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Let f2s, ~ be the oriented cobordism ring and A any commutative ll~-algebra. 
An elliptic genus over A, as originally defined in [14], is a ring homomorphism 

satisfying 

Here 

~o : ~s,~ --* A 

E ~0 [([~Pzi] u2i=(1--2~U2q'-SU4)- l /2  
i>O 

6 = ~o [~]P2] and ~ = ~o [lI-IPz] 

are two parameters in A which determine q~ completely. 
In the most interesting universal examples, A is the ring l l ) [ [q] ]  of formal 

power series over II~, and for any oriented manifold V, q~ [V] is the q-expansion 
of a level 2 modular form whose values at the two cusps are, up to an inessential 
factor, the ~]-genus /] [V] and the signature a ( V )  (cf. [9, 5, 10, 23, 8]). 

Though defined for oriented manifolds, the elliptic genera reveal their most 
striking properties, such as rigidity (constancy) under compact Lie group actions 
([3, 15]) or integrality [6], on spin manifolds. Both rigidity and integrality 
rely on the fact noticed by E. Witten [22] that in the universal examples, the 
coefficients of ~o I-V] are indices of twisted Dirac operators, therefore KO-charac- 
teristic numbers. 

In this paper we consider a refined elliptic genus 

o, --,Ko, [[q]] ]~q : spin 

whose values are q-expansions of level 2 modular forms over the coefficient 
ring K O .  of the real K-theory. In dimensions divisible by 4,/3q[V] is essentially 
the above universal genus q~[V]. On the other hand, in dimensions 8 r e + l ,  
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8 m + 2 ,  flq[V] is a modular  form over ~:z (in the sense of J.-P. Serre [18]), 
and can be expressed as a polynomial in the basic form g= ~ q(Zn-1)2: 

n > l  

fig[V] = a 0 + a  1 g+ ... +a~, g". 

It  turns out that a o is the Atiyah invariant while a,, is the KO-par t  of the 
Brown-Kervaire invariant of V. 

Being a refinement of an elliptic genus, fig retains at least a few of the proper- 
ties of the latter. For  example, M. Bendersky ([2])  recently proved that fig [V ] 
= 0 for a spin manifold V admitting an odd type semi-free circle action, which 
implies the vanishing of both the Atiyah invariant and the KO-par t  of the 
Brown Kervaire invariant*. 

1 Definition of flq 

Let E be a real vector bundle over X. Writing Ai(E) and Si(E) respectively 
for the exterior and the symmetric powers of E, and 

A,(E)= y~ A'(e) t', 

St(E) = ~, S'(E) t', 
i>_O 

one defines the Witten characteristic class Oq ([22], cf. [10] ) by 

o~(E) = @ (A_~ . . . .  (E) | S~2.(E)). 
n > l  

For  any E, Oq(E) is a formal power series in q whose coefficients are virtual 
vector bundles over X. Moreover,  one has 

Og( E) = I -- E . q + . . . 
and 

o~(e ~ F) = O~(E). O~(V). 

Therefore O, canonically extends to KO(X):  

Let fig(E) be defined by 

Then 

where 

and 

Oq: K O ( X ) ~  KO(X)[ [q] ] .  

flq (E) = O~ (E - dim E). 

fig(E) = bo(E) + bl (E) q +. . .  

b0 (E) = 1 

bi (E)eK'6(X)  ( i>0)  

flq(E ~ F)--- flq(E), flq(F). 

* For a proof valid for all odd type actions see [16]. 
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It is easy to see that bi(i>O) are stable KO-characteristic classes and can be 
expressed as polynomials in the Pontrjagin classes n i defined by (cf. [21]): 

~ ni(E) u i = A , ( E -  dim E), 
where 

t 
u = (1 + t) z" 

For  example 

bl = - h i  

b2--~- g 2 - -  7~1 

b 3 = - n 3  + 4 n 2 - n ~ - 4 n 1  
and, more generally, 

bl = ( -  1) i ni + lower terms. 

Let now V" be a closed spin manifold, and [V"] eKO.(V") be the fundamental 
class of V" in real K-theory. 

Definition. 
flq[V"]=flq(TV)[V"]= Z b,[V"] q', 

i>O 

where TV is the tangent bundle of V" and 

bl [V"] = bi(TV) [V"] eKO. = KO. (point) 

is the KO-characteristic number corresponding to hi. 
One can easily see that/~q defines a ring homomorphism (genus) 

flq : ,",spin ~z, --* KO, [ [q] ]. 

Considered as Z/8-graded, the ring KO. is generated by two elements r/ 
and co of degree 1 and 4 respectively subject to the relations 

2r] = ?]3 = qO9 = 0, ~02 = 4 .  

Clearly,/3q preserves the degree mod 8. 
Let 

ph: KO*(X)~  H**(X;ff~) 

be the Pontrjagin character defined as the composition 

KO*(X) |162 , K*(X) ch . . . .  h%~. H**(X;Q).  

For  X = p o i n t  one has KO*(X)~KO.  and H**(X; ~ ) ~ ,  and ph is entirely 
determined by 

ph(rl)=O , ph(og)=2. 

In particular, p h is integral: 
ph: KO. --* Z. 
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Composing flq 

such that 

with p h leads to a genus 

q~q=phoflq: ~,~pin ._~ ~ [ [q] ] 

~oq[V"] = ~ ph(b,[V"])q'= ~, ph(b,(TV)) ~(TV)[V"] q' 
i>O i>O 

where ~(TV)  is the total ~t-class of V". In particular, the constant term of 
r [V "] is the .~-genus .4 [V"]. 

Theorem 1 ([10, 23]) r is the restriction to o spin . . ,  of an elliptic genus 

~oq: os,~ ~([~[[q] ] 
with parameters 

6=--~- -3  Z ( ~, d)q" 
n > l  d in  

d o d d  

e----Z( Z d3)q" [] 
n>= l d~n 

n/d odd 

2 Modular forms over graded rings 

It turns out that flq[V"] can be interpreted as a modular form of degree n 
over the graded ring KO,. 

If F is a subgroup of SLz(Z) of finite index, let Mr (c )  be the graded ring 
of modular forms over C for F. Thus Mr(c )  is the group of forms of weight 
w. We will always identify a modular form from Mr(c)  with its q-expansion. 
This way M r (C) becomes a subring in ~ [ [q 1/h] ], where h is the smallest positive 

integer such that (~ hl) belongs to F. 

Let now Mr,(Z) be the graded subring of Mr,(C) of forms having integral 
q-expansions 

Mr, (Z)= @ M (Z) 

M r (Z) = M r (C) c~ Z [ [q'/h] ]. 

For any graded commutative ring with unit 

R , = @ R , ,  
n 

the canonical injection 
Mr, (;~') ~Z[[q'/h]] 

extends to a ring homomorphism 

R, |  Mr, (Z) -~ R,  [ [q l/h] ]. 

We define Mr(R,)  to be the image of this homomorphism, and will call its 
elements modular forms over R ,  for F. 
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Notice that Mr(R,) is canonically a graded R,-algebra: 

Mr(R,) = @ Mr(R,), 
n 

where Mr(R.) is the image of R . |  Mr(z) .  We refer to the elements of Mr(R,) 
as forms of degree n. 

If for a certain n, R, has no torsion, then 

Rn @ Mr,(~) ~ Mr(R,) 

is an isomorphism. In this case, 

where 

M r (R.) = @ Mr (R.), 
w 

r M~(R,) = R. | Mr~(~r). 

We will say that forms from r Mw(R.) have weight w. 
In the general situation, a form FeMr(R,) may come from integral forms 

of different weights, and the weight of F cannot be defined correctly. Instead, 
one defines an increasing filtration of Mr(R.) as follows: a form FEMr(R,) 
has filtration __<f if F is the image of an element of 

i.e. if 

n.| @ 
w<=f 

F=Zr jF  j, 

where F~EMr (Z) are forms of weight _<f and rjeR,. 

3 Modular forms over KO, 

From now on F will designate the group F0 (2) of matrices 

such that c - 0 ( m o d  2). The series 6 and e of theorem 1 are the basic examples 
of modular forms for Fo(2 ). More precisely, let 

6o= - 8 6 = l + 2 4 q + 2 4 q  z+96q 3+. . .  

Proposition 1 (cf. [8], Anhang I) (i) 6oeMrE(Z), ~eMr(Z);  
(ii) M r (Z) = Z [6 0, e]. 

Consider now Mr(KO.). For  n- -0(mod 4), one has KO, ~-Z Thus 

Mr(KO.)~ KO. | Mr(z). 
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It follows that:  

(a) a modula r  form of degree n - -8  m and weight w over KO, can be written 
in a unique way as a polynomial  P(6o, e) of  weight w with integer coefficients; 
(b) a modula r  form of degree n = 8 m + 4 and weight w over KO, can be written 
in a unique way as coP(6 o, s), where P(6 o, s) is a polynomial  of weight w 
with integer coefficients. 

Notice  now that  one has fi0 = l ( m o d  2). Let  g be the reduct ion mod  2 of 
s ~ Z [ [ q ] ] .  It is easy to see that  

g= ~_~ q(2n-1)Z=q+q9+q25+...  
n>=l 

For  n = 8  m+r(r= 1, 2), one has KO. = F 2  qr and the map 

KO, | Mr, (Z) ~ KO, [ [q] ] 

is essentially the reduct ion mod  2: 

q" | P(6o,  s)~---~ r/"/5(1, ~, 

where P(6 o, ~) is a polynomial  with integer coefficients a n d / 5  is its reduct ion 
m od  2. As g=  q + .. . .  the powers of  g are linearly independent  over F2. Therefore:  

(c) a modula r  form F of  degree n = 8  m+r(r= 1, 2) and filtration < f  over  KO. 
can be writ ten in a unique way as q'Q (~, where 

Q(O = a0 + al g + . . .  + a, gS(aiEF2) 

and 4s < f  The filtration of F is exactly 4 s if and only if as 4: 0. 

The additive structure of Mr(KO.) is completely described by (a), (b), and 
(c). The  ring structure is given by the following theorem. 

Theorem 2 (i) The kernel of 

KO, | Mr, (TZ,) ~ Mr(KO,) 

is the principal ideal generated by t / |  (6 0 - 1). 
(ii) The commutative KO,-algebra Mr(KO,) fs generated by 6o and ~ subject 
to the single relation t 1 r o = t 1. 

The p roof  is immediate  from the above description of 

KO, | Mr, (Z) -~ KO. [ [q] ]. 

4 ~ [ ~ ]  as a modular form 

We will now see that  flq [V"] is a modular  form of degree n over KO.. 

Theorem 3 (i) I f  n=4s, then flq(Q~pi,) is the set of all modular forms of degree 
n and weight 2s over KO.. 
(ii) I f  n= 8 m+r(r= 1, 2), then flq(O~pi.) is the set of all modular forms of degree 
n and filtration < 4 m over KO.. 
(iii) fl~(~-p.pi,) is the subring of Mr(KO.) generated by ~l, ~O6o, 6~ and s. 
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Proof. Part (iii) clearly follows from (i), (ii) and the above description of Mr(KO,). 
Part (i) is a simple consequence of the definition of %,  the description of 

ph and the following theorem: 

Theorem 4 ([6], cf. [10]) For any spin manifold V 4~, ~0q[V 4s] is a modular 
form from Mrs(7Z). More precisely, 

q [ g - ) s p i n ] -  M4rm (Z) 
q I , ~ 8 m  ] -  

spin 
qg q( Q8m+ 4) -- 2 M~m + 2 (7Z) 

The proof of the remaining part (ii) relies on the following construction 
due to R.E. Stong (cf. [21, p. 341] for the details): 

Let gl be the circle equipped with its non-trivial spin structure. S -1 represents 
the non-zero element v . ~  l r ' , f  OsP in = ' 2 " ~  If Vis an (8 m + 2)-dimensional spin manifold, 
then $-1 x V is the boundary of a compact spin manifold U. On the other hand, 
2 ~  is the boundary of a compact spin manifold M 2. Therefore one can form 
a closed (8 m + 4)-dimensional spin manifold T(V) by glueing together two copies 
of U and - M  2 x V along 

~(2 U ) = 2 S  1 x V=O(M 2 x V). 

Though involving arbitrary choices of M E and U, this construction induces 
a well-defined homomorphism 

T: spin ~ ( ) sp in  r ~  11~ 
~"~8 m + 2 - -  ~ a 8 m + 4 k . ~  a 2 '  

Let 
t: KO2~KO4|  

be the isomorphism which sends t/2 to co | 1. 

Proposition 2 (cf. [21, p.343]) I f  ~ is a polynomial in the Pontrjagin classes 
zi, then one has in K 04 | RE: 

r174162 [] 

Roughly speaking, ~ [V] is the reduction mod 2 of ~ IT(V)]. 
Let I .  ~ f2. p~n be the ideal of classes with vanishing Pontrjagin KO-character- 

istic numbers. Proposition 2 implies that T induces a homomorphism 

"f :  o s p  in / I  ~ spin 
.~8m+2/a8m+2 ( O S r a + 4 / / S s + 4 )  | F 2 .  

Proposition 3 (cf. [21, p. 344]) ~ is an isomorphism. [] 

The coefficients of flq[V] are Pontrjagin KO-characteristic numbers. There- 
fore one has: 

fl~[T(V)] | 1 =t(fl~[V]) 

in (K04 | F2) [ [q] ]. By Theorem 3 (i), 

flq [T(V)] = o9P(6o, ~), 

where P(6o, ~) is a polynomial of weight 4 m + 2 in 60, e with integer coefficients. 
Therefore 

/~ [V] =,7  ~ P(1, 



284 S. Ochanine 

is a modular  form of degree 8 m + 2 and filtration < 4 m over KO,. Proposition 
3 implies that all such forms can be obtained from spin manifolds V, and this 
settles the case of manifolds of dimension 8 m + 2. 

The proof  in the case of (8 m + 1)-dimensional manifolds is similar. Instead 
of T one considers the multiplication by gl homomorphism 

S ~ ( ) s p i n  __~ ~spin 
' ~ 8 m  a ~ S r a +  1 " 

If r is a polynomial in the classes rcl, then 

r [g~ x M ]  = ~/. # [ M ]  

for any spin manifold M. Thus S induces a homomorphism 

~ :  ( ' ) s p i n / /  ~ ( ' ) s p i n  / [  
aU8ra /~8m  ~ 8 m +  1 / ~ 8 m +  1 �9 

Proposition 4 (cf. [21, p. 344]) ~ is into. [] 

It follows that 
f l  / ( ' ) s p i n  ~ _  . spif i  

q ~ ' a m +  l I - - l ~  flq(~'~8m ) 

and the result follows from (i) and the description of Mr(KO,). 

5 Characteristic classes al 

Let h(q)=q +... be any series from 77[ I-q] ] whose reduction mod 2 is 
~, q(2,-1)2=q+q9 +q25 +... 

n>= l 

For  example, one can take h(q)=e(q). Another  possible choice for h(q) is the 
Ramanujan  series 

A(q)=q l-I (1-q")Z4=q-24q2 + 252q 3-. . .* 
n>= l 

For  any real vector bundle E over X define 

at(E) ~ K O (X) [ [t] 1 
by 

~,(E)=fl~(E), 
where 

t = h (q). 

Since the leading term of h(q) is q, this series is invertible in Z [  [q] ], therefore 
at(E) is well-defined. Clearly, one has 

ctt(E @ F ) =  at(E) eft(F). 

* It is an amusing exercise to show that A_=a(mod 2) and even, as noticed by P. Landwcber, 
A - e(mod 16). 
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If 

~,(E) = ao(E) + ai(E ) t + a 2 (E) t 2 +. . . ,  

then ai(E) is a polynomial in the Pontrjagin classes ni(E ) such that 

ao (E) --- 1 

ai(E)~KO(X ) (i>0) 
and 

ai(E) = ( -  1) I ni (E)+ lower terms. 

Notice that while ai(E) depends on the choice of h(q), its reduction mod 2, 
that is its image in K O ( X ) |  IF2 is independent of any choice. 

By definition of ai, for any spin manifold V" one has: 

flq[V'] =ao[V"  ] + a  1 [V"] t+a2 [V"] t 2 + .... 
where 

ai[V"] =ai(TV)[V"]. 

On the other hand, the reduction rood 2 of flq [V"] is of the form (cf. Sect. 3): 

ao +al g+ ... +am gm, 

where a~EKOn| and m= In/8]. Comparing these two expressions leads to 
the following: 

Theorem 5 (i) For i> In~8], one has al [V"] | 1 =0  in K O . |  
(ii) One has in (KO, | 1Fz) [ [q] ] : 

flq [V"] - ao [V"] + a ,  [V"] g+ ... +am[V"] g", 

where m = In/8]. 

6 The Brown-Kervaire invariant 

Notice that for n = 8  m+2 ,  the constant term ao[V"] = 1 [V"] is the so-called 
Atiyah invariant ([1]). We will see now that am[V"] has an interpretation in 
terms of the Brown-Kervaire invariant of V". 

Let V", n = 8 m + 2, be a spin manifold. As mentioned earlier, gl x V= O U, 
where U is a compact spin manifold. It is shown in [13] that the signature 
a(U) is divisible by 8, and that 

k(V)=a(U)/8~IF2 

is a spin cobordism invariant satisfying 

k(,~l • ~1 x M ) = a ( M )  rood 2 

for all 8 m-dimensional spin manifolds M. For  a large class of manifolds, includ- 
ing all complex-spin manifolds [20], k(V) agrees with the Brown-Kervaire invar- 
iant [4]. For  a general spin manifold V, k(V) can be thought of as the KO-part 
of the Brown-Kervaire invariant (cf. [13] for the details). 



286 

More  generally, one defines an invariant  x(V")~KO. | ~2 by 

~ ( v " )  = 

a W L  n = 0(mod  8) 

k(S l x V)q, n -  l ( m o d  8) 

k(V) t/2 , n = 2 ( m o d  8) 

(a(V)/16)~o, n-=4(mod  8) 

S. Ochanine 

by the previous case. 
By definition, 

where O U = S ~ x V. Thus  

t(am [V"])  = am [T(V) ]  mod  2 

=(a(T(V))/16) o~ m o d  2 

T ( V ) = ( 2 U ) u ( - - M  2 x V), 

a(T(V)) = 2 a (U). 

The multiplicative properties of k are summarized by saying that  K defines 
a ring h o m o m o r p h i s m  

~spin X: ~J, - ' * K O , |  2. 

A new proof  of  this will be given later. 

Theorem 6 Let V" be a spin manifold. Then 

a,. [ v " ]  = K(v") 

in KO. | F2, where m = [n/8]. 

Proof. Consider  first the case when n = 8 m + 4. According to Theorem 3, 

//~ [V"]  = ~o(ao 6~ m+ 1 + a ,  6~ r"- 1 5 +  . . .  + a , ,  6o 5"), 

where ai~Z. Then 

q~ q[V"] = 2 ( a o  62o m+ 1 + a l  62m- 1 5+. . .  +a m 6 0 era). 

If  we consider (pq as an elliptic genus over Z [6, El, the signature a(V") is obtained 
by specializing 6 = 1, e = 1, or  6 o = - 8, ~ = 1. Thus, 

a(V.)=Z(ao(_8)Zm+l + a~ ( _  8)2,.- 1 + ... + a , . ( -  8)) 

-= 16a, , (mod 32), 
and 

x(V") = a,, o~ m o d 2 .  

On the other  hand, by Theorem 5, 

am o~ =am[V"] m o d  2, 
therefore 

~(V")=a,.[V"] m o d  2. 

If  n = 8 m + 2, Propos i t ion  2 gives 
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On the other  hand, 

k(V)=a 'U ' - t  ~ a(T(V))mod2.  
8 16 

Compar ing  with the above expression for t (a,, [ V"] ), we obtain:  

a,.[V"]=k(V"),7~=,~(V"). 
If n=8m+ l, 

therefore 
a,,[V"]=k(S' x V")q=~c(V") 

since the multiplication by q is an i somorphism K01 

Finally, if n = 8 m, then 

a,.EV"] ~l=amES 1 x Vn] : k ( S  ' X Vn) q z, 

-~ ,K02.  

amEV"]qZ=a,,[S I x S  1 x V"] = k ( ~  1 x ~  1 x V")qz=a(V")q 2, 
and 

am[V"]-a(V")(mod2). [] 

r Corollary 1 K: ~e, - ,  KO, | IF 2 is a ring, homomorphism, 

Proof. Let V1 and V 2 be two spin manifolds of  dimension nl and n 2 respectively, 
and let 

ml = [nl /8] ,  m2 = [n2/8], m = [(nl + n2)/8]. 

By Theorem 6, 

K(VI X V2)=am[Vl X Vz]= Z alt[VlJai2[Vz] �9 
il + i 2 = m  

Notice that  m>=mi+m2. If  m=m~+m2, then Theorem 5 (i) and theorem 6 
imply:  

~(V~ x V2)=a,., [1"1] a,.~Ev2] =K(V0 K(Vg. 

If  m > ml + m2, then Theorem 5 (i) gives 

~ ( V  1 X V2)~--~-O 
and one has to check that  

K(VI) ~s (V2) = O. 

But m > m~ + m2 is possible only in one of  the following cases: 

(1) 

In  this case 

since co 2 = 0 (mod 2). 

(2) nl = 5, 6, 7(rood 8) 

In this case K(V0 or  x(V2) is zero. [ ]  

nl -=n2 - 4 (mod 8). 

x(vl) x(v2)=0 

or n z -  5, 6, 7(mod 8). 
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Corollary 2 Let V", n = 8 m + r(r = 1, 2) be a spin manifold. The filtration of flq I,V"] 
is exactly 4m if and only if x(V")~:O. 

Proof This follows from Theorem 6 and the description of Mr(KOsm+,) in 
Sect. 3. [] 

7 The SU-case 

spin C= F Theorem 3 describes the subring M,=flq(f2,  ) M (KO,). Using the results 
of 1"6] one can easily determine the image of the special unitary cobordism 
ring f2s, U under flq. We will focus on the dimensions 8m + 1, 8m+ 2, leaving 
the easier remaining cases to the reader. 

Theorem 7 (i) If n = S m +  1, then ~q(~'~SU) Cflq(~'~SnPin ) is the subgroup of forms 
of the form r/P(e 2) where P is a polynomial of degree <m/2 over F 2. 
(ii) I f  n= 8m+2,  then flq(f2 sv) = flq(f2~,Pi"). 

Corollary. I f  M", n= 8m+ 1, is an SU-manifold, then 

for all odd i. For instance, 
ai I,M"] = 0 

rq [m"] =0, 

(To3 + ~2) I-M"] = 0. 

Proof (i) According to [6], an element from sv q~q(f28m ) can be written as 

2P(ag, ~)+ Q(ao ~, e2), 

where P, Q are two polynomials with integer coefficients. On the other hand, 
one has 

SU ~s~+l [U] sv 

where gl is the circle S 1 equipped with its non-trivial SU-structure (cf. [21, 
Chap. X]). Therefore, 

SU __ SU 
/3q(CZSm + 1)-- n" &(OSm) 

and the result follows. 
Part (ii) is an immediate consequence of the following proposition. 

Proposition 5 The canonical map 

SU t"~spin 2 / i 8 r a + 2  ~"~8 m + 2 -"~ ~ S m  + 

is onto. In other words, any spin manifold of dimension 8m+ 2 has the same 
KO-characteristic numbers as an SU-manifold. 

Proof Notice first that the homomorphism T used in the proof of Theorem 
4 can be defined using SU-manifolds: there is a homomorphism 

T c: s v  v 
~'~8 m + 2 -'+ ~ S m  + 4 ( ~  ~7 2 
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with preserves the mod 2 KO-characteristic numbers. Let I .  ~ f2 sv be the ideal 
of classes with vanishing KO-characteristic numbers. Then T c induces a homo- 
morphism 

~.c: FISU / IC _.~ SU c 
" ' 8 m + 2 / J 8 m + 2  (f28,.+a/Ism+4)| 

and there is a commutat ive diagram 

~'~SU /Tc  Tr SU c 
8m+2/'8,,+2 ' (Q8,~+4/18,,..4)| 

spin 7" (~28,.+4/ism+4) | IF a ~ 8 m +  2 / I 8 m +  2 ~ spin 

in which 2 and # are induced by the forgetful homomorphism.  One has to 
show that 2 is onto. It is well known (cf. [19]) that 

S U  ~ spin ~Qsm +4 ~c28 m + 4 / T o r s  

is onto. As Is, ,+4 =Tors~ this implies that p is onto. Thus to prove 
the proposition, it will suffice to show that TC is onto. 

Let B,  c f2s,~ be the subring of classes represented by U-manifolds with 
spherical determinant. According to Stong ([21, p. 282]), B,  is a polynomial 
algebra and sv I28,,+4/I8,,+4 c B8,.+4 is exactly the subgroup 2B8,.+4. 

Let M 8"+4 be an SU-manifold, and let W 8"+4 be a U-manifold with spheri- 
cal determinant such that [ M ] = 2 [ W ]  in B8,,+4. Dualizing the determinant 
of W gives an SU-manifold V 8m+2 and we have 

W= U u ( - D  2 • V) 

where U is an SU-manifold with boundary  gl  x V, namely the complement of 
a tubular neighbourhood of V in W (cf. [13]). 

By definition, Tc([V] ) is represented by the manifold Z = (2 U) w ( -  M 2 • V), 
where M 2 is an SU-manifold such that 3 M 2 = 2 S  a. It is easy to see that Z 
is cobordant  to 2 W as a U-manifold. Therefore Z and 2 W have the same 
rational Pontrjagin numbers. Hence Z and M have the same KO-characteristic 
numbers, that is represent the same element in o s v  /rc ~ 8 m + 4 / 1 8 m + 4 .  [ ]  

8 Final remarks 

(1) According to Theorem 6, the reduction mod 2 of the class am measures 
the KO-par t  of the Brown-Kervaire invariant in dimension 8 m + 2. For  instance, 

k(Vl~ rh [V '~ 

k(V ~ ~) = (=2 + =,) [ W  ~] 
k(  V 26) = (~3 + ~12) [ V26] �9 
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Other  sequences ao, a l ,  ... having the same  p roper ty  have been const ructed 
in [13]. F o r  example,  

am=L2m(nl . . . . .  rC2m) q-( 7~3 + •I re2 -t- 7~3) L2m-2(7~l . . . .  , 7~2ra-  2), 

where L2m is the reduced m o d  2 Hi rzebruch ' s  polynomial ,  is such a sequence. 
A simple compar i son  of the first few terms shows tha t  the new classes a,, have 
far fewer terms. Besides, they have bet ter  mult ipl icat ive properties.  The classes 
am have been used in [17] to represent  k(V) as the index of a twisted Di rac  
opera to r  on V. 

Not ice  tha t  the m o d 2  reduct ion of h(q) is of the form q+o(qS). Therefore  
on has 

am =- bm (mod 2) 

for m < 8 .  Thus  in d imensions  n=<71, x(V) is measured  by the Wit ten class 
btn/81 
(2) The  genus 

~o: Q~o_, M~(Z[1/2]) 

was used by Landweber ,  Ravenel  and  Stong [12] to const ruct  an elliptic (co)ho- 
mo logy  theory  E [ [ , ( [ 1 0 ,  11]). N a m e l y  they showed that  

E [ r  ( ) = f2~~ ( ) | M r  (7Z [1/2] ) [ e -  '3 

is a h o m o l o g y  theory. Here  M r ( z [ 1 / 2 ] )  is considered as an OS~ via r 
By ana logy  with the C o n n e r - F l o y d  i somorph i sm ( [7] )  

KO,()~-~sP()| KO, 

one can ask whether  the functor  

f2sP( ) | M .  [ e -  1], 

where M, c Mr(KO.) is the image of  flq described in T h e o r e m  3 (iii), is a homolo -  
gy theory. A posit ive answer  to this quest ion would provide  a way of  el iminating 
the undesirable  1/2 in the definit ion of  ELY. ( ) .  
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Note added in proof 
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