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Abstract. The present paper is an immediate continuation of the author’s

paper [22], Except in the last section, it is implicitly assumed here, as in [22],

that the underlying ring contains 1/2 and all the theorems relate to the theory
U ⊗ Z[1/2] without further comment.

7. Proof of the theorems stated in § 6

We begin with a proof of the technically most difficult theorem. Theorem 6.3,
which says B1

U B̄
1
U = ±1. The first stage of the proof consists of clarifying the

projective class of the lagrangian plane which represents an element from B1
U B̄

1
U (α),

where α ∈ U1
j (A) is the lagrangian plane pL = L = (aX + bP ) in the hamiltonian

space Hn = (x1, . . . , xn, p1, . . . , pn) and where L∗ = xL is the lagrangian plane
L∗ = (cX + dP ), written in terms of the basis (for the free case), and is considered
to be chosen explicitly. We recall that B̄1

U (α) is a form φ = z−1φ−1 +φ0 +zφ1 with
basis E, X̃, P̃ and with the relations

(z − 1)E = aX̃ + bP̃ , 〈X̃i, P̃j〉 = (z − 1)δij (X̃ = P̃ ∗), 〈X̃, X̃〉 = 〈P̃ , P̃ 〉 = 0.

For definiteness we will write all the formulas in the hermitian case so that φ
becomes skew-hermitian. In the other case they will be the same, apart from the
necessary change of sign. Recall that the projective class of the required lagrangian
plane B1

U (φ) is given as B(detφ) — see § 6. Here we will make our calculations in
terms of the basis (e) of module E and (v) = cX̃ + dP̃ ∼= L∗z = xL generating the
module B̄1

U (α) = F .
We have the relations

x̃ = d̄(z − 1)e+ b̄v, p̃ = c̄(z − 1)e+ āv.

The module F is free. Let us denote by v∗ and e∗ submodules in F such that
〈v∗, e〉 = 〈e∗, v〉 = 0 in the sense of the form φ; thus e∗ is dual to E[z, z−1], and
v∗ is dual to V ∗ ∼= L[z, z−1]. If E and V (∼= Lz, L

∗
z) are free modules then it is

convenient to choose canonical dual bases in (e∗) and (v∗). In all cases we choose
“bases” in the modules (e∗) and (v∗) over A[z, z−1] which are dual to the bases of E
and V in the sense that decomposition into the sums

∑
(e∗)zi and

∑
(v∗)zi agrees
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with E and V , i.e. detaching the variable z, where (e∗) ∼=A L∗ and (v∗) ∼=A L over
A, and calling the bases (e∗) and (v∗). The definition of B(detφ) is

B(detφ) = F/zs(e, v) ∪ z−t(e∗, v∗), s ≥ 1, t ≤ −2.

After the factorization F/zs(e, v), s ≥ 1, we have the relations (in the A-module)

aX̃ + bP̃ = −e

(in terms of the basis, since ze = 0)

cX̃ + dP̃ = v, a(z−kX̃) + b(z−kP̃ ) = z−ke− z−k+1e,

c(z−kX̃) + d(z−kP̃ ) = z−kv.

We will denote z−kX̃, z−kP̃ , z−ke, z−kv byX(−k), P (−k), e(−k), v(−k) respectively
since F/zs(e, v) is only an A-module, s ≥ 1.

From the given relations we obtain

−e(−k) = a

(
0∑

i=−k

X(i)

)
+ b

(
0∑

i=−k

P (i)

)
,

v(−k) = cX(−k) + dP (−k).

It is understood that all this makes sense for projective modules without bases.
Since z−kv∗ = v∗(−k) and z−ke∗ = e∗(−k), k ≥ 2, are trivial in B(detφ) and
moreover we had

−e∗ = cz−1X̃ + dP̃ , −(z−1 − 1)v∗ = az−1X̃ + bP̃ ,

in the A[z, z−1]-module, it follows after factorization that e∗(−k) = 0 and v∗(−k) = 0,
k ≥ 2, and we obtain

cX(−3) + dP (−2) = 0, −v∗(−3) = v∗(−2) + aX(−3) + bP (−2) = 0,

−v∗(−2) = v∗(−1) + aX(−2) + bP (−1) = 0, −v∗(−1) = v∗(0) + aX(−1) + bP (0),

−v∗(0) = v∗(1) + aX(0) + bP (1),

where P (1) = 0 and v∗(1) = 0. Hence we have

X(−k) = 0, k ≥ 3, P (−k) = 0, k ≥ 2,

−v∗(−1) + aX(−2) + bP (−1) = 0, −v∗(−1) = a(X(−1) +X(0)) + bP (0).

Thus for B(detφ) in terms of the basis X(0), X(−1), P (0), u = X(0)+X(−1)+X(−2),
u′ = P (0) + P (−1) we obtain the natural relation

au+ bu′ = 0

or we obtain the basis X(0), X(−1), P (0), cu + du′ where X(0), X(−1) and P (0) are
free submodules and the projective class cu+ du′ coincides, by definition, with L∗.
Consequently B1

U B̄
1
U = −1.

Let us now turn to the module B(detφ), which we can think of, like the element
B1

U B̄
1
U (α), as a lagrangian plane in a hamiltonian space.

First of all we should note that if the matrix depends only on z, z−1 and φ:
Q → Q∗, Q = Q0[z, z−1], then the “impulse space” P in the module B1

U (φ) is
distinguished in a canonical way: P = (Q∗0, z

−1Q0), since

〈Q∗0, z(Q0 + φ(Q0))〉0 = 0 = 〈z−1Q0, z
−2(φ−1(Q∗0) +Q∗0)〉0
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and the module B1
U (φ) is defined in terms of the two bases L′ = Q0 + φ(Q0) and

L′′ = φ−1(Q∗0) +Q∗0, where φ : Q→ Q∗, Q = Q0[z, z−1], Q∗ = Q∗0[z, z
−1]; and

B1
U (φ) = E1,−2(φ)/(z−2L′′− + zL′+)

with the distinguished lagrangian plane of all elements of the type (x+φ(x), x ∈ Q).
In the case when φ = B̄1

U (L) and L = ax+ bp we have, in the hamiltonian space
Hn ⊃ L, submodules E ∼= Lz and V ∼= L∗[z, z−1] of the module Q carrying the
form φ = B̄1

U (L), Q = E = E + V . Since

e =
1

z − 1
(aX̃ + bP̃ ), v = cX̃ + dP̃ ,

−e∗ = cz−1X̃ + dP̃ , −v∗ =
1

z−1 − 1
(az−1X̃ + bP̃ ),

where 〈e∗, e〉φ = 〈v∗, v〉φ = 1 and 〈e∗, v〉φ = 〈v∗, e〉φ = 0, it follows that we can
distinguish the “impulse space” in B1

U (φ) in the following way:

P = (φ(e∗), φ(v∗), z−1e, z−1v).

Let us consider the elements X(−k) = z−kX̃, P (−k) = z−kP̃ and the elements
φ(X(−k)) = X ′(−k), φ(P (−k)) = P ′(−k). By definition the sums X(−k) +X ′(−k) and
P (−k) + P ′(−k) lie in a lagrangian plane. Also, by the above calculations we see
that X(k) +X ′(k) = P (k) + P ′(k) = 0 for k ≥ 1 or k ≤ −3, and P (−2) + P ′(−2) = 0
after passing to B1

U (φ), since we obtain the module B(detφ) from the lagrangian
plane Q+ φ(Q).

By an immediate calculation of the scalar products it follows that the elements
P (0), P (−1) andX(−1) (and hence P ′(0), P ′(−1) andX ′(−1)) are orthogonal to (zL′++
z−2L′′−) and therefore lie in B1

U (φ). We have the following matrix of scalar products:

φ(e∗) φ(v∗) z−1e z−1v

P (0) c̄ ā 0 0
P ′(0) 0 0 0 −c̄
P (−1) −c̄ 0 0 0
P ′(−1) 0 0 ā c̄
X(−1) −d̄ 0 0 0
X ′(−1) 0 0 0 −d̄
X(0) +X ′(0) d̄ b̄ 0 0
X−2 +X ′(−2) 0 0 b̄ d̄

here the scalar products taken are of the type 〈P (0), φ(e∗)〉0 = c̄ and so on.
From the form of the matrix we conclude that the elements in a column give the

complete set of the linear forms on the impulse space inB1
U (φ) composed from φ(e∗),

φ(v∗), z−1e and z−1v. It is sufficient moreover to take X(0) +X ′(0), X(−2) +X ′(−2),
P (−1) + P ′(−1), P (0) for a complete set of linear forms. Since 〈P (0), X ′(0)〉0 = ±1,
to obtain the “X-spaces” it is necessary to replace P (0) by P (0) + γ, where γ is
an element of the P -space (φ(e∗), φ(v∗), z−1e, z−1v) dual to X(0) + X ′(0). After
this operation we obtain a hamiltonian basis in B1

U (φ) where the first three of the
four basis modules are free and have the forms X(0) + X ′(0), X(−2) + X ′(−2) and
P (−1) +P ′(−1), i.e. lie on the lagrangian plane Q+φ(Q). As was shown above, the
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missing module in the lagrangian plane is cu+ du′ ∼= L∗, where

u = X(0) +X ′(0) +X−1 +X ′(−1) +X(−2) +X ′(−2),

u′ = P (0) + P ′(0) + P (−1) + P ′(−1).

In this way the basis of the lagrangian plane in B1
U (φ) = B1

U B̄
1
U (α) is X(0) +X ′(0),

P (−1) +P ′(−1), X(−2) +X ′(−2), cu+du′, where only the last module cu+du′ is not
a submodule of the X-space in the indicated hamiltonian basis—the change to this
basis is an obvious equivalence in U∗-theory, since we did not change the P -space
(but chose a more convenient X-space).

Now we can carry out a “contraction” of the lagrangian plane in B1
U B̄

1
U (L) over

the free submodule X(0) + X ′(0), P (−1) + P ′(−1), X(−2) + X ′(−2) lying in the X-
plane and after a direct calculation ascertain that the result coincides with L∗ ⊂ Hn,
whence follows Theorem 6.3.

We now turn to Theorem 6.4. The anticommutativity of the “Bass operators”
B̄U (z1)B̄U (z2)+ B̄U (z2)B̄U (z1) = 0 and so on follows immediately from the formu-
las written down for them. To check the fact that the superposition of operators
BU (z1) ◦BU (z2) depends only on the element of trivial degree it is obviously suffi-
cient to verify the invariance of this superposition with respect to the substitution
z1 → z1z2, z2 → z2, which is immediate. Hence follows Theorem 6.4.

We turn to Theorem 6.5. As was already shown, this theorem follows imme-
diately from Theorem 5.4 and the anticommutativity of the Bass operators on
introducing a new variable z2 (for the second Laurent ring extension), jumping to
the dimension where Theorem 5.4 applies and then applying the operator B̄U (z2).
In this way this theorem follows from what has gone before.

8. A discussion of the operators B̄k
U , k = 0, 1, as processes of motion

in time

We have constructed the operators B̄U : Uk
i (A) → Uk+1

i (Az), i = 1, 2, in a purely
algebraic way. At the same time the group Z is charS1 and is generated in a natural

way by the functions {einτ}, where τ is a numerical parameter which we will
call the time. The ring Az = A[z, z−1] is realized naturally as a subring of the ring
of functions of τ (trigonometrical polynomials) with values in A ⊗ C, where C is
the complex numbers, and having a natural involution. From this point of view
the operator B̄0

U : U0
i (A) → U1

i (Az) is the construction with respect to a quadratic
form of a certain lagrangian plane depending on time, and B̄1

U : U1
i (A) → U2

i (Az)
constructs, with respect to a lagrangian plane L ⊂ Hn in a hamiltonian space over
A, a certain quadratic form with the opposite symmetry sign on the same space
(˜̃xL, p̃L) ∼= H = (e, v) but depending on the time τ . In other words, B̄1

U constructs
with respect to L ⊂ Hn a lagrangian plane in the doubled space H2n, where the
X2n-plane is {˜̃xL, p̃L} = (e, v) and depends on time, such that at each moment of
time it projects, in H2n, isomorphically onto X2n and P2n—this is the way in which
nondegenerate forms with the opposite symmetry sign are interpreted in all of our
constructions.

Quite naturally, to understand the general idea of the operators B̄U (α) it is useful
to indicate the equations which describe this motion in time—how this equation of
motion is defined by the original element α. I should remark that the formulas for
B̄1

U as distinct from the operators B̄0
U , B0

U and B1
U which are easy to conjecture

algebraically (in the context of hamiltonian formalism), were in fact conjectured by
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the author (although they are not complicated) only from the algebraic meaning of
the differentio-topological operation M → M × S1 on the obstructions to surgery,
bur on the other hand the annihilation operators B0

U and especiallyB1
U were difficult

to conjecture from topological considerations, and we conjectured them precisely
from our formalism. Therefore, although we have constructed the operator B̄1

U , its
algebraic meaning has not yet been ascertained.

We first spend some time on the operator B̄0
U : U0

i (A) → U1
i (A[eiτ , e−iτ ]). We

recall that the augmentation Az
ε−→ A, where z → 1 is simply represented by

the boundary τ = 0, i.e. the initial conditions for any process in time. When
constructing the operator B̄0

U (φ) for a quadratic form φ on, for example, a free
module F with basis y1, . . . , yn, we considered the “double” F ⊕ F ′ with basis y′

in F ′, 〈y′, y′〉 = −〈y, y〉, and the lagrangian plane P = (y1 ⊕ y′1, . . . , yn ⊕ y′n), to
which we adjoin the X-plane X = (x1, . . . , xn) = ψ1y ⊕ ±ψ̄1y

′ in matrix form,
where φ−1 = ψ = ψ1 ± ψ̄1 and φ = φ1 ± φ̄1. The required distinguished lagrangian
plane L(τ) ⊂ Hn(eiτ ) was obtained as (y⊕ eiτy′) = y⊕ zy′. Obviously L|τ=0 = P .
In addition it is useful to note that the original quadratic form φ on the module F
was distinguished when τ = 0 in the hamiltonian space Hn|τ=0 by its basis vectors
y = φ(ψ̄1P ±X), the dual basis ψy with matrix ψ has the form ψ1P ∓X = F ⊂
Hn|τ=0. The module F ′ with basis y′ ⊂ Hn|τ=0 has the form φ(ψ1P −X).

As before we denote the basis of L(τ), which depends on time, by PL(τ) and
introduce the dual basis xL(τ) = ψ1y ⊕±eiτ ψ̄1y

′, where xL(0) = x, pL(0) = p.
It is easy to verify that in terms of the bases xL(τ), pL(τ) the equations defining

B0
U have the form (here i =

√
−1)

ẋL = ±iψ̄1φ[ψ1pL(τ)− xL(τ)] = ± ∂H

∂p̄L
,

ṗL = iφ[ψ1pL(τ)− xL(τ)] =
∂H

∂x̄L
,

xL(0) = x, pL(0) = p,

where on the basis xL, pL, x̄L, p̄L, we have

−iH(xL, pL, x̄L, p̄L) = 〈p̄Lψ̄1 − x̄L|φ|ψ1pL − xL〉,

where H(ξ, ξ̄) is a bilinear scalar (with values in A) function of the vectors ξ and
the covector ξ̄ varying independently, the operators ψ1 and ψ̄1 are considered as
linear transformations (p) → (x) and (p) → (x) respectively and 〈ξ̄|φ|ξ〉 denotes
a pairing between the original and the dual spaces, the bases of which are coordi-
nated with the help of the transformation defining the quadratic form. The fact
that the operator φ (and therefore H) is hermitian (skew-hermitian) springs from
the requirement that the equations of motion written above for vectors, and the
equations obtained, in an analogous way from ∂H/∂xL and ∂H/∂pL for the cov-
ectors dual to them, preserve this relation of duality with the course of time, i.e.
that the motion of covectors is consistent with the motion of the vectors.

If we put xL(0) = x and pL(0) = p, then we obtain, on solving the equation,
the image of the operator B0

U ; that is, the lagrangian plane pL(τ) (or L(τ)). Thus
we see that the hamiltonian H can be written simply and immediately in terms of
the form φ or ψ = φ−1 (in the dual basis), or, more precisely, in terms of the plane
y′ = ψ1p− x defining the form.
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Example 1. Let A = C, R or Z and let φ be a hermitian form over A in U0
1 (A). In

this case we have the usual number space and periodic functions inHn(τ); moreover,
the lagrangian plane L = pL(τ) projects onX with singularities at isolated moments
of time. We note that on the basis of Theorem 5.4 U1

1 (Az) = B̄0
UU

0
1 (A) = Z,

since U1
1 (A) = 0 where z = eiτ . How can one define analytically the invariant

σB0
U : U1

1 (Az) → Z, where σ is the signature, for lagrangian planes L(τ) ⊂ Hn(τ)?
It is possible to define “the cycle of singularities” Wn for the projection π : L(τ) →
X (or after making a certain change in the direction of the projection, to bring
it into general position), which is an element of the “open homology” group on
L(τ) = L(0) × S1; and, since τ is a periodic variable, Wn ∈ H0

n(L(τ)). There is
a periodic trajectory γ ∈ H1(L(τ)), and its intersection number γ ◦Wn with the
singular cycle is the “Maslov index” (see Example 1 in § 4).

Theorem 8.1. For the ring A = C, R or Z and the groups U1
i (A[z, z−1]) the

homomorphism σ ◦ B1
U : U1

1 (A[z, z−1]) → Z (where B1
U is the Bass annihilation

operator and a is the signature of the standard hermitian form over A = C, R or Z)
coincides with the “Maslov index” γ ◦Wn of a periodic trajectory γ (or of a basis
element of a group H1(L(τ))) on the lagrangian plane L(τ) ⊂ Hn, L(τ) ≈ Rn×S1,
A = R, representing the element α ∈ U1

1 (A[z, z−1]), z = eiτ . In particular, for
A = R or Z and j = 2 (skew-symmetric case) this index j ◦Wn is always trivial
and U1

2 (Az)1/2 = 0, but for A = C it can be nontrivial : for A = C the Morse index
may be nontrivial in both of the cases j = 1, 2, which for A = C are equivalent.

The proof of this theorem is not complicated, but we omit it since the theorem
was introduced by us only to illustrate the meaning of our ideas. For the proof it
is necessary to turn to the example in § 4 and to Maslov’s definition of this “Morse
index”.

Thus for the group ring of the cyclic group Z the invariant σB1
U on the group

U1
i (A[π]) [and consequently on the group of obstructions to surgery in differential

topology L2k+1(π) = V 1
i (A[π]) which coincides for π = Z with U1

i (A[π])] can natu-
rally be interpreted analytically as the Morse index on lagrangian planes depending
periodically on time.

Now we consider the operator B̄1
U : U1

i (A) → U2
i (A[z, z−1]) which was defined

algebraically in § 6. Here a hermitian (skew-hermitian) form depending on the
time τ is constructed on the 2n-dimensional module F , isomorphic to Hn, from
a lagrangian plane L = (pL) ⊂ Hn. This form φ = B̄1

U (L) has been considered
in a natural way in terms of the basis X1 = E = (˜̃pL), X2 = (X̃L) on F ≈ Hn

and interpreted in the hamiltonian space H2n with the basis X = (X1, X2) and
P = (P1, P2) as a lagrangian plane L̃ with basis P − φX, depending on the time τ ,
which projects isomorphically for all τ onto X and P . Thus if L = pL = (ax+ bp)

the lagrangian plane L̃ or the form φ for τ = 0 had the form
(
bā 1
±1 0

)
in terms of

the basis X1, X2, where bā was the “action hessian” on L in the coordinates x, p; in
this way the initial conditions L̃|τ=0 were trivially defined by this “action hessian”.
It only remained to write down the equations of motion in H2n . They have the
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form
Ẋ1 = Ẋ2 = 0,

Ṗ1 = ie−iτ bc̄X2 =
∂H

∂X̄1
,

Ṗ2 = ±i[eiτ (cb̄X1 ± dc̄X2)∓ e−iτ cd̄X2] = ± ∂H

∂X̄2
,

The plane L̃(τ) is defined by these equations and the initial conditions L̃|τ=0 =

P − φ(0)X, where φ(0) =
(
bā 1
±1 0

)
. The hamiltonian H(ξ, ξ̄) is here free (does

not depend on P ) and may be expressed in terms of the basis as iH = V̄ W ± W̄V ,
where V = eiτ c̄X2, and W = b̄X1 + d̄X2. We recall here that the change of basis

from (x, p) to (L∗ = xL, L = pL) is given by the matrix
(
±c ±d
a b

)
, but the change

from (xL, pL) to x, p is given by the matrix
(
b̄ d̄
ā c̄

)
and p = āxL+c̄pL → āX1+c̄X2

and x = b̄xL + d̄pL → b̄X1 + d̄X2 and c̄pL → c̄X2 is simply the image πL(p) (the
projection of the p-plane onto pL along xL) which is involved in the definition of the
action hessian on (p) in terms of the coordinates (xL, pL). Consequently to obtain
the hamiltonian H(X1, X2, X̄1, X̄2, τ) we proceed as follows: we shift πL(p) by an
amount z in the coordinates (xL, pL) (multiply by eiτ ) and thereby obtain V ; then
we take X (the plane b̄xL + d̄pL), we obtain W and from them we construct the
form V̄ W ± W̄V = iH, where xL → X1, pL → X2. Further we consider the initial
“phase space”Hn(x, p) as a configuration and construct its double—the phase space
H2n(X1, X2, P1, P2)—in which we consider this hamiltonian iH = V̄ W ± W̄V to
be free: H = H(X, X̄, τ). Further, we solve the hamiltonian equations with initial

condition L̃|τ=0 = X − φ(0)P , where φ(0) =
(
bā 1
±1 0

)
, and obtain as a result the

plane L̃(τ) ⊂ H2n which is projected isomorphically onto X and P for all τ ; that
is, B̄1

U (L).
Let us note that the inverse matrix φ−1(τ) or the basis X − φ−1P is obtained

from the original by a substitution such as (see § 6)

τ → −τ, P → X,

xL → pL, X → ±P,
pL → ±xL.

Thus X − φP → P − φ−1X and φ→ φ−1.
One can give another explanation of the structure of B̄1

U . Namely, first of all,
without introducing L∗ = xL, we define B̄1

U (L) in terms of the basis E, X̃, P̃ , where

(z − 1)E = L = aX̃ + bP̃ , 〈X̃, X̃〉 = 0, 〈P̃ , P̃ 〉 = 0, 〈X̃, P̃ 〉 = (z − 1)δij = eiτ .

Then X̃ = X̃(τ), P̃ = P̃ (τ) and the spaces E = ˜̃pL, and x̃L = cX̃+dP̃ are regarded
as not depending on the time τ . In this case X̃(τ) and P̃ (τ) at any moment of
time τ 6= 0 (mod 2π) give a basis for the space F ∼= Hn on which the form φ(τ) is
defined, and moreover X̃(τ) and P̃ (τ) is a hamiltonian basis in F (τ) when τ 6= 0.
However, when τ = 0 the space (X̃(τ), P̃ (τ)) is degenerate, in view of the relation
aX̃(0) + bP̃ (0) = 0, and the whole of the space X̃(τ), P̃ (τ) for small τ 6= 0 is “born
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from” the space L∗ = cX̃(0)+ dP̃ (0). The differential equation X̃(τ) and P̃ (τ) has
a singularity when τ = 0 (mod 2π).

9. The interrelation of U∗- and V ∗-theory over Z[π] and the Bass
operators B and B̄ with the theory of obstructions to surgery in

differential topology Ln(π1)⊗ Z[1/2]

We will denote collectively by Ln(π1) all the possible obstructions to surgery in
all the situations which in the simply connected case correspond to various theorems
due to the author and Browder ([4], [11]). Here it turns out that the various
theorems for the simply connected case correspond in fact to different kinds of
groups of the type Ln(π) which have a definite relation to the various U∗ and V ∗ of
our theory, but the relation is not completely precise. This occurs essentially when
we talk about projections of the Bass type and decomposition theorems of the type
Ln(π × Z) = Ln(π) + Ln−1(π); it is incorrect, apart from isolated special cases of
the group π (where, however, it is also necessary to revise the arguments in [16])
to relate these assertions to vague notions of Ln(π) by making use of geometrical
arguments from different geometrical situations. C.T.C. Wall in his papers [19] and
[20] defines much more clearly the class of objects with which the definition of Ln(π)
is related: he considers all the Poincaré complexes to be finite, which excludes K0

from the definition of Ln(π) and permits all quadratic forms on free modules to
be considered in L2k(π). As for the definition of L2k+1(π), this permits lagrangian
planes L to be considered as free, not projective, submodules in Hn, reducing them
to automorphisms carrying the X-plane into L (see [20], § 6), and allows a basis
on L to be distinguished (these are elements of the group V 1

j (π) = L2k+1(π)).
Obviously Wall does not consider in [20] questions about Bass projections, but his
Ln is correctly defined for each n individually, reflecting the solution of a single well-
determined geometrical problem. Besides, it is well known, for example, that the
problem of the simple homotopy type of K1(π×Z) for M ×S1 becomes under the
Bass projection B : K1(π×Z) → K0(π) the Wall obstruction [18] to the homotopy
finiteness of complexes, and in certain special cases it becomes the obstruction
of the author and Siebenmann to a smooth PL decomposition of M = V × R
(see [13], Proposition 2). These examples indicate the impossibility of restricting
oneself to homotopically finite Poincaré complexes while at the same time preserving
projections of the Bass type. However, this causes another difficulty in purely
topological approaches: the quadratic forms on free modules in L2k(π) are easily
realized geometrically as “obstructions to uniqueness”, but all quadratic forms on
projected modules are difficult to realize. There is an analogous problem for n =
2k+ 1: projective lagrangian planes are also difficult to realize geometrically. This
explains the restrictions imposed in [20]. We prefer to construct and systematize
a separate algebraically correct homology theory and to explain the interrelations
with topology later. We have the following problems:

1. “The existence problem”: this is the question of the possibility of modify-
ing a map f : Mn

1 →Mn
2 of degree 1, where f∗(ξ) is tangent to Mn

1 , ξ ∈ KO(Mn
2 )

and Mn
2 is a Poincaré complex. We may suppose that [f ] ∈ πN+n(−ξ), where

MN (−ξ) is the Thom complex.
1′. “The unimodular existence problem”: this is the same question, but

Mn
2 is a finite complex and we wish to modify f to give a simply homotopy equiv-

alence.
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2. “The uniqueness problem”: this is the question of the possibility of
modifying a manifold Wn to give an h-cobordism, when Wn has two boundaries
∂W = Mn−1

1 ∪Mn−1
2 and the tangent map of W r−→ Mn−1 is of degree 1 on the

boundaries (we may suppose that r|M1 = 1).
2′. “The unimodular uniqueness problem”: this is the same question, but

we wish to modify r to give a diffeomorphism W = M × I.
3. “The strengthened uniqueness problem”: here we assume that r|Mn

2

is a simple homotopic equivalence, and we are required to modify the connecting
manifold W and in addition deform the map r so that r|Mn

2 is a diffeomorphism
and r̃ : W → M × I is a pseudo-isotopy between r|M1 = 1 and r|M2, where r̃ is
homotopic to r.

We show where the obstruction to the solution of these problems lies:
Problem 1:

α(f) ∈ V (0)
j (A) for n = 4k, 4k + 2,

α(f) ∈W (0)
j (A) for n = 4k + 1, 4k + 3.

Problem 1′:
α(f) ∈W 1

j (A) for n = 4k, 4k + 2,

α(f) ∈ V 1
j (A) for n = 4k + 1, 4k + 3.

Problem 2:
α(f) ∈ V 0

j (A) for n = 4k, 4k + 2,

α(f) ∈W 0
j (A) for n = 4k + 1, 4k + 3.

Problem 2′:
α(f) ∈W 1

j (A) for n = 4k, 4k + 2;

α(f) ∈ V 1
j (A) for n = 4k + 1, 4k + 3.

Problem 3:
α(f) ∈W 2

j (A) for n = 4k, 4k + 2,

α(f) ∈ V 2
j (A) for n = 4k + 1, 4k + 3.

Here, of course, we have neglected the Arf-invariant and certain differences be-
tween the Whitehead group Wh, K1 and the analogies of K0. Thus we see that the
obstructions in problem 1 do not really lie in our theories but have homomorphisms
V 0

j → U0
j and W 0

j → U1
j , where the kernels of these homomorphisms are generated

by the images of K̃0(A) → V 0
j (A) and K̃0(A) →W 0

j (A).

Conclusion. If the Arf-invariant is neglected then the obstructions to surgery in
problem 1 coincide with the theory U∗1/2 when K̃0 = 0.

All the other obstructions in problems 1′, 2, 2′ and 3 lie in our theories V ∗ and
W ∗, but a theorem on the realization of the groups W and V in these problems is
generally speaking not true—it is only in problem 2′ for W 1 and V 1, and, appar-
ently, in problem 3. We will not explain all these questions in more detail, since the
aim of the present work is purely algebraic; but the way to obtain relations between
obstructions and these or other geometric problems is well known in contemporary
differential topology (for n odd we will show this below), and it was useful just to
give a systematic statement of them from the point of view of the spaces in our
algebraic “hermitian K-theories” U∗, V ∗ and W ∗.

We will indicate further the geometrical meaning of the Bass operators BU and
B̄U and the formula for them which explains the algebraically-involved processes in
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the proofs in §§ 5, 6 and 7. Before this we indicate the geometrical path by which
we associate an invariant in the groups U1

j and V 1
j for odd n = 2k+ 1 and j = 1, 2

with a map Mn
1

f−→Mn
2 of degree 1, where f∗(ξ) is tangent to Mn

1 .
This was first given in [20], but the complexity of the procedure in [20] is ex-

plained by the artificality of the algebraic approach and the calculation of the pair.
I. If f∗ : πi(Mn

1 ) → πi(Mn
2 ) is an isomorphism for i < k and n = 2k + 1, it is

possible to choose a sufficiently large number of spheres {Sk
q } ⊂Mn

1 , q = 1, . . . , N ,

such that they give a complete basis for Ker f (πk)
∗ as an A-module and, further,

give all the cells of dimension k which are superfluous in Mn
1 in comparison with

Mn
2 . We assume that these spheres do not intersect and that f(Sk

q ) is a point.
We cut out a tubular neighborhood T of the spheres Sk

q (of their connected sum)
from M1. Put Q = Mn

1 \
⋃

q T (Sk
q ) and ∂Q =

⋃
q S

k
q × S̃k

q , where S̃k
q is linked with

Sk
q . Introduce the notation

xq = [Sk
q ] ∈ πk(∂Q̂),

pq = [S̃k
q ] ∈ πk(∂Q̂),

where Q̂ is the universal covering space and Sk
q and S̃k

q are the natural cycles lifted
to Q̂. By calculating the intersection number we find that HN = πk(∂Q̂) is a
hamiltonian A-module with basis x1, . . . , xN , p1, . . . , pN .

The obstruction to surgery is a lagrangian plane L ⊂ HN , where L is by definition
the kernel of the inclusion πk(∂Q̂) → πk(Q̂). Generally speaking, L is a projective
module, but if Mn

2 is a finite Poincaré complex then L is a free module in which
a basis can be naturally distinguished. This will also give an element in V 1

j (A);
generally speaking we have an element in W 0

j (A) → U1
j (A).

To establish these facts we ought to indicate the geometric meaning of the ele-
mentary operations which give the equivalence between planes L ⊂ HN .1

1) Replacement of theX-plane byX ′ which projects isomorphically ontoX along
the same P . This corresponds to a change of the spheres {Sk

q } by a homotopy of
the system where each of the Sk

q is deformed regularly, intersecting other spheres
or even itself along the way.

2) Stabilization. This is obviously adding an extra “small” sphere Sk
N+1 to the

collection {Sk
q }.

3) A hamiltonian operation. This corresponds to a Morse modification. In fact,
let the sphere with respect to which we make the modification be chosen on M
in a neighborhood of the boundary ∂Q̂ and let it represent on this boundary an
element

∑
γixi +

∑
µipi ∈ πk(∂Q̂) = HN . This sphere is given together with a

field of frames which on the boundary of its tubular neighborhood determines the
coordinates (pN+1, xN+1) = (H, t), whereH is the displacement of this sphere to the
boundary and t is linked to the initial sphere Sk

N+1. Let B be a connecting manifold
in M̂ \ Q̂ which realizes a cobordism of the sphere H with an element γx+µp from
πk(∂Q̂) = HN , and let φ ∈ A be the “intersection number” 〈B,Sk

N+1〉 = φ ∈ A =
Z[π1]. After adjoining the sphere Sk

N+1 to the collection {Sk
1 , . . . , S

k
N} we obtain a

basis p1, . . . , pN ,H, x1, . . . , xN , t, but instead of L we will have L ⊕H as the new

1It is relevant to note the obvious fact that die cokernel of the projection of L on X coincides
with the homological kernel in dimension k on the covering spaces but the kernel of the projection

is in dimension k + 1, n = 2k + 1.
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kernel of the map πk(∂Q̂′) → πk(Q̂′), and instead of the P -plane we will have on
the other hand p′i = pi ± γit, H ′ = H − γx− µp− φt as the kernel of the inclusion
of the new boundary ∂Q′, since we also removed a neighborhood of the cycle Sk

N+1

from the join T (Sk
q ) (more precisely, from its total preimage on M̂1).

It is convenient to represent the elements of U1
j (A) and V 1

j (A) as obstructions

to “uniqueness problems”: if M2k
1

f−→ M2k
2 is a map such that Ker f (πi)

∗ = 0 for
i < k (6= 0 only when i = k) and Q = Ker f (πk)

∗ is a free module with a form
φ which can be reduced to hamiltonian type with the help of a lagrangian plane
P ⊂ Q which gives a basis (P,X) ⊂ Q and can be reduced to zero with the help
of another lagrangian plane L ⊂ Q with even action hessian in the coordinates
(P,X), then both processes of reduction (P ) and (L) can be realized by handles
attached to M2k

1 × I(0, 1) or to M2k × 0 and M2k × 1 respectively; we obtain a
manifold W 2k+1 with a tangential map r : W 2k+1 →M2k

2 , where r|M2k
1 × 1/2 = f

and f |∂W 2k+1 are homotopy equivalences (or simple homotopy equivalences). This
interprets naturally and geometrically the elements of U1

j , V 1
j and W 0

j ; moreover, it
does so exactly in accordance with the point of view of this paper on “the reduction
processes” in the construction of a K-theory.

II. Let us give now the geometrical interpretation of the initiation operators
B̄0

U , B̄
1
U , although of course the geometrical situation does not correspond absolutely

precisely to the theory U∗ and not all the elements can be realized geometrically.
1. The operator B̄0

U . We have a mapM2k
1

f−→M2k
2 with a unique nontrivial kernel

(Q,φ) = Ker f (πk)
∗ with form φ. Let us consider f × 1: M2k

1 × S1 →M2k
2 × S1 and

an immersion of spheres λq : Sk
q →M2k

1 which realize the basis cycles of Q. Let us
order the elements σ of the group π = π1(M2k

1 ) = π1(M2k
2 ) in any way such that

for any pair (σ, σ−1) only one of them is positive.
For simplicity we assume that the group π has no 2-torsion, i.e. σ2 = 1 → σ = 1.

Consider the maps λ̂q : Sk
q → M̂2k

1 → M̂2k
1 × R into the universal covering spaces.

We “perturb” the map λ̂1 : Sk
1 → M̂2k

1 ⊂ M̂2k
1 ×R so that it becomes an embedding

λ̃1 : Sk
1 ⊂ M̂2k

1 × R; we do this according to the following rule: at the outset we
suppose that λ̂q : Sk

q → M̂2k
1 is an embedding but that there is an intersection of the

type 〈Sk
q1
, σSk

q2
〉 for various q1, q2 and σ, in particular when q1 = q2 = 1. If σ > 1

we displace one of the intersecting pieces of σSk
1 “up” a little along the R-axis; if

σ2 > σ1 > 1 then the “displacement” along the R-axis is higher for σ2 than it is
for σ1. Having done this we obtain an embedding λ̃1 : Sk

1 ⊂ M̂2k
1 × R depending

on the above-mentioned introduction of an order between the elements σ ∈ π. For
the sphere Sk

2 → M2k
1 we begin by moving it a little, parallel to the R-axis, above

the image λ̃1(Sk
1 ) (but always below M̂2k

1 × 1) where initially M̂2k
1 and all the

images of λ̃q lie on M̂2k × 0 and the displacement z along the R-axis transforms
α into α + 1. Then we do the same as for λ̂1. We continue thus until we have
done it for all q. After this we remove from M̂2k

1 ×R all the images of the spheres
σλ̂q(Sk

q ) and all their displacements under elements σ ∈ π × Z, and we obtain a
manifold Q̂ with boundary ∂Q̂, where there is a natural basis xi, pj , 〈xi, pj〉 = δij
in πk(∂Q̂), where the pj are linked with λ̃q(Sk

q ) and the xq are displacements of
λ̃q(Sk

q ) onto the boundary of a tubular neighborhood and xq and pq are in natural
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one-to-one correspondence with the spheres λ̃q(Sk
q ). Which lagrangian plane L in

this hamiltonian module is the kernel of the embedding πk(∂Q̂) → πk(Q̂)?
Let us note that the division of the group π into two sets (π)+∪ (π)−∪1 and the

condition that the scalar product φ on Q be even makes it possible to decompose
φ = φ1±φ̄1 canonically in such a way that the matrix of φ1 is triangular and φ1 = 0
is below the diagonal. On the diagonal we have

φ(xq, xq) =
∑
σ∈π

(Sk
q · σSk

q )σ.

Let us put

φ1(xq, xq) =

{∑
σ>1(S

k
q ◦ σSk

q )σ, k = 2l + 1,∑
σ>1(S

k
q ◦ σSk

q )σ + 1
2 (Sk

q ◦ Sk
q ), k = 2l,

where a ◦ b is the usual intersection number.
A direct geometrical calculation of the kernel of the embedding πk(∂Q) → πk(Q̂),

where πk(∂Q̂) = Hm is a hamiltonian module with basis (x, p), leads to a formula
of this kind for the basis of the lagrangian plane L which is equal to this kernel

ψL = (z − 1)X + (zφ1 ± φ̄1)P,

where ψ = φ−1 does not depend on z.
Turning to Remark 2.6, we obtain an interpretation of the operator B̄0

U in terms
of a basis.

2. The operator B̄1
U . We have here a map f : M2k+1

1 → M2k+1
2 of degree 1

which is tangential and such that Ker f (πs)
∗ = 0, s < k. In dimension k spheres

(Sk
1 , . . . , S

k
m) are chosen such that f(Sk

q ) is a point and the connected sum of
the tubular neighborhoods of these spheres is removed from M2k+1

1 , where N =
M1 \ #qT (Sk

q ) and M̂ ⊃ N̂ are their covering spaces. The module πk(∂N̂) is a
hamiltonian module with basis x1, . . . , xm, p1, . . . , pm as above; L is the kernel of
the embedding πk(∂N̂) → πk(N̂).

Let us turn to f × 1: M2k+1
1 ×S1 →M2k+1

2 ×S1 and M̂ ×R ⊃ M̂ × 0 ⊃ N̂ × 0.
We carry out Morse modifications with respect to the cycles xq × 0 which are

realized by Sk
q×0, and consider the effect of the modifications on the covering spaces.

After the modification we obtain a map (the modification of f × 1) g : M̃2k+2 →
M2k+1

1 ×S1 the kernel of which will be nontrivial only in dimension k+1 and which
is a nondegenerate form (even) of the opposite symmetry sign. Let us calculate this
form. First of all it is necessary to indicate a basis for the cycles on M̃2k+2. When
we carried out modifications on the spheres Sk

q ⊂ M̂2k+1
1 × 0 ⊂ M̂2k+1

2 × R we
performed the following operations:

a) We removed from M̂1×R the tubular neighborhoods T 2k+2
q of these spheres,

where T 2k+1
q ∩ (M̂1 × 0) are neighborhoods of these spheres in M̂2k+1

1 and on the
boundary we have the “old” hamiltonian basis xq, pq in M2k+1

1 \#q(Tq ∩M2k+1
1 ),

which we will then consider on the covering spaces. The lagrangian plane L may
be represented by cells ek+1 of dimension k + 1 lying in

N̂ = (M2k+1
1 \#q(M2k+1

1 × 0 ∩ Tq))∧,

where the boundaries ∂ek+1 ∈ Hm(x, p) form L. It is possible to suppose that in
terms of the basis on L we have ∂(ek+1) = aX + bP .
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b) We adjoined new cells βq to M̃2k+2 such that ∂βq = xq ∈ ∂N̂ . In addition
there are obvious pairs of connecting manifolds γq,1, γq,2, which lie in M̂1 × R \
#qT

2k+2
q which have each side on N̂ × 0 ⊂ N̂ × R in (M2k+1

1 × R \ #qT
2k+2
q )∧,

which have boundaries pq, and where γq,1 is above M̂1× 0 and γq,2 is below M̂1× 0
with respect to R.

We have the following cycles in M̃2k+2:

γq,1 − γq,2 = P̃q,

xq × I(0, 1) + zβq − βq = X̃q,

e
(α)
k+1 + a{βq} − b{γq,1} = e(α),

where a runs over the basis of the lagrangian plane L.
We have the scalar products

〈X̃q, P̃s〉 = (z − 1)δqs,

〈X̃, X̃〉 = 0,

〈P̃ , P̃ 〉 = 0,

and also the relation (in matrix form)

(z − 1)e = aX̃ + bP̃ .

This gives us the description of B̄1
U (see § 6).

III. We turn now to a more difficult problem, namely the geometric interpretation
of B0

U and B1
U .

1. The operator B0
U . The general geometrical situation with which we have

to deal in the given case consists of the following: we have a map f : M2k+1 →
M2k×S1 of degree 1, and so on, and we consider the t-regular preimage f−1(M2k×
0) = M2k

2 together with the map g = f |M2k
2 → M2k. We have an invariant

α(f) ∈ U1
j (Az) and wish to find α(g) ∈ U0

j (A), where A = A[z, z−1] = Z[π × Z]
and A = Z[π].

There will be analogous situations for other problems where α(f) ∈ V 1
j . It goes

without saying that is is impossible to calculate a precise formula for α(g) in such
a general form. We introduce certain hypotheses (supposing from the outset that
Ker f (πi)

∗ = 0 for i < k).
a) Let us assume that the total preimage of M2k

2 is such that Ker g(πi)
∗ = 0,

i < k.
b) Suppose that M2k

2 does not intersect the spheres {Sk
q } ⊂ M2k+1 containing

those tubular neighborhoods which have to be cut out of M2k+1 in order to obtain
a hamiltonian basis (xq, pq) ∈ πk(∂N̂) together with a lagrangian plane L

0 → L→ πk(∂N̂) → πk(N̂), N = M2k+1 \
⋃
q

T (Sk
q );

it is convenient for us here to cut out a disconnected sum.
c) We suppose that a basis L∗ = xL, L = pL is chosen in the module Hm(x, p) =

πk(∂N̂); of course we do not exclude the possibility that L∗ and L are projective;
here the elements of the basis xL are realized by spheres which do not intersect
M2k

2 in the interior of N ⊃M2k
2 .
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d) We have M̂2k
2 ⊂ N̂ on the covering space N̂ where the displacements zjM̂2k

2

do not intersect and M̂2k
2 separates N̂ into N+ ∪N− = N̂ , N+ ∩N− = M̂2k

2 . We
suppose that the coverings of the basis spheres which realize xL ∈ πk(N̂) lie in N−

and do not intersect the zjM̂2k
2 for −∞ < j <∞.

These hypotheses can be fulfilled by various geometrical operations. If they
are fulfilled, then we can find representatives of an element B0

Uα(f) = α(g). For
definiteness we suppose that the spheres {Sk

q }, q = 1, . . . ,m, lie in the domain
N+ between M̂2k

2 × 0 and M̂2k
2 × 1 = z(M̂2k

2 × 0), and that the xL lie in N−.
We fix connecting manifolds Bα ⊂ N̂ which have boundaries lying in ∂N̂ and
define a basis for the lagrangian plane L in the coordinates x, p ∈ πk(∂N̂). Further
we fix connecting manifolds Cβ which represent a homotopy of the line x(β)

L into
the boundary ∂N̂ . The manifold M2k

2 can be chosen so that the intersections
zjBα ∩ M̂2k

2 × 0 and zjC ∩M2k
2 × 0, which we denote by κα

j and κβ
j respectively,

generate the group Ker g(πk)
∗ on M̂2k

2 × 0. It is easy to see that these intersections
are trivial if zjBα or zjCβ lie in N+ or in N− respectively: for this it is sufficient
that zjL ≥ 0 or zjL∗ > 0, zjL < 0, zjL∗ < 0 in the sense of the notation of § 5.
The parts of these connecting manifolds lying in N+ represent a homotopy of these
cycles relative to N+ into the boundary ∂N̂ ∩N+, where πk(∂N̂ ∩N+) = H+

m in
the sense of § 5. The corresponding cycles on the boundary ∂N̂ ∩ N+ are, as is
easily seen, (zjL)+ and (zjL∗)+ where −N1 < j < N and moreover N and N1 are
numbers such that (z−N1L−) < 0 and (zNL+) ≥ 0; we have L = L− + L+ as an
A-module. The intersection numbers of these cycles on ∂N̂ ∩N+ are the same as
on M̂2k

2 × 0 in view of the connecting manifolds zjBα ∩N+ and zjCβ ∩N+. This
implies that the geometric interpretation of the projection B0

U : U1
j (Az) → U0

j (A)
corresponds in fact to the algebraic definition in § 5.

2. The operator B1
U . The geometric realization of the operator B̄1

U is more
complicated than the three cases just investigated. For simplicity we will assume
that the quadratic form φ ∈ U2

j (Az) contains only z and z−1 and does not contain
z±k for k ≥ 2, i.e. it is a trigonometrical polynomial of the first degree. It is only
forms of this sort that appear as images of the operator B̄1

U . The form, as before, is
given on a free module with basis (or on a projective module Q = Q0[z, z−1] with
a basis Q0).

In a geometrical realization it is convenient to consider only free modules when
only such forms can arise from B̄1

U . As in the algebraic construction of the operator
B1

U , it is necessary to begin the geometrical realization with an interpretation of
the form φ as a lagrangian plane L = P + φX, where φ(P ) = φX and (P ) is a
space carrying the form

φ : (P ) → (X), 〈xi, pj〉 = δij , H+ +H− = H(x, p),

L′+ =
∑
i≥0

ziL′, L′′− =
∑
i≤0

ziL′′,

L′ = P + φX, L′′ = ψP +X,

ψ = φ−1, φ = z−1φ−1 + φ0 + zφ1, ψ = z−1ψ−1 + ψ0 + zψ1.

The space E1,−2(L) is taken orthogonal to zL′+∪z−2L′′ in the sense ( , )0, and is as-
sumed to contain the lagrangian plane L ⊂ E1,−2(L). The quotient E1,−2(L)/(z−2L′′−+
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zL′+) is B1
U (φ) with the lagrangian plane B(L) = L/(z−2L′′− + zL′+) of projec-

tive class B(detφ) and with hamiltonian basis X̃(1) = W2, X̃(2) = V2, P̃ (1) =
W1, P̃ (2) = V1, where W1 = X, W2 = (P + φX)+, V1 = z−1P and V2 =
(z−1X + z−1ψP )−; the suffix signs ± denote the projection H

π±−−→ H±, where
H+ =

∑
i≥0 z

i(X,P ), H− =
∑

i<0 z
i(X,P ), ψ(X) = ψP , φ(P ) = φX =

∑
φijxj ,

φ and ψ being matrices over the bases in X and P .
To indicate a complete system of elements which generate the module B(L) =

L/(z−2L′′− + zL′+) it is sufficient to take the elements

A1 = P + φX, z−1(P + φX) = A2, B1 = z−1(X + ψP ), B2 = X + ψP.

After some simple calculations we obtain these elements in matrix form:

A1 = W2 − φ−1(V2 − ψ0V1),

A2 = φ0V2 − φ1(W1 + ψ−1V1),

B1 = V2 − ψ1(W2 − φ0W1),

B2 = ψ0W2 ± ψ1(V1 + φ−1W1),

It is necessary to take into account the relations ψφ = 1, z−2L′′− = 0 and zL′+ = 0
for these calculations. The signs indicated here are for a skew-hermitian form φ (for
hermitian forms everything is the same except that the opposite signs are taken).
Note that the triple (A1, A2, B1) or (A1, B1, B2) already generates B(L).

Let us turn now to a geometrical situation. Interpreting, as before, the form φ as
a “process of converting a trivial lagrangian plane into an isomorphically projected
plane”, we arrive at the following geometrical situation on the covering space. We
start with an odd-dimensional (2k + 1)-manifold M = V × R where z acts as
a “displacement” along a line and V × 0 separates M = V × R. We choose a
collection of spheres {Sk

q , . . . , S
k
m} with fields of frames for the Morse modifications

and cut out tubular neighborhoods T (Sk
j ) of the spheres; we examine the whole

picture on the universal covering spaces M̂ = V̂ ×R. We will denote by P1, . . . , Pm

these same spheres Sk
j copied onto the boundaries of the tubular neighborhoods ∂Tj

and denote the “linked” cycles on the boundary of the tubes by X1, . . . , Xm, where
m = rkφ. We select the linking matrix (and the fields of frames) for the spheres
Sk

j so that it coincides with the form φ; this means that in M̂1 = (M \
⋃

j Tj)∧

we will have a homotopy relation P + φX = 0 between elements on the boundary
∂M̂1. Performing a Morse modification on M for each of the cycles Sk

j in the given
setting, we pass from M to M \

⋃
j Tj , thereupon adding the relations {Pj = 0}

to the final manifold M2. As a result, in view of the nondegeneracy of φ, we
have Pj = 0, Xj = 0 and M2 is homotopically equivalent to M . The process of
performing M →M2 has the form φ as its “action hessian”.

What happens to V ⊂M under this transformation? We choose the spheres Sk
j

so that the intersections zsSk
j ∩ (V̂ × 0) in the manifold M̂ = V̂ × R are empty

if and only if the number s is such that zsL′+ ⊂ H+ or zsL′− ⊂ H−, i.e. when
s 6= 0,−1. If the intersection zsSk

j ∩ V̂ is nonempty then it is a sphere Sk−1
j,k ∩ V̂

which is homotopic to zero in V̂ . Such a choice is possible and natural when
φ = φ−1z

−1 + φ0 + zφ1 and ψ = ψ−1z
−1 + ψ0 + zψ1.

Further, in performing M̂ → M̂1, neighborhoods of these spheres Sk−1
j,s , when s =

0,−1, are “cut out” from V̂ . After performing M̂1 → M̂2, connecting manifolds are
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adjoined to the spheres Sk−1
j,s displaced to the boundaries of the tubes zs(∂Tj)∩ V̂ .

As a result of performing M̂ → M̂2 we obtain V̂ → V̂2 ⊂ M̂2, which has the
form of a Morse modification on the cycles Sk−1

j,s ⊂ V . Therefore the manifold
V̂2 → M̂2 will have as the homotopy kernel of the inclusion V̂2 → M̂2 a free module
(hamiltonian) with coordinates ˜̃Xj,s = cycles linked with Sk−1

j,s and ˜̃Pj,s = cycles
obtained by the union of connecting manifolds and representing homotopies in the
interior of V̂ from the cycles Sk−1

j,s to zero and to the connecting manifold which is

added in the process of modification. Thus 〈 ˜̃Xj,s,
˜̃Xk,s1〉 = 0, 〈 ˜̃Pj,s,

˜̃Pk,s1〉 = 0 and

〈 ˜̃Xj,s,
˜̃Pk,s1〉 = δ(j,s)(k,s1).

We will denote by A, ∂A = P +φX, a connecting manifold in M̂1 which realizes
the homotopy relation P + φX = 0, and we will denote by Bj , where ∂Bj = Pj ,
zsBj ∩ V̂2 = βs,j , ∂B0,j = Sk−1

0,j and ∂B−1,j = Sk−j
−1,j , a connecting manifold for Pj

in M̂2. The cycles ˜̃Xj,s can be identified in a natural way with the cycles zsXj in
M̂1 when s = 0,−1:

˜̃Pj,s = βj,s = ∂−1
V (Sk−1

j,s ), s = 0,−1.

As V̂2 separates M̂2 into 2 parts (the upper and the lower with respect to the R-
coordinates, or with respect to powers of z), to calculate the lagrangian plane B1

U (φ)

in the hamiltonian module ( ˜̃Xj,s,
˜̃Pj,s) it is necessary to calculate the (homotopy)

kernel of the inclusion of the manifold V̂2 into the “lower half”: M−
2 ⊂ M̂2, M̂2 =

M−
2 ∪M+

2 , M−
2 ∩M+

2 = V̂2. We utilize for this calculation the connecting manifold
A, ∂A = P + φX = P + φ(P ). We suppose here that the connecting manifold A

intersects V̂ ×0 and V̂ ×1 = z(V̂ ×0) only in the interior of V̂ ×R = M̂ ; this means
that the connecting manifold A lies between V̂ × (−1) and V̂ × (2). Dividing A into
three parts by means of V̂ × 0 and V̂ × 1, we obtain three connecting manifolds
A = A−1 +A0 +A1, where A−1 lies below V̂ × 0, A0 lies between V̂ × 0 and V̂ × 1
and A1 lies above V̂ × 1.

Let us introduce the notation

∂A−1 = q
(1)
0 + λ−1X,

∂(A0 +A1) = −q(2)0 + (λ0 + λ1)X,

∂A1 = −zq(2)−1 + λ1X,

∂(A0 +A−1) = zq
(1)
−1 + (λ0 + λ−1)X,

here everything is written in matrix form, λ−1 + λ0 + λ1 = φ = z−1φ−1 + φ0 + zφ1

and the q(j)s (where s = 0,−1 and j = 1, 2) are the cycles consisting of the piece
of the cycle zsP below V̂ × 0 (or above when j = 2) and the piece of boundary of
the connecting manifold A−1, A0 + A1 (or z−1A1, z

−1(A0 + A1)) on the manifold
V̂ × 0. Note moreover that λ1 = λ1,1z + λ1,0, λ0 = λ−1,0z

−1 + λ0,0 + λ0,1z and
λ−1 = λ−1,−1z

−1 + λ−1,0. As long as we do not know the matrix λij we cannot
complete the calculation of B1

U (φ). Of course in changing the connecting manifold
A we change the λij ; then sum is equal to φ. (It is possible to choose the connecting
manifold A such that λ−1 = 0, λ0 = z−1φ−1 and λ1 = φ0 + zφ1.) Further, let us
note that in view of the connecting manifold B we have a homotopy q

(j)
0 = P0,
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q
(j)
−1 = P−1, where the homotopy lies below V̂2 × 0 when j = 1 (or above when
j = 2).

Which connecting manifolds (relations on ˜̃X, ˜̃P ) lie below V̂2×0? These connect-
ing manifolds give the lagrangian plane B1

U (φ) in the hamiltonian module ( ˜̃X, ˜̃P ).

One such connecting manifold is A−1, and ∂A−1 = q
(1)
0 +λ1X gives an element ˜̃P0

in the required lagrangian plane. The connecting manifold z−1(A0 +A−1) does not
give yet another such element since (λ0 +λ−1)X contains (λ0,−1 +λ−1,−1)z−2X =
φ−1z

−2X, where z−2X cannot be displaced onto V̂2×0 along M̂2. Recall that only
z−1X and X have a natural displacement onto V̂2 (and they give the elements ˜̃X−1

and ˜̃X0 there).
Since ∂A = P + φX and ∂B = P , we have ∂(z−2ψA− z−2ψB) = z−2X in M̂2,

where only z−1ψ1A1 and a bit of B lies above V̂2× 0. Therefore “below” V̂2× 0 we
will have

0 = z−2X + ψ(− ˜̃P−1 + λ1,0z
−1X + λ1,1X),

which is obtained from the boundary ∂(z−1ψ1A1). Replacing ψ1(
˜̃P−1−λ1,0z

−1X−
λ1,1X) by z−2X in the formula for the boundary ∂(z−1(A0+A−1)), we obtain other
elements in the lagrangian plane:

˜̃P−1 + λ0,1X + (λ0,0 + λ−1,0)z−1X + (λ0,−1 + λ−1,−1)z−2X,

where z−1X = ˜̃X−1 and X = ˜̃X0.
Further, we have ∂(z−1ψA+ a bit of B) = z−1X in M̂2. Separating the part of

the connecting manifold “above” V̂2 × 0, we obtain

z−1X = ˜̃X−1 = ψ1(
˜̃P0 + (λ0 + λ1)X) + ψ0(− ˜̃P−1 + λ1z

−1X).

Noting that ψ1φ1 = 0 and λ0,1 + λ1,1 = φ1, after substituting z−1X = ˜̃X−1,

X = ˜̃X0 we find yet another relation “below”.
To compare the formulas obtained for the “geometric” lagrangian plane in the

coordinates ˜̃P0,
˜̃P−1,

˜̃X0,
˜̃X−1 with the “algebraic” lagrangian plane obtained pre-

viously in the coordinates W1,W2, V1, V2 it is necessary to complete the following
hamiltonian transformation:

V ′2 = V2 − ψ1(W2 − φ0W1),

V ′1 = V1, W ′
2 = W2 ± φ0ψ−1V1, W ′

1 = W1 ± ψ−1V1

and then make the comparison

V ′2 →
˜̃P0, W ′

2 →
˜̃P−1, V ′1 →

˜̃X0, W1 → ˜̃X−1.

After some simple calculations we see that the lagrangian planes in the new coordi-
nates coincide (more precisely, will differ by obviously inessential terms) if we take
λ−1 = 0, λ0 = z−1φ−1 and λ1 = φ0 + zφ1.

Thus the geometrical and algebraic definitions are equivalent, given those re-
strictions which enable us to relate the elements of U2 geometrically.

We will not analyze the geometrical interpretations in more detail; in particular,
we will not analyze the proofs of Theorems 5.4 and 6.3–6.5.

Let us note that a rigorous identification of the usual K2(A) for A = Z[π]
with the problem of pseudo-isotopies of diffeomorphisms, and therefore with the
interpretation of the groups V 2

j (A) and W 2
j (A) in Problem 3 (see above), has not,
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as far as the author knows, been developed in the literature. However, it could be
obtained by analyzing the “simply-connected” paper of Browder [4], although we
will not make this analysis here.

The result of this section is, in particular,

Theorem 9.1. If K̃0(π1) = 0, then the obstructions to Morse modifications in
Problem 1 lie in the groups Uk

1 (Z[π1]) = Uk+2
2 (Z[π1]) (modulo ⊗Z[1/2]), the oper-

ation M →M×S1 on the obstruction to modifications corresponds to the operators
B̄U and the inverse operation M ×S1 →M (and passage to the total preimage M)
corresponds to the operator BU .

The proof of this theorem was given above. It is more complicated for the
operators BU : Uk(A[z, z−1]) → Uk−1(A).

10. Certain applications to the theory of characteristic classes.
Relative formulas of the Hirzebruch type

If we have a map f : Mn
1 → Mn

2 of degree 1 which induces an isomorphism
between the fundamental groups π1(M1) = π1(M2) and is such that there is an ele-
ment ξ ∈ KO(M2) for which f∗(−ξ) is the tangent bundle to M1, then the following
question arises: since the bordism class [M1, f ] in the group πN+n(MN (ξ)) of the
Thom complex MN (ξ) defines an element of the group α(f) ∈ Un

1 (A), A = Z[π1],
then which characteristic classes of the manifold Mn

1 , coinciding with the charac-
teristic classes of the fiber bundle f∗(−ξ), are defined by the original manifold Mn

2

and the element α(f)? In [12], [13] and [15] the scalar products of the Hirzebruch
classes Lk(Mn

1 ) with cycles which were intersection cycles of codimension 1 were
considered.

Theorem 10.1. If H1(Mn
1 )/Torsion = Hom(π1, Z) and Λn−4kH1 κ−→ Hn−4k(Mn

1 )
is generated by multiplication, then for u ∈ Λn−4kH1(Mn

1 ) = Λn−4kπ∗1 the scalar
product (Lk(Mn

1 )− f∗Lk(Mn
2 ), Dκ(u)) is completely defined by the element α(f) ∈

Un
1 (A) according to the following “Hirzebruch formula”:

(Lk(Mn
1 )− f∗Lk(Mn

2 ), D(z∗1 ∧ · · · ∧ z∗n−4k)) = σBU (z∗1 ∧ · · · ∧ z∗n−4k)α̃(f),

where D is the Poincaré duality operator, z∗i ∈ H1(Mn
1 ), BU (z∗1 ∧ · · · ∧ z∗n−4k) is

the iterated Bass operator BU (z∗1) ◦ · · · ◦BU (z∗n−4k) depending only on the element
z∗1 ∧ · · · ∧ z∗n−4k ∈ ∆n−4kπ∗i (see § 6), σ : U4k

1 (A) → Z is the usual signature
homomorphism on the Z-module M ⊗A Z = M0, M ∈ U4k

1 , α̃(f) is the image
of the element α(f) under the homomorphism U∗1 (A) → U∗1 (A′), A′ = Z[π∗∗1 ],
A = Z[π1], and the group π∗∗1 is free abelian.

We will not cite the proof of this formula—it could have been written down,
rather ineffectively, before this present paper was written (see for example [13]–
[16]), but it would not have been an algebraic formula, by which we mean that
the algebraic definition of the operators BU and B̄U was not known, although
for free abelian groups π = π∗∗ a rather ineffective “theorem on the existence
of Bass operators” was considered for differential topology (see [16]) (at least for
geometrically realizable elements (and it is not clear in exactly what theory of
homotopy type)). In view of § 9 our algebraic operators BU and B̄U coincide with
the geometric operators on elements such as these. Therefore such a formula is true
and is now purely algebraic.

Comparing the above with the papers [14] and [16], we can derive
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Corollary 10.2. The non-simplyconnected Hirzebruch formula gives a complete
collection of algebraic relations on the realization of elements in Un

1 (Z×· · ·×Z) as
obstructions to modifications α(f) if the maps f , the elements α(f) and the group
π = Z × · · · × Z are considered modulo passing to finite coverings f̂ , α(f̂) (and
modulo subgroups of finite index ).

11. Unsolved problems

1. Here we consider first of all the following general question: what is a “general
non-simplyconnected Hirzebruch formula”?

This question could be answered in the following way: there should exist a certain
homomorphism “of generalized signature”

σk : Un
1 (A) → Hn−4k(π1, Q)

such that for any n-dimensional closed oriented manifold Mn with fundamental
group π1 and for a natural map f : Mn → K(π1, 1) the scalar product (Lk(Mn), Df∗(x))
is homotopically invariant for all x ∈ H∗(π1, Q), and DLk as a linear form on
H∗(π1) (or an element of H∗(π1, Q)) belongs to the image of σk. We have con-
structed explicitly such homomorphisms for one abelian group; here they even turn
out to be isomorphisms over Q (this was known ineffectively in topology—see [7],
[16] and [19]).

Of course this problem can be posed for finite modules p, at least for p large
compared with n.

Let us note that a number of considerations suggest that, for example, for the
fundamental groups of “solv-” and “nil-” manifolds such a homomorphism exists
and is an epimorphism over Q, such that the allowable classes of cycles are not
just the intersections of cycles of codimension 1. Here we can introduce the “non-
commutative extension” of the ring A, namely augmentation by z and z−1 without
assuming that they commute with A, to generalize the theory of operators of Bass
type. However, this does not clarify the general question. It goes without saying
that the question of a “relative Hirzebruch formula” is simpler. Let us note that
the question of the intrinsic calculation of scalar products of Lk with cycles of the
form Df∗(x) is essentially more complicated even for abelian π—it cannot be solved
even for π = Z × Z (see [13]–[15]).2

2. Let us see what the question on a “non-simplyconnected Hirzebruch for-
mula” and the construction of “generalized signature” homomorphisms σ : U∗1 (A) →
H∗(π;Q) becomes when we replace the group rings A by the ring of functions
A = C(X).

If we replace H∗(π,Q) by H∗(X) then we arrive at a problem about the abstract
algebraic construction of the Chern character

Ch: U∗(A) = K∗(X) → H∗(X).

For this it is necessary to start from some purely ring theoretic formulism for
constructing H∗(X) from the ring C(X). Let us note in this connection that for
A = Z[π] the group π is distinguished by the equation σσ̄ = 1. In the ring C(X)
this equation distinguishes the functions on X with modulus equal to the identity,

2A. S. Mǐsčenko has found a peculiar analog to the classical signature: an element from
U∗(π1)⊗ Z[1/2] is associated in a homotopically invariant way with a manifold, and this defines

a homomorphism from the bordism theory SO∗(π1)→ U∗(π1)⊗ Z[1/2] into hermitian K-theory
which is connected, apparently, with the L-type.
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i.e. the group (X → S1) = (S1)X , which is a peculiar infinite-dimensional torus. It
is possible that this analogy is meaningful and that one could construct an analogy
to the theory of the “Bass operators” BU , B̄U and then use it to define H∗(X) and
Ch algebraically. Here, in view of § 6, it is impossible to think of continuous (or
smooth, if smooth functions are taken) operators BU and B̄U without a thorough
investigation of the relationship with the formalism or derived quantization over the
ring of functions; the operators BU (z∗), in essence, depend on the linear functionals,
i.e. on generalized functions. This question, however, does not seem clear.

Let us note that for the ring R(X) the involution is trivial and σσ̄ = 1 distin-
guishes only the identity. The bad properties of such a ring are connected with this
fact. There are other reasons.

3. We have constructed analogs of K-theory (namely the theory U∗) requiring
only the existence of the Bass operators B and B̄. However, generally speaking, U∗-
theory is not a real homology theory. For example, for a ring of the type R(X) only
U∗ ⊗ Z[1/2] is a homology theory and coincides with KO∗(X)⊗ Z[1/2]. Here the
incompleteness of our investigation is obvious. It is possible that it was incorrect to
take U2(A) = U0

i (A), i 6= j, by definition and to carry over to U2
j (in constructing

Uk
j , k ≥ 3) the idea of a “reduction process” which is characteristic for U0

i . Here
there are many subtle and vague questions from the point of view of pure algebra.
For a clarification of this it is necessary to analyze and unite from our point of view
the schemes of Karoubi–Atiyah type and the construction of bigraded theories (see
[1]).

We have restricted ourselves to the Bass projections because this operation does
not take us out of the class of group rings which are necessary in differential topol-
ogy. In addition to this we were interested in clarifying the analogies with the
hamiltonian formalism well known in other domains, which is already sufficient
(in the true sense of the word) for our narrow aims. Nevertheless the questions
indicated here ought undoubtedly to be clarified in the future.

4. The question of the analytic meaning of the algebraic ideas given here has
been discussed repeatedly in the present paper. In particular, in Example 1 of § 4
we pointed out that this algebraic formalism over the ring R (real numbers) has
already appeared in the construction of the so-called global quasi-classical when
passing from quantum mechanics to classical mechanics in this situation (see [9]):
there is a lagrangian submanifold L in a hamiltonian space Hn(x, p) ⊃ L and finite
functions on L which depend on a small parameter h. It is necessary to construct
a correspondence (a canonical operator) between functions on L and functions on
X, which is well defined up to terms in h (mod O(h2)). For a motion L in the
hamiltonian system (in the sense of classical mechanics) the image of the functions
under the canonical operator varies as the solution of a Schrödinger equation, up
to terms in h (mod O(h2)).

Up to terms in h, on isomorphically projected L’s such an operator K has the
form f(l) K−→ J−1/2ei/hS(l)f [πl], where l ∈ L, x = πl, π : L → X is the projection,
J is the Jacobian of the projection and S =

∫ l

l0
p dx along the path in L. We

pointed out in Example 1 of § 4 that the construction of such an operator on non-
isomorphically projected L’s requires strict analysis of the process of passing from
the P -space to the X-space near the singular points of the projection into X, and is
connected in the same way with U2

2 (R) (see [9], part II, Chapter 2, § 2). However,
we isolated in essence only the abstract algebraic definition of “the Maslov index”
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in [9] and the reasons for its appearance in such problems. This was not sufficient
for a thorough algebraic analysis of the idea of a “canonical operator” as well as the
quantization conditions. Here it would be desirable to develop the corresponding
formalism on the ring of functions, and then to make all these constructions the
topic of a purely algebraic theory. This, however, does not appear too easy.

12. On the role of the Arf-invariant

In every result in the present paper we have started from the idea of a bilinear
form 〈 , 〉 on an A-module and required in addition that the ring A contain 1/2. At
the same time we often used the expression “even form”, which is not essential when
a 1/2 is present. This implied in fact that many of our constructions were suitable
for integral group rings, and we indicate here the corresponding addenda for a ring
A which does not contain a 1/2. Following Wall ([20], § 5), we consider a module
with “a quadratic form” [x, x] ∈ A/(a − ā) (hermitian case) or [x, x] ∈ A/(a + ā)
(skew-hermitian case), where 〈x, x〉 = [x, x] ± [x, x] ∈ A. It is obvious that when
there is a 1/2 in the ring the form [x, x] is defined by the bilinear form 〈 , 〉 but
when there is no 1/2 ambiguous distinctions arise. As an example we note that,
when A = Z, in the skew-symmetric case we have Z/(a+ ā) = Z2 and we obtain a
so-called Arf-invariant in the form [x, x] ∈ Z2, since in A/[a+ ā] we always require
the identity

[x+ y, x+ y] = [x, x] + [y, y] + 〈x, y〉 mod (a± ā).

Therefore we will call the form [ , ] an Arf-invariant for all A.
The idea of a “lagrangian plane” L ⊂ Q will now include an additional require-

ment that [x, x] = 0 for x ∈ L when we consider an A-module Q with a bilinear
form 〈 , 〉 together with an Arf-invariant [ , ].

In the case of the integral group ring (with the usual involution) Z[π] = A the
group A/(a + ā) of values taken by the form [ , ] has generators −g = g−1 which
are free abelian when g2 6= 1 and of order 2 when g2 = 1. The free abelian part of
the form [x, x] in A/(a+ ā) is determined completely by the bilinear form 〈 , 〉, but
the 2-torsion is associated with the elements g2 = 1 in π that give the usual Arf-
invariant when g = 1 and its analog when g 6= 1 but g2 = 1. (The group A/(a− ā)
for Z[π] with the usual involution does not generally have 2-torsion, and the form
[ , ] is defined by the bilinear form 〈 , 〉 (even). Therefore in the case A = Z[π]
with symmetric forms the Arf-invariant [ , ] is not necessary.) For skew-symmetric
forms it reduces to the classical Arf-function, which is associated not only with the
identity element g ∈ π, but also with all g2 = 1, g ∈ π. Namely if S ⊂ π is the
set of all g ∈ S with g2 = 1, and the group π acts on S : g → σgσ−1, then we
have the Arf-invariant Φ(x, g) ∈ Z2, x ∈ Q, g ∈ S, where Φ(σx, g) = Φ(x, σgσ−1),
Φ(x + y, g) = Φ(x, g) + Φ(y, g) + (x, gy)2 and 〈x, gy〉 = −(gy, x) = −(y, gx) when
g2 = 1, (gx, gy) = (x, y). Such a situation with an integral group ring with the
usual involution corresponds to orientable manifolds.

At the same time one meets a group ring in topology with an unusual involution
given by the “orientation homomorphism”

f : π → Z2(±1), ā =
∑
σ∈π

aσf(σ)σ−1 for a =
∑
σ∈π

aσσ.
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Moreover,

〈x, y〉 =
∑
σ∈π

(x, σy)f(σ)σ,

where (x, y) = f(σ)(σx, σy) is the intersection number. Taking into account the
new involution in Z[π], we have 〈x, y〉 = ± < y, x〉 and σ〈x, y〉 = 〈σx, y〉.

Here, as is easily seen, 2-torsion can appear in both cases A/(a ± ā)—the sym-
metric and the skew-symmetric. For π = Z2 and nontrivial f : π → (±1) the
Arf-invariants appear in the symmetric case A/(a− ā).

We note here the additions and changes entailed by the Arf-function in hamil-
tonian formalism and the constructions of this paper for the case of a group ring
with the usual involution; the remaining cases will then be easy to analyze.

If we first construct the U∗-theory for A = [π] with the usual involution in a
skew-hermitian category, then when constructing U0

2 (A) we ought to consider, in
§ 2, modules Q with a bilinear form 〈x, y〉 ∈ A and with an Arf-function Φ(x, g),
g2 = 1, g ∈ π (or with a form [ , ] ∈ A/(z+ ā)). Here only those submodules L ⊂ Q
such that Φ/L = 0 and 〈L,L〉 = 0 will be called lagrangian. In a hamiltonian space
H = (X) + (P ) it is necessary to require that Φ/P = 0 and Φ/X = 0, and, when
constructing U1

2 (A), to consider those L ⊂ H such that Φ/L = 0.
There is a simple lemma which explains the role of the parity of the “action

hessian”.

Theorem 12.1. In a hamiltonian space H = (X) + (P ) such that Φ/X = 0 and
Φ/P = 0 the lagrangian plane L has an even action hessian if and only if Φ/L = 0.

The proof is obtained in an obvious way from the additive identity for the Arf-
function.

Remark 12.2. If there is distinguished an “impulse subspace” P ⊂ H in a hamil-
tonian module Hn, then the requirement Φ/X = 0 means that the extension to a
basis X,P ⊂ Hn can be carried out uniquely up to an equivalence; in fact X can
be replaced by X ′ = X + λP , where λ is an odd form. The Arf-function makes
invariant the restriction of evenness for the action hessian on L and gives a unique
rule for choosing X up to an equivalence provided that only P ⊂ Hn is given. This
point was not clarified in §§ 2 and 3, and is only eliminated when a 1/2 is introduced
into the ring.

Thus a revised definition is that U0
2 (A) is constructed from skew-hermitian forms

with an Arf-function, and U1
2 (A) is constructed from the “processes of reducing

U0 to zero”, i.e. from lagrangian planes with even action hessian in the X,P -
coordinates (or, what is the same thing, from lagrangian planes in hamiltonian
modules with Arf-functions Φ for which Φ/X = Φ/P = 0). The construction of
U2

2 (A) = U0
1 (A) for A = Z[π] (σ−1 = σ̄) remains the same, and the Arf-function

will be taken into account automatically in the construction of the Bass projections
B0

U , B̄
0
U , B

1
U , B̄

1
U .

However, when we obtain U0
2 (A), like U2

1 (A), in the form of the action hessian,
the Arf-invariant does not arise naturally. This violates the 4-periodicity and causes
difficulties, and it is only possible to leave all the results modulo ⊗ZZ[1/2].

Note that for A = R(X) 3 1/2 there is also no 4-periodicity; our formalism
really only gives a transition from the skew-symmetric category U0

2 = KO6(X),
U1

2 = KO7(X) law the symmetric category U0
1 = U3

2 (A) = KO8(X) = KO0(X)
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(according to Bott). However, it is just this case which corresponds to the clas-
sical hamiltonian formalism. Conversely, for A = R(X) the transition from the
symmetric category where U0

1 (A) = KO0(X) and U1
1 (A) = KO1(X) into the skew-

symmetric category where U0
2 (A) = KO6(X) is verified only after introducing a

1/2, i.e. for U∗ ⊗ Z[1/2]. This shows that thinking of the “action hessian” in the
hermitian category simply as a skew-hermitian form is not sufficient even for an
A = R(X) which contains a 1/2 (probably it plays the role here of a complex
structure). This question has already been posed in § 11.3, so that the difficulties
connected with the number two are not entirely due to neglect of Arf-function.
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Anal. i Priložen. 1 (1967), no. 1, 1–14. (Russian) MR 35 #2296.

[3] H. Bass, A. Heller and R. G. Swan, The Whitehead group of a polynomial extension, last.

Hautes Études Sci. Publ. Math. No. 22 (1964), 61–79. MR 30 #4806.

[4] W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128

(1967), 155–163. MR 35 #3681.
[5] , Manifolds with π1 = Z, Bull. Amer. Math. Soc. 72 (1966), 238–244. MR 32 #8350.
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