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Let Q59 be the oriented cobordism ring and A any commutative ®@-algebra.
An elliptic genus over A, as originally defined in [14], is a ring homomorphism

@: Q24
satisfying

Y @[CRJu* =(1-26u*+eu*)~1/?

i20
Here
0=¢[CPR] and e¢=¢[HA]

are two parameters in 4 which determine ¢ completely.

In the most interesting universal examples, A is the ring Q[ [q]] of formal
power series over @Q, and for any oriented manifold ¥, ¢ [V] is the g-expansion
of a level 2 modular form whose values at the two cusps are, up to an inessential
factor, the A-genus A[V] and the signature (V) (cf. [9, S, 10, 23, 8]).

Though defined for oriented manifolds, the elliptic genera reveal their most
striking properties, such as rigidity (constancy) under compact Lie group actions
([3, 15]) or integrality [6], on spin manifolds. Both rigidity and integrality
rely on the fact noticed by E. Witten [22] that in the universal examples, the
coefficients of ¢ [V] are indices of twisted Dirac operators, therefore KO-charac-
teristic numbers.

In this paper we consider a refined elliptic genus

By Q"> KO, [[q]]

whose values are g-expansions of level 2 modular forms over the coefficient
ring KO, of the real K-theory. In dimensions divisible by 4, 8,[ V] is essentially
the above universal genus @[V]. On the other hand, in dimensions § m+ 1,
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8m+2, B,[V] is a modular form over IF, (in the sense of J.-P. Serre [18]),
and can be expressed as a polynomial in the basic form &= Y ¢?"~ 1"

nx1

BVi=ag+a,é+...+a, ™

It turns out that a, is the Atiyah invariant while a,, is the KO-part of the
Brown-Kervaire invariant of V.

Being a refinement of an elliptic genus, B, retains at least a few of the proper-
ties of the latter. For example, M. Bendersky ([2]) recently proved that [V ]
={ for a spin manifold V admitting an odd type semi-free circle action, which
implies the vanishing of both the Atiyah invariant and the KO-part of the
Brown Kervaire invariant*.

1 Definition of

Let E be a real vector bundle over X. Writing A(E) and S'(E) respectively
for the exterior and the symmetric powers of E, and

A(B)=}, A(E)t,

iz0

S(E)= Y SYE)Y,

iz0
one defines the Witten characteristic class 6, ([22], cf. [10]) by
6,(E)= R (A g2n-1(E)® S2n(E)).

nx1

For any E, ©,(F) is a formal power series in g whose coefficients are virtual
vector bundles over X. Moreover, one has

O,(E)=1—E-q+...
and
6,(E @ F)= 6,(E)- O,(F).

Therefore O, canonically extends to KO(X):
6,: KO(X)-KO(X)[[41]

Let f,(E) be defined by

B,(E)=8,(E —dim E).
Then

BE)=bo(E)+b,(E)g+...
where
bo(E)=1

b(E)eKO(X) (i>0)

and

B (E® F)=p,(E)-B,(F).

* For a proof valid for all odd type actions see [16].
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It is easy to see that b;(i=0) are stable KO-characteristic classes and can be
expressed as polynomials in the Pontrjagin classes n; defined by (cf. [21]):

Y 7,(E) u' = A,(E—dim E),

where
y— t
T
For example
by=-—m
by=m,—m,
by=—mny+4n,—ni—4mn,

and, more generally,
b;=(—1) =;+ lower terms.
Let now V" be a closed spin manifold, and [ V"}e KO, (V") be the fundamental

class of V" in real K-theory.

Definition.

B[V =B(TV)[V"]= ) bi[V"]4,

i20

where TV is the tangent bundle of V” and
b;[V"]=b(TV)[V"]e KO,= KO,(point)

is the KO-characteristic number corresponding to b;.
One can easily see that f, defines a ring homomorphism (genus)

By QF"—> KO, [[4]]

Considered as Z/8-graded, the ring KO, is generated by two elements ¢
and o of degree 1 and 4 respectively subject to the relations

2n=n=nw=0, w’=4.

Clearly, $, preserves the degree mod 8.
Let

ph: KO*(X)—- H**(X;Q)

be the Pontrjagin character defined as the composition
KO*(X) RC K*(X) Chern char. H**(X,Q)

For X =point one has KO*(X)~ KO, and H**(X; Q)=Q, and ph is entirely
determined by
phin)=0, ph(w)=2.
In particular, ph is integral:
ph: KO, - Z.
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Composing 8, with ph leads to a genus

@,=phof: Q" ->Z[[q]]
such that

9, [V"1= Y ph(B:[V D) a'= Y phb(TV) W(TV)[V"] g

i20 i20

where A(TV) s the total Hl-class of V" In particular, the constant term of
@,[V"]is the A-genus A[V"].

Theorem 1 ([10, 23]) ¢, is the restriction to ™ of an elliptic genus

0q: 23° Q[ [q]]

o=—3-32 (X dq

nz1 dn
dodd

e=) (Y 4&q¢ O
nz1 din
nj/d odd

with parameters

2 Modular forms over graded rings

It turns out that B,[V"] can be interpreted as a modular form of degree n
over the graded ring KO, .

If I' is a subgroup of SL,(Z) of finite index, let M%(C) be the graded ring
of modular forms over € for I. Thus M%(CT) is the group of forms of weight
w. We will always identify a modular form from MZ(C) with its g-expansion.
This way M’ (€) becomes a subring in €[ [¢"/*]], where h is the smallest positive

0 1
Let now MZL(Z) be the graded subring of ML (C) of forms having integral

g-expansions
ML, (Z)=D M, (@)

M, (@)=M, (O nZ[[q"'"]].

integer such that (1 h) belongs to I'.

For any graded commutative ring with unit

Ry= @ R,,
n
the canonical injection

ML@)-Z[[q'"]]

extends to a ring homomorphism

R, ®z M, (Z)~ R,[[q'"]].

We define MT(R,) to be the image of this homomorphism, and will call its
elements modular forms over R, for I
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Notice that MT(R,) is canonically a graded R,-algebra:

MT(R)=D M"(R,),

where MT(R,) is the image of R, ® M%(Z). We refer to the elements of M'(R,)
as forms of degree n.
If for a certain n, R, has no torsion, then

R, @M (Z)-»>M"(R,)
is an isomorphism. In this case,

M'(R,)=D M,,(R,),

where
MEL(R,)=R,® ML(Z).

We will say that forms from ML (R,) have weight w.

In the general situation, a form Fe M'(R,) may come from integral forms
of different weights, and the weight of F cannot be defined correctly. Instead,
one defines an increasing filtration of MT(R,) as follows: a form FeM*(R,)
has filtration < fif F is the image of an element of

R,®(D ML (D),

wsf
ie. if
F=3rF,

where Fye ML (Z) are forms of weight < f and r;eR,.

3 Modular forms over KO,

From now on I" will designate the group I;(2) of matrices
a b
<c d) eSL,(Z)

such that ¢=0(mod 2). The series é and ¢ of theorem 1 are the basic examples
of modular forms for I;(2). More precisely, let
do=—88=1+424q+24q*+964° + ...

Proposition 1 (cf. [8], Anhang I) (i) d,e M3(Z), ee ML (Z);
(i) ML (Z)=2Z[,, €]

Consider now MT(K0,). For n=0(mod 4), one has KO, ~Z. Thus

MT(K0,)=KO,® ML (Z).
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It follows that:

(a) a modular form of degree n=8m and weight w over KO, can be written
in a unique way as a polynomial P(d,, &) of weight w with integer coefficients;
(b) a modular form of degree n=8 m+4 and weight w over KO, can be written
in a unique way as wP(d,, &), where P(d,, &) is a polynomial of weight w
with integer coefficients.

Notice now that one has §,=1(mod 2). Let & be the reduction mod 2 of
eeZ[[q]]. It is easy to see that

E= Y g V=q+q°+¢* +...

nz1
For n=8m+r(r=1, 2), one has KO,=IF, " and the map
KO,® M, (Z)~ KO,[ [4]]

is essentially the reduction mod 2:
rlr ® P(50’ 3)'_”7' P_(I: é):

where P(J,, ¢) is a polynomial with integer coefficients and P is its reduction
mod 2. As §=g+ ..., the powers of ¢ are linearly independent over IF, . Therefore:

(c) a modular form F of degree n=8 m+r(r=1, 2) and filtration < f over KO,
can be written in a unique way as #” Q (&), where

Q@)=a¢+a, é+...+a,&(aclF,)
and 4s < f The filtration of F is exactly 4s if and only if a,+0.

The additive structure of M"(KO,) is completely described by (a), (b), and
(c). The ring structure is given by the following theorem.

Theorem 2 (i) The kernel of
K0, ® M, (Z)~» M"(KO,)

is the principal ideal generated by n ® (6, — 1).
(i) The commutative KO,-algebra M"(KO,) is generated by &, and ¢ subject
to the single relation néq=n.

The proof is immediate from the above description of

KO, ® M, (Z)— KO,[[4]1].

4 p,[V"] as a modular form

We will now see that ,[ V"] is a modular form of degree n over KO, .

Theorem 3 (i) If n=4s, then B (™) is the set of all modular forms of degree
n and weight 2s over KO,,.

(i) If n=8m+r(r=1, 2), then B, (") is the set of all modular forms of degree
n and filtration <4 m over KO,,.

(i) B (S2P™) is the subring of MT(KO,) generated by 1, w4, 65 and .
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Proof. Part (iii) clearly follows from (i), (ii) and the above description of M*(KO,).
Part (i) is a simple consequence of the definition of ¢,, the description of
ph and the following theorem:

Theorem 4 ([6], cf. [10]) For any spin manifold V*, ¢,[V**] is a modular
Sform from M% (Z). More precisely,
@, (2" =M3n(Z)
Pq (QF8)=2Mip s, (Z)

The proof of the remaining part (ii) relies on the following construction
due to R.E. Stong (cf. [21, p. 341] for the details):

Let S* be the circle equipped with its non-trivial spin structure. S* represents
the non-zero element of QP*~TF, . If Vis an (8 m+ 2)-dimensional spin manifold,
then S§* x V is the boundary of a compact spin manifold U. On the other hand,
28" is the boundary of a compact spin manifold M2, Therefore one can form

a closed (8 m + 4)-dimensional spin manifold T(V) by glueing together two copies
of U and — M? x V along

dR2U)=28'xV=0(M?x V).

Though involving arbitrary choices of M? and U, this construction induces
a well-defined homomorphism

T: QFr, — QS T,
Let
t: K02 '—’K04®]F'2

be the isomorphism which sends 4% to ® ® 1.

Propeosition 2 (cf. [21, p.343]) If & is a polynomial in the Pontrjagin classes
n;, then one has in KO, @ IF;:

TMl®1=t¢lV]). O

Roughly speaking, £[ V] is the reduction mod 2 of £[T(V)].
Let I, = 5 be the ideal of classes with vanishing Pontrjagin KO-character-
istic numbers. Proposition 2 implies that T induces a homomorphism

T: @ sspy:.n+2/18m+2‘“’(Q%pp:.n+4/18m+4)®]F2-
Proposition 3 (cf. [21, p. 344]) T is an isomorphism. [

The coefficients of B, [ V] are Pontrjagin KO-characteristic numbers. There-
fore one has:

BALT(M]® 1=1(B,[V])
in (KO, ® F,)[ [q]]. By Theorem 3 (i),
BL[T(V)]=wP(S,5),

where P(d,, ¢) is a polynomial of weight 4 m+2 in J,, ¢ with integer coefficients.
Therefore

B.[V1=n*P(1,8)
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is a modular form of degree 8 m+-2 and filtration <4 m over KO, . Proposition
3 implies that all such forms can be obtained from spin manifolds ¥, and this
settles the case of manifolds of dimension 8 m+2.

The proof in the case of (8§ m+ 1)-dimensional manifolds is similar. Instead
of T one considers the multiplication by §* homomorphism

S: Qpin > QFin, |
If £ is a polynomiai in the classes =;, then
E[S' x M]=n-¢[M]
for any spin manifold M. Thus S induces a homomorphism
S: QB sm— QEs i/ Tsmen-
Proposition 4 (cf. [21, p. 344]) Sis into. [

It follows that
B (s 1) =n- B (2

and the result follows from (i) and the description of MT(KO,).

5 Characteristic classes a;

Let h{(g)=g+ ... be any series from Z[ [¢]] whose reduction mod 2 is
Y gt =g+4°+¢* + ...

nz1

For example, one can take h{(q)=¢(g). Another possible choice for h(q) is the
Ramanujan series

A@=q [] 1 —g"**=q—24¢>+252¢° — .. .*

nz1

For any real vector bundle E over X define

«(E)e KO (X)[[t]]
by

o, (E)=B,(E),
where

t=h(qg).

Since the leading term of h(q) is g, this series is invertible in Z[[q]], therefore
o,(E) is well-defined. Clearly, one has

a,(E ® F)=0,(E) «,(F).

* It is an amusing exercise to show that 4=¢(mod 2) and even, as noticed by P. Landweber,
A=e(mod 16).
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If
o, (E)=aq(E)+ a,(E)t +ay(E) >+ ...,

then g;{E) is a polynomial in the Pontrjagin classes 7;(E) such that

ag(E)=1

a(E)eKO(X) (i>0)
and
a;(E)=(~1) n;(E)}+lower terms.

Notice that while ¢;(E) depends on the choice of k{q), its reduction mod 2,
that is its image in KO(X) ® IF, is independent of any choice.
By definition of a;, for any spin manifold V" one has:

B,V =ao[VI+a, [V It+a,[V']tP+...,
where
a;[V]=a(TV)[V"].

On the other hand, the reduction mod 2 of §,[V"] is of the form (cf. Sect. 3):
agta é+...+a,&",
where 4, KO,®TF, and m=[n/8]. Comparing these two expressions leads to
the following:
Theorem 5 (i) For i>[n/8], one has a; [V"]® 1=0in KO, ®IF,.
(ii) One has in (KO,®F,)[[q]]:
BV =ao[V']+a,[V"]e+... +a,[V"]E,
where m=[n/8].

6 The Brown-Kervaire invariant

Notice that for n=8 m+2, the constant term a,[V"]=1[V"] is the so-called
Atiyah invariant ([1]). We will see now that a,[V"] has an interpretation in
terms of the Brown-Kervaire invariant of V"

Let V" n=8m+2, be a spin manifold. As mentioned earlier, S* x V=09U,
where U is a compact spin manifold. It is shown in [13] that the signature
a(U) is divisible by 8, and that

k(VY=0(U)/8€IF,
is a spin cobordism invariant satisfying
k(S* x 8t x M)=0(M) mod 2

for all 8 m-dimensional spin manifolds M. For a large class of manifolds, includ-
ing all complex-spin manifolds [20], k(V) agrees with the Brown-Kervaire invar-
iant [4]. For a general spin manifold ¥, k(V) can be thought of as the KO-part
of the Brown-Kervaire invariant (cf. [13] for the details).
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More generally, one defines an invariant x(V")e KO, ® IF, by

a(V), n=0(mod 8)
-~ k(S*xV)n, n=1(mod?8)
“U0= ks n=2(mod 8)

(6(V)/16)w, n=4(mod3§)

The multiplicative properties of k are summarized by saying that x defines
a ring homomorphism
x: QP> KO, ®T,.
A new proof of this will be given later.
Theorem 6 Let V" be a spin manifold. Then
a4 [V"]=x(V")
in KO,®TF,, where m=[n/8].

Proof. Consider first the case when n=8 m+4. According to Theorem 3,
B, [VT=w(ao 3™ ' +a,03™ e+...+a, 5o &™),

where a;eZ. Then
@ [V1=2(ae 63" +a, 63™ e+ ... +a, 5o &™)

If we consider ¢, as an elliptic genus over Z[ 6, ¢], the signature ¢(V") is obtained
by specializing 6=1, e=1, or §;= —8, e=1. Thus,

a(V)=2(ao(—8)*™"* ' +a,(—8)*" '+ ... +a,(—8))
= 164,,(mod 32),

and
k(V"=a,, w mod 2.

On the other hand, by Theorem 3,

a,w=a,{ V"] mod?2,
therefore
k(V=a,[V"] mod 2.

If n=8m+ 2, Proposition 2 gives

t@.lV')=a,[T(V)] mod 2
=(a(T(V))/16) » mod 2
by the previous case.
By definition,
TV)=QU)u(—M?*xV),

where 6U =S8" x ¥V, Thus
a{T(V))=2a(U).
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On the other hand,
a(U) _a(T(V)

k(V)=—3 16

mod 2.

Comparing with the above expression for t(a,,[V"]), we obtain:

am [V )=V n? = (V™).
Ifn=8m+1,

an [V In=a,[S' x V" ]=k(S' x V") 1?,

therefore

a, [V 1=k x V) n=x(V"
since the multiplication by 7 is an isomorphism K0, ——— KO,.

Finally, if n=8m, then
a, [V In*=a,[5' xS* x V" ]=k(§* x§' x V2 =0 (V") 52,

and

a, [V ]=c(V")(mod2). [
Corollary 1 «: Q" —» KO, ®TF, is a ring homomorphism.

Proof. Let V; and V, be two spin manifolds of dimension n, and n, respectively,
and let

my=[n/8], my=[n,/8], m=[(n,+n,)/8]
By Theorem 6,

k(Vy x Va)=a,[Vy x V,]= z a;, [(Vila,[V,]

iytia=m

Notice that mzm,+m,. If m=m, +m,, then Theorem 5 (i) and theorem 6
imply:

k(Vy x Va)=ap, [Vi] am, [Va1=x(V)) (V).
If m>m,; +m,, then Theorem 5 (i) gives

k(Vy x V;)=0
and one has to check that
k(V) k(V3)=0.

But m>m, +m, is possible only in one of the following cases:
(1) ny =n, =4(mod 8).

In this case
k(V) x(V3)=0
since w?=0(mod 2).

2 n,=56,7(mod8) or n,=5,6,7(mod8).

In this case x(¥}) or k(V,) is zero. []
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Corollary 2 Let V", n=8m+r(r=1, 2) be a spin manifold. The filtration of B,[ V"]
is exactly 4m if and only if x(V"=+0.

Proof. This follows from Theorem 6 and the description of M"(KOg,,,,) in
Sect. 3. [

7 The SU-case

Theorem 3 describes the subring M, = (27" < MT(KO,). Using the results
of [6] one can easily determine the image of the special unitary cobordism
ring 5V under B,. We will focus on the dimensions 8m+1, 8m+2, leaving
the easier remaining cases to the reader.

Theorem 7 (i) If n=8m+1, then B, (V)< p,(F™) is the subgroup of forms
of the form nP(e?) where P is a polynomial of degree <m/2 over IF,.
(ii) If n=8m+2, then B (23Y)=B,(F™).

Corollary. If M", n=8m+ 1, is an SU-manifold, then
a;[M"]=0
for all odd i. For instance,
n, [M"]=0,
(3 +nf) [M"]=0.

Proof. (i) According to [6], an element from ¢, (€235, can be written as
2P(33, )+ Q (93, £,

where P, Q are two polynomials with integer coefficients. On the other hand,
one has

0, =[5'] 084,

where S' is the circle S' equipped with its non-trivial SU-structure (cf. [21,
Chap. X]). Therefore,

B35+ 1) =11 B (R85
and the result follows.
Part (ii) is an immediate consequence of the following proposition.

Proposition 5§ The canonical map
SU i
Qgm+2 > Qfm+2/lam+2

is onto. In other words, any spin manifold of dimension 8m+2 has the same
KO-characteristic numbers as an SU-manifold.

Proof. Notice first that the homomorphism T used in the proof of Theorem
4 can be defined using SU-manifolds: there is a homomorphism

T 5> Q%0+ 4QF,
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with preserves the mod 2 KO-characteristic numbers. Let IS < Q25U be the ideal
of classes with vanishing KO-characteristic numbers. Then T¢ induces a homo-
morphism

T Qs g me 2 > (s /I 2) OTF,,
and there is a commutative diagram

8m+2/18m+2 s (QSM+4/I m+a) @I,

2 u

T
QF o/ lgmez — (N o/Igmra) ®TF,

in which 4 and u are induced by the forgetful homomorphism. One has to
show that / is onto. It is well known (cf. [19]) that

Qmva— Q0 4/ Tors

is onto. As Ig,,,,="Tors Q¥Pr, ,, this implies that u is onto. Thus to prove
the proposition, it will suffice to show that T¢ is onto.

Let B, = Q3°/Tors be the subring of classes represented by U-manifolds with
spherical determinant. According to Stong ({21, p. 282]), B, is a polynomial
algebra and Q59 , /IS, +4 < Bgm+4 is exactly the subgroup 2Bg 4.

Let M3™*4 be an SU-manifold, and let W¥™*4 be a U-manifold with spheri-
cal determinant such that [M]=2[W] in Bg,.,. Dualizing the determinant
of W gives an SU-manifold ¥8™*2 and we have

W=Uu(—-D?xV)

where U is an SU-manifold with boundary S* x ¥, namely the complement of
a tubular neighbourhood of Vin W (cf. [13]).

By definition, T¢([V]) is represented by the manifold Z =2 U)u(—M?2x V),
where M? is an SU-manifold such that dM?=28". It is easy to see that Z
is cobordant to 2 W as a U-manifold. Therefore Z and 2 W have the same
rational Pontrjagm numbers. Hence Z and M have the same KO-characteristic
numbers, that is represent the same element in Q3Y . /15, 4. [

8 Final remarks

(1) According to Theorem 6, the reduction mod 2 of the class a, measures
the KO-part of the Brown-Kervaire invariant in dimension 8 m+ 2. For instance,

k(V1)=m,[V'°]
k(V1®)=(my+m)[V'®]
k(V20)=(ns +n)[V?].
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Other sequences aq, a,, ... having the same property have been constructed
in [13]. For example,

=Ly, oy Tam)+ (M3 + 7y Ty +73) Ly 57y, ..oy Tp ),

where L,,, is the reduced mod 2 Hirzebruch’s polynomial, is such a sequence.
A simple comparison of the first few terms shows that the new classes a,, have
far fewer terms. Besides, they have better multiplicative properties. The classes
a,, have been used in [17] to represent k(V) as the index of a twisted Dirac
operator on V.

Notice that the mod 2 reduction of k(q) is of the form g+ o0(q®). Therefore
on has

a,=b,(mod 2)

for m<8. Thus in dimensions n<71, x(V) is measured by the Witten class
bws)

(2) The genus
: Q- M"(Z[1/2])

was used by Landweber, Ravenel and Stong [12] to construct an elliptic (co)ho-
mology theory E¢¢,([10, 11]). Namely they showed that

E¢¢,0=0°0)®, MT(Z[1/2])[e7']

is a homology theory. Here M"(Z[1/2]) is considered as an Q3°-module via ¢.
By analogy with the Conner-Floyd isomorphism ([7])

KO, ()=QP()® KO,
one can ask whether the functor
'Qip( ) ®ﬂq M* [E_I:L

where M, = M"(KO,) is the image of B, described in Theorem 3 (iii), is a homolo-
gy theory. A positive answer to this question would provide a way of eliminating
the undesirable 1/2 in the definition of E/Z, ().
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