduced to the base x1, . . . , x2l ∈
Ker 2k+1f

(H2k+1)
α∗ , the matrix of intersections of which has the form

(14)


0 1
−1 0
. . . . . . . . . . . . . . .

0 1
−1 0

 .

Thus we determine, the invariant φ(x) ∈ Z2, x ∈ Ker 2k+1f
(H2k+1)
α∗ , which is such

that
φ(x+ y) = φ(x) + φ(y) + (x ◦ y) mod 2

according to Lemmas 2.2 and 4.4. We put

φ(2k+1fα) =
l∑

i=1

φ(x2i−1)φ(x2i).

If φ(2k+1fα) = 0, then it is possible to choose a base x′1, . . . , x
′
2l such that

φ(x′i) = 0, i = 1, . . . , 2l.

If φ(2k+1fα) = 1, then one can find a base x′1, . . . , x
′
2l such that

φ(x′1) = φ(x′2) = 1

and
φ(x′i) = 0, i > 2

(cf. [4]). We realize the cycles by smoothly embedded spheres S2k+1
i ⊂Mn

α,2k, that
intersect each other if and only if their intersection indices are different from zero,
and at not more than one point (cf. [9¿ 25]). If φ(2k+1fα) = 0, then the normal
bundles ν2k+1(S2k+1

i ,Mn
α,2k+1) are trivial. If φ(2k+1fα) = 1, then the bundles

ν2k+1(S2k+1
i ,Mn

α,2k+1) are trivial only for i > 2. Repeating Steps 1, 2, 3 of Lemma
4.6 and using Lemmas 1.2 and 4.7, we employ the reconstructions of Morse to seal

the spheres S2k+1
2i−1 , i ≥ 2, each time killing the square

(
0 1
−1 0

)
. If φ(2k+1fα) = 0,

then we also seal the sphere S2k+1
1 , since its normal bundle in the manifold Mn

α,2k+1

is trivial in this case. As a result we arrive at the map

fα : SN+n → TN (Mn),

possessing the properties a)–d).
Thus the lemma is proved. �

We now investigate the case n = 6, 14 = 4k + 2, k = 1, 3.
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Lemma 4.8′. For every element α ∈ A(Mn) there exists a map fα : SN+n →
TN (Mn) such that :

1) π1(Mn
α ) = 0;

2) Hi(Mn
α ) = Hi(Mn), i 6= 2k + 1;

3) Ker f (H2k+1)
α∗ = Z + Z or 0.

Although the formulations of Lemmas 4.8 and 4.8′ are analogous, it will be seen
from the proof that these cases are essentially distinct. As above, we construct the
map

2k+1fα : SN+n → TN (Mn).
We have

Ker 2k+1f
(Hi)
α∗ = 0, i < 2k + 1,

and the group Ker 2k+1f
(H2k+1)
α∗ is free abelian; in this last group we select base

cycles x1, . . . , x2l, the matrix of intersections of which has the form (14). We
realize these cycles by the spheres S2k+1

i ⊂ Mn
α,2k+1. It is possible to compute a

map 2k+1fα such that

2k+1fα(S2k+1
2i−1 ) = 2k+1fα(S2k+1

2i ) = g0 ∈Mn, i = 1, . . . , l,

where g0 is a point in the manifold Mn. On the spheres S2k+1
2i−1 and S2k+1

2i there
appear the frame fields τN

2i−1 and τN
2i , which are normal to Mn

α,2k+1. The maps

j∗ : π3(SO3) → π3(SON+3)

and
j∗ : π7(SO7) → π7(SON+7)

are not epimorphic. In fact,
Coker j∗ = Z2.

We select arbitrary frame fields τ2k+1
2i−1 , τ

2k+1
2i that are normal to S2k+1

2i−1 and S2k+1
2i in

Mn
α,2k+1 (we recall that in this case the normal bundles ν2k+1(S2k+1

2i−1 ,M
n
α,2k+1) and

ν2k+1(S2k+1
2i ,Mn

α,2k+1) are trivial). Under an arbitrary variation of the fields τ2k+1
2i−1

and τ2k+1
2i , the combined frame fields (τN

2i , τ
2k+1
2i−1 ) and (τN

2i , τ
2k+1
2i ) that are normal

to the spheres S2k+1
2i−1 and S2k+1

2i in SN+n, distinguish the elements ψ2i−1, ψ2i ∈
Coker j∗. If ψ2i−1 6= 0 and ψ2i 6= 0, then an equipment cannot be extended onto
the balls D2k+2

2i−1 , D
2k+2
2i ⊂ SN+n × I(0, 1). There therefore appears an obstruction

to a carrying over of the equipments of τN
2i−1 and τN

2i under a reconstruction of
Morse (depending on τ2k+1

2i−1 or τ2k+1
2i ) with value in the group Coker j∗, equal to

ψ2i−1 = ψ2i−1(S2k+1
2i−1 )

and
ψ2i = ψ2i(S2k+1

2i )

It is easy to see that the invariants ψ depend only on the cycle xs ∈ Ker 2k+1f
(H2k+1)
α∗

and not on the sphere S2k+1
s realizing the cycle xs, since

Ker 2k+1f
(H2k+1)
α∗ = Ker 2k+1f

(π2k+1)
α∗

according to Lemma 4.5, and the homotopy spheres of dimension 2k+1 in Mn
2k+1,α

are regularly homotopic (cf. [25]). Thus we determine the invariant

ψ(x) ∈ Z2, x ∈ Ker 2k+1f
(H2k+1)
α∗ .
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We note further that by analogy with the invariant φ it is possible to find a base
x′1, . . . , x

′
2l, such that ψ(x′s) = 0, s > 2 (cf. [15]). It is therefore possible, following

the previous proofs, to seal the cycles x′s, s ≥ 3, by means of the reconstructions
of Morse. If ψ(x′1) 6= 0 and ψ(x′2) 6= 0, then it is not possible to carry out any
further resealing (the obstruction to a carrying over of the equipment is different
from zero). But if ψ(x′s) = 0, s = 1 or 2, then it is possible to reseal the cycle x′s,

killing the square
(

0 1
−1 0

)
. As a result, in both cases we arrive at the statement

of the lemma. The lemma is proved. �

Remark 4.9. A detailed analysis of the invariant ψ and the reconstructions of
Morse in this case (for k = 0) is contained in a paper by L. S. Pontrjagin [15].

It remains for us to investigate the case of odd values of n. We note to begin with
that in this case the reconstructions of Morse, the carrying over of the equipments
(of frame fields) onto a membrane and the carrying over of maps does not meet
with any difficulties; but it is not clear that a manifold is simplified as the result
of a reconstruction of Morse (this question is resolved trivially in all remaining
cases). If n = 2i + 1, then under a reconstruction of Morse over a cycle (sphere)
of dimension i there is formed as a result a new cycle of the same dimension i,
that was previously homologous to zero. We consider an arbitrary closed simply
connected manifold QN . Suppose the group Hi(Qn) has a torsion TorHi(Qn) 6= 0.
We select in the group TorHi(Qn) a minimal system of generators x1, . . . , xl of
orders q1, . . . , ql respectively. As is well known, for two cycles x, y ∈ TorHi(Qn)
there is defined a “linking coefficient” Lk(x, y) ∈ Zd(q,q′), where q and q′ are the
orders of the elements x and y and d(q, q′) is their greatest common divisor. Namely,

(15) Lk(x, y) = ∂−1(qx) ◦ y ≡ x ◦ ∂−1(q′y) mod d(q, q′).

We formulate the Poincaré–Alexander duality.3

Suppose x1, . . . , xl ∈ TorHi(Qn) is a minimal system of p-primary generators
of orders q1, . . . , ql respectively. Then there exists a minimal system of generators
y1, . . . , yl ∈ TorHi(Qn) of orders q1, . . . , ql such that

(16) Lk(xm, yt) = δmt mod d(qm, qt).

We assume that the cycle x1 is realized by the sphere Si
1 ⊂ Qn, and the bundle

νi+1(Si
1, Q

n) is trivial.
The tubular neighborhood T (Si

1) of the sphere Si
1 in Qn is diffeomorphic to

Si
1 ×Di+1

ε , ε > 0 being a small number.
We divide the reconstruction of Morse into two steps.
Step 1. Qn → Qn \ Si

1 ×Di+1
ε = Q̄n.

Step 2. Q̄n → Q̄n ∪h D
i+1 × Si

ε = Qn(h), where h : ∂Di+1 × Di+1
ε → Qn (cf.

§1).
We consider the cycle

b(x1) = g0 × ∂Di+1
ε ⊂ Q̄n, g0 ∈ Si

1.

Lemma 4.10. Hs(Q̄n) = Hs(Qn) for s < i. There is defined an epimorphism
x1∗ : Hi(Q̄n) → Hi(Qn), the kernel of which is generated by the cycle b(x1). In the
group Hi(Q̄n) it is possible to select generators ỹj = x−1

1∗ yj, j = 1, . . . , l, such that

(17) b(x1) = q1ỹ1.

3The meaning of linking coefficients and duality is not restricted to a system of p-generators.
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Proof. Hs(Q̄n) = Hs(Qn), s < i, as long as n = 2i + 1 > 2s + 1, and therefore
all s-dimensional cycles and (s+ 1)-dimensional membranes can be assumed to be
nonintersecting with Si

1. For s = 1 we can assume that the s-dimensional cycles do
not intersect with Si

1. Therefore an embedding induces the epimorphism

x1∗ : Hi(Q̄n) → Hi(Qn).

But the membranes have dimension i+ 1 and intersect with S̄i
1 at isolated points.

Consequently, two cycles that are homologous in Qn will be homologous in Q̄n

modulo b(x1). Hence
Kerx1∗ = (b(x1)).

In the homology class y1 ∈ Hi(Qn, Z) one can find a cycle ȳ1 and a membrane
∂−1(qȳ1) such that the intersection index

∂−1(qȳ1) ◦ x1 = 1,

from which it follows that the cycle b(x1) is homologous to qȳ1. Thus the lemma
is proved. �

It is well known that the linkages Lk(x, y) are bilinear, symmetric for odd i and
antisymmetric for even i. We select in the group TorHi(Qn, Z) a p-primary system
of subgroups

H(p, sp) ⊃ H(p, s− 1) ⊃ · · · ⊃ H(p, 1),

where
TorHi(Qn, Z) =

∑
p,k

H(p, k)/H(p, k − 1).4

Thus, to the group H(p, sp) are referred all elements of a group having orders
of the form pj , and to H(p, k)/H(p, k − 1) are referred all p-primary generators
of order pk and H(p, k)/H(p, k − 1) represents the subgroup H̃(p, k) ⊂ H1(Qn, Z)
spanned by them.

Lemma 4.11. a) A decomposition of the group TorHi(Qn, Z) into the direct sum
of groups H(p, k)/H(p, k − 1) can be performed by a suitable choice of p-primary
generators such that Lk(x, y) = 0 if x ∈ H̃(p, k − 1), y ∈ H̃(p, k2), k1 6= k2;

b) in each group H̃(p, k) one can choose a system of p-primary generators
x1, . . . , xl, y1, . . . , y2m ∈ H̃(p, k) such that :

Lk(xs, yl) = 0, 1 ≤ s ≤ t, 1 ≤ l ≤ 2m,

Lk(xs1 , xs2) = 0, s1 6= s2,

Lk(yl1 , yl2) = 0, |l1 − l2| > 1,

Lk(yl1 , yl1) = 0, l1 + l2 ≡ 1 (mod 4),

(18)

Lk(xs, xs) 6≡ 0 (mod p), 1 ≤ s ≤ t,(19)

Lk(yl, yl) ≡ 0 (mod p), 1 ≤ l ≤ 2m,

Lk(y2l−1, y2l) ≡ 0 (mod pk), 1 ≤ l ≤ m.

}
(20)

4The choice is such that H(p, k) = H(p, k)/H(p, k−1)+H(p, k−1), H̃(p, k) = H(p, k)/H(p, k−
1).
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Proof. It is easily seen that for any choice of a system of p-primary generators in
the group H(p, sp) the matrix of linking coefficients for the generating elements of
order psp (considered mod psp) has a determinant that is relatively prime with p.
We put k = sp and consider the subgroup H(p, sp − 1) such that

Lk(x, y) = 0,

where x ∈ H(p, sp − 1) and y is a generator of order psp . Now one can choose a
new system of p-primary generators in which all generators of orders less than psp

belong to the subgroup H(p, sp−1). We presuppose by induction that in the group
H(p, sp) there are chosen subgroups H(p, k) and a system of p-primary generators
such that:

a) all generators of order not greater than pk belong to H(p, k);
b) Lk(x, y) = 0, x ∈ H(p, k), y being a generator of order > pk.
We construct the group H(p, k − 1). We consider the subgroup H(p, k) and

assume that H(p, k − 1) consists of all elements x ∈ H(p, k − 1) such that

Lk(x, y) = 0,

where x ∈ H(p, k − 1) and y is a generator of order pk. Since the matrix of
linking coefficients for the base cycles of order pk of the group H(p, k) (the linking
coefficients are assumed at this step to be determined mod pk) has a determinant
that is relatively prime with p it follows that the group H(p, k − 1) constructed
by us possesses all the necessary properties. Thus we have decomposed the group
H(p, sp) into the direct sum of the groups

H̃(p, k) = H(p, k)/H(p, k − 1)

so that
Lk(H̃(p, k1), H̃(p, k2)) = 0, k1 6= k2.

Point a) of the lemma is completely proved. For the proof of point b) we note that
each group H̃(p, k) represents a linear space over the ring Zpk with scalar product
Lk(x, y) having a determinant that is relatively prime with p. Consequently, either

1) in the original base one finds a generator x̃1 such that Lk(x̃1, x̃2) 6≡ 0 (mod p),
or

2) one finds a pair of generators ỹ1, ỹ2 such that

Lk(ỹ1, ỹ1) ≡ 0 (mod p), Lk(ỹ2, ỹ2) ≡ 0 (mod p),

Lk(ỹ1, ỹ2) 6≡ 0 (mod p).

If case 1) holds, then one must select a base (x̃1, x2, . . . , xt, y1, . . . , ys) such that

Lk(xj , x̃1) = Lk(yj , x̃1) = 0, j ≥ 2.

If case 2) holds, then∣∣∣∣ Lk(ỹ1, ỹ1) Lk(ỹ1, ỹ2)
±Lk(ỹ1, ỹ1) Lk(ỹ2, ỹ2)

∣∣∣∣ = ∣∣∣∣pa11 a12

±a12 pa22

∣∣∣∣ 6≡ 0 (mod p);

we select a new base {xj , ỹε, yl}, l ≥ 2, such that

Lk(xj , ỹε) = Lk(yl, ỹε) = 0, ε = 1, 2.

In the second case we put

y1 = ỹ1, y2 =
1

Lk(ỹ1, ỹ2)
ỹ2.
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Then in both cases we select the other required generators in subgroups that are
orthogonal to x̃1 (in the first case) and orthogonal to ỹ1, ỹ2 (in the second case) in
such a way that the relations (18)–(20) are fulfilled. The lemma is proved. �

In the sequel we will always compose a minimal system of generators of the
group TorHi(Qn, Z) from the p-primary generators constructed in Lemma 4.11.
We will select a minimal (with respect to the number of generators) system, and
the generating element x of aggregate order

q =
∏
p∈I

pkp

will in a canonical manner be decomposed into a sum of primary generators x =∑
p x(p) of orders pkp . We divide the set of indices J into two parts: in the first

part J1 we put all p for which the elements x(p) satisfy condition (19), and in the
second part we put all p for which the x(p) satisfy condition (20). Putting

x̄ =
∑
p∈J1

x(p), ¯̄x =
∑
p∈J2

x(p),

we get that for ¯̄x there exists a base element ¯̄y, independent of ¯̄x, such that the
number Lk(¯̄x, ¯̄y) is relatively prime to the order of ¯̄x (equal to the order of ¯̄y).

Lemma 4.12. If n = 2i+ 1 and i is even, then the order of the element ¯̄x is equal
to 2 (if x̄ 6= 0).

It is evident that the proof of the lemma immediately follows from the antisym-
metry Lk(x̄, x̄) = −Lk(x̄, x̄) that must be relatively prime to the order of x̄. The
lemma is proved. �

Suppose the cycle x̄1 is realized by the sphere Si
1 ⊂ Qn, i even. According to

Lemma 4.10, to the element x̄1 ∈ Hi(Qn) corresponds an element ˜̄x1 ∈ Hi(Q̄n)
such that b(x̄1) = 2˜̄x1. One can assume that ˜̄x1 lies on the boundary of the tubular
neighborhood

T (Si) ⊂ Qn, T (Si) = Si ×Di+1.

Lemma 4.13. The kernel of the homomorphism

Hi(Q̄n) → Hi(Qn(h)),

for any h : ∂Di+1 ×Dn−i
ε → T (Si

1) such that

h(x, y) = (x, hx(y)), hx ∈ SOi+1,

is generated by the element (1 + 2λ(h))˜̄x1, where λ(h) is a certain integer.

Proof. We consider the map d(h) : Si
1 → SOi+1, defining a reconstruction of Morse,

and we denote by y(h) the homology class of the cycle ỹ(h) ∈ ∂T (Si
1), defined by

the first vector of the frame field d(h), normal to Si
1 in Qn, y(h) ∈ Hi(Q̄n). There

exists a number λ(h) such that

y(h) = ˜̄x1 + λ(h)b(x̄1)

or
y(h) = (1 + 2λ(h))˜̄x1.

Clearly, under the inclusion homomorphism Hi(Q̄n) → Hi(Qn) the kernel is gener-
ated by the element

y(h) = (1 + 2λ(h))˜̄x1.

The lemma is proved. �
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Thus we have eliminated the element x̄1 of order 2. Therefore in the group
Hi(Qn(h)) of generators not satisfying condition (20) there will be one less (for i
even), since all such generators have order 2 according to Lemma 4.12.

Suppose i is arbitrary (either even or odd) and that ¯̄x1 is a generating cycle
¯̄x1 ∈ Hi(Qn), satisfying condition (20) and realized by the sphere Si

1 ⊂ Qn with
trivial normal bundle νi+1(Si

1, Q
n). Suppose also that the cycle ¯̄x2 ∈ Hi(Qn) is such

that Lk(¯̄x1, ¯̄x2) = 1. We denote, as in Lemma 4.10, the generators corresponding
to them by ˜̄̄x1, ˜̄̄x2 ∈ Hi(Q̄n), where b(¯̄x1) = q1 ˜̄̄x2, q1 is the order of the generators
¯̄x1, ¯̄x2 ∈ Hi(Qn) and ˜̄̄x1 is the homology class in Hi(Qn) of the cycle ¯̄x1(h) defined
by the first vector of an (i+1)-frame field h : Si → SOi+1 on the boundary ∂T (Si

1)
for a fixed h. Then we have

Lemma 4.14. The kernel of the inclusion homomorphism Hi(Q̄n) → Hi(Qn(h))
is generated by the element ˜̄̄x1, and the group Hi(Qn(h)) has one generator less
than the group Hi(Qn).

The proof of the lemma follows from the definition of Morse’s reconstruction and
the relation b(¯̄x1) = q1 ˜̄̄x2.

Remark. The element ˜̄̄x2 ∈ Hi(Qn(h)) has order λq1, where

λ ≡ Lk(¯̄x1, ¯̄x1) (mod q1),

and the number Lk(˜̄̄x2, ˜̄̄x2) is relatively prime to λq1 if λ 6= 0 (i.e., the element ˜̄̄x2

satisfies condition (19) in the manifold Qn(h)).

Let i be odd. We consider the element x̄1 ∈ Hi(Qn) realized by the sphere
Si

1 ⊂ Qn with trivial normal bundle νi+1(Si
1, Q

n). The self-linking coefficient

Lk(x̄1, x̄1) = λ (mod q),

where q is the order of x̄1 and λ is relatively prime to q. It follows from Lemma
4.10 that on the boundary ∂T (Si

1) one can find a cycle ˜̄x1 such that the relation

λb(x̄1) = q ˜̄x1

will be fulfilled in the homology group Hi(Q̄n).
We consider the map h : Si

1 → SOi+1 and the kernel of the embedding

j∗ : πi(SOi+1) → πi(SO∞),

which is isomorphic to the group Z for i odd, Ker j∗ = Z.
We denote by y(h) the homology class in Q̄n of the cycle defined on ∂(Si

1) =
Si

1×Si
ε (b(x̄1) = g0×Si

ε, g0 ∈ Si
1, as above) by the first vector of the frame field h.

Let µ ∈ Ker j∗ = Z (µ a number).

Lemma 4.15. The kernel of the inclusion homomorphism

Hi(Q̄n) → Hi(Qn(h))

is generated by the element y(h) = ˜̄x1 + γb(x̄1). The kernel of the inclusion homo-
morphism

Hi(Q̄n) → Hi(Qn(h+ µ)), µ ∈ Ker j∗ = Z,

is generated by the element y(h+ µ) = y(h) + 2µb(x̄1).
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The proof of Lemma 4.15 immediately follows from the definition of Morse’s
reconstruction and the structure of the homomorphism Ker j∗ → Hi(Si) induced
by the map SOi+1 → Si (projection) under which the generator of the group Ker j∗
goes over into the cycle 2[Si]. Therefore

y(h+ µ) = y(h) + 2µb(x̄1).

Let us prove that
y(h) = ˜̄x1 + γb(x̄1).

To do this we consider the intersection index

[∂−1q1y(h)] · x̄1 = λ mod q1 = λ+ γq1.

On the other hand,
[∂−1b(x̄1)] · x̄1 = 1.

Therefore
[∂−1(q1y(h)− q1γb(x̄1))] · x̄1 = λ,

from which it follows that one can put ˜̄x1 = y(h)−γb(x). The lemma is proved. �

Lemma 4.16. One can choose a number µ such that in the group Hi(Qn(h+ µ))
we will have:

a) ˜̄x1 = 0, λb(x̄1) = 0 (γ even),
b) ˜̄x1 = b(x̄1), (λ1 − q1)˜̄x1 = 0 (γ odd),

where in both cases the order of the “new” element b(x̄1) is less then q1; the number
Lk(b(x̄1), b(x̄1)) is relatively prime to the order of the element b(x̄1).

Proof. Since λb(x̄1) = q1 ˜̄x1 in Q̄n and ˜̄x1 = y(h)− γb(x̄1), we have

y(h+ µ) = y(h) + 2µb(x̄1) = ˜̄x+ γb(x̄1) + 2µb(x̄1).

In passing to Qn(h+ µ) the relation y(h+ µ) = 0 is imposed. Therefore

˜̄x1 = −(γ + 2µ)b(x̄1) (in Qn(h+ µ)),

λb(x̄1) = q1 ˜̄x1 (in Q̄n),

from which follows the possibility of making such a choice of µ (µ = −γ/2 for γ
even and 2µ− 1 = γ for γ odd).

Clearly, by virtue of Lemma 4.11, the element b(x̄1) does not link with the other
base cycles.

Thus the assertion is proved. �

Now we apply the proved lemmas to a study of the maps

fα : SN+n → TN (Mn),

where n = 2i+ 1.

Lemma 4.17. Let α ∈ A(Mn). There exists a map

fα : SN+n → TN (Mn)

such that the inverse image f−1
α (Mn) = Mn

α is homotopically equivalent to Mn.
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Proof. As above, we consider the map

ifα : SN+n → TN (Mn),

constructed according to Lemma 4.6, and the preimage

Mn
α,i|if−1

α (Mn),

on which the groups Hs(Mn
α,i) are isomorphic to the groups Hs(Mn) for s < i and

π1(Mn
α,i) = 0. The group Ker if

(Hi)
α∗ is singled out in Hi(Mn

α,i), n = 2i + 1, as a

direct summand according to Lemma 4.4′. The group Ker if
(Hi+1)
α∗ is free abelian,

according to Lemma 4.5. First we attempt by means of Morse’s reconstructions to
kill the group Tor Ker if

(Hi)
α∗ , using the Poincaré–Alexander duality. If i is even,

then, on the basis of Lemmas 4.12 and 4.13, we kill all elements not satisfying con-
dition (20), without increasing the number of generators, and next, by Lemma 4.14,
we kill the elements satisfying condition (20), decreasing the number of generators
by 1 with each reconstruction. If i is odd, then by means of Morse’s reconstructions
we successively kill the generators satisfying condition (20), each time decreasing
the number of generators by 1 (by Lemma 4.14), and next, by Lemmas 4.15–4.16,
we commence to decrease the order of some generator satisfying condition (19),
each time not increasing the number of generators yet reducing the order of this
generator (varying the reconstruction mod Ker j∗ ⊂ πi(SOi+1)), which preserves
the possibility of carrying over the frame fields (cf. the proofs of Lemmas 1.1 and
1.2). Thus, as a result we kill the group Tor Ker if

(Hi)
α∗ . Then, according to the

results in [4], we easily kill the elements of infinite order and so arrive at the needed
manifold Mn

α and the map

fα : SN+n → TN (Mn)

by analogy with Lemmas 4.7, 4.8 and 4.9. The lemma is proved. �

We collect the results of the lemmas into the following theorem.

Theorem 4.18. If n = 4k, k ≥ 2, or n = 2k + 1, then each element

α ∈ A(Mn) ⊂ πN+n(TN (Mn)), A(Mn) = H−1φ[Mn]

is represented by a map fα : SN+n → TN (Mn) that is t-regular and such that

π1(Mn
α ) = 0, Hi(Mn

α ) = Hi(Mn)

for i = 2, . . . , n−2, where Mn
α = f−1

α (Mn). Thus the manifold Mn
α is homotopically

equivalent to Mn with degree +1 and νN (Mn
α ) = f∗αν

N (Mn). If n = 4k+ 2, k ≥ 1,
then for any element α ∈ A(Mn) one can choose a map fα : SN+n → TN (Mn) of
the same homotopy class as α such that

π1(Mn
α ) = 0, Hi(Mn

α ) = Hi(Mn)

for i ≥ 2k, where Mn
α = f−1

α (Mn); moreover,

Ker f (H2k+1)
α∗ = Z + Z,

and there is defined an invariant φ(α) ∈ Z2 for n = 4k+2, k 6= 1, 3, and ψ(α) ∈ Z2

for n = 6, 14, the equality of these invariants to zero being a sufficient condition
for reseating the groups Ker f (H2k+1)

α∗ = Z + Z by means of the reconstructions of
Morse.

The theorem is a formal unification of the preceding lemmas.
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§ 5. The manifolds in one class

For any element α ∈ Ā(Mn) ⊂ A(Mn) the map representing it

fα : SN+n → TN (Mn)

is called admissible if it satisfies Lemma 3.2 and if the inverse image

f−1
α (Mn) = Mn

α

is homotopically equivalent to Mn.

Theorem 5.1. Let fα,i : SN+n → TN (Mn), i = 1, 2, be two admissible homotopic
maps and Mn

α,i = f−1
α,i (M

n). If n is even, then the manifolds Mn
α,i are diffeomorphic

with degree +1. If n is odd, then there exists a Milnor sphere S̃n ∈ θn(∂π), which
is the boundary of a π-manifold, such that the manifolds Mn

α,1 and Mn
α,2 # S̃n are

diffeomorphic with degree +1.

Proof. We consider the homotopy

F : SN+n × I → TN (Mn),

where F |SN+n × 0 = fα,1 and F |SN+n × 1 = fα,2. We divide the proof into a
number of steps.

Step 1. We t-regularize the homotopy F . Then we consider the inverse image

F−1(Mn) ⊂ SN+n × I(0, 1),

which is a manifold Nn+1 with boundary

∂Nn+1 = Mn
α,1 ∪ (−Mn

α,2),

and
νN (Nn+1) = F ∗νN (Mn).

Thus there is defined a map F |Nn+1 → Mn, which is a homotopy equivalence of
degree +1 on each of the boundaries. The manifold Nn+1 is an (F, π)-manifold
mod Mn.

Step 2. We consider the decompositions into direct sums

(21)

Hj(Nn+1) = Hj(Mn
α,i) + KerF (Hj)

∗ , i = 1, 2,

πj(Nn+1) = πj(Mn
α,i) + KerF (πj)

∗ , i = 1, 2,

Hj(Nn+1) = Hj(Mn
α,i) + CokerF∗, i = 1, 2,


that arise from the natural retractions of a membrane onto each of the boundaries:

(22) (fα,i)−1 · F : Nn+1 →Mn
α,i,

where the maps (fα,i)−1 · fα,i : Mn
α,i →Mn

α,i are homotopic to the identity maps.
It is evident that

(23)

Hj(Nn+1,Mn
α,i) = KerF (Hj)

∗ , i = 1, 2,

πj(Nn+1,Mn
α,i) = KerF (πj)

∗ , i = 1, 2,

Hj(Nn+1,Mn
α,i) = CokerF∗, i = 1, 2.


We have the following
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Lemma 5.2. Among the groups KerF (Hj)
∗ /Tor and KerF (Hn+1−j)

∗ /Tor there is
defined by means of the intersection index a nonsingular wimodular scalar product.
Among the groups TorKerF (Hj)

∗ and TorKerF (Hn−j)
∗ there is defined the Alexander

duality : for every minimal system of generators x1, . . . , xl ∈ TorKerF (Hj)
∗ there

exists a minimal system of generators y1, . . . , yl ∈ TorKerF (Hn−j)
∗ such that the

order of yi is equal to the order of xi, i = 1, . . . , l, and Lk(xi, yj) = δij.

Proof. Lemma 5.3 is an immediate consequence of the decompositions into direct
sums (21), the isomorphisms (23) between the various groups mod Mn

α,i and the

groups KerF (Hk)
∗ , and the Poincaré–Alexander duality D:

(24)
D : Hj(Nn+1,Mn

α,1)
≈−→ Hn+1−j(Nn+1,Mn

α,2),

TorHj(Nn+1,Mn
α,1) ≈ TorHn−j(Nn+1,Mn

α,2).

The lemma is proved. �

Step 3. By means of Morse’s reconstructions we successively kill the groups
π1(Nn+1),KerF (H2)

∗ , . . . , etc., reconstructing the map F onto the reconstructed
manifold and using in this regard all of the techniques proved in §4.

Case 1. If n is even, then n + 1 is odd and the successive reconstructions
of the groups KerF (Hj)

∗ up to j = n/2 do not encounter obstructions. While if
KerF (Hj)

∗ = 0 for j ≤ n/2, then, by Lemma 5.3, KerF (Hn+1−j)
∗ = 0 (and π1 = 0).

Therefore the membrane Nn+1 contracts onto each of its boundaries, effecting by
the same token a J-equivalence (h-cobordism) of them. According to a theorem of
Smale [19] the manifolds Mn

α,1 and Mn
α,2 are diffeomorphic.

Case 2. If n = 4k−1, then n+1 = 4k. By analogy with the preceding case one
can obtain the result that KerF (Hj)

∗ = 0 for j < 2k and KerF (Hj)
∗ = 0 for j > 2k.

The matrix of intersections of the free abelian group KerF (H2k)
∗ will be unimodular

and will have even numbers on its diagonal (in exact analogy with Lemma 4.7), but
its signature, in contrast to the situation in Lemma 4.7, is not necessarily equal to
zero, since the formula of Hirzebruch [3] is applicable only for closed manifolds. We
denote this matrix of intersections by B = (bij), where bij = xj · xj and x1, . . . , xs

is a base of the group KerF (H2k)
∗ . We denote the signature of the matrix B by

τ(B). It is known (cf. [8]) that τ(B) ≡ 0 (modulo 8) since detB = ±1 and bii ≡ 0
(mod 2).

We construct, following Milnor [8], a π-manifold Mn+1(B) such that:
a) π1(Mn+1(B)) = 0;
b) Hj(Mn+1(B)) = 0, j 6= 0, 2k;
c) ∂Mn+1(B) is a homotopy sphere

S̃n = ∂Mn+1(B) ∈ θn(∂π);

d) the matrix of intersections of the base cycles of the group H2k(Mn+1(B)) is
such that its signature

τ(Mn+1(B)) = −τ(B).

We now consider the manifold

(25) Nn+1 ∪f0 D
n
ε × I(0, 1) ∪f1 M

n+1(B) = Nn+1(B),
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where
f0 : Dn

ε × 0 →Mn
α,2,

f1 : Dn
ε × 1 → ∂Mn+1(B)

(f0, f1 are diffeomorphisms having the necessary degree, equal to ±1). Clearly,

∂Nn+1(B) = Mn
α,1 ∪ (−Mn

α,2 # S̃n).

In addition there are defined the retractions

(26)
F1 : Nn+1(B) →Mn

α,1,

F1 : Nn+1(B) →Mn
α,2 # S̃n,

induced by the retractions (fα,1)−1 · F and (fα,2)−1 · F . Since Mn+1(B) is a π-
manifold, it is easy to see that

F ∗i ν
N (Mn

α,i) = νN (Nn+1(B)), i = 1, 2.

By construction, the signature of the matrix of intersections of the base cycles of
the group KerF (H2k)

i∗ , i = 1, 2, is equal to the sum of signatures

τ(B) + τ(Mn+1(B)) = 0.

Further, we repeat completely the arguments of Lemma 4.7, we reconstruct by
the same method the group KerF (H2k)

i∗ , killing it, and we apply the theorem of
Smale (cf. Case 1). In this way. Case 2 is investigated.

Case 3. n = 4k + 1, n + 1 = 4k + 2. By analogy with Cases 1 and 2 and the
proofs of Lemmas 4.8 and 4.9 we will assume that the membrane Nn+1 is such that:

a) KerF (Hj)
∗ = 0, j < 2k + 1,

b) π1(Nn+1) = 0,
c) KerF (H2k+1)

∗ = Z + Z or 0, depending on which of the invariants φ (for
k 6= 1, 3) or ψ (for k = 1, 3) is obstructing a reconstruction of Morse.

In the first place, the invariant ψ (for the cases k = 1, 3) did not obstruct the
reconstructions of Morse but only the carrying over of the frame fields (cf. Lemma
4.9), which is of no concern to us at this point. Therefore we carry out these
reconstructions (without being concerned about the fields) and get that

KerF (H2k+1)
∗ = 0, k = 1, 3.

Thus the membrane contracts onto each of its boundaries and is therefore (cf. [19])
diffeomorphic to Mn

α,1 × I.

If k 6= 1, 3, then on the base cycles x, y ∈ KerF (H2k+1)
∗ is defined the invariant

φ(x), φ(y).
If φ(x) = 0 or φ(y) = 0, then we carry out a reconstruction of Morse, recalling the

meaning of φ (an invariant normal to the bundle of an embedded sphere S2k+1 ⊂
N4k+2). Suppose φ(x) 6= 0 and φ(y) 6= 0. We construct, according to Kervaire [4],
a π-manifold M4k+2(φ) such that:

a) the boundary ∂M4k+2(φ) is a homotopy sphere;
b) π1(M4k+2(φ)) = Hj(M4k+2(φ)) = 0, j 6= 0, 2k + 1;
c) H2k+1(M4k+2(φ)) = Z + Z; and denoting the base cycles by x̄, ȳ,
d) φ(x̄) = φ(ȳ) = 1.
As in Case 2 we pat

(27) N4n+2(φ) = N4k+2 ∪f0 D
4k+1
ε × I(0, 1) ∪f1 M

4k+2(φ),
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where
f0 : D4k+1

ε × 0 →M4k+1
α,1 ,

f1 : D4k+1
ε × 1 →M4k+2

α,2

are diffeomorphisms having the necessary degree, equal to +1. Then

∂N4k+2(φ) = M4k+1
α,1 ∪ (−M4k+1

α,2 # ∂M4k+2(φ)).

Using next the relation

φ(z + t) = φ(z) + φ(t) + Z · t| mod 2,

we find a new base x1, x2, x3, x4 ∈ KerF (H2k+1)
1∗ , where

F1 : N4k+2(φ) →M4k+1
α,1

is a natural retraction (here φ(xi) = 0, i = 1, 2, 3, 4), and we seal cycles by means of
Morse’s reconstructions. Then the theorem of Smale (cf. Case 1) is again applied.
The theorem is proved. �

§ 6. One manifold in different classes

We will consider only maps

fα : SN+n → TN (Mn)

that are admissible in the sense of §5.

Lemma 6.1. The homotopy class of an admissible map

fα : SN+n → TN (Mn)

is completely defined by :
a) a manifold Mn

α that is homotopically equivalent to the manifold Mn with
degree +1 and such that Mn

α ≥Mn;
b) some (arbitrary) embedding of Mn

α ∈ SN+n;
c) some (arbitrary up to homotopy) smooth map f̃α : Mn

α → Mn of degree +1,
for which f̃∗αν

N (Mn) = νN (Mn
α );

d) some (arbitrary up to homotopy) smooth map of SON -bundles
˜̃
fα : νN (MN

α ) → νN (Mn)

that covers the smooth map f̃α : Mn
α →Mn.

Proof. If we are given a manifold Mn
α , an embedding of Mn

α ⊂ SN+n, a map
f̃α : Mn

α →Mn and a map of bundles ˜̃
fn : νN (Mn

α ) → νN (Mn) covering f̃α, then the
map fα is completely defined on the tubular neighborhood T (Mn

α ) ⊂ SN+n, since
the tube T (Mn

α ) is the space of the normal bundle νN (Mn
α ). In the construction of

the Thom complex TN (Mn) an extension of fα onto the rest of the sphere SN+n is
carried out trivially (in a neighborhood of a critical point of the Thom complex) and
uniquely to within homotopy. We now assume that the embedding Mn ⊂ SN+n is
subjected to isotopies, and the maps f̃α and ˜̃

fα are subjected to homotopies, where
all of the isotopies and homotopies are smooth, and a homotopy of the map ˜̃

fα is a
homotopy of maps of SON -bundles that covers a homotopy of f̃α. These isotopies
and homotopies simultaneously define an embedding of

Mn
α × I(0, 1) ⊂ SN+n × I(0, 1)
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and a map F of the tubular neighborhood

T (Mn
α × I(0, 1)) ⊂ SN+n × I

(T (Mn
α × I(0, 1)) is diffeomorphic to νN (Mn

α ) × I(0, 1)) into the space TN (Mn),
where F (Mn

α × I) ⊂Mn. Further, the map

F : T (Mn
α × I) → TN (Mn)

is extended in a well-known manner to the map

F : SN+n × I → TN (Mn),

where F |SN+n × 0 = fα. Consequently, the homotopy class α of the map fα does
not depend on the arbitrariness in choice of the embedding (all of the embeddings
are isotopic for N � n) and of the maps f̃α,

˜̃
fα in their homotopy classes.

The lemma is proved. �

Thus, for a fixed manifold Mn
α the homotopy class of an admissible map fα,

fα : SN+n → TN (Mn),

is completely defined by the homotopy class of a map f̃α : Mn
α →Mn of degree +1

such that
νN (Mn

α ) = f̃∗αν
N (Mn),

and by the homotopy class of a map of SON -bundles
˜̃
fα : νN (Mn

α ) → νN (Mn)

that covers f̃α (in the sequel it will be assumed without further comment that the
embedding of Mn

α ⊂ SN+n is fixed).

Lemma 6.2. If two manifolds Mn
α,i ≥ Mn, i = 1, 2, homotopically equivalent to

Mn, have at one time been shown to be in one and the same class α ∈ Ā(Mn) ⊂
A(Mn), then, for any class α1 for which there exists an admissible map

fα1,1 : SN+n → TN (Mn)

such that f−1
α1,1(M

n) = Mn
α,1, there exists another admissible map

fα1,2 : SN+n → TN (Mn)

such that f−1
α1,2(M

n) = Mn
α,2.

Proof. We consider the t-regular homotopy

F : SN+n × I(0, 1) → TN (Mn),

where F |SN+n × 0 = fα,1 and F |SN+n × 1 = fα,2. We put

Nn+1 = F−1(Mn) ⊂ SN+n × I,

where
νN (Nn+1) = F ∗νN (Mn).

Since the map F becomes on the boundaries the homotopy equivalences f̃α,1

and f̃α,2, the membrane Nn+1 naturally retracts onto each of the boundaries. We
denote these retractions by

Fi = (fα,i)−1 · F, i = 1, 2.
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According to Lemma 6.1 one can obtain the element α1 in the following manner: on
the boundary Mn

α,1 ⊂ ∂Nn+1 we change the map f̃α,1 into f̃α1,1 and, analogously,

we change the bundle map ˜̃
fα,1 into ˜̃

fα1,1. Since the membrane Nn+1 retracts onto
a boundary and

νN (Nn+1) = F ∗1 ν
N (Mn

α,1),

we can extend the maps f̃α1,1,
˜̃
fα1,1 to the maps

F̃ : Nn+1 →Mn

and
˜̃F : νN (Nn+1) → TN (Mn).

Then we extend this map ˜̃F with tubular neighborhood T (Nn+1) ⊂ SN+n× I onto
the entire direct product SN+n × I in the manner of Thom and we denote this
extension by

F̄ : SN+n × I → TN (Mn).
Clearly,

F̄ |SN+n × 0 = fα1,1.

Putting
fα1,2 = F̄ |SN+n × 1,

if the extension F̄ is smooth on T (Nn+1), and this property can always be attained,
we get the statement of the lemma. The lemma is proved. �

In addition we are now able to consider only one fixed manifold Mn
α ≥ Mn,

Mn ≥Mn
α , and study the problem of determining the set of classes αi ∈ Ā(Mn) ⊂

A(Mn) in which it may lie. We denote by B(Mn
α ) the set of classes αi ∈ Ā(Mn)

for which there exist admissible maps

fαi
: SN+n → TN (Mn)

such that
f−1

αi
(Mn) = Mn

α .

We denote by π+(Mn
α ,M

n) the set of homotopy classes of maps f : Mn
α → Mn of

degree +1 such that
f∗νN (Mn) = νN (Mn

α ).
We denote by π(X,Y ) the set of homotopy classes of maps X → Y for any com-
plexes X,Y . In particular, the sets π+(Mn,Mn) and π(Mn, SON ) are groups,
where π(Mn, SON ) is an abelian group and the group π+(Mn,Mn) acts without
fixed points and is transitive on π+(Mn

α ,M
n).

Lemma 6.3. The set B(Mn
α ) ⊂ Ā(Mn) splits into a union of disjoint sets

B(Mn
α ) =

⋃
f

Bf (Mn
α ),

where f ∈ π+(Mn
α ,M

n) and Bf (Mn
α ) is the subset of the set B(Mn

α ) that consists
of those classes α ∈ Ā(Mn) in which is found an admissible map

fα : SN+n → TN (Mn)

such that f−1
α (Mn) = Mn

α and, when considered on Mn
α , having the homotopy class

of f ∈ π+(Mn
α ,M

n).
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Proof. It has already been established that the set Bf (Mn
α ) is defined correctly,

i.e., to the homotopic maps Mn
α →Mn there correspond identical sets of homotopy

classes. Let us prove that if two sets Bf1(M
n
α ) and Bf2(M

n
α ) intersect, then they

coincide. By analogy with the proof of Lemma 6.2 we consider an element

α0 ∈ Bf1(M
n
α ) ∩Bf2(M

n
α )

and, corresponding to it, two admissible maps

fα0,i : SN+n → TN (Mn)

such that fα0,1|Mn
α → Mn and fα0,2|Mn

α → Mn have the homotopy classes of
f1, f2.

We consider their t-regular homotopy

F : SN+n × I(0, 1) → TN (Mn)

and the membrane

Nn+1 = F−1(Mn) ⊂ SN+n × I(0, 1),

retracting onto each of two of its boundaries. By analogy with Lemma 6.2, on the
lower boundary we change the bundle map

νN (Mn
α ) → νN (Mn),

keeping the map fα0,1|Mn
α → Mn fixed. We can extend this variation of a bundle

map to a variation of the bundle map

νN (Nn+1) → νN (Mn),

keeping it fixed on Nn+1, which can be done, starting from a retraction of the
membrane onto the boundary Mn

α ⊂ SN+n × 0. Then, by means of a well-known
method, we extend the map varied in a tubular neighborhood onto all of the product
SN+n × I(0, 1). According to Lemma 6.1, by such a change we can obtain from α0

any other element α1 ∈ Bf1(M
n
α ). Thus

Bf1(M
n
α ) ⊃ Bf2(M

n
α ).

By symmetry
Bf1(M

n
α ) = Bf2(M

n
α ).

The lemma is proved. �

Lemma 6.4. The group π(Mn
α , SON ) acts transitively on each set Bf (Mn

α ).

Proof. Suppose there exist two classes αi ∈ Bf (Mn
α ), i = 1, 2, and, representing

them, admissible maps
fαi

: SN+n → TN (Mn)
such that

f−1
αi

(Mn) = Mn
α , i = 1, 2,

and the maps fαi
|Mn

α → Mn are homotopic. By means of the homotopy con-
structed in Lemma 6.1 we change the map fα2 to an admissible map f

(1)
α2 that is

homotopic to it and such that

f (1)
α2

= fα1 |Mn
α .

Then the bundle maps f (1)
α2 and fα1 : νN (Mn

α ) → νN (Mn) differ on each fiber DN
x

over a point x ∈Mn
α by a discriminating orthogonal transformation hx ∈ SON that
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is smoothly dependent on the point x ∈ Mn
α . Consequently, there arises a smooth

map
h : Mn

α → SON ,

discriminating the maps f (1)
α2 and fα1 in a neighborhood T (Mn

α ) ⊂ SN+n of the
manifold Mn

α . According to Lemma 6.1, if the map h : Mn
α → SON is homotopic to

zero, then the elements α1 and α2 are equal to each other. Thus, the discriminator
h is defined to within homotopy and the map fα1 , “twisted” in each fiber DN

x over
a point x ∈Mn

α by a transformation hx ∈ SON , coincides with f (1)
α2 . On the set of

classes Bf (Mn
α ) there acts the group π(Mn

α , SON ), and it is transitive. The lemma
is proved. �

The lemmas combine into the following

Theorem 6.5. On the set

Ā(Mn) ⊂ A(Mn) = H−1φ[Mn] ⊂ πN+n(TN (Mn))

there acts the group π+(Mn, SON ). On the orbit set

Ā(Mn)/π(Mn, SON )

there acts the group π+(Mn,Mn). The elements of the orbit set

B = [Ā(Mn)/π(Mn, SOn)]/π+(Mn,Mn)

are found to be in a natural one-to-one correspondence with the classes of manifolds
Mn

α ≥ Mn, Mn ≥ Mn, with respect to a diffeomorphism of degree +1 modulo
θn(∂π) for n odd and a diffeomorphism of degree +1 for n even.

Proof. According to Lemmas 6.3 and 6.4, to the manifold Mn corresponds a set

B(Mn
α ) =

⋃
f∈π+(Mn

α ,Mn)

Bf (Mn
α ),

and the group π(Mn
α , SON ) acts transitively on each set Bf (Mn

α ). But the
groups π(Mn

α , SON ) and π(Mn, SON ) are isomorphic, and if a homotopy class
f ∈ π+(Mn

α ,M
n) is given, then there corresponds to it an isomorphism

f∗ : π(Mn, SON ) → π(Mn
α , SON ).

Therefore on each set Bf (Mn
α ) there naturally acts the group π(Mn, SON ); here

h(a) = f∗h(x), α ∈ Bf (Mn
α ), h ∈ π(Mn, SON ).

On the other hand, on the set of classes f ∈ π+(Mn
α ,M

n) without fixed points
there acts the group π+(Mn,Mn) (and transitively). Therefore on the factor set
B(Mn

α )/π(Mn, SON ) there acts the group π+(Mn,Mn), and transitively, i.e., the
factor set

[B(Mn
α )/π(Mn, SON )]/π+(Mn,Mn)

consists of one element. Using the action of the groups π(Mn, SON ) and
π+(Mn,Mn) on each of the sets of B(Mn

α ) for all manifolds Mn
α , where

Mn
α ≥Mn, Mn ≥Mn

α ,

we obtain the action of these groups on all of the set Ā(Mn), and the factor set with
respect to both of these groups is found to be in a natural one-to-one correspondence
with the set of manifolds, that are identified with each other if at least once (and
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consequently always according to Lemma 6.2) they lie in one and the same class
α ∈ Ā(Mn). Applying Theorem 5.2 we obtain the desired statement.

The theorem is proved. �

For subsequent applications it is convenient to note the following

Lemma 6.6. To the automorphism of the SON -bundle

h : νN (Mn) → νN (Mn),

fixed on the base Mn, or, what is the same thing, to the map

h : Mn → SON ,

there corresponds the map

Th : TN (Mn) → TN (Mn);

to the homotopic maps hi : Mn → SON , i = 0, 1, there correspond the homotopic
maps Thi, and in the process there are the homotopies Tht, 0 ≤ t ≤ 1, the manifold
Mn ⊂ TN (Mn) is fixed, and the normal ball DN

x , x ∈Mn ⊂ TN (Mn), is deformed
with the use of the maps ht(x) ∈ SON , 0 ≤ t ≤ 1. If h ∈ π(Mn, SON ) and
α ∈ πN+n(TN (Mn)), where α ∈ Ā(Mn), then

h(α) = Th∗(α),

where π(Mn, SON ) acts on Ā(Mn) according to Theorem 6.5.

Proof. The definition of the map

T : π(Mn, SON ) → π(TN (Mn), TN (Mn))

follows at once from the definition of the Thom space of the bundle νN (Mn).
Let us prove the formula

h(α) = Th∗(α).

We recall how we defined the action of the group π(Mn, SON ) on the set ĀN (Mn):
suppose fα is an admissible map SN+n → TN (Mn), f−1

α (Mn) = Mn
α and fα|Mn

α

has the homotopy class of f ∈ π+(Mn
α ,M

n). The action of the group π(Mn
α , SON )

and the isomorphism

f̃ : π(Mn
α , SON ) → π(Mn, SON )

are defined in the natural way. Let h ∈ π(Mn, SON ) and f̃−1h ∈ π(Mn
α , SON ).

Then to an element h corresponds a “twisting” of the bundle νN (Mn) in each fiber
DN

x on an element hx ∈ SON , x ∈Mn. To this twisting corresponds a twisting f∗x
in the fiber Df−1

α (x) on the same element hx ∈ SON at each point f−1
α (x). This

defines the map
f∗α = f̃−1 : π(Mn, SON ) → π(Mn

α , SO
N ).

One can only define the action of the group π(Mn
α , SON ) on the set Bf (Mn

α ) in
such a way that it has the form f∗α(h), since the distinction between definitions
is removed in going over to homotopy classes, due to the fact that fα|Mn

α is a
homotopy equivalence and f̃α = f∗−1

α is an isomorphism.
The lemma is proved. �
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Lemma 6.7. To every map f : Mn →Mn of degree +1 and such that f∗νN (Mn) =
νN (Mn) corresponds a nonempty set of maps

(T̄ f) : TN (Mn) → TN (Mn).

Two maps T̄1, T̄2 ∈ (T̄ f) differ by an automorphism Th for some h : Mn → SON .
To the homotopic maps f1, f2 : Mn → Mn correspond the homotopic

modT (π(Mn, SON )) maps T̄ f1 and T̄ f2 : TN (Mn) → TN (Mn).
To the product f1 ◦ f2 corresponds the product

T̄ f1 ◦ T̄ f2 = T̄ f1 ◦ f2 mod ImT.

Suppose f ∈ π+(Mn,Mn) and α ∈ Ā(Mn)/π(Mn, SON ). Then

f(α) = T̄ f∗(α),

where
T̄ f∗ : πN+n(TN (Mn)) → πN+n(TN (Mn)).

The proof of this lemma is analogous to the proof of Lemma 6.6 and follows
at once from the known definition of the action of the group π+(Mn,Mn) on
π+(Mn

α ,M
n) and the dependence of the element α ∈ Ā(Mn)/π(Mn, SON ) on a

map Mn
α → Mn of degree +1 (an element of the set π+(Mn

α ,M
n)) (cf. Lemmas

6.1, 6.3, Theorem 6.5 and their proofs).
We now consider the particular case when Mn is a π-manifold. In this case the

bundle νN (Mn) is trivial. We define a frame field τN
x that is smoothly dependent

on the point x ∈ Mn and normal to Mn in TN (Mn). According to [15], we call
the pair (τN ,Mn) an “equipped manifold.” Then, as is easily seen, for any element
α ∈ Ā(Mn) and any admissible map

fα : SN+n → TN (Mn)

the manifold
Mn

α = f−1
α (Mn)

receives the natural “equipment” f∗ατ
N and becomes an equipped manifold.

In this case we have the following

Lemma 6.8. There exists a single-valued homomorphism

T̄0 : π+(Mn,Mn) → π(TN (Mn), TN (Mn))

such that for any h ∈ π(Mn, SOn), f ∈ π+(Mn,Mn) one has the following :
a) Th · T̄0f = T̄0 · Tf∗h, where f∗ : π(Mn, SON ) → π(Mn, SON );
b) T̄0 = T̄ mod ImT .

Proof. Let us construct the single-valued homomorphism T̄0; for this purpose we
consider the automorphism

f : Mn →Mn,

f ∈ π+(Mn,Mn), and we cover it in a single-valued manner with respect to a map

νN (Mn) → νN (Mn),

assuming that the vector with coordinates

(λ1, . . . , λN ) ∈ DN
x , x ∈Mn,
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defined by a frame of τN
x in the fiber normal to the point x, goes over into the vector

with coordinates (λ1, . . . , λN ) at the point f(x). Since the field τN is smooth, we
obtain a (smooth if f is smooth) map

νN (Mn) → νN (Mn),

which gives the desired map

T̄0f : TN (Mn) → TN (Mn).

We have proved point a) of the lemma.
We consider a map h : Mn → SON and the composition

h · T̄0f : νN (Mn) → νN (Mn),

covering the map f : Mn → Mn. The maps h · T̄0f and T̄0f differ at each point
x ∈Mn by hx ∈ SON and at each point f−1(x) ∈Mn by

f∗hf−1(x) ∈ SON , hx ∈ f∗hf−1(x).

Thus
h · T̄0f = T̄0f · f∗h

(f∗ is the automorphism f∗ : π(Mn, SON ) → π(Mn, SON ) induced by f).
Further, we have

Th · T̄0f = T̄0f · Tf∗h.
Formula b) is evident from the construction of the homomorphism T̄0.

The lemma is proved. �

We consider the set π+(Mn
α ,M

n) defined above. On it (from the left) acts the
group π+(Mn,Mn) and (from the right) acts the group π+(Mn

α ,M
n
α ), where

Mn
α ≥Mn, Mn ≥Mn

α .

In other words, for every

f ∈ π+(Mn,Mn), g ∈ π+(Mn
α ,M

n), f1 ∈ π+(Mn
α ,M

n
α )

there is defined the composition

f · g · f1 ∈ π+(Mn
α ,M

n).

And what is more, for every f ∈ π+(Mn,Mn), g ∈ π+(Mn
α ,M

n) we have the
formula

(28) f · g = g · (g∗f),

where g∗ : π+(Mn,Mn) → π+(Mn
α ,M

n
α ) is an isomorphism defined by the element

g ∈ π+(Mn
α ,M

n).
We introduce the following notation: by means of

D+(Mn
α ) ⊂ π+(Mn

α ,M
n
α )

we denote the subgroup consisting of those homotopy classes of maps in which there
is a representative

h : Mn
α →Mn

α ,

that is a diffeomorphism; by means of

D̃+ ⊂ π+(Mn
α ,M

n
α )

we denote the analogous subgroup in which a certain representative

h̃ : Mn
α →Mn

α
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is a diffeomorphism everywhere except a spherical neighborhood of one point, and
the obstruction to an extension of the diffeomorphism at this point belongs to the
group θn(∂π). In view of the canonical isomorphism of Smale θn = Γn, one can
assume that θn(∂π) ⊂ Γn for n ≥ 5. By means of

Λn(Mn
α ) ⊂ θn(∂π)

we denote the subgroup such that for each element γ ∈ Λn(Mn
α ) there exists a map

h̃γ : Mn
α →Mn

α ,

homotopic to the identity map, that is a diffeomorphism everywhere except a spher-
ical neighborhood of one point, and the obstruction to an extension of the diffeo-
morphism at this point is equal to γ.

Theorem 6.9. The group D+(Mn
α ) is a normal divisor in the group D̃+(Mn

α ).
The factor group D̃+(Mn

α )/D+(Mn
α ) is isomorphically embedded in the group

θn(∂π)/Λn(Mn
α ). If n is even, then D+(Mn

α ) = D̃+(Mn
α ); if n is odd, then the

factor group D̃+(Mn
α )/D+(Mn

α ) is a finite cyclic group.

Proof. To a representative h̃ : Mn
α →Mn

α of an element of D̃+ we put in correspon-
dence the obstruction defined by it to an extension of a diffeomorphism at a point.
It is easy to see that the lack of uniqueness in the definition pertains to the group
Λn(Mn

α ), and the group D+(Mn
α ) goes into zero. In this way the embedding

D̃+(Mn
α )/D+(Mn

α ) ⊂ θn(∂π)/Λn(Mn
α )

is constructed. The rest of the assertion follows from the results in [6, 8] concerning
the groups θn(∂π). The theorem is proved. �

Theorem 6.10. The element g∗f ∈ π+(Mn
α ,M

n
α ) belongs to the subgroup D̃+(Mn

α )
if and only if T̄ f∗(α) = α, where α ∈ Ā(Mn)/π(Mn, SON ).

We note a certain consequence of Theorems 6.9 and 6.10. If Mn
α = Mn, then

g∗f = gfg−1; therefore from Theorem 6.10 follows

Corollary 6.11. The subgroup D̃+(Mn) is a normal divisor in the group
π+(Mn,Mn); the factor group π+(Mn,Mn)/D̃+(Mn) is finite (though it is not
known whether or not it is abelian).

Corollary 6.12. The group D+(Mn) has a finite index in π+(Mn,Mn).

Proof of Theorem 6.10. By definition the manifold Mn
α is obtained as follows: a

map
fα : SN+n → TN (Mn)

is selected which represents one of the elements α̃ of the class α; it is assumed to be
admissible if f−1

α (Mn) ≥Mn and Mn ≥ f−1
α (Mn), where f−1

α is the inverse image
of Mn under a map satisfying Lemma 3.2. Then we set

Mn
α = f−1

α (Mn).

Suppose fα|Mn
α → Mn has the homotopy class g ∈ π+(Mn

α ,M
n), and let f be

an element of the group π+(Mn,Mn) such that

T̄ f∗(α̃) ≡ α̃ mod ImT.
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Since all our objects are defined to within a diffeomorphism of degree +1, from
the fact that g∗f is homotopic to a diffeomorphism of degree +1 it clearly follows
that the sets

Bg(Mn
α ) ⊂ Ā(Mn)

and
Bg·g∗f (Mn

α ) = Bf ·g(Mn
α )

are identical, from which follows one of the assertions of the theorem. We now show
that if

T̄ f∗(α) = α, α ∈ Ā(Mn)/π(Mn, SON ),
then the map g∗f is homotopic to a diffeomorphism (of degree +1). We divide the
proof into a number of steps.

Step 1. We consider homotopic admissible maps f
(′)
α and f

(′′)
α : SN+n →

TN (Mn) such that
a) f (′)−1

α (Mn) = f
(′′)−1
α (Mn) = Mn

α ,
b) f (′)

α |Mn
α = g, f (′′)

α |Mn
α = g · g∗f = f · g.

We construct a homotopy F : SN+n× I(0, 1) → TN (Mn) that is t-regular and such
that F |SN+n × 0 = f

(′)
α .

Step 2. We define the membrane Nn+1 = F−1(Mn) ⊂ SN+n × I; clearly,

F ∗νN (Mn) = νN (Nn+1)

and
∂Nn+1 = Mn

α ∪ (−Mn
α ).

By means of Morse’s reconstructions we kill the groups

π1(Nn+1),KerF (H2)
∗ , . . . ,KerF (Hi)

∗ , i <
[n
2

]
,

at the same time carrying over onto the “new membrane” Nn+1 the map F and
the “equipment” (in analogy with §§4, 5). Thus one can assume that

π1(Nn+1) = 0

and
KerF (Hi)

∗ = 0, i <
[n
2

]
Step 3. Case 1. If n is odd, then, following §4, we reconstruct the group

KerF (H[n/2])
∗ . We will thereupon (see §5, Case 1) have a membrane that is diffeo-

morphic to Mn
α × I(0, 1), according to Smale [19]. The theorem is proved.

Case 2. If n + 1 is even (n + 1 = 4k + 2 or n + 1 = 4k), then it is necessary
to make use of the fact that the boundaries of the manifold Nn+1 are in this
case diffeomorphic. Next, by analogy with Cases 2 and 3 of y5 it is necessary to
construct the membranes M̄n+1(B) and M̄n+1(φ) in order to kill the obstructions
encountered to Morse’s reconstructions, and then to consider the unions

N̄n+1(B) = Nn+1 ∪f0 D
n × I(0, 1) ∪f1 M̄

n+1(B),

N̄n+1(φ) = Nn+1 ∪f0 D
n × I(0, 1) ∪f1 M̄

n+1(φ),

as in §5, Cases 2 and 3 (B is the intersection matrix of the membrane Nn+1 and φ
is an invariant of Kervaire). The maps

F : Nn+1 →Mn
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define, ia a natural way, the maps

F (B) : N̄n+1(B) →Mn

and

F (φ) : N̄n+1(φ) →Mn

such that

F (B)∗νN (Mn) = νN (Nn+1(B))

and

F (φ)∗νN (Mn) = νN (N̄n+1(φ)).

It is easy to see that

∂N̄n+1(B) = [Mn
α # S̃n(B)] ∪ (−Mn

α )

and

∂N̄n+1(φ) = [Mn
α # S̃n(φ)] ∪ (−Mn

α )

We reconstruct by means of Morse’s reconstructions the manifolds N̄n+1(B)
and N̄n+1(φ); the resultant manifolds ¯̄Nn+1(B) and ¯̄Nn+1(φ) will determine a
J-equivalence (diffeomorphism) of degree +1 between the manifolds Mn

α , and
Mn

α # S̃n(B), Mn
α and Mn

α # S̃n(φ), where S̃n(B), S̃n(φ) ∈ θn(∂π). The maps
F (B), F (φ) reconstructed on the membranes ¯̄Nn+1(B) and ¯̄Nn+1(φ) are denoted
by F̄ (B), F̄ (φ). Also, ¯̄N(B) is diffeomorphic to Mn

α × I (n = 4k − 1), ¯̄N(φ) is
diffeomorphic to Mn

α × I (n = 4k + 1) and F̄ (B) = F |Mn
α × 1 (n = 4k − 1),

F̄ (φ) = F |Mn
α × I (n = 4k + 1).

The map

F̄ (B) : Mn
α →Mn

is homotopic to the composition

F1(B)g(B) : Mn
α

g(B)−−−→Mn
α # S̃n(B)

F1(B)−−−−→Mn, n = 4k − 1,

and the map

F (φ) : Mn
α × 0 →Mn

is homotopic to the composition

Mn
α

g(φ)−−−→Mn
α # S̃n(φ)

F1(φ)−−−→Mn, n = 4k + 1,

where g(B) and g(φ) are diffeomorphisms of degree +1, induced by a decomposition
into a direct product

¯̄N(B) = Mn
α × I, ¯̄N(φ) = Mn

α × I.

The maps F1(B) and F1(φ) are respectively homotopic to the maps F |Mn
α × 1

(n = 4k − 1 and n = 4k + 1), from which follows the desired statement.5 The
theorem is proved. �

5It remains to add that the diffeomorphism g(B) : Mn
α →Mn

α # S̃n(B) must be thought of as
a diffeomorphism modulo a point: Mn

α →Mn
α . An analogous statement holds for g(φ).
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Chapter II
A processing of results

§ 7. The Thom space of a normal bundle. Its homotopy structure

In order to understand and apply the results of §§1–6 we study the homotopy
structure of the Thom complex TN (Mn), where Mn is a simply connected manifold,
n ≥ 4.

We select in the manifold Mn an (n− 2)-dimensional skeleton Kn−2 such that

Hi(Kn−2) = Hi(Mn), i < n.

Then the manifold Mn \ x0, x0 ∈ Mn, is contracted onto Kn−2. The embedding
j : Kn−2 ⊂Mn induces the bundle j∗νN (Mn) on Kn−2, the Thom space of which
we denote by Tn−2

N . There exists the natural embedding Tn−2
N ⊂ TN (Mn). In an

analogous way one can select skeletons of smaller dimension

K0 = K1 ⊂ K2 ⊂ · · · ⊂ Kn−2

and form the Thom complexes

T 0
N = SN ⊂ T 2

N ⊂ · · · ⊂ Tn−2
N .

The complex T i
N can be computed from the (N + i)-dimensional skeleton of the

complex TN (Mn), i = 0, 2, . . . , n− 2.

Lemma 7.1. The Thom complex TN (Mn) is homotopically equivalent to the union
SN+n ∨ Tn−2

N .

Proof. Lemma 7.1 is an immediate consequence of Lemma 3.1 on the sphericity of
the cycle

φ[Mn] ∈ HN+n(TN (Mn)). �

We consider the group πn(Mn) and in it we select the subgroup π̃n(Mn) ⊂
πn(Mn) consisting of those elements γ ∈ π̃n(Mn) such that H(γ) = 0. In the group
π̃n(Mn) we select the even smaller subgroup πν

n(Mn) consisting of those elements
γ ∈ πν

n(Mn) such that, for any map gγ : Sn →Mn representing the element γ, the
bundle g∗γν

N (Mn) over the sphere Sn is trivial.
Now suppose Li is an arbitrary i-dimensional complex, over which a vector SON -

bundle νN is given. We denote the Thom complex of this bundle by TN (νN ).
Suppose γ ∈ πn(Li), and the bundle γ∗νN over the sphere Sn is trivial. We will
then say that γ ∈ πn(Li, νN ). For Li = Mn and νN = νN (Mn) we have already
defined such a group. Clearly, there is defined an epimorphism

πn(Kn−2, νN (Mn)) → πν
n(Mn).

There is defined the natural embedding κ : Sn ⊂ TN (νN ), corresponding to an
embedding of the point x0 = L0 ⊂ Li. We have

Lemma 7.2. There is defined the natural homomorphism

(29) TN : πn(Li, νN ) → πn+N (TN (νN ))/ Imκ∗.

If there exist two bundles νN
1 , ν

N
2 over the complexes Li1

1 , L
i2
2 respectively and a map

F : νN
1 → νN

2 is given, then there is defined a map

T (F ) : TN (νN
1 ) → TN (νN

2 )
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such that the diagram

(30)

πn(Li
1, ν

N
1 )

F̃∗ //

T N

��

πn(Li2
1 , ν

N
2 )

T N

��
πn+N (TN (νN

1 ))/ Imκ∗
T (F )∗ // πn+N (TN (νN

2 ))/ Imκ∗

is commutative.

Proof. It is easy to see that to the bundle map F corresponds a map

F̃∗ : πn(Li1
1 , ν

N
1 ) → πn(Li2

2 , ν
N
2 ).

Namely, let the map F on the bases Li1
1 → Li2

2 be denoted by F̃ . Then, clearly,

F̃ ∗(πn(Li1
1 , ν

N
1 )) ⊂ πn(Li2

2 , ν
N
2 )

by the definition of an induced bundle. In this way the upper line of the diagram
is constructed. We will denote the constructed natural map

πn(Li1
1 , ν

N
1 ) → πn(Li2

2 , ν
N
2 )

by F̃∗. The construction of the lower line of the diagram is obvious. Let us now
construct the homomorphism TN . For this purpose we consider an element γs ∈
πn(Lis

s , ν
N
s ), s = 1, 2, and the map

γ̃s : Sn → Lis
s ,

representing the element γs. The bundle γ̃∗sν
N
s over the sphere Sn is trivial. Thus

there are defined the maps

ν : SN+n → TN (Sn, γ̃sν
N
s ),

T γ̃s : TN (Sn, γ̃sν
N
s ) → TN (Lis

s , ν
N
s ),

where T γ̃s is a natural map of the Thom complexes, corresponding to the bundle
map γ̃sν

N
s → νN

s , and the map µ is such that

µ∗[SN+n] = φ[Sn],

where φ : Hn(Sn) → Hn+N (TN (Sn, γ̃∗sν
N
s )) is a Thom isomorphism. The cycle

φ[Sn] is spherical according to Lemma 3.1, since a sphere is a π-manifold. According
to Lemma 7.1 the space TN (Sn, γ̃∗sν

N
s ) is homotopically equivalent to the union

SN+n ∨ SN , so that the homotopy class of the map µ is defined uniquely mod
πn+N (SN ) = Imκ∗. The composition

T γ̃s · µ : SN+n → TN (Lis
s , ν

N
s )

also defines an element for us, which we denote by TN (γs) and is determined
uniquely mod Imκ∗. Once a definition is given the naturalness of it (the com-
mutativity of the diagram in Lemma 7.2) is obvious.

The lemma is proved. �

Remark. We will call the groups πn(Li, νN ) the homotopy groups of the bundle
νN , and the homomorphism TN will be called a suspension homomorphism. This
nomenclature is justified by the following lemma.
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Lemma 7.3. If the bundle νN over the complex Li is trivial, then:
a) πn(Li, νN ) = πn(Li) for all n;
b) the space TN (Li, νN ) is homotopically equivalent to the union SN ∨ ENLi,

where EN is an N -multiple suspension;
c) the homomorphism TN coincides with the N -times-iterated suspension homo-

morphism

EN : πn(Li) → πn+N (ENLi) = πn+N (TN (Li, νN ))/ Imκ∗

for N > n+ 1.

Proof. The Thom space of a trivial bundle of closed balls DN , νN = Li × DN ,
clearly, is homo topic ally equivalent to a suspension for N > 1:

TN (Li, νN ) = Li×DN/Li×∂DN = ETN−1(Li, νN−1) = E(Li×DN−1/Li×DN−1).

Further, for N = 1 we have

T1(Li, ν1) = Li × I(0, 1)/Li × ∂I(0, 1) = E(Li ∪ x0),

where Li∪x0 denotes the union of Li with the point x0. Since the space E(Li∪x0) is
homotopically equivalent to the union S1∨ELi it follows that the space TN (Li, νN )
is homotopically equivalent to a suspension

EN−1(S1 ∨ ELi) = SN ∨ ENLi.

The second part of the lemma follows trivially from the definition of a suspension
homomorphism and is actually a definition of it. The lemma is proved. �

Suppose Mn is a smooth simply connected oriented manifold, νN (Mn) is its
normal bundle,

TN (Mn) = TN (Mn, νN (Mn)),
j : Kn−2 ⊂Mn is its (n− 2)-dimensional skeleton and

πν
n(Mn) = πn(Kn−2, j∗νN (Mn))/Ker j∗.

According to Lemma 7.1,

(31) πn+N (TN (Mn)) = Z + πn+N (Tn−2
N ).

The generator of the group Z = πn+N (SN+n) depends on the choice of decompo-
sition in the union

TN (Mn) = SN+n ∨ Tn−2
N .

We will select this decomposition in such a way that the generator of the direct
summand Z = πN+n(SN+n) is the generator constructed in Lemma 3.1 (in the
proof of it). We denote this generator by

1N+n ∈ πN+n(SN+n) ⊂ TN (Mn).

We have the following

Lemma 7.4. For any element γ ∈ πν
n(Mn) there exists a map gγ : Mn → Mn of

degree +1 such that :
a) g∗γν

N (Mn) = νN (Mn),
b) gγ is fixed on the skeleton Kn−2,
c) the discriminator of the map gγ and the identity map is different from zero

on only one simplex σn ⊂Mn, and there it is equal to γ ∈ πν
n(Mn).
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Proof. We consider an identity map and change it on a simplex σn ⊂ Mn to an
element γ ∈ πν

n(Mn). We denote the resultant map by gγ . Since the degree of the
map γ̃ : Sn →Mn representing γ is equal to zero by definition of the group πν

n(Mn),
the degree of the map gγ : Mn → Mn is equal to +1. We consider the bundles
g∗γν

N (Mn) and νN (Mn), which we identify, as usual, with the homotopy classes
of the map ν : Mn → BSON

(for the bundle νN (Mn)) and the map ν · gγ : Mn →
Mn → BSON

(for the bundle g∗γν
N (Mn)). The discriminator of the maps ν and

ν · gγ is concentrated on the same simplex σn ⊂ Mn that the discriminator of the
map gγ and the identity map is concentrated on, and it is equal, as is easily seen,
to the element

ν∗(γ) ∈ πn(BSON
), ν∗ : πn(Mn) → πn(BSON

).

The bundle γ∗νN (Mn) over the sphere Sn, by definition of the group πν
n(Mn), is

trivial and is defined by the composition

ν · γ̃ : Sn →Mn → BSON
;

its triviality is equivalent to the condition

ν∗(γ) = 0.

Therefore the discriminator of the maps ν : Mn → BSON
and ν · gγ : Mn → BSON

is equal to zero, and they are homotopic. The lemma is proved. �

From Lemma 7.4 follows

Lemma 7.5. There is defined a homomorphism g∗ : πν
n(Mn) → π+(Mn,Mn), the

image of which is composed of all elements of the group π+(Mn,Mn) that have
representatives fixed on the skeleton Kn−2 ⊂Mn.

Proof. The map g∗ has already been constructed in Lemma 7.4; namely, to the
element γ ∈ πν

n(Mn) must be put in correspondence the homotopy class of the map
gγ : Mn → Mn. The fact that it is a homomorphism is obvious. We calculate the
image

Im g∗ ⊂ π+(Mn,Mn).
We consider any map f : Mn →Mn of degree +1 representing some element of

the group π+(Mn,Mn) and fixed on the skeleton Kn−2.
The discriminator of it and the identity map is the cocycle

λ(f) ∈ Hn(Mn, πn(Mn)),

where one can assume that the cochain λ(f) is different from zero on only one
simplex σn ⊂Mn. Then

λ(f)[σn] ∈ πn(Mn).
Since the map f has degree +1, the degree of the map of the sphere Sn → Mn

representing the element
λ(f)[σn] ∈ πn(Mn).

is equal to zero. Since
f∗νN (Mn) = νN (Mn),

the discriminator of the maps

ν : Mn → BSON

and
ν · f : Mn → BSON

,
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defining the bundles νN (Mn) and f∗νN (Mn), is equal to

ν∗λ(f)[σn] ∈ πn(BSON
).

and
ν∗λ(f)[σn] = 0.

siace f∗νN (Mn) = νN (Mn). Therefore

λ(f)[σn] ∈ πν
n(Mn).

The lemma is proved. �

We recall that in §6 we defined a map

T̄ : π+(Mn,Mn) → π(TN (Mn), TN (Mn)),

homomorphic and single-valued modulo the action of the group π(Mn, SON ), i.e.,
modulo the image of the homomorphism

T : π(Mn, SON ) → π(TN (Mn), TN (Mn)).

Lemma 7.6. The formula

(32) T̄ g∗γ(1N+n + α) ≡ 1N+n + α+ TNγ (mod ImT ∪ Imκ∗)

is valid for all γ ∈ πν
n(Mn), where 1N+n is the generator selected above and α is

an element of the group πN+n(Tn−2
N ) ⊂ πN+n(TN (Mn)).

Proof. The map g∗γ is fixed on Kn−2, and hence T̄ g∗γ can be selected so that it
is fixed on Tn−2

N ⊂ TN (Mn). Consequently, the map

T̄ g∗γ : TN (Mn) → TN (Mn)

is completely defined by the map

T̄ g∗γ|SN+n → TN (Mn)

and
[T̄ g∗γ]∗(α) = α

for all
α ∈ πN+n(Tn−2

N ) ⊂ πN+n(TN (Mn)).
Let us investigate the image [T̄ g∗γ]∗(1N+n). The discriminator of the maps gγ and
1: Mn → Mn is concentrated on the simplex σn ⊂ Mn and is equal to γ, the
complex Mn \ σn contracts onto Kn−2. Therefore the discriminator of the map

T̄ gγ : TN (Mn) → TN (Mn)

and the identity map
1: TN (Mn) → TN (Mn)

can initially be regarded as maps of the Thom complex TN (Sn, νN ) (νN is a trivial
bundle) into the Thom complex TN (Mn), where on SN ⊂ TN (Sn, νn) the maps are
homotopic (equal). Therefore the discriminator of the maps T̄ g∗γ and 1 is TNγ
by definition of the homomorphisin TN . The lack of uniqueness in the formula of
Lemma 7.6 arises in consequence of the lack of uniqueness in the definition of the
homomorphisms TN and T̄ . The lemma is proved. �

Remark 7.7. For π-manifolds the definition of the homomorphism T̄N coincides
with that of EN and is therefore unique; the homomorphism T̄ in this case also
admits a unique definition, according to Lemma 6.8, and the formula of Lemma 7.6
has the meaning of an exact equality instead of a congruence.
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We will not prove the assertion made in the remark since we will not make use
of it.

§ 8. Obstructions to a diffeomorphism of manifolds having the same
homotopy type and a stable normal bundle

Let us consider a filtration

TN (Mn) ⊃ Tn−2
N ⊃ · · · ⊃ T 2

N ⊃ SN ,

where T i
N is the Thom space of the i-dimensional skeleton Ki of a manifold Mn

in minimal cell decomposition (the number of cells of dimension i is equal to the
number max rkHi(Mn,K) with respect to all fields K). We denote the numbers
max rkHi(Mn,K) by bimax. By T (i,j)

N we mean

T
(i,j)
N = T i

N/T
j
N , j < i.

In particular,

T
(i,i−1)
N =

bi
max∨

k=1

SN+i
k .

Clearly,

HN+i(T i
N , T

i−1
N ) = HN+i

bi
max∨

k=1

SN+i
k

 = Z + · · ·+ Z︸ ︷︷ ︸
bi
max

The homomorphisms

∂ : HN+i(T i
N , T

i−1
N ) → HN+i−1(T i−1

N ) → HN+i−1(T i−1
N , T i−2

N )

define a boundary operator in the complex TN (Mn) and its homologies and coho-
mologies. We will have in mind exactly this interpretation of boundary homomor-
phisms.

Definition of the obstruction to a diffeomorphism. We will identify mod-
ulo θn(∂π) the manifolds Mn

α ≥ Mn, Mn ≥ Mn
α with the orbits of the groups

π(Mn, SON ) and π+(Mn,Mn) in the set Ā(Mn), according to the results of §§1–6.
To the manifold Mn

α corresponds an orbit B(Mn
α ) ⊂ Ā(Mn). Suppose we are given

two manifolds Mn
α and Mn

β , α ∈ B(Mn
α ), β ∈ B(Mn

β ).
According to Lemma 7.1 the elements α, β have the form

α = 1N+n + ᾱ, ᾱ ∈ πN+n(Tn−2
N ),

β = 1N+n + β̄, β̄ ∈ πN+n(Tn−2
N ).

Exact sequences (for the pairs T i
N , T

j
N , j < i)

(33) · · · → πN+n(T j
N ) → πN+n(T i

N ) → πN+n(T i,j
N ) ∂−→ πN+n−1(T

j
N ) → · · ·

are defined.
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In particular, we have

(34) · · · → πN+n(SN )
j0,2−−→ πN+n(T 2

N ) Λ2−−→ πN+n

b2max∨
k2=1

SN+2
k2

→ · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · → πN+n(T i
N )

ji,i+1−−−→ πN+n(T i+1
N )

Λi+1−−−→ πN+n

 bi+1
max∨

ki+1=1

SN+i+1
ki+1

→ · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · → πN+n(Tn−3
N )

jn−3,n−2−−−−−−→ πN+n(Tn−2
N )

Λn−2−−−→ πN+n

 bn−2
max∨

kn−2=1

SN+n−2
kn−2

→ · · ·

We consider the difference ᾱ− β̄ ∈ πN+n(Tn−2
N ). We have

Λn−2(ᾱ− β̄) ∈
bn−2
max∑

kn−2

πN+n(SN+n−2
kn−2

).

Thus to every sphere SN+n−2
kn−2

corresponds an element dn−2(ᾱ, β̄, kn−2) ∈
πN+n(SN+n−2

kn−2
) (corresponding to the number kn−2 of a direct summand of the

element Λn−2(ᾱ − β̄)). The spheres SN+n−2
kn−2

are found in a natural one-to-one
correspondence with the cells of dimension N + n − 2 of the complex TN (Mn)
and, consequently, with the cells of dimension n− 2 of the complex Mn. Therefore
(under variation of kn−2) dn−2(ā, β̄, kn−2) runs along the chain dn−2(ᾱ, β̄) of the
complex TN (Mn) with value in πN+n(SN+n−2). If the chain dn−2(ᾱ, β̄) = 0, then
we put

dn−3(ᾱ, β̄, kn−3) = Λn−3 · j−1
n−3,n−2(ᾱ− β̄)

(on the the sphere SNn−3
kn−3

); if dn−(i−1)(ᾱ, β̄) = 0, then we define

dn−i(ᾱ, β̄) = Λn−i · j−1
n−i,n−(i−1) · · · · · j

−1
n−3,n−2(ᾱ− β̄)

(on the sphere SN+n−i
kn−i

the chain dn−i(ᾱ, β̄) has a value equal to the corresponding
direct summand of the element Λn−i · j−1

n−i,n−(i−1) · · · · · j
−1
n−3,n−2(ᾱ− β̄)).

Clearly, the chain dn−1(ᾱ, β̄) is ambiguously defined with exactness up to

Λn−i ·Ker(jn−3,n−2 · · · · · jn−i,n−(i−1)) = Qn−i.

Lemma 8.1. The chain dn−i(ᾱ, β̄) is defined if dn−j(ᾱ, β̄) = 0, j < i, and is a
cycle with coefficients in the group πN+n(SN+n−i).

Proof. Let us prove that dn−i(ᾱ, β̄) is a cycle. According to the definition of a
boundary operator in our complex TN (Mn) in the selected cell decomposition (cf.
above) it suffices to consider some element

j−1
n−i,n−(i−1) · · · · · j

−1
n−3,n−2(ᾱ− β̄) ∈ πN+n(Tn−i

N )

and the boundary homomorphism

∂ : HN+n−i(T
n−i,n−i−1
N ) → HN+n−i−1(T

n−i−1,n−i−2
N ).
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We consider the homomorphisms

∂̄ : πN+n(Tn−i,n−i−1
N )

∂ //

≈
��

πN+n−1(Tn−i−1
N ) // πN+n−1(T

n−i−1,n−i−2
N )

≈
��∑

kn−i

πN+n(SN+n−i
kn−i

) ∂̄ //
∑

kn−i−1

πN+n−1(SN+n−i−1
kn−i−1

).

Then we consider the chain dn−i(ᾱ, β̄). Since

dn−i(ᾱ, β̄) = Λn−i · j−1
n−i,n−(i−1) · · · · · j

−1
n−3,n−2(ᾱ− β̄)

and from the exact sequences on page 45 it follows that Im Λn−i ⊂ Ker ∂̄, and hence

∂̄dn−i(ᾱ, β̄) = 0.

The lemma is proved. �

In this way,

dn−i(ᾱ, β̄) ∈ HN+n−i(TN (Mn), πN+n(SN+n−i)),

or, by the Thom isomorphism φ, we obtain the element

d̃n−i(ᾱ, β̄) = φ−1dn−i(ᾱ, β̄) ∈ HN−i(Mn, πN+n(SN+n−i)),

defined with a large degree of ambiguity.

Definition of the minimal difference. We commence to arbitrarily vary the
elements α ∈ B(Mn

α ) and β ∈ B(Mn
β ) in the sets B(Mn

α ) and B(Mn
β ) corresponding

to the manifolds Mn
α and Mn

β in such a way that the difference

ᾱ− β̄ ∈ πN+n(Tn−2
N )

belongs to
Im jn−3,n−2 · · · · · jn−i,n−(i−1)(πN+n(Tn−i

N ))
for

i = max
α,β

i[α ∈ B(Mn
α ), β ∈ B(Mn

β )]

and only then we define the (“minimal”) discriminator

dn−i(Mn
α ,M

n
β ) = dn−i(ᾱ0, β̄0),

where α0 ∈ B(Mn
α ) and β0 ∈ B(Mn

β ) are elements such that the difference ᾱ0 − β̄0

belongs to
Im jn−3,n−2 · · · · · jn−i,n−i+1

for i largest possible. It is evident that:
1) the homology class of dn−i(Mn

α ,M
n
β ) is defined ambiguously;

2) its degree of ambiguity has two causes:
a) generally speaking, the nontriviality of the group

Ker(jn−3,n−2 · · · · · jn−i,n−i+1)

and
b) the ambiguity in choice of the elements α0, β0 in the orbits B(Mn

α ) and
B(Mn

β ).
We will explain the situation more precisely in the appendices at the end of the

paper by analyzing examples.
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§ 9. Variation of a smooth structure under preservation
of the triangulation

We begin by recalling the results of Milnor, Smale, Kervaire (cf. [4, 6, 8, 9, 10,
17, 18]). Milnor [8] defined a group of smooth structures on a sphere of dimension
n, denoted by θn, and introduced in it the filtration

θn ⊃ θn(π) ⊃ (∂π).

An element of the group θn is a smooth oriented manifold having the homotopy
type of a sphere. It has been shown that:

1) θn/θn(π) = 0, n 6= 8k + 1, 8k + 2, k ≥ 2,6 θn/θn(π) = Z2 or 0 for n =
8k + 1, 8k + 2, k ≥ 2;

2) there is defined an inclusion homomorphism

θn(π)/θn(∂π) ⊂ πN+n(SN )/Jπn(SON ),

which is an epimorphism for n 6= 4k + 2 and for n = 10;
3) for n = 4k + 2 the subgroup θn(π)/θn(∂π) has index 2 or 1 in the group

πN+n(SN )/Jπn(SON ), and for n = 2, 6, 14 it has index 2;
4) the group θn(∂π) is trivial for n even and for n ≤ 6 (n 6= 3), n = 13; the

group θ2k+1(∂π) is always cyclic; for k even it contains not more than two elements
and θ9(∂π) = Z2, while for k odd its order rapidly increases, and it is nontrivial for
k = 2s− 1, s ≥ 2 (θ7(∂π) = Z28, θ11(∂π) = Z992, . . . ).

As already stated above, an element of the group θn, n ≥ 5, is a smooth orien-
tated manifold having the homotopy type of a sphere Sn; the inverse element is the
same manifold with opposite orientation, and the group operation is the “connected
sum” of oriented manifolds (cf. [10]), which has a meaning, generally speaking, for
arbitrary manifolds (but the connected sum of topological spheres is a topological
sphere). We will denote the elements of the group θn by S̃n

i , emphasizing in this
way their topological structure. Our first goal is a study of the connected sum
Mn # S̃n, where Mn is an arbitrary simply connected manifold, n ≥ 5. Clearly, for
n ≥ 5 the manifolds Mn and Mn # S̃n are homeomorphic and even combinatorially
equivalent (cf. [17]), though possibly nondiffeomorphic if the smoothness on the
sphere S̃n is nonstandard (if S̃n 6= 0 in the group θn).

Below we will denote the stable group πN+n(SN ) by G(n) for N > n+1. By an
embedding of Milnor,

θn(π)/θn(∂π) ⊂ πN+n(SN )/ Im J,

to every element S̃n ∈ θn(π) corresponds a set B̃(S̃n) ⊂ G(n), where

B̃(S̃n
1 # S̃n

2 ) = B̃(S̃n
1 ) + B̃(S̃n

2 )

and
B̃(S̃n) = Im J

if S̃n ∈ θn(∂π). We recall that, in the preceding sections, to every manifold Mn
1 ≥

Mn, Mn ≥Mn
1 , there is put in correspondence in a canonical manner the sets

B(Mn
1 ) ⊂ Ā(Mn) ⊂ A(Mn) ⊂ πN+n(TN (Mn)).

In addition there is defined the natural embedding

κ : SN ⊂ TN (Mn),

6Adams [36] showed that θn/θn(π) = 0 for all n.
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where SN = T 0
N (cf. §6).

Thus there arises the homomorphism

κ∗ : G(n) → πN+n(TN (Mn)).

We have the following

Lemma 9.1. B(Mn
1 # S̃n) = B(Mn

1 ) + κ∗B̃(S̃n).

Proof. Let us show that

B(Mn
1 # S̃n) ⊃ B(Mn

1 ) + κ∗B̃(S̃n).

Suppose α ∈ B(Mn
1 ), γ ∈ B̃(S̃n) and

fα : SN+n → TN (Mn), fγ : SN+n → SN

are some maps representing the elements α and γ, that are t-regular in the Thom–
Pontrjagin sense, where

f−1
α (Mn) = Mn

1

and
f−1

γ (x0) = S̃n, x0 ∈ SN .

We assume that the sphere SN lies in the Thom complex TN (Mn) in the standard
manner and that

fγ : SN+n → TN (Mn), fγ(SN+n) ∈ κSN , f−1
γ (Mn) = f−1

γ (x0).

Then there is defined a “connected sum of maps” (cf. [15, 8, 10])

fα+γ : SN+n → TN (Mn)

such that
f−1

α+γ(Mn) = Mn
1 # S̃n

and the map fα+γ by definition represents the element α+ κ∗γ. Let us show that

B(Mn
1 # S̃n) ⊂ B(Mn

1 ) + κ∗B̃(S̃n).

Suppose β ∈ B(Mn
1 # S̃n) and the map

fβ : SN+n → TN (Mn)

represents the element β, satisfies Lemma 3.2 and is such that

f−1
β (Mn) = Mn

1 # S̃n ⊂ SN+n.

By definition of the connected sum #, there exists in the manifold Mn
1 a sphere

Sn−1
0 ⊂Mn

1 # S̃n such that

(Mn
1 # S̃n) \ Sn−1

0 = (Mn
1 \Dn

ε ) ∪ (Sn \Dn
ε )

where Dn
ε ⊂Mn and Dn

ε ⊂ S̃n are balls of radius ε, given in some local coordinate
system by a canonical equation, and ε > 0 is a small number. Since S̃n is a
π-manifold (S̃n ⊂ θn(π)) it follows that every frame field τN , that is normal to
S̃n ⊂ SN+n and defined everywhere except Dn

ε ⊂ SN+n, can be extended onto the
ball Dn

ε . We deform the smooth map fβ to a map

f̃β : SN+n → TN (Mn)

such that

f̃−1
β (x0) ⊃ S̃n \Dn

ε ⊃Mn
1 # S̃n, x0 ∈Mn ⊃ TN (Mn)
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(the map f̃β is assumed to be t-regular). We consider a frame τN
x0

that is normal
to the manifold Mn ⊃ TN (Mn) at the point x0. The inverse image of the frame
under a t-regular map f̃β (cf. [15, 22]) provides a frame field

τN = f̃−1
β (τN

x0
)

that is normal to S̃N \ Dn
ε in SN+n. We now “cut” the manifold Mn

1 # S̃n with
respect to a sphere Sn−1

0 into two parts and extend the frame field τN of the sphere

Sn−1
0 = (S̃n \Dn

ε ) ∩ (Mn
1 \Dn

ε )

onto the ball Dn
ε . More rigorously, we consider the membrane

Bn+1(h) = (Mn
1 # S̃n)× I

(
0,

1
2

)
∪h D

N
ε ×D1,

where
h : ∂Dn

ε ×D1 → Sn−1
0 ×D1 ⊂Mn

1 # S̃n,

h(x, y) = (x, y).
Clearly,

∂Bn+1(h) = (Mn
1 # S̃n) ∪ (−Mn

1 ∪ −S̃n).
Further, as in §1, we embed in the usual way the membrane Bn+1(h) in the

direct product SN+n × I(0, 1), where

Bn+1(h) ∩ SN+n × 0 = Mn
1 # S̃n,

and extend the map fβ |SN+n × 0 up to the map

F : SN+n × I → TN (Mn),

where
F−1(Mn) = Bn+1(h),

making use of the possibility of extending the field τN of the sphere Sn−1
0 ⊂ SN+n×

0 onto the ball Dn
ε ⊂ SN+n × I(0, 1). This extension can obviously be selected so

that
F−1(Mn) ∩ SN+n × 1 = S̃n ∪Mn

1 , S̃n ⊂ F−1(x0).
Since

F−1(Mn) ∩ SN+n × 1 = S̃n ∪Mn
1 ,

it follows that the map F |SN+n × 1 is decomposed into a sum of maps f (′)
β and

f
(′′)
β , representing respectively elements of type β1 ∈ B(Mn

1 ) and β2 ∈ κ∗B̃(S̃n).
Thus it is established that

B(Mn
1 # S̃n) ⊃ B(Mn

1 ) + κ∗B̃(S̃n),

B(Mn
1 # S̃n) ⊂ B(Mn

1 ) + κ∗B̃(S̃n),

The lemma is proved. �

We now investigate a more complicated operation for the variation of a smooth
structure. Suppose the manifold Mn is (k−1)-connected, where k ≤ [n/2]. Clearly,

Hk(Mn) = πk(Mn).

We consider an element z ∈ Hk(Mn) and a smooth sphere Sk ⊂ Mn realizing it.
The tubular neighborhood T (Sk) ⊂Mn of the sphere represents the SOn−k-bundle
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of the balls Dn−k over the sphere Sk. We assume that this bundle is trivial. We
consider a map

g : Sk → diff Sn−k−1,

taking the entire sphere Sk into a point g(Sk) ∈ diff Sn−k−1 (we note that according
to [23, 17, 8] there exists a natural isomorphism diff Sn−k−1/j diffDn−k ≈ θn−k,
n−k 6= 3, 4). Therefore to the map g corresponds a smooth sphere S̃n−k(g) ∈ θn−k.
We will only consider those maps

g : Sk → diff Sn−k−1

for which S̃n−k(g) ∈ θn−k(π).
We consider the automorphism 7

g̃ : ∂T (Sk) → ∂T (Sk)

induced by the map
g(Sk) : Sn−k−1 → Sn−k−1.

Namely, in each fiber of the bundle of (n− k− 1)-dimensional spheres ∂T (Sk) over
Sk we give the automorphism g(Sk). We put

Mn(Sk, g) = (Mn \ T (Sk)) ∪g̃ T (Sk).

From the paper [17] and from the fact that S̃n−k(g) ∈ θn−k(π) follows

Lemma 9.2. The manifolds Mn and Mn(Sk, g) are combinatorially equivalent.
The combinatorial equivalence

f(g) : Mn(Sk, g) →Mn

can he selected so that :
a) f(g)∗(Mn) = ν(Mn(Sk, g)),
b) f(g)|Mn(Sk, g) \ T (Sk) is the identity map,
c) f(g)|Sk is the identity map,
d) f(g)|T (Sk) ⊂Mn(Sk, g) fiberwise.

Proof. The diffeomorphism g(Sk) : ∂Dn−k → ∂Dn−k is extended up to a combina-
torial equivalence G : Dn−k → Dn−k, which is a diffeomorphism everywhere except
the origin O ∈ Dn−k. We define a map

f(g) : Mn(Sk, g) →Mn

in the following way:

f(g) = 1 on Mn(Sk, g) \ T (Sk) = Mn \ T (Sk),

f(g) = 1 on Sk ⊂Mn(Sk, g),

f(g) = G on the fiber Dn−k
x over an arbitrary point x ∈ Sk, where the identity

map is denoted by 1.
For such a constructed map f(g) the properties b)–d) are obvious. For the proof

of property a) it is necessary to make use of the fact that S̃n−k(g) ∈ θn−k(π).

7We assume here that on the tube T (Sk) are given coordinates, viz., a normal field of n − k
frames on the sphere Sk.
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Namely, it is found that the discriminator, of the “classifying” maps ν1 · f(g) and
ν2 in

Mn(Sk, g)
f(g)−−−→Mn ν1−→ BSON

,

Mn(Sk, g) ν2−→ BSON

of the bundles f(g)∗νN (Mn) and νN (Mn(Sk, g)) respectively assumes a value in
the group

Hn−k(Mn(Sk, g), θn−k/θn−k(π)),

where
θn−k/θn−k(π) ⊂ πn−k−1(SON ) = πn−k(BSON

)

(cf. [8]), and if this discriminator is equal to zero, then the maps ν1 · f(g) and ν2
are homotopic. And what is more, if S̃n−k(g) ∈ θn−k(π), then this discriminator
is equal to zero. From the definition of the map f(g) it follows at once that this
discriminator is an element

z(g) ∈ Hn−k(Mn(Sk, g), πn−k(BSON
))

and that the equality of it to zero is sufficient for the homotopicity of the maps
ν1 · f(g) and ν2. The element z(g) is represented by a cocycle z̄(g) having the same
value on each fiber Dn−k

x , x ∈ Sk ⊂Mn(Sk, g). This value (on a given fiber Dn−k
x )

is by definition (cf. [8]) an element of the group πn−k(BSON
) defining the normal

bundle of the smooth sphere Sn−k(g), i.e., an element of the group θn/θn(π) that
is equal to zero if S̃n−k(g) ∈ θn−k(π).

Thus all assertions of the lemma are proved. �

Now let Mn = Sk × Sn−k. In this case there exists the following

Lemma 9.3. The manifold Mn(Sk, g) is diffeomorphic with degree +1 to the man-
ifold Sk × S̃n−k(g).

Proof. Clearly,
Mn(Sk, g) = (Sk ×Dn−k) ∪g̃ (Sk ×Dn−k).

The diffeomorphism
g̃ : Sk × Sn−k−1 → Sk × Sn−k−1,

constructed above, is such that

g̃(x, y) = (x, g(Sk)y).

At the same time the diffeomorphism of

Sn−k(g) = Dn−k ∪g(Sk) D
n−k, g(Sk) : Sn−k−1 → Sn−k−1,

holds by definition. Thus the diffeomorphism g̃ is a fiber diffeomorphism that
introduces a new structure of a direct product on a manifold Sk × Sn−k−1. As a
result of the gluing

Mn(Sk, g) = Sk ×Dn−k ∪g̃ S
k ×Dn−k

we obtain the direct product

Sk × (Dn−k ∪g(Sk) D
n−k) = Sk × S̃n−k(g).

The lemma is proved. �
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We now define the operation “sums of manifolds along a cycle.” Suppose Mn
1 and

Mn
2 are manifolds and the Sk

i ⊂Mn
i , i = 1, 2, are smoothly situated k-dimensional

spheres, the normal bundles νn−k(Sk
i ,M

n
i ), i = 1, 2, of which are trivial. We

introduce in the tubular neighborhoods

T (Sk
i ) ⊂Mn

i , i = 1, 2,

the coordinates of a direct product

T (Sk
i ) = Sk

i ×Dn−k
ε

using the geodesies of an ε-ball Dn−k
ε that are normal to the spheres Sk

i ⊂ Mn
i in

some Riemannian metric. Then we put

[Mn
1 \ T (Sk

1 )] ∪h [Mn
2 \ T (Sk

2 )] = Mn(Sk
1 , S

k
2 , h),

where
h : Sk

1 ×Dn−k
ε → Sk

2 ×Dn−k
ε ,

h(x, y) = (x, hx(y)), hx ∈ SOn−k,

d(h) : Sk
1 → SOn−k.

Lemma 9.4. If k < [π/2] and π1(Mn
1 ) = π1(Mn

2 ) = 0, then the manifold
Mn(Sk

1 , S
k
2 , h) depends only on the homotopy classes αi of the embeddings of a

sphere Sk
i ⊂Mn

i , i = 1, 2, and the homotopy class d̃ of the map d(h) : Sk
1 → SOn−k.

Proof. If two spheres Sk
i,1, S

k
i,2, i = 1, 2, are smoothly situated in the manifold Mn

i

and are homotopic, then for k ≤ [n/2] they are diffeotopic. From this fact and the
results of the paper [16] it follows that two embeddings

fi,j : Sk
i,j ×Dn−k

ε →Mn
i , i, j = 1, 2,

are defined to within diffeotopy of the pair (αi, d̃i), where αi ∈ πk(Mn
i ) and di ∈

πk(SOn−k). From the fact that the manifold Mn(Sk
1 , S

k
2 , h) is completely defined

by the diffeotopy classes of the embeddings

fi,j : Sk
i,j ×Dn−k

ε →Mn
i , i, j = 1, 2,

it immediately follows that it depends only on the quadruple

(α1, d̃1, α2, d̃2), αi ∈ πk(Mn
i ), d̃i ∈ πk(SOn−k).

Clearly, the quadruples (α1, d̃1, α2, d̃2) and (α1, 0, α2, d̃2− d̃1) define the same man-
ifolds. The lemma is proved. �

Below we will denote the manifold Mn(Sk
1 , S

k
2 , h) by Mn(α1, α2, d̃), where αi ∈

πk(Mn
i ), i = 1, 2, and d̃ ∈ πk(SOn−k).

Remark. According to our definitions the bundles νn−k(Sk
i ,M

n
i ) must be trivial;

as a result, for 2k < n we have αi ∈ πk(Mn, νN (Mn)) (cf. §7).

The following lemma is a consequence of the definition of a connected sum along
a cycle and Lemma 9.3.

Lemma 9.5. Suppose Mn
1 = Sk × S̃n−k(g) and Mn

2 is a (k − 1)-dimensional
manifold, α ∈ πk(Mn

2 , ν
N (Mn

2 )), β ∈ πk(Mn
1 ), d̃ ∈ πk(SOn−k), where β is a

generating element. Then the manifold Mn(α, β, d) is diffeomorphic with degree
+1 to the manifold Mn

2 (α, g) (mod θn) for any element d̃ ∈ πk(SOn−k).
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Proof. The element d̃ ∈ πk(SOn−k) defines a diffeomorphism

h(d̃) : Sk ×Dn−k → Sk ×Db−k

such that
h(d̃)(x, y) = (x, h(d̃)xy), h(d̃)x ∈ SOn−k,

where h(d̃) : Sk → SOn−k, is a representative of d̃. The diffeomorphism h(d̃) is
extended to a diffeomorphism

h̄(d̃) : Sk × S̃n−k(g) → Sk × S̃n−k(g)

(everywhere except a point), since

Sk × S̃n−k(g) = (Sk ×Dn−k ∪g̃ (Sk ×Dn−k),

where S̃n−k(g) ∈ θn−k. Therefore the result of the gluing

Mn(α, β, d̃) = (Mn
1 \ Sk ×Dn−k) ∪h(d̃) (Mk

2 \ Sk ×Dn−k)

does not depend (to within an element of θn) on the diffeomorphism h(d̃). But if
d̃ = 0, then the equality

Mn(α, β, 0) = Mn
2 (α, g)

is a tautology. The lemma is proved. �

We now examine the Thom complex TN (Sk × Sn−k) and the subset

A(Sk × Sn−k) ⊂ πN+n(TN (Sk × Sn−k)).

The manifold Sk × S̃n−k(g) is a π-manifold, if S̃n−k(g) ∈ θn−k(π), and is combina-
torially equivalent to the manifold Sk×Sn−k. There is therefore (cf. §§1–6) defined
the subset

B(Sk × S̃n−k)) ⊂ A(Sk × Sn−k).

In addition, to the smooth sphere S̃n−k(g) corresponds the subset

B̃(S̃n−k(g)) ⊂ G(n− k), k < n− k.

Lemma 9.6. The Thom complex TN (Sk × Sn−k) is homotopically equivalent to
the union

SN+n ∨ SN+n−k ∨ SN+k ∨ SN .

The group
πN+n(TN (Sk × Sn−k))

is isomorphic to the direct sum

Z +G(k) +G(n− k) +G(n).

The set A(Sk × Sn−k) consists of all elements of the form

1N+n + γ, 1N+n ∈ Z, γ ∈ G(k) +G(n− k) +G(n),

where the element 1N+n + 0 ∈ B(Sk × Sn−k).
The decomposition into a direct sum

πN+n(TN (Sk × Sn−k)) = Z +G(k) +G(n− k) +G(n)

can be chosen in such a way that :
a) G(n) = Imκ∗;



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 55

b) the subgroup G(n − k) belongs to the image of the inclusion homomorphism
j∗ : πN+n(T k

N ) → πN+n(TN (Sk × Sn−k)), where

j∗ : T k
N ⊂ TN (Sk × Sn−k)

is the embedding constructed in §7, and T k
N = SN+k ∨ SN ; the subgroup G(n − k)

is defined uniquely modG(n);
c) B(Sk× S̃n−k(g)# θn(π)) ⊃ 1N+n + j∗B̃(S̃n−k(g)) mod Imκ∗, where j : T k

N ⊂
TN (Sk × Sn−k) is the natural embedding.

Proof. The decomposition of the Thom space into a union of spheres follows from

E(Si × Sj) = Si+1 ∨ Sj+1 ∨ Si+j+1

and Lemma 7.3. All assertions of the lemma, except the last, are trivial and imme-
diately follow from the natural decomposition of a Thom complex into a union of
spheres. Further, from Lemma 9.1 it follows that

B(Sk × S̃n−k(g) # S̃n) = B(Sk × S̃n−k(g)) + κ∗B̃(S̃n),

where S̃n ∈ θn(π). Therefore, for the proof of the lemma, it is sufficient to show
that

B(Sk × S̃n−k(g)) ⊃ 1N+n + j∗B̃(S̃n−k(g)) mod Imκ∗.

We consider the “auxiliary Thom complex”

TN (Sk) = SN+k ∨ SN ⊂ TN (Sk × Sn−k), T k
N = TN (Sk), k < n− k.

We also consider a map
f : Sk × S̃n−k(g) → Sk,

where
f(x, y) = x, x ∈ Sk, y ∈ S̃n−k(g),

We extend the map f to a map

F̃ : Sk × S̃n−k(g)×DN → Sk ×DN ,

putting F̃ = f × 1. We extend the map F̃ to a map F : SN+n → TN (Sk) in the
usual way, so that

F |T (Sk × S̃n−k(g)) = F̃ ,

since the tubular neighborhood T (Sk × S̃n−k(g)) ⊂ SN+n is diffeomorphic to Sk ×
S̃n−k(g) ×DN by virtue of the fact that Sk × S̃n−k(g) is a π-manifold. The map
F̃ factors into a composition of maps

F̃ = 1 ◦ F̃ : Sk × S̃n−k(g)×DN → Sk ×DN → Sk ×DN ,

where F̃−1(x0) = S̃n−k(g), x0 ∈ Sk, and the maps are t-regular. Therefore the
induced map

F : SN+n → TN (Sk)
factors into a composition of maps

F = F2 ◦ F1 : SN+n → SN+k → TN (Sk),

where F−1
2 (Sk) = Sk, F2|Sk = 1 and F−1

1 (x0) = S̃n−k(g), x0 ∈ Sk.
By definition (cf. Lemma 3.1) the map F2 represents a generating element of the

group

πN+k(SN+k) ⊂ πN+k(T k
N ) = πN+k(TN (Sk)) = πN+k(SN+k ∨ Sk).
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The map F1 represents an arbitrary element of the set

B̃(S̃n−k)) ⊂ πN+n(SN+n) = G(n− k).

We now consider the sum

1N+n + j∗B̃(S̃n−k(g)) ⊂ πN+n(TN (Sk × Sn−k)).

Let the map
g : SN+n → TN (Sk × Sn−k)

represent the element

1N+n ∈ πN+n(SN+n) ⊂ πN+n(TN (Sk × Sn−k))

and the map
F : SN+n → T k

N ⊂ TN (Sk × Sn−k)
represent an element of the set j∗B̃(S̃n−k(g)) (the map F was constructed above).
We consider the “sum” of maps

(g + F ) : SN+n → TN (Sk × Sn−k),

where

(g + F )−1(Sk × Sn−k) = g−1(Sk × Sn−k) ∪ F−1(Sk × Sn−k)

= Sk × Sn−k ∪ Sk × S̃n−k(g).

We consider the product Sk ×Dn−k
ε × I(0, 1) and form the membrane Bn+1 ⊂

Sn+N × I(0, 1). We have

Bn+1 = [Sk × Sn−k ∪ Sk × S̃n−k(g)]× I

(
0,

1
2

)
∪h1,h2 S

k ×Dn−k
ε × I(0, 1),

where
h1 : Sk ×Dn−k

ε × 0 → Sk ×Dn−k
ε ⊂ Sk × Sn−k,

h2 : Sk ×Dn−k
ε × 1 → Sk ×Dn−k

ε ⊂ Sk × S̃n−k(g),
and

hi(x, y) = (x, hix(y)), hix ∈ SOn−k, i = 1, 2.
Clearly,

∂Bn+1 = [Sk × Sn−k ∪ Sk × S̃n−k(g)] ∪ Sk × S̃n−k(g).
In addition, on the manifold

[Sk × Sn−k ∪ Sk × S̃n−k(g)] = ∂Bn+1 ∩ SN+n × 0

is given an N -frame field, normal to this manifold in the sphere SN+n and induced
by the map (g + F ) of some a priori given and fixed N -frame field, normal to the
submanifold Sk×Sn−k in TN (Sk×Sn−k) (cf. §§1–6). We will place the membrane
Bn+1 in the direct product SN+n × I(0, 1) in a smooth manner and assume, as in
§§1–6, that on SN+n × 0 is defined the map (g + F ) and

Bn+1 ∩ SN+n × 0 = ∂Bn+1 ∩ SN+n × 0 = (g + F )−1(Sk × Sn−k),

Bn+1 ∩ SN+n × 1 = Sk × S̃n−k(g),

where the membrane Bn+1 orthogonally approaches the boundaries of the direct
product SN+n×I(0, 1). Since the difference between the cycles Sk×x0, x0 ∈ Sn−k,
and Sk × x1, x1 ∈ S̃n−k(g), belongs to the kernel

Ker(g + F )(Hk)
∗ ⊂ Hk(Sk × Sn−k ∪ S̃n−k(g)),
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it is possible to extend the map of a submanifold

(g + F )|Bn+1 ∩ SN+n × 0

to the map
(g̃ + F ) : Bn+1 → Sk × Sn−k ⊂ TN (Sk × Sn−k).

In addition, it is always possible to choose maps h1, h2 in such a way that the map
(g̃ + F ) can be extended to the map

(
˜̃
g + F ) : T (Bn+1) → TN (Sk × Sn−k),

where T (Bn+1) is a tubular neighborhood of the manifold Bn+1 ⊂ SN+n × I,
as in §§1–6 (or, what is the same thing, an N -frame field normal to the manifold
Bn+1∩SN+n×0 can be extended to anN -frame field normal to the entire membrane

Bn+1 in SN+n× I(0, 1)). Then in the usual way we extend the map (
˜̃
g + F ) of the

tube T (Bn+1) onto the entire direct product SN+n × I(0, 1). As a result we arrive
at a certain map

(
˜̃
g + F )|SN+n × 1 → TN (Sk × Sn−k),

that is homotopic to the map (g + F ) and such that

(
˜̃
g + F )−1(Sk × Sn−k) ∩ SN+n × 1 = Sk × S̃n−k(g).

We have thus proved that in any homotopy class of the manifold 1N+n +
j∗B̃(S̃n−k(g)) there exists a representative

(
˜̃
g + F ) : SN+n × 1 → TN (Sk × Sn−k)

such that

(
˜̃
g + F )−1(Sk × Sn−k) = Sk × S̃n−k(g).

Consequently,

1N+n + j∗B̃(S̃n−k(g)) ⊂ B(Sk × S̃n−k(g)) mod Imκ∗.

Comparing our results with Lemma 7.3, we obtain the desired statement. The
lemma is proved. �

From Lemma 9.6 immediately follows

Lemma 9.7.

B(Sk × S̃n−k(g) # θn(π)) ⊃ B(Sk × Sn−k) + j∗B̃(S̃n−k(g)) mod Imκ∗.

The proof formally follows from Lemma 9.6. It is only necessary to note that,
according to Lemma 9.6,

B(Sk × S̃n−k(g) # θn(π)) ⊃ 1N+n + B̃(S̃n−k(g)) mod Imκ∗,

where 1N+n ∈ πN+n(SN+n) ⊂ πN+n(TN (Sk×Sn−k)); although the decomposition

TN (Sk × Sn−k) = SN+n ∨ SN+n−k ∨ SN+k ∨ SN

is chosen ambiguously. Namely, if we take another element of the set B(Sk×Sn−k)
as a new generator

1′N+n ∈ πN+n(SN+n)
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and choose, according to the choice of this new generator, a new decomposition of
the Thom complex into a union, then under replacement of 1N+n by 1′N+n all the
arguments of Lemma 9.6 remain in force and we get that

B(Sk × S̃n−k(g) # θn(π)) ⊃ 1′N+n + j∗B̃(S̃n−k(g)) mod Imκ∗

for any element 1′N+n ∈ B(Sk × Sn−k).
The lemma is proved.
Combining the results of the preceding lemmas, we can state that there have

been introduced two elementary operations for changing the smoothness under
preservation of the triangulation: the connected sum with a Milnor sphere from
θn(π) and the “connected sum along a cycle” Sk ⊂ Mn, k < [n/2] (if the normal
bundle νn−k(Sk,Mn) is trivial), of the manifolds Mn and Sk×S̃n−k, where S̃n−k ∈
θn−k(π). The homotopy meaning of these operations for the case Mn = Sk×Sn−k

was found in Lemmas 9.1–9.7.
We denote by Bγ,δ(Mn

1 ) ⊂ B(Mn
1 ) the subset consisting of those elements

αi ∈ Bγ,δ(Mn
1 ) ⊂ B(Mn

1 ) ⊂ A(Mn) ⊂ πN+n(TN (Mn))

for which there are representatives fαi
: SN+n → TN (Mn) that satisfy Lemma 3.2

and possess the following properties:
a) the manifolds f−1

αi
(Mn) are diffeomorphic to Mn

1 , though the map fαi
|Mn

1

need not be a diffeomorphism;
b) fαi∗(δ) = γ, where γ ∈ πk(Mn), δ ∈ πk(Mn

1 ).

Lemma 9.8. If there exists a diffeomorphism h : Mn
1 → Mn

1 of degree +1 such
that h∗(δ1) = δ2, with δ1, δ2 ∈ πk(Mn

1 ), then the sets Bγ,δ1(M
n
1 ) and Bγ,δ2(M

n
1 )

coincide.

The proof of the lemma follows immediately from the fact that we distinguish
all our objects only to within an equivalence induced by diffeomorphisms of the
manifold Mn

1 onto itself of degree +1. The lemma is proved.
Below we will always denote a “connected sum along a cycle” of two manifolds

Mn
1 and Mn

2 in the following standard manner:

Mn(γ1, γ2, d) = Mn
1 #d

γ1γ2
Mn

2 ,

where γi ∈ πk(Mn
i , ν

N (Mn
i ), d ∈ πk(SOn−k). In the event that Mn

2 = Sk × S̃n−k,
γ ∈ πk(Mn

1 , ν
N (Mn

1 )) and β ∈ πk(Sk × S̃n−k) is a generating element, we then,
taking into account Lemma 9.5, use the notation

Mn
1 #d

γ,β S
k × S̃n−k = Mn

1 #γ S
k × S̃n−k mod θn.

Theorem 9.9. Suppose Mn is a (k − 1)-connected manifold and γ, δ ∈
πk(Mn, νN (Mn)), k < n− k. Then in the Thom complex TN (Mn) the relation

(33) Bγ,δ(Mn) + B̃(S̃n−k(g)) · TNγ ⊂ B(Mn #δ S
k × S̃n−k(g)) mod Imκ∗

is valid, where B̃(S̃n−k(g)) ⊂ G(n− k) and

TN : πk(Mn, νN (Mn)) → πN+k(TN (Mn))/ Imκ∗,

is the homomorphism constructed in §7.
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Proof. We realize the element γ ∈ πk(Mn, νN (Mn)) by a smoothly embedded
sphere γ̃ : Sk ⊂Mn, which has a trivial normal bundle νn−k(Sk,Mn) in the mani-
fold Mn, since the bundle γ̃∗νN (Mn) (by condition) and the bundle

νn−k(Sk,Mn)⊕ γ̃∗νN (Mn) = νN+n−k(Sk)

are trivial and k < n − k. The embedding γ̃ : Sk ⊂ Mn determines in a natural
way the embedding

TN γ̃ : TN (Sk, γ̃∗νN (Mn)) ⊂ TN (Mn).

By analogy with the proof of Lemmas 9.6 and 9.7 we consider two maps

f : SN+n → TN (Mn), f̃ ∈ Bγ,δ(Mn),

F : SN+n → TN (Sk, γ̃∗νN (Mn)) ⊂ TN (Mn),

having the following properties:

F̃ ∈ B̃(S̃n−k(g) ◦B(Sk)), B(Sk) ⊂ πN+k(TN (Sk, γ̃νN (Mn))),

TN (Sk, γ̃νN (Mn)) = TN (Sk)

(f̃ and F̃ respectively denote the homotopy classes of the maps f and F ).
It is easy to see that f−1(Mn) = Mn and F−1(Sk) = Sk × S̃n−k(g) .
Further, we consider the map

(f + F ) : SN+n → TN (Mn)

representing the element f̃ + TN γ̃F̃ ∈ πN+n(TN (Mn)). Clearly,

(f + F )−1(Mn) = Mn ∪ Sk × S̃n−k(g) ⊂ SN+n,

the element f−1
∗ (γ)− F−1

∗ (γ) belongs to the kernel Ker(f + F )∗, and δ = f−1
∗ (γ).

By analogy with the proof of Lemma 6.9 we construct a membrane Bn+1 ⊂ SN+1×
I(0, 1) such that:

a) Bn+1 ∩ SN+n × 0 = (f + F )−1(Mn),
b) Bn+1 ∩ Sn+N × 1 = Mn #δ S

k × S̃n−k,
c) Bn+1 = (f + F )−1(Mn)× I(0, 1/2) ∪h1,h2 S

k ×Dn−k
ε × I(0, 1),

d) h1 : Sk ×Dn−k
ε × 0 →Mn × 1/2,

e) h2 : Sk ×Dn−k
ε × 1 → Sk × S̃n−k × 1/2,

f) hi(x, y, i− 1) = (x, hix(y)),
where i = 1, 2, hix ∈ SO(n− k), x ∈ Sk, y ∈ Dn−k

ε .
The membrane is chosen in such a way that the map

(f + F )|SN+x × 0

can be extended to a map

F1 : SN+n × I(0, 1) → TN (Mn)

such that
F−1

1 (Mn) = Bn+1.

The choice of the membrane is effected by the choice of the map hix, i = 1, 2, as in
Lemma 9.6, and can always be effected for k < n− k. On the upper boundary the
map F1|SN+n × 1 defines a map (f̃ + F ) such that

(f̃ + F )−1(Mn) = Mn #δ S
k × S̃n−k(g).
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We have thus shown that the sum f̃ + TN γ̃F̃ belongs to the set

B(Mn #δ S
k × S̃n−k(g))

when f̃ ∈ Bγ,δ(Mn) and

F̃ ∈ B̃(S̃n−k(g)) ◦B(Sk), TN γ̃F̃ ∈ B̃(S̃n−k(g)) · TNγ.

From the definition of a homomorphism,

TN : πk(Mn, νN (Mn)) → πN+n(TN (Mn))/ Imκ∗.

The theorem is proved. �

§ 10. Variation of smoothness under preservation of the
triangulation. The reconstruction of Morse8

We assume that the manifold Mn is (k − 2)-connected and is a π-manifold for
k < n− k − 1, k − 2 ≥ 1. We select in the group

Hk−1(Mn) = πk−1(Mn) = πk−1(Mn, νN (Mn))

some element γ, realize it by a sphere Sk−1 ⊂Mn having by virtue of the (k − 1)-
parallelizibility of the manifold Mn a trivial normal bundle νn−k+1(Sk−1,Mn), and
form the manifold

Bn+1(h) = Mn × I

(
0,

1
2

)
∪h D

k ×Dn−k+1
ε ,

where
h : ∂Dk ×Dn−k+1

ε → T (Sk−1) = Sk−1 ×Dn−k+1
ε ,

h(x, y) = (x, hx(y)), hx ∈ SOn−k+1.

We select the diffeomorphism h so that the manifold Bn+1(h) is also a π-manifold,
which is possible (cf. §§1–2 or §9). Clearly,

∂Bn+1(h) = Mn ∪ (−Mn(h))

and
Hk(Bn+1(h),Mn) = Hn+1−k(Bn+1(h),Mn(h)) = Z,

Hi(Bn+1(h),Mn) = Hn+1−i(Bn+1(h),Mn(h)) = 0, i 6= k.

Let us vary the smoothness on the manifoldMn(h), keeping fixed the normal bundle
νN (Mn(h)) and the triangulation. We denote the resultant manifold by Mn

1 (h).
To this variation of smoothness, according to the results of §8, there corresponds
the set of elements (αi) ∈ πN+n(Tn−2

N ) representing the set of all differences

B(Mn(h))−B(Mn
1 (h)), Tn−2

N ⊂ TN (Mn(h)).

We denote the standard combinatorial equivalence by q : Mn
1 (h) → Mn(h). In

the set B(Mn
1 (h)) we select the subset B(q)(Mn

1 (h)) consisting of those elements
α ∈ B(q)(Mn

1 (h)) which have t-regular representatives

f2 : SN+n → TN (Mn(h))

such that
f−1
2 (Mn(h)) = Mn

1 (h)

8The principal theorem of this section, Theorem 10.2, is proved here incompletely. The reader

can omit this section, since its results are not used later. A detailed proof of Theorem 10.2 will
be given in the second part of the paper.
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and
f2|Mn

1 (h) = q.

We fix the standard element 1N+n ∈ B(Mn(h)), constructed for the proof of
Lemma 3.1, and consider the subset of the set of differences of the form

{1N+n −B(q)(Mn(h))} ∈ πN+n(Tn−2
N ), Tn−2

N ⊂ TN (Mn(h)).

We extend the smoothness of the manifold Mn
1 (h) onto the entire membrane

Bn+1(h). In this connection there arise the obstructions

φs ∈ Hs(Bn+1(h),Mn(h), θn−s), Γn−s ⊂ θn−s

with coefficients in Milnor groups (cf. [12, 23]). But since

Hs(Bn+1(h),Mn(h)) = 0, s 6= n+ 1− k,

there arises only one obstruction

φn+1−k ∈ Hn+1−k(Bn+1(h),Mn(h), θn−k) = θn−k.

Thus, to every manifoldMn(h) that is combinatorially equivalent to the manifold
Mn(h) there corresponds an element φn+1−k ∈ θn−k. According to certain results
of Munkres [12], if φn+1−k = 0, then the variation of smoothness can be extended
onto Bn+1(h) with boundary Mn(h) without varying the triangulation on it.

We select in the group

Hk−1(Mn) = πk−1(Mn)

a minimal system of generators γ1, . . . , γl; and realize them by spheres
Sk−1

1 , . . . , Sk−1
l ⊂ Mn, that are smoothly embedded and mutually disjoint.

For each of these spheres the bundles νn−k+1(Sk−1
i ,Mn), i = 1, . . . , l, are trivial.

We form the manifold

Bn+1
l = Mn × I

(
0,

1
2

)
∪h1,...,hl

[(Dk
1 ×Dn−k+1

ε ) ∪ · · · ∪ (Dk
l ×Dn−k+1

ε )],

where

hi : ∂Dk
i ×Dn−k+1

ε → Sk−1
i ×Dn−k+1

ε ⊂Mn, i = 1, . . . , l,

so that

hi(x, y) = (x, hix(y)), x ∈ Sk−1
i , y ∈ Dn−k+1

ε , hix ∈ SOn−k+1.

We select the diffeomorphism hi according to §§1–2 so that the manifolds

Mn
l (h) =

(
Mn \

⋃
i

T (Sk−1
i )

)
∪h1,...,hl

[⋃
i

Dk
i × Sn−k

ε

]
and Bn+1

l (h) are π-manifolds, which is possible for k < n− k. Clearly,

∂Bn+1
l (h) = Mn ∪ (−Mn

l (h))

and
Hs(Bn+1

l (h),Mn) = Hn+1−s(Bn+1
l (h),Mn

l (h)) = 0, s 6= k.

Since k < n − k − 1, the manifold Mn
l (h) is (k − 1)-connected. By analogy with

the above, to every variation of smoothness on Mn
l (h) without variation of the

triangulation there corresponds an element

φn+1−k ∈ Hn+1−k(Bn+1
l (h),Mn

l (h), θn−k) = θn−k
(1) + · · ·+ θn−k

(l) .
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Let
Hi(Mn

l (h)) = 0, i < k + p (p ≥ 0)
and

Hk+p(Mn
l (h)) = πk+p(Mn

l (h)) 6= 0,
where k + p < n− k − p− 1. On the manifold Mn

l (h) we vary a smooth structure,
using the results of §9; namely, we select in the group πk+p(Mn

l (h)) a base δ1, . . . , δm
and consider the sum

Mn
l (h) #δ1 S

k+p × S̃n−k−p
1 #δ2 · · ·#δm

Sk+p × S̃n−k−p
m ,

where S̃n−k−p
m ∈ θn−k−p(π). Let us attempt to “carry over” the new smoothness

with respect to the membrane Bn+1
l (h) on Mn. There arises an obstruction

φn+1−k ∈ θn−k + · · ·+ θn−k (l terms);

this obstruction defines a map

(35) φn+1−k :
m∑

i=1

θn−k−p
i →

l∑
j=1

θn−k
j

(to the variation of smoothness of the manifold Mn
l (h) by an element

θ ∈
∑m

i=1 θ
n−k−p corresponds an obstruction φn+1−k(θ) ∈

∑l
i=1 θ

n−k
j ). If

θ ∈ Kerφn+1−k, then the variation of smoothness by θ permits a carrying over.
We now study the homotopy nature of the constructed map φn+1−k in terms of a
Thom complex. In this connection we recall the filtration of a Thom complex

TN (Mn) ⊃ Tn−2
N ⊃ · · · ⊃ T 2

N ⊃ SN = T 0
N .

If the manifold Mn is (k − 2)-connected, then

T 2
N = T 3

N = · · · = T k−2
N = T 0

N = SN

and
Tn−2

N = · · · = Tn−k+1
N .

In general, we will always select a filtration

T i
N = TN (Ki, j∗νN (Mn)),

where Ki is the i-dimensional skeleton in a minimal triangulation and j : Ki ⊂Mn

(the number of cells σi ⊂ Mn is equal to max rkHi(Mn, k) with respect to all
fields k). To each cell σi ⊂Mn corresponds a cell

TNγ
i ⊂ T i

N ⊂ TN (Mn),

and the boundary operators in the complexes Mn and TN (Mn) are applied identi-
cally:

∂TN (γi) = TN (∂σi).
It was proved in §7 that, if Mn is a π-manifold, then the space TN (Mn) is

homotopically equivalent to the union

EN (Mn) ∨ SN = EN (Mn ∪ x0),

where x0 is a point. In this case we can assume that

EN (Ki ∪ x0) = ENKi ∨ SN = T i
N ,

and
TN (Mn) = SN+n ∨ ENKn−2 ∨ SN .
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Let us consider the Thom complex TN (Bn+1
l (h)), which is a pseudomanifold

with boundary
∂TN (Bn+1

l (h)) = TN (Mn) ∨ TN (Mn
l (h)).

As is well known (cf. §1), the space Bn+1
l (h) contracts to its part

Mn × 1
2
∪h1,...,hl

(Dk
1 × 0 ∪ · · · ∪Dk

l × 0).

The homotopy type of a Thom complex depends only on the homotopy type of the
base. Therefore the Thom complex TN (Bn+1

l (h)) is homotopically equivalent to
the Thom complex

TN (Mn) ∪TN h1,...,TN hl
(DN+k

1 ∪ · · · ∪DN+k
l ),

where
TNhi : ∂DN+k

i → ENKk−1 ⊂ T k−1
N , i = 1, . . . , l.

In this connection it is evident that

Kk−1 = Sk−1
1 ∨ · · · ∨ Sk−1

l

and
TNhi : ∂DN+k

i → ENSk
i = Sn+k−1

i ,

if the spheres Sk−1
i ⊂ Kk−1 are chosen according to the previously selected system

of generators γ1, . . . , γl of the group

Hk−1(Mn) = πk−1(Mn)

for the definition of the manifold

Bn+1
l (h), h = (h1, . . . , hl).

We now investigate the Thom complex TN (Mn
l (h)). If an element γs is an

element of infinite order, then, under passage from Mn to Mn
l (h) of a cycle γ̃s ∈

Hn−k+1(Mn) such that γ̃s · γs = 1, a neighborhood of a point that is orthogonal to
the sphere Sk−1

s ⊂ Mn will be discarded. If for all generators of cycles of infinite
order

γi1 , . . . , γis
∈ πk−1(Mn)

there exists a system of dual generators

γ̃i1 , . . . , γ̃is
∈ Hn−k−1(Mn)

such that
γ̃ij · γit = δjt,

and each generating element γ̃ij is defined by precisely one cell σn−k+1
j ⊂ Mn,

then, under passage from Mn to Mn
l (h) of the interior of each cell σn−k+1

j , a small
spherical neighborhood of a point will be discarded, and the complement can be
contracted to Kn−k. If an element γt has a finite order qt, then there exists an
element

γ̃t ∈ Hn−k+1(Mn, Zqt)
such that

γt · γ̃t = 1 (mod qt);
if the element γ̃t is also defined by a single cell

σn−k+1
t ∈ Kn−k+1 ⊂Mn
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(which can always be assumed if n− k+ 1 6= k− 1), then, under passage from Mn

to Mn
l (h) of this cell, only one spherical neighborhood of a point of intersection of

σn−k+1
t and Sk−1

1 will be discarded, and after this operation the complement can
be contracted onto the boundary ∂σn−k+1

t ⊂ Kn−k. Furthermore the entire group
πk−1(Mn) goes into zero under passage from Mn to Mn

l (h) (a ball Dk
i is stretched

onto each sphere Sk−1
i , i = 1, . . . , l, that is shifted onto the boundary of a tubular

neighborhood ∂T (Sk−1
i ) ⊂Mn). Thus we have obtained the following statement.

Lemma 10.1. The complex TN (Bn+1
l (h)) is homotopically equivalent to the Thom

complex
TN (Mn) = SN+n ∨ ENKn−k+1 ∨ SN

with cone stretched onto the (N + k − 1)-dimensional subcomplex

ENKk−1 = SN+k−1
1 ∨ · · · ∨ SN+k−1

l ⊂ ENKn+k−1 ⊂ TN (Mn).

If k − 1 < n− (k − 1)− 1, then the Thom complex TN (Mn
l (h)) is a subcomplex of

the complex TN (Bn+1
l (h)) and contracts on itself to the subcomplex

(SN+n ∨ ENKn−k ∨ SN )/ENKk−1

of the complex

TN (Bn+1
l (h)) = (SN+n ∨ ENKn−k+1 ∨ SN )/ENKk−1.

The proof of Lemma 10.1 is obtained from the arguments preceding the formu-
lation (passage to Thom complexes).

The lemma is proved.
We have already considered in §8 the exact sequences (33) and (34) of the form

· · · → πN+i(T k−1
N ) → πN+i(T

k+p
N ) → πN+i(T

k+p
N /T k−1

N ) ∂−→ πN+i−1(T k−1
N ) → · · ·

for i = n, p ≥ 0. In our case

T i
N = ENKi ∨ SN ,

T k−1
N = SN+k−1

1 ∨ · · · ∨ SN+k−1
l ∨ SN = ENKk−1 ∨ SN .

Now suppose again that i = n. We consider the exact sequence

(36) πN+n(ENKk−1) → πN+n(ENKk+p) → πN+n(ENKk+p/ENKk−1)
∂−→ πN+n−1(ENKk−1) → πN+n−1(ENKk+p), p ≥ 0,

corresponding to the exact sequences (33) and (34), since

Tm
N = ENKm ∨ SN .

In order to emphasize the dependence on a manifold, we will write

Tm
N = Tm

N (Mn) ⊂ TN (Mn), Tm
N (Mn

l (h)) ⊂ TN (Mn
l (h)),

Tm
N (Bn+1

l (h)) ⊂ TN (Bn+1
l (h)).

It follows from Lemma 10.1 that

Tm
N (Mn

l (h)) = Tm
N (Bn+1

l (h)) = (ENKm/ENKk−1) ∨ SN

for m ≤ n− k and

Tn−k+1
N (Bn+1

l (h)) = (ENKn−k+1/ENKk−1) ∨ SN .
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We will also write
Km = Km(Mn) ⊂Mn,

Km(Mn
l (h)) ⊂Mn

l (h), Km(Bn+1
l (h)) ⊂ Bn+1

l (h),

denoting the skeletons of dimension m of the corresponding manifolds Mn, Mn
l (h)

or Bn+1
l (h) by symbols depending on the manifold. We note in addition that

πN+n−1(ENKk−1) = G(n− k) + · · ·+G(n− k) (l terms).

We rewrite the exact sequence (36) in the form

(37)
l∑

i=1

Gi(n− k + 1) → πN+n(ENKk+p(Mn)) ∧−→ πn+N (ENKk+p(Bn+1
l (h)))

∂−→
l∑

i=1

Gi(n− k) → πN+n−1(ENKk+p(Mn)),

where, if k + p ≤ n− k, then

ENKk+p(Bn+1
l (h)) = ENKk+p(Mn

l (h)).

In accordance with the notation of §8, we obtain from Lemma 10.1

T k+p,k−1
N (Mn) = T k+p

N (Mn
l (h)) = T k+p

N (Bn+1
l + (h)),

k − 1 < n− k − 2, p ≥ 0, k + p ≤ n− k.

Let us now consider the “equipped” smooth spheres S̃i ⊂ SN+1 in the sense of
Pontrjagin [15]. In this case a sphere S̃i with normal frame field τN (“equipment”)
in SN+i defines an element of the group G(i). We will also always carry out the
operation of a “connected sum along a cycle,” defined in §9, for “equipped” π-
manifolds Mn

1 ,M
n
2 ⊂ SN+n, so that the manifold

Mn
1 #d

γ1;γ2
Mn

2

receives the natural equipment for a suitably chosen element d. Since an “equipped”
smooth sphere S̃i defines only one element α(S̃i, τN ) ⊂ G(i), we obtain a new
formulation for Theorem 9.9:

Every element β ∈ Bγ,δ(Mn
1 ) ⊂ A(Mn) represents

a) an “equipped’” manifold Mn
1 plus

b) a fixed to within homotopy map f : Mn
1 →Mn of degree +1 such that

f∗δ = γ, γ ∈ πk(Mn, νN (Mn)), δ ∈ πk(Mn
1 , ν

N );

on the manifold Mn
1 #δ S

k × S̃n−k appears the natural equipment and the natural
map

f̃ : Mn
1 #δ S

k × S̃n−k →Mn;
this equipment and map f̃ jointly define an element

β + α(S̃n−k, τN ) ◦ TNγ ∈ Bγ,δ(Mn
1 #δ S

k × S̃n−k),

where
α(S̃n−k, τN ) ∈ B̃(S̃n−k), β ∈ Bγ,δ(Mn

1 ).
This new formulation is somewhat stronger than the old one, but it is proved

in essentially the same way. We will call this (stronger) assertion Theorem 9.9′

In addition, in carrying over a smooth structure with respect to the membrane
Bn+1

l (h) we will attempt to carry over the new “equipment” obtained in varying the
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boundary Mn
l (h) onto the “equipped” smooth sphere S̃n−k−p, p ≥ 0 (the manifold

Mn is (k − 2)-connected and the manifold Mn
l (h) is (k + p − 1)-connected). We

recall that the manifold Mn was “equipped” and, according to §2, we defined the
membrane Bn+1

l (h) in such a way that the “equipment” given on the manifold Mn

was extended to the “equipment” of the membrane

Bn+1
l (h) ⊂ SN+n × I(0, 1), Mn ⊂ Sn+N × 0,

Mn
l (h) ⊂ SN+n × 1

In this case an obstruction to the carrying over of the new “equipment” (together
with the smoothness) of the boundary Mn

l (h) onto the membrane Bn+1
l (h) will be

the class of cohomologies

φ̃n+1−k ∈ hn+1−k(Bn+1
l (h),Mn

l (h);G(n− k))

= G(n− k) + · · ·+G(n− k) (l terms).

This obstruction to extending the smoothness and equipment of a boundary onto
a membrane falls into the following parts:

1) There is defined on the boundary ∂σn+1−k = Sn−k of each simplex

σn+l−k ∈ Bn+1
l (h)

a new smoothness
S̃n−k(σn+1−k) ∈ θn−k

(cf. [12, 23]).
2) There is defined on the boundary ∂σn+1−k a frame field τN that is normal

to the entire membrane Bn+1
l (h) ⊂ SN+n × I(0, 1), which has meaning, since the

new smoothness is already defined, simultaneously with the new “equipment” of
the membrane Bn+1

l (h), on a neighborhood of the (n− k)-dimensional skeleton.
3) There is defined on ∂σn+1−k a frame field normal to ∂σn+1−k in Bn+1

l (h) (in
the new smoothness). We denote this frame field by τk; it must have meaning in
the new smoothness.

4) The smoothness S̃n−k on ∂σn+1−k and of the field (τN , τk) jointly define an
element

α(σn+1−k) ∈ G(n− k);
if the smoothness and equipment of (τN , τk) are extended from a neighborhood of
the boundary onto a neighborhood of the simplex σn+1−k and define a “smoothness
with equipment” on a neighborhood of the (n − k)-dimensional skeleton plus a
neighborhood of the simplex (cf. [12, 23]), then

α(σn+1−k) = 0.

According to the preceding results, we can vary the smoothness and equipment on
the (k + p)-dimensional skeleton of the manifold Mn

l (h) onto an element

α ∈
m∑

i=1

Gi(n− k − p), 9

where m is the number of generators of the group

Hk+p(Mn
l (h)) = πk+p(Mn

l (h)).

9It is important to note that equipped smooth spheres do not take up the entire group G(i)

for i = 4q + 2, so that φ̃n+1−k is not defined everywhere.
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To an element α ∈
∑m

i=1Gj(n− k − p) corresponds an element

φ̃n+1−k(α) ∈
l∑

j=1

Gj(n− k) = Hn+1−k(Bn+1
l (h),Mn

l (h);G(n− k)).

On the other hand, we have constructed an exact sequence (37)

· · · → πN+n(ENKk+p(Mn)) ∧−→ πN+n(ENKk+p(Ml(h)))
∂−→

l∑
i=1

Gi(n− k) → . . . ,

where

πN+1(ENKk+p(Ml(h))) =
m∑

j=1

Gj(n− k − p),

so that
∂ :
∑

i

Gi(n− k − p) →
∑

Gi(n− k).

There occurs the following

Theorem 10.2. The homomorphism

∂ :
m∑

j=1

G(n− k − p) →
l∑

i=1

Gi(n− k).

of the exact sequence (37) coincides in the common domain of definition with the
the map φ̃n+1−k.

Sketch of the proof. The definition of the homomorphism ∂ bears an algebraic char-
acter, whereas the map φ̃n+1−k was defined in terms of geometric concepts. Conse-
quently, in order to establish a connection between them it is necessary to translate
the definition of the homomorphism φ̃n+1−k into algebraic language. Let us con-
sider the manifold (

Mn \
l⋃

i=1

T (Sk−1
i )

)
= Bn,

where

∂Bn =
l⋃

i=1

Sn−k
i × Sk−1

i .

Clearly,

Mn
l (h) = Bn ∪h1,...,hl

[
l⋃

i=1

Sn−k
i ×Dk

i

]
and

Mn = Bn ∪

[
l⋃

i=1

Dn−k+1
i × Sk−1

i

]
.

We vary in the manner described above the smoothness of the manifold Mn
l (h)

(together with the equipment if it exists) onto an element

α ∈
m∑

j=1

Gj(n− k − p), α =
∑

j

αj , αj ∈ Gj(n− k − p).
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Thus the smoothness and equipment are varied only in a neighborhood of the cycles
Sk+p

j ⊂Mn
l (h). The intersection

Sk+p
j · Sn−k

i = Mp
ij

represents a smooth submanifold Mp
ij ⊂ Sn−k

i , equipped in the sphere Sn−k
i by

a frame field that is induced by the coordinate system in a neighborhood of the
sphere Sk+p

j ; we assume that the spheres Sk+p
j and Sn−k

i are orthogonal to each
other at the common points of intersection. This equipped manifold defines an
element βij ∈ πn−k(Sn−k−p); under variation of the smoothness of the manifold
Mn

l (h) in a neighborhood of the cycle Sk+p
j by a sphere S̃n−k−p

j (αj) ∈ θn−k−p(π)
the smoothness on the sphere Sn−k

i ⊂ Mn
l (h) is varied in a tubular neighborhood

of the manifold Mp
ij ⊂ Sn−k

i ; namely,

T (Mp
ij) ⊂ Sn−k

i ,

T (Mp
ij) = Mp

ij ×Dn−k−p
ε ,

∂T (Mp
ij) = Mp

ij × Sn−k−p−1
ε .

Let us consider the map

g̃ : Mp
ij → diff Sn−k−p−1

ε ,

induced by the map
g : Sk+p

j → diff Sn−k−p−1
ε

taking the entire sphere Sk+p
j into the point g(Sk+p

j ), where

S̃n−k−p(g(Sk+p
j )) = S̃n−k−p(αj).

Further, we set

(38) S̃n−k
i (αj) = [Sn−k

j \ T (Mp
ij)] ∪g̃ T (Mp

ij),

where
g̃ : ∂T (Mp

ij) → ∂T (Mp
ij),

g̃(x, y) = (x, g̃(Mp
ij) ◦ y), x ∈Mp

ij , y ∈ S
n−k−p−1
ε .

The following lemma clarifies the meaning of the elements βij ∈ G(p).

Lemma 10.3. The complex T k+p
N (Mn) is homotopically equivalent to the union

SN ∨

( m⋃
j=1

Dk+p+N
i

)
∪βij

n∨
i=1

SN+k−1
i

 ,
where βij ∈ πN+k+p−1(SN+k−1

i ) = G(p).

Proof. Clearly,

Mn = Bn ∪

[⋃
i

Dn−k+1
i × Sk+1

i

]
,

where

Bp = Mn
l (h) \

(⋃
i

Sn−k
i ×Dk

i

)
;
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the manifold Mp
ij ⊂ Sn−k

i represents the intersection

Sn−k
i · Sk+p

j ⊂Mn
l (h), i = 1, . . . , l, j = l, . . . ,m.

We will assume without further ado that the spheres Sn−k
i and Sk+p

j intersect at
right angles at each point of the manifold Mp

ij . We consider a tubular neighborhood
T̄ (Mp

ij) ⊂ Sk+p
j of the manifold Mp

ij in the sphere Sk+p
i . Clearly,

T (Mp
ij) = Mp

ij ×Dk
εi

and
∂T (Mp

ij) = Mp
ij × Sk−1

ε ⊂ Sk+p
j .

We note that on the manifold Mp
ij there is equipment normal to Mp

ij in Sn−k
i , on

the entire manifold Mp
ij × Sk−1

εi there is equipment normal to Mp
ij × Sk−1

εi in the
manifold

∂T (Sn−k
i ) = Sn−k

i × Sk−1
εi ,

and on Mp
ij × S

k−1
εi there is an N -frame field normal to the manifold Mn

l (h) in the
sphere SN+n. We consider the Thom complex TN (Sk−1

εi ) and note that the sphere
Sk−i

εi ⊂ Bn defines in general a nontrivial cycle in the homologies Hk(Mn), where
the group Hk(Mn) is generated by the cycles Sk−1

εi ⊂ Bn, formed under a passage
from Mn

l (h) to Bn ⊂ Mn as a result of discarding the tubular neighborhoods
T (Sn−k

i ) ⊂Mn
l (h). The pair of equipments on the manifold

Mp
ij × Sk−1

i ⊂Mn
l (h) ⊂ SN+n,

mentioned above, define together with the natural projection

p : Mp
ij × Sk−1

i → Sk−1
i

a map
F (βij) : SN+k+p−1 → TN (Sk−1

i ) = SN ∨ SN+k−1,

satisfying Lemma 3.2 and such that

F (βij)−1(Sk−1
i ) = Mp

ij × Sk−1
i , F (βij) = p/Mp

ij × Sk−1
i ,

and the map F (βij) is defined on a tubular neighborhood of the manifoldMp
ij×Sk−1

by the pair of equipments constructed above, that are normal to Mp
ij × Sk−1

i ⊂
Sn−k

i × Sk−1
i and to Mn

l (h) ⊂ SN+n. It is easy to see that the map

F (βij) : SN+n → TN (Sk−1)

has the homotopy class βij ◦ TNγi, where γi is a generating element of the group
πk−1(Sk−1

i ). We recall that the equipment normal to Mn
l (h) was given on the entire

membrane
Bn+1

l (h) ⊂ SN+n × I(0, 1)

and consequently on the manifold Mn ⊂ SN+n × 0, where

Mn
l (h) ⊂ SN+n × 1.

Therefore the constructed map∑
i

F (βij) : SN+n → TN

(∨
i

Sk−1
i

)
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is homotopic to zero in the complex TN (Mn), since the equipment of⋃
i

Mp
ij × Sk−1

i ⊂ Bn ⊂Mn

is already extended onto the membrane(
Sk+p

j \
⋃
i

(Mp
ij ×Dk

εi)

)
⊂ Bn

by definition of this equipment, and the equipment normal to the entire manifold
Mn

l (h) is extended onto the membrane Bn+1
l (h). Therefore the element∑

i

βij ◦ TNγi ∈ πN+k+p−1(T
k+p
N (Mn))

is equal to zero. It is easy to see that every element

β ∈ πN+k+p−1(T k−1
N (Mn))

belonging to the kernel of the inclusion homomorphism

T k−1
N (Mn) ⊂ T k+p

N (Mn),

is a linear combination of the elements
∑

i βij ◦ TN
γi

, from which also follows the
desired statement. The lemma is proved. �

Remark. If p = 0, then the manifold Mp
ij represents a collection of points and

there is defined the index of the intersection

βij = Sk+p
j · Sn−k

i , i = 1, . . . , l, j = 1, . . . ,m.

The proof of Lemma 10.3 is trivial in this case, and the boundary operator in
the complex T k+p

N (Mn) can be expressed in terms of the indices of the intersections
Sk+p

j · Sn−k
i (the elements βij ∈ G(0) = Z represent integers).

Let us study how the smoothness on the spheres Sn−k
i ⊃Mp

ij is varied under the
variation of the smoothness in a tubular neighborhood

T (Mp
ij) = Mp

ij ×Dn−k−p,

described above. Namely,

S̃n−k = (Sn−k \ T (Mp
ij)) ∪g T (Mp

ij),
10

g : Mp
ij → diff Sn−k−p−1,

and g(Mp
ij) consists of one point (one diffeomorphism) corresponding to the sphere

S̃n−k−p(g) ∈ θn−k−p(π). We consider separately the manifold

Mp
ij × S̃n−k−p(g)

and on it we assign the equipment τN in the sphere SN+n−k in such a way that
the equipped manifold

Mp
ij × S̃n−k−p(g) ⊂ SN+n−k

has defined an element of the set

βij ◦ B̃(S̃n−k−p(g)) ∈ G(n− k).

10The operation indicated here for varying the smoothness depends essentially on the choice

of the map Mp
ij → SOn−k−p defining the normal coordinates.
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On the sphere Sn−k ⊂ SN+n we initially assign the null equipment τN
0 . We consider

the equipped map
Mn−k = (Sn−k ∪Mp

ij × S̃n−k−p(g))

in the sphere SN+n−k × 0 and the membrane

Nn−k+1
q = Mn−k ∪q D

n−k−p × I(0, 1)×Mp
ij ,

where
q = (q0, q1),

q0 : Dn−k−p ×Mp
ij × 0 → Sn−k,

q1 : Dn−k−p ×Mp
ij × 1 →Mp

ij × S̃n−k−p(g),

and
qi(x, y, i) = (qiy(x), y, i), i = 0, 1, qiy ∈ SOn−k−p.

We will assume that
Nn−k+1

q ⊂ SN+n−k × I(0, 1),
where it is evident that

Nn−k+1
q ∩ SN+n−k × 0 = Mn−k,

Nn−k+1
q ∩ SN+n−k × 1 = S̃n−k,

and the membrane Nn−k+1
q orthogonally approaches the boundaries.

Lemma 10.4. The maps qi : M
p
ij → SOn−k−p, i = 0, 1, can be chosen in such a

way that the equipment τN ∪ τN
0 , given on the manifold Mn−k ⊂ SN+n−k × 0, can

be extended onto the entire membrane Nn−k+1
q ⊂ SN+n−k × I(0, 1).

Proof. Since, by condition, the number p is small in comparison to the number
n− k − p, the natural inclusion homomorphism

π(Mp
ij , SOn−k−p) → π(Mp

ij , SON )

is an epimorphism. Therefore for a fixed map

q0 : Mp
ij → SOn−k−p

it is possible to select a map q1,

q1 : Mp
ij → SOn−k−p,

such that the equipment τN ∪ τN
0 is extended from Mn−k onto the membrane

Nn−k+1
q , q = (q0, q1), since the membrane Nn+1−k

q always contracts to the sub-
complex

Mn−k ∪q 0×Mp
ij × I(0, 1),

and it is sufficient to extend the equipment only onto this subcomplex, which is
done in exact analogy with the proof of Lemma 2.1.

The lemma is proved. �

Thus Lemma 10.4 gives us information on the new smoothnesses and equipments
on the spheres Sn−k

i , i = 1, . . . , l, under a variation of the smoothness and equip-
ment on the original manifold Mn

l (h). Namely, under a variation of the smoothness
(and equipment) on the jth base cycle of the group

Hk+p(Mn
l (h)) = πk+p(Mn

l (h))
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onto the Milnor sphere S̃n−k−p(αj) ∈ θn−k−p(π) (which, together with the equip-
ment, is the element αi of the group G(n− k− p)), the smoothness and equipment
on the sphere Sn−k

i define the element∑
j

βij ◦ αj ∈ G(n− k).

Since the homomorphism

∂ : πN+n(T k+p
N (Mn

l (h))) → πN+n−1(T k−1
N (Mn)),

constructed above, is defined, as is well known in homotopy topology, so that

α→
∑
i,j

αj ◦ βij ,

where α =
∑
αj for all

α ∈
m∑

j=1

Gj(n− k − p) = πN+n(T k+p
N (Mn

l (h))),

and the elements

βij ∈
l∑

j=1

Gi(p) ⊂ πN+k+p−1(T k−1
N (Mn))

possess the properties indicated in Lemma 10.3, our theorem is proved. �

Summarizing the results of Chapter II, we can state that we have partially
studied the homotopy structure of a Thom complex, the action of the group
π+(Mn,Mn), the operation of the connected sum of a manifold with a Milnor
sphere, and the variation of the smoothness along a cycle of minimal nonzero
dimension (for the case of π-manifolds). In addition, we observed the variation
in the homotopy sturcture of a Thom complex under Morse reconstructions and,
finally, we studied the connection between a variation of the smoothness in a
reconstructed manifold and a homomorphism in a certain exact sequence that is
closely connected with the homotopy structure of a Thom complex. The study of
this latter connection was conducted only for elementary operations of varying the
smoothness, but in a forthcoming paper the author will conduct a more complete
investigation of the operations of varying the smoothness on manifolds and their
connection with the homomorphisms of type ∂.

In the next chapter we turn to the derivation of corollaries of the established
general theorems and an analysis of examples.

Chapter III
Corollaries and appendices

§ 11. Smooth structures on a direct product of spheres

Let us apply the results of the preceding sections to the important example

Mn = Sk × Sn−k, n− k > k.

From §7 it follows that

TN (Mn) = SN+n ∨ SN+n−k ∨ SN+k ∨ SN
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and
πN+n(TN ) = Z +G(k) +G(n− k) +G(n).

The set A(Mn) consists of all possible elements of the form

lN+n + α, 1N+n ∈ Z, α ∈ G(k) +G(n− k) +G(n),

where 1N+n + 0 ∈ B(Sk × Sn−k).
We will study the action of the group π(Mn, SON ) on the set A(Mn). It is easy

to see that the sequence

(39) πn(SON ) → π(Mn, SON )
p−→ πn−k(SON ) + πk(SON ) → 0

is exact.

Lemma 11.1. If b ∈ πn(SON ) ⊂ π(Mn, SON ), then for each element 1N+n +α ∈
A(Mn) we have

(40) b(1N+n + α) = 1N+n + α+ J(b).

Proof. We discern two maps

fi : SN+n → TN (Mn), i = 1, 2,

representing respectively the elements 1N+n + α and b(1N+n + α) where

f−1
1 (Mn) = f−1

2 (Mn) = Mn
α

and
f1|Mn

α = f2|Mn
α .

But in a tubular neighborhood T (Mn
α ) the maps f1 and f2 are discriminated by an

element
b ∈ πn(SON ) ⊂ π(Mn, SON ),

and this discriminator is concentrated near a point x0 ∈ Mn
α . It is also possible

to say: the manifold Mn
α is equipped in two distinct ways τN

i , i = 1, 2, and these
equipments differ only near the point x0 by the element b ∈ πn(SON ). In this case
there exists on the sphere Sn the equipment τN , corresponding to the element b,
such that for the equipped manifolds (τN

1 ,M
n
α ), (τN

2 ,M
N
α ), (τN , Sn) we have

(τN
1 ,M

n
α ) # (τN , Sn) = (τN

2 ,M
n
α ).

Therefore the equipments τN
i , i = 1, 2, on the manifold Mn

α are discriminated by
an equipped sphere Sn, and in the homotopy groups πN+n(TN )

b(1N+n + α) = 1N+n + α+ J(b).

The lemma is proved. �

Lemma 11.2. If a ∈ π(Mn, SON ) and p(a) ∈ πn−k(SON ), then for each element
1N+n + α ∈ B(Sk × S̃n−k)

(41) a(1N+n + α) = 1N+n + α+ J(p(a)) (mod Imκ∗ ∈ G(n)).

Proof. Suppose, as above,

fi : SN+n → TN (Mn), i = 1, 2,

represent the elements a(1N+n + α) and 1N+n + α, where the manifold

Mn
α = f−1

i (Mn), i = 1, 2,
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is diffeomorphic to the manifold Sk × S̃n−k and is equipped in two distinct ways.
These equipments τN

i , i = 1, 2, are discriminated by the base cycle S̃n−k ⊂ Mn
α

and, moreover,
f1|Mn

α = f2|Mn
α .

We select the standard frame τk
0 , that is tangent to Sk at the point x0 ∈ Sk, and

discern the frame fields (τN
i , τ

k
0 ) on the sphere

x0 × S̃n−k ⊂Mn
α ,

that are discriminated by an element j∗p(α), where

j∗ : πn−k(SON ) → πn−k(SON+k).

We discern separately the manifold

Sk × Sn−k ⊂ SN+n

and assign on the cycle x0 × Sn−k the equipment τN+k, defined by the element
j∗p(a), where the last k vectors are tangent to the factor Sk, and the first N
vectors are normal to Sk × Sn−k (also given on x0 × Sn−k). We extend this frame
field τN , defined by the first N vectors of the frame τN+k, onto all of the manifold

Sk × Sn−k ⊂ SN+n,

which is possible; then we define a map

F : Sk × Sn−k → Sk × y0 ⊂ Sk × Sn−k,

putting F (x, y) = x. We discern an element β of the group πN+n(T k
N (Mn)), defined

by the extended equipment and the map F and representable, clearly, by a map

fβ : SN+n → T k
N

such that
f−1

β (Sk) = Sk × Sn−k, fβ |Sk × Sn−k = F.

It is easy to see that the sum 1N+n + α+ β is represented by the map

(f2 + fβ) : SN+n → TN ,

where

(fα + fβ)−1(Sk × Sn−k) = (Sk × S̃n−k) ∪ (Sk × Sn−k)

= f−1
1 (Sk × Sn−k) ∪ f−1

β (Sk × Sn−k).

In analogy with §10 we make use of the “connected sum

Sk × S̃n−k #γ S
k × Sn−k

along a cycle” γ = Sk for the equipped manifolds Sk × S̃n−k and Sk × Sn−k to
construct the map

( ˜f2 + fβ) : SN+n → TN

of homotopy class 1N+n + α+ β such that

( ˜f2 + fβ)−1(Sk × Sn−k)

= (Sk × Sn−k #γ S
k × S̃n−k) = Sk × S̃n−k mod θn.

The map ( ˜f2 + fβ), considered on Sk × S̃n−k, coincides with both of the maps f1
and f2 on Sk× S̃n−k, and in a tubular neighborhood is different from f1 only in the
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neighborhood of a point (the discrinainator between them has a value in dimension
n, since we killed the discriminator p(a) on the (n−k)-dimensional skeleton). Thus
we conclude that

1N+n + α+ β = a(1 + α) mod Imκ∗ ⊂ G(n)

according to Lemma 1. By virtue of Theorem 9.9 (or its modification, Theorem
9.9′, given in §10),

β = Jp(a) ◦ EN
γ mod Imκ∗,

where γ is the fundamental class of the sphere Sk.
The lemma is proved. �

We will now study the action of the group π+(Mn,Mn) on the set A(Mn),
beginning with the results of §7.

It is easy to see that

πν
n(Sk × Sn−k) = πn(Sk × Sn−k) = πn(Sk) + πn(Sn−k)

and that the sequence

0 → πn(Sk) + πn(Sn−k) → π+(Sk × Sn−k)

is exact. Since n− k > k, the homomorphism

TN = EN : πn(Sk) → G(k) ⊂ πN+n(TN (Mn))/G(n)

constructed in §7, is an epimorphism. Applying Lemma 7.6, we obtain the following
statement.

Lemma 11.3. The set B(Mn
α ) contains all elements of the form

1N+n + α+ β (mod G(n)),

where β ∈ G(k), α ∈ G(k) +G(n− k) +G(n).

Proof. Let γ ∈ πn(Sn−k) ⊂ π+(Mn,Mn). According to §6, the group π+(Mn,Mn)
acts on the set

B(1N+n + α) ⊂ A(Mn)
and, according to §7 (Lemma 7.6), we have

γ(1N+n + α) = ENγ + 1N+n + α (mod G(n));

but the homomorphism EN is an epimorphism, from which follows the desired
statement. The lemma is proved. �

A comparison of Lemmas 11.2 and 11.3 and the results of §10 leads to the
following lemma.

Lemma 11.4. For each smooth sphere S̃n−k ⊂ θn−k(π) the set

B(Sk × S̃n−k) ⊂ A(Mn)

contains all elements of the form

1N+n + B̃(S̃n−k) +G(k) (mod G(n)),

where to the element 1N+n + 0 corresponds the manifold

Mn = Sk × Sn−k,

and the set B̃(S̃n−k) represents a coset mod Im J in the group G(n− k).

The proof of the lemma consists of a formal comparison of the preceding lemmas.
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Theorem 11.5. 1) If n− k 6≡ 2 mod 4, then each element of the set A(Mn) mod
G(n) belongs to one of the sets B(Sk × S̃n−k), S̃n−k ∈ θn−k(π), and there exists
the following embedding

(42) B(Sk × S̃n−k) ⊃ 1N+n + B̃(S̃n−k) +G(k) mod G(n).

For any pair S̃k ∈ θk(π), S̃n−k ∈ θn−k(π) there exists a smooth sphere S̃n−k
1 ∈

θn−k(π) such that

(43) B(S̃k × S̃n−k) = B(Sk × S̃n−k
1 ) mod G(n).

2) If a manifold Mn
1 is such that

B(Mn
1 ) 6= B(S̃k × S̃n−k) mod G(n)

for S̃k ∈ θk, S̃n−k ∈ θn−k, then the manifold Mn
1 is not combinatorially equivalent

to the manifold Mn = Sk × Sn−k.
3) If B(Mn

1 ) = B(Mn
2 ) mod G(n), then the manifolds Mn

1 and Mn
2 are diffeo-

morphic modulo a point. 11

Proof. If n−k 6≡ 2 mod 4, then θ̃(n−k) = G(n−k) and, according to Lemma 11.4,
every element of the set A(Mn) belongs to one of the sets of the form

B(Sk × S̃n−k
1 ) mod G(n),

from which follows assertion 1).
If n − k ≡ 2 mod 4 and G(n − k)/θ̃(n − k) = Z2 (cf. [6]), then it is possible to

have a situation such that

B(Mn
1 ) 6= B(S̃k × S̃n−k) mod G(n)

for S̃k, S̃n−k such that S̃k × S̃n−k is a π-manifold. We assume in the latter case,
arguing by contradiction, that Mn

1 is combinatorially equivalent to Sk × Sn−k and
some map

f : Mn
1 → Sk × Sn−k

effects this combinatorial equivalence. According to [11] there arises a first obstruc-
tion

pk(f) ∈ Hn−k(Mn
1 , θ

k) = θk,

i.e., pk(f) ∈ θk and to the element pk(f) corresponds the sphere S̃k ∈ θk.
We consider the standard combinatorial equivalence

f0 : Sk × Sn−k → S̃k
1 × Sn−k, S̃k

1 = −pk(f),

such that
pk(f0) = −pk(f) = S̃k

1 ∈ θk.

Clearly,
pk(f0 ◦ f) = pk(f) + pk(f0) = 0.

We consider the second obstruction

pn−k(f0 · f) ∈ Hk(Mn
1 , θ

n−k) = θn−k,

the sphere
S̃n−k

1 = −pn−k(f0 · f)
and the map

f1 : S̃k
1 × Sn−k → S̃k

1 × S̃n−k
1 .

11θ̃(n− k) ⊂ G(n− k) consists of equipped Milnor spheres.
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Clearly,
pn−k(f1 ◦ f0 · f) = pn−k(f1) + pn−k(f0 · f) = 0.

According to the results of the papers [9, 11, 17] the manifolds Mn
1 and S̃k

1 × S̃n−k
1

are diffeomorphic modulo a point, and from §9 we have

B(Mn
1 ) ≡ B(S̃k

1 × S̃n−k
1 ) mod G(n).

Thus we arrive at a contradiction with our assumption, and therefore assertion 2)
is proved. As to assertion 3), it was essentially proved in §9 (cf. Lemma 9.1).

The theorem is proved. 12 �

Remark. Since it is always possible to smoothly realize a sphere S̃n−k ⊂ θn−k(∂π)
in the space Rn for k ≥ 2, it follows from a paper of Smale [19] that S̃n−k ×Dk+1

is diffeomorphic to Sn−k ×Dk+1, k ≥ 2. Therefore S̃n−k × Sk is diffeomorphic to
Sn−k × Sk.

Corollary 11.6. If n − k 6≡ 2 mod 4, then every direct product S̃k × S̃n−k
1 is

diffeomorphic modulo a point to a direct product S̃k × S̃n−k
2 for some sphere S̃n−k

2 ,
where

S̃k ∈ θk(π), S̃n−k
i ∈ θn−k(π), i = 1, 2, k ≥ 2, n− k > k.

This fact immediately follows from Theorem 11.5 and Lemma 9.1.

Example 1. Let Mn = S2 × S6. Then π(Mn, SON ) = Z2 and the sequence

0 → π8(S2) + π8(S6) → π+(S2 × S6, S2 × S6)
q−→ π6(S2) + Z2 → 0

is exact. Further,

TN (S2 × S6) = SN+8 ∨ SN+6 ∨ SN+2 ∨ SN ,

the set A(Mn) = Ã(Mn) consists of all elements of the form

1N+n +G(2) +G(6) +G(8)

and
B(S2 × S6) ⊃ 1N+n + 0.

What is the action of the group π+(Mn,Mn)? If a ∈ π8(S2) and b ∈ π8(S6), then,
according to §7, we have

(44) (b+ a)(1N+n + α) ≡ 1N+n + α+ ENa+ ENb mod G(8).

We discern the subgroup Z2 ∈ π+(Mn,Mn), generated by a diffeomorphism

f : S2 × S6 → S2 × S6

such that f(x, y) = (−x,−y).
According to §6 we have

(45) TNf(1N+n + α) = 1N+n − α mod G(8).

We know that π6(S2) = Z12; let η be a generating element of the group π6(S2) =
Z12 and η̃ ∈ q−1(η). Let also α ∈ G(2) +G(6). We will show that

η̃(1N+n + α) = 1N+n + α mod G(2) +G(8).

12In part II it will be proved that if the factor group G(n)/θ̃(n) = Z2, then for all Mn the set

Ã(Mn) contains half (and only half) of the set A(Mn), n = 4k + 2.
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According to the results of §6 the map

fη̃ : S2 × S6 × S2 × S6,

representiag the element η̃ ∈ π+(S2 × S6, S2 × S6), induces a map

ENfη̃ : EN (S2 × S6) → EN (S2 × S6)

and, since TN (S2 × S6) = SN ∨ EN (S2 × S6), it follows from §6 that

ENfη̃∗(1N+n + α) = η̃(1N+n + α) mod G(8).

We consider the map

fη̃ : EN (S2 × S6) → EN (S2 × S6).

We note that the space E(S2 × S6) is homotopically equivalent to the complex
S3 ∨ S7 ∨ S9 and that

π9(E(S2 × S6)) = π9(S3) + π9(S7) + π9(S9) + KerEN−1,

where

π9(S3) = Z3, π9(S7) = Z2, π9(S9) = Z.

It is evident that

Efη̃(λ9) = λ9 + µ
(1)
9 + µ

(2)
9 (mod KerEN−1),

where

µ
(1)
9 ∈ π9(S3), µ

(2)
9 ∈ π9(S7), λ9 ∈ π9(E(S2 × S6)).

Since

ENfη̃(1N+n + α) = 1N+n + α+ EN−1(µ(1)
9 + µ

(2)
9 )

and

EN−1(µ(1)
9 ) = 0, EN−1(µ(2)

9 ) ∈ G(2),

we get that

η̃(1N+n + α) ≡ 1N+n + α (mod G(2) +G(8)).

We have thus proved that the set A(S2 × S6) decomposes into the following sets:
a)
⋃

S̃8∈θ8 B(S2 × S6 # S̃8) = 1N+n +G(2) +G(8).
b) Since G(6) = Z2 and G(6) 6= ImEN−1π8(S2), the set

A(S2 × S6) \
⋃

S̃8∈θ8

B(S2 × S6 # S8)

is not empty. There exists a π-manifold Mn
1 of the homotopy type of S2×S6, that

is not diffeomorphic to S2 × S6 mod θ8 .
c) Since θ2 = θ6 = 0, we find that the manifold Mn

1 is not combinatorially
equivalent to S2 × Sn.

Corollary 11.7. There exist simply connected manifolds, which are not combina-
torially equivalent, having the homotopy type of S2 × S6.



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 79

§ 12. Manifolds of small dimension.13 The case n = 4, 5, 6, 7.

Let Mn be a simply connected manifold of dimension n. We consider the Thom
complex TN (Mn) and the Thom isomorphism

φ : Hi(Mn) → HN+i(TN (Mn)), i ≥ 0.

As usual, uN ∈ HN (TN ) denotes the fundamental class of the Thom complex. Let
w̄i ∈ Hi(Mn, Z2) be the Stiefel–Whitney normal classes. A well-known fact is the
following

Lemma 12.1. There exists the formula

(46) φ(w̄i) = SqiuN .

The proof of this lemma belongs (in the case of a tangent bundle and its Thom
complex) to Thom [21] and Wu [26] and is analogous for the Thom complexes of
any bundle (in our case a normal one).

If p1 ∈ H4(Mn, Z3) denotes the Pontrjagin class of a normal bundle, reduced
modulo 3, then (for n ≥ 6) there exists the analogous formula

(46′) φ(p1) = P 1uN

where
P 1 : Hk(x, Z3) → H4+k(x, Z3)

is a Steenrod square. For n = 4 the Pontrjagin class is equal to τ/3, where τ is the
signature of the manifold Mn (cf. [16, 3]) and for n = 5 the class p1 is equal to zero
in view of the simple connectedness of the manifold M5.

Let n = 4. Then there holds the following

Lemma 12.2. The group π(M4, SON ) is trivial for any simply connected manifold
M4.

The proof of the lemma follows from the fact that

π2(SON ) = π4(SON ) = 0.

It is also easy to prove

Lemma 12.3. The map

TN : π4(M4, νN (M4)) → πN+4(T 2
N (M4))

is an epimorphism for any simply connected manifold M4; the group Imκ∗(πN+4(SN ))
is equal to zero.

Proof. Since the group G(4) is equal to zero, the image Imκ∗ is trivial. Inasmuch
as the suspension homomorphism

EN : π4(S2) → G(2)

is an epimorphism, the map

TN : π4(K2(M4), νN ) → T 2
N (M4),

which easily reduces to a suspension homomorphism, is also an epimorphism (we
note that π4(K2(M4), νN ) = π4(K2(M4)). Since the natural map

π4(K2(M4), νN ) → π4(M4, νN (Mn))

13A detailed proof of the theorem of this section will be given in a subsequent part of the
paper.
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is an epimorphism, the lemma is proved. �

Taking into account the fact that

TN (M4) = T 2
N (Mn) ∨ SN+4,

we obtain the following statement.

Theorem 12.4. The set B(M4) ⊂ A(M4) ⊂ πM+4(TN ) coincides with the whole
set A(M4). Therefore

Ã(M4) = A(M4) = B(M4)

and every two simply connected homotopically equivalent four-dimensional mani-
folds are J-equivalent.

The proof of the theorem is obtained directly from Lemma 12.3 and the results
of §7.

Lemma 12.5. 1) If n = 5, 6, then there is defined a canonical epimorphism

H3(Mn, Z) → π(Mn, SON ).

2) If n = 7, then the sequence

Z = π7(SON ) → (M7, SON ) → H3(M7, Z) → 0

is exact.

Proof. Since
π7(SON ) = π3(SON ) = Z

and

π2(SON ) = π4(SON ) = π5(SON ) = π6(SON ) = 0, π1(Mn) = 0,

the lemma is trivial, as follows from the theory of obstructions to homotopy maps.
�

Let us investigate the action of the group π(Mn, SON ) on the set

Ã(Mn) ⊂ πN+n(TN (Mn)).

We note that the filtration

TN ⊃ Tn−2
N ⊃ · · · ⊃ T 2

N ⊃ SN

for n ≤ 7 consists of not more than six terms. Taking into account the fact that
G(4) = G(5) = 0, we find that there are defined the exact sequences

πN+n(Tn−3
N ) ∆(2)

−−−→ πN+n(Tn−2
N ) ∆−→

l∑
i=1

Gi(2),

πN+n(Tn−4
N ) ∆(3)

−−−→ πN+n(Tn−3
N ) →

m∑
j=1

Gj(2),

l = rkH2(Mn, Z2), m = rkH3(Mn, Z24),

G(n) → πN+n(Tn−4
N ) → 0,

G(n) → πN+n(Tn−3
N ) →

∑
Gj(3),
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for n ≤ 7. These exact sequences are induced by the exact sequences (33)–(34).
We note that

G(2) = Z2, G(3) = Z24 = Im J,

G(6) = Z2, G(7) = Z240 = Im J.

One easily proves

Lemma 12.6. For n = 6 the set Ã(Mn) contains half as many elements as the set
A(Mn).

If α ∈ Ã(Mn) and β ∈ G(6), β 6= 0, then α+ β ∈ A(Mn), but α+ β /∈ Ã(Mn).

Proof. We consider an admissible map

fα : SN+6 → TN (M6)

such that the manifold M6
α = f−1

α (M6) is homotopically equivalent to M6. We also
consider a map

Fβ : SN+6 → SN

such that
F−1

β (x0) = S3 × S3,

where x0 ∈ SN . The inverse image

F−1
β (x0) = S3 × S3 ⊂ SN+6

is an equipped manifold, and on the cycles

S3 × x ⊂ S×S3

and
y × S3 ⊂ S3 × S3

is defined an invariant φ ∈ Z2, obstructing the carrying over of equipment under a
Morse reconstruction (cf. §§2, 4). The sum of maps

(Fβ + fα) : SN+6 → TN (M6)

represents the element α+ β and

(Fβ + fα)−1(M6) = S3 × S3 ∪M6
α.

By means of a Morse reconstruction it is possible to vary the map (Fα +fα) in such
a way that the inverse image of the manifold M6 under the new map ( ˜fα + Fβ),
homotopic to (Fβ + fα), is an equipped connected sum

M6
1 = M6

α # S3 × S3

in analogy with §§4 and 9. There is defined on the cycles y× S3 and S3 − x ⊂M6
1

an invariant ψ ∈ Z2, obstructing a Morse reconstruction. There is defined an
invariant ψ(α + β) 6= 0, obstructing a simplification of the inverse image M6

1 by
Morse reconstructions (in view of the obstruction ψ to a carrying over of frame
fields). It is easy to see that the invariant ψ is defined correctly, and the class
α+ β /∈ Ã(M6).

The lemma is proved. �

Since G(3) = Im J and G(7) = Im J , from Lemma 12.5 and the definition of the
homomorphism J we easily obtain the following statement.
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Lemma 12.7. For each element α ∈ Ã(Mn) the orbit π(Mn, SON ) ◦ α for n ≤ 7
contains all elements of the form α+ β, where

β ∈ ∆(2)
∗ πN+n(Tn−3

N ) ⊂ πN+n(Tn−2
N ) ⊂ πN+n(TN (Mn))

(here ∆∗ is an inclusion homomorphism ∆: Tn−3
N ⊂ T (Nn−2) in the exact sequence

(33)).

The proof follows from the fact that the sequence

G(n) → πN+n(Tn−3
N ) →

∑
j

Gj(3)

is exact for n ≤ 7, and from Lemma 12.6 (for the case n = 6).

Lemma 12.8. The image of the composition of homomorphisms

Λ · TN : πν
n(Mn) →

l∑
i=1

Gi(2)

coincides with the image of the homomorphism Λ.

The proof of the lemma easily follows from the form of nonstable homotopy
groups of spheres in small dimensions (≤ 7), die structure of the suspension ho-
momorphism EN , and the definition of the homomorphism TN , having all the
properties that are analogous to the properties of a suspension homomorphism (cf.
§7).

Comparing the lemma and the results of §§1–7, we obtain the following state-
ment.

Theorem 12.9. For n ≤ 7 the sets Ã(Mn) and B(Mn) ⊂ Ã(Mn) coincide.

Remark. A more extensive investigation of the properties of the homomorphism
TN and of the connection of the homomorphism J with the action of the group
π(Mn, SON ) will be carried out in a following paper.

§ 13. The connected sum of a manifold with a Milnor sphere

Using the results of §9, we will study the problem of determining when the
manifolds Mn and Mn # S̃n are diffeomorphic with degree +1 (mod θn(∂π)).

According to Lemma 9.1, for this purpose it is necessary to study the struc-
ture of the homomorphism κ∗ : G(n) → πN+n(TN (Mn)), where κ : SN ⊂ TN (Mn)
represents the natural embedding of a fiber

DN
x ⊂ νN (Mn), x ∈Mn,

of which the boundary ∂DN
x contracts to a point under passage to the complex

TN (Mn). According to Lemma 9.1 we have

B(Mn # S̃n) = B(Mn) + κ∗B̃(S̃n),

where B̃(S̃n) ⊂ G(n) represents a coset mod Im J . There holds the following

Lemma 13.1. If in the set B̃(S̃n) there exists an element β ∈ B̃(S̃n) ⊂ G(n) such
that κ∗ = 0, then the manifolds Mn and Mn # S̃n are diffeomorphic modθn(∂π);
in this case there exists a sphere S̃n

1 ∈ θn(∂π) such that the manifolds Mn and
Mn # (S̃n # S̃n

1 ) are diffeomorphic with degree 1.
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Proof. Let κ∗β = 0, where β ∈ B̃(S̃n). Then the intersection B(Mn)∩B(Mn#S̃n)
is not empty and therefore

B(Mn) = B(Mn # S̃n).

Applying the results of §6, we obtain the first of the statements of the lemma.
The second statement of the lemma follows from the associativity of the opera-

tion #. The lemma is proved. �

We now attempt to find examples of manifolds Mn for which the homomorphism
κ∗ has a nontrivial kernel.

We consider an SO-bundle ν with fiber Sm and with base Sl, where m ≥ l + 1.
The bundle ν is defined by a certain element h ∈ πl−1(SOm+1). We denote by
means of Mn the space of the bundle ν, h = m+ l. There holds

Lemma 13.2. The complex T l
N (Mn) is homotopically equivalent to the complex

DN+l ∪Jh S
N , where Jh ∈ G(l − 1).

Proof. We consider the bundle j∗νN (Mn), which is a restriction of the normal
bundle on the skeleton

Kl(Mn) = Sl
j
⊂Mn

of dimension l. It is easy to see that the normal bundle j∗νN (Mn) is defined by an
invariant

±h ∈ πl−1(SON ) ≈ πl−1(SOm+1)
since m ≥ l + 1. Clearly, the complexes T l

N (Mn) and TN (Sl, j∗νN (Mn)) coincide,
and, by the definition of Milnor [7] of the homomorphism J , we obtain the desired
statement. The lemma is proved. �

Lemma 13.3. Suppose, as above, h ∈ πl−1(SOm+1), m ≥ l+1 and α ∈ G(m+1),
where the element α · Jh /∈ Im J . Then there exists a Milnor sphere S̃m+l such
that α · Jh ∈ B̃(S̃m+l) and the manifolds Mn and Mn # S̃m+l, n = m + l, are
diffeomorphic with degree +1 modulo θn(∂π). 14

Proof. Clearly, the element α · Jh belongs to the kernel Kerκ∗. If n 6≡ 2 mod 4,
then the lemma follows from the preceding statements and the results of Milnor
and Kervaire (cf. [6, 8]). If m 6≡ 1 mod 4, then it is also possible to compute the
element α ∈ G(m + 1) by an equipped smooth sphere S̃m+1

α , and the element
α · Jh by an equipped direct product S̃m+1 × Sl−1; in this case it is possible by a
Morse reconstruction to kill the cycles of dimensions l − 1 and m + 1, after which
the element α · Jh is realized by an equipped homotopy sphere, and the lemma is
proved. If m + 1 ≡ 2 mod 4 and m + 1 ≡ 2 mod 4, then the element α is realized
by an equipped manifold Qm+1 such that

π1(Qm+1 + 1) = 1, Hi(Qm+1) = 0, i 6= 0,
m+ 1

2
,m+ 1.

and the group
Hm+1

2
(Qm+1) = Z + Z,

where on the base cycles Z1, Z2 ∈ H(m+1)/2 is defined the Kervaire invariant

φ(Qm+1) = φ(α) ∈ Z2

14In this regard cf. also the paper [32].



84 S. P. NOVIKOV

(or ψ(α) ∈ Z2 if m + 1 = 6, 14). The element α · Jh is realized by an equipped
direct product Qm+1 × Sl−1. By means of Morse reconstructions we seal the cycle

Zi ⊗ 1 ∈ Hm+1
2

(Qm+1 × Sl−1)

and then a cycle of dimension l− 1 < m+ 1. Since the homologies are torsion-free,
no new cycles are formed; it is possible to carry out the Morse reconstructions and
the carrying over of equipment since (m + 1)/2 < [n/2] and l − 1 < [n/2]. The
element α · Jh will be realized by a smooth sphere with equipment. The lemma is
proved. �

In the paper [13] there is indicated a multiplication table for homotopy groups
of spheres. In particular,

G(1) = Im J = Z2, G(8) = Z2 + Z2 ⊃ Im J = Z2,

G(9) = Z2 + Z2 + Z2 ⊃ Im J = Z2, G(10) = Z2 + Z3 ⊃ Im J = 0.

The product G(1) ·G(8) ⊂ G(9) and the product G(1) ·G(9) ⊂ G(10), where

G(1) ·G(8) = Z2 + Z2, G(1) ·G(9) = Z2.

Analogously, G(13) = Z3, and G(3) = Z24 = Im J , where

G(13) = G(3) ·G(10), G(13) ⊃ Im J = 0.

Comparing the cited information on the groups G(i) and Im J ⊂ G(i) with the
preceding statements, we obtain the following theorem.

Theorem 13.4. a) There exist manifolds Mn of dimensions n = 9 and n = 10
such that 1) w2(Mn) 6= 0 and 2) there is a Milnor sphere S̃n ⊂ θn(π) such that
Mn = Mn # S̃n;

b) there exists a manifold M13 such that 1) p1(M13) 6≡ 0 (mod 3) and 2) for
every Milnor sphere S̃13 ⊂ θ13(π) = Z3 the manifolds M13 and M13 # S̃13 are
diffeomorphic with degree +1.

Remark. Theorem 13.4 is valid for any manifold M9 (or M10) such that w2 6= 0,
π1 = 0; analogously for dimension 13.

Proof. For the manifolds M9 (M10) it is necessary to take the space of the bundle
ν of spheres of dimension 7 (or 8) over a sphere S2 with w2(ν) 6= 0. Comparing
Lemma 13.3 with the information on the groups G(i), Im J cited above, we obtain
the desired statement.

For dimension 13 the proof is analogous. The theorem is proved. �

In conclusion the author conjectures that for π-manifolds (and all manifolds that
are homotopically equivalent to them) a connected sum with a Milnor sphere always
varies the smoothness modulo θ(∂π).

§ 14. Normal bundles of smooth manifolds. 15

In exact analogy with the proofs of the theorems of §4 on the realization of
the classes of the set A(Mn) ⊂ πN+n(TN (Mn)) one can prove the three following
assertions.

15The results of this section were independently obtained by Browder [29].
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Theorem 14.1. Let M2k+1 be a smooth simply connected manifold. In order that
the SON -bundle ν over the manifold M2k+1 be the normal bundle of a certain
smooth manifold M̃2k+1, that is homotopically equivalent to M2k+1, it is necessary
and sufficient that the Thom complex TN (M2k+1, ν) possess the following property :
the cycle φ[M2k+1] is spherical.

Theorem 14.2. Let M4k, k > 1, be a smooth simply connected manifold. In
order that the SON -bundle ν be the normal bundle of some manifold M̃4k that
is homotopically equivalent to M4k it is necessary and sufficient that the Thom
complex TN (M4k, ν) possess the following properties:

1) the cycle φ[Mn] is spherical ;
2) if p(νN ) = 1 + p1(νN ) + · · ·+ pk(νN ) and

p̄(νN ) = p(νN )−1 = 1 + p̄1 + · · ·+ p̄k,

then the Hirzebruch polynomial Lk(p̄1, . . . , p̄k) is equal to the signature τ(Mn).

Theorem 14.3. Let n = 4k + 2, Mn be a smooth manifold, π1(Mn) = 0, νN

be a vector SON -bundle and TN (Mn, νN ) be the Thom complex of it. If the cycle
φ[Mn] is spherical, then there exists a manifold Mn

1 with boundary ∂Mn
1 = S̃n−1 ∈

θn−1(∂π) such that there exists a map

f : (Mn
1 , ∂M

n
1 ) → (Mn, x0), x0 ∈Mn,

for which the map
f∗ : πi(Mn

1 , ∂M
n
1 ) → πi(Mn, x0)

is an isomorphism when i ≤ n and f∗νN = νN (Mn
1 ).

The proofs of these three theorems are analogous to the proofs of the theorems of
§4 and make use of the properties of maps of degree 1 and the properties of Thom
complexes.

Remark. It is possible to attach a combinatorial character to Theorems 14.1–
14.3 (in the formulation of these theorems one need not require smoothness of the
manifold Mn; namely, if Mn is a combinatorial manifold in the Brower–Whitehead
sense, then the Thom concept of t-regularity is extended to the combinatorial case,
and the inverse images f−1(Mn) ⊂ SN+n for a map

f : SN+n → TN (Mn, νN )

will be combinatorial subrnanifolds of the sphere SN+n, situated in the sphere
with a transverse field in the sense of Whitehead [25]. Therefore on the manifold
f−1(Mn) ⊂ SN+n there arises a canonical smooth structure, where

νN (f−1(Mn)) = f∗νN .

Then the reasoning of §§1–4 is applied. In this way Theorems 14.1–14.3 may be
considered as theorems on the determination, for a combinatorial manifold, of an
analogous manifold that is smooth and homotopically equivalent to it.

Appendix I
Homotopy type and Pontrjagin classes

a. There are known quite a number of relations of the homotopy invariance of
classes, which are cited with respect to this or that modulus (Thom, Wu), i.e.,
relations of the type of a congruence. In addition, for manifolds of dimension 4k
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the Thom–Rohlin–Hirzebruch formula expresses the index in terms of Pontrjagin
numbers and gives to these numbers a relation of invariance for rational classes. A
collection of counterexamples by Dold, Milnor and Thom shows that the Pontrja-
gin classes and numbers are “in general” not hornotopically invariant. Moreover,
J. Milnor in a personal conversation showed the author a number of examples from
which it follows that among the Pontrjagin numbers a linear subspace of homotopi-
cally invariant numbers a fortiori has a dimension not greater than half for k ≥ 2,
n = 4k.

b. A particular case is the class p1(M5) or, what is more general, the class
Lk(p1, . . . , pk)(M4k+1), considered as rational. Rohlin [35] proved the topological
invariance of these classes. However the homotopy invariance is neither proved nor
disproved. The author can show that classes are not defined in this case by any
cohomology invariants. Nothing else is known here.

c. In §14 we gave a necessary and sufficient condition for an SO-bundle to
be normal for some homotopically equivalent manifold when n > 4, n 6= 4k + 2
(n = 6 and n = 14 being allowed). Translating this result into the terminology of
Atiyah and Hirzebruch (cf. [37]), we have the manifoldMn

0 , the Atiyah–Hirzebruch–
Grothendieck functors

KR(Mn
0 ) = Z + K̃R(Mn

0 )
and

JR(Mn
0 ) = Z + J̃R(Mn

0 )

and the natural epimorphism JR : K̃R → J̃R.
We denote in terms of α ∈ K̃R(Mn

0 ) the normal bundle to the same Mn
0 minus

its degree. Our theorem reads: an element β ∈ K̃R(Mn
0 ) corresponds to the normal

bundle of some Mn
1 of the homotopy type of Mn

0 for n 6= 4k, 4k + 2 or n = 6,
n = 14 if and only if J(β) = J(α) (Atiyah proved that the Thom complex TN (β) of
the bundle β +N is reducible if and only if J(β) = J(α), where α+N is a normal
bundle); for n = 4k one must add the Rohlin–Thom–Hirzebruch condition on the
Pontrjagin classes of the element β. For actual calculations the method of Adams is
recommended, its operations Φk

R and the “generalized characteristic classes” giving
in a number of cases an exact calculation of the functor JR (cf. [28, 36]).

d. Let X be a finite complex and

H̃∗
(4)(X) =

∑
i≥0

H̃4i(X,Z),

where
H̃4i(X,Z) = H4i(X,Z)/2-torsion.

In the ring H̃∗
(4)(X) we consider elements of the form

1 + x1 + · · ·+ xi + . . . ,

where xi ∈ H̃4i(X,Z). The set of these elements forms a group Λ(X) with respect
to multiplication. There is defined a group homomorphism

P : K̃R(X) → Λ(X),

putting in correspondence to a stable SO-bundle (we consider the homomorphism
P only on elements of the class w1 = 0) its Pontrjagin polynomial.

It is easily proved that the group ImP has a finite index in the group Λ(X).
The papers of Bott permit one to calculate the image ImP in the group Λ(X).
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e. Let X = Mn
0 and let α, as above, be an element in K̃R corresponding to

a normal SO-bundle of Mn
0 . The kernel Ker J consists of SO-bundles. It is easy

to see that the group ImP (Ker J) has a finite index in Λ(X). We denote it by
Λ′(X) = P (Ker J). From the preceding follows

Theorem. If n is odd or n = 6, 14, then the Pontrjagin polynomials of the normal
bundles of manifolds of the same homotopy type as Mn

0 traverse the residue class of
an element P (α) ∈ Λ(X) with respect to a subgroup Λ′(X) having a finite index in
Λ(X). For n = 4k they do not traverse the entire residue class of an element P (α)
but only that part of it which satisfies the Thom–Rohlin–Hirzebruch condition.

From this theorem one may derive by analyzing a sufficiently large number of
examples the fact that for simply connected manifolds of dimension n ≥ 6, n 6=
4k + 2 no polynomial of the Pontrjagin classes, except Lk(M4k), is homotopically
invariant.

f. The case n = 4k+ 2, n 6= 6, 14 is complicated. But under certain homological
constraints on the manifold Mn

0 , for example, if the group

H2k+1(M4k+2
0 , Z)⊗ Z2

is trivial, this case can be analyzed. In the case n = 4k + 2 there corresponds to
every element β ∈ K̃R(Mn

0 ) such that J(β) = J(α) an invariant φ(β) ∈ Z2, where
φ(β) = 0 if there exists a manifold M4k+2

1 of the homotopy type of M4k+2
0 with

normal bundle β+N , and φ(β) = 1 otherwise. We put β = α+γ, where γ ∈ Ker J .
It is possible, by analogy with the author’s paper [33], to show that

φ(α+ γ1 + γ2) = φ(α) + φ(α+ γ1) + φ(α+ γ2),

where γ1, γ2 ∈ Ker J . Since φ(α) = 0, we define a homomorphism φ̄ : Ker J → Z2,
where φ̄(γ) = φ(α+ γ), γ ∈ Ker J (it is assumed that H2k+1(M4k+2

0 , Z)⊗Z2 = 0).
Thus either

Ker φ̄ = KerJ,
or

Ker φ̄ =
1
2

Ker J.

In the statement of the preceding subsection e one should replace the group Λ′(X)
by the group P (Ker φ̄), which coincides with the group Λ′(X) or has in it the
index 2.

Appendix II
Combinatorial equivalence and Milnor’s theory of microbundles

Is it possible to perform a construction in the class of combinatorial manifolds
that is analogous to the construction performed by the author in the present paper
in connection with the problem of a diffeomorphism of smooth manifolds (under
the same restrictions on the dimensionality and under the condition of simple con-
nectedness)?

a. First of all we require the notion of a stable normal bundle. Milnor suggested
in connection with the problem of the smoothability of combinatorial manifolds that
one consider “combinatorial microbundles” over complexes (cf. [31, 34]), Roughly
speaking, a microbundle is a bundle over a complex, the fiber of which is the
euclidean space Rn, and the structural group of which is the group of “microauto-
morphisms,” i.e., piecewise linear automorphisms with a common fixed point and



88 S. P. NOVIKOV

being identified in the event they coincide in a neighborhood of this point. More-
over, there is included in the definition the combinatorial structure of the bundle
space (the description given here of the concept of a microbundle is not entirely
precise). Milnor proved that the defined stable normal microbundle exists in a
unique manner, even though the simple normal bundle does not always exist.

b. Thus one should consider the class of simply connected combinatorial man-
ifolds {Mn

i } for n ≥ 5 of common homotopy type and with the same, as also in
the smooth case, stable normal microbundle. As before, we can consider the Thom
complex TN of a normal microbundle for one of the manifolds Mn

0 ∈ {Mn
i }. A

further analogy requires the concept of t-regularity in the combinatorial case. This
concept bears a rather local character, and since the concept of transversality has
meaning for combinatorial manifolds, t-regularity is extended without restriction.
The cycle

φ[Mn
0 ] ∈ HN+n(TN )

is spherical, as also for a smooth Mn
0 and therefore the inverse images

f−1(Mn
0 ) ⊂ SN+n

for a t-regular f : SN+n → TN will possess good properties. An analogous result
holds for the inverse images under a homotopy

F : SN+n × I → TN .

c. We need to study Morse reconstructions in a new situation, desiring to kill
the kernels of maps

Mn
f →Mn

0 ,

where Mn
f = f−1(Mn

0 ), or
Wn+1

f →Mn
0 ,

where F : SN+n × I →Mn
0 . Here we have a number of difficulties:

1) a sphere Si ⊂Mn
f or Si ⊂Wn+1

F does not in general have a normal microbun-
dle in the manifold;

2) if a sphere Si ⊂ Mn
f , Si ⊂ Wn+1

F has a normal microbundle, then it is not
necessarily trivial;

3) even if a Morse reconstruction is possible, can one carry over the “equip-
ments”?

We remark that in solving points 2) and 3) we made considerable use of the rapid
stabilization of the embeddings SOk ⊂ SOk+1 ⊂ . . . and the results of Bott, which
do not have a combinatorial analogue. In order to resolve all of these difficulties we
will introduce “local smoothnesses” and equipments in a neighborhood of the cycle
being investigated. We recall that a neighborhood of this cycle may be regarded
as an inverse image of a point x0 ∈ Mn

0 . Therefore it is possible to assign a
smoothness and an equipment on this neighborhood. The cycle being investigated
will be a smooth sphere in this smoothness. The latter remark resolves all difficulties
connected with Morse reconstructions.

d. Thus all results go through without restriction. One should replace SON by
PL in all statements, and also tidy up the group θn(∂π), consisting of ordinary
spheres in the combinatorial sense, which enters into certain formulations. The
group π+(Mn

0 ,M
n
0 ) must be altered in a corresponding manner.

e. If the manifold Mn
0 is smooth, then one can apply to it a construction that is

both smooth and combinatorial. As a result we have the possibility of studying the
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relation between a smooth and a combinatorial manifold by the method of Thom
complexes.

f. For the application of combinatorial theory it is important to be acquainted
with the homotopy groups πi(SO), πi(PL) and the embedding

πi(SO) → πi(PL).

Recently Mazur (cf. [31]) showed that

πi(PL, SO) = Γi

(the Milnor–Thom groups). 16 As is known (cf. [17]), Γi = θi for i 6= 3, 4, Γ3 = 0 and
the group Γ4 is unknown. Since the embedding πi(SO) → πi(PL) is monomorphic
in all dimensions (Bott [1], Thom, Rohlin–Švarc, Adams), we have

Γi = πi(PL)/πi(SO).

We cite a table for groups πi(PL) and the embeddings πi(SO) ⊂ πi(PL) for i < 14:

i = 0 1 2 3 4 5 6 7 8 917 10 11 12 13 14

πi(PL) = 0 Z2 0 Z Γ4 0 0
Z
+
Z4

Z2
+
Z2

Z2
+
Z2
+
Q4

Z6

Z
+
Z8

0 Z3 Z2

An inclusion homomorphism πi(SO) ⊂ πi(PL) for i ≤ 14 is trivially defined by a
theorem on the monomorphicity of an embedding and the structural groups Γi (cf.
[6]), except for the case i = 7, 11. Here we have:

π7(SO) = Z, π7(PL) = Z + Z4,

and uSO = 7uPL + vPL, where uPL is a generator of infinite order and vPL is a
generator of order 4;

π11(SO) = Z, π11(PL) = Z + Z8,

and uSO = 124uPL + vPL, where, analogously, vPL is a generator of order 8.
g. The Whitehead homomorphism JPL : πi(PL) → πN+i(SN ) 18 is an epimor-

phism for i 6= 4k + 2 or i = 10 and the factor group πN+i(SN )/ Im JPL contains
two elements for i = 2, 6, 14 and not more than two in the remaining cases. We
note that for i = 9

Ker JPL = Z2 ≈ θ9(∂π).

Conjecture. For i = 4k − 1 the group πi(PL) has the form

πi(PL) = Z + Zλk
+ πN+i(SN )/ Im JSO,

where λk, perhaps, is a power of 2.

16This result is also obtained independently by M. Hirsch [38].
17Q4 = Z4 or Z2 + Z2.
18The definition of the homomorphism JPL was not given earlier, although it can be given by

analogy with the ordinary J-homomorphism.
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It is not excluded that this conjecture can be proved by an arithmetical treatment
and by a comparison of the L-genus coefficients, the almost parallelizable Milnor
manifolds M4k

0 with index 8, the results of Bott on the divisibility of the Pontrjagin
classes of SO-bundles over a sphere and the results of Adams on the stable J-
homomorphism, in particular, on the singling out of the image Im JSO as a direct
summand in πN+4k−1(SN ). We assume that

JPL(Z + Zλk
) = Im JSO

and that
πN+k−1(SN ) = JPL(Z + Zλk

) + πN+4k−1(SN )/ Im JSO.

From this it would follow that the group θ4k+1(∂π) ⊂ θ4k−1 is singled out as a
direct summand. Moreover, the group

π4k−1(SO) = Z ⊂ π4k−1(PL)

must be embedded thus:
uSO = δkuPL + vPL,

where uPL is a generator of infinite order and vPL is a generator of order λk. The
order of the group θ4k−1(∂π) is then equal to δkλk. If the conjecture is true, then
one can extend Bott’s theorem to the combinatorial case:

Let ak = 1 if k is even, and ak = 2 if k is odd; let

Lk(p1, . . . , pk) =
tk
sk
pk + . . . ,

where tk, sk are relatively prime. Since Lk(M4k
0 ) = 8, we have

pk(M4k
0 ) = 8

sk

tk
.

For SO-bundles over a sphere the class pk is divided by ak(2k − 1)!. We reduce
the numbers 8sk/tk, and ak(2k − 1)! to the least common denominator t̃k, which
is a divisor of tk (and is equal to tk, tk/2, tk/4 or tk/8 if tk is divisible by the
corresponding power of 2). After this we find the greatest common divisor dk of
the numerators of the resultant irreducible fractions.

Conjecture. The Pontrjagin class of a stable microbundle over a sphere S4k is a
multiple of the number dk/t̃k, and there exists a microbundle with such a class.

In particular, for k = 2, 3 this conjecture is proved by the author:
d2

t̃2
=

6
7
,

d3

t̃3
=

2 · 5!
124

.

Thus we have the proved

Corollary. The Pontrjagin classes of microbundles over the spheres S8 and S12 are
multiples of the numbers 6/7 and 2·5!/124 respectively, and there exist microbundles
with such classes.

Remark. The results of §11 naturally connect up with point e of this appendix,
concerning the problems of the relationship between smooth and combinatorial
manifolds (under the condition that the normal bundles coincide). In particular,
an analysis of the example S2 × S6, showing the nontriviality of combinatorial
theory, is essential. But this is connected with the fact that G(6)/ Im JPL = Z2.
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Conjecture. If the simply connected manifolds Mn
1 and Mn

2 , n > 7, are such that
they have the same homotopy type and normal bundle and H4k+2(Mn

i , Z2) = 0,
2 ≤ 4k+ 2 < n, then they are combinatorially equivalent (it is perhaps sufficient to
require only that k = 1, 3).

Appendix III
On the groups θ4k−1(∂π)

a. Starting from the formula of Hirzebruch and the results of Milnor and Kervaire
[6], the order of the group θ4k−1(∂π) can be expressed in terms of the order of the
image of the Whitehead homomorphism

JSO : π4k−1(SON ) → πN+4k−1(SN ).

In recent papers Adams has calculated the image Im JSO completely for even k
and to within a factor, equal to 1 or 2, which in all known cases is equal to 1, for
even k + 1. Moreover, from the papers of Adams it follows that the order of the
image Im JSO is completely determined by the integral properties of the A-genus of
Borel and Hirzebruch [30] (to within the indicated factor). From a comparison of
the papers of Milnor and Kervaire [5] and Adams [28] it is seen that the odd factor
of the order of Im JSO is completely determined by the L-genus of Hirzebruch.
Combining these results, one can obtain the following assertion.

Theorem 1. The odd part of the group θ4k−1(∂π) ⊂ θ4k−1 is singled out as a direct
summand in θ4k−1.

For the proof it is necessary to construct a homomorphism

h : θ4k−1 → θ̄4k−1(∂π),

where θ̄4k−1(∂π) is the odd part of the group θ4k−1(∂π). The homomorphism h is
constructed sufficiently simply. It is necessary to stretch the membrane W 4k onto
the sphere S̃4k−1 ⊂ θ4k−1, to fill the boundary ∂W 4k = S̃4k−1 by a ball and of the
obtained combinatorial manifold W 4k

0 to take the value of the combinatorial class
pk(W 4k

0 ) mod 1. If
S̃4k−1 ⊂ θ4k−1(∂π),

then the constructed homomorphism can identify only those elements whose order
is of the form 2s; this follows from the results of Adams.

b. A study of the even part θ4k−1
2 (∂π) ⊂ θ4k−1(∂π) is more complicated. In this

regard we consider the homomorphism

p ◦ q : θ4k−1 q−→ πN+k−1(SN )/ Im JSO
p−→ V 4k−1

spin ,

where q is a Milnor homomorphism and p is a homomorphism for the “removal of
the equipment” of homotopy groups of spheres in “spinor cobordisms,” constructed
only on simply connected manifolds with the condition W2 = 0. It is evident that

θ4k−1(∂π) ⊂ Ker(p ◦ q).

Putting together the results of Adams, one can prove the following assertion.

Theorem 2. If k is even, then the subgroup θ4k−1
(2) (∂π) ⊂ Ker(p ◦ q) is singled out

as a direct summand. If k is odd, then either

θ4k−1
2 (∂π) ⊂ Ker(p ◦ q)
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is singled out as a direct summand or

θ4k−1
2 (∂π)/Z2 ⊂ Ker(p ◦ q)/Z2

is singled out as a direct summand.

The proof is analogous to Theorem 1, but one must stretch the membranes with
W2 = 0 and in place of the class pk one must take an A-genus for even k and an
(A/2)-genus for odd k (modulo 1). We note that for dimensions 9 and 10 (as well
as 17, 18) the image of the homomorphism p ◦ q is nontrivial (cf. [33]).

Conjecture. For dimensions of the form 4k−1 the homomorphism p◦ q is trivial.

c. A study of the action of the group θ4k−1(∂π) on manifolds constitutes a
difficult problem that is not amenable to our usual methods. We shall discuss some
comparatively simple cases and thereby shed some light on this problem. Suppose
the manifold M4k−1 (not necessarily simply connected) is such that the groups
H4l(M4k−1, Q) are trivial (l = 1, 2, . . . and Q is the field of rational numbers).

Theorem 3. 19 If the sphere S̃4k−1 ∈ θ4k−1(∂π) has odd order in the group
θ4k−1(∂π), then the manifolds M4k−1 and M4k−1 # S̃4k−1 are not diffeomorphic
with degree +1.

For the proof of the theorem we adopt the following plan:
1. A membrane W 4k, ∂W 4k = (−M4k−1) ∪ (M4k−1 # S̃4k−1), is constructed

such that
Hi(W 4k,M4k−1) = 0, i 6= 2k.

and a retraction F : W 4k →M4k−1 is given such that

F ∗νN (M4k−1) = νN (W 4k),

where νN (M) is the normal bundle of the manifold M .
2. Let a diffeomorphism

h : M4k−1 →M4k−1 # S̃4k−1

of degree +1 be given. We identify the boundary of the membrane W 4k−1 according
to the diffeomorphism h. The resultant orientable closed manifold is denoted by
V 4k.

3. It is possible to show that the groups H4l(V 4k, Q) = 0, l = 1, . . . , k − 1,
l 6= k/2, but when l = k/2 the group

H2k(V 4k, Q) = H2k(W 4k,M4k−1, Q) +B, I(B) = 0.

4. If the sphere S̃4k−1 ⊂ θ4k−1(∂π) has odd order, then the class pk(V 4k) will
be fractional by analogy with Theorem 1. The resultant contradiction proves the
theorem.

If in addition H1(M4k−1) = 0 and W2(M4k−1) = 0, then for S̃4k−1 ⊂ θ4k−1(∂π)
it is possible by analogy with Theorems 2 and 3 to prove, using the A-genus of
Hirzebruch and theorems of Adams, that the sphere S̃4k−1 varies the smoothness
after an addition to M4k−1 (it should be noted that W2(W 4k) = 0 and W2(V 4k) =
0, where instead of the class pk one must take Ak[V 4k] if k is even and Ak[V 4k]/2
if k is odd).

19An example by the author shows that Theorem 3 is already inapplicable if H4(M7, Q) 6= 0

and p1 6= 0.
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d. If n = 4k+1, then, as was mentioned above, the image of the homomorphism

p ◦ q : θ4k−1 → V 4k+1
spin

may be nontrivial. For example, when k = 2 the image Im p ◦ q = Z2. Moreover
(cf. Appendix II), the group π9(PL) = Z2 + Z2 +Q4, where Q4 = Z4 or Z2 + Z2.
By making use of analogous arguments it is possible to show that the group

Ker p ◦ q = Z2 + Z2 ⊂ θ9

and the group θ9(∂π) ⊂ Ker(p ◦ q) is singled out as a direct summand. Moreover,
one can show that

Im JPL = G(9),
where G(i) = πN+i(SN ), while

JPL(Z2 + Z2) = G(1)G(8) = Z2 + Z2

and
JPL(Q4) = G(9)/G(1)G(8) = Z2,

Im JPL = Z2 = θ9(∂π) ⊂ π9(PL)

(namely, J−1
PLJSO = Z2 + Z2 and θ9(∂π) = J−1

PLJSO/π9(SO)). Since

θ9/Ker(p ◦ q) = Z2,

an attempt to prove the singling out of the group θ9(∂π) as a direct summand will
be unsuccessful.

Conjecture. θ9 = Z2 + Z4 and π9(PL) = Z2 + Z2 + Z4.

Appendix IV
The embedding of homotopy spheres in euclidean space and the

standard suspension homomorphism

As is known, an ordinary sphere Sn is situated in a standard way in euclidean
space Rn+1. Moreover, from the papers of Smale it follows that a homotopy sphere
S̃n for n 6= 3, 4 is diffeomorphic to a standard sphere Sn if and only if it can be
smoothly embedded in Rn+1. From papers of Milnor, Kervaire and Hirsch [6, 19] it
follows that a homotopy sphere S̃n is the boundary of a π-manifold if and only if it
can be embedded in Rn+2. On the other hand, Haefliger showed that any homotopy
sphere S̃n is approximately inserted into the space Rn+j for j > n/2+1. 20 We will
only consider the embeddings of homotopy spheres S̃n ⊂ Rn+k for 2 ≤ k ≤ n − 1
that have a trivial normal bundle, viz., the “π-embeddings.” It is easy to extract
certain necessary conditions for the existence of a π-embedding S̃n ⊂ Rn+k from
the homotopy groups of spheres.

Let us consider a set B̃(S̃n) ⊂ πN+n(SN ), representing a coset modulo
Jπn(SON ).

Lemma 1. If there exists a π-embedding S̃n ⊂ Rn+k, then there is an element
α ∈ B̃(S̃n) such that α ∈ EN−k(πn+k(Sk)), where E is a suspension.

The proof of the lemma trivially follows from an interpretation of a suspen-
sion homomorphism in terms of equipped manifolds. As to the sufficiency of the
condition of Lemma 1, there holds the following

20A normal bundle α ∈ πn−1(SOj) has order 2h for j > n/2 + 1.
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Theorem 1. If there exists an element α ∈ B̃(Sn) such that α ∈ ImEN−k, then
there exists a π-embedding Sn ⊂ Rn+k+1.

The proof of the theorem is extracted from the results of §11 concerning differ-
entiable structures on a direct product of spheres and follows from Lemmas 1, 2, 3
of this appendix.

Lemma 2. Under the conditions of Theorem 1 the sets B(Sn × Sk) and

B(S̃ × Sk) ⊂ Ã ⊂ πN+n(TN (Sn × Sk))

coincide to within Imκ∗, where κ : Sn ⊂ TN .

Lemma 3. If the sets B(Mm
1 ) and B(Mm) ⊂ Ã coincide modulo Imκ∗, then the

manifolds Mm
1 and Mm are diffeomorphic modulo θm(π).

The proof of Lemma 3 is given in §9 in all cases except m ≡ 2 (mod 4). For the
proof of Lemma 3 when m ≡ 2 (mod 4) cf. the paper [33].

Lemma 4. If the manifold Mn+k is diffeomorphic to Sn × Sk mod θn+k, where
Mn+k = S̃n × Sk, then the homotopy sphere S̃n admits a π-embedding in Rn+k+1.

The proof of Lemma 4 is trivial.
Let us consider the special case k = 3. There holds

Lemma 5. 21 If a sphere Sn is π-embedded in a sphere Sn+3, then it bounds a
manifold Wn+1 ⊂ Sn+3, the normal bundle of which is an SO2-bundle with Chern
class c1 ∈ H2(Wn+1) such that c21 = 0.

Proof. We give on a sphere S̃n a frame field τ3, that is normal to the sphere in
Sn+3, and we copy it onto the boundary S2 × S̃n of a tubular neighborhood with
the use of the first vector of this frame field. The resultant manifold S̃n ⊂ S2× S̃n

is homologous to zero in the complement

Sn+3 \ IntD3 × S̃n,

and one can compute the membrane, stretched onto it, by the manifold Wn+1 with
boundary S̃n ⊂ S2 × S̃n = ∂(Sn+3 \ IntD3 × S̃n). Incidentally, from the paper of
Smale [19] it trivially follows that

Sn+3 \ IntD3 × S̃n

is diffeomorphic to S2 ×Dn+1. The membrane Wn+1 realizes a base cycle of the
group

Hn+1(S2 ×Dn+1, ∂(S2 ×Dn+1)) = Z.

The normal bundle of the membrane Wn+1 in Sn+3 is an SO2-bundle and is defined
by a Chern class c1 ∈ H2(Wn+1). Let us show that c21 = 0. We will assume that
n > 3. Then

Hn−1(S2 ×Dn+1) = 0.
The self-intersection

Wn+1 ·Wn+1 ⊂ Sn+3 \ IntD3 × S̃n

defines an (n − 1)-dimensional cycle modulo the boundary and is a submanifold
V n−1 ⊂Wn−1. Since

∂Wn+1 = S̃n ⊂ S2 × S̃n,

21The idea for the proof of Lemma 5 is taken from a paper of V. A. Rohlin.



HOMOTOPICALLY EQUIVALENT SMOOTH MANIFOLDS. I 95

one can assume that V n−1 lies strictly inside Wn+1 and is closed (it is easily seen
that in the dimension n− 1 we have Hn−1(S2×Dn+1) = Hn−1(S2×Dn+1, ∂(S2×
Dn+1)) = 0).

We denote in terms of

DM : Hj(M,∂M) → H l−j(M)

the isomorphism of the Poincaré duality and in terms of i we denote the embedding

Wn+1 ⊂ Sn+3 \ IntD3 × S̃n.

Then

c21 = i∗{DM i∗[Wn+1]}2 = i∗DM{i∗[Wn+1] · i∗[Wn+1]} = i∗DM i∗[V n−1] = 0,

where M = Sn+3 \ IntD3 × S̃n,
The lemma is proved. �

From the lemma it immediately follows that the connected submanifold

V n−1 = Wn+1 ·Wn+1,

where V n−1 ⊂Wn+1, has a trivial normal bundle in the manifold Wn+1. Moreover,
if we give on the boundary S̃n ⊂ S2× S̃n a 2-frame field τ2, that is normal to S̃n in
S2×S̃n, and extend it inside the manifold Wn+1, then under a suitable choice of the
field and the extension (which we also denote by τ2) the manifold of the singularities
of the field τ2 inside Wn+1 coincides with the manifold V n−1 ⊂Wn+1. The tubular
neighborhoodD×V n−1 of the manifold V n−1 inWn+1 has the boundary S1×V n−1,
on which this field τ2 is defined and is nonsingular. To the field τ2/S

1 × V n−1 we
add a radius vector of the interior of the ball D2 so that it is normal to the boundary
S1 = ∂D2 at each point. We obtain a 3-field τ̃3 on S1 × V n−1.

The following lemma is obvious.

Lemma 6. The equipped manifolds (S̃n, τ3) and (S1×V n+1, τ̃3) define one and the
same element of the group πn+3(S3) (for the membrane connecting these equipped
manifolds one must take Wn+1 \ IntD2 × V n−1).

Conjecture. If a sphere S̃n is π-embedded in a space Sn+3, then there exists on
this sphere a normal frame field τ3 such that the equipped manifold (S̃n, τ3) defines
an element of the group πn+3(S3), which decomposes into a composition β◦α, where
α ∈ πn+3(S4) and β ∈ π4(S3) = Z2.

Corollary. In a group Gn the set B̃(S̃n) ⊂ Gn contains an element αβ, where
α ∈ Gn−1, β ∈ G1 (so that the element αβ has an order not greater than two), if
S̃n is π-inserted into Sn+3.

Since the image of a suspension that is far removed from the groups πn+3(S3)
contains elements of odd order p, not belonging to the group Jπn(SON ), it follows
that for k = 2 and k = 3 in Theorem 1 one cannot get rid of the differences in
identity between the necessary condition (Lemma 1) and the sufficient condition
(Theorem 1).
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[21] R. Thom, Classes caractéristiques et i-carrés, C. R. Acad. Sci. Paris 230 (1950), 427–429.

MR 12, 42.

[22] , Quelques propriétés globales des variétés différentiables. Comment Math. Helv. 28
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Études Scientifiques Exposé, Nos. 2, 5, 1962/63. (mimeographed)

[35] V. A. Rohlin, On Pontrjagin characteristic classes, Dokl. Akad. Nauk SSSR 113 (1957),
276–279. (Russian) MR 20 #1318.

[36] J. F. Adams, Vector fields on the spheres. Bull. Amer. Math. Soc. 68 (1961), 38–41.
[37] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. 11 (1960), 291–310.
[38] M. W. Hirsch, On embedding differentiable manifolds in euclidean space, Ann. of Math. (2)

73 (1961), 566–571. MR 23 #A2223.


