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Abstract. The complicated and intricate algebraic material in smooth topol-

ogy (the theory of surgery) does not fit into the already existing concepts of

stable algebra. It turns out chat the systematization of this material is most
naturally carried through from the point of view of an algebraic version of

the hamiltonian formalism over rings with involution. The present article is

devoted to this task. The first part contains a development of the algebraic
concepts.

Introduction

The present article can be read independently of its topological analogs, although
it arose from a consideration of the general algebraic significance of surgery obstruc-
tions in a non-simply connected topology, especially from the objects L2k+1(π) in-
troduced by Wall (see [20]) for the group π. Although it is true that for even n
(n = 2k) these objects had been introduced earlier (see [13, 14] and [19]) and had
been conjectured almost trivially from topological arguments for groups π without
2-torsion, it was not until 1968 that for odd n (n = 2k + 1) a reasonable algebraic
formulation of a surgery obstruction was first conjectured by Wall in an impor-
tant but unpublished work [20]. This latter study compelled the present author
to return to the problem of an effective algebraic calculation of the invariants of
quadratic forms over Z(π), which had been considered in [13] and [14]. In addition,
a careful analysis shows that the objects Ln(π) in [20] for various values of n are not
unified in a single “homology theory”; moreover, the objects Ln(π), in the form in
which they were introduced by Wall, cannot be incorporated into a unified theory
of homology type with connections between Ln(π) and Ln(π × Z); consequently
questions remained open concerning the algebraic construction and the investiga-
tion of the analogs, for example, of the projection operators of Bass connecting
Ln+1(π ×Z) and Ln(π), which can be studied algebraically only in the framework
of a single “homology theory”, although geometrical arguments sometimes allowed
one to prove (noneffectively) the existence of such projection operators and even to
apply this noneffective “existence theory” to the important problem of homotopic
tori (see [7, 13] and [21]; I remark that, although the arguments in [16] are not
completely correct, they can be corrected, at least for the calculation of the ranks
of the groups Ln(Z × · · · × Z)).
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The present article is devoted to the unification of all the objects of this kind
into specific homology theories (of which there prove to be several). It turns out
that this unification can be carried out simply and naturally in the language of the
hamiltonian formalism. The most difficult step is that of relating surgery obstruc-
tions on manifolds of 2k − 1 dimensions with the obstructions in 2k dimensions,
where the hamiltonian formalism makes it algebraically obvious that, in the cate-
gory of modules with a scalar product of one symmetry, the objects of the other
symmetry of scalar products appear as higher “Ki” (for i ≥ 2). Although, accord-
ing to Wall [20], a simpler passage from 2k − 2 to 2k − 1 dimensions for Ln(π) is
analogous to the passage from K0 to K1 in the category of modules with a sym-
metric (or, in individual cases, skew-symmetric) scalar product, it is convenient
for us to take a different definition of the objects of the “type K1” → L2k−1(π),
not in the language of automorphisms, which is artificial for these problems since
it generalizes the usual construction of K1 in the category of modules, but in a
language which is more appropriate to the subject of the problem and is necessary
for the passage to n = 2k. The equivalence of these objects to the groups L2k+1(π)
will be true only in the narrow situation of Wall for one of the “K-theories”, which
will be constructed later, and will not, of course, be periodic; in this connection
the groups V 0

i (π) and V 2
i (π) which extend L2k+1(π) to a “homology theory” will

not coincide with L2k(π) and L2k+2(π) respectively (here i = 1, 2, in dependence
on the evenness of k).

By using the algebraic concepts introduced in the present article we shall give an
algebraic construction of the analogs of the projection operators of Bass for each of
the homology theories and shall prove their main properties.1 The geometrical in-
terpretation, the applications and the essential unsolved problems will be presented
in the second part (see §§ 9–12).

In the opinion of the present author, the methods developed here also shed
light, from a different point of view from [1], on the abstract algebraic nature of
periodicity, on which of the theories it holds for and when, and on what its relation
is to the classical Bott periodicity for the usual homotopic K-theories (see § 4,
Examples 3 and 4).

Here it is essential to note that the position occupied by the theory of surgery ob-
structions (the passage from 2k+1 to 2k+2 dimensions, where the sign of symmetry
of the category changes and where the formulation we develop is essentially nec-
essary) corresponds to the place in classical K-theory where, in order to construct
the projection operator K0(X ×S1) → K1(X) of Bass, it is necessary to construct
the Bott periodicity operator K0 → K2, since the mapping K2(X ×S1) → K1(X)
is obvious and in differential topology the appropriate analog of K2 (= L2k+2(π))
is defined as K0. In addition we note that, in our notation, Ki(x) = K0(Ei, x),
since we consider all the forms of extraordinary homologies as a covariant functor
of the ring C(X) of functions.

Standard notation and terminology. 1) Z[π] is the group ring, with an involu-
tion generated by the mapping σ → σ−1, σ ∈ π. For any ring A with an involution
we denote by ā the image of the element a under the involution; this includes the
ring of matrices (aij) ∈ GL(A,N), where (aij) = (āji).

1It is important to note that our main theorems are proved for theories that are tensorially
multiplied by Z[1/2], although the majority of the constructions are valid without this assumption.
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In addition, in all the theorems in the first part we shall assume that the ring A
contains 1/2 (the ring Z[π] is multiplied by Z[1/2]).

2) Hn is a hamiltonian space (module), namely a free module over A with a
basis x1, . . . , xn, p1, . . . , pn and a scalar product 〈g, h〉 ∈ A, where 〈ag, h〉 = a〈g, h〉,
〈g, h〉 = ±〈h, g〉 (〈xi, pj〉 = δij). Two cases are possible: the hermitian case, when
〈g, h〉 = 〈h, g〉, and the skew-hermitian, when 〈g, h〉 = −〈h, g〉. Here 〈x, x〉 = 0 and
〈p, p〉 = 0.

3) L ⊂ Hn is a lagrangian plane, namely a free (or projective) submodule of Hn

such that 〈L,L〉 ≡ 0 and that h ∈ L if 〈h, L〉 ≡ 0. We shall assume that the module
L ⊂ Hn is distinguished as a direct summand.

4) A quadratic form is a projective module P with a scalar product 〈g, h〉 =
±〈h, g〉, where 〈h, g〉 ∈ A, h, g ∈ P (there are two cases: the hermitian and the
skew-hermitian). For any module M we let M∗ denote the conjugate module; then
the scalar product is a homomorphism M →M∗.

5) The “hessian of the action” on the lagrangian plane L ⊂ Hn in an hermitian
(skew-hermitian) hamiltonian space Hn is a quadratic form on L with the other
symmetry sign; for g, h ∈ L ⊂ H it is denoted by (g, h). By definition, (g, h) =
〈g, π(h)〉, where π is the projection of Hn onto the free submodule (x1, . . . , xn); it is
assumed that p1 = 0, . . . , pn = 0. In the classical case it is, in fact, the hessian of the
action function S(x) =

∫ x

x0
p dx on the lagrangian submanifolds of Hn, which does

not depend on the path of integration (locally) in view of the lagrangian property
(all the tangent planes are lagrangian).

6) K0(A), K1(A) are the usual objects of algebraic K-theory with the involution
∗ : Ki → Ki generated by the conjugate. When A = Z[π] they are denoted by
Ki(π), i = 0, 1 (see § 1).

7) The Laurent extension of the ring A is the ring A[z, z−1], where z−1 = z̄ and
z, z−1 commute with A. For groups we have Z[π × Z] = A[z, z−1], where z is a
generator.

8) The usual projection operators of Bass (see §§ 5 and 6) are

K1(A[z, z−1]) B−→ K0(A)

and
K0(A) B̄−→ K1(A[z, z−1])

such that BB̄ = 1, the “augmentation” is

K1(A[z, z−1]) ε−→ K1(A)

and the embedding is
K1(A) ε̄−→ K1(A[z, z−1]),

where ε̄ε = 1. It is well known that B∗ = − ∗ B. We shall always assume that for
the objects under consideration we have K0(A[z, z−1]) = K0(A).

9) In the subsequent text we shall always assume that the “evenness condition”
of the hermitian (skew-hermitian) matrices φ = φ1± φ̄1, is fulfilled for all quadratic
forms (including the hessians of the action).2

10) We shall assume as standard the concepts of the canonical transformations
of a hamiltonian space (hermitian or skew-hermitian) which preserve the form,

2It is clear chat the evenness condition is important only in those constructions which remain
meaningful over the integers (if there is no 1/2).



4 S. P. NOVIKOV

and also the hamiltonian equations which are obtained from the function H (the
Hamiltonian), and the defining families of these transformations.

11) The scalar product 〈·, ·〉 with values from A[z, z−1] generates a scalar product
with values in A which is invariant under ‘translation’ by z, z−1. We denote the
latter scalar product by 〈·, ·〉0 ∈ A, and 〈g, h〉 =

∑+∞
−∞〈g, zih〉0zi.

§ 1. General remarks on the construction of various K-theories

It is usual to constructK1(A) in a category ofA-modules, starting from the group
of automorphisms of free or projective A-modules. An analogous idea was developed
by Wall [20] in constructing L2k+1(π) in a category of modules with an hermitian
(skew-hermitian) scalar product, since L2k(π) resembles K0 in this category. Bass
recently attempted to generalize this approach in order to define the higher Ki (in
the usual sense). Steinberg and Milnor indicated another approach to the definition
of K2. They considered the group E(A) (the commutant [GL(A,∞),GL(A,∞)])
which consists of elementary matrices αij(a) and their products, i 6= j. Let us recall
that αij(a) is a matrix with units along the diagonal and a ∈ A in the (i, j)-position.
These authors introduced the group St(A) which is generated by the αij(a) and
is factorized according to “obvious” and universal relations on these matrices; the
generators are always valid where the elements a ∈ A occur only as parameters
(in a real ring E(A) with A fixed, in general, more relations). There is an obvious
homomorphism St(A) → E(A), the kernel of which is called K2(A) (see [10]).

The idea developed in the present article consists of the following. If we wish to
construct K0 and K1 in some category with direct sums and with a zero, then we
must have:

a) a class of objects containing the zero and closed under summation;
b) a concept of equivalence between two objects of this class (then under this

equivalence the objects of the chosen class form K0);
c) a concept of a process which realizes this equivalence between two objects.

Moreover, the processes realizing this equivalence are often in the form of an itera-
tion of certain “elementary equivalences” between which there are trivial relations.

Then to construct K1 we must consider all the processes that reduce one (fixed)
object to another (fixed) object; the distinguishing characteristic of two such pro-
cesses is an element of K1; clearly it must be indicated when these two processes
are equivalent to each other.

Example 1. In homotopy theory K-theory is defined as follows: K̃0(X) is simply
K̃0(A), where A = C(X); K−1(X) = K1(A) is, by definition, K0(EX), where E is
a suspension; this reduces to the usual treatment of K1 in terms of automorphisms.
Here we must bear in mind that A = C(X) is a contravariant functor of X and that
K(A) is covariant in A; hence K−1(X) = K1(A) by definition. For the “processes
of reduction” to the zero element we consider the trivialization of the fiberings over
X in the definition of K1(A), A = C(X).

Example 2. General extraordinary homology theories. Here we have an
object Y and put H−i

Y (X) = [EiX,Y ] = [X,ΩiY ], where Ω(Y ) is the operation of
taking the loop space, and [·, ·] denotes the homotopy classes. However the loop
space Ω(Y ) is simply the space of the “processes of motion” from the point y0 to
the point y1 along the space Y . If α ∈ Ω denotes the parametrized paths α(τ),
0 ≤ τ ≤ 1, then we can interpret any element ψ of the function space X → ΩY
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as a “process of deforming” the constant mapping X → y0|τ=0 into the mapping
X → y1|τ=1 by putting ψτ0(x) = ψ(x)|τ=τ0 .

Example 3. The subclass chosen in the category of modules for the definition
of K0 consists of projective modules. An elementary equivalence is the addition
of a one-dimensional free module P → P ⊕ F1 = P ′ and the inverse operation
P → P ′, where P ′ ⊕ F1 = P . Thus it turns out that in this case the process which
reduces a module to the zero element is by definition the choice of a free basis in
the module P ⊕F , provided P ⊕F is free. The distinguishing characteristic of two
processes (the representative of an element from K1) is the automorphism which
is the distinguishing characteristic of two bases. Equivalence in K1 is derived from
the requirement that the superposition of automorphisms is equivalent to their
“Whitney sum” ⊕.

Example 4. We start from a basic category where the objects are automorphisms
with the Whitney sum ⊕. In the definition of K1 such an object is taken to be
equivalent to zero if it belongs to E(A) or can be split into a product of elementary
matrices αij(a). The actual decomposition of x ∈ E(A) into the product x =∏

s αis,js
(as) is taken to be the process which reduces x to the zero. The natural

concept of the equivalence of processes is their equality in the group St(A). It is
obvious that our approach gives the Milnor–Steinberg definition of K2(A) for the
classification of the processes reducing x to the zero.

From an algebraic point of view the naturalness of this construction of K2 is
justified, for example, by an obvious transfer of the construction of Bass’s projection
operators which connect Ki+1(A[z, z−1]) with Ki(A) for i = 1 (see § 6). From the
topological point of view this approach is particularly natural in combinatorial and
smooth topology, where, for example, the projective modules P ∈ K0(π) for the
fundamental group π are composed of elements of homotopy groups, and to solve
problems it is necessary to annihilate them by the operations of pasting on a cell (or
a handle) P → P ⊕ F1, or of annihilating a cell (or handle) P → P ′, P ′ ⊕ F1 = P .
The classification of these processes leads to the Whitehead torsion.

Example 5. The operations of altering a manifold by Morse surgery or of changing
a mapping of manifolds of degree 1 play a significant role in differential topology.
The main aim is to reduce a mapping of manifolds, for example, to a homotopy
equivalence by a sequence of these surgery operations. The process of reducing a
morphism of an n-dimensional manifold M1 into M2 to a morphism M ′

1 → M2 by
surgery in the geometrical sense is a morphism of an (n+ 1)-dimensional manifold
W into M2 (or into M2 × I modulo the boundaries and of degree 1), where ∂W =
M1 ∪M ′

2, including the original transformations M1 → M2 and M ′
1 → M2 on the

edges. Here W is constructed in a canonical way from the handles corresponding to
the surgery processes. More precisely, in the study of the mappings of manifolds (of
degree 1) f : Mn

1 →Mn
2 , where there is an element ξ ∈ KO(Mn

2 ) such that f∗ξ is a
normal bundle to Mn

1 , attempts to reduce f by the elementary operations of Morse
surgery to a homotopy (or simple) equivalence, encounter the obstructions denoted
by Ln(π), π = π1(Mn

2 ). The obstruction for n = 4k is a projective module with
a nonsingular hermitian scalar product, and for n = 4k + 2 it is skew-hermitian.
The scalar product is generated by the index of the intersection on a universal
covering and has a value in Z[π]. If Mn

2 is a finite Poincaré complex, the module
is stably free (there are small additional structures of Arf-invariant type which we
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neglect and consider for A = Z[π] only at the end of this article). For n = 4k + 1
(n = 4k + 3) the obstruction α(f) ∈ Ln(π) was recently reduced to an object
similar to K1 in a suitable hermitian (skew-hermitian) category of modules; it is
described by Wall in the language of automorphisms of the hamiltonian module Hn.
For even n (the quadratic forms) the trivialness of the obstruction α(f) ∈ L2k(π) is
almost obviously equivalent to the reducibility, in a stable sense, to the hamiltonian
module. However, there is some difficultly in unifying these objects into a single
“hermitianK-theory” for all n, especially in the passage from L2k+1(π) to L2k+2(π),
where there is a change in the sign of symmetry of the scalar product in the category
of modules; also it is desirable to regard L2k+2 as following “K2k+2” in this category.

To realize our approach it is clearly necessary to start from one of these categories
(hermitian or skew-hermitian); we then define K0 over it by specifying a class of
objects (modules with a scalar product), a concept of the equivalence of pairs of
objects, a concept of the zero and then the algebraic concept of a process which
realizes an equivalence to the zero element. Then it is necessary to classify the
processes which send a fixed object into the zero element, to introduce the concept
of equivalent processes and to define K1. Next, starting from K1, we must similarly
construct K2 and, moreover, connect K2 in an hermitian category with K0 in a
skew-hermitian category, where K2 arises naturally in a topological problem and is
similar to L4k+2(π) if K0 is L2k(π). If possible we must extend this construction
further.

The detailed algebraic definitions are given in the following section and the
geometric interpretation at the end of the article. The idea consists of the following:
it is obvious that for the surgery of a 4k-dimensional manifold f : M2k

1 →M4k
2 with

a homotopic kernel which is nontrivial only in 2k dimensions, it is necessary mat this
kernel (a projective module with an hermitian scalar product) reduces in a stable
sense to the hamiltonian module Hm over Z[π] (this is widely known). However,
note that the geometrical process of reducing this kernel to a pure zero is a set of
Morse surgeries over the cycles p1, . . . , pm ∈ Hm, realized by spheres without self-
intersections and pairwise intersections. This means that 〈pi, pj〉 = 0 for all i and j.
In addition, it is easy to verify that the kernel will be zero after surgery if the (pq)
generate a lagrangian plane. It is important to note here that, for Morse surgery,
the choice of a complete basis (x, p) in Hm is not necessary; it is sufficient to take
only the “semibasis” p = (p1, . . . , pm), which is a lagrangian plane (this is obvious
for surfaces). Of course the semibasis can be augmented, but this procedure is not
unique. Thus only (p) is chosen, and (x) = x1, . . . , xm are defined uniquely in the
factor-module Hm/(p) ∼= x. More precisely, the X ′-space x′1, . . . , x

′
n is equivalent

to x = x1, . . . , xm if 〈x′i, pj〉 = δij and 〈x′i, x′j〉 = 0; that is, if (X ′) is projected
isomorphically onto X along (p).

Thus a process of reduction to the zero consists here of choosing a lagrangian
plane L in Hm. For the initial-plane-process we take L0 = (p); the invariant of
another lagrangian plane as an element of “K1” is measured relative to the ini-
tial plane. We also fix (x1, . . . , xm). By definition (x′1, . . . , x

′
m) is equivalent to

(x1, . . . , xm) if x′i =
∑
αijpj + xi and 〈x′i, x′j〉 = 0. The equivalences of pairs of

L ⊂ Hm, where L is a lagrangian plane, are defined naturally; they are elementary
hamiltonian transformations of Hm. If two different processes of elementary hamil-
tonian transformations send one object L into another L′, then their distinguishing
characteristic turns out to be a nonsingular skew-hermitian form (an element of
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“K2”) which is the “hessian of the action” of the process of transforming the la-
grangian plane; this process is interpreted as a lagrangian plane in a hamiltonian
space of higher dimensions. It is necessary to add, as superfluous elements of the
basis, the “Hamiltonians” of the elementary transformations and the corresponding
“times”.

This is described more formally and in greater detail in the next section. We
remark that the construction of the analogs of the projection operators of Bass has
interesting hamiltonian interpretations (see §§ 4 and 8). Actually we must construct
two different theories, each of which partly contains objects of the type Ln(π); as
we have already remarked, it is not possible in principle to unify these in a single
theory.

In addition, in § 4 we clarify the topological analog (met in boundary problems
of classical and quantum mechanics) of this procedure. This analog was at the
back of my mind as an ideal source when I was working through Maslov’s book
[9]; which indicated the connection between our objects and the ordinary complex
K-theory of rings of functions [6] and also explained the link with Bott periodicity
(Examples 3 and 4).

§ 2. Algebraic definition of hermitian K-theories
for dimension 0 and 1

Let S1 (S2) denote the category of A-modules with the hermitian (skew-her-
mitian) scalar product 〈g, h〉 ∈ A; we distinguish the following subclasses of these
categories:
Di ⊂ Si is the subclass of projective modules with the even scalar product

〈g, g〉 = g1 ± ḡ1 (i = 1, 2), nonsingular in the sense that the scalar product deter-
mines an isomorphism P → P ∗ of a projective module and the conjugate.
D0

i ⊂ Di is the subclass of invertible elements such that for any P ∈ D0
i we can

find a P ′ ∈ D0
i with P ⊕ P ′ = Hm. In fact, D0

i = Di.
DF

i ⊂ Di is the subclass of quadratic forms on free modules.
Ci is the class of “projective hamiltonian” forms such that for any Q ∈ Ci ⊂ D0

i

we have the decomposition Q = Q1 +Q2, where 〈Q1, Q1〉 = 〈Q2, Q2〉 = 0.
Obviously Q1 = Q∗2. We remark that similar subclasses were chosen by the

present author in [13] (Appendix 2). Wall considers only the class DF
i (see [19] and

[20]).

Definition of the objects of type K0 for the category Si. 1. Let U0
i (A) denote

the group of type K0 constructed from the class Di, where the object equivalent
to the zero element is stably isomorphic to the projective hamiltonian module H =
Q1 +Q∗1, Q1 = (P ).

2. Let V 0
i (A) denote the group of type K0 constructed from the class D0

i of
invertible elements of Di; the object equivalent to the zero element is stably iso-
morphic to the hamiltonian module Hm.

It is obvious that in both cases the sum is the ordinary direct “sum of Whitney”.
We have the obvious homomorphisms K0(A) λ0−→ V 0

i (A), where λ0(Q) = Q+Q∗,
and µ0 : V 0

i → U0
i . By definition we have the exact sequence

K0(A) λ0−→ V 0
i (A)

µ0−→ U0
i (A).
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When we turn to the construction of the objects U1
i and V 1

i (A) of type K1 in
Di and D0

i , we must define a concept of a process that reduces an element from Di

or D0
i to the zero element.

Definition. a) By a process reducing the element Q ∈ Di to the zero element we
mean a selected lagrangian plane L ⊂ Q⊕ H̃, which can be projective; here H̃ is a
projective-hamiltonian module.

b) By a process reducing the element Q ∈ D0
i to the zero element we mean a

selected lagrangian plane L ⊂ Q⊕Hm, where L is a free module with a fixed basis.

The following simple lemma coordinates these two concepts of an equivalence to
zero.

Lemma 2.1. The object Q ∈ Di (Q ∈ D0
i ) admits a process reducing it to the zero

element if and only if Q ⊕ H̃ (Q ∈ Hm) is isomorphic to a projective-hamiltonian
(hamiltonian) module.

Proof. We first give a proof for the purely hamiltonian case Q ∈ D0
i , where L ⊂

Q ⊕ Hm, with the basis p′1, . . . , p
′
N ∈ L. We take elements y1, . . . , yN such that

〈yi, pj〉 = δij (for the time being without the condition 〈yi, yj〉 = 0). The matrix
αij = 〈yi, yj〉 is such that α = β± β̄ (evenness). Put x′i = yi±

∑
βijp

′
j ; it is obvious

that, under the sign appropriate to the number i, we have 〈x′i, x′j〉 = 0. Note that
our choice of the X ′-plane and the expansion α = β ± β̄ are not unique. Thus
the lemma is proved for the class D0

i . For the class Di 3 Q ⊕ H̃ ⊃ L we recall
that the module L is projective, and consider L′ = −L together with the projective-
hamiltonian module H̃ ′ = L′+L′∗. Consider the stabilization Q⊕H̃⊕H̃ ′ ⊃ L⊕L′.
In an obvious way, as an abstract module Q⊕H ⊕ H̃ ′ is stably free (and so can be
assumed to be free) with the lagrangian plane L⊕L′, which is also free. Hence the
problem is reduced to the previous case, and so the lemma is proved. �

Corollary 2.2. In the class Di, for any object Q ∈ Di the object α(Q) (the module
Q with the same scalar product in which only the sign is changed) is inverse to Q
in U0

i (A). Here Di = D0
i .

Proof. The lagrangian plane P ⊂ Q ⊕ α(Q) is by definition {x ⊕ x∗} = P , where
x∗ ∈ α(Q) is the same element and 〈x∗, y∗〉 = −〈x, y〉. Now use Lemma 2.1. �

Remark 2.3. In the case Q ∈ DF
i , when the scalar product in Q is defined in the

free basis y1, . . . , ym by the matrix φ = (φij) and φ = φ1± φ̄1, the lagrangian plane
X = (x1, . . . , xm) complementary to P = (yj ⊕ y∗j ) can be obtained by one of the
standard formulas: if ψ = φ−1 = ψ1±ψ̄1, thenX = (x1, . . . , xm) = ψ̄1(y)⊕±ψ1(y∗),
where the sign is determined by the symmetry sign of the category of modules with
a scalar product. We can do this also for Di.

We now turn to the definition of the groups V 1
i (A) and U1

i (A) which are analo-
gous to K1 in the appropriate category. In accordance with the program outlined in
§ 1, for this we need to define a concept of the equivalence of two processes reducing
a fixed object Q ∈ Di or D0

i to the zero element. In the proof of Lemma 2.1 we
pointed out that, in the class Di, by stabilizing a module we can interpret these
processes as lagrangian planes (in general, projective) in the ordinary hamiltonian
space Hn ∈ DF

i . We denote the initial process (that is, the plane P = (p1, . . . , pn))
by P ; we select a basis and augment it to a basis X = (x1, . . . , xn) tor the whole
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of Hn, where 〈xi, pj〉 = δij and 〈xi, xj〉 = 0, although this is neither obligatory nor
unique since X is defined a priori only as the factor-space Hn/(p). However it is
convenient. We will give first the definition of U1

i for Di.
Another process L ⊂ Hn, the distinguishing characteristic of which we will mea-

sure with P , is the (projective) lagrangian plane L in the coordinate hamiltonian
space. We will determine when L1 ⊂ Hn and L2 ⊂ Hn are equivalent. Obviously,
if L1 = P then L1 is assumed to be equal to the zero element. If L1 = X, then L1

is also taken to be trivial.
In the sense of the nonuniqueness of the choice of an X-plane, obviously L1 will

also be assumed to be trivial in the case when L1 can be projected isomorphically
onto X along P . Analogously for a projection onto P along X. A slight general-
ization of this is that L1 ⊂ Hn is trivial if π(L1) ⊂ X is a projective module in X
which is distinguished as a direct summand. Then the projection onto P also has
this property.

In addition we obviously allow a stabilization; that is, the transition from Hn to
Hn+k = Hn ⊕Hk, where L1 goes into

L1 ⊕ (pn+1, . . . , pn+k) = L′1 ⊂ Hn+k.

We allow also the operation of interchanging a basis element x1 ∈ X in some
(free) basis of theX-plane and the element p1 corresponding to it, where 〈p1, x1〉 = 1
and 〈p1, xj〉 = 0 for j > 1. Namely, x1 → p1, p1 → ±x1, and pj → pj , xj → xj for
j > 1.

We remark that the already noted obvious operation of replacing X by X ′,
being isomorphically projected onto X, decomposes into a superposition of more
elementary operations. Namely, if X ′ = X + βP (in matrix form) and if we always
require that β = α ± ᾱ, then it is sufficient to confine ourselves to the elementary
operations where α = (αij) with αij = 0 for i 6= i0, j 6= j0 and αi0,j0 = σ ∈ A (σ is
an element of some chosen additive basis in A). For A = Z[π] we have that σ ∈ π.

Definition. By U1
i (A) we mean the stable equivalence classes of (possibly projec-

tive) lagrangian planes in Hn relative to the equivalences we have enumerated. The
sum is the Whitney sum ⊕.

The following simple lemma holds.

Lemma 2.4. For the element (L,Hn) ∈ U1
i (A), the canonical method of construct-

ing an inverse element (L′,Hn) ∈ U1
i (A) consists of the following : (L′,Hn) is the

lagrangian plane in Hn such that L+ L′ = Hn; in view of Lemma 2.1 it exists for
sufficiently large n.

Proof. We consider the sum (L,Hn)⊕ (L′,Hn) in the space H2n = Hn ⊕H ′
n with

the basis x, p, x′, p′, and choose a P ′′-plane in H2n such that P ′′ = (x− x′, p− p′).
It is obvious that L ⊕ L′ ⊂ H2n is projected isomorphically when we impose the
relations P ′′ = 0. Since we can pass easily to the basis (P ′′, X ′′) by the indicated
elementary operations, the lemma is proved. �

Thus U1
i (A) is a group for i = 1, 2.

We now give an important hamiltonian operation that has an essential signifi-
cance in what follows: we will regard it as an elementary operation although it can
be obtained by a superposition of those already available.

1. A single operation. Let L ⊂ Hn with the basis x1, . . . , xn, p1, . . . , pn; we go
over to the sum Hn⊕H1, where the basis in H1 is denoted by H = pn+1, t = xn+1
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(energy-time) with a selected plane H ⊂ H1. We obviously have L′ = L ⊕ H ⊂
Hn+1.

We make the transformation

H ′ = p′n+1 = H − γx− φt = H −
∑

γjxj − φt,

where γj ∈ A, φ = φ1 ± φ̄1, p′k = pk ± γ̄k(t), x′ = x, t′ = t, in dependence on the
sign of symmetry of the category. (For a hermitian category we have φ = φ1− φ̄1.)
The new P ′-plane is P ′ = (p′,H ′), and it determines a new direction of projection
π′ : L ⊕ H → (x′, t′). This operation can obviously be regarded as an elementary
hamiltonian transformation generated by the transition from time t = 0 to t = 1
in the solution of the hamiltonian equation with the Hamiltonian H = γx + φt;
namely, formally we have ∂H/∂pi = 0 = ẋi and so x′i = xi(1) = xi(0); next,
±∂H/∂xi = γ̄i = ṗi, and therefore p′i = pi(0) = pi(0) ± γ̄t, where t is the unit
vector along the time axis, t = xn+1.

Another definition of equivalence to the zero element in U1
i (A). The lagrangian

plane L ⊂ Hn is said to-be equivalent to the zero element in U1
i (A) if it can be

reduced by an iteration of the above hamiltonian operations to a plane isomorphi-
cally projectible onto an X ′-plane in the new projection [here one must take into
account the step that x′ = (x′j , t = x′n+1) and p′ = (p′j ,H

′ = p′n+1)], or if it can
be reduced to a plane which can be projected onto the projective direct submodule
π′(L′) ⊂ X ′.

2. The iterated hamiltonian operation. It is easy to see that the iteration
of this operation is written in the following matrix form: if p = (p1, . . . , pn), x =
(x1, . . . , xn), H = (H(1), . . . ,H(m)), and t = (t1, . . . , tm), put

H ′ = H − γx− φt, x′ = x,

p′ = p± γ̄t, t′ = t,

where γ = (γij) is an m × n matrix, γ̄ is the n × m matrix adjoint to γ and
φ = φ1 ± φ̄1 is an m ×m matrix where φ = φ1 − φ̄1 if we were to start from an
hermitian category (φ is skew-hermitian) and vice versa.

The following simple lemma holds.

Lemma 2.5. The single and iterated hamiltonian operations can be obtained by
superposing those described earlier; conversely, these operations, together with the
replacement of an X-plane by an X ′-plane isomorphically projectible onto X along
P , give all the operations we had earlier.

Proof. If a hamiltonian operation is given, then (H ′, p′) is projected isomorphically
onto (P,H) along (X ′, t′). Since the interchange of X and P (with signs depending
on i = 1, 2) is one of the operations we have already met, this part of the lemma is
proved. The only part of the converse that is not obvious at once is the assertion
that we can obtain the interchange of x1 and p1 from the hamiltonian operations.
For this we put H = x1. Then we have H ′ = H − x1 and p′1 = p1 ± x1, and
the remainder are unchanged. We see that (p1, t) is projected isomorphically onto
(x1, t) in the new direction of projection; this allows us to interchange their places
by changing the X ′-plane into another X ′-plane isomorphically projectible onto it.
Thus the lemma is proved. �

Remark 2.6. The hamiltonian operations can be written in projective hamiltonian
modules when (X) and (t) are projective. To do this we must take the pair of
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mappings γ : (X) → (H) and φ : (t) → (H), where (H) = (t)∗ and φ is a skew-
hermitian (hermitian) even quadratic form, and then define the transformation Q⊕
Q′ → Q⊕Q′, where Q = (X)+ (P ) and Q′ = (H)+ (t) are projective hamiltonian.
This transformation is defined, as before, by the formulas (x, p, h, τ) → (x, p ±
γ̄(τ), h− γx− φτ, τ) for x ∈ (X), p ∈ (P ), h ∈ (H) and τ ∈ (t). Here γ̄ : (t) → (P )
is by definition conjugate to the mapping γ : (X) → (H), since (X) = (P ∗) and
(H) = (t)∗. The skew-hermitian (hermitian) character of the form φ follows from
the hamiltonian property of the transformation.

Remark 2.7. The iterated hamiltonian transformation of the module Hn ⊕Hm,
with a projection along (P ′,H ′) chosen after the transformation and with the old
lagrangian plane L, together determine a new lagrangian plane L′ = L ⊕ (H) in
the coordinates (P ′,H ′), and L′ ⊂ Hn ⊕Hm can be imagined to be a “process” of
transforming the plane L ⊂ H.

For our convenience it will be useful to have, formally speaking, a more general
hamiltonian operation with a generating element H = y + φt, where y ∈ Hn,
y = µx + γp and 〈H ′,H ′〉 = 〈y, y〉 ± (φ ± φ̄) = 0, φ ∈ A; the sign depends on the
symmetry of the category.

We naturally write the corresponding transformation as

H ′ = H − y − φt, x′ = x+ γ̄t, p′ = p± µ̄t, t′ = t

or as

t = t′, x = x′ − γ̄t′, p = p′ ∓ µ̄t′, H = H ′ + µx′ + γp′ + [φ− 〈y, y〉]t′.

The transformation we have obtained is equivalent, both in the formal algebraic
sense and in a future geometric sense, to the following:

H ′ = H − µx− [φ± µγ̄]t, x′ = x, p′ = p± µ̄t, t = t′.

This equivalence becomes obvious when one goes over the the basis

x̃ = x± γ̄t, t̃ = t, p̃ = p, H̃ = H − γp.

This “general hamiltonian operation” is defined also over the projective la-
grangian planes in a projective hamiltonian module as in Remark 2.6.

We give now the definition of the groups V 1
i (A). (We can prove a purely algebraic

theorem that these objects are equivalent to Wall’s objects L4k+1(π) when i = 1
and L4k+3(π) when i = 2 for A = Z[π], but this is not required.) Here we start
from the class D0

i and must establish that it is a process reducing Q ∈ D0
i to the

zero element.
We retain all the elementary operations occurring in the definition of U1

i (A),
including the hamiltonian operations, but we recall that, both in the hamiltonian
space and on the lagrangian plane L ⊂ Hn, there are defined and distinguished free
bases e1, . . . , en ∈ L and xi, pj ∈ Hn. The passage from one basis to another on L is
permitted only by means of a unimodular transformation (in the sense of Whitehead
and Dieudonné); that is, by iterations of the elementary matrices E(A). Hence an
object will be taken to be equivalent to the zero element if and only if L ⊂ Hn can
be reduced to a P -plane with a standard basis, where we allow only unimodular
substitutions of this basis (it is clear that a stabilization is allowed). Then V 1

i (A)
is the group of equivalence classes in this sense (with regard for the basis on L and
Hn). The fact that V 1

i (A) is a group follows obviously from Lemma 2.4, in the
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proof of which all the transformations are unimodular and L′ is a free module in
Hn with a basis e′1, . . . , e

′
n such that 〈e′i, e′j〉 = δij .

Remark 2.8. It is clear that we can construct a (canonical) transformation Hn →
Hn such that P → L and X → L′, with regard for the bases, since L and L′ are
free. This is fundamental for the construction of V 1

i = L4k±1(π) for A = Z[π] in the
language of automorphisms starting from the analog of the usual K1, although one
will have to factorize with respect to more than a commutant because a reduction
process (that is, a lagrangian plane L ⊂ Hn) is a pure object. This path (that is,
the analog of the usual K1) was the one taken by Wall (see [20], § 6). Of course
it is not possible to describe the other groups U1

i through automorphisms; but
here, for the construction of higher V j

i (j = 2), it is convenient to start from the
language of lagrangian planes, which is natural for given problems and which is
directly appropriate to the geometrical sense in topology.

As in the 0-dimensional case, in the 1-dimensional case there are defined the
homomorphisms λ1 : K1(A) → V 1

i (A) and µ1 : V 1
i (U) → U1

i (A), where λ1(α) is
an X-plane with a basis which differs from the standard basis by a transformation
with determinant α, and the construction of the homomorphism µ1 is obvious.

To conclude § 2 we construct another object W 0
i (A), which has a significant

relation to topology. The elements are projective lagrangian planes L ⊂ Hn in
the hamiltonian module Hn, and the equivalence relation is the same as the the
definition of V 1

i (A), except that in W 0
i (A) we take as equivalent to the zero element

a plane L which is reduced by the same transformations to a plane isomorphically
projectible onto an X-plane. There is an obvious mapping W 0

i (A) → U1
i (A) and

also a mapping V 1
i (A) → W 0

i (A). The sequence K1(A) → V 1
i (A) → W 0

i (A)
is exact. There is a homomorphism K̃0(A) → W 0

i (A) such that the sequence
K̃0(A) →W 0

i (A) →W 1
i (A) is exact.

The construction of this homomorphism is of the following kind: for β ∈ K0(A)
we consider the decomposition X = β + (−β), P = β∗ + (−β∗), where β (−β) is
conjugate to β∗ (−β∗) relative to the scalar product inHn = (X,P ), and 〈β,−β∗〉 =
0. Put L = β + (−β)∗. The projective class of L, which is an invariant in W 0

i (A),
is here equal to β − β∗.

This construction is the exact analog of the mapping K0(A) → V 0
i (A). It was

considered by Golo [8] in connection with the realization of the obstructions of the
present author, Siebenmann and Wall by means of manifolds; these are obstructions
from K0 (see [13] and [18]).

§ 3. Algebraic definition of hermitian K-theories in two dimensions
and in some higher-dimensional cases. The interrelation between K2

in an hermitian category and K0 in a skew-hermitian category and
vice versa

We now turn to the definition of the objects U2
i (A) and V 2

i (A). We start from
the definition of U2

i (A), the elements of which are, by definition, the distinguishing
characteristics among the various processes which reduce a fixed lagrangian plane
in a projective hamiltonian module to a plane isomorphically projectible along P ,
or to a plane projectible along P onto a direct projective submodule of X. We
recall the following:
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a) We can always start from the free hamiltonian module Hm (see the proof of
Lemma 2.1).

b) For the processes one can take the iterated hamiltonian transformations
(Lemma 2.5).

c) We can assume that the initial plane L0 ⊂ H coincides with X = L0.
Since a process in Hn+m = Hn ⊕Hm with the basis (x, t, p,H) is given by the

lagrangian plane L0⊕(H) in the basis P ′,H ′, where P ′ = P± γ̄t, H ′ = H−γx−φt,
x′ = x, t′ = t, φ = φ1 ± φ̄1 and L0 = (x1, . . . , xn), in a completely obvious way we
obtain that the plane L⊕ (H) is projected isomorphically onto X ′, t′ along P ′,H ′

if and only if the matrix φ−1 exists; in other words, a process sends X into an
isomorphically projectible plane if and only if the matrix φ is nonsingular. Here we
can assume that γ = 0, since the properties of this process for the initial L0 = X are
determined only by the “hessian of the action” φ of this process: ∂2S/∂tj ∂̄tj = φ

with respect to the time coordinates (here one must formally introduce i =
√
−1 if

φ is skew-hermitian, since ī = −i; i is not introduced if φ is hermitian). In general

the “hessian of the action” on L0 ⊕H is
(

0 0
0 φ

)
independently of γ.

We now explain when L ⊕ H can be projected along (P ′,H ′) onto a direct
submodule of (X ′, t′).

Lemma 3.1. L⊕H is projectible along (P ′,H ′) onto a direct submodule α if and
only if we can find a direct decomposition (t) = α + β such that the restriction of
the form φ to α is nonsingular and the restriction of the form φ to β is zero. Here
φ is considered as a skew-hermitian (hermitian) form on (t).

Proof. The module β is simply Kerφ. For γ = 0 the image of the projection
coincides with the image of the transformation (X, t) → (X, t) with the matrix(

1 0
0 φ

)
, and the lemma is obvious. For γ 6= 0 the matrix is

(
1 γ
0 φ

)
. It is obvious

that the cokernel of the projection is isomorphic to α and that the kernel of the
projection is isomorphic to Kerφ. Thus the lemma is proved. �

Thus each process sending L = X into L′ = L ⊕ H (in the new coordinates),
which is projected onto X, t in a directed manner, determines in a canonical way
a skew-hermitian (hermitian) form on a projective module; conversely, given any
quadratic form on a projective module we can construct such a process (the evenness
condition is always assumed to hold) and the form is the “hessian of the action” of
this process.

Now the definition of U2
i (A) is obvious and coincides with the definition of U0

j (A),
where i 6= j and i, j = 1, 2. Note that we derived this result from our formalism, and
did not take it from the beginning as a definition before analyzing the sequential
process of constructing the higher analogs of K0 and K1. In what follows the
process of constructing these objects also gives a simple construction for the analogs
of the projection operators of Bass; this could be very difficult if we were to go to
the definition of U2

i and V 2
i tautologically.

It is now clear that the groups V 2
i (A), which extend objects of the type of the

odd-dimensional Wall groups L2k+1(π) = V 1
i (i = 1, 2) to a higher dimension do not

have the periodicity property. As earlier, for the definition of V 2
i (A) we consider

processes reducing an X-plane in Hn to a plane isomorphically projectible onto
(X ′, t′) = (X, t) along (P ′,H ′) = (P ± γ̄t,H + γx + φt), where γ, φ are matrices,
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and for identical reasons we can assume that γ = 0 and φ−1 exists. However, in
this case the reduction process does not end here; to complete it one must do the
following.

(a) L⊕H must be combined with the plane (X ′, t′) by elementary transforma-
tions. These transformations have the form X ′′ = (X ′, t′) + λ(P ′,H ′), where the
λ are matrices acting on the basis of P ′,H ′ (λ is a square matrix and λ = µ + µ̄
in view of the hamiltonian property). In a certain sense these transformations are
trivial since, as we recalled, at the beginning there is a lack of difference between
X ′′ and X ′, t′ (we selected only P ′,H ′).

(b) When we have combined L ⊕ H with the (X ′, t′)-plane, it is necessary by
elementary (in the sense of Whitehead) transformations to combine the bases on
L ⊕H and on the (X ′, t′)-plane; this can be done if and only if detφ = 1 (in the
sense of Whitehead and Dieudonné). This means that we must expand ¡p as a
product of elementary matrices: φ =

∏
s αis,js

(as).
Thus, the unimodular matrix φ of an even skew-hermitian (hermitian) form on

a free module is an invariant of the process; here φ is expanded as a product of
elementary matrices: φ =

∏
αis,js

(as). For fixed φ we assume that two expansions
as products of elementary matrices are equivalent if gh−1 = 1 in the group St(A),
where g and h are these expansions regarded as elements of St(A). Thus we have
the pairs [φ, g], q ∈ St(A). In addition, for φ we allow the unimodular change of
variables φ → αφᾱ, where detα = 1 (note that the conjugation operator is also
defined on St(A)).

Let Ji denote the matrix of the simplest form

Ji =
(

0 1
±1 0

)
, i = 1, 2;

the reduced forms have matrices αJiᾱ. Note that Ji is lifted into St(A) for all A.

Definition. V 2
i (A) consists of all pairs (φ, g), where s(g) = φ and s : St(A) →

E(A) is a canonical epimorphism, and where φ is a unimodular hermitian (skew-
hermitian) even form on a free A-module. The pair [φ, g] is equivalent to the trivial
pair if g = αJiᾱ in St(A). The sum is the Whitney sum ⊕. (For the form φ to be
trivial it is necessary that it can be reduced to Ji by unimodular transformations,
but this is sufficient only if K2(A) = 0.)

The natural homomorphism K2(A) → V 2
i (A) is defined by analogy with j = 0, 1;

here the elements g ∈ K2(A) go into Jig and s(Jig) = Ji.
There is a natural homomorphism of “change of the sign of symmetry of the

category”:
κi : V 2

i (A) → V 0
j (A), i 6= j, i, j = 1, 2.

However, in the theory of V ∗i this is not, in general, an isomorphism; the mapping
κ is an isomorphism only if K0(A) = K1(A) = K2(A) = 0. In this case the theory
of V ∗i coincides with that of U∗i .

By analogy with j = 0, 1 we have the exact sequence

K2(A) → V 2
j (A) →W 1

j (A).

It will be useful to give the outline of the definition of another “homology theory”
of W ∗

j by analogy with the theory of V ∗j (these objects are needed for geometrical
applications).
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1) Definition of W 0
j (A). The elements α ∈ W 0

j (A) are represented by the
projective lagrangian planes L ⊂ Hn in a free hamiltonian module. A selected P -
(or X-) plane in Hn is taken to be the zero element. The equivalence is realized
by means of a stabilization, of a twisting of an X-plane onto an isomorphically
projectible plane and by interchanging xi and pi in some basis x, p. We allow the
“hamiltonian operations”, where H and t are free modules. In this connection
we only consider the “invertible elements” with the indicated properties, so that
W 0

j (A) is a group.
2) Definition of W 1

j (A). The elements α ∈ W 1
j (A) are quadratic forms of

the sign of symmetry other than j, but only on free modules (it is clear that they
are nonsingular and even). The zero element is the form which is reducible to
Hn by unimodular (in the sense of K1(A)) transformations and with accuracy
up to a stabilization. This definition is obtained from the “processes of reducing
lagrangian planes”, as before, where the desired form is the “hessian of the action”
of the reduction process, which is interpreted as a lagrangian plane.

3) Definition of W 2
j (A). An element α ∈W 2

j (A) is an automorphism T of the
hamiltonian space Hn with the sign of symmetry other than j, and with detT = 1
(in the sense of K-theory); we assume that the lifting h ∈ St(A) is defined, where
s(h) = T , s : St(A) → E(A). The equivalence of the pairs [T, h] is defined naturally
by analogy with V 2

j .
As for V -theory we will not give here the detailed definitions and prove the

elementary properties; U -theory will be studied algebraically later.
Note that for W -theory there is also the homomorphism of the “change of the

sign of symmetry of the category” W 2
i (A) → W 0

j (A), i 6= j and i, j = 1, 2; in
general this is neither a monomorphism nor an epimorphism.

§ 4. The classical analogs of the algebraic procedure of
constructing hermitian K-theories. The meaning of the objects

U∗i and V ∗i for rings of functions

We are going to consider here several questions that are indirectly related to the
present study. Our aim in this section is to clarify the significance of the objects
constructed in §§ 1–3, their advantages and defects, by means of special examples
of basic rings and of simple (but well known in other domains) classical analogs.

Example 1. Let A = R. A quadratic form over R has one stable invariant, which is
its signature. For skew-symmetric forms there are no invariants. In both cases each
lagrangian plane in Hn can be reduced to one which is isomorphically projectible
by elementary transformations. In the classical skew-symmetric hamiltonian space
Hn = (xi, pi) these elementary transformations are only the interchanges of x1 and
p1 in some basis (with due regard for the sign).

Here there have been considered the (in general nonlinear) n-dimensional la-
grangian submanifolds L ⊂ Hn and the form of the action ω = p dx =

∑
pidxi on

them, which is such that dω|L = 0. In addition, the projection π : H → (X) along
P and the cycle Wn−1 ⊂ L of the singularities of this projection play a particular
role. For a Hamiltonian H(x, p, t) the equations [ṗ = ∂H/∂x, −ẋ = ∂H/∂p] define
a family of trajectories which we can consider in the space Hn+1 with the basis
(x, t = xn+1, p,H = pn+1). By taking the initial data on L we obtain, in the usual
way, a new lagrangian manifold L′ of dimension n+ 1 in Hn+1, and also the “cycle
of the singularities” Wn ⊂ L′ of the projection π : L′ → (x, t) such that for t = 0 we
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have Wn ∩L′0 = Wn−1 ⊂ L, where L = L′0. Each trajectory lies on L′ whenever it
originates on L at t = 0 and its finite segments at times t ∈ [0, T ] have an index of
intersection with the cycle Wn; Maslov [9] has shown that this index of intersection
is equal to the Morse index of the corresponding hamiltonian function H(x, p, t) of
a variational problem with L ⊂ Hn as the manifold of initial data and with the
functional

S(γ) =
∫

γ

L̃(x, ẋ, t) dt,

where

H(X, p, t) =

(
ẋ,
∂L̃

∂ẋ

)
− L̃, p =

∂L̃

∂ẋ
, γ(0) ∈ L ⊂ Hn.

On the initial manifold L ⊂ Hn the cycle Wn−1 ⊂ L has integral indices of inter-
section with the one-dimensional cycles, in contrast to the usual Stiefel class, where
they are defined only modulo two; this is a simple consequence of the lagrangian
property. However, Maslov [9] has given an interesting procedure for determining
this index on L, which will itself be necessary for subsequent applications. Namely,
we consider a curve γ(τ) on L that intersects Wn−1 at the point γ(τ0) and for
ε > 0 we suppose that, γ(τ0 − ε) and γ(τ0 + ε) do not lie on Wn−1. Let Un be
a (small) neighborhood of the point γ(τ0) ∈ Wn−1. The domain Un is projected
onto an X-plane with a degeneracy, for example, at γ(τ0). We can find a (minimal)
subspace P̄ ⊂ P and a maximal X̄ ⊂ X, where X̄ + P̄ is a lagrangian plane, such
that Un is projected isomorphically onto X̄ + P̄ . The dimension of P̄ is equal to
the corank of the projection π at γ(0). For ε > 0 the tangent planes at the points
γ(τ0±ε) are projected isomorphically onto X̄+P̄ and also onto X. We consider the
(locally single valued) function of the action on L ⊃ Un: S(y) =

∫ y

y0
p dx, y ∈ Un,

and its hessian, in particular, at the points γ(τ0 ± ε), ε > 0. It has been proved
mat the index of the intersection (locally) of the segment [γ(τ0− ε), γ(τ0 + ε)] of the
curve with Wn−1 is equal to the difference of the numbers of the negative squares
(of the indices) of the hessians of the action at the points γ(τ0 + ε) and γ(τ0 − ε),
and that this index of the hessian has a jump only at the points of intersection.

Note that in this situation, as is easily seen, a double jump of the index is a jump
in the signature of the hessian of the action in going from γ(τ0 − ε) to γ(τ0 + ε).

Next, the hessians of the action were interpreted in [9] in terms of a sequence of
elementary operations (the replacement of X by an isomorphically projectible X ′′

(X ′) and the interchange of X ′′
i (X ′

i) and pi) which send X into X̄ + P̄ , where X ′′

(X ′) is tangential to L at the point γ(τ0 − ε) (γ(τ0 − ε)); this interpretation was
necessary in the construction of a global analog of the WKB method (of a canoni-
cal operator), since each elementary operation of a rearrangement was followed by
taking the Fourier transform, with respect to the appropriate coordinate, of func-
tions which are finite in the image of the domain π′(Un) on X̄ + P̄ , and which
revert to the coordinate representation. (Here the functions finite on Un were first
brought together on π′(Un) by means of the usual local operation, semiclassical in
the X̄ + P̄ -representation, which is multiplication by exp[iS/h]/

√
detπ′ and which

requires the isomorphic projectiveness of the lagrangian manifold.)
Hence the answer essentially depended from which “side” of Wn−1 one takes the

initial point γ0 in Un where the hessian of the action determines the process, and
it is necessary to take these centers “from the right side” of Wn−1 simultaneously
for all Un

k covering L. The distinguishing characteristic of these processes (the
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hessians of the action) from the two sides led to the index of intersection which
enters into the final result as the phase multiplier e(iπ/2)γ◦W . Then the fact that
the constructions were independent of the choice of coverings and of the initial point
on L, as well as of the paths γk connecting this point with the center of Un

k , led to
the condition that for any closed path γ on L we have

e
{ i

h

∫
γ
p dx+ iπ

2 γ ◦Wn−1} = 1

which is the so called “Bohr–Sommerfield quantum condition” (in the one-dimen-
sional case).

It is essential to note here that in all these procedures the definition of the
Maslov index of γ ◦ Wn−1 on L corresponds exactly to the formalism we used
in §§ 1–3 to define the two-dimensional objects in the skew-symmetric category
(for the case U2

j (R), j = 2), including the treatment of the class of a quadratic
form (of the signature) in terms of processes of reducing objects of the earlier
dimension (lagrangian planes) to isomorphically projectible objects. It is interesting
to note that, although for A = R and for the lagrangian submanifolds of Hn we
can define, by the standard topological construction of a “tangent mapping”, the
higher characteristic classes from Hn(Un/On) (see [2], [17]), the one-dimensional
class Wn−1 and the formalism of defining it, which is retained in a more general
and refined form in the construction of hermitian K-theories over rings with an
involution, plays a particular role.

Example 2. Here we shall consider the rings A1 = C[π] (π = Z × · · · × Z) and
A2, which is the ring of complex-valued (infinitely differentiable, or even analytic)
functions on the torus Tn. In view of the Fourier series expansion of CharTn =
Z × · · · × Z, A1 is embedded in A2 as trigonometric polynomials in eiφ1 , . . . , eiφn

which are identified with the generators of the group π. For A1 we have K̃0(A1) = 0
and, according to Bass, K1(A1) = ±π ⊂ A1. Also, K̃0(A2) ⊗ Q and K1(A2)
coincide with K̃0(Tn) ⊗ Q = Heven(Tn, Q) and K1(Tn, Q) = Hodd(Tn, Q); that
is, it is substantially larger, although A1 was dense in A2. Thus the fiberings
over Tn, for n ≥ 2, and the elements of K1(Tn) cannot be constructed from the
polynomials alone but require convergent series that belong to A2, although the
speed of convergence can be arbitrary (even for the analytic case).

Next we consider the groups U0
j (A1) (= V 0

j (A1)) of hermitian (skew-hermitian)
forms over C[π] for j = 1, 2. Te note that, since i =

√
−1 ∈ A1, therefore U0

1 = U0
2 ,

and so the hermitian and skew-hermitian cases are not distinct. Next, by taking
the Fourier transform we can treat U0

j (A1) as functions on Tn with a value in the
nonsingular hermitian matrices over C defined by trigonometric polynomials.

It has been proved noneffectively from the topology (see, for example, [13] or [16])
that for A1 = C[π] the groups U0

j are nontrivial and are connected with Λ∗(Z×· · ·×
Z) = H∗(Tn). By regarding α ∈ U0

j (A1) as a function-valued form over Tn, we can
see that the obstruction to its reduction to V 0

j (A1) is then interpreted in the sense
of homotopic topology as an element of K̃0(Tn); the nontrivial homomorphism
U0

j (A1) → K̃0(Tn) arises automatically, and after we take the tensor product by Q
it becomes an epimorphism.

Thus we see that, in contrast to the usual K0(A1) = 0, the groups U0
j (A1)

“catch” the vector bundles α ∈ K̃0(Tn). This approach to the study of V 0
j (A1)
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is due to Gel’fand (who communicated it to the present author) and it was sub-
sequently, developed jointly by Gel’fand and Mǐsčenko [6]; it is important to note
here that the rings A′1 = Z[π1], and more roughly A′′1 = R[π1], which appear in
smooth topology (see [14]), lead to the study, after taking the Fourier transform,
of the groups KR(T ′′) (see [6]).3

Example 3. We consider the ring A = C(X) of complex-valued functions on a
finite complex X with a natural involution and norm. This example generalizes
Example 2.

Here we mainly consider the objects U j(A) for all j ≥ 0; we may omit writing
the number of the sign of symmetry of the category because i =

√
−1 ∈ C(X).

Because U∗1 and U∗2 coincide, this theory is 2-periodic by definition (see § 3). Here
the element β ∈ U0(A) = U0(X) is a projective module (a vector fibering over X)
with an hermitian form. By taking the trivial operations of adding the trivial
fibering with a form whose signature is unity, we can always make the signature
of the form on each fiber (equal to C2n) equal to zero and can regard n as large.
The process of reducing an element to the zero element consists of choosing a
direct projective submodule with a zero form (a lagrangian plane). If the metric
on the fiber is reduced to (he hamiltonian metric, the set of lagrangian planes in
each fiber is a manifold coinciding with Un as n → ∞. Hence the obstruction to
the construction of a cross-section or to the reduction is [β] ∈ K0(X). We have
obtained a monomorphism U0(X) → Z + K̃0(X) = K0(X) (a similar construction
for X = Tn was discussed in Example 2).

Conversely, it is easy to see that for U1(A) = U1(X) a projective lagrangian
plane in a free hamiltonian module defines an element α ∈ K1(X), since the set of
(lagrangian) planes in a fiber is Un. This plane over A is projected onto a direct
projective submodule in the X-plane if and only if α = 0 in K1(X). It is easy to
see that the monomorphism U0(X) → K0(X), which we constructed earlier, is an
epimorphism. Thus we have arrived at a theorem which clarifies the significance of
our constructions.

Theorem 4.1. For the function ring A = C(X), the theory of U∗(A) = U∗(X)
coincides with the usual complex K-theory.

Remark 4.2. For A = C(X), V 0(A) coincides withK0(X)+K0(X); the Gel’fand–
Mǐsčenko group V 0

F lies in K0(X)+K0(X) as (x,−x); the group U0(A) is the factor
group of K0(X) +K0(X) with respect to the diagonal (x, x) = 0.

Remark 4.3. The most difficult point in the constructions in §§ 1–3, for which we
developed the whole formalism (the passage from U1(A) to U2(A), where the sign of
symmetry of the category changes), corresponds, when we make the passage to the
rings A = C(X), to the place where one must prove the Bott periodicity, namely
the passage from K1 to K2, to a group which we must again regard as K0, so that
the difficulties which are met at this stage in smooth topology in constructing Bass
type projection operators in an effective algebraic manner now become completely
comprehensible; for example, one muse interpret K0(X) as K2(X) in the classical
(Bott) case, where the projection operator of Bass is analogous to the mapping
K2(X × S′) → K2(EX) → K1(X).

3In fact, Gel’fand and Mǐsčenko [6] studied the subgroups V 0
j,F (A) of V 0

j (A) (A = C(X))

composed of forms on a free module, and proved that they coincide with K0(X).
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Example 4. We consider the rings A = R(X) with the trivial involution, where
X is a finite complex. Here the hermitian category simply consists of the usual
metrics and the skew-hermitian category is the skew-symmetric case.

Reasoning by analogy with Example 3, we easily obtain

U0
1 (A) C2↔ Z + [X,BO] = KO0(X),

U1
1 (A) C2↔ [X,O] = KO−1(X),

U2
1 (A) C2↔ U0

2 (A) ↔ [X,B(U/O)] = KO−6(X),

U3
1 (A) C2↔ U1

2 (A) ↔ [X,U/O] = KO−7(X),

where the subscript 1 denotes that we start from a symmetric category, BO is the
classifying space, C2 are finite groups of order 2h and the cokernels of U2

1 and U3
1

in U0
2 and U1

2 also are of order 2h. As in Example 3 we find that

U∗1 (A)⊗ Z[1/2] = KO∗(X)⊗ Z[1/2].

We see here that there is a substantial defect in our constructions which is connected
with the pairing. One explanation of this defect may be as follows. In the con-
struction of all homotopic homology theories we take, by definition, Ki+1(EX) =
Ki(X), where EX = X × S/X ∨ S1. For function rings we have C(X × S1) =
A[z, z−1]∧, where ∧ denotes the completion, and the decomposition is Ki+1(X ×
S1) = Ki+1(X) + K̃i(X) + K̃i(S1), whereas, as in algebra, we take for the basic
concept A[z, z−1] without the completion. In KO-theory we have K0(S1) = Z2,
which introduces a difference. Let us recall that we have always imposed the re-
striction K̃0(A[z, z−1]) = K̃0(A). Perhaps the reason is deeper. It would be useful
to analyze the case of KSC(X)-theory (it is 4-periodic), the general KR-theories
and also the “Sullivan theory” F/PL (or F/Top).

Let us note that in smooth topology our theory is applicable only to study of the
objects ⊗Z[1/2], since we have not considered Arf-invariants, so that the defects of
this theory modulo 2 are natural.

In what follows we shall bear in mind that only U∗j ⊗ Z[1/2] is a “homology
theory”, although the aim of the present article is only to construct the Bass pro-
jection operators, the existence of which is a weaker (although not much weaker)
assertion than Stating that this is a homology theory.

§ 5. Construction of the analogs of the Bass projection operators
and their inverses which connect U0

j and U1
j , V 0

j and V 1
j

We shall now define some analogs of the projection operators of Bass for the
Laurent extension Az = A[z, z−1] with the involution z̄ = z−1 (for A = Z[π] we
have Az = Z[π × Z]), but only in one dimension.

1) Definition of the projection operator B0
U : U1

i (Az) → U0
i (A). We con-

sider an element α ∈ U1
i (Az) represented by a lagrangian plane L ⊂ Hn. We can

assume that Hn is projective hamiltonian, but in view of the equality K0(Az) =
K0(A), which is always assumed to hold, we assume that Hn is defined in the form
Q[z, z−1], where Q is projective hamiltonian over A and the plane L = L0(z, z−1) ⊂
Hn, as an abstract module, is given in the same form.

We use the following notation: H+ consists of elements of Hn which are nonneg-
ative powers of z; H− consists of elements with purely negative powers; similarly
we define L+ and L− in the abstract module L = L0(z, z−1). H+,H−, L+ and
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L− are (infinite-dimensional) A-modules. Let N be so large that zNL+ ⊂ H+ and
EN (L+) consists of all y ∈ H+ such that 〈y, zNL+〉0 = 0 (recall that 〈·, ·〉 ∈ A (see
the beginning)). Since EN (L+) ⊃ L ∩H+ we put

B0
U (α) = EN (L+)/zNL+ ∈ U0

i (A).

Since a quadratic form is induced on the module EN (L+)/zNL+, it only remains
to prove that this module is projective.

Lemma 5.1. EN (L+)/zNL+ is a projective module; the natural form on it is
nonsingular and even, and its class in U0

i (A) is independent of the arbitrariness in
the choice of a representation of the element α ∈ U1

i (Az).

Proof. We consider the module EN1(L
−) ⊂ H− which relative to 〈·, ·〉 is orthogonal

both to z−NL− ⊂ H− and to EN (L+)+EN1(L
−)/(zNL++z−N1L−). This module

is isomorphic to a direct sum of L0 taken several times with itself and with the
module L−0 , where Hn is decomposed into a sum of two lagrangian planes L+L′ =
Hn and L′ = L′0(z, z

−1); this is at once clear in the coordinates of L,L′ in Hn.
Hence EN (L+)/zNL+ is projective over A. The evenness and nonsingularity are
obvious, and it can be straightforwardly verified that the definition is invariant: it
L ⊂ Hn is projected onto a direct submodule, then, by stabilizing the problem, we
can decompose L into the sum of submodules isomorphically projectible onto (X)
and onto (P ), which are equivalent. Next, if L is projected isomorphically onto
X, then the projective hamiltonian decomposition of the module EN (L+)/zNL+

is indicated thus:
a) zi(P ), 0 ≤ i ≤ N − 1,
b) (ziL0)+, 0 ≤ i <∞ with L = L0(z, z−1), L+ = L0(z), where the subscript +

denotes the projection π+ : Hn → H+.
By noting that the operation B0

U is invariant under the interchange of X and P
we complete the proof of the lemma. �

2) Definition of the projection operator B0
V : V 1

i (Az) → V 0
i (A). Here the

lagrangian planes have a selected basis and lie in the free hamiltonian module Hn.
Again we put

B0
V (α) = EN (L+)/zNL+ ∈ V 0

i (A), α ∈ V 1
i (A).

It is obvious from the proof of Lemma 5.1 that an isomorphically projectible
L leads to the projectible hamiltonian module EN (L+)/zNL+, with the chosen
lagrangian plane in it, whose projective class belongs to B(α), where α lies in the
image of K1(Az) → V 1

i (Az) and B : K1(Az) → K0(A), so that the invariance of
this definition can be proved in a way analogous to Lemma 5.1.

3) Construction of the embeddings B̄0
U : U0

i (A) → U1
i (Az) and B̄0

V : V 0
i (A) →

V 1
i (A).
If α ∈ U0

i (A) is represented by a projective module with the scalar product φ:
Q → Q∗, then (−α) is represented by the pair Q, −φ : Q → Q∗. We consider the
infinite sum

Qz = · · · ⊕ [(Q,φ)⊕ (Q,−φ)]⊕ [(Q,φ)⊕ (Q,−φ)]⊕ . . .

with the natural scalar product and with the translation by z in period, Qz =∑
j [(Q,φ)⊕ (Q,−φ)]zj . There is a natural lagrangian plane (P ) which is generated

by the elements x⊕x∗, x ∈ (Q,φ), x∗ ∈ (Q,−φ), x = x∗, since 〈x⊕x∗, y⊕y∗〉 = 0.
We note inQz another lagrangian plane L which is generated over Az = A[z, z−1] by
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elements of the form x⊕ zx∗, x ∈ (Q,φ), x∗ ∈ (Q,−φ), x = x∗. We take the plane
(P ) = L0 as the initial plane and assume, by definition, that B̄0

U (Q,φ) is the class of
the lagrangian plane L ⊂ Qz, relative to (P ) ⊂ Qz, considered in U1

i (A). Similarly
we define the operator B̄0

V : V 0
i (A) → V 1

i (Az). Here the elements (Q,φ) ∈ D0
i are

invertible in the sense that we can find (Q′, φ′) ∈ D0
i such that (Q,φ)⊕ (Q′, φ′) is

isomorphic to the hamiltonian module Hn with the basis x1, . . . , xn, p1, . . . , pn. We
note that pi = yi ⊕ y∗i , where yi ∈ Q, y∗i ∈ Q′. Next we consider Qz =

∑
j Hnz

j

similarly to the previous case and single out the lagrangian plane in Qz with the
basis p1, . . . , pn ∈ Hn. Let p′j = yj ⊕ zy∗j generate the lagrangian plane L ⊂ Qz

with a fixed basis.

Definition. B̄0
U (Q,φ) is the class of the plane L relative to P ⊂ Qz which is

generated by p = (p1, . . . , pn).

Lemma 5.2. The operators B̄0
U and B̄0

V are properly defined on the groups U0
i (A)

and V 0
i (A), and their image in U1

i (A), V 1
i (A) belongs to the kernel of the natural

mappings U1
i (Az)

ε−→ U1
i (A) and V 1

i (Az)
ε−→ V 1

i (A) generated by the homomorphism
Az

ε−→ A, where z ε−→ 1. The operators B0
U and B0

V annihilate the images of the
groups ε̄U1

i (A) and ε̄V 1
i (A) respectively in U1

i (Az) and V 1
i (Az).

Proof. If the initial element α ∈ U0
i (A) is represented by the projective module

Q,φ and if we choose a lagrangian plane P1 ⊂ Q, where φ/P1 = 0, then in the
module Qz =

∑
j [(Q,φ)⊕ (Q,−φ)]zj we can select, in a canonical manner, a new

lagrangian plane L′ =
∑

j [(P1, 0)⊕(P1, 0)]zj . It is easy to see that the distinguishing
characteristics of both planes (the initial plane P with basis y ⊕ y∗ and the other
plane L with basis (y⊕zy∗)) relative to L′ are trivial, from which it follows that B̄0

U

is correctly defined. The proof for B̄0
V is similar. Next, if we consider the operation

of going from Az to A on the module Qz by putting ε(z) = 1, the images of the
lagrangian planes P ⊂ Qz and L ⊂ Qz will coincide (with due regard for the basis,
wherever this remark is meaningful). It follows that this homomorphism annihilates
the images of B̄0

U and B̄0
V . Conversely, B0

U and B0
V annihilate the images of the

embeddings ε̄ : U1
i (A) → U1

i (Az) and ε̄ : V 1
i (A) → V 1

i (Az), since on these images,
by choosing in the construction the minimally possible N = 0, we obtain the result
that E0(L+) = L+ = L∩H+ and that E0(L+)/L+ = 0. The lemma is proved. �

The following lemma is useful for topological interpretations.

Lemma 5.3. If α ∈ V 0
i (A) is defined by the free module F with the basis y1, . . . , yn

and with a scalar product defined by an hermitian (skew-hermitian) nonsingular
matrix φ = φ1 ± φ̄1, where φ−1 = ψ = ψ1 ± ψ̄1, then the image of the opera-
tor B̄0

V (α) can be naturally realized in the hamiltonian module Hn with the basis
x1, . . . , xn, p1, . . . , pn, and with the lagrangian plane L ⊂ Hn, the basis of which is
defined In matrix form by

ψL = (z−1ψ1 ± ψ̄1)P + (z−1 − 1)X,

where the definition of the bases in the construction of B̄0
V is the following :

P = yi ⊕ y∗i , L = yi ⊕ z−1y∗i ,

X = ψ1y ⊕∓ψ̄1y, y = y1, . . . , yn.

The element B̄0
V (α) is represented as an infinite sum B0

V (α) =
∑

j(Fn ⊕ F ′n)zj,
the scalar products on Fn and F ′n are defined by the matrices φ and −φ, and the
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method for singling out the space X = ψ1y ⊕ ±ψ̄1y complementary to P = y ⊕ y∗

was given in Remark 2.3.

The proof consists in verifying the formula by a direct substitution.

Theorem 5.4. The equalities B0
U B̄

0
U = ±1 and B0

V B̄
0
V = ±1 and the following

direct decompositions hold :

U1
i (A[z, z−1]) = ε̄U1

i (A) + B̄0
UU

0
i (A),

V 1
i (A[z, z−1]) = ε̄V 1

i (A) + B̄0
V V

0
i (A) + Ti(A),

also B0
V Ti(A) = 0 and 0 = B0

U ε̄ = B0
V ε̄ = εB̄0

U = εB̄0
V = εTi.

Proof. We first prove that B0
U B̄

0
U = ±1 and that B0

V B̄
0
V = ±1. For the theory of U∗i

and for any α ∈ U0
i (A) the construction of the element B̄0

V (α) includes the module
Qz =

∑
j [(Q,φ) ⊕ (Q,−φ)]zj and the lagrangian planes P =

∑
j(y ⊕ y∗)zj and

L =
∑

j(y ⊕ z−1y∗)zj ; moreover, Q+
z =

∑
j≥0[(Q,φ)⊕ (Q,−φ)]zj and L+ consists

of all elements of the form
∑

j≥0(y⊕ y∗z−1)zj . It is obvious that zL+ ⊂ H+ = Q+
z

and that E1(L+) = zL+ + [(Q,φ)⊕ 0]. Hence E1(L+) = (Q,φ) and for U∗ we have
B0

U B̄
0
U = 1. The proof is similar for V -theory.

Thus we now have the direct decompositions

U1
i (Az) = U1

i (A) + U0
i (A) + Si(A),

V 1
i (Az) = V 1

i (A) + V 0
i (A) + Ti(A),

where B0
USi(A) = 0 and B0

V Ti(A) = 0.
We now turn to the algebraically more difficult part of the theorem; this is the

investigation of the groups Si(A) and Ti(A). For convenience we will talk in the
language of bases as in the theory of V 1

i (A), although all the arguments are true
for U1

i . Let α ∈ V 1
i (Az) be represented by the lagrangian plane L ⊂ Hn over the

ring Az with a basis (e1, . . . , en) ∈ L written in matrix form as (e) = ax+bp, where
ab̄± bā = 0 and bā is the “hessian of the action” on L.

The simplest case a). B0
V (α) = EN (L+)/zNL+ = 0 for some N which we can

take to be zero. Then E0(L+) = L+ ⊂ H+ and L+ is a direct summand of H+ as
in an A[z]-module. In this case we can obviously choose another basis e′1, . . . , e

′
n in

L+, perhaps stabilizing the pair L+ ⊂ H+, so that (e′) = a′x′ + b′p′, where the a′

and b′ are independent of z, so that in this case the theorem is obvious. The proof
for U -theory is analogous.

Case b). B0
V (α) = EN (L+)/zNL+ 6= 0, but it contains a lagrangian plane

y1, . . . , yq ∈ B0
V (α) with 〈yi, yj〉0 = 0, and we can find lifted elements ỹ1, . . . , ỹq ∈

EN (L+) such that 〈ỹi, ỹj〉0 = 0 (this is obvious). For our investigation it will be
convenient to describe the construction of the module EN (L+) in greater detail.
Namely, E−N1(L

−) ⊂ H−, where z−N1L− ⊂ H−, defines in a canonical manner an
inverse for B0

V (α), and in the sum

E−N1(L
−) + EN (L+)/(z−N1L− + zNL+)

there is distinguished in a canonical manner the lagrangian plane (zje), where
−N1 < j < N1 and (e) is the basis of the initial plane. For j < N the elements
(zje) lie in EN (L+). If L∗ is complementary to L, L + L∗ = Hn, and e∗ is a
basis in L∗, 〈e∗j , e∗i 〉 = 0, then it is obvious that for j < N the elements (zje∗)+
lie in EN (L+). We have two A-submodules in EN (L+) with the natural bases
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{zje}+ = uj and {zje∗}+ = u∗j , j < N , and any element from EN (L+) mod zNL+

has the form γu+µu∗. Of course, (u) and (u∗) are not free in general, and are not
lagrangian in EN (L+)/zNL+. We can write the lagrangian plane (y) in the form
y = γu+ µu∗ ∈ B0

V (α), although it may not be unique.

Lemma 5.5. If the submodule (u) = {zje}+ ⊂ B0
V (α) is such that the scalar prod-

uct 〈·, ·〉0 in it is identically zero, then the inclusion (u) ⊂ L holds over A[z, z−1],
and in the lagrangian plane L we can select another basis (e′) not containing z−1

and such that the equality E0(L′+)/z0L′+ = 0 holds in the new basis (e′) (let us
recall that, in U -theory, by a basis in L we mean a representation L = Q[z, z−1],
where Q is projective).

Proof. If 〈ui, uj〉0 = 0, then, by noting that 〈u,H−〉0 = 0 and that by definition
〈u, zNL+〉0 = 0 we see that 〈u, x〉0 = 0 for any x ∈ L, so that

〈u, x〉 =
∑

〈u, zjx+〉0zj = 0.

Hence 〈u, L〉 = 0 and u ∈ L. Then, since EN (L+) modulo zNL+ is represented as
(u)+(u∗), when 〈u, u〉0 = 0 we have (u)∩(u∗) = 0 and the module (u) is projective
over A because B0

V (α) is projective and the scalar product on it is nonsingular.
Since in our case (u) + zNL+ = L ∩H+, it follows that zNL+ is an A-free module
and, as an A[z]-module, L ∩ H+ does not have z-torsion; therefore L ∩ H+ is a
projective A[z]-module whose basis we will assume to be the positive part of L,
denoting L∩H+ by L′+, which is correct in U -theory (in V ∗-theory we must have
a free or stably free module L ∩H∗).

For U -theory Lemma 5.5 is a consequence; in V -theory an analogous argument
shows that (u) ((u) + zNL+) is stably free over A (A[z]).

Thus the lemma is proved. �

The general case c). Our problem is now as follows: to reduce the initial
lagrangian plane by a hamiltonian operation (iterated) to the conditions of Lemma
5.5 by using the lagrangian plane (y) ∈ EN (L+)/zNL+ over A which, being lifted
into EN (L+), is written as γu+ µu∗, where u ∈ (zjL)+ and u∗ = (zjL∗)+, −N1 <
j < N . Let ũ = zjL∗ for −N1 < j < N , let u = (ũ)+ and y = γu + µu∗, and let
〈y, y〉0 = 〈γµ̄± µµ̄〉0 = 0. We pass to the new hamiltonian basis xL = L∗, pL = L

in Hn and let L̃ denote the (P )-plane written in the new basis xL, pL. We write the
basis for the plane (y), lifted into EN (L+), as γu+ µu∗ = λxL + δpL, and consider
the (iterated) hamiltonian operation with the generating function H = y + φt,
where φ is given precisely as a function of λ and δ (or of γ and µ):

H ′ = H − y − φt, x′L = xL ± δ̄t,

p′L = pL + λ̄t, t′ = t,

L̃′ = L′ ⊕H = (P )⊕H,

φ = 〈y, y〉+ = 〈y, y〉− =
∑
i≥0

〈y, ziy〉0zi, 〈y, y〉0 = 0.

If we revert to the basis x, p,H, t in place of the plane L = pL we will have the plane
L′ = (p′L,H

′). If we consider everything in a free basis (for V ∗), then L = aX+bP ,
L∗ = cX + dP , where ab̄ ± bā = 0, cd̄ ± dc̄ = 0, cb̄ + dā = 1 (bā and dc̄ are the
“hessians of the action” on L and L∗) and X̄ = d̄pL + b̄XL, P = c̄PL + āXL.
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Thus in the basis (X, t, P,H)

L′ = (aX + bP + λ̄t, H − y − φt) = (P ′L,H
′),

where y was defined above and φ (a function of λ, δ (or of γ, µ)) has been given.
Next we carry out the following “splitting operation” (of the variables H, t).

We consider the space with the basis (x, t1, t2, p,H1,H2) and elements ỹ ∈
EN (L+) such that 〈ỹ, y〉0 = δij , 〈ỹ, ỹ〉 = 0 and ỹ = γxL + δpL = λ̃u + δu∗.
We put

L′′ =


pL + λ̄(t1 + z−1t2) + 〈pL, ỹ〉(H1 − z−1H2),

H ′
1 = H1 − y − φ(t1 + z−1t2) + ψ(H1 − z−1H2),

z−1H ′
2 = z−1H2 − y − φ(t1 + z−1t2)− ψ(H1 − z−1H2),

where
ψ = 〈y, ỹ〉1 =

∑
j≥1

〈y, zj ỹ〉0zj , φ = 〈y, y〉+ =
∑
j≥1

〈y, zjy〉0zj .

The following simple lemma holds.

Lemma 5.6. As an element of U1
i (Az) (or of V 1

i (Az)) the lagrangian plane L′′ ⊂
Hn+2q is equivalent to the initial L ⊂ Hn.

Proof. The initial lagrangian plane (p′L,H
′) is obtained from L′′ on the subspace

t = t1 + z−1t2, H1 − z−1H2 = 0, and it is easy to see that its “stabilization” is L′′.
The assertion of the lemma becomes obvious in going over to the basis H̃ = H1,
H̃2 = z−1H2 −H1, t̃ = t1 + z−1t2, x̃ = x, p̃ = p.

Thus the lemma is proved. �

Thus for L′′ we have a situation satisfying Lemma 5.5, whence follows Theorem
5.4. In fact, we have

Lemma 5.7. The following equality holds for all −∞ < j < ∞ and for a basis
of L′′:

〈(zhL′′)+, (zkL′′)+〉0 = 0.

The proof follows from a direct calculation with the formulas for L′′.
It is clear that the operations developed above have a meaning on projective

lagrangian planes L, including the application of the hamiltonian operation (see
Remark 2.6) and also the splitting operation and Lemma 5.7. Hence we have
proved the fundamental Theorem 5.4 for U∗-theory. �

§ 6. The analogs of the projection operators of Bass which connect
U2

i (Az) and U1
i (A), V 2

i (Az) and V 1
i (A)

We will first consider U∗-theory and will construct the “Bass operators”

B1
U : U2

i (A[z, z−1]) → U1
i (A),

B̄1
U : U1

i (A) → U2
i (A[z, z−1]).

To construct B1
U we consider the representative α ∈ U2

i (Az) = U0
j (Az), where i 6= j

and i, j = 1, 2; Q = Q0[z, z−1]. By definition this representative is the projective
module Q = Q0[z, z−1] with the “basis” Q0 over A and with the scalar product
φ : Q→ Q∗ which is hermitian and nonsingular.4

4We will always assume that the decomposition of Q∗ = Q∗
0[z, z−1] is compatible with Q =

Q0[z, z−1], where (zjQ∗
0, Q0) = 0 for j = 0 in the sense of the scalar product over A.
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We next recall that, in deriving the objects from U2
i as processes over lagrangian

planes, the form φ was interpreted naturally as a lagrangian plane in the projective
hamiltonian module H̃ = Q + Q∗, where Q∗0 = (X) and Q0 = (P ), and the basis
of L has the form {P + φ(P )} = L′. As a projective module L is isomorphic
to Q. However, one must note that in the conjugate variables φ−1 : Q∗ → Q we
pass to φ−1, and so the basis L′′ = {φ−1(X) + X} is specified naturally in L.
By definition L′+ denotes the “nonnegative” part in L measured in the basis L′:
L′+ =

∑
i≥0Q0z

i, and L′′− denotes the strictly negative part in L measured in the
basis L′′: L′′− =

∑
i<0 L

′′zi =
∑

i<0Q
∗
0z

i. Let EN,N1(L) ⊂ H̃ denote the submodule
over A consisting of all elements γ ∈ H such that 〈γ, zNL′+〉0 = 〈γ, z−N1L′′−〉 = 0,
where N and N1 are numbers for which zNL′+ ⊂ H̃+ and z−N1L′′− ⊂ H̃− (it is
obvious that 〈H̃+, H̃−〉0 = 0).

Since EN,N1(L) ⊃ L, we take by definition

B1
U (α) = EN,N1(L)/(z−N1L′′− + zNL′+)

with the selected lagrangian plane

L̃ = L/(z−N1L′′− + zNL′+) ⊂ B1
U (α)

and with the natural hamiltonian basis which we now give: if Q0 ⊂ Q is a basis,
where Q =

∑+∞
−∞Q0z

i, and Q∗0 ⊂ Q∗ is a basis, where Q∗ =
∑+∞
−∞Q∗0z

i, then
Q+, Q−, H̃+, H̃− are natural concepts and zjQ0 ⊂ EN,N1 for 0 ≤ j < N , z−jQ∗0 ⊂
EN,N1 for 0 < j < N1, and also (zjL′)+ for 0 ≤ j < ∞, (z−jL′′)− for 0 < j < ∞,
where the subscripts ± denote the projection operators H̃ → H̃±. To obtain a
hamiltonian basis in B1

U (α) we must take (P̃ ) = {zjQ0, z
−sQ∗0} and (X̃) = (zαL′)+

for α < N ; (X̃) = (z−βL′′)− for β < N1.
Thus we obtain a hamiltonian basis in B1

U (α) and the lagrangian plane L̃. Hence
the operator B1

U is defined.

Lemma 6.1. The operator B1
U : U2

i (Az) → U1
i (A) is properly defined ; to an allow-

able degree of accuracy the projective class [L̃] ∈ K̃0(A) coincides with the image
B(detφ) under the ordinary Bass projection operator B : K1(Az) → K0(A), and
detφ ∈ K1(A) is the determinant of the mapping φ : Q→ Q∗, where detφ is taken
with the degree of accuracy with which it is defined.

Proof. If the quadratic form φ on a module admits a “reduction to the zero” in the
form of a lagrangian plane V ⊂ Q, 〈φ(V ), V 〉 = 0, then Q = V +V ∗ (with accuracy
up to a stabilization). Analogously, Q∗ = V ∗ + V . We take a new hamiltonian
basis in H = Q+Q∗, namely, X ′ = VQ + VQ∗ , P ′ = V ∗Q + V ∗Q∗ where VQ = V ⊂ Q,
VQ∗ = V ⊂ Q∗ and similarly for V ∗Q and V ∗Q∗ . The passage from the old basis to
the new one is effected in H̃ by operations of permuting submodules in X = Q and
P = Q∗. Note that φ : Q → Q∗ has the form φ : VQ → VQ∗ , φ : V ∗Q → V ∗Q∗ . In
the new basis X ′, P ′ in H̃ the lagrangian plane splits into a direct sum of modules
lying in the X ′- and P ′-spaces. Hence it obviously follows that B1

U (0) = 0, and the
correctness of the definition is proved.

We prove the second part of the lemma. The projection π : L→ X along P = Q∗,
where X = Q, sends the basis L′ = P + φ(P ) into the basis φQ0 on the X-
space, and therefore π(zNL′+) = (zNφ)Q+. Next, under the mapping π the basis
L′′ = {φ−1(X)+X} goes into Q0 ⊂ X. Hence L/(z−N1L′′−+zNL′+) goes into B(φ).
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Therefore the projective class of the module L̃ is B(detφ) ∈ K0(A) by definition
of the projection operator B : K1(Az) → K0(A), and the lemma is proved. �

Although we do not essentially need the projection operators B1
V : V 2

i (Az) →
V 1

i (A) and B̄1
V : V 1

i (A) → V 2
i (Az) later, we give a method of constructing them.

We must indicate first of all the analog of the classical Bass projection operator
B1 : K2(Az) → K1(A) in the Milnor–Steinberg definition of K2 (see § 1). To do
this we recall once again the definition of B : K1(Az) → K0(A). If α ∈ K1(A) is
represented by the matrix α : F → F on a free module over Az = A[z, z−1] and
zNα : F+ → F+, then we take B(α) = F+/z

NαF+. In his proof of the correctness of
this definition Bass remarked that for α ∈ E(Az) = [GL[∞, Az], GL[∞, Az]] we ob-
tain stably free modules in the form B(α). Here we must note the following extract
from his arguments: if α =

∏
s αis,js

(as), s ∈ Az, is represented as a superposition
of elementary matrices (or “is lifted” into St(Az)

s−→ E(Az)), then there is distin-
guished, in a canonical manner, a free basis (in a stable sense) in the module B(α).
Since by definition K2(Az) = Ker s, to different liftings of the matrix α into St(Az)
there correspond different bases in B(α), and their distinguishing characteristic is
an element from K1(A). This gives the projection operator B : K2(Az) → K1(A).

The elements α ∈ V 2
i (Az) are represented as pairs [φ, h], where φ is an even

hermitian (skew-hermitian) form on the free module F with detφ = 1, and h ∈
St(Az) and s(h) = φ (in the basis). To define the operator B1

i : V 2
i (Az) → V 1

i (A) we
repeat exactly the construction of the definition of the operators B1

U , but in addition
note (on the basis of Lemma 6.1) that the projective class of the lagrangian plane
L̃ in the tree hamiltonian module EN1,−N1(L)/(z−N1L′′− + zNL′+) will be trivial.
Moreover, the lifting h ∈ St(Az) allows us to distinguish a canonical basis on
L̃ which gives us an element from V 1

i (A). The proof of the correctness of this
definition is very simple and is analogous to the previous one.

Thus we have constructed the operators B1
U and B1

V .
We turn to the construction of the embedding operator B̄1

U : U1
i (A) → U2

i (Az).
Suppose that the element α ∈ U1

i (A) is represented by the lagrangian (projective)
plane L ⊂ Hn in the hamiltonian module Hn with the basis x, p. If L is free and
has a basis ẽ, then ẽ = ax + bp in matrix form, where bā ± ab̄ = 0 and bā is the
“‘hessian of the action” on L in matrix notation (a quadratic form on L, where
(ξ, η) = 〈ξ, πη〉, ξ, η ∈ L, π : Hn → X and 〈·, ·〉 is the usual scalar product on Hn).

We consider the module E 3 e, canonically isomorphic to L, and the free modules
(X̃) and (P̃ ), isomorphic to X and P but extended freely to the ring Az ⊃ A. We
impose on the direct sum E + (P̃ ) + (X̃) all the relations of the form (z − 1)e = ẽ,
where e ∈ E, ẽ ∈ L ⊂ (X̃, P̃ ), and e and ẽ correspond to each other in view of the
isomorphism between E and L. Let B̄1(α) denote the Az-module we obtain. We
introduce in B̄1

U (α) a scalar product (·, ·) with the other sign of symmetry to the
one in Hn by putting

(X̃, X̃) = 0, (P̃ , P̃ ) = 0, (X̃i, P̃j) = (z − 1)δij .

It is easy to calculate that it follows from these formulas that the scalar product
(E,E), bounded on E, coincides with the “hessian of the action” on L. By definition
we can take for the element B̄1

U (α) ∈ U2
i (Az) the class of the quadratic form (·, ·)

on the factor module of {E, X̃, P̃} with respect to the relation (z − 1)e = ẽ. The
following lemma holds.
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Lemma 6.2. The module B̄1
U (α) is free and the scalar product on it is even and

nondegenerate. If the lagrangian plane L ⊂ Hn representing α is free, then the
matrix φ of the scalar product ( , ) on B̄1

U (α) is unimodular in the natural basis of
the module B1

U (α); that is, detφ = 1 ∈ K1(Az) (in a multiplicative notation). The
operation B̄1

U : α → B̄1
U (α) properly defines a homomorphism B̄1

U : U1
i → U2

i (Az)
such that εB̄1

U = 0, where ε : U2
i (Az) → U2

i (A).

Proof. Consider the decomposition Hn = L + L∗ (with accuracy up to a stabi-
lization) and, as before, let PL denote L and XL denote L∗. We choose the basis
E, X̃L in the module (E, X̃, P̃ )(z−1)ε−ε̃, where X̃L = cX̃+dP̃ . From what has been
proved earlier L∗ = XL = cX + dP and L = aX + bP . It is easy to see that X̃ and
P̃ are expressible in terms of E and X̃L. Since L + L∗ = Hn is free, the module
B̄1

U (α) is free over Az. (Recall here that in U1
i -theory we could put any lagrangian

plane into an equivalence class in a free Hn.) Next we denote E by ˜̃PL. Note that
˜̃PL, X̃L are not lagrangian planes in B̄1

U (α). The nonsingularity of the matrix φ of
the scalar product ( , ) on B̄1

U (α) follows from the fact that φ−1, as a matrix, is
obtained from φ after the following formal transformation:

z → z−1, XL → PL, PL → ±XL,

φ→ φ−1

and this is verified by a direct calculation when the lagrangian planesXL and PL are
free. When XL and PL are projective, φ must be understood as the homomorphism
of modules

B̄1
U (α)

φ−→ B̄1
U (α)∗;

the transformation φ−1 reverses the direction of the arrow and the inverse transfor-
mation φ−1 is formally conjugate to φ, considered as a homomorphism of A-modules
(but not of Az-modules), where in this “formal conjugate” multiplication by z is
conjugate with itself and not with multiplication by z−1.

Note that the transformation φ is written as φ = φ(0)+λφ′±λ̄φ̄′, where λ = z−1,
λ̄ = z−1 − 1 and φ(0) is obtained from φ by the “augmentation” Az

ε−→ A, where
ε(z) = 1; here φ(0), φ′ and φ̄′ are transformations over A, and φ(0), as a form on
the A-module ε( ˜̃PL, X̃L), has the form (εX̃L, εX̃L) = 0, ε ˜̃PL = (εX̃L)∗; the form
(ε ˜̃PL, ε

˜̃PL) on εE = ε ˜̃PL is the “hessian of the action” on L. In view of the evenness
of the “hessian of the action”, we now see that the form on B̄1

U (α) is even. In a
basis on L = ax+ bp = e, where e∗ = cx+ dp, if L,L∗ are free we have āb± bā = 0,
cd̄± dc̄ = 0 and ad̄± bc̄ = 1, and the matrices φ(0) and φ′ take the form

φ(0) =
(
bā 1
±1 0

)
, φ′

(
0 0
cb̄ ±dc̄

)
,

λ̄ = z−1 − 1, λ = z − 1, φ = φ(0) + λφ′ ± λ̄φ̄′

We now prove that the definition of the operator B̄1
U is invariant under the

elementary operations of a transformation on L.
1. If L = (X) ⊂ Hn, then it is entirely obvious that B̄1

U (L) ∼= 0. Since B̄1
U

preserves the sum, the invariance relative to a stabilization is proved.
2. We can regard an interchange of (projective) submodules in the (X)- and (P )-

spaces as the iteration: a) of a “stabilization” (that is, the addition of a module
with the basis (H, t) and a selected H-plane); b) of the replacement of an extended
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P -plane by a new P ′-plane, isomorphically projectible onto P ; c) of the interchange
of the X ′- and P ′-planes as a whole.

Here our assertion is not obvious only in the case of the replacement of an X-
plane by a new plane X ′ = X + δP , where δ = µ ± µ̄ and X ′ is isomorphically
projectible onto X along P = P ′.

3. We now consider the replacement of X by X ′ = X + δP , P ′ = P , δ = µ± µ̄.
To prove the equivalence of the forms B̄1

U of the L-plane L = PL in the coordinates
(X,P ) ⊂ Hn , and of the L′-plane, which is the same L but in the coordinates
(X ′, P ′) ⊂ Hn, we must consider the “hessian of the action” on L and L′ and the
bases (E′, X̃L′) ⊂ B̄1

U (L′) and (E, X̃L) ⊂ B̄1
U (L), where λE′ = L′, X̃L′ = L′∗ and

λE = L, X̃L = L∗, E = P̃L, E′ = P̃L′ . The embedding of the form B̄1
U (L′) in

B1
U (L) is done formally according to the following formulas:

E′ → E + aµP,

X̃L′ → X̃L + λcµP̃ ,

P̃ ′ → P̃ ,

X̃ ′ → X̃ + (zµ± µ̄)P̃ ,

λ̃ = z − 1, µ± µ̄ = δ, P = P ′, X ′ = X + δP.

A straightforward calculation shows that the scalar product is preserved under this
embedding. It follows from this that the definition of B̄1

U is invariant. We remark
that in this proof we have essentially used the “evenness” of the “hessian of the
action” δ = µ± µ̄ of the plane X ′ in the (X,P )-coordinates: without the evenness
of δ we would not be able to define B̄1

U correctly. In addition let us note that by
putting ε : z → 1 we go over to U2

i (A) and the image εB̄1
U ⊂ U2

i (A) goes into 0,
since the lagrangian plane εX̃L lies in the module εB̄1

U (α). Thus we have proved
all the statements in Lemma 6.2 apart from those concerning the determinant
detφ ∈ K1(Az) in the case of free lagrangian planes L ⊂ Hn with a selected basis
(e) = aX + bP = PL, which arise in the theory of V 1

i (A). Actually we regard PL

as complemented to (XL, PL) = (cx + dp, ax + bp), where ±〈xL, pL〉 = 1, and we
consider the matrix φ = φ(0) + λφ′ ± λ̄φ̄′, where

φ(0) =
(
bā 1
±1 0

)
, φ′

(
0 0
cb̄ ±dc̄

)
,

Here it is necessary, by using the relation(
a b
c d

)(
d̄ b̄
±c̄ ±ā

)
= 1

(the sign depends on the category), to show that detφ = 1 in K1(Az) independently
of the concrete ring A; thereby φ is lifted, by a universal method, into the group
St(Az), thus defining an element from V 2

i (Az). This means that we must give a
“universal” factorization of φ as a product of elementary matrices. For this let
us note that φ−1 is derived from φ by the simple unimodular change of variables
˜̃x → ± ˜̃PL, P̃L → ˜̃xL, z → z−1. In view of this, (detφ)(detφ−1) = 1, and hence
(detφ)2 = 1; this is a universal relation. Since for some rings with an involution
K1(Az) does not have 2-torsion, we see that the required universal relation detφ = 1
must hold. However, we have not completed the proof of this fact, which is required
only in the theory of V ∗i . �
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The construction of the operator B̄1
V : V 1

i (A) → V 2
i (A) follows from the “univer-

sal unimodular property” of the matrix φ; the correctness of the construction can
be deduced from the corresponding arguments for B̄1

U , but we shall not dwell on
V ∗-theory.

The following theorems contain the main properties of the “Bass operators” B̄k
U

and Bk
U , where by B̄k

U and Bk
U for k ≥ 2 we mean the operators defined “by peri-

odicity” starting from the isomorphism Uk
j = Uk−2

i , where i 6= j and j, i = 1, 2 is
the number of the category. In what follows we will omit the number k (the dimen-
sion of the domain of definition Uk

i ) and write simply BU and B̄U understanding
that these operators are defined for all k. When we consider the “multiple Laurent
extension” A[z1, . . . , z−1

1 , . . . ], where i = 1, . . . , s, we will write BU (z∗), where z∗

is a nontrivial indivisible integral linear functional over a free abelian group with
the generators z1, . . . , zs, bearing in mind that BU (z∗) “annihilates” the generator
z (in the other basis) on which (z∗, z) = 1 and it goes into the subgroup Zs−1 on
which (z∗, Zs−1) = 0. We will write this as

BU (z∗) : U∗j (A[Zs]) → U∗j (A[Zs−1
(z∗)]).

This follows essentially from previous arguments and theorems (in an invariant
language).

If Zs−1
(z∗q ) is the subgroup spanned by all the elements of the selected basis z1, . . . , zs

apart from zq we will write BU (zq).

Theorem 6.3. 5 The following holds:

BU B̄U = ±1.

The proof of this theorem is nontrivial for U2
i , in contrast to the corresponding

statement for U1
i which was obvious (see the proof of Theorem 5.4).

Theorem 6.4. The Bass operators for different variables anticommute:
−BU (z1)BU (z2) = BU (z2)BU (z1),

−BU (z1)B̄U (z2) = B̄U (z2)BU (z1),

−B̄U (z1)B̄U (z2) = B̄U (z2)B̄U (z1).

If z∗1 , . . . , z
∗
s is a basic set of linearly independent integral functionals over Zs with

the generators z1, . . . , zs, then the product BU (z∗i1) ◦ · · · ◦ BU (z∗ik
) depends on the

subgroup Zs−k
(z∗i1

,...,z∗ik
) on which (z∗iq

, Zs−k
(z∗i1

,...,z∗ik
)) = 0; this product is denoted by

BU = (z∗i1 ∧ · · · ∧ z
∗
ik

) = BU (z∗i1) ◦ · · · ◦BU (z∗ik
),

where z∗i1 ∧ · · · ∧ z
∗
ik
∈ Λk,∗; Λk,∗ is the exterior power over HomZ(Zs, Z).

Theorem 6.5. The following formula holds for all k:

Uk
i (A[z, z−1]) = Uk

i (A) + Uk−1
i (A).

The proof of this theorem for odd k was fundamental to Theorem 5.4. When k
is even (it is sufficient to take U2

i , k = 2, i = 1, 2) the result follows easily from
Theorems 6.4 and 6.3. In fact, when we apply the operator BU (z2) to both sides of
the formula with k = 2 and introduce a new variable z2, since the Bass operators
anticommute, we reduce the proof of Theorem 6.5 to Theorem 5.4, because U3

i = U1
j

5Let us recall (see the Introduction) that all these theorems refer to the theory of U∗j ⊗Z[1/2].
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and U2
i = U0

j for i 6= j, i, j = 1, 2. Thus Theorem 6.5 follows from Theorems 6.4
and 6.3.

Before proving Theorems 6.3 and 6.4 we give an important consequence, the
algebraic construction of a “homeomorphism of higher signatures”

σk : U j
i (A[Zs]) → Λj−4k(Zs).

Here U∗1 denotes U -theory in a symmetric category and U∗2 in a skew-symmetric
category; Uk

2 = Uk+2
1 . If α ∈ U j

1 (A[Zs]) and γ ∈ Λj−4k(Zs)∗, then on the basis of
Theorem 6.4 we have the operator B(γ) : U j

1 → U4k
1 (A[Z4k]) if we annihilate the

generator of Zs entering into γ. Next there is a natural “homomorphism of the
usual signature” σ: U4k

1 → Z for any Ã. Namely, if β ∈ U4k
1 (Ã) is represented by a

quadratic form on an Ã-module M , then in view of the augmentation ν : Ã → K,
where K is the ring of scalars with an involution, we have the K-module M⊗νK. If
K = Z,R,Q or C (with the natural involution), the usual signature of the induced
form on M ⊗ν K is denoted by σ(β) where β ∈ U4k

1 (Ã) = U4k+2
2 (Ã). By definition,

for α ∈ U j
1 (A[Zs]) we put

(σk(α), γ) = σB(γ)[α] ∈ Z,

where γ ∈ Λj−4k(Zs)∗, B(γ) is the productB(z∗i1)◦· · ·◦B(z∗i4k
) of the Bass operators

and γ = z∗i1 ∧ · · · ∧ z
∗
i4k

.
Thus we have given a closed algebraic construction of the homomorphisms σk,

since the Bass operators were defined above.

Remark 6.6. The present author has previously (see [13] and [14]) pointed out the
existence of these σk, for even j from topological considerations and absolutely non-
effectively. Later Shaneson [16] proved that they are isomorphic for π = Zs and the
groups Ln(π) at least on the groups Ln ⊗Q. However, Shaneson [16] developed an
idea of Browder [5] concerning the reduction of the problem to a simply-connected
topology, without using any algebraic definitions of the groups Ln(π). Hence the
question as to which “homology theory”, from an algebraic point of view, this nonef-
fective “existence and uniqueness theorem” for the higher signatures and Bass type
operators refers to, remains open, and the noneffective geometrical study of Shane-
son [16] can be remedied and made correct for the individual case Ln(Zs)⊗Z[1/2],
where all these theories coincide after they have been constructed algebraically.

Remark 6.7. For the group ring A = Z[π] of a free abelian group π with the
generators z1, . . . , zs, Theorems 6.3 and 6.4 show that U∗1 (A), constructed by the
operators B̄U (zj) and BU (zj) from U∗1 (A0), where A0 = Z[1], from a purely formal
point of view correspond to the construction by the “creation operators” B̄U and
the “annihilation operators” BU (zj) with anticommuting relations (Theorem 6.4).
Here, naturally, the relation BU (zj)2 = 0, or B̄U (zj)2 = 0, is taken by definition,
since the repeated application of these operators is meaningless. For the group
ring of the unit group A0 = Z[1] = Z the theory (with accuracy up to the tensor
multiplication by Z[1/2])

U∗1 (A0) =

{
Z, j = 4k,
0, j 6= 4k,

is generated by the “Milnor matrix” Φ ∈ U0
1 (Z) with signature 8 over the “ring of

scalars” Z[x, x−1], where U j
1

x−→ U j+4
1 is the periodicity operator which commutes
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with the “annihilation and creation operators” B̄U , BU , and BU (zj)Φ = 0 by def-
inition for all zj ; that is, Φ corresponds formally to the zero vector, from which
all the basic elements in U∗1 (A) can be obtained by an iteration of the different
operators B̄U (z∗j ).
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