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1. BACKGROUND AND SUMMARY

The question of whether compact groups can have actions on acyclic
spaces, especially on disks and Euclidean spaces, without fixed points,
has a long history. Thelﬁrauer- and Lefschetz fixed-point theorems proved
that no cyclic group has a fixc—;,-d—point free action on a finite polyhedron
which has no rational homology. P. A. Smith, in the 1930's, proved
theorems about Z -actions which show that groups of prime power order
are unable to have fixed-point free actions, not only on acyclic spaces,
such a.s disks, but also on non-compact spaces such as Euclidean space.

In the 1940's, Smith [19] stated the question as his ''proposition [G,n]":
does G have a fixed-point free action on the Euclidean space R"? , and
proved some ndnexistence results for small n. The question came up twice
in Eilenberg's paper ''On the Problems of Topology'' [6]: posed by Smith
for cyclic groups and by Montgomery for compact groups in general.

The first counterexamples to these qﬁestions .came around 1960.
Floyd and Richardson [9] constructed a fixed-point free action of the {inite

group A_ on a disk; Conner and Floyd [4] constructed such actions of

5
finite cyclic groups, not of prime power order, on non-compact contractible
manifolds, actions which were modified by Kister [16] to give fixed-point
free actions on Euclidean spaces. ILater, work by Conner and Montgomery
[5] and by Hsiang and Hsiang [13] showed that any non-Abelian connected

Lie group has a smooth fixed-point free action on Euclidean space.

At about the same time as the first counterexamples were constructed,

‘reever [10] found a large family of finite solvable groups which could not



1-point free actions on integrally acyclic spaces when certain

- conditions held; in particular his results applied to smooth or

1 actions on disks and other compact manifolds with the right

, but not to actions on Euclidean spaces. This, and the large

f examples which began to hint that the only compact Lie groups

xed-point free actions on Euclidean spaces were tori extended by

, showed that the problem, when limited to smooth or simplicial

n compact acyclic manifolds, is far different and more complicated

yroblem with actions on Euclidean spaces.

.5 thesis is centered around the question of which compact Lie

ave fixed-point free actions on (sufficiently high dimensional) disks

compact acyclic manifolds. In the case of finite solvable groups,

ion is answered completely for disks, or for compact R-acyclic

5, where R = Z, ZP, or M.

e following collections of finite solvable groups are defined.- Let

collection of all groups G, with a cyclic normal subgroup anG,

: ‘G/an = qk, some prime power. For p prime, let ép be the
' k

n of all groups G with a normal subgroup P <G, ‘Pl =p , and

: G/P is in #. The following will be proven:

- - —

11 Let G be a finite solvable group. G has a smooth fixed-point
on on a disk if and only if G ¢ ép, for all p. G has a smooth
int free action on some compact Zp-acyclic manifold if and only if

G has such an action on some compact @ -acyclic manifold if and






actions of certain groups are constructed, and then all other desired actions
obtained by manipulating the fixed-point sets, or by passing to larger groups
which contain the original groups as subgroups or quotient groups.

Results for finite non-solvable groups, or for positive-dimensional
compact Lie groups, are more sv.ca.ttered. Smooth fixed-point free actions
on d;sks have been constructed for some of the groups PSL(2,q), including
an example for A.5 independent of the Floyd-Richardson example. Similar
examples have been found for two compact connected simple Lie groups,
SU(2) and SU(3).

Chapter II is devoted to several general constructions and techniques
which will be used to simplify the problem. The necessity of the conditions
described above for a finite solvable group to have fixed-point free actions
‘on certain spaces will be proven in Chapter III. In Chapter IV specific
actions will be constructed, which will be used in Chapter V to prove the
sufficiency of the above conciitions. Results on non-solvable finite groupé
and positive-dimensional groups will be discussed in Chapter VI. All trans-

formation groups considered will be compact Lie groups.

I would like to thank my adviser, Wu-Chung Hsiang, for all of the
help which he has given with my work. I would also like to thank William
Browder and William Pardon for their helpful ideas, including Browder's

suggesting the problem which led me into this area.












































































































P G/KE&;, so agein by induction, the induced map (&/XK):G/K —~70 777
lentity. By Lemma 2, § = 1.
Now let P be any non-cyclic abelian p-group; again assume the
tion has been proven for abelian groups of smaller order. Let
b A~ 0 C .
Pig'=11 P :%p’ some n > 1, and is invariant under £. So
A
1 is in 29;:, and by the previous paragraph, g‘P: 1. Moreover,
A A A

, so if P/P is not cyclic, g/PeAut (P/P) is the identity (by the
n hypothesis) and £ =1 by Lemma 2.

A - A -~
f P=P we are clearly done: so assume P/P = Z ; for kx> 1.

b
A A k
yeP such that (yP) generates P/P, then yP #1 is the smallest

f v in IA3 Let P’ Elg bhe the subgroup generated by ypk; then

not cyclic (otherwise P would be cyclic or P’ a direct summand).

P'=1 (G/P'e4]), and it follows from Lemma 2 that ¢ = 1.

t remains to consider the case when P is not abelian. Again, the

:ion will be assumed for non-cyclic groups of smaller order. By

1, P/Z(P) is not cyclic (and Z (P) # 1}, so ¢/Z(P)=1. Choose

rmal subgroup f’dP such that Z (P} Elg with index p (so

If EA’ is not cyclic, I%quéf; and by the induction hypothesis,

and £ =1. If ﬁ’ =z k 1is generated by g, then £(g) = gs, and
‘P

1odpk). On the other hand, g“lg(g) e Z(P) (£/Z(P)=1) so

odp). It follows by Lemma 3 that s =1 (modpk), so f£(g) =g.

g‘lg=l andsogzl. “

1

Ve are now ready to prove the main theorem of this chapter. This






42

Step 3. G 1is of the form {Pl, ZZ,a, $Q3@P2>’ where Q; is a
1'-group, all q.’j’ p are distinct primes not dividing a.
J

Step 4. G is of the form (P,%n,Q), where P is a p-group,

1 a g-group (possibly g=p) and some n.

Step 1. It will suffice, by induction, to prove the following: If G is
f the form <H’%3’P1’K’P2>’ for q # p, p,lf‘K‘ and Pi p-groups,
hen G is of the form (H,ﬁl,E:,K,ﬁz Y, where ﬁi are p-groups.
Let- H<TH1<1H2<! H3<IG be the normal subgroups of G which
etermine the form described above. Set § = [HZ /H, Gl|H]<7 G (and con-

iined in HZ/H)' Let ¢: G/H—Aut (ZZ) be the map induced by conju-

. . n ~ . 7 . . .
= . t d
ation in Zq Hl/H Since HZ/HE &P, @‘HZ/H is the identity unless

=1; in either case, its image is in the center of Aut (Kz), and so @|S
ses to the identity. Let S'<IG/H be the subgroup generated by S and
e ¢ . . r~ N t 1L ., -
‘g thus (p[ 8" goes to the identity and § = Zq & (S /Zq) (it is already
semidirect product by the above theorem of Hall). Thus, G is of the

rm (H,B,z",P /B ,K,P,) where B =s/z"

m il q: 1 12777 2 where 1 - q

Let : G/S8'H—>Aut (HZ/S'H) be the map determined by conjugation;
-1.-1 .

r geG, heH,, (ghg )h "¢ S’'H, soim 3 = leAut (HZ/S'H). In particular,
3/S’H T K (P, /’ﬁl), and G is of the form <H,§1,zz,q,1<,i5‘2> for
= G/HZK’ a p-group.

k k

2
Step 2. It will suffice to show that if G is of the form {(H,, ZZrl, Zr . H
I 1

l 5 2)}

lere r, <r, are primes distinct from p, then G 1is of the form
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VI. NON-SOLVABLE AND POSITIVE-DIMENSIONAL GROUPS

In the previous three chapters, a complete description has been
wven of which finite solvable groups have smooth fixed-point free actions
1 disks, and on certain other classes of compact acyclic manifolds. In
is chapter, partial results are given towards extending this to all compact
ie groups.

The first step in extending the results of Chapter III is the following

:mma 1. Assume a torus T acts on the compact space X. If X is
i-acyclic, %p—acy'rclic) {under (Eech cohomology), then so is the fixed-

int set XT {assuming iI‘P(XT) finitely generated in the Z-acyclic case).

Proof: Assume first that X is Z -acyclic. There is a sequence

EPZE P3 C ... T of finite subgroups of T of p-power order such that

Pi is dense in T: for instance, set Pi = (Z .)n when T is the

P’
limensional torus. By TZ (Chapter III}, each fixed-point set X Yois

lic. Si xT- R XPi it follows that H (X';Z )=lim f{*(xp'1 Z )
-acyclic. ince = , 1 ; =11 , Z
R i=1 p — P

£ (all of the spaces are compact). Thus, XT is Z -acyclic.
P P
If X is Z-acyclic, itis Zp~acyclic for all primes p. By the above,

is %p—acyclic for all p, and so is Z-acyclic. H

With this lemma, the problem for compact Lie groups with abelian

ntity component is reduced to that for finite groups:
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. 1]
rimes p. i

Thus, by Proposition 1 of Cﬁapter 11, it would suffice to construct
nite Zz—acyclic G-equivariant complexes without fixed-points for the
‘oups G described above. This has been done for the groups SU (2)

d SU(3).

The following notation will be used for subgroups of U{n). Let

: (kl’k?_’ RN ,ks) be a partition of n (k_l>0, Ekiz n). Then set

A A
k) = U(kl) X ... X U(ks) c U(n). Set T(k} to be the inverse image of

X ... xS
1 1‘:s

up of diagonal matrices, a maximal torus).

under the projection N(T)-—>N(T)/T ’Esn (T is the sub-

mma 2. For any n, ﬁ*(U(n)/N(T);m) = 0.

Proof: TU(l)/T' is a point. In general, the fibration U(n-1) —» U(n)

2n- - )
871 jnduces a fibration Um-1)/T"F —Um) /T —> ¢ P>L.  The

‘re spectral sequence shows that if the base space of a fibration
-+F —»B is simply connected, and H;F(F,Z), H—"(B;Z) are both zero
ydd dimensions and free finitely generated groups in even dimensions,

n HO(E;Z) S H (B;Z)® H (F;Z). In particular, by induction on the

ve fibration

n-1
= H (T Pk;Z).

H (U(n)/T2Z)
k=1

s, H’F(U(n)/Tn;Q) is zero in odd dimension, and X(U(n)/Tn) = n!

finite group Sn acts freely on U(n)/Tn with orhit space U{(n)/N(T);
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For any aeG, let r : X—>X be the action of a: r {x) = axx.
a a

-1
For any H <G, this induces a map T X/H ——=X/aHa °; denote by

e ol

vy I‘:I"‘(X/a.Ha_l;R) —H (X/H;R) the induced map in cohomology.
a

wemma 3. For HC G, for zEI‘:Ia‘(X/H;R),

-1 -1 -1
(G, H)t(H,G)z =2 r t(HNa Ha, ,a Ha, )i(H,HﬂaiHai )z

7

vhere [ai} is a set of double coset representatives for H: G = UHa H is

i
. disjoint union.

Proof: The corresponding theorem for homology can easily be proven

2 the case of a sirﬁplicial action on a complex: it can be proven on the
hain level by regarding C*(X/K) as a subspace of C*(X) {under the
ransfer map) and doing all calculations in C*(X). The original equation
ill then hold on COCilainS, and thus in simplicial cohomology. One may
ten generalize this to an arbitrary continuous action on a finitistic space

7 using G-covering approximations on X, and taking direct limits to

stain Cech cohomology. H

From this lemma, the desired condition follows immediately.

.rst note that for any aeG, Klg KzEG’
*t(K K )r* =tla K,a g )
ra 10 %o a_l =tla K2, a 52

d IR, K, ), =ila 'K a,a K
I'al 5 Ky r 4 =ila 2'a.,a. la)

a

‘oposition 4. Let HC G, and assume [G:H]I is invertible in R. Then
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zeH (X/H;R), zeIm i(G,H) if and only if

%, -1 . -1
ra1(H, HnNaHa Yz =i{(H,a HanNH) =z

*at least one a in every double coset HaHC G.

o

Proof: If z =i(G,H)x, then r;i(H,HﬂaHa_l)z

* -1 % b -1 -
rai(G,Hﬂ aHa r _1]rax= i(G,a HanH)x =1i(H,a 1Ha.ﬂH)z.
a

1f the equation holds for all a,, where {ai} is a set of double coset
1

presentatives, then

1

% -1 - -
r t{HNa.Ha. , a Ha. )i(H, H N a Ha, 1) z
a, i i i

i
* -1 Co=1 % ) -1

r t{HNaHa, ,a Ha ")r 1 i(H,a, Ha, N H)z
a; i1 i a’ i i

= t(a‘.lHa, N -H,H)i(H,a'.lHa. N H)z = [H: a‘.lHa. NnH]=
1 1 1 1 1 1
-1
VG, H)E(H, C)z = (/;3 [H: a; Ha,lnH])cz:[G:H]z.,

— -1 .
‘he identity [G:H] = . [H:a.i Ha N H| can be obtained by applying the

mma to a fixed action on some space.) Thus, [G:H]zeIm (i(G,H)), and

Y is =z. H
roposition 5. The sequence
* %
* 3 Pr__* Pa % 3
—H (US)/N(T"); Z,) —=H (UBYTE,1); Z,)—>H (UB)T; Z,)

3 exact in positive dimensions.

3
Proof: Let X =TU(3)/T , then S,, the Weyl group of U{3), acts

3]
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e the representation G ——>U{3} is irreducible, the image of G is not
ained in any conjugate of U(Z) xU(l); since it is not induced, the image
¢+ is not contained in any conjugate of N(T3). Thus, the image of G

t contained in any isotropy subgroup of the action of U(3), and so the

red action of G on the same space is without fixed-point. ! 1

llary. SU(3), sU(Z2), U{2), SO(3), and A5 all have smooth fixed-

free actions on compact Zz—acyclic manifolds (and thus on disks). l ‘
The above procedure suggests one possible way to attack the main

em: construct actions of unitary (or orthogonal) groups with restric-

on the isotropy subgroups which occur, so that fixed-point free actions

other desired groups can be induced via representations. One pos-

ty would be the following:

sition 7. Assume that for all n > 1, there exists an action of

1} on a finite ZZz—a_cyclic equivariant CW complex {and thus on some'
et %Z—acyclic manifold Mn) such that every isotropy subgroup is
rate to a subgroup of N(U(?()} for some partition i\c of 2n+l. Then
compact connected non-abelian Lie group, and every non-abelian

simple group, would have smooth fixed-point free actions on disks.

oof: The conditions on the isotropy subgroups would imply that
reducible representation G —>U{2n+l), not induced from any repre-
on of a subgroup, induces a fixed-point free actionof G on M .

compact connected non-abelian Lie group has an irreducible odd-
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