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In a number of special cases it is proved that the rational Pontrjagin–Hirzebruch
classes may be computed in terms of cohomology invariants of various infinitely-
sheeted coverings. This proves their homotopy invariance for the cases in question
(Theorems 1 and 2). The methods are applied to the problem of topological invari-
ance of the indicated classes (Theorem 3). From the results there follow various
homeomorphism and homotopy types of closed simply-connected manifolds, which
yields a solution to the problem of Hurewicz for the first time in dimensions larger
than three (Theorem 4). We note that in the paper [3] the author completed the
proof of the topological invariance of all the rational Pontrjagin classes using a quite
different method.

Introduction

As is known, already for three-dimensional manifolds homeomorphism is distinct
from the homotopy type in the sense that there exist closed manifolds which are
homotopically equivalent but not homeomorphic. They are distinguished by the
Reidemeister invariant “torsion”. It is natural to expect that also in dimensions
n > 3 homeomorphism also will not coincide with homotopy type. For example,
they are distinguished by the torsion invariant also in large dimensions, if one
proves that torsion is a topological invariant. Another widely known invariant, not
a horootopy invariant, but, by assumption, a topological invariant, is the Pontrjagin
class, considered as rational. However in dimensions n > 3 no invariant has been
established as topological, unless it is also obviously homotopic. It is interesting
that for n = 3 the torsion invariant, as a means of distinguishing combinatorial
lenses, has been known since the thirties, and its topological invariance was obtained
only in the fifties in the form of a consequence of the “Hauptvermutung” (Moise).
The situation is that in three dimensions a continuous homeomorphism may be
approximated by a piece wise linear one. This can hardly be true in high dimensions,
and even if it is true, at the present time there are no means in sight for the proof
of this fact.

In the present paper we study the rational Pontrjagin classes as topological and
homotopy invariants. It is known that for simply-connected manifolds there are
no “rational relations” of homotopy invariance of classes other than the signature
theorem:

(Lk(p1, . . . , pk), [M4k]) = τ(M4k),
where τ(M4k) denotes the signature of the quadratic form (x2, [M4k]),
x ∈ H2k(M4k, R) and Lk are the Hirzebruch polynomials of the Pontrjagin classes.
In what follows we shall speak about the classes Lk = Lk(p1, . . . , pk) along with the
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classes pk for manifolds, since they are convenient in the investigation of invariance.
This is shown by the signature theorem presented above and the combinatorial re-
sults of Thom, Rohlin and Švarc (see [4]–[6]). The only “hole” in the theory of
Pontrjagin classes, from the point of view of the problems posed, was the theorem
of Rohlin, proved in 1957, establishing that the class Lk(M4k+1) is a topological
invariant, but here it was not known whether the indicated class was a homotopy
invariant (see [4]). However, Rohlin’s proof was in no way connected with the fun-
damental group. One should note that on passing to a simply-connected manifold
this theorem is empty, since H4k(M4k+1) = 0.

In the present article we establish for certain cases the algebraic connection
of the classes with the fundamental groups From the resulting relation it follows
for example that the class Lk(M4k+1) in reality is a homotopy invariant. The
formulas (see § 3) found by the author may be considered to a certain degree as
generalizations of the formula of Hirzebruch. Their connection with coverings was
rather unexpected, since in the theory of characteristic classes the fundamental
group had earlier played no role at all.

It was possible to apply these formulas to the question of the topological in-
variance of classes. Under certain conditions we were able to prove that the scalar
products (Lk, x), where x ∈ H4k(Mn), n = 4k + 2, are topological invariants. Al-
ready for Mn = S2 × S4k this fact makes it possible to solve affirmatively the
question on the distinction between the homeomorphism and homotopy type for
all dimensions of the form 4k + 2, k ≥ 1, and also in the class of simply-connected
manifolds, where the “simple” homotopy type coincides with the ordinary one.

The basic results of this paper were published in brief in [1].
We take this opportunity to express our gratitude to V. A. Rohlin for useful

discussions on this work.

§ 1. Signature of a cycle and its properties

We gather in this section a number of simple algebraic facts on quadratic forms
which will be used in the sequel.

We suppose that we are given a real linear space P , possibly of infinite dimension,
and that on P there is given a symmetric bilinear form 〈x, y〉 with values in R.
We shall be interested only in the case when P can be decomposed into a sum
P = P1 + P2, where P1 is finite-dimensional and 〈x, y〉 = 0, y ∈ P2, x ∈ P , i.e. the
entire form is concentrated on a finite-dimensional subspace P1 ⊂ P , which, it is
to be understood, is chosen nonuniquely. We shall say in this case that the form
is of finite type. The quadratic form 〈x, x〉 is concentrated, essentially, on P1, and
one may speak of its signature, which we shall use as the signature of the quadratic
form 〈x, x〉 on P . The signature does not depend on the choice of P1. Evidently
every subspace P ′ ⊂ P is such that the form 〈x, x〉 for x ∈ P is also of finite type
and has a signature in the same sense. It is easy to construct a decomposition into
a sum P ′ = P ′

1 + P ′
2, where 〈x, y〉 = 0, y ∈ P ′

2 and P ′
2 is finite-dimensional.

The following facts on the signature easily follow from the analogous facts for
forms on finite-dimensional subspaces.

a) If we are given two subspaces P ′ ⊂ P and P ′′ ⊂ P such that every element
of P is a sum x1 + x2, x1 ∈ P ′, x2 ∈ P ′′, and if the form 〈x, y〉 is topologically zero
on P ′ and on P ′′, then the signature of the form 〈x, x〉 is equal to zero on P . If
now the forms on P ′ and P ′′ are nontrivial, then P ′ and P ′′ decompose into the
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sums P = (P ′ ∩ P ′′) + P ′
1 and P ′′ = (P ′ ∩ P ′′) + P ′′

1 such that 〈x, y〉 = 0, where
y ∈ P ′

1, x ∈ P ′; y ∈ P ′′
1 , x ∈ P ′′, then the signature of 〈x, x〉 on P coincides with

the signature of 〈x, x〉 on P ′ ∩ P ′′.
b) If we are given a subspace P ′ ⊂ P such that 〈x, y〉 = 0 for all x ∈ P ′ implies

〈y, y〉 = 0, then the signature of 〈x, x〉 on P ′ coincides with the signature of 〈x, x〉
on P .

Suppose that K is any locally finite complex and z ∈ H4k(K, Z)/Torsion. Con-
sider the group H2k(K, R) = P and the bilinear form 〈x, y〉 = (xy, z), x, y ∈ P . It
is easy to prove

Lemma 1. The bilinear form 〈x, y〉 has finite type on the group P = H2k(K, R).

Proof. One can find a finite subcomplex K1

i
⊂ J such that in K1 there is an

element z1 ∈ H4k(K1) and z = i∗z1. The group H2k(K1, R) is finite-dimensional.
The homomorphism i∗ : P → H2k(K1, R) is defined. Since

((i∗x)(i∗y), z1) = (xy, z) = 〈x, y〉,
the kernel Ker i∗ ⊂ P consists only of those elements y ∈ Ker i∗ for which 〈y, y〉 ≡ 0.
The image Im i∗ is finite-dimensional, and therefore the form 〈x, y〉 has finite type
on P . The lemma is proved. �

Thus the signature of the form on P = H2k(K, R) is determined.
By the nondegenerate part of a form of finite type on a linear space P we shall

mean a subspace P1 ⊂ P such that the form is nondegenerate on P1 and is trivial
on the orthogonal complement to P1. It is natural to consider P1 as a factor of P .
Evidently the signature is defined by the nondegenerate part of the quadratic form,
which is uniquely defined (as a factor).

Lemma 2. Suppose that K1 ⊂ K2 ⊂ · · · ⊂ K is an increasing sequence of locally
finite complexes and K =

⋃
j Kj. We shall denote the inclusion K1 ⊂ Kj by

ij and the inclusion K1 ⊂ K by i. Suppose that we are given an element z1 ∈
H4k(K1, Z)/Torsion such that ij∗z1 6= 0. Consider the elements ij∗z1 = zj and
forms on the spaces Pj = H2k(Kj , R). Then the nondegenerate part of a quadratic
form on Pj is one and the same for all sufficiently large indices and coincides with
the nondegenerate part of the quadratic form on P = H2k(K, R).

Proof. Consider the homomorphisms i∗j : Pj → P1 and i∗ : P → P1. Select in P1

a finite-dimensional nondegenerate part P ′
1 ⊂ P1. Then we may suppose that the

images of all the nondegenerate parts P ′
j ⊂ P under i∗j lie in P ′

1 ⊂ P1.1 But the
image

Im i∗ =
⋂
j

Im i∗j+1;

in view of the finite dimensionality of P ′
1 and the inclusions

Im i∗j ⊃ Im i∗j+1

for all j, we obtain a stabilization of the images i∗jP
′
j ⊂ P ′

1. And since the kernel
Ker i∗j consists only of the purely degenerate part, it follows that the forms are
equal on P ′

j and i∗jP
∗
j . The lemma is proved. �

1Here for the proof of the stabilization of the images it is convenient to select in Kj finite

subcomplexes K̄j ⊂ Kj such that K̄j ⊂ K̄j+1 and
⋃

j K̄j = K, and carry out the argument for

K̄j .
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In what follows the signature of the natural form on P = H2k(K, R) for a given
element z ∈ H2k(K, Z)/Tor will be called the “signature of the cycle z” and will
be denoted by τ(z). If K = M4k and z = [M4k], then τ(z) = τ(M4k).

Evidently τ(−z) = −τ(z) and τ(λz) = τ(z), if λ > 0.

§ 2. The fundamental lemma

We suppose that Wn is an open manifold and V n−1 a submanifold dividing Wn

into two parts W1 and W2 such that W1 ∪W2 = Wn and W1 ∩W2 = V n−1. We
suppose that V n−1 and Wn are smooth (or PL) manifolds and that the inclusion
i : V n−1 ⊂ Wn is smooth or piecewise linear. Suppose we are given a continuous
(not necessarily smooth or piecewise linear) mapping T : Wn → Wn such that
the intersection TV n−1 ∩ V n−1 is empty, while V n−1 and TV n−1 jointly bound a
connected piece of the manifold Wn. We require further that the mapping Wn →
Wn//T is a covering, so that the intersection TN ∩N coincides with TV n−1 and
so that Wn decomposes into the union

Wn =
⋃
l

T lN.

Under these conditions we have the following lemma.

Fundamental Lemma. If we have an element z ∈ H4k(V n−1, Z)/Tor such that
i∗z 6= 0 mod Tor, T∗i∗z = i∗z and the film between z and Tz lies in N , then

τ(z) = τ(i∗z)

provided that one of the following conditions is satisfied :
a) n = 4k + 1, V n−1 is compact, z = [V n−1];
b) n is arbitrary, but the group H2k+1(Wn, R) has no T -free elements (this means

that for any α ∈ H2k+1(Wn, R) there is an index q = q(α) such that

α =
q∑

l=1

λlT
l
∗α.

For example this is satisfied if the group H2k+1(Wn, R) is finite-dimensional).

Proof. Denote by i1 and i2 respectively the inclusions V n−1 ⊂ W1 and V n−1 ⊂ W 2

and by Jl ⊂ H2k(V n−1, R) the image i∗l H
2k(Wl, R). On J1 the form (x2, z) = 〈x, x〉

is defined, and its signature, as indicated in § 1, coincides with the signature of the
cycle il∗z ∈ H4k(Wl). We have

Lemma 3. τ(il∗z) = τ(i∗z), l = 1, 2.

The proof of Lemma 3 follows from Lemma 2. Indeed, for the proof of the
equation τ(il∗z) = r(i∗z) we need to put

K1 = N ∪ T−1N, . . . , Ki = Ki−1 ∪ T i−1N ∪ T−iN, . . . , K = Wn,

and analogously decompose

W2 =
⋃
j

K ′
j , K ′

i = T−iKi, W2 = K ′,
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take into account that the transformation T q homeomorphically maps K ′
q onto Kq

and to apply Lemma 2 on the stabilization of the nondegenerate parts of forms,
defining the signature.2

From the proof of Lemma 3 it follows that

Lemma 3′. Suppose that J is the image of i∗H2k(Wn, R). Then the nondegenerate
part of a form on Jl, l = 1, 2, may be chosen entirely on J = J1 ∩ J2.

In order to finish the proof of the basic lemma, we need to establish that the
signature of a quadratic form on J coincides with the signature of a quadratic form
on the entire group P = H2k(V n−1, R).

1) Suppose first that n = 4k + 1 and z = [V n−1]. Suppose that α ∈ P and
〈a, x〉 = 0, x ∈ J1. Then the element α ∩ [V n−1] = β ∈ H2k(V n−1, R) obviously
satisfies (β, x) = 0, x ∈ J1. That means that i1∗β = 0. Since i1∗β = 0, the
selfintersection index β ◦ β = 0. Therefore

(α2, [V n−1]) = β ◦ β = 0.

From the algebraic properties of the signature (see § l, b)) we conclude that the
signature of the form on J1 coincides with the signature of the form on P , which is
equal to τ(z) = τ(V n−1).

For n = 4k + 1 the lemma is proved.
2) Now suppose that n > 4k + 1. From Lemmas 3 and 3′ and the properties of

the signature (see § 1, a)) we conclude that the signature τ(i∗z), which coincides
with the signature of the form on J ⊂ P , is equal simultaneously to the signature
of the form on the space P ′, representing the linear envelope of J1 and J2.

Now suppose that α ∈ P and 〈α, x〉 = 0, x ∈ P ′. Consider the element β =
α ∩ z ∈ H2k(V n−1, R). Since (β, x) = 0, x ∈ P ′, we have i1∗β = i2∗β = 0. The
films ∂1 and ∂2, stretched on the cycle (representative of an element of W1 and W2

respectively), define together a cycle δ = ∂1 − ∂2, which we shall consider as an
element of δ ∈ H2k+1(Wn, R). Since by hypothesis

δ =
q(δ)∑
l=1

λlT
L
∗ δ,

there exists a 2k + 2-dimenslonal chain c0 in Wn whose boundary defines that
relation. We put

c = c0 +
q(δ)∑
l=1

λlT
lc0 + · · ·+

∑
l1,...,lm

λl1 · λl2 · . . . · λlmT l1+···+lnc0 + · · · .

Although c is a noncompact chain, its compact boundary is δ and the intersection
c ∩ V n−1 is compact. However the boundary of the intersection, ∂(c ∩ V n−1), is
exactly β. Therefore

β = α ∩ z = 0 and (α2, z) = 0.

The lemma is proved. �

2Here of course, the basic role is played by the T -invariance of the cycle i∗z, and also the

condition on the film between z and Tz, where z ∈ H4k(V ), Tz ∈ H4k(TV ).



6 S. P. NOVIKOV

Remark. As V. A. Rohlin has indicated to me, in the part of the basic lemma
relating to n = 4k + 1 it is essentially proved that if M4k is one of the components
of the edge of any (for example, open) manifold W 4k+1

1 , then

τ(M4k) = τ(i1∗[M4k]);

the conclusion concerning the signature τ(i∗z) in the union W = W1 ∪ W2 is
therefore proved by use of the transformation T : W → W . This may be bypassed
and an analogue of the lemma established for the case when W is an open manifold
and M4k is a compact cycle separating it, so that in reality the transformation T
does not play a large role here. However, for n = 4k + 2 this method of reasoning
without using T has not been successfully applied in the homotopy theorem.

§ 3. Theorems on homotopy invariance. Generalized signature
theorem

Consider a closed manifold Mn, where n = 4k + m. Suppose that we are given
an element z ∈ H4k(MN , Z)/Tor such that the dual element Dz ∈ Hm(Mn, Z) is
the product of indivisible elements Dz = y1 . . . ym mod Tor, yi ∈ H1(Mn, Z). We
define the covering p : M̂ → Mn, under which those and only those paths γ ⊂ Mn

for which (γ, yj) = 0, j = 1, . . . ,m are covered by closed sets. Evidently on the
manifold M̂ there operates a monodromy group generated by the commutative
transformations T1, . . . , Tm : M̂ → M .

Lemma 4. There exists an element z ∈ H4k(M̂, Z), such that T∗ẑ = ẑ, j =
1, . . . ,m, and p∗ẑ = z.

Proof. We realize the cycle Dyj ∈ Hn−1(Mn, Z) by the subsets Mn−1
i ⊂ Mn and

the cycle z by its intersections

M4k = Mn−1
1 ∩ · · · ∩Mn−1

m .

It is easy to see that all the paths lying in M4k are covered by closed sets. Thus
there is defined a covering inclusion M4k ⊂ M̂ , which gives us the required element
ẑ. The lemma is proved. �

Now consider a Serre fibering

q : Mn M̂−→ Tm,

where the basis is of the topological type of the torus Tn, the space is of type Mn and
the fiber of type M̂ . This fibering is dual to the covering. It is defined homotopically
invariantly. Evidently the term Em,4k

2 of the spectral sequence in homologies is
isomorphic to the subgroup H inv

4K ⊂ H4k(M̂, Z), consisting of elements invariant
relative to the monodromy group. The subgroup Em,4k

∞ ⊂ Em,4k
2 , consisting of

cycles of all differentials of the spectral sequence of the covering, is defined.

Lemma 5. The subgroup Em,4k
∞ is infinite cyclic. It is precisely the group Hn(Mn) =

Z, and
Em−1,4k+1
∞ = · · · = E1,4k+m−1

∞ = 0.

Proof. The fact that Em,4k
∞ is a factor of Hn(Mn) is a consequence of the definition

of filtration in the spectral sequence of homologies. Therefore it is a cyclic group.
We note now that Em,4k

∞ is infinite and the corresponding element was constructed
in Lemma 4. Therefore Em−s,4k+s

∞ for s > 0 is trivial. The lemma is proved. �
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As a consequence of Lemmas 4 and 5 we obtain

Lemma 6. There exists a unique element ẑ ∈ H4k(M̂, Z) such that T∗ẑ = ẑ,
p∗ẑ = z, and in the term Em,4k

2 of the spectral sequence of the covering the element
ẑ⊗[Tm] lies in the group Em,4k

∞ = Z, m i. e. Ẑ⊗[Tm] is the cycle of all differentials.
Here [Tm] is the fundamental cycle of the torus.

Lemma 6 is a unification of Lemmas 4 and 5 with the additional observation
that in Lemma 4 an element of Em,4k

∞ was concretely constructed. The element ẑ
indicated in Lemma 6 will be called canonical.

Theorem 1. For m = 1 and m = 2 with the additional condition that the group
H2k+1(M̂, R) is finite-dimensional, we have the formula for an indivisible z ∈
H4k(Mn, Ẑ), Dz = y1 . . . ym:

(Lk(Mn), z) = τ(ẑ),

where ẑ is a canonical element. In particular, this scalar product is a homotopy
invariant.

Corollary 1. The rational class Lk(M4k+1) is a homotopy invariant.

We note for example that if π1(M5) = Z and p1(M5) 6= 0, then the group π2(M5)
is infinite, although in homologies this may in no way be reflected. The resulting
formula makes it possible to define Lk(M4k+1) for any homology manifolds.

Corollary 2. The class Lk(M4k+2) of a manifold of the homotopy type of the torus
T 4k+2 is trivial. The scalar product of Lk(M4k × T 2) with the cycle z = [M4k]× 0
is homotopically invariant and equal to τ(M4k).

It would be mteistma to deal up the question as to whether there exist invariant
relations on the stable tangent bundle other than those which are given by the
J-functor and Theorem 1 for n = 4k + 1 under the assumption that the group π1

is commutative and H4i(Mn) = 0, i < k.

Proof of Theorem 1. First we consider the case m = 1, n = 1+4k. In this case the
elements z and ẑ are indivisible. From the fundamental lemma,

τ(ẑ) = τ(M4k),

where M4k ⊂i M̂ and ẑ = i∗[M4k]. On the other hand, z = p∗ẑ and

Lk(M̂) = p∗Lk(M4k+1).

Therefore
(Lk(M̂), ẑ) = τ(M4k) = τ(ẑ)− (Lk(M4k+1), z).

For m = 1 the theorem is proved.
Now we turn to the case m = 2. We recall first chat the element z is divisible,

where Dz = y1y2. The indivisible elements Dy1, Dy2 are realized by submanifolds
Mn−1

1 and Mn−1
2 , and the element z by their intersection

M4k = Mn−1
1 ∩Mn−1

2 .

Consider the covering p : M̂ → Mn defined earlier. The manifold M4k ⊂ Mn−1
1

defines an indivisible element z1 ∈ H4k(Mn−1
1 ). By the preceding formula for m = 1

we conclude that on i : M̂n−1
1 ⊂ M̂ , covering Mn−1

1 , there is one cycle ẑ1 such that

τ(ẑ1) = (Lk(Mn−1
1 ), z1).
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The transformation T2 : M̂ → M̂ is such that the fundamental lemma may be
applied to the ball M̂ ⊃ M̂n−1

1 and to the elements ẑ1, i∗ẑ1. Thus

τ(ẑ1) = τ(i∗ẑ1).

Accordingly
τ(i∗ẑ1) = (Lk(Mn−1

1 ), z1) = τ(M4k).
But i∗ẑ1 = ẑ and τ(M4k) = (Lk(Mn), z), so that Theorem 1 results for the indi-
visible cycle z. The theorem is proved. �

Now suppose that z = λz′ and Dz = y1y2, where y1, y2 are indivisible elements
of the group H1(Mn, z). As earlier, we suppose that M4k = Mn−1

1 ∩ Mn−1
2 and

that on Mn−1
1 and Mn−1

2 the manifold M4k realizes respectively the elements z1

and z2. If at least one of z1 or z2 is indivisible, then the preceding considerations
retain their force. Moreover, if z1 = λ1z

′
1 and z2 = λ2z

′
2, then for M̂n−1

1 and M̂n−1
2

we will have

(Lk(Mn−1
l ), zl) = λl(Lk(Mn−1

l ), z′l) = λlτ(ẑ′l) = λlτ(il∗ẑ′l) = λlτ(ẑ).

since τ(µẑ) = τ(ẑ) for µ > 0, l = 1, 2, λl > 0. Therefore λ1 = λ2, if τ(ẑ) 6= 0. Thus
the cycles z1 and z2 are divisible by one and the same number µ = λ1 = λ2.

Remark. M4k divides each of the manifolds Mn−1
1 and Mn−1

2 into exactly µ pieces,
respectively a1, . . . , aµ and b1, . . . , bµ, where

Mn−1
1 =

⋃
j

aj

and
Mn−1

2 =
⋃
j

bj .

The pieces aj and bj are cyclically ordered. Therefore the boundary of each of
those pieces divides into two pieces ∂′j and ∂′′j for aj and δ′j and δ′′j for bj , passing
one after another in cyclic order.

From the preceding we obtain the following theorem.

Theorem 2. If the element z ∈ H4k(Mn, Z) is divisible by λ, where Dz = y1y2,
and y1, y2 are indivisible elements of the group H1(Mn, Z), then the scalar product
(Lk(Mn), z) is equal to µτ(ẑ), where ẑ is a canonical element and µ is divisor of
λ.

Corollary 3. If τ(ẑ) = 0, then the scalar product (Lk(Mn), z) is homotopically
invariant and is equal to zero. Since z/λ is an integral indivisible class, then

(Lk(Mn), z/λ) = µ/λτ(ẑ).

If τ(ẑ) is mutually prime with λ, µ = λ. The scalar product (Lk(Mn), z) may take
on only a finite number of values, equal to µiτ(ẑ), where µi are divisors of the
number λ.

Remark. Here it was shown that if we have two indivisible cycles Mn−1
1 ,Mn−1

2 ⊂
Mn, n = 4k + 2, and their intersection is divisible by λ, and is not equal to zero,
then in each of them this cycle, the intersection of z, is divisible by one and the
same number µ, under the condition that τ(ẑ) 6= 0. Moreover,

µ = (Lk(Mn), z)/τ(ẑ)
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and therefore µ is topologically invariant (see the preceding section). Is it possible
to prove that always µ = λ?

Example 1. In connection with Theorem 1 there may arise the legitimate ques-
tion: why is the formula (Lk(Mn), z) = τ(z) not true, rather than the formula
(Lk(Mn), z) = τ(ẑ)? A priori it would be natural to expect just such a formula.

In connection with this I wish to show on the simplest examples that such a
formula is false “as a rule”. We shall say that the manifold Mn

1 has the “homology
type” of Mn

0 if there exists a mapping f : Mn
1 → Mn

0 inducing an isomorphism of
all the homology groups.

We consider Mn
0 = S1×S4k and show that there exist infinitely many manifolds

Mn
0 of the homology type of S1 ×S4k and with distinct Pontrjagin classes pk(Mn

i )
such that π1(Mn

i ) = Z and all πl(Mn
i ) = 0, 1 < l < 2k. Moreover, for k ≥ 2,

among the manifolds Mn
i there are those for which the class pk(Mn

i ) is fractional
and therefore they are homotopically nonequivalent to smooth manifolds.

Consider the functor JPL(Mn
0 ) and select a stable microbundle ηPL, J-equivalent

to the trivial bundle. We form its Thom complex TN . Since the fundamental cycle
for it is spherical, we may by the now customary method reconstruct the preimages
under the mapping SN+n → TN , pasting together the kernel of the mapping onto
π1, all the groups of this preimage up to l = 2k−1 and the kernel of the mapping in
dimension l = 2k, but only in homologies. We obtain a preimage M4k+1

i the given
“normal” microbundle. Since the functor J0

PL is finite, we have also obtained the
required result—the class pk may be varied very freely. By the Poincaré duality
principle, the homology type of the preimage M4k+1

i is the one that we need.

Example 2. In an analogous way we now show that in the portion of Theorem 1
touching on co-dimension 2, it is not possible to remove the restriction of finite-
dimensionality of the group H2k+1(M̂, R).

Consider the direct product of T 2 × S4k and its J-functor. We again select a
J-trivial bundle over T 2 × S4k and denote its Thom complex by TN . We select an
element α ∈ H−1[TN ] and representative fα : SN+n → TN of the element α. We
may find a Morse reconstruction over

Mn
α = f−1

α (T 2 × S4k)

so that

π1(Mn
α ) = Z + Z

and

πi(Mn
α ) = 0, i ≤ 2k.

However if we chose a J-trivial bundle such that pk 6= 0, we would have

pk(Mn
α ) 6= 0,

and at the same time τ(ẑ) = 0, since

H2k(M̂) = π2k(M̂) = 0,

where M̂ is a universal cover of the manifold Mn
α . Therefore we can deduce that

π2k+1(M̂) = H2k+1(M̂) is of infinite type given that pk(Mn
α ) 6= 0.
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§ 4. Theorem on topological invariance

We consider a cycle x ∈ H4k(Mn, Z) for n = 4k + 2 such that (Dx)2 = 0
mod Tor. Under these conditions we have

Theorem 3. The scalar product (Lk(Mn), x) is a topological invariant. Here we
may suppose that Mn is a complex which is a homology manifold over Q.

Proof. We find an integer λ such that (D(λx))2 = 0. We realize the cycle λx by the
submanifold M4k ⊂ Mn. As is known, under these conditions the normal bundle
to M4k in Mn is trivial. The inclusion M4k ×R2 ⊂ Mn is defined, and is an open
neighborhood U = M4k ×R2 of the manifold M4k. Evidently

(Lk(Mn), x) =
1
λ

τ(M4k).

Now we select on the manifold another smooth (or PL) structure. We denote
the class in the new smooth (or PL) structure by L′

k(Mn). We shall show that

(L′
k(Mn), λx) = τ(M4k).

The new structure induces a structure on the neighborhood U = M4k×R2 and the
neighborhood W = U \ (M4k × 0), since U and W are open. W is homeomorphic
to M4k × S1 × R. The coordinate along S1 will be denoted by φ, and the coordi-
nate along R by t. The system of coordinates (m,φ, t) is not smooth in the new
smoothness, m ∈ M4k. Evidently H4k+1(W ) = Z is also generated by the cycle
M4k × S1 × 0. We realize this cycle by a smooth submanifold V 4k+1 ⊂ W in the
new smoothness. There is defined a projection of degree +1:

f : V 4k+1 → M4k × S1, f̂ : V̂ → M4k ×R.

Therefore on V 4k+1 there is at least one 4k-dimensional cycle z ∈ H4k(V 4k+1)
such that f∗z = [M4k

∗ × 0]. However, the scalar product (Lk(V 4k+1), z) does not
depend on the choice of such a cycle z.

We consider the covering p : Ŵ → W , under which all the paths on M4k × 0
are preserved, as closed. Evidently Ŵ is homeomorphic to M4k × R × R. The
complete preimage V̂ = p−1(V 4k+1) also covers V 4k+1 with the same monodromy
group. There exists one invariant cycle ẑ ∈ H4k(V̂ ) such that

f∗p∗ẑ = [M4k × 0] 3, ẑ = Df̂∗D[M4k].

From Theorem 1 we conclude that

τ(ẑ) = (L4k(V 4k+1), p∗ẑ) = (L′
k(Mn), λx).

Since V = V 4k+1 is compact, we may suppose that V̂ lies between the levels t = 0
and t = 1 on Ŵ .

Consider the (nonsmooth) transformation T ′ : Ŵ → Ŵ such that

T ′(m,φ, t) = (m,φ, t + 1).

The inclusion V̂ ⊂ Ŵ will be denoted by i. Evidently T ′
∗i∗ẑ = i∗ẑ and the group

H2k+1(Ŵ ) = H2k+1(M4k) is finite-dimensional. In view of the fundamental lemma,
we conclude that

τ(ẑ) = τ(i∗ẑ).

3The cycle z = p∗ẑ ∈ H4k(V ) is obtained by intersecting (M4k × 0× R) ∩ V and V from the

homology point of view. The same is true for ẑ on V̂ .



RATIONAL PONTRJAGIN CLASSES 11

However i∗ẑ realizes the cycle M4k × 0× 0 on Ŵ = M4k ×R×R. Therefore

τ(i∗ẑ) = τ(M4k).

Since τ(ẑ) = (L′
k(Mn), λx), we have also found that

(L′
k(Mn), λx) = τ(M4k).

The theorem is proved. �

Remark. Rohlin drew my attention to the fact that for the manifold V = V 4k+1 ⊂i

W , constructed in the proof of Theorem 3, one has a cycle z ∈ H4k(V,Z) such that

τ(i∗z) = τ(z) = τ(M4k).

This shows that τ(z) = τ(ẑ) for the case at hand, which, generally speaking, is not
true for arbitrary (4k + 1)-dimensional manifolds, as was already shown in § 3 on
simple examples. However it is interesting that we are all the same forced to turn
to coverings, since the formula proved in § 3 for Lk(V ) refers to the cycle ẑ, and
we use it in the proof.

§ 5. Consequences of the theorem on topological invariance

We collect in this section some consequences of Theorem 3. Obviously one has
the following corollary.

Corollary 4. The class Lk(M4k+2) is topologically invariant on the subgroup
H ⊂ H4k(M4k+2)/Tor, which admits a basis x1, . . . , xs ∈ H such that Dx2

j = 0
mod Tor. Here M4k+2 is a smooth (or PL) manifold. For example, for an M4k+2

which is a direct product of any collection of spheres, this is always so.

Now suppose that M4k+2 is any simply-connected manifold for which the sub-
group H ⊂ H4k(M4k+2

i )/Tor is nontrivial. Since the functor J0
PL(M4k+2) is always

finite, we may apply the “theorem of realization” of tangent bundles and obtain an
infinite collection of PL-manifolds Mi with distinct values of the class Lk(M4k+2

i )
on the subgroup H, so that there does not exist any mapping M4k+2

i → M4k+2
j

carrying a class into a class. If we wish to obtain smooth manifolds, then we must
use the functor J0 = J0

S0
. Here, however, for k 6= 1, 3 we are obstructed by the Arf-

invariant of Kervaire (for these results see [2], § 14 and Appendices I and II). This
may be avoided if instead of M4k+2 one chooses the homotopy type M4k+2#M4k+2

(in the class of PL-manifolds the Arf-invariant does not obstruct the construction
of such manifolds). Thus one obtains the following theorem.

Theorem 4. If the subgroup H ⊂ H4k(M4k+2, Z)/Tor for the simply-connected
manifold M4k+2 is nontrivial, then there exists an infinite family of PL-mamfolds
of homotopy type M4k+2, nonhomeomorphic to one another. If n = 6 or 14, this is
also true in the class of smooth manifolds. In the class of smooth manifolds there
exists an infinite collection of pairwise nonhomemorphic manifolds of homotopy
type M4k+2 # M4k+2.

If for example M4k+2 = S2 × S4, then for k ≥ 2 one may indicate among
these manifolds those which will have a fractional Pontrjagin class, and accordingly
will be nonhomeomorphic to smooth manifolds, although their homotopy type is
S2 × S4k.
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Remark. For S2×S4 such manifolds may be obtained by the Morse reconstruction
over different Haeflinger nodes S3 ⊂ S6. If we choose these manifolds for the type
S2 × S4k and carry out the Morse reconstruction over S2, then for distinct values
of the class pk we will obtain distinct nodes S4k−1 ⊂ S4k+2.

We define the concept of a “topological node with a trivial microbundle”. Namely,
it consists of the inclusion

Sn ×Rl ⊂ Sn+k,

and equivalence consists of homeomorphisms with fiberwise preservation of the
structure around Sn × 0.

From our results it follows that the nodes

S4k−1 ×R3 ⊂ S4k+2, k ≥ 1,

distinguished by the class pk of the reconstructed manifold of homotopy type S2 ×
S4k, are nonequivalent as topological nodes taking account of the microbundle.

We note finally that for certain manifolds, for example for the homotopy type
S2 × S4k and their sums connected with one another, the “Hauptvermutung” fol-
lows from Theorem 3. Here the point is that from the results of Appendix II of [2]
one may extract the fact that the rational Pontrjagin class in this case is a complete
combinatorial invariant. Since it is topologically invariant, we also find by using a
simple comparison of invariants that from the existence of a continuous homeomor-
phism there follows the existence of a piecewise linear homeomorphism. However,
no such approximation theorems are proved here. From the homeomorphism, we
have used for the proof of the theorem only the fact that open sets, common to both
smoothnesses, are smooth open manifolds and carry the same collection of cycles.
Moreover, our method makes it possible to define the classes Lk of the topologi-
cal manifold M4k+2. In essence the proof is only that for an arbitrary introduced
smoothness the scalar product of the class Lk with a cycle is one and the same. But
this introduction of smoothness is necessary, since it makes it possible to discover a
large collection of submanifolds realizing cycles. This is hardly the case for purely
topological manifolds.

SUPPLEMENT (V. A. ROHLIN)4

Diffeomorphism of the manifold S2 × S3

I want to indicate one further application of the theorem on the topological
invariance of the class Lk in codimension two:5 there exist diffeomorphisms of
smooth manifolds, for example diffeomorphisms of the manifold

V = S2 × S3,

which are homotopic, but topologic ally are not isotopic.
The following elementary considerations are necessary for the proof. To each

mapping f : V → V there corresponds the composite mapping

S3 → V
f−→ V → S2,

4From a letter of January 20, 1965, from V. A. Rohlin to the author. The letter was an answer

to my having sent the note [1], and is published with Rohlin’s permission. (This and the footnotes

which follow are due to S. P. Novikov.)
5I.e. Theorem 3 of the present paper.
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where the first arrow denotes the natural mapping of the sphere S3 onto any fiber
a × S3 of the product S2 × S3, and the third the projection of this product onto
the first component. The absolute value of the Hopf invariant of this composite
mapping is defined by the homotopy class of the mapping f and will be denoted by
γ(f). The number of homotopy classes of mappings f : V → V with the given value
of γ(f) is infinite, but becomes finite if we restrict ourselves to classes consisting of
homotopic equivalences. In particular, there exists only a finite number of pairwise
nonhomotopic diffeomorphisms f : V → V with a given value of γ(f).

Now consider the manifold W = S2 × D4 with edge V and denote by Mf the
smooth manifold obtained from two exemplars of W by pasting by means of the
diffeomorphism f : V → V . The homology groups of Mf do not depend on f ,
i.e. they are the same as those of the product S2 × S4 (which corresponds to the
identity diffeomorphism V → V ), and the multiplicative structure of the integer-
valued cohomology ring is defined by the formula

u2
2 = ±γ(f)u4,

where u3 and u4 are the generators of the groups H2(Mf ;Z) and H4(Mf ;Z). In
particular, γ(f) is a homotopy invariant of the manifold Mf .

Denote by K the class of all manifolds diffeomorphic to the manifolds Mf , and
by K0 the class of smooth six-dimensional manifolds topologically equivalent to the
product S2 × S4.

Lemma. K0 ⊂ K.

Proof. Suppose that M ∈ K0. Then the generator of the group H2(M) is real-
ized by a smooth imbedding of a sphere, and the normal bundle of this sphere,
having the invariant homotopy type of the manifold M , is trivial. Accordingly, a
tubular neighborhood of this sphere is diffeomorphic to W . If one diffeotopically
carries this sphere beyond the limits of this tubular neighborhood, it keeps a trivial
normal bundle, and, as is shown by standard calculations, its imbedding into the
closed complement of the tubular neighborhood will be homotopic to an equiva-
lence. From Smale’s theorem it therefore follows that also this closed complement
is diffeomorphic to W , so that M ∈ K. �

Proof of the theorem. Suppose that M1,M2, . . . are manifolds lying in K0 and pair-
wise nonhomeomorphic. 6

From the lemma, there exist also diffeomorphisms fn : V → V such that the
manifolds Mn and Mfn

are diffeomorphic. Since γ(f) is a homotopy invariant of
the manifold Mf , we have γ(fn) = 0, and since there are only a finite number of
pairwise nonhomotopic diffeomorphisms

f : V → V with γ(f) → 0,

it follows that there exist indices k, l such that the diffeomorphisms fk and fl are
homotopic. They are not isotopic, and moreover the diffeomorphism fkf−1

l : V → V
does not extend to a homeomorphism of the manifold W , since in the contrary case
the manifolds Mjk

and Mjl
would be homeomorphic. �

This proof can be made more effective, replacing the rough considerations of
finiteness by a precise homotopy classification of diffeomorphisms of the manifold V .

6See § 5 of the present paper.
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One can also give a complete homotopy and differential classification of mani-
folds of class K. As to the topological classification, it coincides with the differential
(as holds for manifolds of the class K0) if the class p1(Mf ) is topologically invari-
ant. The obvious generalization of the preceding lemma shows that the class K
contains all the smooth six-dimensional manifolds homotopically equivalent to the
total manifolds of orthogonal bundles with basis S4 and fiber S2.
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