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ABSTRACT. In this paper, we will calculate the eta functions for torus bundles
over S1 which arise from boundaries of degenerations of Abelian varieties when the
local monodromies are unipotent or have finite orders. By using the special values
of the eta functions, we obtain the signature defects for such degenerations.

§1 Introduction.

(1.1) In [H2], Hirzebruch defined a signature defect for a cusp singularity of a
Hilbert modular variety associated to a totally real number field of degree d and
calculated them for Hilbert modular surfaces (d = 2) by using his beautiful explicit
resolution of the cusp singularities. Based on these computations, Hirzebruch
showed that if d = 2 the signature defects coincide with special values of Shimizu’s
L-function [S] and he conjectured that this fact also holds even for the cusps in the
higher degree cases. This conjecture was proved by Atiyah, Donnelly and Singer
in [ADS] by using the index theorems for manifolds with boundary developed in
[APS-I, 11, IIT].

A framed manifold (Y, a) is a pair of a compact oriented smooth manifold Y
of real dimension 4k — 1 and a trivialization « of the tangent bundle of Y. Then
Y bounds a smooth compact oriented manifold X. In [H2|, Hirzebruch defined
the signature defect o(Y, a) for a general framed manifold (Y, ) as the difference
between the evaluation of L-polynomial of relative Pontrjagin classes X in the
fundamental class [X,Y] and the signature on H**(X,Y,R). (It should be noted
that the signature defect depends only on the boundary (Y, «). ) The signature
defect for a cusp is defined as that of the framed manifold (Y, @) arising from the
boundary of a small neighborhood X of the cusp. In case of d = 2, Hirzebruch
calculated o(Y, a) by using the explicit calculation of good minimal resolutions
of the cusp singularities. However, in higher dimensional cases, though we have
Hironaka resolutions of singularities in general, it is rather difficult to get enough
information from them.
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On the other hand, for a framed manifold (Y, a) one can define the eta function
n(D, s) associated to a certain first order self-adjoint operator D induced by the
flat connection (cf. §2). By using index theorems in [APS-I, II, I11], Atiyah, Don-
nelly and Singer [ADS] proved that that the special value 5(D,0) coincides with
the signature defect o(Y, «) for a cusp of a Hilbert modular variety. Furthermore
they proved that 7(D,0) coincides with a special value of Shimizu L-function,
which established the conjecture in general.

In [APS-I], another type of signature defect was defined for a Riemannian
manifold X with boundary 0X =Y under the assumption that the metric of X is
product near boundary. From the definition (cf. (2.4)), we denote it by §(X,Y),
though it depends only on Y and its metric. They also defined the tangential
signature operator By and the eta function n(By,s) (cf. §2). Then a conclusion
of the index theorem in [APS-I] can be stated as 6(X,Y) = n(By,0).

(1.2) The main purpose of this paper is to calculate these signature defects
and the eta functions of some torus bundles over the unit circle S arising from
boundaries of one parameter degenerations of abelian varieties (of complex dimen-
sion n = 2k-1) in algebraic geometry. An one parameter degeneration of abelian
varieties is a projective holomorphic map f : X — D from a smooth complex
manifold onto a unit disk such that for ¢ € D* := D — 0 the fibre X; = f1(¢)
is an abelian variety (i.e. a complex torus with a projective embedding). If the
relative complex dimension is n = 2k — 1, the boundary Y is a torus bundle over
S1 of real dimension 4k — 1. Note that if the relative dimension n is even, then
the signature defects of Y should be defined to be zero.

Let us recall the classification of one parameter degenerations of elliptic curves
due to Kodaira [K] for a motivation. Let f : X — D be a degeneration of
abelian varieties of complex relative dimension 1 (i.e. elliptic curves) and let
g:Y — S! be its boundary. We assume that f has a holomorphic section.
Moreover since the total space X is of dimension 2, we may assume that X is
the minimal model, that is, X has no exceptional curve of the first kind. This
assumption is very important to determine the configuration of the special fibre
Xo = f71(0) (as a scheme theoretic fibre). Under these assumptions, Kodaira
[K1] classified degenerations of elliptic curves into 10 types (see figure 1). They
are essentially classified by means of the monodromy translation 7" on Hy (X1, 7).
Note that in our case the monodromy 1" is always a parabolic or an elliptic element
of SLy(Z).

For an oriented smooth fibre bundle of torus over a punctured Riemannian
surface, one can define a signature cocycle as in §2 of [A] and Meyer [M] introduced
an invariant ¢ : SLy(Z) — Q whose coboundary is minus the signature cocycle.
(cf. [§5, A].) In [A], Atiyah studied the relations between many invariants defined
for each element T' € SLy(Z) including Meyer’s invariant ¢(71'), the eta invariant
n(By,0), its “integral adiabatic limit” 1°(By,0) and the signature defect o(Y, a)
(if it admits a framing). First of all, one can show that °(By,0) = —¢(T') for
every element T' € SLy(Z) ([Prop. 5.12, A]). (Note that we use the orientation of
Y opposite to one in [A].) Then in our case, by using the same argument as in [A]



and considering existence of suitable elliptic surfaces we can prove that
2
(1.3) n'(By,0) = =¢(T) = —3e(Xo) + (N = 1),

where e(X) and N denote the Euler number and the number of irreducible com-
ponents of the singular fibre X, respectively.

Moreover Atiyah showed that if T'is elliptic, the eta invariant n( By, 0) does not
depend on the metric and hence n(By,0) = n°(By,0) = —¢(T') and in particular
we can obtain the signature defect §(X,Y).

In the cases of parabolic monodromies (cases (I), and (I);), these equalities
do not follow immediately, but in this paper we will show o(Y, a) = n°(By,0) =
—¢(T) in the case (I),. (See Corollary 4.15.)

Now thanks to the formula (1.3) and the Kodaira classification we can calculate
the invariants n°(By,0) = —¢(T") explicitly. (See figure 1 below.)

Figure 1.
Type I I Iy(b>1) I;(b >1) 11
T 1 0 -1 0 1 b -1 -b 1 1
0 1 0 -1 0 1 0 -1 -1 0
order of T 1 2 00 00 6
e(Xy) 0 6 b b+ 6 2
N 1 5 b b+5 1
’I]O(By,O) 0 0 b/3 —1 b/3 —4/3
Type Ir* II7 IIr* 0% vI*
T 0 -1 0 1 0 —1 0 1 -1 -1
1 1 -1 0 1 0 -1 -1 1 0
order of T 6 4 4 3 3
e(Xo) 10 3 9 4 8
N 9 2 8 3 7
nO(By,O) 4/3 -1 1 -2/3 2/3

(1.4) In order to obtain a formula of the signature defects like (1.3) in the higher
dimensional case, we have to know about good birational models of degenerations
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and its central fibres. However, since the relative dimension of f is greater than
2, we do not have a unique smooth minimal model of X in general, therefore the
topology and geometry of the central fibre of X will be subtler than in the case
of n =1.

On the other hand, the eta invariants depends only on the boundary manifold
Y and we do not have to take care of the central fibre of X. Therefore, in this
paper, we will mainly calculate the eta functions and the eta invariants. Since the
index theorems relate some eta invariants to the signature defects, which are the
differences of some topological objects and geometrical objects coming from X, it
will be an interesting problem to study some good birational smooth models of X
and study their central fibres from the view point of the signature defects.

(1.5) Now we will explain our problem more explicitly. The most important
property of the torus bundle Y arising from a degeneration of abelian varieties is
the quasi-unipotency of the monodromy transformation 7 on H;(X:,Z). When
T is unipotent, Y has a structure of homogeneous manifold with respect to a Lie
group and it defines a natural framing « on Y, and this allows us to consider the
signature defect o(Y, @) of this framed manifold and also the eta function n(D, s).

For a general degeneration of abelian varieties, one can take a finite base change
D — D to make the monodromy 7" unipotent. Then a given degeneration becomes
a quotient of a degeneration with a unipotent monodromy by a finite cyclic group.
In general, the action does not preserve the framing, hence one can not induce
the natural framing of the boundary Y from the unipotent case.

By a technical reason, in this paper we will deal with the following two cases.

(I) Unipotent monodromy cases and (II) Finite monodromy cases.

In the case (I), we will show that the eta function n(D, s) associated to the
flat connection coincides with the Riemann Zeta function up to an easy factor
when n = 1 and it vanishes identically when n > 2. By using these facts, we
will calculate the signature defect o(Y, «) explicitly and we show that if n > 2 the
invariant (Y, &) is an integer depending only on the dimension n and rank (7T—1T).

In the case (IT), we may assume that f : X — D is diffeomorphic to some
smooth model of quotient variety G;\(A x S!) where A is an abelian variety and
G is generated by the product 4 = (7, e;) of an automorphism + of A fixing the
origin and polarization and e; = exp(27i/l). The polarization induces a metric on
A and the natural product metric on A x S! is invariant under the action of 7.
Therefore this metric induces a metric on Y which extends naturally to a metric
on X, which is product near the boundary. By using this metric, one can define
the signature defect §(X,Y) and the eta function n(By,s). Moreover one can
introduce the equivariant version of the eta function. We will calculate these eta
functions explicitly and obtain the signature defect §(X,Y’) by using equivariant
version of index theorem for manifolds with boundary due to Donnelly [D2].

(1.6) Now let us state our main theorems. Let f : X — D be a degeneration of
principally polarized abelian varieties over the unit closed disk of relative complex



dimension n = 2k — 1 (for precise definition, see (3.1)), and g : ¥ — S?* the
boundary fibration. We always assume that f has a section.

(1.7) (I) Results in the cases of unipotent monodromies.

Assume that the monodromy 7' is unipotent. Then we can define a framing «
on Y and the tangential signature operator D by using flat connection associated
to the framing o instead of the Levi-Civita connection (see (2.16)).

The eta function (D, s) can be calculated as follows.

Theorem 1.7. (cf. Theorem 4.7 ) Let (Y, «) be as above and assume that
N=T—1+#0.

i)Ifk=1(Ge n=1)and T = (1 b) with b > 0, then we have

0 1
(1.8) n(D,s) = —4b(2m) (s — 1)

where ((s) = >_._, n~* is the Riemann Zeta function.
(ii)) If £ > 1 (i.e. n =2k —1> 1), then

n(D,s) = 0.

Next let us set » = rank(Ker(T — I»,,)). Then since (7' — I)* = 0 we see that
n <r < 2n. As for the signature defect o(Y, @) of the framed manifold (Y, ) we
have the following theorem.

Theorem 1.9. (cf. Corollary 4.15)

(i)Ifn=1and T = (é ?) with b > 0, we have

b
oY,a) = 3 1.

(ii) If n > 1, and r > n, we have o(Y,a) =0

(iii) If n > 1, and r = n, the signature defect o(Y,«) depends only on the
relative dimension n (hence k). If we write as o(Y,a) = s(k), s(k) is equal to
the signature of a certain explicit matrix. For small k, we have s(2) = —1 and
s(3) = —2.

Note that the assertion (i) and the figure 1 show that o(Y,a) = °(Y,0) =
—¢(T) in the case (I), of Kodaira’s classification. Moreover we note that the
assertion (ii) follows from the fact that the fibration ¥ — S* has a non-trivial
constant torus factor.



(1.10) (IT) Results in the cases of finite monodromies.

When T has a finite order [, there exists a principally polarized abelian varieties
A and an automorphism y of A of order [ fixing the origin and the polarization
such that Y is diffeomorphic to the quotient of W = A x S' by the cyclic group
generated by ¥ = (v,e;) where ¢; = exp(2ni/l). Write the action of v on the
tangent space at the origin of A in the diagonal form

v=(e/" e, efm).

The product metric of W = A x S! is invariant under the action of 4. With respect
to the induced metric of Y, we can define the tangential signature operator By
on Y and hence the eta function n(By, s). Moreover the G-equivariant version of
eta functions 7s; (Bw, ) can be also defined. (See 2.18).

Our main result in this case can be stated as follows.

Theorem 1.11. (Cf. Theorem 5.7.) Under the notation as above, we have

(1.12) N5 (BW, s) — (271')_3(—1)1“ contl Z(?, s) ' Hsin(271'l]ai,)
=1

Moreover the eta function of Y (with respect to the induced metric) is given by

-1 n

3 1 2 2 ,

(113)  n(By,s) = (2m)~* (=1)F - 2" (3 37 2( iy s)- [ sin( 7”“
j=1 =1

Here Z(q, s) denotes the following Dirichlet series:

sin(mq)

WK

Z(q,8) =

m=1
From this theorem, we can obtain the signature defect §(X,Y") as follows.

Theorem 1.14. (cf. Corollary 5.11) Under the notation and the assumption
in Theorem 1.11, we have the special values

' l . n 2 . /'
1.15 123 (Bw,0) = (—1)% - 2% - cot(ZL) - T sin( 2224,
¥ l l
=1

Moreover the signature defect of Y = G;\W C X is given by

l

(cot("D)). T sin(27%))

1 i=1

(1.16)  &(X,Y) =n(By,0) = (=1)F - 2" - (

~| =

J

We note that Donnelly calculated 75;(Bw,0) by using the right hand side of
the index theorem. For the relation between our results and his, we may refer the
reader to Remark 5.14.



(1.17). The organization of this paper is as follows. In §2, we recall some
necessary definition and backgrounds about signature defects, eta functions and
index theorems. In §3, we will explain about degenerations of abelian varieties.
Most of the results in these two sections should be well-known to experts. In §4,
we will deal with the cases of unipotent monodromies. In §5, we will deal with
the cases of finite monodromies.

(1.18) Acknowledgement. Most of results in this paper were obtained in
the joint research of the two authors in 1993/1994. Both of the authors thank to
home institutes (Tohoku and Kyoto) which make this joint research possible. This
paper was written up with the help of emails while the second author is staying
in University of Cambridge. The second author would like to thank Professor
P.M.H. Wilson for his warm hospitality.

§2 Signature defects, Eta functions and Index theorems.
(2.1) Signature defects.

In this paper, we will deal with two kinds of signature defects, one of which
is defined for an oriented Riemannian manifold with boundary and the other is
defined for a framed manifold.

(2.2) Signature defects for Riemannian manifolds with boundary.

Let X be a compact oriented Riemannian manifold of dimension 4k. We sup-
pose that X may have non-empty smooth boundary 0X = Y**~1 and assume
that the metric of X s a product near its boundary Y. We define the symmetric
bilinear form bx y induced by the cup product

(2.3) H**(X,Y,R) x H**(X,Y,R) — H**(X,Y,R)

with evaluating on the fundamental cycle [X,Y] € Hyp(X,Y,R). The signature
of this bilinear form will be denoted by Sign(X,Y). By using the Levi-Civita
connection on the tangent bundle on T'x with respect the Riemannian metric, we
can obtain the curvature forms and define the Pontrjagin forms p;(2),1 < i < k of
X. Then we obtain the Hirzebruch L-polynomial Ly (p1(Q2), p2(Q),--- ,pr(Q)) of
X in these Pontrjagin forms. Following [APS-I], we have the following proposition
and definition.

Proposition-Definition (2.4). Let (X,Y) be as above and assume that the
metric on X is product near the boundary Y. Then the difference

(25)  6(X,Y)= /X Lu(p(Q), po(Q), - pr(2))  Sign(X,Y) € Q@

depends only on the structure of an oriented Riemannian manifold of Y and does
not depend on X. We call this difference §(X,Y’) the signature defect of (X,Y)
or simply of Y.



(2.6) Signature defects for framed manifolds.

Next, again, let Y be a compact oriented manifold without boundary of di-
mension 4k — 1. A framing « of Y is a trivialization of the tangent bundle of Y,
and if a framing a of Y exists the pair (Y, «) is called a framed manifold. For
such a manifold, Hirzebruch [H2] defined a rational number o(Y, «) as follows.
Since Y has the trivial tangent bundle, all of its Pontrjagin and Stiefel-Whitney
numbers vanish. Therefore Y bounds a 4k-dimensional compact oriented differ-
entiable manifold X. Since Y is framed, the tangent bundle of X is pulled back
from a bundle over the quotient space X/Y. Then one can define the Pontr-
jagin classes of X as relative classes p; € HY%(X,Y,R). Then again we have
Li(p1, - ,pr) € H*(X,Y,R), and evaluating this with the class [X,Y] we ob-
tain a rational number Ly (p1,---,pr)[X,Y]).

From the Hirzebruch signature theorem ([H1]|) and Novikov additivity of the
signature ([AS], p.588) we also have the following proposition and definition.

Proposition-Definition (2.7). Let (Y, «) be a framed manifold of dimension
4k — 1 and let X be as above. Then the difference

(2.8) o(Y,a) = Li(p1, - ,pe)[X,Y] — Sign(X,Y) € Q

depends only on (Y, a) (does not depend on X ). We call this difference o(Y, @)
the signature defect of the framed manifold (Y, a).

(2.9) A framing « of Y induces a natural Riemannian metric on Y and it can
be extended to a metric on X which is product near 0Y. Hence we can define
6(X,Y ) asin (2.5). Butin general the Pontrjagin forms defined by the curvature of
Levi-Civita connection do not represent the Pontrjagin classes in (2.6). Therefore
6(X,Y ) may be different from o(Y, «).

(2.10) The relative Pontrjagin classes p; € H*(X,Y,R) can be represented
by differential forms on X as follows (cf. [ADS], §13). Let V denote the flat
connection on 7Ty given by the framing of Y. Then this connection does not
coincide with the Levi-Civita connection in general, hence its torsion tensor T}
may not vanish. We can assume that there is a neighborhood of the boundary Y
in X isomorphic to the product Y x I where I = [0,1) is the unit interval, and
we consider 7, as a tensor over Y X [ by lifting from the projection ¥ x I — Y.
Choose a nonnegative C'>° function f on [ satisfying

(2.10.1) 0<f<1, f([0,1/4])=1 and f([3/4,1))=0.

Define a tensor field T on Y X I by f(t)T,. Then this can be extended to a tensor T
over X by setting ' = 0 on X — (Y x I). Moreover X admits a Riemannian metric
such that whose restriction on the neighborhood Y X I coincides with the product
metric on Y X I. Then as shown in [Hel, p48], there is a unique connection ¢ on the

tangent bundle T'x such that ¢ preserves the metric of X and ¢ has torsion tensor
T (cf. [Lemma 13.3, ADS]). Let p;(¢) denote the Pontrjagin form defined from the
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curvature form of the connection ¢ by the Chern-Weil theory. (Note that p;(¢) is
zero on a small neighborhood of Y because locally at those points the connection
¢ coincides with the flat connection on Y. In particular, Ly(p1(®), - ,pr($)) =0
on Y x[0,1/4]. Then the differential form p;(¢) represents the relative Pontrjagin
class p; € H*(X,Y,R). In particular we have

(2.11) Li(p1, - ,pi)[X, Y] :/ Li(p1(9), - s p(9))-

X

(2.12) Eta functions and Eta invariants.

An eta function is a spectral function for a first order self-adjoint differential op-
erator on a Riemannian manifold. According to the case of Riemannian manifolds
and framed manifolds, one can define suitable eta functions.

First let us recall the general definition of eta functions. Let Y be a compact
oriented Riemannian manifold, E a vector bundle over Y. Assume that F is en-
dowed with a smooth inner product, which induces the natural metric on the space
of its smooth sections I'(Y, E'). We will consider a first order elliptic differential
operator A : I'(Y, E) — T'(Y, E) which is self-adjoint with respect to this inner
product. Then A has pure point spectrum with real eigenvalues A\. We define the
eta function of this operator A by

(2.13) n(A,s) =Y sign(A)|A|7,

AZ0

whose sum is taken over all non-zero eigenvalues of A counting with multiplicity.
(Here we define sign(\) by sign(A) = 1 if A > 0 and sign(A) = —1if A < 0.) It
is known that this converges for Re(s) sufficiently large and has a meromorphic
continuation to the entire complex s-plane ([Proposition 2.8, APS-III]). The eta
invariant of A is defined to be the special values 7(A,0) if it is finite. (For the
finiteness of 7( A, 0) in general case, see also [APS-III].)

(2.14) Riemannian case.

Let Y be a compact oriented Riemannian manifold of dimension 4k — 1, and
let E:= ATy ) = @Z’;Bl AP (Ty) be the bundle of smooth forms on Y of even
degrees. We can define the differential operator By : I'(Y, E) — I'(Y, E') by by
the formula

(2.15) By (¢) = (=1)**PT(xd — dx)¢p for ¢ € T(Y, NP(T%)).

Here d is the usual exterior differential and * denotes the Hodge star operator
defined by the Riemannian metric on Y. This is a first order elliptic self-adjoint
operator, therefore we can define the eta function 7(By, s) asin (2.13). It is proved
that n(By,0) is finite ([APS-I]), hence we obtain the eta invariant n(By,0).

It should be noted that the eta function n(By,s) and hence the eta invariant
n(By,0) depend on Y and the metric of Y. If one scales the metric g;; — k?gij,
the eta function becomes k~*7(s). Therefore the eta function really depends on
the metric unless 7(s) = 0, but this also shows that the eta invariant 7(0) is
invariant under the scaling of the metric.



(2.16) Framed manifold case.

Let (Y, ) be a framed manifold of dimension 4k—1. Then the framing « defines
a flat connection V on the tangent bundle Y which also induces flat connections
on APIY.. Moreover we can define the natural Riemannian metric induced by
the framing. According to [ADS], let dy denote the skew covariant differential
associated to this framing, that is, dv is defined by the composition:

L(APTS) 5 D(APT ® T5) — D(APTITS)

where the second map is the exterior multiplication. Denote by * the Hodge star
operator obtained by the framing. Then we can define the operator D on I'(Y, )
as in (2.15) by the formula

(2.17) D(¢) = (=1)"*PH (xdy —dyx)¢p for ¢ € T(Y,A*P(Ty)).

This is again a first order elliptic self-adjoint differential operator, therefore we
can define the eta function n(D, s) as in (2.13). It is proved that n(D, 0) is finite,
hence we obtain the eta invariant (D, 0) ([APS-III, see also [ADS]).

(2.18) G-equivariant version.

Next we recall the G-equivariant version of eta functions. Let Y, E, A :
I'(Y,E) — T(Y,E) be as before. Suppose that G is a subgroup of the group
of isometries of Y and assume that the action of G is lifted to an action on F
preserving the inner product and commuting with the given operator A.

Then each element v € GG induces linear maps 7, on each eigenspace of A, and
one can define the eta function of v € G by

(2.19) ny(Ays) = 3 (signA) Tr(va) A~

Again, this function converges for Re(s) sufficiently large and has a meromorphic
continuation to the entire complex s-plane.

For an isometry v : Y — Y, one can define n,(By,s) and it is known that
1n4(By,0) is finite. Moreover if -y is an automorphism of a framed manifold (Y, a),
one can also define 7,(D, s) and show that n,(D,0) is finite ([APS-III]).

(2.20) Index Theorems.
We recall some of results in [APS-I, II, ITI] and [D1, D2] which we will use later.

(2.21) Index theorem for Riemannian Case. (cf. Theorem (4.14) in
[APS-1].) Let X,Y be as in (2.2). Let §(X,Y) denote the signature defect (2.5)
and n(By,0) the eta invariant of Y. Then we have

(2.22) n(By,0) = §(X,Y).
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In [APS-I], this was proved as a consequence of a general index theorem for
Dirac operators on X with a certain global boundary conditions ([Theorem (4.2),
APS-T]). Note that this general index theorem can be also applied for the operator
D for a framed manifold (Y, «) and as shown in [ADS] we have the following
theorem.

(2.23) Index theorem for framed manifolds. (cf. Theorem 13.1in [ADS]).
Let (Y, o) be a framed manifold of dimension 4k —1 and take X such that 0Y = X
as in (2.6). Let n(D,s) be the eta function defined in (2.16). Then we can write

(2.24) (D, 0) = /X Do — Iy,

Here [ is an integer and the integrand Dy is locally defined and invariant under
scaling of the metric on X.

We may represent D, more precisely by using the connection ¢ introduced in
(2.10). As shown in Lemma 13.2 in [ADS], one can see that D, is an O(4k)-
invariant polynomial in the components of the curvature R and torsion tensor
T and their covariant derivatives. Moreover at a point of X where 7' = 0 we
have Dy = Li(p1(¢),--- ,pr(¢)). This can be proved by the scaling invariant
property of Dy. Note that from the construction of the connection ¢ in (2.10), we
have T' = 0 outside a small neighborhood of Y in X, where we have the equality

Do = Li(p1(), -+, pr(@)).
(2.25) G-equivariant version.

Let X be as in (2.2) and Y = 9X. Let G be a compact Lie group which acts
isometrically on X. Then each v € G preserves the boundary Y and the given
G-action is a product near the boundary. Now we will define the analogue of the
signature defect for each v € G. Each element v € G defines an action v* on
V := H**(X,Y,R) and it preserves the symmetric bilinear form bxy on V. This
form bx y defines a symmetric real linear endomorphism A : V — V and let V'*
(resp. V™) denote the direct sum of the eigenspaces of positive eigenvalues (resp.
negative eigenvalues). Since by y is invariant under 7, both of the spaces V* and
V'~ are preserved by v*. We define the G-signature of v by

(2.26) sign(y, X,Y) := Tr(’7|*v+) - Tr(7|*v,).
For each element v € G, the fixed point set Q(7) of v is the disjoint union

of compact connected totally geodesic submanifolds F' of X. The normal bundle
Nx,r of any component F' C X decomposes as

(2.27) Nx/p=N(-1)@N(6) & & N(0,)

where the differential of v acts on N(—1) via multiplication by -1 and on N(6;)
via the rotation through the angle 6;,0 < ; < m. For each F', one has 0F C Y.
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We set

(2.28) L(F) = H tanflj(/?/Q)

where the Pontrjagin classes of F' are the elementary symmetric functions in the
x? Let m be the rank of N(—1) which must be even. Then one may write

(2.29) 272 L(N(—1))"te(N(-1)) = Htanh(yj/Q)

where the Pontrjagin forms of N(—1) are the elementary functions in the y? and
the Euler form is the product of the y;’s. Since N(—1) may not be globally
orientable, the form e(N(—1)) must be interpreted as the Euler form relative to
some local choice of orientation of F'. Moreover we set

tanh(v/—16,/2)
; tanh(izﬁ_‘é——wi )

(2.30) MY =

where the elementary symmetric functions of the z;’s are the Chern forms of
N(6,).

Quoting the G-signature theorem of Atiyah-Singer [AS], we have the following
proposition and definition.

Proposition-Definition (2.31). Under the notation and the assumption as
above, we define the signature defect for an isometry v of X by the difference:

(2.32) 6(v,X,Y) Z / Dp —sign(v, X,Y)
FeQ(y)

where Dg 1s given by

22 [HV_ tan(0:/2)) ) L(F)L(N (1)) " e(N(=1)) [T m* (N (0

Here xp is the Hodge star operator relative to the local choice of orientation for
F. Then if Y is empty, this difference 6(-y, X,Y’) vanishes.

Donnelly ([D2]) proved a G-index formula for manifolds with boundary which
generalizes results in [APS-I]. Applying the result to the signature complex, he
obtained the following theorem.

Theorem 2.33. (Cf. Theorem 2.1 in [D2].) Let X,Y and v € G be as above
and let 1,(By,s) be the eta function defined in (2.18). Then we have

(2'34) WV(BY:O) = 5(77X7Y>'
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(2.35) Free actions of finite groups.

Let X,Y and G be as above. We consider the case when G is a group of a finite
order. Assume that G acts freely on the boundary Y so that the quotient map
Y — Y’ =Y/G is a regular covering space. By using the theory of characters,
we obtain the following formula

1
(2.36) 1(Byya, 8) = @ Z Ny(By, s),
vEG
or equivalently
(237) n(BY7S) - |G|77(BY/G78) = _Zn’y(BY7S)‘

7#1

From this formula, we obtain the corresponding formula for the special values
7]7(BY7 0) and n(BY/C% 0)

§3 Degenerations of Abelian varieties.

In order to calculate invariants defined in §2 for a degeneration of Abelian
varieties, we need to introduce a framing or a metric. For that purpose, we will
introduce a uniformization of the boundary Y of the given degeneration of abelian
varieties.

First let us recall some basic notations and definitions. Let D = {z € C | |z| <
1} be the unit disk and D* = D — {0} the punctured disk. For a positive real
number € > 0,set D, ={z € C | |z] <1+4¢€} DD.

Definition 3.1. An one-parameter degeneration of principal polarized Abelian
varieties over D, (abbreviated to a degeneration of PPAV) is a proper surjective
holomorphic map f. : X. — D, such that

(i) X, is a complex manifold,

(ii) for each s € D. — 0 the fibre X, = f~!(s) is an Abelian variety,

(iii) and there exists a line bundle F' on X which induces a principal polarization
on each fibre X, for s € D.

An one parameter degeneration of PPAV over the close unit disk D is the
restriction f : X — D of a degeneration of PPAV f.: X, — D, for some € > 0
to the closed unit disk D C D..

(3.2) Complex uniformizations.

Let f : X — D be a degeneration of PPAV of complex relative dimension
n and let g : Y — S! be its boundary fibration. In the rest of this paper, we

13



assume that every degeneration f admits a section ¢ : D — X which we will
often identify with the zero section. Setting X" = f~!(D*), we obtain a smooth
fibration fY : X° — D* of Abelian varieties. In the category of differentiable
manifolds, this is nothing but a torus bundle over the punctured disk D* with the
typical fibre (S1)?", and the boundary fibration g : ¥ — S! is a deformation
retract of f*: X" — D*.

We will recall here a complex uniformization of f: X° — D* which induces
a uniformization of the boundary Y.

Let X; = f7!(1) denote the fibre of f over 1 € S*, and let 7' be the mon-
odromy transformation on H; (X4, Z) induced by rounding on the circle in counter-
clockwise. Since T is an automorphism of H;(X;,Z) preserving principal polar-
ization, we have T' € Sp(2n,Z). By a standard argument (cf. e.g. Ueno [U]), there
exists a multi-valued n x n-matrix function 7(s) of s € D* satisfying

(3.3) ‘r(s) = 7(s), Im7(s)>>0,

(Hodge-Riemannian bilinear relation) and

(3.4) 7(exp(27i) - 8) = (A7(s) + B)(C7(s) + D)™,
where

A B
(3.5) T = (C D) € Sp(2n,Z), A,B,C,D € M(n,Z)

is the matrix representation with respect to a suitable symplectic basis of Hy (X1, Z).
Note that since 7(s) is symmetric we also have a relation

(3.6) (A7(s) + B)(C7(s) + D)_1 = t(CT(S) + D)_I(T(s)tA +1 B).

Let us set U = {t € C | Imt > 0}, and let 7 : U — D* be the universal
covering map given by s = 7(t) = exp(2mwit).

. . —
jZVe use column vectors to denote elements in C™ or in Z2™. For each m =

M) e 727 and pt € Z, we define an analytic automorphism g(m, i) of (C" x U)
ma

by
(B.7) gl m)(Z,1) = ((Cur(t) + D)™ (Z + ()i + )t + ).
Here we set 7(t) = 7(w(t)) by an abuse of notation and A,,, B,,,C,,, D,, are defined
by the relation
A, B
no_— I Iz
= (CM D,,,) .
By an easy calculation with using (3.6), one has the relation

(3.8) g(n, p2)g(m, p1) = g("T" 0 + m, py + pip)

14



for arbitrary elements n,m € Z*" and [1, o € Z. Therefore it is easy to see that

all of elements {g(T_r;, W)} ¢z, form a properly discontinuous subgroup S of

FLEZZ" N
the analytic automorphism group of C" x U and each element g(T_Ii, ) # 1 acts
on it without fixed points. Moreover if we set

(3.9) L= {g(m,0) | m € 22"},
L becomes a normal abelian subgroup of S and yields an exact sequence
(3.10) 0—IL-—S" 720

Therefore we have quotient manifolds S\(C" xU) and L\C", and since the natural
projection C" x U — U is equivariant with respect to h we obtain the natural
fibration

(3.11) ¢ S\(C" x U) — Z\U ~ D*.

—

Note that this fibration ¢ has a natural section O which corresponds to (0,1).
Now we can state the following proposition. For a proof, see Ueno [U].

Proposition 3.12. Let f : X — D be a degeneration of principally polarized
Abelian varieties with a section o0 : D — X . Let S be the properly discontinuous
group of analytic automorphisms of C" x U defined as above. Then we have the
unique analytic isomorphism ¢ : X° — S\(C™ x U) which makes the following
diagram commutative

X0 2, S\(C" x U)
(3.13) N %

and such that ¢ oo = O.

(3.14) Real uniformizations.

In proposition 3.12, we have a complex analytic isomorphism ¢ : X° ——

S\(C" x U) and this induces a diffeomorphism ¢y : ¥ — S\(C* x R). By

using this, we can introduce the new real coordinate (z1,--- ,22,) of C" by the
formula:
21 L1
t 1n n
(3.15) g ) v
Z1 'r(t) 1, Tpt1

Zn Lan

Z
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This induces a diffeomorphism between C" x U and R?™ x U and the action of
g(?T’L, p) € S on C" x U is converted to the action of R?" x U as

(3.16) g(m, w)(x,0) = ((T7")(& +m), t+ p),
hence we have a diffeomorphism

(3.17) S\(C" x U) = S\(R*" x U).
Moreover this induces diffeomorphisms

(3.18) v 25 8\(C" x R) = §\(R*" x R).

Now it is obvious that the differentiable structure of ¥ (or X) is determined
by the monodromy matrix 7. More precisely it depends only on the GL(2n,Z)-
conjugate class of T'.

Remark 3.19. Since for 7' € Sp(2n,Z), we have J 'TJ, = 'T'~! which
implies that *I"~! is Sp(2n, Z)-conjugate to T'. Hence the action of S on R?" x U
given by

(3.20) g(m, p)(,t) = (T")(Z +m), t+ p),

gives a quotient space S\ (R?™ x U), which is diffeomorphic to the original quotient
manifold by the action defined in (3.16). In this case, the group multiplication of

S ={g(m, p) mezen ez, CAN be given by

g(n, pa)g(m, ) = g(m + T 70,y + pa).
(Compare this with (3.8).)

(3.21) Framings and metrics for degenerations of PPAV.

Let f: X — Dandg:Y =90X — 9D = S! beasin (3.2). In order to define
the signature defect 6(X,Y) or the eta function n(By,s) of Y, we need to fix a
Riemannian metric of X which is product near the neighborhood of its boundary
Y. Moreover if Y has a framing «, one can also define another signature defect
o(Y, ) for a framed manifold (Y, &) in (2.7) and also another eta function n(D, s)
as in (2.16).

In general, the boundary manifold ¥ admits no natural framing. But if the
monodromy transformation 7" of g : Y — S! is unipotent, Y becomes a homoge-
neous manifold of a Lie group, hence Y admits a natural framing induced by left
invariant vector fields.

The most important property of a torus bundle g : ¥ — S! arising from a
degeneration of abelian varieties is that it always admits a semistable reduction
after a finite base extension. In terms of the monodromy 7', it can be stated as
the special case of the following quasi-unipotency of 7" arising from degenerations
of Hodge structures. (For a general statement and a proof, see for example [G-S].)
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Theorem 3.22. For a degeneration of abelian varieties f : X — D, the
monodromy transformation T (on H,(Xy,7)) is quasi-unipotent. More precisely,
there is a positive integers | and m such that

(T'— D™ =0.

Moreover since the Hodge level of H,(X:,C) is 2, we can take m = 2.
From this results, one can show the following proposition.

Theorem 3.23. Let f: X — D be a degeneration of PPAV over the closed
unit disk and g : Y — S! its boundary fibration. Let D — D be the map
induced by u — s = ul for some positive integer [. Let f : X — D be a
degeneration of PPAV which is obtained by a Hironaka resolution of singularities
of the fibre product X xp D — D and let §: Y — S! its boundary fibration.
Then there exists a positive integer | such that:

i) the monodromy of the fibration § : Y — S' is unipotent, and

ii) the natural map Y — Y is a regular covering map whose Galois group is
the cyclic group Gy of order l. (Hence one has Y = G;\Y.)

(3.24) Framings for semistable degenerations.

Let f: X — D be a degeneration of PPAV whose monodromy 7" is unipotent.
Set L = H,(X1,Z) which is a free Z-module of rank 2n, L* = Homyz(L,Z), and
denote by <, >: L* X L — 7Z the natural pairing. We consider the monodromy
transformation 1" as an automorphism of L. Then N =1 — I becomes a nilpotent
endomorphism of L such that N? = 0. Let Ly = KerN = {z € L|Nz = 0} and

set 7 = rankL,. We may choose a basis {e;, - ,es,} of L such that with respect
to this basis of L, the matrix representation of 7" and N can be written as:

In B _ On B
(325) T'= (On In) ’ N= (On On) '

Since T arises from a degeneration of PPAV, we may assume that 7' € Sp(2n,Z)
and B is a symmetric positive definite matrix by [Lemma 2.3, Nak|. Therefore we
can assume that B has a form

(3.26) B = (g 39') ,

such that B’ is a symmetric positive definite matrix of size 2n — r. (Note that L
is generated by e, - ,e,.)

Put V := {explN;l € Z} ~ Z. Then V acts on L from left by regarding
elements of L as column vectors. Hence we have the extension of V' by L:

0—-L—-S5—-V—=0,

which is essentially equivalent to the extension in (3.10). We use a coordinate

system (zy,%3,...,%2,) in Lg := L Qz R = R?" so that T = 2321 x;e; and

17



z=-exp(tN)in Vg :=V ®@z R = {exp(tN);t € R} = R. We denote the action of
z € VR on Lg as l,. Then for z = exp(tN) and T € Lg we have lz(;) —r+tNz.
We define a group structure on Sg := Lg X Vg = R?" x R so that S becomes a
uniform lattice of it. More explicitly, this can be defined by the multiplication law

(327) (;htl)(zg, tz) = (;1 + exp(th);g,tl + tz)

Then we get a compact homogeneous manifold S \ Sg which is a fibre space over
V \ Vg = St with the typical fibre A = L'\ Lg. By the construction and (3.14),
we have a natural diffeomorphism

Let G be the Lie algebra of Sg generated by the left invariant vector fields

0 0 0
Bx,) B _8.’1?1' B tNa’l?i

X; = —1( (i=1,2,...,2n),

d
(3.28) and 7 := ~ 5 for z = exptN.

Note that the relations between these vector fields are only [X;, Z] = NX; (i =
1,2,...,2n). These left invariant vector fields on Sk pushed down to Y ~ S\Sg
and defines a trivialization of the tangent bundles of Y. Now the following propo-
sition is obvious.

Proposition (3.29). Let f : X — D be a degeneration of PPAV with
unipotent monodromy T and g : Y — S! its boundary. Then under the diffeo-
morphism Y =~ S\ Sk, we obtain a natural framing «a of Y induced by left invariant

vector fields on Sg in (3.28).
(3.30) Finite Group Actions.

By theorem (3.23), for a general degeneration f : X — D, the boundary
g:Y — S'is a free quotient of the boundary § : ¥ — S' of a semistable
degeneration by a cyclic group. In general a framing of Y defined in proposition
(3.29) is not invariant under the group action, hence we can not define the natural
framing on Y. On the other hand, the metric induced by the framing of Y may be
invariant. And if it is true, we may calculate the signature defect or eta invariant
for Y as a Riemannian manifold by using the equivariant version of eta invariant
in (2.18).

For a technical reason, we will not deal with the general case but consider the
degeneration f : X — D with the monodromy T of finite order [. Then after the
finite base extension u — s = u! we obtain the degeneration f: X — D with a
trivial monodromy and in this case we can always choose a model f : X — D
which is diffeomorphic to the product A x D for a principal polarized abelian
variety A. Moreover, we can show that there exists an analytic automorphism

(3.31) viA— A
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preserving the polarization such that f : X — D is diffeomorphic to a Hironaka
resolution of singularities of the quotient of A X D by the action of the cyclic group
(G generated by the automorphism of A x D

—

(3.32) 1(z,u) = (v(2), erw).

From this, we obtain the following proposition.

Proposition 3.33. Let f: X — D and g:Y — S! be as above. Then Y
is diffeomorphic to a free quotient of W = A x S! by the induced action of the
cyclic group G as above. Moreover there exists a framing of A which induces a
product framing o of A x S* such that 7 becomes an isometry with respect to the
metric induced by the framing c.

Proof. The framing of A should be chosen so that the metric induced by the
framing coincides with the metric induced by the polarization of A. Other parts
are now obvious.

64 Calculations in Unipotent Monodromy Cases.

Let us fix a positive integer k and set n = 2k — 1, and let f : X — D
be a degeneration of PPAV of dimension n with a unipotent monodromy and g :
Y — S'its boundary. Then from proposition (3.29), we have the diffeomorphism
Y ~ S\ Sg, and under this identification ¥ admits a natural framing « induced by
the left invariant vector fields of Sk in (3.28). In this section, first we will calculate
the eta function n(D, 0) of the operator D as (2.17) for this framed manifold. Then
by using the index theorem (2.23) we will relate this to the signature defect o(Y, «)
of the framed manifold (Y, ) defined in (2.7).

(4.1) The operator D and By.

We have fixed a diffeomorphism
(4.2) Y ~ S\SR

and also the framing a given by the left invariant vector fields {X;, Z} on Sg in
(3.28). Let M = M =: @p_; A* G* Qg C denote the space of constant forms of
even degrees on Y. Since by using the framing « the space L*(Y)*” of L? forms of
even degrees on Y is isomorphic to L*(Y)® M where L*(Y') denotes the the space
of L%-functions of Y. On L?(Y)¢?, we can define two kinds of signature operators
By and D defined in (2.15) and (2.17) respectively. Since both of framing and
the metric are invariant under the action of Sg on Y, we see that operators D
and By are Sg-invariant. Since D? and B%, have the same leading symbol as the
Laplacian, we have the following proposition. (cf. Proposition 6.4 [ADS]).
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Proposition 4.3. We can write the operators D and By for the framed man-
ifold (Y, a) as:

2n

(4.4) D=-v/-1) X;®E;+Z®F, and
=1

(4.5) By = D + B,

with constant endomorphisms E;, F, By € End(M). Moreover, F; and By are
hermitian and F' is skew-hermitian.

(4.6) Results.

Let (Y, «) be the framed manifold of dimension 4k — 1 as above. As far as the
eta function n(D, s) is concerned we have the following theorem.

Theorem 4.7. Let (Y, a) be as above and assume that N =T — I # 0.

(i)Ifk=1(G(e n=1)and T = (1 b

0 1) with b > 0, then we have

(4.8) n(D,s) = —4b(2m)"((s — 1)

where ((s) =Y. _, n™* is the Riemann Zeta function.

(i) If k>1 (ie. n=2k—1>1), then n(D,s) =0

Noting that ((—1) = —1/12, we obtain the following corollary.
Corollary 4.9. We have

1
0

Lol

b
if k=1, T:( 1) with b >0,

n(DvO) =
0 if k> 2.

In order to give the signature defects o(Y, o) for framed manifold (Y, ) defined

in (2.7), we need a definition. Let M?*~! := AZ*=1G*®C be the space of constant
forms on S\ Sk of degree 2k — 1 and set dM?**~! := {dw;w € M?**~1}, We define

a hermitian endomorphism B; by

(4.10) By = dx 1 dMPFTE — d ML
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Theorem 4.11. For the framed manifold (Y, «) as above, let By be the endo-
morphism of M defined in (4.5) and denote by sign(B,) and sign(B;) signatures
of the hermitian endomorphisms By and By respectively. Then we have:

(i) sign(By) = sign(By ), and

(i)

(4.12) o(Y,a) = n(D,0) + sign(By) = n(D,0) + sign(B).

In particular, if n > 1, then o(Y, a) = sign(By) is an integer.

As far as sign(B;) is concerned, we have the following proposition.

Proposition 4.13. Let Y = S\Sg be as above and set N = T — I,,, and
r = rank(KerN'). Then the sign(B;) depends only on n and r. Moreover we have
the following.

(i) If r > n, we have sign(B;) = 0.

(ii) If r = n, then sign(B; ) depends only on the dimension n = 2k — 1 so write
s(k) = sign(By) as a function of k. Then s(k) is equal to the signature of an
explicit symmetric matrix (see Proposition (4.53)). For small k, we can calculate
s(k) explicitly as

(4.14) s()=—1, s(2)=-1, s(3)=-2.

From (4.9), (4.11) and (4.13), we obtain the following corollary which gives the
signature defect o(Y, ).

Corollary 4.15.

(i) If n =1 and the monodromy T = (é 11)) with b > 0, we have

o(Y,a) = g — 1.

(ii) If n > 1, and r > n, we have o(Y,a) =0
(iii) If n =2k — 1 > 1, and r = n, we have o(Y, o) = s(k) € Z.

Remark 4.16. As mentioned in §1, Atiyah [A] dealt with many kinds of
invariants of 2-torus fibration or of monodromy 7'. He established the equality
n°(Y,0) = —¢(T) for all 2-torus fibration Y over the circle with monodromy
T € SL(2,7Z). Here n°(Y,0) is the adiabatic limit of the eta invariant and ¢(T')
is Meyer’s invariant defined in [M]. The assertion (i) of (4.15) and the formula
(1.3) show that the signature defect o(Y, ) coincides with n°(Y,0) and —¢(T') for
T = 1o . It is an interesting problem to determine whether n(Y,0) coincides

0 1

with its adiabatic limit in this case.
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(4.17) Calculation of n(D, s).

In this subsection, we will calculate the eta function n(D, s) for Y = S\ Sg with
the natural framing a. We use the notations in (3.24) and moreover we assume
that the monodromy 7" has a form as in (3.25) and N = T — I # 0. From this
assumption, we have

(4.18) n < r(:=rank(KerN)) < 2n, NLNZe, # {0}.

Let us first recall a decomposition of the function space on Y = S\Sg. Let
Ly :={v € L*;vN = 0}, where we regard elements of L* as row vectors. Then
we have the following decomposition of the right quasi-regular representation of

Sk.
Proposition 4.19.

’(S\Se)= P r’'z\re € LR,

veL; ve(L*—L3})/V
For v € L*, the differential operators X; and Z act as v(X;) = —2my/—1 <
v+tvN,e; > (i=1,2,...,2n) and v(Z) = —£.

Proof. We identify C°°(S \ Sg) with the invariant subspace C°°(Sg)® under the

left action of S. Let f(x,t) € C°°(S\ Sg). Since f is invariant under the action
of L, we can expand it as a Fourier series

where we use the notation e(-) := exp(27y/—1(+)). Further exp(IN) acts on f.
We have

(expIN)*f (z,t) = f(£ +INZ, € +1)

=Y fult+De(<v,z +INz >)
vel*

= > flt+De(<v+IwN,z >).
veL~

Thus we have f,1;,n(t) = f(t +1) for v € L* and | € Z. Hence we have

= fube(<p,z >+ > (Z f(t+De(<v+IwN,z >)) ,
nEL; ve(L L))V \I€L

where f, € C(V \ Vg) for p € L} and f, € C>*(Wg) for v € (L* — L})/V.
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Conversely, given f,, € L*(V \ Vg) for p € L} and f, € L*(Vg) for v € (L* —
L})/V the sum

IPICIEVESED M PO
peLs ve(L*—L;)/V \IEL
lies in L?(S\ Sg) if it absolutely converges.

Let us write the operator D as in (4.4). Since the second order term of D?
should coincide with the Laplacian A := —( 7221 X? + Z?%), we have a relation in

{E;,F}: E? =1d, F* = —Id and any two of them anti-commute. Then we have
2n
D*=A++V=1) NX;®E;F.
=1

We denote the restriction of D to the invariant subspace corresponding to v € L*
as:

r 2n
d
D, = —272 <v,e; > F;,— 27 Z <v+itvN,e; > E; — E@F.
=1 Jj=r+1 ’

From Proposition 4.18 one can write the eta function of D for Re(s) >> 0 as:

(4.19) n(D,s)=> np,(s)+ Y. 1p,(s).

veL] ve(L*—L3)/V

Lemma 4.20. For v € L} we have np,(s) = 0.

Proof. Set v; =< v,e; >. For v € Ly we have

d
4.21 D,=-2 B, — — Q F.
(4.21) w;y = ®

Since ae,, € NL, and since L} C (NL)%, the unitary matrix E,, does not appear
in D,, hence, it anti-commutes with D,,, that is, we have E* D, F, = —D,,. Thus

an(S) = _an(S) = O'
From Lemma 4.20 and (4.19) we have

(4.22) n(D,s)= > np,(s)

vE(L*—L7)/V

for Re(s) >> 0. We must calculate only the case v € L* — Lj. For v € L* we

have
2n

Dl =A,-21» <vN,e; > E;F,

v
i=1
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where

2n )
A, =4n ;<y+tVN,e,> FTER
Set ||v + twN||> = 12, < v+1tvN,e; > and v; =< v,e; >. Then we have
2n
v+ tN||* = ||[v]|* +2t > vi <vN,e; > +£*|[uN]|*.
1=1
Set C' = 2321 v; <vN,e; >= Z?ZT_H v; < v,Ne; >. Then we may write as
C C?
lv + twN|[* = (UllvN|| + —=)* +Iv]]* -
[l V]| [l N2
Since vN # 0 for v € L* — L}, set u = ﬁ(tHVNH + ﬁ) Then we have
CZ d2
A, =47*(||v]]* - 27| |V N ||(v* — ——
R - o)+ 2l - )

For Hermite polynomial h,,(t) = e_tz/z(i—mmetzﬁ, set fi(t) = e_t2/2hm(t) (m =
0,1,2,...). Then f,,(t) satisfies the differential equation

= 2] 10 = 20+ 110,

and {f,.(t);m = 0,1,2,...} is a complete orthogonal basis of L?(R). Thus the
eigenvalues of A, are {27|[vN||(2m + 1) + 47%(||v||* — ﬁ)}

Now the matrices F;F are hermitian and unitary, and any two of them anti-
commute. Thus (Y-, < vN,e; > E;F)? = |[vN||>. Set M = 32", < vN,e; >
E;F. Since M is hermitian, it has eigenvalues £||vN||. We decompose M into
the sum M = M, @ M_ of the corresponding eigenspaces of M. Thus we have

the following lemma.

Lemma 4.23. The eigenvalues of D? for v € L* — L} are

CZ
{27r||1/N||(2m+ LF 1) +4x?(||v||* - HVNHz);m = 0,1,2,...}.

Lemma 4.24. The matrices I; for 2+ = 1,...,r preserve any eigenspace £ of

D2, hence, we have

v’

Tr(Dyle) = =27 Y v Te(Eile) — Tr((Dy + 27 > v:B;)e).
=1

=1

Proof. Since D2 = A, — 27M, and since M = 23214-1 < v,Ne; > E,F, the
matrices E; for i = 1,...,r commute with M, hence with D?. Thus we have the
desired decomposition.
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Lemma 4.25. Forv € L* — L] we have
Tr(D,|e) = =270, Tr(E,|¢).

In particular, when n > 2 we have Tr(D,|¢) = 0.

Proof. Since E,, is hermitian and unitary on &, and since E)E;F, = —E,, for
i # 1 and E;FE, = —F, we have E;(D, + 2rY.._ viE;)|eE, = —(D, +
2ry.._,viE;)|le. When n > 2, we have another hermitian and unitary matrix
FE; on &€ since r > n > 2.

Since we can write the eta function of D, as

TI‘(D,,|€ A2 )
(4.26) mp,(s) =Y Tj)

WZhere the summation is taken over all eigenspaces £(A?) of D? with eigenvalues
’ .From Lemmas 4.23, 4.24, 4.25 and 4.26, we see that np, (s) = 0 unless n = 1.
Therefore we obtains the assertion (ii) of Theorem (4.7).

(4.27) Continuation: the case n = 1.

In view of (4.19), (4.25) and (4.26), we must calculate Tr(E;|¢) for n = 1. Set
N = (8 8) with b6 > 0. Then we see that C = brjvs and M = v; EsF. Thus
Lemma 4.23 for the case of n = 1 may be written as follows.

Lemma 4.28. When n =1, D? has eigenvalues

{27b|v|(2m + 1) F 2mwbvy + 47vi;m =0,1,2,... ).

Lemma 4.29. Forv € L* — L], we have

Tr(D,|le) =0 unless vy >0 and € = Cfy @ M,
orvy <Qand £E =Cfy @ M_.

Hence we have to calculate Tr(E1| a4, ).
Lemma 4.30. We have
FEl Eg - Id
Proof. We get the identity from a direct calculation. See section 4.3 of [G] for

general dimension.

Lemma 4.31. We have
Eq |Mi = 47d.

The following proposition shows the assertion (i) of Theorem 4.7.
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Proposition 4.32. When n = 1 we have

n(D,s) = —4b]2n|7*¢(s — 1).

Proof. When n = 1 we have dim M = 22 = 4. Since F gives a bijection between
M, and M_, we have dim My = 2. Thus we have

—2mvy - 2
n(D,s)= Y [
ve(L*—L7)/V

For v = (v1,v2) € L* — L} we have vV = {(vy,lbvy + 1v);1 € Z}. Thus we have

by - 4wy o s
—2 Z ) = —4b(2m) 75 (s — 1).
ri=1

(4.33) Calculation of Signature Defects o(Y, o).

Let X be an oriented compact Riemannian manifold of dimension 2n + 2 = 4k
with 9X =Y = S\ Sg which is defined as in (2.6). Then from the index theorem
(2.23) for a framed manifold (Y, a), we have

U(Dao) = / Dy — 1y,
X

where [ is an integer and D, is invariant under scaling of the metric on X.
Let H be the subspace consisting of constant forms in L?(S\ Sg) ® M and H+
the orthogonal complement.

Lemma 4.34. Ker(D) = H and D?> —47* >0 on H+.

Proof. For € L} we have D? —4x?||u[|* > 0 from (4.21). Set [|v/|]* := 327_, v}.
Then for v € L* — L} we have D% — 472|[V/||* > 0 from Lemma 4.23.

Let us deform linearly from By to D (cf. Proposition 4.3), hence set
D;:=tBy +(1-t)D=D+1tB, for0<t<I1.

Lemma 4.35. We can scale L so that

H fort =20
Ker(By) fort >0

Ker(D;) = {

Proof. Put L(A\) = {Az € Lg;x € L} for any positive real number A. Note that
the action of V on Lr preserves L(X). Thus we have a lattice S(X) of Sg;
0— LA — S\ —V —0.
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The frame on Sg induces also a frame on S(A) \ Sg, hence, the metric gy. With
respect to this metric g, we can define a differential operator D, which we denote
by D(A) as in (2.17). Consider a diffeomorphism ¥y : S(A)\ Sg — S\ Sk defined
by UA(S(A)(z,t)) = S(z/At). For ¢ € L*(S\ Sg) ® M we define a differential
operator Dy by Dy(¢)(S(z,t)) := D(A)(¢ o ¥y)(¥y"(S(z,t)). Then we have

2n
1
Di(f@w)= —\/—1X2Xif®Eiw—|—Zf®Fw.
i=1

The operator Dy is defined by the metric (W ')*gy on S\ Sg, in other words,
defined by the frame {X; /A, Z;i=1,2,...,2n}. From (4.21) we have

472 d>? .
(DA)Z:VHNHZ—W for p € L7.
From Lemma 4.23 we obtain

Am?
(D»);, >

V_v||l/'||2 forv e L* — Li.

If we take X sufficiently small, then we can scale L so that 27/ > ||By||, that is,
Ker(D;) C H.

We denote the eta function of D; by n(Dy, s). Then one has
1(Dy, s) = n(Dilw, s) + 1(Dilgs, s).

Lemma 4.36. n(D¢|g1,s) is continuous with respect to t.
Proof. See Lemma 14.7 in [ADS].
From the Theorem 3.10 in [APS-III] we have

(4.37) I = / Dy — (D, 0),

where [; is an integer and D; is continuous in t. We can write the equality (4.37)
as

le +1(Di|u,0) = / D= n(Di|a+,0),
X

whose right hand side is continuous in ¢ by Lemma 4.36, while the left hand side
has values in integers. Thus we have

lo+1(Do|a,0) =1 +n(D1]|#,0).

Since n(Dy|m,0) = 0 from Lemma 4.35, and since [y = Sign(X,Y) and (D1 |a,0) =
sign(By), we have

(4.38) ly = Sign(X,Y) 4 sign(By).
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(Cf. Theorem 14.10 in [ADS]).

From the remark after theorem (2.23), we see that outside the neighborhood
I XY, Dy coincides with Ly, (p1(¢),- -, pr($)) where p;(¢) is the Pontrjagin form
introduced in (2.10). Then from (2.7), we can write

(4.39) o(Y,a) = /X Li(p1(®), -+ ,pr(¢)) — Sign(X,Y).

Then setting (¢) = Li(p1(@), -, pr(@)), from the remark as above, we obtain

/X( )= Do) :/YXI Po).

Therefore from (2.24), (4.38) and (4.39) one has

(Y, a) = /X Q(¢) — Sign(X, V)

Q(¢) — (lo — sign(By))

() - /X Dy + (D, 0) + sign(Bo)

(4.40) (@) — Do) +n(D,0) + sign(By).

x I

Il
——

Lemma 4.41.

| (@ -m)=o

Proof. Let us recall the construction p;(¢) in (2.10) and Dy in (2.23). Then just
as in Proposition 13.5 in [ADS] we have

Q(¢) — Dy = Z a;(f)Pi(To),

where a;(f) is a polynomial in f of (2.10.1) and in the derivatives of f with values
in 1-forms, and P;(Tp) is an O(4k — 1)-invariant (4k — 1)-form valued polynomial
in the components of T, and in the covariant derivatives with respect to the flat
connection V. Moreover P; is a finite linear combination of elementary monomials
in the torsion tensor Tj defined in [ABP]. Thus the integral which we want to know
is essentially a finite linear combination of the integrals of a;(f) on I depending
only on a choice of f satisfying (2.10.1). On the other hand, the integral in
question coincides with (Y, a) — (D, 0) — sign(B) independent of f. Hence it
must be zero.

From (4.40) and Lemma 4.41 we have
(442) U(Yv a) = U(Da 0) + SigIl(Bo),
which implies the first assertion of (ii) of Theorem 4.11.

Moreover we have the following lemma which implies (i) of Theorem 4.11.
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Lemma 4.44. sign(B,) is equal to sign(By) where B; is the operator dx re-
stricted to dM?F1.

Proof. Apply Theorem 4.20 in [APS-I] on the space M’ of constant forms of
even degrees.

(4.45) Proof of Proposition 4.13.

Lemma 4.46. The signature sign(B;) defined in (4.10) depends only on the
orientation and Lie group structure of Sg defined in (3.27). That is, it does not
depends on the framing and the embedding of the lattice S into Sk.

Proof. First we note that two framings on Y giving the same orientation on Y
can be transformed into each other by an element of GL(4k — 2, R)*. So if we fix
a differential structure and an orientation on Y, sign(Bj) is a continuous function
of the set of all framings, and hence can be regarded as a continuous function
on GL(4k — 2,R)*. Since sign(B;) takes an integer value and GL(4k — 2,R)7 is
connected, we see that sign(B;) does not depends on the framing. Now, from the
definition of B; in (4.10) one can see that signB; only depends on the orientation
and Lie group structure of Sg.

Let T and N be as in (3.25) and B as in (3.26). Since B’ in (3.26) is symmetric
positive-definite matrix of size 2n — r, we can find an invertible real matrix H of
size 2n such that

(4.47) HNH™' = (0" L”’) :

where

0 0
(4.48) L, = (0 Im_r).

Lemma 4.49. The Lie group structure of Sg defined in (3.27) depends only
on the dimension n and r = rank of Ker(N).

Proof. Let us consider the coordinate change y = H of R?>" as in (4.47). Then
this induces a diffeomorphism of Sg and the Lie group structure defined in (3.27)
is converted into

(517t1>(§27t2) = (51 + eXp(tlﬂ—NH_l>§27t1 + t2)

By (4.47), we see that the Lie group structure depends only on n and r.

Now from (4.46) and (4.49), we have the following proposition which implies
the first assertion of Proposition (4.13).
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Proposition 4.50. The signature sign(B;) in (4.10) depends only on the di-
mension n and the rank r (n < r < 2n).

Next we will prove the assertion (i) of Proposition 4.13. Let §; and ¢ € G* be
the dual of X; and Z, respectively. Then we have d§; = —({;N) A ¢ and d( = 0.
In the following we use the notation N*¢; instead of {; N. In (3.24) we define NL
to has rank 2n — r. Set s = 2n — r. Since NL C Ly, we may choose a basis of L
so that NL C @;_,Ze;. Then we have

N*fiEGB?ZH_lZﬁj fore=1,...,s

(451) and N*£7:O fori:3—|—]_’...72n.

Lemma 4.52. When r > n, we have sign(B;) = 0.

Proof. For a nonempty subset I = {iy,...,4;} C {1,2,...,2n}, write {7 := &, A
-++A&;,. Then a constant form w € M1 with dw # 0 can be written as a linear
combination of

En, N, Nér, = wiy 1 15,

where Iy C {1,2,...,s}, L C{s+1,s+2,...,r}and Is C{r+1,7+2,...,2n},
and |Iy| + |Io| + |I3| = 2k — 1(= n). We call that wy, 1, 1, has type (||, |12, |I3]).
Since *d * d preserves types, (B;)? transforms dwr, 1,1, to a linear combination
of dwy, 1,.5,’s satisfying |I;| = |J;] (+ = 1,2,3) and J; = I. On the other
hand, B; transforms dwry, 1, 1, to a linear combination of dwy, s, 7,’s satisfying
il = s+ 1 —|L]|,|Je] = r—s—|L2] and |J5| = s — 1 — |I3], in particular,
Jy ={s+1,...,r} — I,. Thus we have sign(B;)(= n(B1,0)) = 0 unless r = s,
that is, r = n.

The following proposition and proposition (4.50) shows that sign(B;) can be
calculated by the signature of an explicit matrix Bs defined below. It may be
interesting to determine s(k) = sign(Bsy) as a function of k.

Proposition 4.53. Assume that r = n and that N has the matrix form as
O'Il I’n
N‘(m %)‘

Let M, be the real vector space generated by symbols wy for all subsets I C
{1,2,...,n} with |I| =k, and let By be the operator on M, acting as

ngI = Z(_l)iwI"U{i}-
=y}

Then we have
sign( By ) = sign(Bs).

Proof. From the proof of Lemma 4.52, we see that only the forms of type (k, 0, k —
1) contribute to sign(B;). We denote 7; instead of &, 4; for ¢ = 1,2,...,n. By
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our assumption on N we have d§; = —n; A (. For I,J C {1,2,...,n} with
|I| = k,|J| = k — 1 the form %d(&; A ny) is a linear combination of {1 A 7y with
I' =1°U{i},J = J°\ {i} for some i € I\ J. Note that I' NJ" = (1 U J)°. The
operator (By)? preserves I N J of d(£; A ny)’s, while By interchanges I N J and
(I'UJ)°. Hence only the forms d(é; Any) € dM?*~1 with TN J = § contribute to
sign( By ).

Set wy = &y Anre for I C {1,2,...,n} with |I| = k. By an elementary calculation
we have

*dw_[ = Z(—l)iwfcu{,;}.

el

85 Calculations in Finite Monodromy Cases.

Let f: X — D be a degeneration of PPAV of complex dimension n = 2k — 1
with a monodromy 7T of order | < oo, and let g : ¥ — S!' be the boundary
of X. As we see in (3.30), we obtain a principally polarized Abelian variety A
and a holomorphic automorphism v of A of order [ which preserves the principal
polarization such that there exists a diffeomorphism

(5.1) Y ~ Gl\W
where
(5.2) W=AxS8

and (G is a cyclic group of order [ generated by the automorphism

(5.3) 3(Z,0) = (1(Z), en).

Recall that W = A x S! has a natural framing coming from the framings
on both factors such that the metric induced by the framing coincides with the
product of the metric on A induced by the polarization and the natural metric on
St. Though % does not preserve the framing, it preserves the metric of W and
hence this metric induces a natural metric on ¥ = G;\W.

Moreover the action of G; on W can be naturally extended to A x D and X is
diffeomorphic to a Hironaka resolution of the quotient variety G;\(A x D). Then
the product metric on A X D induces a metric on X whose restriction on the
boundary Y coincides with the above metric and the metric on X is product near
the boundary. Therefore we can define the signature defect §(X,Y) as in (2.5).
We will fix these metric for X and Y from now on.
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In this section, we will calculate the G-equivariant version of the eta functions
n5i (Bw, s) for the isometry 47, and then by (2.6) the eta function n(By,s) of Y’
can be expressed as

(5.4) W(By,s)= 1 > 15 (Bw,5).

Note that n(Bw,s) = 0 since there is an orientation-reversing isometry on W.
Therefore the sum in (5.4) can be taken only over non-trivial elements of Gj.

(5.5) Results.

By proposition 3.33 the framing of A gives a coordinate (z1, 25, - ,z,) of
universal covering C" of A and the metric on A is induced by the natural Euclidean
metric on C". Moreover the action of v becomes an isometry of A. Therefore,
after a suitable isometric coordinate change, one can see that the action of v can
be written in the diagonal form

(5.6) (21,22, 20)) = (€ 21, €% 2,0, €7 20),

where e; = exp(27i/l), a primitive l-th-root of the unity and a; € Z,0 < a; <1-1
for 1 <7 < n. Now the main theorems of this section can be stated as follows.

Theorem 5.7. Let Y — S! and v € Aut(A) be as above. Fix an integer
j such that 1 < j <1 —1. Then with respect to the metric on W = A x S! as
above, the G-equivariant eta function of 47 defined in (2.19) is given by

n

(5.8) M5 (Bw, 8) = (21) 75 (—=1)% . 27 +1 . Z(2%j, s) - [ ] sin(

=1

2wja;
)

where Z(q, s) denotes the following Dirichlet series:

(5.9) Zags) =Y Sm;—m”

Therefore the eta function of Y with respect to the metric is given by

—1 n s
1 2mm 2mja;
(5.10)  n(By,s) = (27)"°(-1) k. gn+l ; ZZ m ] s) Hsin( 71'](1,))'

, )
=1

Since it is easy to see that

Z(g,0) = (1/2) cot(

N[

),

we have the following corollary which gives the signature defect of Y.
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Corollary 5.11. Under the notation and assumption in Theorem 5.7, we have

. n 2 . ;
5.12 0% (Bw,0) = (=1)F . 2" . cot Iy T sin( 22294,
K l l
=1

Therefore the signature defect of Y = G;\W C X is given by

-1 . 2k—1 ,
(5:13)  HGY) = a(By,0) = (1) 2 (7 Y cor(ZL) T sin(Z4)
Jj=1 =1

Remark 5.14. Donnelly [D2] obtained the special value 7z; (Bw,0) by using
the index theorem (Theorem 2.32) and calculating the right hand side of (2.32).
It is easy to see that sign(57,4 x D,W) = 0 for all 4/ and so it suffices to
determine the first part of the right hand side of (2.32). Moreover he showed
that if 47/ has 1 as its eigenvalue the integrand of the first term of (2.32) is zero
hence nz; (Bw,0) = 0. (Note that in this case we obtain a slightly stronger result
n5i (Bw,s) = 0 from (5.8).)

Otherwise 4/ has only isolated fixed points and the contribution from the fixed
points can be easily calculated. In fact Donnelly obtained the following formula
(cf. [Proposition 4.7, D2]):

(5.15) s (B 0) = w7 (~1) cot(%) TT cot(T1%),

=1

where () denotes the number of the isolated fixed points of 4/ on A. From this
and (5.12) we obtain the equality

2k—1 . 2773(1

. Slll
5.16 = 92h-1 :
( ) ]‘__‘[ cot( 7”“

which gives the number of fixed points of 7/. We remark that the formula (5.16)
can be explained as follows. If we regard 7 as an automorphism of the lattice L
it can be replesented by the integral matrix of size 4k — 2 whose eigenvalues are
given by exp(j:””” ) for 1 < j <2k — 1. On the other hand one can easily show
that the number of fixed points of 47 is given by the determinant

v(7') = det(y? — L),
Thus we obtain the formula

(517) v(r) = [T 2~ 2eos(2%)) = T (exp(2%) - 1)(exp( %) 1),

i=1 =1

which is now equivalent to (5.16).
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(5.18) Proof of Theorem 5.7: A Reduction.

In this subsection and the next, we will give a proof of Theorem 5.7. First we
will recall a basic Fourier analysis on W = A x S!.

We have fixed an isomorphism A = L\C™ ~ L\R?", where L is regarded as a
lattice in R?>" and 7 is a linear isometry of R?*" such that v(L) = L. Moreover
as in (3.24) we will choose a basis {e1, - ,es,} of L and use the real coordinate
(z1, 29, -+ ,Ta,) for T = Zle x;e;.

Let L* = Homg(L,7Z) be the dual lattice of L and <, >: L* X L. — 7 the natural
pairing. Then we have the decomposition of Ly(A x S')

(5.19) La(A x SY) = ®pmyer-xzC - € (T, 1),

where we set el,,m(;,t) = exp(2mv—1(< v, T > +mt)). Let M“’(W) denote the
space of constant forms on W of even degrees, and let By be the operator on W
defined in (2.15). Note that since the flat connection on W with respect to the
framing is nothing but the exterior differential d on W we see that the operator
Byw coincides with the operator D defined for the framed manifold W in (2.16).

We extend the domain of By to Ly (W)*" := M (W) ® Lo(W). Then accord-

ing to the decomposition (5.19), we have a decomposition of Ly(W )"
(520) LZ(W)G” - ®(V,777/)€L*XZHV,’ITI

> 3 — . . . . . . -
where H, , := M (W)®e, n(x,t). Since this decomposition is invariant under
translations, we can decompose By as

(521) BW = @(lz,m,)EL*XZBz/,’ma

where B, ,,, denotes the restriction of By, to the space H, ,,.

Lemma 5.22. Let A(v, m) be a positive eigenvalue of the operator B,, ,,. Then
we have

(5.23) My, m) = 2m4/||v||? + m?,

and the eigenvalues of B, ,, are £A(v,m). We let HIm and M, denote the

eigenspace of B,, ,,, with the eigenvalue A\(v, m) and —A(v, m) respectively. Then
we have the decomposition

(524) %l/ﬂn — %Im D H;,fm

2

2. coincides with the
m

Proof. Since B, coincides with the usual Laplacian, B
scalar operator C,, ,, where

(5.25) Cyom = 472 (||V]|* + m?).
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Then since B, ,, itself is not a scalar operator we obtain the assertions.

Let X be an eigenvalue of By, and let H(\) denote the corresponding eigenspace.
According to the decomposition (5.20), we have the decomposition

(5.26) H(A) = @umycrxz  Hom(A),

where we set H,, (X)) = H(A) N Hy -

Now let us consider the trace of action of 49 on H()). Recall that we can
write 7/ = (77, e’g ) where v/ : A — A is a holomorphic automorphism. Moreover
recalling that A = L\R?™ we can regard 4/ as an automorphism of the Z-lattice
L. We denote by *47 the dual action of 4/ to L*.

Lemma 5.27. For an automorphism 77 = (fyj,e'Z), 0<j<Il—1,let (3)*

denote the induced action of 59 on Ly(W)®’. Then we have

(5.28) Tr((ﬁj)rﬂ(/\)) = Z Tf(ﬁj)rm,m(/\))-

(v,m), v=t~yiv

Proof. This easily follows from the decomposition of (5.26) and the fact that (57)*
induces the isomorphism

(3/])* : Hu,'m.(A) - Ht’Yj’/v"l(A)'

Let us fix a positive eigenvalue A of By and consider the operator B, ,, such
that A = A(v, m). Moreover assume that y/v = v.

Proposition 5.29. Under the notation and the assumption as above, assume
moreover that v # 0. Then we have

(5.30) Tr((3)r, 0 0) = TG )i, (-0
In particular we have
(5.31)
Tr((:YJ)TH()\)) - Tf((ﬁ/J)TH(—/\)) = Z (Tr((¥ )THO,M(A)) - Tr((ﬁ/J)THoym(—/\)))'
meZ

Proof. Take (v,m) such that A = A(v,m). Then assuming that ‘y/v = v and
v # 0, we claim the following.

Claim 5.32: There exists a (77)*invariant linear subspace V C M, m such
that
Hum =V @ By m(V) (a direct sum).

Here we can only show that this claim implies (5.30), and we prove the claim
later. For a non-zero element ¢ € V', the elements

Bl/,'m ¢ + )‘¢
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become non-zero eigen vectors of B, ,, with eigenvalues £\ respectively. (Note
that B2, = A2.) On the other hand, the action of (57)* commutes with B, ,,

v,m

hence the actions of (77)* on these two eigenvectors are the same. Taking basis
of V, we obtain basis for H,, ,,(A) and H, ,,(—A) as in the above way and this

proves (5.30).

From Proposition (5.29) and the definition of G-equivariant eta functions in
(2.19), we have the following corollary.

Corollary 5.33. Notation being as above, let By be the restriction of the
operator By on the subspace Lo(W)§" := @ezHom C Lo(W)P. Then we have

(5.34) N5 (Bw, 8) = 115: (Bo, 8)

where 1, (Bo, s) is an eta function defined in a similar way as in (2.19) for the
operator B.

Now we will prove the claim 5.32. Let MP?(W) (resp. MP?(A)) denote the space
of the complex valued constant p-forms on W = A x S! (resp. on A).
For each p,0 < p < 2n, we have the following natural isomorphism

(5.35) MPE(W) =~ MPP(A) @ M?*P7L(A) A dt,
which yields a linear isomorphism

(5.36) M (W) ~ @22 MP(A).

For j,0 < j < 4k — 2, we define subspaces of M“’(W) by

(5.37) MZT =@ i MP(A), M2 =@, MP(A).

The subspaces M<J/ and MSJ can be defined similarly. Moreover we identify
Hy.m with ./\/lev(W)e,,,m(;,t) and we will omit eyﬁm(;,t) unless it will cause
confusions. From the definition of B, ,,, we obtain the following lemma.

Lemma 5.38. Under the notation as above, we have

B””’”(M<2k_l) - MZZIJ_l? BV,m(M>2k_l) C MSZIg_l.

We set M? = MP(A) for simplicity. Let p; : MZ**~1 — M2k=1 and p, :
M=2E=1 . A2k—1 be the natural projections. From this lemma, we can define
subspaces V5 and V5 of M2F~1 by

Vi = p1 0 Byun(M<21) € M2
Vz =py0 Bu,m(M>2k_l) C Mzk—l.

The following lemma shows the claim 5.32, hence completes the proof of Propo-
sition 5.29.
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Lemma 5.39. Under the notation as above, set V. = M<?*~1 @ V,. Then V
is invariant under the action of (77)*. Assume moreover that v # 0. Then we
have B, ,,,(V) = M>2E=1 @V, and

Hy,m. ~ MEU(W) =V BZ/,’ITL(V)'

Proof. The first assertion is obvious from definition. We define degrees of elements
in M*®” by means of the decomposition (5.36). Take an element ¢ € M?**~1(A).
Then we can obtain the element p A dt - e, (2,t) € M (W)e,.m(z,t) of degree
2k — 1. We will omit e,/,m(;,t) from now on. By an explicit calculation we can
write

(5.40) Bym(p A dt) =21/~ 1(€ap—s + Eapr + Ear)

where {; denotes the elements of degree j and they are given as
(5.41) b2 = *a(Tu N ), Can—1 =mxa (@) Adt, & =7, A(*a9).

Here we set 7, = ZZI vidx;, v; =< v,e; > and %4 denotes the Hodge star
operator on A.

Now we remark that if ¢ A dt € V5 then:

1) the degree (2k — 2) part of B, ,,( A dt) vanishes and,

2) Bum(p Adt) € Vi & M>2F—1

In fact, from the definition of V5, we can find an element ¢ € M<2*~1 such
that p Adt + ¢ € Bl,?m(./\/l>2k’_1). Then since Bz’m is a scalar operator, B, ., (¢ A
dt + ¢) € M>2k71 while B, ,.(¢) € B,m(M<F=1) ¢ MZ22*~1 by lemma 5.38.
Therefore the degree 2k —2 part of B, ,, (@ Adt) must vanish and we have B, ,,, (@A
dt) = =B, m(¢) mod M>2k=1 which implies the second assertion.

By the same argument, we see that if ¢ A dt € V; then the degree 2k part of
B,..(¢ A dt) vanishes and B, ,,(¢ A dt) € Vo & M<2F7L

From these remarks and (5.41) we can conclude that if ¢ A dt € V; NV, then
T, N =T, A%4(¢) = 0. On the other hand, since v # 0, 7, is a non-zero 1-form
on A. Then we can easily show that these last two equations imply that ¢ = 0,
and hence we have

(M@ V) 0 (M @ 1) = (0).

Moreover from the second remark we can see that B, ,,,(V2) C M2 3V, - This
implies together with lemma 5.38 and the definition of V; that

By,fm,(M<2k_1 D VYZ) C M>2k:—1 D ‘/1
Similarly we have
By(MZ* Lo Vi) c M a1,
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Then since Blz,’m is a scalar operator, two inclusions above must be equalities.
Setting V = M<?*=1 @ V;, we see that B, ,,(V) = M>?*~1 V] as desired.
Now in order to finish the proof, we need to show that V' and B, ,,,(V') generate
M (W). Note that all elements of M<2*~1pAM>2F~1 arein V@B, (V). Hence
let us take an element ¢ A dt of M?**~1. Applying B, ,, to the equality (5.40) and

using (5.41), we have
BZ,W;(LP A dt) =27 V _1(By,m.(£2k—2> + Bl/,m(&Zk—l) + BVJn(ng))-

Now let us set 2my/—1B, (€26—1) = P2x—2 + P2r.—1 + @2 as in (5.40). Then an
explicit calculation shows that ¢a;,_; = 47?m?p A dt. Since B2, = 4n*(||v||* +

v,m

m?), we hereby obtain

47l'2||1/||2(90 A dt) - (27‘-\/__131/,771(€2k—2) + ¢2k) + (277\/__1Bl/,7n(£2k) + ¢2k—2)~

Since again we have ||v||* # 0, this implies that ¢ A dt € V & B, ,,,(V), which
completes the proof of Lemma 5.39.

(5.42) Proof of Theorem 5.7.

Now we can start to prove theorem 5.7. The main part of the proof is showing
the formula (5.8), from which the rest of assertions easily follow.
Fix j,1 < j <l — 1. From corollary (5.33) we have the equality

(5.43) N3 (Bw, ) = 15i (Bo, s)

where B, is the restriction of the signature operator By to the subspace L§"(0) =

M (W) ® Ly(S1). One can write By as
(5.44) By:=F® =

where F' is a real endomorphism on M*® := M’(W). According to the Fourier
decomposition L§"(0) = @.ezHo.m as in (5.20) we obtain the decomposition By =
@®mezBo.m- Moreover one can easily see that By ,, = 27/ —1mF. Moreover since

B2, = 4m’m?, we have F? = —1. Then we have the eigenspace decomposition
K

Mev — Mfm(\/__l) D Me'v(_\/__l)’
such that Me*(£y/—1) = M (F+/—1), for F is a real endomorphism.
Since the action (37)* on M®’ commutes with F', it preserves the eigen spaces

of F, hence we can consider the action of (579)* on the spaces M®’(£/—1).
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Lemma (5.45). Under the assumption as above, we have
(5.46)
s 2mj
s (B, ) = 153 (Bu, ) = (=4) - (21) T (Te((F)pgee ) - Z(105),

where Z(q, s) is a Dirichlet series defined in (5.9).

Proof. The set of all eigenvalues of By is given by {2rm,m € Z}. Then denote
by Horpm the eigenspace of By with the eigenvalue 27m. It is easy to see that

(5.47) Hom = M (—y/—1)e(mt) & M (v—1)e(—mt).

Now let us fix a positive integer m. From (5.47) and the definition of 47 in (5.6),
we have

(¥, = e(m [T ) gen ) + (=g [TH((F) o)

(¥, = e(=md [DTH((F) ) + €l [T g, )

On the other hand, from the relation M¢*(—/—1) = M*®’(y/—1), we obtain the
equality

Tr((ﬁlj)r'/\/[ev(\/jl)) = Tr((ﬁlj)ik/\/[ev (_ﬁ))'
Therefore

() tgen = a0,
=(e(mj/l) - e(—mj/l))(Tr((‘")i‘Meu(_m)) = Te((V ) g (1))

) T (Te((F) e )

Now the formula (5.46) follows from the definition of eta function in (2.19) and
(5.9).

(5.48) Calculation of the trace Tr((% )|M8L( ﬁ))'

Next we calculate the imaginary part of the trace Tr((ﬁ/j)T‘Mm,(_\/jl)).

Lemma (5.49). The action of (77)* preserves the decomposition (5.36) of
MEe(W). Moreover the action of F' can be given as follows.

Fiaver(a) = (DM sy MPP(A) — MAFT2720(4)
Fipzr-sayaae = (D22 - MPPTHA) A dt — MPFIT2P(A) A dt.
Here again % 4 denotes the Hodge star operator on A with respect to the Euclidean
metric.

Proof. The first assertion is trivial from the definition of the action of 37/. In
order to show the second assertion, write ¢(t) € M?*?(W) @ C>(S') as ¢(t) =
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f(t)-w+g(t) ¢ Adt where w € M??(A) and ¢ € M?*P71(A). Since By (¢(t)) =
Bo(¢(t)) = (=1)kTPH sk d — dxw )(9), we have

Bo(f(1)-w) = (=ML, (f(1)) #w (dt Aw)
Bo(g(t) - o Adt) = —(=1)FTPTL9,(g(t))dt A xw (p A dt)
= —(=1)FrrrIHL0g, (g(1))
= (=M1 (g(1)) *w (@ A dt) A dt

One can show that xy (dt Aw) = x4(w) and *w(p Adt) Adt = (=1) x4 (@) A dL.
Therefore we have

Bo(o(1)) = (-1 (2D )

dg(t)
ot

(*ap) A di)
which proves the second assertion.
Consider the following decomposition (cf. (5.37)):
ME(W) = M<ZE=1 g 21 gy p>201,

Set M#2F=1 .= M<ZF=1 § M>2k=1 Then from lemma 5.49 we see that the
subspace M7#2k¥~1 and M?*~1 are stable under F' and therefore we have the
natural decomposition

(5.50) M (—y/=T) = M1 (1) @ MPF (—y/ 1),

(5.51) Lemma. The trace of (7/)* on the subspace M#**~1(—,/—1) is a real
number. Therefore we have

(5.52) I (Te((39) pgen(— y=1y) = (T ) oy =)

Proof. Take a non-zero form w € M<?*~1, Since F? = —1 and Fw € M>2k=1(A),
the element w + v—1Fw € M72*=1 is a non-zero eigen vector of F' with the

eigenvalues —y/—1, and it is easy to see that this map gives an isomorphism
M<ZE=L v pF2R=1(— /1) which commutes with (77)*. Therefore we have

(5.53) Tl‘((:yj)TM#qu(_\/fl)) = Tr((:yj)ik/\/[<2kfl(14))'
Recalling that the de Rham isomorphism H?(A, C) ~ MP(A) ~ APM(A), since

the automorphism 47 on A induced from a real endomorphism of M?!(A), we see
that the right hand side of (5.53) is real and this implies that the assertion.
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(5.54) Hodge decomposition of M2*~1(A).
Let us recall the Hodge decomposition of M! = M!(A)

Ml — MlO(A) @Mo,l(A)

where M'0(A) = @*'Cdz; and M*! = ML9(A). This induces the Hodge
decomposition of M2*71(A) as
MZk—l(A) — Gaa—l—b:Zk—lHa,b

where H*?*=1=¢ denote the space of constant forms of type (a,b). Set I =
{1,2,---,2k — 1}. For multi-indices K;, K5 C I such that |K;|+ |Ky| = 2k — 1,
we define dzg, A dzg, as usual. For a multi-index M C I, we set

Wpr = H dz; N d_ZL
ieM
Then if M = K; N K, is not empty, we can write
dzg, Ndzg, = idZKi A dZKé Nwpg-

such that K{, K} and M are mutually disjoint increasing multi-indices.
We have the following lemma. (For a proof, see p.161, Lemma 1.2 of [W].)

Lemma(5.56). Suppose that K;, Ko and M are mutually disjoint increasing
multi-indices. Then

*A(dZKl A dZKg /\wM) = f(a, b,m)(del A dZK2 A U)M/)

for a non-vanishing constant {(a,b, m), where a = |K;|,b = |Ks|,m = |M|, and
M'=1-(K;UK,UM). Moreover,

&(a,b,m) = (q/_1-)a—b(_1)P(P+1)/2+‘m(_2\/__1)p—(2k—1)
where p = a 4+ b+ 2m is the total degree of dzg, N @ Awyy.

Let P%* C H%" be the space of the form of type (a, b) generated by dzx, Adzg,
such that K N K5 is empty. We can naturally define its complement Q% in H%?,

(5.57) H* = P g QP

Setting
2k—1 ,b 2k—1 b
P = @a-l-b:Zk—lPa/ ) Q = ®a+b:2k—lQa' )

we have the decomposition
MZk_l (A) — PZk—l D QZk—l

Note that the action of F' on M?**~1(A) is nothing but that of (=1)2F"2x4 = x4
(cf. Lemma 5.37). All of the actions of F' and 47 respect the Hodge decomposition
and the decomposition of (5.57). We can easily obtain the following lemma from
Lemma 5.56.
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Lemma (5.58). For a non-zero element of ¢ € P*?*~1=% e have

F(¢) = *a(¢) = (-1)"V~1¢.

Moreover for a non-zero element 7 = dzg, N dzg, N wy € Q®2F—1=a the forms
T F v/ —1 %4 7 become non-zero eigen vectors of F' = x4 with eigenvalues ++/—1.

In particular we have

Tr((:yj)TQZk—1(_\/__1)) €R.

Proof. The first and second assertions follow from Lemma 5.56. From the sec-
ond assertion we see that the action of (47)* on the spaces Q*"~%(—4/—1) and

Q*"~*(4/—1) isomorphic to each other. Therefore we have

Tr((:yj)rcga,n—a(_\/_—l)) = Tr((ﬁ/j)rQaﬁn—a(\/_—l))'

This implies that the traces of (77)* on the spaces Q**~!(£+y/—1) are equal to each
other. Then the relation Q2*~1(y/—1) = Q**~1(—+/—1) shows the last assertion.

From this lemma, we can easily obtain the following corollary.

Corollary 5.59. We have

Im(Te((9) o~ y=p)) = I(Te((F) e+ (_ y=p)));
and

(5.60) p2k—1(_, /=1) = P10 gy p2k=3.2 gy . pl.2k—2

Now we calculate the trace of (7/)* on P?*=1(—+/~1). Let K; = {i1,14s,--

and Ky = {j1,72, -, jp} the multi-indices then

(ﬁj)*(del A WKz) = (gilé-iz T g’ia)(g.’hg.’iz T g.’ib)dzfﬁ A VKZ

where we have set £; = (;)?% (cf. (5.6)). Therefore if we set

2k—1 _ 2k—1
oi(y) = [[ (& +&y) =D ey,
=1 p=0

we have

Tr((39) pascs(_ymp)) = (E1e - Eabms + D Einbin -+ Einu_ Ei iy + -

=cytC+ - -Cp—2.
Therefore we have
Te((F) e () = (B5(1) + B5(~1))/2,
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while we know that ®,(—1) is pure imaginary and ®;(1) is real. From this and
corollary (5.59) we have

Im(TT((ﬁ’jﬁMev (—v/=1) ) = Im(TT((:}’j)TMZk—l(_\/__l))

(5.61)

(G
= 2,(-1)/(2v=T) = ([] (& - &)/2vD)
= (TT vTsin2H%)) j2v1)

=1

2k—1

. . . 2mja;
= (=1)k1o2h~2 H sin( l ).

i=1

Finally we can deduce the formula (5.8) from Lemma (5.45) and the equality

(5.61).

[A]
[ABP]
[ADS]
[APS-I]
[APS-T]
[APS-III]
[AS]
[D1]
[D2]
[DP]

[G]

[G-S]

[Hel]
[H1]

[H2]
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