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Introduction

Signatures of quadratic forms play a central role in the classification the-
ory of manifolds. The Hirzebruch theorem expresses the signature σ(N) ∈
Z of a 4k-dimensional manifold N4k in terms of the L-genus L(N) ∈
H4∗(N ;Q). The ‘higher signatures’ of a manifoldM with fundamental group
π1(M) = π are the signatures of the submanifolds N4k ⊂ M which are de-
termined by the cohomology H∗(Bπ;Q). The Novikov conjecture on the
homotopy invariance of the higher signatures is of great importance in un-
derstanding the connection between the algebraic and geometric topology
of high-dimensional manifolds. Progress in the field is measured by the class
of groups π for which the conjecture has been verified. A wide variety of
methods has been used to attack the conjecture, such as surgery theory,
elliptic operators, C∗-algebras, differential geometry, hyperbolic geometry,
bounded/controlled topology, and algebra.

The diffeomorphism class of a closed differentiable m-dimensional man-
ifold Mm is distinguished in its homotopy type up to a finite number of
possibilities by the rational Pontrjagin classes p∗(M) ∈ H4∗(M ;Q). Thom
and Rochlin-Shvarc proved that the rational Pontrjagin classes p∗(M) are
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braic K-theory’, 28 June, 1993 and ‘Novikov conjectures, index theory and rigidity’, 6

September, 1993.



2 Andrew Ranicki

combinatorial invariants by showing that they determine and are determined
by the signatures of closed 4k-dimensional submanifolds N4k ⊂M × Rj (j
large) with trivial normal bundle. A homotopy equivalence of manifolds only
preserves the global algebraic topology, and so need not preserve the local
algebraic topology given by the Pontrjagin classes. The Browder-Novikov-
Sullivan-Wall surgery theory shows that modulo torsion invariants for m ≥ 5
a homotopy equivalence of closed differentiable m-dimensional manifolds is
homotopic to a diffeomorphism if and only if it preserves the signatures of
submanifolds and the non-simply-connected surgery obstruction is in the
image of the assembly map; this map is onto in the simply-connected case.
(Here, torsion means both Whitehead groups and finite groups). Novikov
proved the topological invariance of the rational Pontrjagin classes by show-
ing that a homeomorphism preserves signatures of submanifolds with trivial
normal bundles, using the fundamental group and non-compact manifold
topology.

The object of this largely expository paper is to outline the relation-
ship between the Novikov conjecture, the exotic spheres, the topological
invariance of the rational Pontrjagin classes, surgery theory, codimension
1 splitting obstructions, the bounded/controlled topology of non-compact
manifolds, the algebraic theory of Ranicki [45], [48], [49], and the method
used by by Carlsson and Pedersen [14] to prove the conjecture for a geo-
metrically defined class of infinite torsion-free groups π with Bπ a finite
complex and Eπ a non-compact space with a sufficiently nice compactifica-
tion. See Ferry, Ranicki and Rosenberg [19] for a wider historical survey of
the Novikov conjecture.

The surgery obstruction groups Lm(Z[π]) of Wall [56] are defined for
any group π and m(mod 4), to be the Witt group of (−)k-quadratic forms
over the group ring Z[π] for m = 2k, and a stable automorphism group
of such forms for m = 2k + 1. In [56] the groups L∗(Z[π]) were under-
stood to be the simple quadratic L-groups Ls∗(Z[π]), the obstruction groups
for surgery to simple homotopy equivalence, involving based f.g. free Z[π]-
modules and simple isomorphisms. Here, L∗(Z[π]) are understood to be
the free quadratic L-groups Lh∗(Z[π]), the obstruction groups for surgery
to homotopy equivalence, involving unbased f.g. free Z[π]-modules and all
isomorphisms. The simple and free L-groups differ in 2-torsion only, being
related by the Rothenberg exact sequence

. . . −−→Lsm(Z[π])−−→Lm(Z[π])−−→ Ĥm(Z2;Wh(π))−−→Lsm−1(Z[π])−−→ . . .

with Ĥ∗(Z2;Wh(π)) the (2-torsion) Tate Z2-cohomology groups of the du-
ality involution on the Whitehead group Wh(π). A normal map (f, b) :
M−−→N from an m-dimensional manifold M to an m-dimensional geo-
metric Poincaré complex N with π1(N) = π has a surgery obstruction
σ∗(f, b) ∈ Lm(Z[π]) such that σ∗(f, b) = 0 if (and for m ≥ 5 only if) (f, b) is
normal bordant to a homotopy equivalence. The original treatment in [56]
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using forms and automorphisms was extended in Ranicki [45] to quadratic
Poincaré complexes (= chain complexes with Poincaré duality). The surgery
obstruction groups L∗(Z[π]) were expressed in [45] as the cobordism groups
of quadratic Poincaré complexes over Z[π].

The assembly maps in quadratic L-theory

A : H∗(X;L.(Z)) −−→ L∗(Z[π1(X)])

are defined in Ranicki [49] for any topological space X, abstracting a geomet-
ric construction of Quinn. The generalized homology groups H∗(X;L.(Z))
with coefficients in the simply-connected surgery spectrum L.(Z) are the
cobordism groups of sheaves Γ over X of quadratic Poincaré complexes
over Z. For the purposes of this paper X can be taken to be a simplicial
complex, and Γ can be taken to be a quadratic Poincaré cycle in the sense
of [49]*. The assembly map A sends a quadratic Poincaré cycle Γ over X to
the quadratic Poincaré complex over Z[π1(X)]

A(Γ) = q !p
!Γ

with p ! the pullback along the universal covering projection p : X̃−−→X
and q ! the pushforward along the unique map q : X̃−−→{pt.}.
Novikov conjecture for a group π
The assembly maps for the classifying space Bπ

A : H∗(Bπ;L.(Z)) −−→ L∗(Z[π])

are rational split injections.

This will be called the rational Novikov conjecture, to distinguish it
from :

Integral Novikov conjecture for a group π
The assembly maps A : H∗(Bπ;L.(Z))−−→L∗(Z[π]) are split injections.

The rational Novikov conjecture is trivially true for finite groups π; it has
been verified for groups which have strong geometric properties.

The integral Novikov conjecture is known to be false for finite groups
π; it has been verified for torsion-free groups which have strong geometric
properties.

The verification of the integral Novikov conjecture π requires the con-
struction of a ‘disassembly’ map

B : Lm(Z[π]) −−→ Hm(Bπ;L.(Z)) ; C −−→ B(C)

* The simplicial method applies to an arbitrary space X by considering algebraic Poincaré

cycles over the simplicial complexes defined by the nerves of open covers of X. Hutt [25]

has worked out the theory of sheaves of algebraic Poincaré complexes over an arbitrary

space X.
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such that BA = 1. Such a map B has to send a quadratic Poincaré complex
C over Z[π] to a sheaf B(C) over Bπ of quadratic Poincaré complexes
over Z, with BA(Γ) cobordant to Γ for any sheaf Γ over Bπ of quadratic
Poincaré complexes over Z. It is possible to construct such B for any group
π which has sufficient geometry that manifolds with fundamental group
π have rigidity, meaning that homotopy equivalences can be deformed to
homeomorphisms. Novikov [37] constructed B algebraically in the case of a
free abelian group π = Zn, when Bπ = Tn and A is an isomorphism. See
Farrell and Jones [17] for a geometric construction of B in the case when
Bπ is realized by a compact aspherical Riemannian manifold all of whose
sectional curvatures are nonpositive (when A is also an isomorphism), and
the connection with the original Mostow rigidity theorem for hyperbolic
manifolds.

The locally finite assembly maps in quadratic L-theory

Alf : H lf
∗ (X;L.(Z)) −−→ L∗(CX(Z))

are defined in Ranicki [49] for any metric space X, using the X-graded
Z-module category CX(Z) of Pedersen and Weibel [41]. The locally finite
generalized homology groups H lf

∗ (X;L.(Z)) are the cobordism groups of
locally finite sheaves Γ over X of quadratic Poincaré complexes over Z. It
was shown in Ranicki [48] that Alf is an isomorphism for X = O(K) ⊆
RN+1 the open cone of a compact polyhedron K ⊆ SN , which can be
used to prove the topological invariance of the rational Pontrjagin classes
(see 9.13 below). It is easier to establish that the locally finite assembly
maps Alf are isomorphisms than the ordinary assembly maps A. This is an
algebraic reflection of the observed fact that rigidity theorems deforming
homotopy equivalences to homeomorphisms are easier to prove for non-
compact manifolds than for compact manifolds.

Carlsson and Pedersen [14] prove the integral Novikov conjecture for
groups π with Bπ a finite complex realized by a compact metric space
such that the universal cover E = Eπ admits a contractible π-equivariant
compactification E with a metric such that compact sets in E become small
when translated under π near the boundary ∂E = E\E. Bounded/controlled
algebra is used to prove that Alf is an isomorphism for X = E, and equivari-
ant topology is used to construct an algebraic disassembly map B by means
of (Alf )−1. The conditions on the compactification allow E-bounded alge-
bra/topology to be deformed to ∂E-controlled algebra/topology, i.e. to pass
from homotopy equivalences to homeomorphisms. See Ferry and Weinberger
[20] for a more geometric approach. The computation Wh−∗({1}) = 0 of
Bass, Heller and Swan [4] is an essential ingredient of both [14] and [20],
since the lower K-groups of Z are potential obstructions to the disassembly
of quadratic Poincaré complexes over Z in bounded algebra, or equivalently
to compactifying simply-connected open manifolds in bounded topology.
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In dealing with vector bundles, manifolds, homotopy equivalences, etc.,
only the oriented and orientation-preserving cases are considered. Manifolds
are understood to be compact and differentiable, unless specified otherwise.
Also, except for classifying spaces, only topological spaces which are finite-
dimensional locally finite polyhedra or topological manifolds are considered.

§1. Pontrjagin classes and the L-genus

The Pontrjagin classes of an m-plane bundle η : X−−→BO(m) over a
space X are integral characteristic classes

p∗(η) ∈ H4∗(X) .

The rational Pontrjagin character defines an isomorphism

ph : KO(X)⊗Q = [X,Z×BO]⊗Q
'−−→ H4∗(X;Q) .

The L-genus of an m-plane bundle η : X−−→BO(m) is a rational coho-
mology class

L(η) ∈ H4∗(X;Q)

whose components Lk(η) ∈ H4k(X;Q) can be expressed as polynomials
in the Pontrjagin classes p1, p2, . . . with rational coefficients. The L-genus
determines and is determined by the rational Pontrjagin classes pk(η) ∈
H4k(X;Q). The first two L-polynomials are given by

L1 =
1
3
p1 , L2 =

1
45

(7p2 − (p1)2) .

See Hirzebruch [23] and Milnor and Stasheff [32] for the textbook accounts
of the Pontrjagin classes and the L-genus.

The Pontrjagin classes and the L-genus of an m-dimensional differen-
tiable manifold M are the Pontrjagin classes and the L-genus of the tangent
m-plane bundle τM : M−−→BO(m)

p∗(M) = p∗(τM) ∈ H4∗(M) ,

L(M) = L(τM ) ∈ H4∗(M ;Q) .

By construction, the Pontrjagin classes and L-genus are invariants of the
differentiable structure of M : if h : M ′−−→M is a diffeomorphism then

τM ′ = h∗τM : M ′ −−→ BO(m) ,

p∗(M ′) = h∗p∗(M) ∈ H4∗(M ′) ,

L(M ′) = h∗L(M) ∈ H4∗(M ′;Q) .
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§2. Signature

Definition 2.1 The intersection form of a closed 4k-dimensional mani-
fold N4k is the nondegenerate symmetric form

φ : H2k(N ;Q)×H2k(N ;Q) −−→ Q ; (x, y) −−→ 〈x ∪ y, [N ]〉

on the finite-dimensional Q-vector space H2k(N ;Q). The signature of N4k

is
σ(N) = signature(H2k(N ;Q), φ) ∈ Z .

Remarks 2.2 (i) An m-dimensional geometric Poincaré complex X is a
finite CW complex with a fundamental class [X] ∈ Hm(X) inducing iso-
morphisms

[X] ∩− : H∗(X)
'−−→ Hm−∗(X) .

Closed topological manifolds are the prime examples of geometric Poincaré
complexes. The intersection form (H2k(X;Q), φ) and the signature σ(X) ∈
Z are defined for any 4k-dimensional geometric Poincaré complex X, and
are homotopy invariants of X.
(ii) The intersection form and signature are also defined for any 4k-dimen-
sional geometric Poincaré pair (X, ∂X), such as a manifold with boundary
(M,∂M).

Signature Theorem 2.3 (Hirzebruch) The signature of a closed differen-
tiable manifold N4k is the evaluation of the L-genus L(N) ∈ H4∗(N ;Q) on
[N ] ∈ H4k(N ;Q)

σ(N) = 〈L(N), [N ]〉 ∈ Z .

Transversality Theorem 2.4 A continuous map h : M ′m−−→Mm of dif-
ferentiable m-dimensional manifolds is homotopic to a differentiable map.
Given an n-dimensional submanifold Nn ⊂Mm it is possible to choose the
homotopy in such a way that the differentiable map (also denoted by h) is
transverse regular at N , with the restriction

f = h| : N ′n = h−1(N) −−→ Nn

a degree 1 map of n-dimensional manifolds which is covered by a map of the
normal (m− n)-plane bundles b : νN ′⊂M ′−−→νN⊂M .
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Definition 2.5 A submanifold Nn ⊂ Mm × Rj is special if it is closed,
n = 4k and the normal bundle is trivial

νN⊂M = εi : N −−→ BSO(i) (i = m+ j − 4k) .

Proposition 2.6 (Thom) The rational Pontrjagin classes and the L-genus
of a manifold M are determined by the signatures of the special submanifolds
N4k ⊂M × Rj.
Proof The Pontrjagin classes and the L-genus of a special submanifold
N4k ⊂Mm×Rj are the images in H4∗(N ;Q) of the Pontrjagin classes and
the L-genus of M , that is

p∗(N) = e∗p∗(M) , L(N) = e∗L(M)

with
e : N −−→ M × Rj −−→ M .

The signature of N thus depends only on the homology class e∗[N ] ∈
H4k(M ;Q) represented by N

σ(N) = 〈L(N), [N ]〉
= 〈e∗L(M), [N ]〉 = 〈L(M), e∗[N ]〉 ∈ Z .

From now on, we shall write e∗[N ] ∈ H4k(M ;Q) as [N ]. The cobordism
classes of special submanifolds N4k ⊂ Mm × Rj are in one-one correspon-
dence with the proper homotopy classes of proper maps

f : M × Rj −−→ Ri (i = m+ j − 4k)

with N = f−1(0) (assuming transverse regularity at 0 ∈ Ri). The set of
proper homotopy classes is in one-one correspondence with the cohomotopy
group πi(ΣjM+) of homotopy classes of maps ΣjM+−−→Si, with ΣjM+ the
j-fold suspension of M+ = M ∪ {pt.}. By the Serre finiteness of the stable
homotopy groups of spheres and Poincaré duality

πi(ΣjM+)⊗Q = Hm−4k(M ;Q) = H4k(M ;Q) .

The Q-vector space H4k(M ;Q) is thus spanned by the homology classes [N ]
of special submanifolds N4k ⊂M ×Rj , and

L(M) ∈ H4k(M ;Q) = HomQ(H4k(M ;Q),Q)

is given by

L(M) : H4k(M ;Q) −−→ Q ;

[N ] −−→ 〈L(M), [N ]〉 = 〈L(N), [N ]〉 = σ(N) .
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A PL homeomorphism of differentiable manifolds cannot in general be
approximated by a diffeomorphism, by virtue of the exotic spheres.

Theorem 2.7 (Thom, Rochlin-Shvarc) The rational Pontrjagin classes and
the L-genus are combinatorial invariants.
Proof Transversality also works in the PL category, so that the character-
ization (2.6) of the L-genus in terms of signatures of special submanifolds
N4k ⊂ M × Rj can be carried out in the PL category. In particular, if
h : M ′−−→M is a PL homeomorphism then

p∗(M ′) = h∗p∗(M) , L(M ′) = h∗L(M) .

Remark 2.8 Thom used PL transversality and the Hirzebruch signature
theorem to define rational Pontrjagin classes p∗(M) and the L-genus L(M) ∈
H4∗(M ;Q) for a PL manifold M . It is not possible to prove the topological
invariance of the rational Pontrjagin classes by a mimicry of Thom’s PL
transversality argument: on the contrary, topological invariance is required
for topological transversality.

Proposition 2.9 (Dold, Milnor) The rational Pontrjagin classes and the
L-genus are not homotopy invariants.
Proof The stable classifying space G/O for fibre homotopy trivialized vector
bundles is such that there is defined a fibration

G/O −−→ BO −−→ BG

with an exact sequence

. . . −−→ πn+1(BG) −−→ πn(G/O) −−→ πn(BO) −−→ πn(BG) −−→ . . . .

The homotopy groups of the stable classifying space BG for spherical fibra-
tions are the stable homotopy groups of spheres

π∗(BG) = πS∗−1 ,

so that by Serre’s finiteness theorem

π∗(BG)⊗Q = πS∗−1 ⊗Q = 0 (∗ > 1) .

By Bott periodicity π4k(BO) = Z, detected by the kth Pontrjagin class pk.
For any k ≥ 1 there exists a fibre homotopy trivial (j + 1)-plane bundle
η : S4k−−→BO(j + 1) (j large) over S4k with

pk(η) 6= 0 ∈ H4k(S4k) = Z .
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The sphere bundle S(η) is a closed (4k + j)-dimensional manifold which is
homotopy equivalent to S(εj+1) = S4k × Sj, such that

pk(S(η)) = −pk(η) 6= pk(εj+1) = 0 ,

Lk(S(η)) = skpk(S(η)) 6= Lk(S(εj+1)) = 0

∈ H4k(S4k × Sj) = Z

with sk 6= 0 ∈ Z the coefficient of pk in Lk. See 2.10 for a more detailed
account.

Remark 2.10 Let Θm be the group of m-dimensional exotic differentiable
spheres, and let bPm+1 ⊆ Θm be the subgroup of the exotic spheres Σm

which occur as the boundary ∂W of a framed (m+1)-dimensional manifold
W , as in Kervaire and Milnor [26]. For m ≥ 5

Θm = πm(PL/O)

is a finite group. The classifying space PL/O for PL trivialized vector bun-
dles fits into a fibration

PL/O −−→ TOP/O −−→ TOP/PL ' K(Z2, 3)

so that for m ≥ 5

Θm = πm(PL/O) = πm(TOP/O) ,

and the subgroup

bPm+1 = im(πm+1(G/TOP )−−→πm(TOP/O))

= im(Lm+1(Z)−−→Θm) ⊆ Θm

is cyclic if m is odd, and is zero if m is even. The class [Σm] ∈ bPm+1 of
an exotic sphere Σm such that Σm = ∂W for a framed (m+ 1)-dimensional
manifold W is the image of the surgery obstruction

σ∗(f, b) ∈ πm+1(G/TOP ) = Lm+1(Z)

of the corresponding normal map (f, b) : (W, ∂W )−−→(Dm+1, Sm) with ∂f :
∂W−−→Sm a homotopy equivalence. We only consider the case m = 4k− 1
here, with k ≥ 2 ; the subgroup bP4k ⊆ Θ4k−1 is cyclic of order

tk = ak22k−2(22k−1 − 1) num(Bk/4k)
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with Bk the kth Bernoulli number and ak = 1 (resp. 2) if k is even (resp.
odd). Let (W 4k,Σ4k−1) be the framed (2k − 1)-connected 4k-dimensional
manifold with homotopy (4k − 1)-sphere boundary obtained by the E8-
plumbing of 8 copies of τS2k : S2k−−→BSO(2k), so that [Σ4k−1] ∈ bP4k is a
generator. Let

Q4k = W 4k ∪ cΣ4k−1

be the framed (2k − 1)-connected 4k-dimensional PL manifold with signa-
ture σ(Q) = 8 obtained from (W 4k,Σ4k−1) by coning off the boundary. The
tk-fold connected sum #tkΣ4k−1 is diffeomorphic to the standard (4k − 1)-
sphere S4k−1, so that #tkQ

4k has a differentiable structure. The topological
K-group of isomorphism classes of stable vector bundles over S4k

K̃O(S4k) = π4k(BO) = π4k(BO(j + 1)) (j large)

is such that there is defined an isomorphism

π4k(BO)
'−−→ Z ; η −−→ 〈pk(η), [S4k]〉/ak(2k − 1)! ,

by the Bott integrality theorem. The subgroup of fibre homotopy trivial
bundles

im(π4k(G/O)−−→π4k(BO)) = ker(J : π4k(BO)−−→π4k(BG)) ⊆ π4k(BO)

is the infinite cyclic subgroup of index

jk = den(Bk/4k)

with the generator η : S4k−−→BO(j + 1) such that

pk(η) = akjk(2k − 1)! ∈ H4k(S4k) = Z .

For any fibre homotopy trivialization

h : Jη ' Jεj+1 : S4k −−→ BG(j + 1)

the corresponding homotopy equivalence

S(h) : S(η)
'−−→ S(εj+1) = S4k × Sj

is such that the inverse image of S4k × {∗} ⊂ S4k × Sj is a submanifold of
the type

N4k = #tkQ
4k ⊂ S(η) ,

and S(h) restricts to a normal map

(f, b) = S(h)| : N4k −−→ S4k
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with b : νN−−→− η. Moreover,

τN = f∗(η) : N −−→ BO(4k) ,

pk(N) = f∗pk(η) = akjk(2k − 1)! ∈ H4k(N) = Z ,

σ(N) = skpk(N) = skakjk(2k − 1)! = 8tk ∈ Z ,

with

sk =
8tk

akjk(2k − 1)!
=

22k(22k−1 − 1)Bk
(2k)!

the coefficient of pk in Lk. The homotopy equivalence S(h) : S(η)−−→S4k×
Sj does not preserve the L-genus, since

〈Lk(S(η)), [N ]〉 = σ(N) = 8tk

6= 〈Lk(S4k × Sj), [S4k]〉 = σ(S4k) = 0 ∈ Z .

(See 3.3 for more details in the special case k = 2.) The homotopy equiva-
lence S(h) : S(η)−−→S4k × Sj is not homotopic to a diffeomorphism since
the surgery obstruction of (f, b) is

σ∗(f, b) =
1
8

(σ(N)− σ(S4k))

= tk 6= 0 ∈ L4k(Z) = Z .

These were the original examples due to Novikov [34] of homotopy equiv-
alences of high-dimensional simply-connected manifolds which are not ho-
motopic to diffeomorphisms. By the topological invariance of the rational
Pontrjagin classes these homotopy equivalences are not homotopic to home-
omorphisms.

§3. Splitting homotopy equivalences

LetMm be anm-dimensional manifold, and letNn ⊂Mm be an n-dimen-
sional submanifold. Every map of m-dimensional manifolds h : M ′−−→M
is homotopic to a map (also denoted by h) which is transverse regular at
N ⊂M , with the restriction

f = h| : N ′ = h−1(N) −−→ N

a degree 1 map of n-dimensional manifolds such that the normal (m− n)-
plane bundle of N ′ in M ′ is the pullback along f of the normal (m−n)-plane
bundle of N in M

νN ′⊂M ′ : N ′
f
−−→ N

νN⊂M
−−−→ BSO(m− n) .
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Let i : N−−→M , i′ : N ′−−→M ′ be the inclusions. For any embedding M ′ ⊂
Sm+k (k large) define a map of (m− n+ k)-plane bundles covering f

b : νN ′⊂Sm+k = νN ′⊂M ′ ⊕ i′∗(νM ′⊂Sm+k)

−−→ η = νN⊂M ⊕ (h−1i)∗(νM ′⊂Sm+k) ,

so that (f, b) : N ′−−→N is a normal map. If h : M ′−−→M is a homotopy
equivalence it need not be the case that (f, b) is a homotopy equivalence.

Definition 3.1 (i) A homotopy equivalence h : M ′−−→M of manifolds
splits along a submanifold N ⊂M if h is homotopic to a map (also denoted
h) which is transverse regular along N ⊂ M , and such that the restriction
h| : N ′ = h−1(N)−−→N is a homotopy equivalence.
(ii) A homotopy equivalence h : M ′−−→M of manifolds h-splits along a
submanifold N ⊂ M if there exists an extension of h : M ′−−→M to a
homotopy equivalence

(g;h, h′) : (W ;M ′,M ′′) −−→ M × ([0, 1]; {0}, {1})

with (W ;M ′,M ′′) an h-cobordism and h′ : M ′′−−→M split along N ⊂M .

For m ≥ 5 a homotopy equivalence h : M ′−−→M of m-dimensional man-
ifolds splits along a submanifold Nn ⊂ Mm if and only if h : M ′−−→M
h-splits with τ(M ′−−→W ) = 0 ∈Wh(π1(M)), by the s-cobordism theorem.

See Chapter 23 of Ranicki [49] for an account of the Browder-Wall surgery
obstruction theory for splitting homotopy equivalences along submanifolds.
Here is a brief summary :

Proposition 3.2 (i) If a homotopy equivalence of manifolds h : M ′−−→M
is homotopic to a diffeomorphism then h splits along every submanifold
N ⊂ M and τ(h) = 0 ∈ Wh(π1(M)). A homotopy equivalence which does
not split along a submanifold or is such that τ(h) 6= 0 cannot be homotopic
to a diffeomorphism.
(ii) The (free) LS-groups LS∗ of Wall [56, §11] are defined for a manifold
Mm and a submanifold Nn ⊂Mm with normal bundle

ξ = νN⊂M : N −−→ BO(q) (q = m− n)
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to fit into a commutative braid of exact sequences

[
[
[[

A
'
'
'')

[
[
[[

'
'
'')

Hi(M ;L.) Li(Z[π1(M)]) LSi−q−1

Li(ξ !)

)'
''

[
[
[]

Si(M)

)'
''

[
[[]

LSi−q

[
[[]

Si(ξ !)

)'
''

[
[[]

Hi−1(M ;L.)

)'
''

A
A
AA

�
�
���

A
A
AA

�
�
���

with A the algebraic L-theory assembly map (§7), L∗(ξ!) the relative L-
groups in the transfer exact sequence

. . . −−→ Li(Z[π1(M\N)]) −−→ Li(ξ!) −−→ Li−q(Z[π1(N)])

−−→ Li−1(Z[π1(M\N)]) −−→ Li−1(ξ!) −−→

and similarly for S∗(ξ!). The structure invariant s(h) ∈ Sm+1(M) (7.1)
of a homotopy equivalence h : M ′−−→M of m-dimensional manifolds has
image [s(h)] ∈ LSn, which has image σ∗(f, b) ∈ Ln(Z[π1(N)]) the surgery
obstruction of the n-dimensional normal map given by transversality

(f, b) = h| : N ′ = h−1(N) −−→ N .

For n ≥ 5, q ≥ 1 h : M ′−−→M h-splits along N ⊂ M if and only if
[s(h)] = 0 ∈ LSn. For q ≥ 3

π1(M) = π1(N) = π1(M\N) ,

L∗(ξ!) = L∗(Z[π1(M)])⊕ L∗−q(Z[π1(M)]) ,

LS∗ = L∗(Z[π1(M)])

and
[s(h)] = σ∗(f, b) ∈ LSn = Ln(Z[π1(M)])

so that for n ≥ 5 h : M ′−−→M h-splits if and only if σ∗(f, b) = 0 ∈
Ln(Z[π1(M)]).

The lens spaces give rise to homotopy equivalences h : M ′−−→M of man-
ifolds in dimensions ≥ 3 with τ(h) 6= 0 ∈Wh(π1(M)).
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The exotic spheres give rise to homotopy equivalences h : M ′−−→M of
manifolds which do not split along submanifolds. The following example
gives an explicit homotopy equivalence h : M ′m−−→Mm which does not
split along a special submanifold N4k ⊂ Mm in the simply-connected case
π1(N) = π1(M) = {1}.
Example 3.3 Take k = 2 in 2.10, with

a2 = 1 , B2 =
1
30

, j2 = 240 , s2 =
7
45

, t2 = 56 .

Let (W 8,Σ7) be the framed 3-connected 8-dimensional differentiable man-
ifold with signature σ(W ) = 8 obtained by the E8-plumbing of 8 copies
of τS4 : S4−−→BO(4), with boundary ∂W = Σ7 the homotopy 7-sphere
generating the exotic sphere group Θ7 = Z28. The 28-fold connected sum
#28Σ7 is diffeomorphic to the standard 7-sphere S7. Let η : S8−−→BO(q+1)
(q large) be a fibre homotopy trivial (q+ 1)-plane bundle over S8 such that

η ∈ ker(J : π8(BO)−−→π7
S) = 240Z ⊂ π8(BO) = Z

is the generator with

p2(η) = −1440 ∈ H8(S8) = Z .

The sphere bundle is a closed (8 + q)-dimensional differentiable manifold
M ′ = S(η) with a homotopy equivalence

h : M ′ = S(η) −−→ M = S(εq+1) = S8 × Sq

which does not split along the special submanifold

N8 = S8 × {pt.} ⊂M8+q = S8 × Sq .

The inverse image of N is the special submanifold

N ′ 8 = h−1(N) = #28W ∪D8 ⊂M ′ 8+j

with

L2(M ′) = σ(N ′) =
7
45
〈−p2(η), [S8]〉 = 28 · σ(W ) = 224

6= h∗L2(M) = σ(N) = 0 ∈ H8(M ′;Q) = Q ,

p2(M ′) = 1440 6= h∗p2(M) = 0 ∈ H8(M ′) = Z .

The codimension q splitting obstruction of h along N ⊂ M is the surgery
obstruction of the 8-dimensional normal map

(f, b) = h| : N ′ −−→ N ,
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which is
[s(h)] = σ∗(f, b) =

1
8

(σ(N ′)− σ(N))

= 28 ∈ LS8 = L8(Z) = Z .

Example 3.4 If m−4k ≥ 3 and k ≥ 2 a homotopy equivalence h : M ′−−→M
of simply-connected m-dimensional manifolds splits along a simply-conn-
ected 4k-dimensional submanifold N4k ⊂ M if and only if the surgery ob-
struction

σ∗(f, b) =
1
8

(σ(N ′)− σ(N)) ∈ LS4k = L4k(Z) = Z

is 0, which for special N ⊂M is equivalent to

〈(h−1)∗Lk(M ′)− Lk(M), [N ]〉 = 0 ∈ Q .

Codimension 1 splitting obstruction theory is particularly significant for
the topological invariance of the rational Pontrjagin classes and the Novikov
conjectures. See §8 below for an account of the codimension 1 theory for
homotopy equivalences of compact manifolds. In §10 there is a corresponding
account for proper homotopy equivalences of open manifolds, making use of
the evident modification of Definition 3.1 :

Definition 3.5 (i) A proper homotopy equivalence h : W ′−−→W of open
manifolds splits along a closed submanifold N ⊂W if h is proper homotopic
to a map (also denoted h) which is transverse regular along N ⊂ W , and
such that the restriction h| : N ′ = h−1(N)−−→N is a homotopy equivalence.
(ii) A proper homotopy equivalence h : W ′−−→W of open manifolds h-
splits along a closed submanifold N ⊂ W if there exists an extension of
h : W ′−−→W to a proper homotopy equivalence

(g;h, h′) : (V ;W ′,W ′′) −−→ W × ([0, 1]; {0}, {1})

with (V ;W ′,W ′′) a proper h-cobordism and h′ : W ′′−−→W split along N ⊂
W .

See Ranicki [42] for an algebraic development of the projective L-groups
Lp∗(Z[π]), which are related to the free L-groups L∗(Z[π]) by a Rothenberg-
type exact sequence

. . . −−→ Lm(Z[π]) −−→ Lpm(Z[π]) −−→ Ĥm(Z2; K̃0(Z[π]))

−−→ Lm−1(Z[π]) −−→ . . . .
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See Pedersen and Ranicki [40] for a geometric interpretation of projective
L-theory in terms of normal maps from compact manifolds to finitely dom-
inated geometric Poincaré complexes.

Proposition 3.6 Let h : W ′−−→W = N × R be a proper homotopy equiva-
lence of open m-dimensional manifolds, with N a closed (m−1)-dimensional
manifold. Let

(f, b) = h| : N ′ = h−1(N × {0}) −−→ N

be the normal map of closed (m − 1)-dimensional manifolds obtained by
transversality, with

W ′+ = h−1(N ×R+) , W ′− = h−1(N × R−) ⊂W ′

such that

h = h+∪fh− : W ′ = W ′+∪N ′W ′− −−→W = (N×R+)∪N×{0}(N×R−)

and
π1(N) = π1(N ′) = π1(W ′+) = π1(W ′−) (= π say) .

(i) The spaces W ′+, W ′− are finitely dominated, and the Wall finiteness
obstruction

[W ′+] = −[W ′−] = (−)m[W ′+]∗ ∈ K̃0(Z[π])

is the splitting obstruction, such that [W ′+] = 0 if (and for m ≥ 6) only if
h splits along N × {0} ⊂W = N ×R.
(ii) The Tate Z2-cohomology class

[W ′+] ∈ Ĥm(Z2; K̃0(Z[π]))

is the proper h-splitting obstruction, such that [W ′+] = 0 if (and for m ≥ 6)
only if h : W ′−−→W h-splits along N × {0} ⊂W = N × R.
(iii) The surgery obstruction of (f, b) is the image of the Tate Z2-cohomology
class of [W ′+]

σ∗(f, b) = [W ′+] ∈ im(Ĥm(Z2; K̃0(Z[π]))−−→Lm−1(Z[π]))

= ker(Lm−1(Z[π])−−→Lpm−1(Z[π])) .

Proof (i)+(ii) The finiteness obstruction for arbitrary π1(N) is just the end
invariant of Siebenmann [53], and is the obstruction to killing π∗(W ′+, N ′)
by handle exchanges (= ambient surgeries).
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(iii) Let W̃ ′+, W̃ ′−, Ñ , Ñ ′ be the universal covers of W ′+,W ′−, N,N ′ re-
spectively. The homology Z[π]-modules are such that

H∗(Ñ ′) = H∗(Ñ)⊕H∗+1(W̃ ′+, Ñ ′)⊕H∗+1(W̃ ′−, Ñ ′)

and the quadratic Poincaré kernel of (f, b) (Ranicki [45]) is the hyperbolic
(m− 1)-dimensional quadratic Poincaré complex on

C(W̃ ′+, Ñ ′)∗+1 ⊕ C(W̃ ′−, Ñ ′)∗+1 ' C(W̃ ′+, Ñ ′)∗+1 ⊕C(W̃ ′+, Ñ ′)m−∗

which is equipped with a projective null-cobordism.

Remarks 3.7 (i) 3.6 (i) is a special case of the codimension 1 bounded
splitting Theorem 10.1. The unobstructed case π = {1} is the splitting
result of Browder [6].
(ii) The projective L-groups are such that

Lm(Z[π][z, z−1]) = Lm(Z[π])⊕ Lpm−1(Z[π])

with

σ∗((f, b)× 1S1) = (0, σp∗(f, b))

∈ Lm(Z[π][z, z−1]) = Lm(Z[π])⊕ Lpm−1(Z[π])

for any normal map (f, b) of finitely dominated (m − 1)-dimensional geo-
metric Poincaré complexes with fundamental group π (Ranicki [43]).
(iii) The vanishing of the projective surgery obstruction in 3.6 (ii)

σp∗(f, b) = 0 ∈ Lpm−1(Z[π])

corresponds to the vanishing of the free surgery obstruction

σ∗((f, b)× 1S1) = 0 ∈ Lm(Z[π][z, z−1]) .

For m ≥ 5 this is realized by the geometric wrapping up construction
(Hughes and Ranicki [24]) of an (m+ 1)-dimensional normal bordism

(F,B) : (L;N ′ × S1, ∂+L) −−→ N × S1 × ([0, 1]; {0}, {1})

with ∂+F = F | : ∂+L−−→N × S1 a homotopy equivalence and

(F,B)| = (f, b)× 1S1 : N ′ × S1 −−→ N × S1 ,

(L\∂+L,N
′ × S1) = (W ′+, N ′)× S1 ,

τ(∂+F ) = [W ′+] ∈ im(K̃0(Z[π])−−→Wh(π × Z))
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with

K̃0(Z[π]) −−→ Wh(π × Z) ; [P ] −−→ τ(−z : P [z, z−1]−−→P [z, z−1])

the geometrically significant variant of the injection of Bass [3, XII]. The in-
finite cyclic covering of (F,B) induced from the universal covering R−−→S1

(F,B) : (L;N ′ ×R, ∂+L) −−→ N × R× ([0, 1]; {0}, {1})

is homotopy equivalent to an extension of (f, b) to a finitely dominated
m-dimensional geometric Poincaré bordism

(F1, B1) : (W ′+;N ′, N) −−→ N × ([0, 1]; {0}, {1})

with (F1, B1)| = 1 : N−−→N .
(iv) By the codimension 1 splitting theorem of Farrell and Hsiang [15] (8.1)
the Whitehead torsion τ(h) ∈ Wh(π × Z) of a homotopy equivalence h :
M ′−−→M = N × S1 of closed m-dimensional manifolds is such that

τ(h) ∈ im(Wh(π)−−→Wh(π × Z)) (π = π1(N))

if (and for m ≥ 6 only if) h splits along N × {∗} ⊂ N × S1. The projection
Wh(π×Z)−−→K̃0(Z[π]) of Bass [3, XII] sends the Whitehead torsion τ(h) ∈
Wh(π × Z) to the splitting obstruction of 3.6

[τ(h)] = [M
′+

] ∈ K̃0(Z[π])

for the proper homotopy equivalence h : M
′−−→M = N × R obtained from

h by pullback from the universal cover R−−→S1. The h-splitting obstruction
of h : M ′−−→M is the Tate Z2-cohomology class

[τ(h)] = [M
′+

] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π])) .

(The identification LSm−1 = Ĥm(Z2; K̃0(Z[π])) is the h-version of the iden-
tification LSsm−1 = Ĥm(Z2;Wh(π)) obtained by Wall [56, Thm. 12.5] for
the corresponding codimension 1 s-splitting obstruction group).

§4. Topological invariance

A homeomorphism of differentiable manifolds cannot in general be ap-
proximated by a diffeomorphism, by virtue of the exotic spheres. Thus it is
not at all obvious that the L-genus L(M) and the rational Pontrjagin classes
p∗(M) are topological invariants of a differentiable manifoldM . Surgery the-
ory for simply-connected compact manifolds is adequate for the construction
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and classification of exotic spheres. The topological invariance of the ratio-
nal Pontrjagin classes requires surgery on non-simply-connected compact
manifolds and/or simply-connected non-compact manifolds. The original
proof due to Novikov [24] made use of the torus, as subsequently formalized
in Ranicki [37, Appendix C16] using bounded L-theory : if h : M ′−−→M is
a homeomorphism of manifolds then for any j ≥ 1 the homeomorphism
h × 1 : M ′ × Rj−−→M × Rj can be approximated by a differentiable Rj-
bounded homotopy equivalence, and the signatures of special submanifolds
are Rj-bounded homotopy invariants. (See §9 for a brief account of bounded
surgery theory). Recently, Gromov [21] obtained a new proof of the topo-
logical invariance using the non-multiplicativity of the signature on surface
bundles instead of torus geometry and the algebraic K- and L-theory of the
group rings of the free abelian groups. I am grateful to Gromov for sending
me a copy of [21]. In 4.1 the two methods are related to each other using
algebraic surgery theory.

Theorem 4.1 (Novikov [36]) The rational Pontrjagin classes and the L-
genus are topological invariants.
Proof By 2.6 it suffices to prove that the signatures of special submanifolds
are homeomorphism invariant, i.e. that if h : M ′m−−→Mm is a homeomor-
phism of differentiable (or PL) manifolds then

σ(N) = σ(N ′) ∈ L4k(Z) = Z

for any special submanifold N4k ⊂Mm × Rj , with

N ′ = h′−1(N) ⊂M ′ × Rj

the transverse inverse image of any differentiable (or PL) approximation
h′ : M ′×Rj−−→M ×Rj to h× 1R j . Every special submanifold is (ambient)
cobordant to a simply-connected one, so it may be assumed thatN is simply-
connected, π1(N) = {1}. The surgery obstruction of the 4k-dimensional
normal map

(f, b) = h′| : N ′ −−→ N

is

σ∗(f, b) =
1
8

(σ(N ′)− σ(N)) ∈ L4k(Z) = Z

which is a codimension i splitting obstruction, with i = m+ j − 4k. There
are at least four distinct ways of showing that σ∗(f, b) = 0 :

1. use Ri-bounded L-theory as in Ranicki [48], [49], and the computation
L∗(CR i(Z)) = L∗−i(Z),

2. as in the original proof of Novikov [36] use T i−1 ⊂ Ri and the compu-
tation K̃0(Z[Zi−1]) = 0,
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3. use T i−1 ⊂ Ri and the computation L∗(Z[Zi−1]) = H∗(T i−1;L•(Z))
of Novikov [37] and Ranicki [43]∗,

4. follow Gromov [21] and use a hypersurface Bi−1 ⊂ Ri (assuming i is
odd) with a fibre bundle F i−1−−→E−−→Bi−1 such that the total space
has signature σ(E) 6= 0.

For 1. note that the homeomorphism

h0 = (h× 1R j )| : (h× 1R j )−1(N × Ri) −−→ N ×Ri

can be approximated by a differentiable Ri-bounded homotopy equivalence
which is normal bordant to the Ri-bounded normal map

(f, b)× 1R i : N ′ × Ri −−→ N ×Ri ,

so that

σ∗(f, b) = σ∗((f, b)× 1R i) = σ∗(h0) = 0

∈ L4k(Z) = L4k+i(CR i(Z)) = Z

– see 9.14 for a (somewhat) more detailed account.
For 2. proceed as in [36], making repeated use of codimension 1 splitting
(3.6). To start with, approximate the homeomorphism

h1 = (h× 1R j )| : W1 = (h× 1R j )−1(N × T i−1 ×R) −−→ N × T i−1 ×R

by a differentiable proper homotopy equivalence h′1 : W1−−→N × T i−1 ×R.
Since K̃0(Z[Zi−1]) = 0 it is possible to split h′1 along N × T i−1 × {0} ⊂
N × T i−1 × R, with the restriction

f1 = h′1| : N1 = h′−1
1 (N × T i−1 × {0}) −−→ N × T i−1

a homotopy equivalence normal bordant to

(f, b)× 1T i−1 : N ′ × T i−1 −−→ N × T i−1 .

∗ The full L-theoretic computation L∗(Z[Zi−1]) = H∗(T i−1;L•(Z)) re-
quires theK-theoretic computation K̃0(Z[Zi−1]) = 0, but for the topological
invariance of the rational Pontrjagin classes it suffices to know that the map
−⊗σ∗(T i−1) : L4∗(Z) = Z−−→L4∗+i−1(Z[Zi−1]) is a rational injection – this
is a formal consequence of the splitting theorem Lh∗(A[z, z−1]) = Lh∗(A) ⊕
Lp∗−1(A) of [37] and [43] applied inductively to Z[Zi−1] = Z[Zi−2][z, z−1],
and the identity Lh∗(A)[1/2] = Lp∗(A)[1/2] given by the Rothenberg-type
sequence relating the projective and free L-groups of a ring with involution
A.
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Pass to the infinite cyclic cover T
i−1

= T i−2 × R of T i−1 = T i−2 × S1 and
apply the same procedure to the proper homotopy equivalence

h2 = f1 : W2 = N1 −−→ N × T i−1
= N × T i−2 × R .

After i− 1 applications of 3.6 there is obtained a homotopy equivalence of
4k-dimensional manifolds fi : Ni−−→N normal bordant to (f, b) : N ′−−→N ,
so that

σ∗(f, b) = σ∗(fi) = 0 ∈ L4k(Z) .

(Alternatively, apply the splitting theorem of Farrell and Hsiang [15] i times
– cf. 3.7 (iii)).
For 3. and 4. suppose given a closed hypersurface U i−1 ⊂ Ri with a neigh-
bourhood U × R ⊂ Ri, regard N × U × R as a codimension 0 submanifold
of M × Rj by

N × U × R ⊂ N ×Ri ⊂M × Rj ,

and define the codimension 0 submanifold of M ′ × Rj

W 4k+i = (h× 1R j )−1(N × U × R) ⊂M ′ × Rj .

The restriction
(h× 1R j )| : W −−→ N × U × R

is a homeomorphism. Let

V 4k+i−1 = h′′−1(N × U × {0}) ⊂W 4k+i

be the codimension 1 transverse inverse image of any differentiable (or PL)
approximation h′′ : W−−→N × U × R to (h × 1R j )|. The (4k + i − 1)-
dimensional normal map

(g, c) = h′′| : V −−→ N × U

is normal bordant to (f, b)×1U : N ′×U−−→N×U . The surgery obstruction
of (g, c) is thus given by the surgery product formula of Ranicki [45]

σ∗(g, c) = σ∗((f, b)× 1U) = σ∗(f, b)⊗ σ∗(U)

∈ im(L4k(Z)⊗ Li−1(Z[π1(U)])−−→L4k+i−1(Z[π1(U)])) ,

with σ∗(U) ∈ Li−1(Z[π1(U)]) the symmetric signature of U – see §6 for a
brief account of the symmetric signature. Also, by 3.6 (ii)

σ∗(g, c) = [W+] ∈ im(Ĥ4k+i(Z2; K̃0(Z[π1(U)]))−−→L4k+i−1(Z[π1(U)]))

= ker(L4k+i−1(Z[π1(U)])−−→Lp4k+i−1(Z[π1(U)])) .
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For 3. take U = T i−1 ⊂ Ri. It follows from K̃0(Z[Zi−1]) = 0 that σ∗(g, c) =
0. The map

−⊗ σ∗(T i−1) : L4k(Z) −−→ L4k+i−1(Z[Zi−1])

is a (split) injection which sends σ∗(f, b) to

σ∗(f, b)⊗ σ∗(T i−1) = σ∗(g, c) = 0 ∈ L4k+i−1(Z[Zi−1])

so that σ∗(f, b) = 0.
For 4. assume that i is odd, say i = 2n+ 1, and let U = B2n ⊂ R2n+1 be a
hypersurface for which there exists a fibre bundle

F 2n −−→ E4n
p
−−→ B2n

such that the total space E is a 4n-dimensional manifold with signature

σ(E) 6= 0 ∈ L4n(Z) = Z .

(Any such B bounds a simply-connected manifold, so that the simply-
connected symmetric signature is σ(B) = 0 ∈ L2n(Z), but σ∗(B) 6= 0 ∈
L2n(Z[π1(B)]).) For example, take the n-fold cartesian product

F = F
(n)
1 −−→ E = E

(n)
1

p=p
(n)
1−−−→ B = B

(n)
1

of one of the surface bundles over a surface

F 2
1 −−→ E4

1

p1
−−→ B2

1

with σ(E1) 6= 0 ∈ L4(Z) = Z constructed by Atiyah [2], using an embedding
B1 × R ⊂ R3 to define an embedding

B
(n)
1 =

n∏
1

B1 ⊂ R2n+1

by

B
(n)
1 ⊂ B(n−1)

1 ×R3 = B
(n−2)
1 ×(B1×R)×R2 ⊂ B(n−2)

1 ×R5 ⊂ . . . ⊂ R2n+1 .

Let
F 2n −−→ Q4k+4n+1 −−→ W 4k+2n+1

be the induced fibre bundle over W . The algebraic surgery transfer map
induced by p

p ! : L4k+2n(Z[π1(B)]) −−→ L4k+4n(Z[π1(E)])
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sends σ∗(g, c) to

p !σ∗(g, c) = [Q+]

∈ im(Ĥ4k+4n+1(Z2; K̃0(Z[π1(E)]))−−→L4k+4n(Z[π1(E)]))

= ker(L4k+4n(Z[π1(E)])−−→Lp4k+4n(Z[π1(E)]))

with signature

σ∗(f, b)σ(E) = 0 ∈ L4k+4n(Z) = Z

(Lück and Ranicki [28]), so that σ∗(f, b) = 0.

Remarks 4.2 (i) Novikov’s proof of the topological invariance of the ra-
tional Pontrjagin classes was in the differentiable category, but it applies
equally well in the PL category. In fact, the proof led to the disproof of
the manifold Hauptvermutung by Casson and Sullivan — see Ranicki [50].
A homeomorphism of PL manifolds cannot in general be approximated by
a PL homeomorphism. The proof also led to the subsequent development
by Kirby and Siebenmann [27] of the classification theory of high-dimen-
sional topological manifolds. It is now possible to define the L-genus and the
rational Pontrjagin classes for a topological manifold, and the Hirzebruch
signature theorem σ(N) = 〈L(N), [N ]〉 also holds for topological manifolds
N4k.
(ii) Let W be an open (4k + 1)-dimensional manifold with a proper map
g : W−−→R transverse regular at 0 ∈ R, so that

V 4k = g−1(0) ⊂W 4k+1

is a closed 4k-dimensional submanifold. Novikov [35] defined the signature
of (W, g) by

σ(W, g) = signature(H2k(W )/H2k(W )⊥, [φ]) ∈ Z

with

φ : H2k(W )×H2k(W ) −−→ Z ; (x, y) −−→ 〈x ∪ y, [V ]〉 ,

H2k(W )⊥ = {x ∈ H2k(W ) |φ(x, y) = 0 for all y ∈ H2k(W )} ,

and identified
σ(W, g) = σ(V ) ∈ L4k(Z) = Z ,

thus proving that σ(V ) is a proper homotopy invariant of (W, g). (In the
context of the bounded L-theory of Ranicki [48] this is immediate from the
computation L4k+1(CR(Z)) = L4k(Z).) This signature invariant was used
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in [35] to prove that Lk(M) ∈ H4k(M ;Q) is a homotopy invariant for any
closed (4k + 1)-dimensional manifold M , as follows. Lk(M) is detected by
the signatures of special 4k-dimensional submanifolds N4k ⊂ M4k+1 × Rj
with

σ(N) = 〈L(N), [N ]〉

= 〈Lk(M), [N ]〉 ∈ L4k(Z) = Z .

The Poincaré dual [N ]∗ ∈ H1(M) of [N ] ∈ H4k(M) is represented by a
map f : M−−→S1 with a lift to a proper map f : M−−→R such that the
transverse inverse image

V 4k
N = f−1(1) ⊂M

is diffeomorphic to f
−1

(0) ⊂M and cobordant to N , so that

σ(N) = σ(VN) = σ(M, f) ∈ L4k(Z) = Z

is a homotopy invariant of (M, f). A homotopy equivalence h : M ′−−→M
induces a proper homotopy equivalence h : M

′−−→M , so that

Lk(M ′) = h∗Lk(M) ∈ H4k(M ′;Q) .

For any map f : M−−→S1 with transverse inverse image

V 4k = f−1(1) ⊂M4k+1

the ‘higher signature’ of (M, f)

f∗(Lk(M) ∩ [M ]) = 〈L(V ), [V ]〉

= σ(V ) ∈ H1(S1) = Z ⊂ H1(S1;Q) = Q

is thus a homotopy invariant of (M, f), verifying the Novikov conjecture for
π = Z (5.2). The proof of topological invariance of the rational Pontrjagin
classes in Novikov [36] grew out of this, leading on to the formulation of the
general conjecture and the verification for free abelian π in Novikov [37].
(iii) Gromov’s proof of topological invariance does not use surgery theory :
the actual method of [21] extends the symmetric form defined by Novikov
[35] for open (4k + 1)-dimensional manifolds to the context of cohomology
with coefficients in a flat hermitian bundle (as used by Lusztig [29] and
Meyer [30]).
(iv) The topological invariance of Whitehead torsion (originally proved by
Chapman) was proved in Ranicki and Yamasaki [52] using controlled K-
theory. The parallel development of controlled L-theory will give yet another
proof of the topological invariance of the rational Pontrjagin classes.
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§5. Homotopy invariance

Definition 5.1 The higher L-genus of an m-dimensional manifold M
with fundamental group π1(M) = π is

Lπ(M) = f∗(L(M) ∩ [M ]) ∈ Hm−4∗(Bπ;Q) ,

with f : M−−→Bπ classifying the universal cover M̃ and L(M) ∩ [M ] ∈
Hm−4∗(M ;Q) the Poincaré dual of the L-genus L(M) ∈ H4∗(M ;Q).

Conjecture 5.2 (Novikov [37, §11]) The higher L-genus is a homotopy
invariant: if h : M ′m−−→Mm is a homotopy equivalence of m-dimensional
manifolds then

Lπ(M) = Lπ(M ′) ∈ Hm−4∗(Bπ;Q) .

Definition 5.3 A submanifold N4k ⊂Mm×Rj is π-special if it is special
and the Poincaré dual [N ]∗ ∈ Hm−4k(M ;Q) of [N ] ∈ H4k(M ;Q) is such
that

[N ]∗ ∈ im(f∗ : Hm−4k(Bπ;Q)−−→Hm−4k(M ;Q)) .

The higher signatures of M are the signatures σ(N) ∈ Z of the π-special
manifolds N ⊂M × Rj .

Remarks 5.4 (i) The higher L-genus of an m-dimensional manifold M with
π1(M) = π is detected by the higher signatures. As before, let f : M−−→Bπ
classify the universal cover M̃ of M . The Q-vector space Hm−4k(Bπ;Q) is
spanned by the elements of type x = e∗(1) for a proper map

e : Bπ × Rj −−→ Ri (i = m+ j − 4k)

with large j. (It is convenient to assume here that Bπ is compact). For any
such x, e the composite

e(f × 1) : M × Rj
f×1
−−−−→ Bπ ×Rj

e
−−→ Ri

can be made transverse regular at 0 ∈ Ri, with

N4k = (e(f × 1))−1(0) ⊂M × Rj

a π-special submanifold. The higher L-genus of M is such that

Lπ(M) : Hm−4k(Bπ;Q) −−→ Q ;

x −−→ 〈x,Lπ(M)〉 = 〈L(M) ∪ f∗(x), [M ]〉 = 〈L(N), [N ]〉 = σ(N) .



26 Andrew Ranicki

(ii) The Novikov conjecture is equivalent to the homotopy invariance of the
higher signatures: if h : M ′m−−→Mm is a homotopy equivalence then

σ(N) = σ(N ′) ∈ Z

for any π-special submanifold N4k ⊂Mm ×Rj , with the inverse image

N ′ = (h× 1)−1(N) ⊂M ′ × Rj

also a π-special submanifold.

See Chapter 24 of Ranicki [49] for a more detailed account of the higher
signatures.

§6. Cobordism invariance

Very early on in the history of the Novikov conjecture (essentially already
in [37]) it was recognized that the conjecture is equivalent to the algebraic
Poincaré cobordism invariance of the higher L-genus, and also to the injec-
tivity of the rational assembly map Aπ : Hm−4∗(Bπ;Q)−−→Lm(Z[π])⊗Q.

See Ranicki [45] for the symmetric (resp. quadratic) L-groups Lm(R)
(resp. Lm(R)) of a ring with involution R, which are the cobordism groups
of m-dimensional symmetric (resp. quadratic) Poincaré complexes (C, φ)
consisting of an m-dimensional f.g. free R-module chain complex C with
a symmetric (resp. quadratic) Poincaré duality φ : Cm−∗ ' C. The sym-
metrization maps 1 + T : Lm(R)−−→Lm(R) are isomorphisms modulo 8-
torsion. The quadratic L-groups L∗(R) are the Wall surgery obstruction
groups, and depend only on m(mod 4). The symmetric L-groups are not
4-periodic in general. The L-groups of Z are given by

Lm(Z) =


Z if m ≡ 0(mod 4)
Z2 if m ≡ 1(mod 4)
0 otherwise

, Lm(Z) =


Z if m ≡ 0(mod 4)
Z2 if m ≡ 2(mod 4)
0 otherwise .

The symmetric L-groups L∗(R) and the symmetric signature were intro-
duced by Mishchenko [33].

Definition 6.1 The symmetric signature of an m-dimensional geomet-
ric Poincaré complex X with universal cover X̃ is the symmetric Poincaré
cobordism class

σ∗(X) = (C(X̃), φ) ∈ Lm(Z[π1(X)])

with φ the m-dimensional symmetric structure of the Poincaré duality chain
equivalence [X] ∩− : C(X̃)m−∗−−→C(X̃).
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The standard algebraic mapping cylinder argument shows:

Proposition 6.2 The symmetric signature is both a cobordism and a ho-
motopy invariant of a geometric Poincaré complex.

The symmetric signature is a non-simply-connected generalization of the
signature; for m = 4k the natural map Lm(Z[π1(X)])−−→Lm(Z) = Z sends
σ∗(X) to the signature σ(X).

Definition 6.3 The quadratic signature of a normal map of m-dimen-
sional manifolds with boundary (f, b) : (M ′, ∂M ′)−−→(M,∂M) and with
∂f : ∂M ′−−→∂M a homotopy equivalence is the cobordism class of the
quadratic Poincaré complex kernel

σ∗(f, b) = (C(f !), ψ) ∈ Lm(Z[π1(M)]) ,

with ψ the quadratic structure on the algebraic mapping cone C(f !) of the
Umkehr Z[π1(M)]-module chain map

f ! : C(M̃) ' C(M̃, ∂M̃)m−∗
f̃∗

−−→ C(M̃ ′, ∂M̃ ′)m−∗ ' C(M̃ ′) .

Proposition 6.4 The quadratic signature of a normal map (f, b) is the
surgery obstruction of Wall [56], such that σ∗(f, b) = 0 if (and for m ≥ 5
only if) (f, b) is normal bordant to a homotopy equivalence.

The symmetrization of the quadratic signature is the symmetric signature

(1 + T )σ∗(f, b) = σ∗(M ′ ∪∂f −M) ∈ Lm(Z[π1(M)])

where −M refers to M with the opposite orientation [−M ] = −[M ].
The rational surgery obstruction of a normal map (f, b) : M ′−−→M of

closed m-dimensional manifolds with fundamental group π

σ∗(f, b)⊗Q ∈ Lm(Z[π])⊗Q

depends only on the difference of the higher L-genera

Lπ(M ′)− Lπ(M) ∈ Hm−4∗(Bπ;Q) .

For any finitely presented group π the Q-vector space Hm−4∗(Bπ;Q) is
spanned by the differences Lπ(M ′)−Lπ(M) for normal maps (f, b) : M ′−−→
M of closed m-dimensional manifolds with fundamental group π.
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Definition 6.5 The rational assembly map in quadratic L-theory is

Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q ;

Lπ(M ′)− Lπ(M) −−→ σ∗(f, b)⊗Q =
1
8

(σ∗(M ′)− σ∗(M)) ,

with

AπLπ(M) =
1
8
σ∗(M) ∈ Lm(Z[π])⊗Q = Lm(Z[π])⊗Q .

The L-genus L(M) ∈ H4∗(M ;Q) is not in general a homotopy invariant
of an m-dimensional manifold M , except for the 4k-dimensional component
Lk(M) ∈ H4k(M ;Q) in the case m = 4k – this is a homotopy invariant by
virtue of the signature theorem

σ(M) = 〈Lk(M), [M ]〉 ∈ Z .

The simply-connected surgery exact sequence (§7) shows that if M is a
simply-connected m-dimensional manifold and m− 4k ≥ 1, m ≥ 5 then the
Q-vector space H4k(M ;Q) is spanned by the differences

(h−1)∗Lk(M ′)− Lk(M) ∈ H4k(M ;Q)

for homotopy equivalences h : M ′−−→M .

Proposition 6.6 The Novikov conjecture holds for π if and only if the
rational assembly map

Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q

is injective for each m(mod 4).
Proof The rational assembly map

A : H4∗(M ;Q) = Hm−4∗(M ;Q)
f∗
−−→ Hm−4∗(Bπ;Q)

Aπ−−→ Lm(Z[π])⊗Q

is such that

A((h−1)∗L(M ′)−L(M)) = Aπ(Lπ(M ′)−Lπ(M)) ∈ Lm(Z[π])⊗Q

for any homotopy equivalence h : M ′−−→M of m-dimensional manifolds
with π1(M) = π, and f : M−−→Bπ the classifying map. The Q-vector
space Hm−4∗(Bπ;Q) is spanned by the differences Lπ(M ′) − Lπ(M). The
non-simply-connected surgery exact sequence (§7) identifies the subspace of
H4∗(M ;Q) spanned by the differences

(h−1)∗L(M ′)−L(M) ∈ H4∗(M ;Q)
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with the kernel of A, and

ker(f∗ : Hm−4∗(M ;Q)−−→Hm−4∗(Bπ;Q)) ⊆ ker(A) .

The Novikov conjecture predicts that for all m-dimensional manifolds M
with π1(M) = π

f∗(ker(A)) = {0} ⊆ Hm−4∗(Bπ;Q) ,

or equivalently that ker(f∗) = ker(A). In turn, this is equivalent to the
injectivity of Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q.

§7. The algebraic L-theory assembly map

The integral versions of the topological invariance of the rational Pon-
trjagin classes and of the Novikov conjecture on the homotopy invariance
of the higher signatures involve the algebraic L-spectra and the algebraic
L-theory assembly map defined in Ranicki [49].

The symmetric L-spectrum L•(R) of a ring with involution R is de-
fined in [49] using n-ads of symmetric forms over R, with homotopy groups

π∗(L•(R)) = L∗(R) .

The generalized homology spectrum H •(X;L•(R)) of a topological
space X is defined in [49] using sheaves over X of symmetric Poincaré
complexes over R, with homotopy groups

π∗(H •(X;L•(R))) = H∗(X;L•(R))

the cobordism groups of such sheaves. The assembly map

A : H •(X;L•(R)) −−→ L•(R[π1(X)])

is defined by pulling back a symmetric Poincaré sheaf overX to the universal
cover X̃, and then assembling the stalks to obtain a symmetric Poincaré
complex over R[π1(X)]. Similarly for the quadratic L-spectrum L•(R).

The 0th space of the quadratic L-spectrum L•(Z) is such that

L0(Z) ' L0(Z)×G/TOP .

As usual, G/TOP is the classifying space for fibre homotopy trivialized
topological bundles, with a fibration sequence

G/TOP −−→ BTOP −−→ BG .
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Let L• = L•〈1〉(Z) be the 1-connective cover of L•(Z), with 0th space such
that

L0 ' G/TOP .

For any space X define the structure spectrum

S•(X) = homotopy cofibre(A : H •(X;L•)−−→L•(Z[π1(X)])) ,

to fit into a cofibration sequence of spectra

H •(X;L•)
A
−−→ L•(Z[π1(X)]) −−→ S•(X) ,

with A the spectrum level assembly map. The structure groups

S∗(X) = π∗(S•(X))

are the cobordism groups of sheaves over X of quadratic Poincaré complexes
over Z such that the assembly quadratic Poincaré complex over Z[π1(X)] is
contractible. The structure groups are the relative groups in the algebraic
surgery exact sequence

. . . −−→ Sm+1(X)−−→Hm(X;L•)
A
−−→ Lm(Z[π1(X)])−−→ Sm(X)−−→ . . . .

If X is an m-dimensional CW complex then H∗(X;L•) = H∗(X;L•(Z)) for
∗ > m and S∗(X) = S∗+4(X) for ∗ > m+ 1.

Proposition 7.1 (Ranicki [49]) (i) An m-dimensional geometric Poincaré
complex X has a total surgery obstruction

s(X) ∈ Sm(X)

such that s(X) = 0 if (and for m ≥ 5 only if) X is homotopy equivalent to
a closed m-dimensional topological manifold.
(ii) A closed m-dimensional topological manifold M has a symmetric L-
theory orientation

[M ]L ∈ Hm(M ;L•(Z))

which is represented by the symmetric Poincaré orientation sheaf, with as-
sembly the symmetric signature

A([M ]L) = σ∗(M) ∈ Lm(Z[π1(M)]) .

(iii) A normal map (f, b) : M ′−−→M of closed m-dimensional topological
manifolds has a normal invariant

[f, b]L ∈ Hm(M ;L•) = [M,G/TOP ]
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which is represented by the sheaf over M of the quadratic Poincaré complex
kernels over Z of the normal maps

(f, b) = h| : N ′ = h−1(N) −−→ N (Nn ⊂Mm) ,

with assembly the surgery obstruction

A([f, b]L) = σ∗(f, b) ∈ Lm(Z[π1(M)]) .

The symmetrization of the normal invariant is the difference of the sym-
metric L-theory orientations

(1 + T )[f, b]L = f∗[M ′]L − [M ]L ∈ Hm(M ;L•(Z)) .

(iv) A homotopy equivalence h : M ′−−→M of closed m-dimensional topolog-
ical manifolds has a structure invariant

s(h) ∈ Sm+1(M)

which is represented by the Z[π1(M)]-contractible quadratic Poincaré kernel
sheaf of (iii) and is such that s(h) = 0 if (and for m ≥ 5 only if) h is
h-cobordant to a homeomorphism. Moreover, for m ≥ 5 every element x ∈
Sm+1(M) is the structure invariant x = s(h) of a homotopy equivalence
h : M ′−−→M . The structure group Sm+1(M) is thus the topological manifold
structure set of the Browder-Novikov-Sullivan-Wall surgery theory

Sm+1(M) = STOP (M) ,

with a surgery exact sequence

. . . −−→ Lm+1(Z[π1(M)]) −−→ STOP (M) −−→ [M,G/TOP ]

−−→ Lm(Z[π1(M)]) .

Remarks 7.2 (i) The symmetric and quadratic L-spectra of Z are given
rationally by

L•(Z)⊗Q = L•(Z)⊗Q =
∨
k

K(Q, 4k) ,

so that for any space X

Hm(X;L•(Z))⊗Q = Hm(X;L•(Z))⊗Q = Hm−4∗(X;Q) .
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(ii) The symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) of a closed
m-dimensional topological manifold M is an integral refinement of the L-
genus, with

[M ]L ⊗Q = [M ] ∩ L(M) ∈ Hm(M ;L•(Z))⊗Q = Hm−4∗(M ;Q)

detected by the signatures σ(N) of special submanifolds N4k ⊂ M × Rj .
As before, let π1(M) = π and let f : M−−→Bπ be the classifying map of
the universal cover M̃ . The image f∗[M ]L ∈ Hm(Bπ;L•(Z)) is an integral
refinement of the higher L-genus, with

f∗[M ]L ⊗Q = Lπ(M) ∈ Hm(Bπ;L•(Z))⊗Q = Hm−4∗(Bπ;Q)

detected by the signatures σ(N) of π-special submanifolds N4k ⊂M ×Rj.
(iii) The normal invariant [f, b]L ∈ Hm(M ;L•) of an m-dimensional normal
map (f, b) : M ′−−→M is given rationally by the difference of the Poincaré
duals of the L-genera

[f, b]L ⊗Q = f∗(L(M ′) ∩ [M ′])− (L(M) ∩ [M ])

∈ Hm(M ;L•(Z))⊗Q = Hm−4∗(M ;Q) .

(iv) The construction and the verification of the combinatorial invariance of
the symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) is quite straight-
forward for a PL manifold M . The construction and topological invariance
of [M ]L for a topological manifold M is much more complicated — see §9
below.
(v) For m ≥ 5 an m-dimensional geometric Poincaré complex X is homo-
topy equivalent to a closed m-dimensional manifold M if and only if there
exists a symmetric L-theory orientation [X]L ∈ Hm(X;L•(Z)) such that
A([X]L) = σ∗(X) ∈ Lm(Z[π1(X)]), modulo 2-primary torsion invariants.

Integral Novikov conjecture 7.3 The assembly map in quadratic L-
theory

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

is a split injection.

The algebraic surgery exact sequence for the classifying space Bπ of a
group π

. . . −−→ Sm+1(Bπ) −−→ Hm(Bπ;L•)
A
−−→ Lm(Z[π]) −−→ Sm(Bπ) −−→ . . .

is such that

im(Sm+1(Bπ)−−→Hm(Bπ;L•))

= ker(A : Hm(Bπ;L•)−−→Lm(Z[π])) ⊆ Lm(Z[π])
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consists of the images of the normal invariants

f∗[s(h)] = f∗[h, b]L ∈ Hm(Bπ;L•)

of all homotopy equivalences h : M ′−−→M of m-dimensional topological
manifolds with π1(M) = π, and with f : M−−→Bπ classifying the universal
cover.

Remarks 7.4 (i) The integral Novikov conjecture for π implies the original
Novikov conjecture for π, since the integral assembly map A induces the
rational assembly map

A⊗ 1 : Hm(Bπ;L•(Z))⊗Q = Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q .

(ii) The integral Novikov conjecture is generally false if π has torsion, e.g.
if π = Z2.
(iii) The integral Novikov conjecture has been verified for many torsion-
free groups π using codimension 1 splitting methods, starting with the free
abelian case π = Zi (when A is an isomorphism) — see §§8,10 below for
further discussion.
(iv) The integral Novikov conjecture has been verified geometrically for
many groups π such that the classifying space Bπ is realized by an aspherical
Riemannian manifold with sufficient symmetry to ensure geometric rigidity,
so that homotopy equivalences of manifolds with fundamental group π can
be deformed to homeomorphisms — see Farrell and Hsiang [16], Farrell and
Jones [17] for example.

Here is how algebraic surgery theory translates rigidity results in geometry
into verifications of the integral Novikov conjecture :

Proposition 7.5 If π is a finitely presented group such that (at least for
m ≥ 5) there is a systematic procedure for deforming every homotopy equiv-
alence h0 : M0−−→N of closed m-dimensional manifolds with π1(N) = π
to a homeomorphism h1 : M1−−→N , via an (m + 1)-dimensional normal
bordism

(g, c) : (W ;M0,M1) −−→ N × ([0, 1]; {0}, {1})

with g|Mi = hi : Mi−−→N (i = 0, 1), then the integral Novikov conjecture
holds for π.
Proof The realization theorem of Wall [56] identifies Lm+1(Z[π]) with the
bordism group of normal maps (f, b) : (K, ∂K)−−→(L, ∂L) of compact
(m + 1)-dimensional manifolds with boundary which restrict to a homo-
topy equivalence ∂f = f | : ∂K−−→∂L on the boundary, with π1(L) = π.
The generalized homology group Hm+1(Bπ;L•) has a similar description,
with the added condition that ∂f : ∂K−−→∂L be a homeomorphism (in-
cluding ∂K = ∂L = ∅ as a special case). Given systematic deformations
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of homotopy equivalences to homeomorphisms as in the statement there is
defined a direct sum system

Hm+1(Bπ;L•)
A

−−−−−−−→
←−−−−−−−

B

Lm+1(Z[π])
C

−−−−−−−→
←−−−−−−−

D

Sm+1(Bπ)

verifying the integral Novikov conjecture for π, with

B : Lm+1(Z[π]) −−→ Hm+1(Bπ;L•) ; (f, b) −−→ (f, b) ∪ (g, c)

(h0 = ∂f : M = ∂K−−→N = ∂L) ,

C : Lm+1(Z[π]) −−→ Sm+1(Bπ) ;

σ∗((f, b) : (K, ∂K)−−→(L, ∂L)) −−→ s(∂f : ∂K−−→∂L) ,

D : Sm+1(Bπ) −−→ Lm+1(Z[π]) ; s(h) −−→ σ∗(g, c) .

The chain complex treatment in Ranicki [45], [49] of the surgery obstruc-
tion of Wall [56] associates a quadratic Poincaré complex σ∗(f, b) over Z[π]
(resp. a sheaf over Bπ of quadratic Poincaré complexes over Z) to any
normal map (f, b) : (M,∂M)−−→(N, ∂N) with ∂f a homotopy equivalence
(resp. a homeomorphism) and π1(N) = π. In principle, this allows the trans-
lation into algebra of any geometric construction of a disassembly map B.

§8. Codimension 1 splitting for compact manifolds

The primary obstructions to deforming a homotopy equivalence of high-
dimensional manifolds h : M ′−−→M with π1(M) torsion-free to a homeo-
morphism are the splitting obstructions along codimension 1 submanifolds
N ⊂ M . The method was initiated by Browder [7], where manifolds with
fundamental group π1 = Z were studied by considering surgery on codimen-
sion 1 simply-connected manifolds.

Codimension 1 Splitting Theorem 8.1 (Farrell and Hsiang [15]) Let
Mm be an m-dimensional manifold, and let Nm−1 ⊂Mm be a codimension
1 submanifold with trivial normal bundle, such that

π1(M) = π × Z , π1(N) = π .

The Whitehead torsion of a homotopy equivalence h : M ′−−→M of m-
dimensional manifolds is such that τ(h) ∈ im(Wh(π)−−→Wh(π × Z)) if
(and for m ≥ 6 only if) h splits along N ⊂M .
K-theoretic proof. This was the original proof in [15]. Let M̃ be the
universal cover of M . The infinite cyclic cover M = M̃/π of M can be
constructed from M by cutting along N , with

M = M
+ ∪N M

−
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for two ends M
+
,M

−
with

π1(M
+

) = π1(M
−

) = π1(N) = π

and similarly for M ′, N ′ = h−1(N) ⊂ M ′. The Z-equivariant homotopy
equivalence h : M

′−−→M has a decomposition

h = h
+ ∪g h

−
: M

′
= M

′+ ∪N ′ M
′ − −−→ M = M

+ ∪N M
−

with the restriction

(g, c) = h| = h| : N ′ = h−1(N) = h
−1

(N) −−→ N

a normal map. Since h is a homotopy equivalence the natural Z[π]-module
chain map of the relative cellular Z[π]-module chain complexes

C(Ñ ′, Ñ) ' C(M̃ ′+, M̃ +)⊕C(M̃ ′ −, M̃ −)

is a chain equivalence. Now C(Ñ ′, Ñ) is a finite f.g. free Z[π]-module chain
complex, so that C(M̃ ′+, M̃ +) and C(M̃ ′ −, M̃ −) are finitely dominated
(i.e. chain equivalent to a finite f.g. projective Z[π]-module chain complex).
The reduced projective class

[C(M̃ ′+, M̃ +)] = −[C(M̃ ′ −, M̃ −)] ∈ K̃0(Z[π])

is the K̃0-component of τ(h) ∈Wh(π × Z) in the decomposition

Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

of Bass [3, XII]. The Z[π]-module Poincaré duality chain equivalence

C(Ñ ′, Ñ)m−1−∗ ' C(Ñ ′, Ñ)

on the chain complex kernel

C(Ñ ′, Ñ) = C(g! : C(Ñ)−−→C(Ñ ′))

restricts to a chain equivalence

C(M̃ ′+, M̃ +)m−1−∗ ' C(M̃ ′ −, M̃ −) .

Thus h : M ′−−→M splits along N ⊂M (i.e. (g, c) : N ′−−→N is a homotopy
equivalence) if and only if C(M̃ ′+, M̃ +) is chain contractible. For m ≥ 6
the K̃0-component is 0 if and only if it is possible to modify N ′ by handle
exchanges inside M

′
in the style of Browder [6] and Siebenmann [53] until
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(g, c) : N ′−−→N is a homotopy equivalence, if and only if the R-bounded ho-
motopy equivalence f : M

′−−→M splits along N ⊂M . The Ñil0-components
(which are Poincaré dual to each other) are the obstructions to such modi-
fications inside a fundamental domain of the infinite cyclic cover M

′
of M ′.

L-theoretic proof. The surgery obstruction theory of Wall [56] can be
used to give an L-theoretic proof of the splitting theorem, at least in the
unobstructed case τ(h) ∈ im(Wh(π)). The surgery exact sequence for the
appropriately decorated topological manifold structure set of M

. . . −−→ L
im(Wh(π))
m+1 (Z[π × Z]) −−→ Sim(Wh(π))

m+1 (M)

−−→ Hm(M ;L•) −−→ Lim(Wh(π))
m (Z[π × Z]) −−→ . . .

combined with the algebraic computation of Ranicki [43]

Lim(Wh(π))
m (Z[π × Z]) = Lm(Z[π])⊕ Lm−1(Z[π])

(or the geometric winding tricks of [56, 12.9] or Cappell [10]) give an exact
sequence

. . . −−→ Sm+1(M\N) −−→ Sim(Wh(π))
m+1 (M) −−→ Sm(N)

−−→ Sm(M\N) −−→ . . . .

The codimension 1 h-splitting obstruction of [56, §11] is the Tate Z2-cohomo-
logy class

[s(h)] = [C(M̃ ′+, M̃)] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π])) .

The structure set Sim(Wh(π))
m+1 (M) of homotopy equivalences ofm-dimensional

manifolds h : M ′−−→M such that τ(h) ∈ im(Wh(π)) is thus identified with
the structure set Sm+1(N−−→M\N) of homotopy equivalences h : M ′−−→M
which split along N ⊂M

Sim(Wh(π))
m+1 (M) = Sm+1(N−−→M\N) .

(The relative S-group Sm+1(N−−→M\N) is denoted Sm+1(ξ!) in the termi-
nology of 3.2).

Example 8.2 For m ≥ 6 a homotopy equivalence of m-dimensional mani-
folds of the type

h : M ′m −−→ Mm = Nm−1 × S1

is homotopic to

g × idS1 : M ′ = N ′ × S1 −−→ M = N × S1
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for a homotopy equivalence of (m− 1)-dimensional manifolds g : N ′−−→N
if and only if τ(h) ∈ im(Wh(π)−−→Wh(π×Z)) (π = π1(N)). The structure
set of homotopy equivalences h : M ′−−→M which split along N ⊂ M is
given in this case by

Sim(Wh(π))
m+1 (M) = Sm+1(N)⊕ Sm(N) .

For the remainder of §8 we shall assume that M is a connected manifold
and that N ⊂ M is a connected codimension 1 submanifold with trivial
normal bundle

νN⊂M = ε : N −−→ BO(1)

and such that π1(N)−−→π1(M) is injective. As in the general theory of Wall
[56, §12] there are two cases to consider :
(A) N ⊂M separates M , so that M\N has two components M1, M2, with

π1(M) = π1(M1) ∗π1(N) π1(M2)

the amalgamated free product determined by the injections π1(N)−→π1(M1),
π1(N)−→π1(M2), by the Seifert-Van Kampen theorem,
(B) N ⊂M does not separate M , so that M1 = M\N is connected, with

π1(M) = π1(M1) ∗π1(N) {z}

the HNN extension determined by the two injections π1(N)−→π1(M1).
For example, if M is a genus 2 surface and N = S1 ⊂M separates M with
M\N = M1 tM2 the disjoint union of punctured tori then (N,M) is of
type (A), with π1(M1) = π1(M2) = Z ∗ Z, π1(N) = Z, while (M ′, N ′) =
(S1, {pt.}) is of type (B).

Waldhausen [55] obtained a splitting theorem for the algebraic K-theory
of amalgamated free products and HNN extensions along injections, in-
volving the K-groups Ñil∗ of nilpotent objects, generalizing the splitting
theorem of Bass [3, XII] for the Whitehead group of a polynomial exten-
sion. The Mayer-Vietoris exact sequence of [55] is

. . . −−→ Wh(π1(N))⊕ Ñil1 −−→ Wh(π1(M1))⊕Wh(π1(M2))

−−→ Wh(π1(M)) −−→ K̃0(Z[π1(N)])⊕ Ñil0

−−→ K̃0(Z[π1(M1)])⊕ K̃0(Z[π1(M2)]) −−→ K̃0(Z[π1(M)]) −−→ . . .

with Wh(π1(M))−−→Ñil0 a split surjection, setting M2 = ∅ in case (B). See
Remark 8.7 below for a brief account of the algebraic transversality used in
[55], and its extension to algebraic L-theory.
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Codimension 1 Splitting Theorem 8.3 (Cappell [9]) Let Mm be an m-
dimensional manifold, and let Nm−1 ⊂Mm be a codimension 1 submanifold
with trivial normal bundle, such that π1(N)−−→π1(M) is injective. The al-
gebraic L-theory of Z[π1(M)] is such that there is defined a Mayer-Vietoris
exact sequence

. . . −−→ LIi (Z[π1(N)])⊕UNili+1 −−→ Li(Z[π1(M1)])⊕ Li(Z[π1(M2)])

−−→ Li(Z[π1(M)]) −−→ LIi−1(Z[π1(N)])⊕UNili

−−→ Li−1(Z[π1(M1)])⊕ Li−1(Z[π1(M2)]) −−→ Li−1(Z[π1(M)])−−→ . . .

with

I = im(Wh(π1(M))−−→K̃0(Z[π1(N)]))

= ker(K̃0(Z[π1(N)])−−→K̃0(Z[π1(M1)])⊕ K̃0(Z[π1(M2)]))

⊆ K̃0(Z[π1(N)])

and Li(Z[π1(M)])−−→UNili a split surjection onto an L-group of unitary
nilpotent objects, setting M2 = ∅ in case (B). The codimension 1 h-splitting
obstruction (3.2) of a homotopy equivalence h : M ′−−→M of m-dimensional
manifolds along N ⊂M is given by

[s(h)] = ([τ(h)], σ∗(f, b)) ∈ LSm−1 = Ĥm(Z2; I)⊕UNilm+1 .

The first component is the obstruction to the existence of a normal bordism
to a split homotopy equivalence, the image [τ(h)] ∈ Ĥm(Z2; I) of the Tate
Z2-cohomology class of the Whitehead torsion

τ(h) = (−)m+1τ(h)∗ ∈ Ĥm+1(Z2;Wh(π1(M))) .

The second component is the surgery obstruction

σ∗(f, b) ∈ UNilm+1 ⊆ Lm+1(Z[π1(M)])

of a normal bordism

(f, b) : (W ;M ′,M ′′) −−→ M × ([0, 1]; {0}, {1})

from h : M ′−−→M to a split homotopy equivalence h′ : M ′′−−→M given
by the nilpotent normal cobordism construction of Cappell [10] in the case
[τ(h)] = 0 ∈ Ĥm(Z2; I).

The I-intermediate quadratic L-groups LI∗(Z[ρ]) in 8.3 are such that there
is defined a Rothenberg-type exact sequence

. . . −−→ Lm(Z[ρ]) −−→ LIm(Z[ρ]) −−→ Ĥm(Z2; I) −−→ Lm−1(Z[ρ]) −−→ . . .
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with Ĥ∗(Z2; I) the Tate Z2-cohomology groups of the duality involution
∗ : I−−→I.

See Ranicki [46, §7.6] for a chain complex interpretation of the nilpotent
normal cobordism construction and the identification

LSm−1 = Ĥm(Z2; I)⊕UNilm+1 .

Example 8.4 In the situation of 8.1

π1(M) = π × Z , π1(N) = π

it is the case that

Wh(π1(M)) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) ,

UNil∗ = 0 , Ĥ∗(Z2; Ñil0(Z[π])⊕ Ñil0(Z[π])) = 0 , I = K̃0(Z[π])

and the codimension 1 h-splitting obstruction of 8.3

[s(h)] = [τ(h)] = [C(M̃ ′+, M̃ +)] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π]))

is the Tate Z2-cohomology class of the codimension 1 splitting obstruction

[τ(h)] = (−)m+1[τ(h)]∗ ∈ coker(Wh(π)−−→Wh(π × Z))

= K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

Corollary 8.5 Let π be a finitely presented group such that :
either (A) π = π1 ∗ρ π2 is an amalgamated free product, with π1, π2, ρ

finitely presented,
or (B) π = π1 ∗ρ {z} is an HNN extension, with π1, ρ finitely presented,

and let
I = im(Wh(π)−−→K̃0(Z[ρ])) ⊆ K̃0(Z[ρ]) .

The algebraic L-theory Mayer-Vietoris exact sequence

. . . −−→ LIi (Z[ρ])⊕UNili+1 −−→ Li(Z[π1])⊕ Li(Z[π2]) −−→ Li(Z[π])

−−→ LIi−1(Z[ρ])⊕UNili −−→ Li−1(Z[π1])⊕ Li−1(Z[π2]) −−→ . . .

extends to a Mayer-Vietoris exact sequence of S-groups

. . . −−→ SIi (Bρ)⊕UNili+1 −−→ Si(Bπ1)⊕ Si(Bπ2) −−→ Si(Bπ)

−−→ SIi−1(Bρ)⊕UNili −−→ Si−1(Bπ1)⊕ Si−1(Bπ2) −−→ . . .
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interpreting π2 = ∅ in case (B).
Proof This a formal consequence of 8.4 and the Mayer-Vietoris exact se-
quence of generalized homology theory

. . . −−→ hi(Bρ) −−→ hi(Bπ1)⊕ hi(Bπ2) −−→ hi(Bπ)

−−→ hi−1(Bρ) −−→ hi−1(Bπ1)⊕ hi−1(Bπ2) −−→ . . . ,

with h∗( ) = H∗( ;L•).

Theorem 8.6 (Cappell [11]) The Novikov conjecture holds for the class of
finitely presented groups π obtained from {1} by amalgamated free products
and HNN extensions along injections.
Proof If the groups G = π1, π2, ρ in 8.5 are such that the algebraic L-theory
assembly maps A : H∗(BG;L•(Z))−−→L∗(Z[G]) are rational isomorphisms
then so is the algebraic L-theory assembly map A : H∗(Bπ;L•(Z))−−→
L∗(Z[π]), and the Novikov conjecture holds for π. Apply the 5-lemma to the
S-group Mayer-Vietoris exact sequence of 8.5, noting that the UNil-groups
have exponent ≤ 8 and so make no rational contribution.

(The actual inductively defined class of groups for which the Novikov con-
jecture was verified in [11] is somewhat larger.)

Remark 8.7 The finite presentation conditions in 8.5, 8.6 are necessary be-
cause the L-theory Mayer-Vietoris exact sequence of Cappell [9] was only
stated for the group rings of finitely presented groups, since the proof used
geometric methods. In fact, it is possible to state and prove an L-theory
Mayer-Vietoris exact sequence for amalgamated free products and HNN
extensions along injections of any rings with involution, allowing the hy-
pothesis of finite presentation to be dropped. Pending the definitive account
of Ranicki [51], here is a brief account of the algebraic proof of the L-theory
sequence, extending the method used by Waldhausen [55] to prove the al-
gebraic K-theory Mayer-Vietoris exact sequence.

A ring morphism f : R−−→R′ determines induction and restriction func-
tors

f! : {R-modules} −−→ {R′-modules} ;

M −−→ f!M = R′ ⊗RM with r′(1⊗ x) = r′ ⊗ x ,

f ! : {R′-modules} −−→ {R-modules} ;

M ′ −−→ f !M ′ = M ′ with rx′ = f(r)x′ .

Let R be a ring such that :
either (A) R = R1 ∗S R2 is the amalgamated free product determined by

injections of rings i1 : S−−→R1, i2 : S−−→R2 such that R1, R2 are free as
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(S, S)-bimodules,
or (B) R = R1 ∗S [z, z−1] is the HNN extension determined by two

injections i1, i′1 : S−−→R1, with respect to both of which R1 is a free (S, S)-
bimodule.
As in the Serre-Bass theory there is an infinite tree T with augmented
simplicial R-module chain complex

∆(T ;R) : 0 −−→ k!k
!R −−→ (j1)!j

!
1R⊕ (j2)!j

!
2R −−→ R −−→ 0

with

j1 : R1 −−→ R , j2 : R2 −−→ R , k = j1i1 = j2i2 : S −−→ R

the inclusions, and

j!
1R =

∑
T

(0)
1

R1 , j!
2R =

∑
T

(0)
2

R2 , k!R =
∑
T (1)

S ,

setting R2 = 0 in case (B). Thus for any finite f.g. free R-module chain
complex C there is defined a Mayer-Vietoris presentation

(∗) C ⊗R ∆(T ;R) : 0 −−→ k!k
!C −−→ (j1)!j

!
1C ⊕ (j2)!j

!
2C −−→ C −−→ 0

with j!
1C an infinitely generated free R1-module chain complex, j!

2C an in-
finitely generated free R2-module chain complex, and k!C an infinitely gen-
erated free S-module chain complex. For any subtree U ⊂ T the augmented
simplicial R-module chain complex ∆(U ;R) defines a Mayer-Vietoris pre-
sentation of R

C(U ;R) : 0 −−→ k!

∑
U(1)

S −−→ (j1)!

∑
U

(0)
1

R1 ⊕ (j2)!

∑
U

(0)
2

R2 −−→ R −−→ 0 ,

such that if U is finite then
∑
U

(0)
1

R1 is a f.g. free R1-module,
∑
U

(0)
2

R2 is a f.g.

free R2-module, and
∑
U(1)

S is a f.g. free S-module. Let C be n-dimensional,

with
Cr = Rcr (0 ≤ r ≤ n)

a f.g. free R-module of rank cr. There exist finite subtrees

Ur ⊂ T (0 ≤ r ≤ n)

such that the f.g. free submodules

(D1)r =
∑
U

(0)
r,1

Rcr1 ⊂ j!
1Cr =

∑
T

(0)
1

Rcr1 ,

(D2)r =
∑
U

(0)
r,2

Rcr2 ⊂ j!
2Cr =

∑
T

(0)
2

Rcr2 ,

Er =
∑
U

(1)
r

Scr ⊂ k!Cr =
∑
T (1)

Scr
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define f.g. free subcomplexes

D1 ⊂ j!
1C , D2 ⊂ j!

2C , E = D1 ∩D2 ⊂ k!C

with a Mayer-Vietoris presentation

0 −−→ k!E −−→ (j1)!D1 ⊕ (j2)!D2 −−→ C −−→ 0 .

This type of algebraic transversality (a generalization of the linearization
trick of Higman [22] for matrices over a Laurent polynomial extension) was
used in [55] to obtain the Mayer-Vietoris exact sequence in algebraic K-
theory

. . . −−→ Ki(S)⊕ Ñili+1 −−→ Ki(R1)⊕Ki(R2) −−→ Ki(R)

−−→ Ki−1(S)⊕ Ñili −−→ Ki−1(R1)⊕Ki−1(R2) −−→ Ki−1(R) −−→ . . .

with Ki(R)−−→Ñili split surjections.
Now suppose that R,R1, R2, S are rings with involution. Given a finite

f.g. free R-module chain complex C apply C ⊗R − to (∗) above, to obtain
an exact sequence of Z[Z2]-module chain complexes

(∗∗) 0−−→ k!C⊗S k!C −−→ (j!
1C⊗R1 j

!
1C)⊕(j!

2C⊗R2 j
!
2C)−−→C⊗RC −−→ 0

with Z[Z2] acting by x ⊗ y−−→± y ⊗ x. In the terminology of Ranicki [45]
the following algebraic transversality holds : for any n-dimensional quadratic
complex over R

(C,ψ ∈ Qn(C) = Hn(Z2;C ⊗R C))

there exist an (n − 1)-dimensional quadratic complex (E, θ) over S and
n-dimensional quadratic pairs

Γ1 = ((i1)!E−−→D1, (δ1θ, (i1)!θ)) , Γ2 = ((i2)!E−−→D2, (δ2θ, (i2)!θ))

over R1, R2 such that the union n-dimensional quadratic complex over R
is homotopy equivalent to (C,ψ)

(j1)!Γ1 ∪ (j2)!Γ2 ' (C,ψ) .

The algebraic Poincaré splitting method of Ranicki [46, §§7.5,7.6] gives a
Mayer-Vietoris exact sequence in quadratic L-theory

. . . −−→ LIi (S)⊕UNili+1 −−→ Li(R1)⊕ Li(R2) −−→ Li(R)

−−→ LIi−1(S)⊕UNili −−→ Li−1(R1)⊕ Li−1(R2) −−→ Li−1(R) −−→ . . .
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with Li(R)−−→UNili split surjections and

I = im(K1(R)−−→K0(S)) = ker(K0(S)−−→K0(R1)⊕K0(R2)) ⊆ K0(S) ,

using the algebraic transversality given by (∗∗) to replace the geometric
transversality of [46, 7.5.1]. There is a corresponding Mayer-Vietoris exact
sequence in symmetric L-theory. This type of algebraic Poincaré transver-
sality was already used in Milgram and Ranicki [31] and Ranicki [48] for
the L-theory of Laurent polynomial extensions and the associated lower
L-theory.

§9. With one bound

The applications of bounded and controlled algebra to splitting theorems
in topology and the Novikov conjectures depend on the development of an al-
gebraic theory of transversality : algebraic Poincaré complexes in categories
associated to topological spaces are shown to have enough transversality
properties of manifolds mapping to the spaces to construct a ‘disassembly’
map. For the sake of simplicity we shall restrict attention to the bounded
algebra of Pedersen and Weibel [41] and Ranicki [48], even though it is the
continuously controlled algebra of Anderson, Connolly, Ferry and Pedersen
[1] which is actually used by Carlsson and Pedersen [14].

Given a metric space X and a ring A let CX(A) be the X-bounded
free A-module additive category, with objects the direct sum of f.g. free
A-modules graded by X

M =
∑
x∈X

M(x)

such that M(K) =
∑
x∈K

M(x) is a f.g. free A-module for every bounded

subspace K ⊆ X, and with morphisms the A-module morphisms

f = {f(y, x)} : M =
∑
x∈X

M(x) −−→ N =
∑
y∈X

N(y)

for which there exists a number b > 0 with f(y, x) = 0 : M(x)−−→N(y) for
all x, y ∈ X with d(x, y) > b.

A proper eventually Lipschitz map f : X−−→Y of metric spaces is
a function (not necessarily continuous) such that the inverse image of a
bounded set is a bounded set, and there exist numbers r, k > 0 depending
only on f such that for all s > r and all x, y ∈ X with d(x, y) < s it is the
case that d(f(x), f(y))< ks. Such a map induces a functor

f ! : CX(A) −−→ CY (A) ;

M =
∑
x∈X

M(x) −−→ f !M =
∑
y∈Y

( ∑
x∈f−1(y)

M(x)
)
.
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If f : X−−→Y is a homotopy equivalence in the proper eventually Lips-
chitz category then f ! : CX(A)−−→CY (A) is an equivalence of additive
categories, inducing isomorphisms in algebraic K-theory.

Let PX(A) be the idempotent completion of CX(A), the additive cate-
gory in which an object (M, p) is an object M in CX(A) together with a
projection p = p2 : M−−→M , and a morphism f : (M, p)−−→(N, q) is a mor-
phism f : M−−→N in CX(A) such that qfp = f : M−−→N . The reduced
projective class group of PX(A) is defined by

K̃0(PX(A)) = coker(K0(CX(A))−−→K0(PX(A))) .

Example 9.1 A bounded metric space X is contractible in the proper
eventually Lipschitz category, so that CX(A) is equivalent to the additive
category of based f.g. free A-modules, PX(A) is equivalent to the additive
category of f.g. projective A-modules and

K∗(CX(A)) = K∗(PX(A)) = K∗(A) (∗ 6= 0) ,

K0(CX(A)) = im(K0(Z)−−→K0(A)) , K0(PX(A)) = K0(A) ,

K̃0(PX(A)) = coker(K0(Z)−−→K0(A)) = K̃0(A) .

Suppose given a metric space X with a decomposition

X = X+ ∪X− .

Define for any b ≥ 0 the subspaces

X+
b = {x ∈ X | d(x, y) ≤ b for some y ∈ X+} ,

X−b = {x ∈ X | d(x, z) ≤ b for some z ∈ X−} ,
Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} .

The inclusions X+−−→X+
b , X−−−→X−b are homotopy equivalences in the

proper eventually Lipschitz category, so that

K∗(CX+
b

(A)) = K∗(CX+(A)) , K∗(CX−
b

(A)) = K∗(CX−(A)) .

Proposition 9.2 (Pedersen and Weibel [41], Carlsson [12]) For any metric
space X and any decomposition X = X+ ∪ X− there is defined a Mayer-
Vietoris exact sequence in bounded K-theory

. . .−−→Kn(PX+(A))⊕Kn(PX−(A))−−→Kn(PX(A))
∂
−−→ lim−→

b

Kn−1(PYb(A))−−→Kn−1(PX+(A))⊕Kn−1(PX−(A))−−→ . . .
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with

Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} .

Proof The original proof in [41] (for open cones) and the generalization in
[12] use the heavy machinery of the algebraic K-theory spectra. For n = 1
there is a direct proof in Ranicki [48], as follows. Every finite chain complex
C in CX(A) is such that there exist subcomplexes C+, C− ⊆ C with C±

defined in CX±
b

(A) and C+ ∩C− defined in CYb(A) for some b ≥ 0. Thus C
admits a ‘Mayer-Vietoris presentation’

0 −−→ C+ ∩C− −−→ C+ ⊕ C− −−→ C −−→ 0 .

If C is contractible then C+ and C− are PYb(A)-finitely dominated chain
complexes. The reduced version ∂̃ of the connecting map ∂ in the Mayer-
Vietoris exact sequence

. . . −−→ K1(CX+(A))⊕K1(CX−(A)) −−→ K1(CX(A))
∂
−−→ lim−→

b

K0(PYb(A)) −−→ K0(PX+(A))⊕K0(PX−(A)) −−→ . . .

sends the Whitehead torsion τ(C) ∈ K1(CX(A)) to the reduced projective
class

∂̃τ(C) = [C+] = −[C−] ∈ lim−→
b

K̃0(PYb(A)) ,

which is such that ∂̃τ(C) = 0 if and only if there exists a presentation
(C+, C−) with C+, C−, C+ ∩ C− contractible. See [48] for further details.

Example 9.3 For any metric space Y let

X = Y ×R , X+ = Y × R+ , X− = Y × R− ,

so that
X = X+ ∪X− , X+ ∩X− = Y × {0} .

In this case

K∗(PX+(A)) = K∗(PX−(A)) = 0 (Eilenberg swindle) ,

K∗+1(PX(A)) = lim−→
b

K∗(PYb(A)) = K∗(PY (A)) .

The connecting map

∂ : K1(CX(A)) = K1(PX(A))−−→K0(PY (A)) ; τ(C)−−→ [C+] = −[C−]
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is an isomorphism, with τ(C) the torsion of a contractible finite chain com-
plex C in CX(A) and (C+, C−) any Mayer-Vietoris presentation of C.

A CW complex M is X-bounded if it is equipped with a proper map
M−−→X such that the diameters of the images of the cells of M are uni-
formly bounded in X, so that the cellular chain complex C(M) is defined
in CX(Z). We shall only be concerned with metric spaces X which are
allowable in the sense of Ferry and Pedersen [18], and finite-dimensional X-
bounded CW complexes M which are (−1)- and 0-connected in the sense
of [18], with a bounded fundamental group π. The cellular chain complex
C(M̃) of the π-cover M̃ of M is defined in CX(Z[π]). Similarly for cellular
maps, with induced chain maps in CX(Z[π]).

If f : M−−→N is an X-bounded homotopy equivalence of X-bounded CW
complexes with bounded fundamental group π the X-bounded Whitehead
torsion is given by

τ(f) = τ(f̃ : C(M̃)−−→C(Ñ))

∈Wh(CX(Z[π])) = coker(K1(CX(Z))⊕ {±π}−−→K1(CX(Z[π])))

with f̃ : C(M̃)−−→C(Ñ) the induced chain equivalence in CX(Z[π]). If
X = X+ ∪X− the algebraic splitting obstruction

∂τ(f) ∈ lim−→
b

K0(PYb(Z[π]))

is such that ∂τ(f) = 0 if and only if f is X-bounded homotopic to an
X-bounded homotopy equivalence (also denoted by f) such that the re-
strictions f | : f−1(Y )−−→Y are Y -bounded homotopy equivalences, with
Y = X+, X−, Yb (for some b ≥ 0).

The lower K-groups K−∗(A) of Bass [3, XII] are defined for any ring A
to be such that

K1(A[Zi]) =
i∑

j=0

(
i

j

)
K1−j(A)⊕ Ñil-groups .

For a group ring A = Z[π]

Wh(π × Zi) =
i∑

j=0

(
i

j

)
Wh1−j(π)⊕ Ñil-groups ,

where the lower Whitehead group are defined by

Wh1−j(π) =


Wh(π) if j = 0
K̃0(Z[π]) if j = 1
K1−j(Z[π]) if j ≥ 2 .
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Bass, Heller and Swan [4] proved that Wh(Zi) = 0 (i ≥ 1), so that

Wh1−∗({1}) = 0 .

Example 9.4 (Pedersen [38]) The Ri-bounded K-groups of a ring A are
the lower K-groups of A

K∗(PR i(A)) = K∗−i(A) .

The Ri-bounded Whitehead groups of a group π are the lower Whitehead
groups

Wh(CRi(π)) = Wh1−i(π) (i ≥ 1) .

There is a corresponding development of bounded L-theory.
An involution on the ground ring A induces a duality involution on the

X-bounded A-module category

∗ : CX(A) −−→ CX(A) ; M =
∑
x∈X

M(x) −−→ M∗ =
∑
x∈X

M(x)∗ ,

with M(x)∗ = HomA(M(x), A).

Definition 9.5 (Ranicki [47], [48]) TheX-bounded symmetric L-groups
L∗(CX(A)) are the cobordism groups of symmetric Poincaré complexes in
CX(A). Similarly for the X-bounded quadratic L-groups L∗(CX(A)).

The symmetrization maps 1 + T : L∗(CX(A))−−→L∗(CX(A)) are iso-
morphisms modulo 8-torsion. For bounded X CX(A) is equivalent to the
category of f.g. free A-modules and

L∗(CX(A)) = L∗(A) , L∗(CX(A)) = L∗(A) .

The functor

{metric spaces and proper eventually Lipschitz maps}
−−→ {Z-graded abelian groups} ; X −−→ L∗(CX(A))

was shown in Ranicki [48] to be within a bounded distance (in the non-
technical sense) of being a generalized homology theory. The functor is
homotopy invariant, and has the following bounded excision property :

Proposition 9.6 (Ranicki [48, 14.2]) For any metric space X and any de-
composition X = X+∪X− there is defined a Mayer-Vietoris exact sequence
in bounded L-theory

. . .−−→Ln(CX+(A))⊕ Ln(CX−(A))−−→Ln(CX(A))
∂
−−→ lim−→

b

LJbn−1(PYb(A))−−→Ln−1(CX+(A))⊕ Ln−1(CX−(A))−−→ . . . ,
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with

Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} ,

Jb = ker(K̃0(PYb(A))−−→K̃0(PX(A)))

⊆ K̃0(PYb(A)) = coker(K0(CYb(A))−−→K0(PYb(A))) .

The Jb-intermediate quadratic L-groups LJb∗ (PYb(A)) are such that there is
defined a Rothenberg-type exact sequence

. . . −−→ Ln(CYb(A)) −−→ LJbn (PYb(A))

−−→ Ĥn(Z2; Jb) −−→ Ln−1(CYb(A)) −−→ . . .

with Ĥ∗(Z2; Jb) the Tate Z2-cohomology groups of the duality involution
∗ : Jb−−→Jb.

The lower L-groups L〈−j〉∗ (A) of Ranicki [43] are defined for any ring
with involution A to be such that

Ln(A[Zi]) =
i∑

j=0

(
i

j

)
L
〈1−j〉
n−j (A) ,

with L〈1〉∗ (A) = Lh∗(A) = L∗(A) the free L-groups and L〈0〉∗ (A) = Lp∗(A) the
projective L-groups.

Example 9.7 The Ri-bounded L-groups of a ring with involution A were
identified in Ranicki [48] with the lower L-groups of A

L∗(CRi(A)) = L
〈1−i〉
∗−i (A) .

Definition 9.8 The X-bounded symmetric signature of an m-dimen-
sional X-bounded geometric Poincaré complex M with bounded fundamen-
tal group π is the cobordism class

σ∗(M) = (C(M̃), φ) ∈ Lm(CX(Z[π])) ,

with φ the symmetric structure of the Poincaré duality chain equivalence
[M ] ∩ − : C(M̃)m−∗−−→C(M̃).

The standard algebraic mapping cylinder argument shows :

Proposition 9.9 The X-bounded symmetric signature is an X-bounded
homotopy invariant of an X-bounded geometric Poincaré complex.
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Definition 9.10 Let (f, b) : (M ′, ∂M ′)−−→(M,∂M) be a normal map from
an X-bounded m-dimensional manifold with boundary (M ′, ∂M ′) to an
X-bounded m-dimensional geometric Poincaré pair (M,∂M), such that M
has bounded fundamental group π, and ∂f : ∂M ′−−→∂M is an X-bounded
homotopy equivalence. The X-bounded quadratic signature of (f, b) is
the quadratic Poincaré cobordism class

σ∗(f, b) = (C(f !), ψ) ∈ Lm(CX(Z[π])) ,

with ψ the quadratic structure on the algebraic mapping cone C(f !) of the
Umkehr chain map in CX(Z[π])

f ! : C(M̃) ' C(M̃, ∂M̃)m−∗
f∗

−−→ C(M̃ ′, ∂M̃ ′)m−∗ ' C(M̃) .

The quadratic Poincaré complex (C(f !), ψ) in 9.10 can be obtained in two
(equivalent) ways : either by the X-bounded version of Wall [56, §§5,6] by
first performing geometric surgery below the middle dimension to obtain a
quadratic form/formation in CX(Z[π]) as in Ferry and Pedersen [18], or by
the X-bounded version of Ranicki [45], using algebraic Poincaré complexes
and the chain bundle theory of Weiss [57].

Proposition 9.11 The X-bounded quadratic signature is the bounded sur-
gery obstruction of Ferry and Pedersen [18], such that σ∗(f, b) = 0 if (and
for m ≥ 5) (f, b) is normal bordant to an X-bounded homotopy equivalence.

The symmetrization of the X-bounded quadratic signature is the X-
bounded symmetric signature

(1 + T )σ∗(f, b) = σ∗(M ′ ∪∂f −M) ∈ Lm(CX(Z[π])) .

Let M be an X-bounded CW complex with bounded fundamental group
π. See Ranicki [49, Appendix C5] for the construction of the locally finite
assembly maps

Alf : H lf
• (M ;L•) −−→ L•(CX(Z[π])) .

The locally finite homology spectrum H lf
• (M ;L•) is defined using locally

finite sheaves over M of quadratic Poincaré complexes over Z, and the L-
spectrum L•(CX(Z[π])) is defined using quadratic Poincaré complexes in
CX(Z[π]). The X-bounded structure groups of M

Sb∗(M) = π∗(Alf : H lf
• (M ;L•)−−→L•(CX(Z[π])))
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are the relative groups in the X-bounded algebraic surgery exact
sequence

. . . −−→ Sbm+1(M) −−→ H lf
m (M ;L•)

Alf

−−→ Lm(CX(Z[π]))

−−→ Sbm(M) −−→ . . . .

Proposition 9.12 (Ranicki [48], [49])
(i) An m-dimensional X-bounded manifold M with bounded fundamental
group π has an L•(Z)-coefficient fundamental class [M ]L ∈ H lf

m (M ;L•(Z))
with locally finite assembly the X-bounded symmetric signature

Alf ([M ]L) = σ∗(M) ∈ Lm(CX(Z[π])) .

A normal map (f, b) : M ′−−→M has a normal invariant

[f, b]L ∈ H lf
m (M ;L•) = H0(M ;L•) = [M,G/TOP ] .

The surgery obstruction of (f, b) is the image of the normal invariant under
the locally finite assembly map

σ∗(f, b) = Alf ([f, b]L) ∈ im(Alf : H lf
m (M ;L•)−−→Lm(CX(Z[π])))

= ker(Lm(CX(Z[π]))−−→Sbm(M)) .

(ii) An m-dimensional X-bounded geometric Poincaré complex M has a
total surgery obstruction

sb(M) ∈ Sbm(M)

such that sb(M) = 0 if (and for m ≥ 5 only if) M is X-bounded homotopy
equivalent to an m-dimensional X-bounded topological manifold. The total
surgery obstruction has image [sb(M)] = 0 ∈ H lf

m−1(M ;L•) if and only
if the Spivak normal fibration νM : M−−→BG admits a TOP reduction
ν̃M : M−−→BTOP , in which case sb(M) = [σ∗(f, b)] is the image of the X-
bounded surgery obstruction σ∗(f, b) ∈ Lm(CX(Z[π])) for any normal map
(f, b) : M ′−−→M .
(iii) An X-bounded homotopy equivalence h : M ′−−→M of m-dimensional
X-bounded topological manifolds has a structure invariant

sb(h) ∈ Sbm+1(M)

such that sb(h) = 0 if (and for m ≥ 5 only if) h is X-bounded homotopic to
a homeomorphism. Moreover, for m ≥ 5 every element s ∈ Sbm+1(M) is the
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structure invariant s = sb(h) of such an X-bounded homotopy equivalence
h : M ′−−→M . Thus

Sbm+1(M) = Sb,TOP (M)

is the X-bounded topological manifold structure set of M , with a surgery
exact sequence

. . . −−→ Lm+1(CX(Z[π])) −−→ Sb,TOP (M) −−→ [M,G/TOP ]

−−→ Lm(CX(Z[π]))

as in Ferry and Pedersen [18, §11].

For any subspace K ⊆ SN define the open cone metric space

O(K) = {tx | x ∈ K, t ≥ 0} ⊆ RN+1 ,

such that for compact K

H lf
∗+1(O(K);L•) = H̃∗(K;L•) .

In particular, O(SN) = RN+1 and

H lf
∗+1(O(SN);L•) = H̃∗(SN ;L•) = L∗−N (Z) .

Proposition 9.13 (Ranicki [48], [49]) (i) The locally finite assembly maps

Alf : H lf
∗ (O(K);L•(Z)) −−→ L∗(CO(K)(Z))

are isomorphisms for any compact polyhedron K ⊆ SN , with Sb∗(O(K)) = 0.
Similarly for symmetric L-theory.
(ii) The symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) of a closed
m-dimensional manifold M is a topological invariant.
Proof (i) For any ring with involution A every quadratic complex (C,ψ)
in CO(K)(A) is cobordant to the assembly A(Γ) of a locally finite sheaf Γ
over O(K) of quadratic complexes over A. If (C,ψ) is a quadratic Poincaré
complex it may not be possible to choose Γ such that each of the stalks
is a quadratic Poincaré complex over A — the reduced lower K-groups
K̃−∗(A) are the potential obstructions to such a quadratic Poincaré disas-
sembly. This is an O(K)-bounded algebraic L-theory version of the lower
Whitehead torsion obstruction (10.1 below) to codimension 1 splitting of
O(K)-bounded homotopy equivalences of O(K)-bounded open manifolds.
For A = Z the obstruction groups are K̃−∗(Z) = Wh1−∗({1}) = 0 by Bass,
Heller and Swan [4]. See [49, Appendix C14] and §10 below for further de-
tails.
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(ii) Let M+ = M ∪{pt.}. Regard M×R as an (m+1)-dimensional O(M+)-
bounded geometric Poincaré complex via the projection M ×R−−→O(M+),
with O(M+) defined using any embedding M+ ⊂ SN (N large). The sym-
metric L-theory orientation of M is the O(M+)-bounded symmetric signa-
ture of M ×R

σ∗(M × R) = [M ]L

∈ Lm+1(CO(M+)(Z)) = H lf
m+1(O(M+);L•(Z)) = Hm(M ;L•(Z)) .

A homeomorphism h : M ′−−→M determines an O(M+)-bounded homotopy
equivalence h× 1 : M ′ × R−−→M × R, so that

[M ]L = σ∗(M × R) = (h× 1)∗σ∗(M ′ ×R) = h∗[M ′]L

∈ Hm(M ;L•(Z)) = Lm+1(CO(M+)(Z)) .

See [49, Appendix C16] for further details.

Remark 9.14 (i) As in the original proof of the topological invariance of
the rational Pontrjagin classes due to Novikov [36] it suffices to prove the
topological invariance of signatures of special submanifolds – cf. 2.6. As
in the proof of 4.1 suppose given a homeomorphism h : M ′m−−→Mm of
m-dimensional (differentiable) manifolds and a special submanifold N4k ⊂
Mm × Rj . Let

W = N ×Ri ⊂M ×Rj (i = m+ j − 4k)

be a regular neighbourhood of N in M × Rj , and let

W ′ = (h× idR j )−1(W ) ⊂M ′ × Rj .

NowW ′ is an (m+j)-dimensional Ri-bounded manifold which is Ri-bounded
homotopy equivalent to W , so that the Ri-bounded symmetric signatures
are such that

σ∗(W ′) = σ∗(W ) = σ(N) ∈ Lm+j(CRi(Z)) = L4k(Z) = Z .

Let N ′4k ⊂ W ′ be the inverse image submanifold obtained by making the
homeomorphism (h × idR j )| : W ′−−→W transverse regular at N ⊂ W , so
that N ′ is the transverse inverse image of 0 ∈ Ri under W ′−−→Ri. The al-
gebraic isomorphism Lm+j(CRi(Z)) ∼= L4k(Z) of Ranicki [48] sends σ∗(W ′)
to σ(N ′). Thus

σ(N ′) = σ∗(W ′) = σ∗(W ) = σ(N) ∈ Z ,
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giving (yet again) the topological invariance of the signatures of special
submanifolds.
(ii) The topological invariance of signatures of special submanifolds is a
formal consequence of the topological invariance of the symmetric L-theory
orientation, as follows. If N4k ⊂ Mm × Rj is a special submanifold there
exists a proper map

e : M × Rj −−→ Ri (i = m+ j − 4k)

such that N = e−1(0), and there is defined a commutative diagram

Hm(M ;L.(Z)) = H lf
m+j(M × Rj ;L

.(Z))
�
�
�
�
���

e∗

u

H lf
m+j(R

i;L.(Z)) = L4k(Z)

H lf
m+j(M × Rj , (M ×Rj)\N ;L.(Z)) = H4k(N ;L.(Z))

N
N
N
N
NNP

A

with A the simply-connected symmetric L-theory assembly map. The sym-
metric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) has image the signature
of N

e∗([M ]L) = A([N ]L) = σ(N) ∈ L4k(Z) = Z .

The topological invariance of the symmetric L-theory orientation [M ]L thus
implies the topological invariance of the signatures σ(N) of special subman-
ifolds, and hence the topological invariance of the L-genus and the rational
Pontrjagin classes L(M), p∗(M) ∈ H4∗(M ;Q) (as in 4.1).

§10. Codimension 1 splitting for non-compact manifolds

The obstruction theory for splitting homotopy equivalences of compact
manifolds along codimension 1 submanifolds involves both algebraic K- and
L-theory, as recalled in §8. In fact, the approach to the (integral) Novikov
conjecture of Carlsson and Pedersen [14] makes use of the obstruction the-
ory for splitting bounded homotopy equivalences of non-compact manifolds
along codimension 1 submanifolds, which only requires algebraic K-theory
obstructions to be considered.

Bounded Codimension 1 Splitting Theorem 10.1 (Ferry and Pedersen
[18, 7.2], Ranicki [48, 7.5]) Let h : M ′m−−→Mm be an X×R-bounded homo-
topy equivalence of m-dimensional X × R-bounded manifolds with bounded
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fundamental group π. Assume the given proper map ρ : M−−→X × R is
transverse regular at X × {0} ⊂ X × R, so that

Nm−1 = ρ−1(X × {0}) ⊂Mm

is a codimension 1 X-bounded submanifold with trivial normal bundle and
bounded fundamental group π. The X × R-bounded Whitehead torsion

τ(h) ∈Wh(CX×R(Z[π])) = K̃0(PX(Z[π]))

is such that τ(h) = 0 if (and for m ≥ 6 only if) h splits along N ⊂M .
K-theoretic proof. Make h : M ′−−→M transverse regular at N ⊂M , and
let N ′ = h−1(N) ⊂M ′, so that as in the K-theoretic proof of 8.1 we have

h = h+ ∪g h− : M ′ = M ′+ ∪N ′ M ′− −−→ M = M+ ∪N M− .

Since h is an X ×R-bounded homotopy equivalence the natural chain map
is a chain equivalence in CX×R(Z[π])

C(Ñ ′, Ñ) ' C(M̃ ′+, M̃+)⊕ C(M̃ ′−, M̃−) ,

and Poincaré duality defines a chain equivalence in CX×R(Z[π])

C(M̃ ′+, M̃+)m−1−∗ ' C(M̃ ′−, M̃−) .

The restriction X-bounded normal map

(g, c) = h| : N ′ −−→ N

is an X-bounded homotopy equivalence if and only if the chain complex
C(M̃ ′+, M̃+) is chain contractible. The isomorphism given by 9.3

∂ : Wh(CX×R(Z[π]))
'−−→ K̃0(PX(Z[π]))

sends τ(h) to the reduced projective class of the CX(Z[π])-finitely dominated
cellular Z[π]-module chain complex C(M̃ ′+, M̃+). For m ≥ 6 τ(h) = 0 if
and only if it is possible to modify N ′ by X-bounded handle exchanges
inside M ′ until the X-bounded normal map h| : N ′−−→N is a homotopy
equivalence, if and only if h splits along N ⊂M .
L-theoretic proof. The unobstructed case τ(h) = 0 ∈ Wh(CX×R(Z[π]))
proceeds as in the L-theoretic proof of 10.1 to compute the simple X × R-
bounded topological manifold structure set of M

. . . −−→ Lsm+1(CX×R(Z[π])) −−→ Sb,sm+1(M)

−−→ H lf
m (M ;L.) −−→ Lsm(CX×R(Z[π])) −−→ . . . .
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It follows from the algebraic computation of Ranicki [48]

Lsm+1(CX×R(Z[π])) = Lm(CX(Z[π]))

that there is defined an exact sequence

. . . −−→ Sbm+1(M\N) −−→ Sb,sm+1(M) −−→ Sbm(N) −−→ Sbm(M\N) −−→ . . . .

The structure set Sb,sm+1(M) of simple X × R-bounded homotopy equiva-
lences of m-dimensional manifolds h : M ′−−→M is thus identified with the
structure set Sbm+1(N−−→M\N) of X ×R-bounded homotopy equivalences
h : M ′−−→M which split along N ⊂M

Sb,sm+1(M) = Sbm+1(N−−→M\N) .

Example 10.2 For m ≥ 6 an X × R-bounded homotopy equivalence of
m-dimensional X ×R-bounded manifolds of the type

h : M ′m −−→ Mm = Nm−1 × R

is homotopic to

g × idR : M ′ = N ′ ×R −−→ M = N × R

for an X-bounded homotopy equivalence of (m−1)-dimensional X-bounded
manifolds g : N ′−−→N if and only if

τ(h) = 0 ∈Wh(CX×R(Z[π])) = K̃0(PX(Z[π])) .

The algebraic surgery exact sequences for the structure set Sb,sm+1(N × R)
of simple X × R-bounded homotopy equivalences h : M ′−−→M and the
structure set Sbm(N) of X-bounded homotopy equivalences g : N ′−−→N are
related by an isomorphism

. . . w H lf
m (N ;L.) w

Alf

u

∼=

Lm(CX(Z[π])) w

u

∼=

Sbm(N) w

u

∼=

. . .

. . . w H lf
m+1(N × R;L.) w

Alf Lsm+1(CX×R(Z[π])) w Sb,sm+1(N × R) w . . .

so that
Sb,sm+1(N ×R) = Sbm(N) ,
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and simple X×R-bounded homotopy equivalences h : M ′−−→M split along
N × {0} ⊂M = N × R.

Proposition 10.3 Let N be a compact n-dimensional manifold, and let W
be an open (n + i)-dimensional Ri-bounded manifold with an Ri-bounded
homotopy equivalence h : W−−→N ×Ri (i ≥ 1). The Ri-bounded Whitehead
torsion

τ(h) ∈Wh(CRi(Z[π])) = Wh1−i(Z[π]) (π = π1(N))

is such that τ(h) = 0 if (and for n ≥ 5 only if) h is Ri-bounded homotopic
to

g × idRi : W = N ′ × Ri −−→ N ×Ri

for some closed codimension i submanifold N ′ ⊂ W , with g : N ′−−→N a
homotopy equivalence.
Proof See Bryant and Pacheco [8] for a proof based on the geometric twist-
glueing technique of Siebenmann [54]. Alternatively, apply 10.2 i times.

§11. Splitting the assembly map

This section is an outline of the infinite transfer method used by Carlsson
and Pedersen [14] to prove the integral Novikov conjecture by splitting the
algebraic L-theory assembly map

A : H∗(Bπ;L.(Z)) −−→ L∗(Z[π])

for torsion-free groups π with finite classifying space Bπ, such that Eπ has
a sufficiently nice compactification. The method may be viewed as a partic-
ularly well-organized way of avoiding the algebraic K-theory codimension
1 splitting obstructions to deforming homotopy equivalences of manifolds
with fundamental group π to homeomorphisms.

The homotopy fixed set of a pointed space X with π-action is

Xhπ = mapπ(Eπ+, X) ,

with Eπ+ = Eπ ∪ {pt.}.
Let K be a connected compact polyhedron, regarded as a metric space.

The action of the fundamental group π = π1(K) on the universal cover K̃
induces an action of π on the spectrum L.(C

K̃
(Z)), with the fixed point

spectrum such that

L.(C
K̃

(Z))π ' L.(CK(Z[π])) ' L.(Z[π]) .

The action of π on the cofibration sequence of spectra

H lf. (K̃;L.)
Alf

−−→ L.(C
K̃

(Z)) −−→ Sb(K̃)
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determines a cofibration sequence of the homotopy fixed point spectra

H lf. (K̃,L.)hπ
Alf

−−→ L.(C
K̃

(Z))hπ −−→ Sb(K̃)hπ

with a homotopy equivalence

H lf. (K̃,L.)hπ ' H .(K,L.) .

The infinite transfer maps of Ranicki [49, p. 328]

trf : L∗(Z[π]) = L∗(CK(Z[π])) = L∗(C K̃
(Z)π) −−→ L∗(C K̃

(Z))

extend to define a natural transformation of algebraic surgery exact se-
quences

. . . w Sm+1(K) w

u

trf

Hm(K;L.) w
A

u

trf ∼=

Lm(Z[π]) w

u

trf

Sm(K) w

u

trf

. . .

. . . w Sb,hπm+1(K̃) w H lf,hπ
m (K̃;L.) w

Alf Lm(C
K̃

(Z)hπ) w Sb,hπm (K̃) w . . .

with

Sb,hπ∗ (K̃) = π∗(Sb(K̃)hπ) , L∗(C K̃
(Z)hπ) = π∗(L.(C

K̃
(Z))hπ) .

The composite

Sm+1(K)
trf
−−−→ Sb,hπm+1(K̃) −−−→ Sbm+1(K̃)

sends the structure invariant s(h) ∈ Sm+1(K) of a homotopy equivalence h :
M ′−−→M of compactm-dimensional manifolds with a π1-isomorphism refer-
ence map M−−→K to the K̃-bounded structure invariant sb(h̃) ∈ Sbm+1(K̃)
of the induced K̃-bounded homotopy equivalence h̃ : M̃ ′−−→M̃ of the uni-
versal covers.

The method of infinite transfers first applied by Carlsson [13] to the al-
gebraic K-theory version of the Novikov conjecture has the following appli-
cation in algebraic L-theory to the integral Novikov conjecture :

Proposition 11.1 Let π be a group such that the classifying space Bπ
has the homotopy type of a finite CW complex, so that π is torsion-free.
If the universal cover Eπ of Bπ is realized by a contractible metric space
E with a free π-action and such that the locally finite assembly maps are
isomorphisms

Alf : H lf
∗ (E;L.(Z))

'−−→ L∗(CE(Z))
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then the integral Novikov conjecture holds for π, i.e. the assembly maps

A : H∗(Bπ;L.(Z)) −−→ L∗(Z[π])

are split injections.
Proof The Eπ-bounded structure spectrum Sb(Eπ) is contractible, and
hence so is the homotopy fixed point spectrum Sb(Eπ)hπ. The locally finite
assembly map

Alfπ : H lf. (Eπ;L.(Z))hπ −−→ L.(CEπ(Z))hπ

is a homotopy equivalence, so that there are defined homotopy equivalences

H .(Bπ;L.(Z)) ' H lf. (Eπ;L.(Z))hπ ' L.(CEπ(Z))hπ .

The infinite transfer maps

trf : L.(Z[π]) ' L.(CEπ(Z))π −−→ L.(CEπ(Z))hπ ' H .(Bπ;L.(Z))

induce splitting maps trf : L∗(Z[π])−−→H∗(Bπ;L.(Z)) for the assembly
maps A : H∗(Bπ;L.(Z))−−→L∗(Z[π]).

Example 11.2 Let π = Zn, so that

Bπ = Tn , E = Eπ = Rn .

Compactify E by adding the (n− 1)-sphere at infinity

E = Rn ∪ Sn−1 = Dn ,

extending the free Zn-action on Rn by the identity on ∂E = Sn−1. In this
case the locally finite assembly isomorphisms

Alf : H∗(Dn, Sn−1;L.(Z)) = H lf
∗ (Rn;L.(Z))

= H̃∗−1(Sn−1;L.(Z)) = L∗−n(Z)
'−−→ L∗(CRn(Z))

and the assembly isomorphisms

A : H∗(Tn;L.(Z))
'−−→ L∗(Z[Zn])

were already obtained in Ranicki [43], [48], using the identification of the
Rn-bounded L-groups of a ring with involution A with the lower L-groups

L∗(CRn(A)) = L
〈1−n〉
∗−n (A)
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and the splitting theorem

L∗(A[Zn]) =
n∑
k=0

(
n

k

)
L
〈1−k〉
∗−k (A) ,

with L〈−∗〉∗ (Z) = L∗(Z) by virtue of Wh−∗({1}) = 0.

Example 11.3 Let π = π1(M) be the fundamental group of a complete
closed n-dimensional Riemannian manifold with non-positive sectional cur-
vature M . The universal cover E = M̃ is a complete simply-connected open
Riemannian manifold such that the exponential map at any point x ∈ E
defines a diffeomorphism

expx : τx(E) = Rn −−→ E

by the Hadamard-Cartan theorem, so that M = Bπ is aspherical. The
locally finite assembly map

Alf : H lf
∗ (E;L.(Z)) = L∗−n(Z) −−→ L∗(CE(Z))

is an isomorphism, so that the integral Novikov conjecture holds for π by
11.1. See Farrell and Hsiang [16] for the original geometric proof, which is
generalized by Carlsson and Pedersen [14] (cf. 11.5 below) by abstracting
the properties of the π-action on the compactification E = Dn near the
sphere at ∞ ∂E = E\E = Sn−1.

Example 11.4 For any integer g ≥ 1 let

πg = {a1, a2, . . . , a2g | [a1, a2] . . . [a2g−1, a2g]}

be the fundamental group of the closed oriented surface Mg of genus g, so
that

Bπg = Mg , E = Eπg = R2 .

For g = 1 Mg = T 2, as already considered in 11.2. For g ≥ 2 Mg has a
hyperbolic structure, and the free action of πg on E = R2 = int(D2) extends
to a (non-free) action on E = D2, which is the identity on ∂E = S1. The
hypotheses of 11.1 are satisfied, so that the assembly maps

A : h∗(Bπg) = H∗(Bπg;L.(Z)) −−→ L∗(Z[πg])

are split injections, and the integral Novikov conjecture holds for πg. In fact,
these assembly maps are isomorphisms, which may be verified by the follow-
ing argument (for which I am indebted to C.T.C.Wall). By the Freiheitssatz
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for one-relator groups the subgroup ρg ⊂ πg generated by a1, a2, . . . , a2g−1

is free, so that πg is the α-twisted extension of ρg by Z = {a2g}

{1} −−→ ρg −−→ πg −−→ Z −−→ {1}

and
Z[πg] = Z[ρg]α[z, z−1]

is the α-twisted Laurent polynomial extension of Z[ρg], with

z = a2g , α(ai) = (a2g)−1aia2g (1 ≤ i ≤ 2g − 1) .

The assembly maps A : h∗(Bρg)−−→L∗(Z[ρg]) are isomorphisms by Cappell
[9]. A 5-lemma argument applied to the assembly map

. . . w hn(Bρg) w
1−α

u

A

hn(Bρg) w

u

A

hn(Bπg) w

u

A

hn−1(Bρg) w

u

A

. . .

. . . w Ln(Z[ρg]) w
1−α

Ln(Z[ρg]) w Ln(Z[πg]) w Ln−1(Z[ρg]) w . . .

from the Wang exact sequence in group homology to the exact sequence
of Ranicki [44] for the L-theory of a twisted Laurent polynomial extension
(using Wh(πg) = 0) shows that the assembly maps

A : h∗(Bπg) = H∗(Bπg;L.(Z)) −−→ L∗(Z[πg])

are isomorphisms.

Theorem 11.5 (Carlsson and Pedersen [14]) Let π be a group with finite
classifying space Bπ such that the universal cover Eπ is realized by a con-
tractible metric space E with a free π-action, and with a compactification E
such that :
(a) the free π-action on E extends to a π-action on E (which need not be

free),
(b) E is contractible,
(c) compact subsets of E become small near the boundary ∂E = E\E,

i.e. for every point y ∈ ∂E, every compact subset K ⊆ E and for every
neighbourhood U of y in E, there exists a neighbourhood V of y in E
so that if g ∈ π and g(K) ∩ V 6= ∅ then g(K) ⊂ U .

Then the integral Novikov conjecture holds for π.
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The proof of 11.5 uses infinite transfer maps (as in 11.1), but with the
continuously controlled category BX,Y (Z) of Anderson, Connolly, Ferry and
Pedersen [1] replacing the bounded category CE(Z) of Pedersen and Weibel
[41]. For a compact metrizable space X and a closed subspace Y ⊆ X
BX,Y (Z) is the category with the same objects as CE(Z), where E = X\Y .
A morphism in BX,Y (Z)

f = {f(x′, x)} : A =
∑
x∈E

A(x) −−→ B =
∑
x′∈E

B(x′)

is a Z-module morphism such that for every y ∈ Y and every neighbourhood
U ⊆ X of y there is a neighbourhood V ⊆ U such that

f(x′, x) = 0 : A(x) −−→ B(x′) (x ∈ V, x′ ∈ X\U)

(or equivalently f(A(V )) ⊆ B(U)). If E is dense in X and compact subsets
of E become small near the boundary ∂E = Y in E = X there is defined
a forgetful functor CE(Z)−−→BX,Y (Z). This functor induces isomorphisms
in K- and L-theory in certain cases with X contractible (e.g. if E = O(K)
is the open cone on a compact subcomplex K ⊆ SN and X = O(K) ∪K
is the closed cone, with Y = K ⊂ X), but it is not known if it does so
in general. See Pedersen [39] for the relationship between the bounded and
continuously controlled categories.

The algebraic transversality of Ranicki [48], [49] is extended in Carlsson
and Pedersen [14, 5.4] to prove that the continuously controlled L-theory
assembly maps

A : H lf
∗ (E;L.(Z)) = H∗(X, Y ;L.(Z)) −−→ L∗(BX,Y (Z))

are isomorphisms if E = Eπ and (X, Y ) = (E, ∂E) are as in 11.5 – this
is the key step in the proof. As in 10.1 there are potential lower White-
head torsion obstructions to splitting, which are avoided by the compu-
tation Wh−∗({1}) = 0 of Bass, Heller and Swan [4]. The assembly map
A : H lf,hπ

m (E;L.(Z))−−→Lm(BE,∂E(Z)hπ) in the commutative square

Hm(Bπ;L.(Z)) w
A

u

trf ∼=

Lm(Z[π])

u

trf

H lf,hπ
m (E;L.(Z)) w

A Lm(BE,∂E(Z)hπ)

is an isomorphism, giving the splitting of the assembly map

A : Hm(Bπ;L.(Z)) −−→ Lm(Z[π]) .
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Example 11.6 As already noted by Carlsson and Pedersen [14], the work
of Bestvina and Mess [5] shows that negatively curved groups in the sense of
Gromov satisfy the conditions of Theorem 11.5, so that the integral Novikov
conjecture holds for these groups. The fundamental groups π of complete
Riemannian manifolds (of finite homotopy type) Bπ with non-positive cur-
vature are the main examples of such groups – cf. 11.3.

If π is in the class of groups satisfying the conditions of 11.5

L∗(Z[π]) = H∗(Bπ;L.)⊕ S∗(Bπ) .

It is worth investigating the extent to which S∗(Bπ) is determined by the
Cappell UNil-groups.
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