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I. BACKGROUND AND SUMMARY 

The question of whether compact groups can have actions on acyclic 

spaces, especially on disks and Euclidean spaces , without fixed points, 
-.:.! . ' 

has a long history . The -B:raue,1>- and Lefschetz fixed- point theorems proved 

that no cyclic group has a fixed-point free action on a finite polyhedron 

which has no rational homology. P . A . Smith, in the 1930's, proved 

theorems about Z -actions which show that groups of prime power order 
p 

are unable to have fixed-point free actions , not only on acyclic spaces, 

such as disks, but also on non-compact spaces such as Euclidean space. 

In the 1940 1s, Smith [19] stated the question as his "proposition [G,n]" : 

does G have a fixed-point free action on the Euclidean space lR.n? , and 

proved some nonexistence results for small n. The question came up twice 

in Eilenberg 1s paper 11 0n the Problems of Topology" [6]: posed by Smith 

for cyclic groups and by Montgomery for compact groups in general. 

The first counterexamples to these questions came around 1960. 

Floyd and Richardson [9] constructed a fixed-point free action of the finite 

group A
5 

on a disk; Conner and Floyd [ 4] constructed such actions of 

finite cyclic groups, not of prime power order, on non-compact contractible 

manifolds, actions which were modified by Kister [ 16] to give fixed-point 

free actions on Euclidean spaces. Later, work by Conner and Montgomery 

[5] and by Hsiang and Hsiang [13] showed that any non-Abelian connected 

Lie group has a smooth fixed-point free action on Euclidean space . 

At about the same time as the first counterexamples we r e constructed, 

G reever [10] found a large family of finite solvable groups which could not 
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have fixed-point free actions on integrally acyclic spaces when certain 

finiteness conditions held; in particular his results applied to smooth or 

simplicial actions on disks and other compact manifolds with the right 

homology, but not to actions on Euclidean spaces. This, and the large 

2 

number of examples which began to hint that the only compact Lie groups 

with no fixed-point fr ee actions on Euclidean spaces were tori extended by 

p-groups, showed that the problem, when limited to smooth or simplicial 

actions on compact acyclic manifolds, is far different and more complicated 

than the problem with actions on Euclidean spaces . 

This thesis is centered around the question of which compact Lie 

groups have fixed-point free actions on ( sufficiently high dimensional) disks 

or other compact acyclic manifolds. In the case of finite solvable groups, 

the question is answered completely for disks, or for compact R-acyclic 

manifolds, where R = '7L,, Z , or Q2. 
p 

The following collections of finite solvable groups are defined. Let 

~ be the collection of all groups G, with a cyclic normal subgroup Z .cJG, 
n 

such that \ G / '7L, \ = q\ some prime power. For p prime, let II be the 
. n p 

co llection of all groups G with a normal subgroup P-<JG, \P\ = pk, and 

s-=.~~ _.__ a t: G/P is in II. The following will be proven: 
-:::::-=-=:= ~ -- -) -

Theorem: L et G be a finifr solvable group . G has a smooth fixed-point 

free action on a disk if and only if G i II. , for all p. G has a smooth 
p 

fixed-point free action on some compact Z -acvclic manifold if and only if . p , 

G ¢ II . G has such an action on some compact (D -acyclic manifold if and p 
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:.: £ ~ . In p articular , a finite abelian group has a sn1ooth fixed - point 

a disk if and only if it .has three or more non-cyclic Sylow 

-~. t h ese conditions show that the smallest abelian group with a 

'<>"ffi.oo't.n 1.1.xen.- -po\.n't iree action ·on a. c.isk1.s z
30 

e z.
30

, of order 900. The 

smallest solvable groups with such actions have order 72: two such groups 

:..:..e:i shows that A
5

, of order 60, is the smallest finite group with such an 

action. 

The necessity of the above conditions for the existence of actions is 

simply an extension of the methods of Greever, which involves checking 

the Euler characteristics possible for the fixed-point sets. The key extra 

step is an extension of a theorem of Floyd, showing that unde r certain 

finiteness conditions (including the case of a smooth action on a compact 

manifold) the Euler characteristic of the fixed-point set of a ~ -action is 
n 

equal to the Lefschetz number of the action of a generator. 

To show the existence of the actions d esc rib e d above, it is fir s t shown 

that it suffices to construct simplicial fixed-point free actions on finite 

complexes of ·the right homotopy typ e: the method us e d is mor e complicated 

than that of Floyd and Richards on in [9] so as to apply also t o positive -

dimensional Lie groups . The problem is then reduced to one of constructing 

actions on ~ -acyclic com p lexes: if G has a fixed-point free a c tion on 
p 

such a space for all p, then some fin ite join of such spaces w ill be a con-

tractible comple x on which G acts, a lso without fixed points . Specific 
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actions of certain grou ps are constructed , and then all other des i red actions 

obtained by manipulating the fixed-point sets, or by passing to larger groups 

which contain the original groups as subgroups or quotient groups . 

Results for finite non- solvable groups, or for positive-dimensional 

compact L i e groups, are mo re scatter.ed . Smooth fixed-point free actions 

on disks have been constructed for some of the groups PSL(Z , q) , including 

an e~ample for A
5 

independent of the Floyd-Richardson e xample . Similar 

examples have been found for two compact connected simple Lie groups, 

SU(Z) and SU(3). 

Chapter II is devoted to several general constructions and techniques 

which will be used to simplify the problem. The necessity of the conditions 

described above for a finite solvable group to have fixed-point free actions 

· on certain spaces will b e proven in Chapter III. In Chapter IV specific 

actions w ill be constructed, which w ill be used in Chapte r V t o prove the 

sufficiency of the above conditions . R e sults on non- solv able finit e group s 

and positive-dimensional groups w ill be discussed in Chapter VI. All trans

formation groups considered will be compa c t Lie groups. 

I would like to thank my adviser, Wu- Chung H siang , for all of the 

help which h e has given with my work. I w ould als o like to thank William 

Browder and William Pardon for their h e lpful ideas, including Browder's 

suggesting the prob lem w hic h l e d me into this area. 
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II. GENERAL TECHNIQUES 

The first step is to reduce the problem to one on finite complexes. 

The basic type of space used will be the finite equivariant CW complex 

(see, e.g. Illman[l5]) . 

Definition: Let G be a compact Lie group . A zero-dimensional G-equi

v ariant CW complex is a disjoint union of homogeneous G-spaces G/H .. 
l 

Ann-dimensional G-equivariant CW complex is a space X, obtained from 

an (n-1)-dimensional G-equivariant CW complex Y, by attaching spaces 

n n 
G /H. X D. (where G acts trivially on the n-disk D. ) , via equivariant maps 

l l l 

n-1 · 
<0.: G/H. xS. -->-Y . 

l l l 

When G is a fin ite g roup, this condition is equivalent to specifying 

that X have a CW complex s tructure , s u c h that any g e G sends open 

n-cells to open n-cells, and sends an n-c ell to itself only by the identity 

m ap. Note that for any compact Lie group G, any finite G-equivariant CW 

n n-1 
complex has finitely generated homology (because {G /H x D , G /H x S ) 

does) ; It has been proven by Illrnan [15] that any smooth manifold with a 

smooth G - action has the structure of an equivariant CW com.plex; if the 

m anifold is compact , it w ill be a finite complex. The following theorem 

m akes it possible to go in the other direction, from finite complexes to 

smooth compact manifolds. 

Theorem 1 . Let K be a finite G- e quivariant CW complex. Then there 

:.s a smooth, compact manifold M with a smooth G-action, and an equivariant 

a:nbedding i : K --->M into its interior, such that ir
1 

(i) and H ,:/i; ~) are 
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~==-::: rphisn1s. Furthermore, M can be chosen such that the isotropy 

_ _:'_::group of any point in M is contained in the isotropy subgroup of some 

:=c!.::.-: of K, and such that MG is a regular neighborhood of KG 

Thus, if K is simply connected, M will have the same homotopy 

~e, and if the action on K is fixed-point free , the same will be true of 

:::.: action on M . 

-- , 

The equivariant tubular neighborhood theorem (see, e . g. Bredon 

p . 306]) shows that the boundary of any smooth G - manifold M has an 

· --ariant neighborhood equivariantly diffeomorphic to 0M x [O, 1) (with 

-:::.e : ixed action on [ 0 , ])). Thus, the corners which occur when taking the 

::;.:-oduct of two manifolds, a disk bundle o ver a manifold, or a manifold with 

::. handle attached, all can be smoothed equivariantly. 

The following l emma will be needed to prove the theorem: 

~ emma 1 . Given smooth manifolds Mn and Np, where M is compact 

"c..::id p ~ 2n + 3, and a continuous function f
0

: M--? N, there is a homotopy 

?: M X!--?N of £
0

, such that fi is a smooth embedding for all i > 0 . 

Proof : Define F: M x (0, 1]--? N, by F (m, t) = f 
0

(m). Define the 

?<) Sitive function 5: Mx(0,1] ~IR by o(m,t) = t. Fix a metric on N. 

Dim (N) ~ 2 • dim (M x (0, 1]) + 1, so F can be a-approximate d by a 

smooth one-to-one immersion F': M X (0 , 1] --> N . Set ft(m) = F' (m, t), 

:hen ft is a smooth emb edding (t > 0). since M is compact. Set 

? = f 
O 

U F': M x [ 0, 1] ~ -N. Then F is continuous and is the required 

:-:Omotopy . 11 
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Theorem 1 will be proven by induction , starting with the subcon1plex 

.:::J U KG, where KO is the union of the ceHs (G / H x DO). The theorem is 

G 
=:-::.e fo r this subcomplex: embed K in some regular neighborhood, and 

: cave alone the components of KO not in KG . Theorem 1 now follow s 

: .:--om the following lemma: 

:..emma 2 . Assume K is a finite G - equivariant CW complex, w ith sub

=-omplex L, where K = L U (G / H X Dn) for some equivariant f : G/ HxSn-l-+ L , 
£ 

::ome H c G. Assume M
0 

is a compact manifold with smooth G action, 
1 . 

-ith the embedding i: L ~ M
0 

fulfilling the conclusion of the theorem. 

:-hen the theorem holds for K . 

Proof: Let j: Sn-l ->G/H x Sn- l be the inclusion map j(x) = (eH, x). 

One may assume dim M~ > 2n+l (if not replace . M
0 

by M
0 

x n\3M
0

) . 

' 1 1 h . f. Sn- l MH b . h -"'l.PP y Lemma to t e map 1 J: --> 
0 

, o taining t e map 

n-1 H 
ex : S XI ~ int M 0 

~here ex
0 

= ifj and ext is a smooth embedding for t > 0 . 

Choose D a disk w ith a linear a c tion of G, suc h that some xe 0D 

has isotropy_ subgroup H. Set M
1 

= M
0 

x D, l e t i
0

: M
0 
~M

1 
be the 

A n - 1 
embedding of the zero section, and define a: G/H xS xl---->M

1 
by 

A 
ex(gH,x,t) = (g·~(x,t) ,t•gx). 

Then (~ \G~H xSn-l x 0) = i
0
if, and the r estriction of ~ to G/ H x Sn-l x (0 , l ] 

i s embedded in M
1 

- M
0

, with G/H x Sn - l x 1 the inverse image of 0M
1

, 

and smoothly embedded. Denote that embedding by {3: G/ H x Sn- l ~ 0M
1

. 
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Let i
1

: M
1
----:> W be a smooth, equivariant embedding o f :M

1 
in 2. 

:i.:iear representation of G ; let M
2

. be an equivariant tubular neighborhood 

/ Jl-1 
::: M

1 
in W . This induces a smooth embedding f3 = i

1 
{3: G/Hx::; --l>- 0M 2 , 

.. h t . , . sn- l -::,.11.,f - .:uc res nets to f3 J : -> °"VJ.z · 

As H - bundles : 

n - 1 I n-1 n - 1 n-1 n-1 n-1 I 
...,.__X S = 1' W S = ,-(S ) $ lRx S $ TeH(G/H) XS EBv

0
M

2 
{G/Hx S ) Sn- l 

~e: V = lR.nEB,- H(G/H ) (an H - representation where lR.n has the trivial e . 

n - 1 n-1 n-1 \ 
~=-:ion) ; then W x S = VxS EBvoM (G/HxS ) n - l · 

2 S 

,._, 
Let V be a real G - representation whose restriction to H contains 

as a direct summand: V = V $V 
1 

as H - representations. Set M
3 
= D(V) x M; 

-:_= M
2
~M

3 
the embedding x~(O,x). 

n - 1 
As an H -bundle ov e r S , 

n-1 \ n - 1 

1 
n - 1 n -1 

< (G/ Hx S } -1 =v M (G/HxS ) -1 $ (VEBV1) xS = (WEBVl) x S , _ 
- - 3 Sn O 2 Sn · 

~=- so 
n - 1 ,.,_, n-1 

vM(G/HxS ) =(Gx (WEB Vl)) x S . 
0 3 H 

L et D(W EBV
1

) be the di s k 

==:=-e sentation associated to W EBV1 , and attach (G x D(W EBV
1 

)) x Dn v i·a 
H 

....::_.: :somorphism to 0M
3 

to get the smooth G-manifold M
4

. The embeddin gs 

(z e ro-s ectio n) 

-=--=.e an embedding of K into M
4

. By the Van Kampen and Meyer Vietoris 
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:.=.::-:) :-ems, this embedding still induc es an isomorphism of funda m.enta J. 

I::-Oups and integral hornology. 

The manifold M
3 

is a vector bundle over M
0

, and therefore any 

_s3t ropy subgroup of M
3 

is contained in one of M
0

. The handle 

::- X D(W EBV1 )) X Dn is a bundle over G/H X Dn, and so any of its isotropy 
H . 

s-::.o groups is contained in a conjugate of H . 

Since G -I H, (M
4

)G is a disk bundle over 

::o.s sumed to be a regular neighborhood of LG = KG, 

:::eighborhood of KG. 11 

G 
(M

0
) , which was 

(M )G . 1 so 
4 

1s a regu ar 

Co rollary : Assume K a contractible finite G-equivariant CW complex. 

:'h en G has a smooth action on a disk, any of whose isotropy subgroups 

:. s contained in an isotropy subgroup of K. 

Proof: By the theorem, G has a smooth action on some compact 

c ontractible manifold M
0

, where all isotropy subgroups of M
0 

are con

t ained in isotropy subgroups of K . Embed M
0 

smoothly in some linear 

r epresentation of G; let M
1 

be the disk bundle of an equiv ariant tubular 

neighborhood of M
0

. By a theorem of Whitehead [22, p. 298], M
1 

is a 

disk if M 0 w as embedded w ith suffici ently high codimensio~. Isotropy 

subgroups of M 1 are contained inside those of M
0

. I l 

Thus, a compact Lie group G has a smooth fixed-point free action 

on a compact R - acyclic manifold, for a g iven ring R, if and only if G acts 

w ithout fixed points on an R-acyclic finite G - equivariant CW c ompl ex; G has 
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=-- ;:: h an action on a disk if and only if it has a fixed-point fr ee action on a 

=:mtractible finite G-equivariant CW complex. The next proposition shows 

:.::at it will suffice to consider the rings ?Z , for prime p. Firs'!:, two 
p 

: enunas about joins of spaces will be needed. 

:..emma 3. Assume X and Y are Hausdorff spaces. If X is Z -acyclic, 
p 

~ en so is X*Y. If X and Y are connected, then x,:,y is simply connected. 

Proof: x,:,y = (X xY x l )/-, where - is defined by 

(x, Yr 1) ,.._, (x, y z, 1) for xeX, y.eY 
l 

:..,et U e:X*Y be the image of XxY x[O,l), V the image of XxY x(O,l] . 

1 . 
:'hen X G: V, Y §: U, and Xx Y ~ U n V (the level 2 ) a re defo rmahon 

retracts. Thus, there is a Meyer- Vieto ris exact sequence 

~ H (XxY;Z )-l>H (X;.Z )$H (Y;?Z )-+H (X,:<Y; .Z ) ~ 
n p n p n p n p 

If X is .Z - acyclic, then H (XxY;.Z ) ~H (Y;.Z ) is an isomorphism, 
p * p * p 

and H (X*Y;.?Z ) ,.._, H _,_( X;.Z ). * p ,,. p 

If X and Y are connected, then so are U, V, and U n V. The 

V an Kamp en theorem applies, and ir
1 

(X*Y) = 0. 11 

Lemma 4. Assume X and Y are finite G- and H-equivariant CW com-

p lexes, respectively. Then X *Y is a finite G xH-equivariant CW complex. 

Proof: X;~y can be construct ed by attaching, to the disjoint unio n 

m+n+l Jn n 
XU Y, one cell (G xH/G

0
xH

0
) x(D ) for each pair (G/G

0
xv ,H/H

0
xD) 

of cells of X and Y. \ I 
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:?:::-o position 1. G h as a fixed-point free action on a ©-acycli c fir.. ite eq:.1i

-ariant complex if and only if it has such an action on a ~ -acyclic complex 
p 

.::> :r some prime p. G has a smooth fixed-point free action on a disk if and 

:::tly if it has such an action on a ~ -acyclic complex for all primes p. 
p 

Proof : A space with finitely generated integral homology is ©-acyclic 

;_: and only if it is ~ -acyclic for some prime p. If G has a smooth fixed
p 

?O int free action on a disk, that action has the structure of a finite G- equi-

--.a riant CW complex, which is ~ -acylic for all p . 
p 

Assume G acts without fixed point on the finite complexes 

Xp: Xp Zp-acyclic . · Since x
2 

has finitely generated integral homology, 

: t hasp - torsion for only a finite set .(} of primes . Set X = X ,:, ( ,:, X ) i f 
2 pE.f} p 

9 'I ¢; X = x
2 

>:< x
3 

if .(} = ¢. Then X is ~ - acyclic and s imply connected; 

t hus contractible. If X is the join of n spaces, then i t is a Gn-equivariant 

CW c omplex, with no i sotropy subg roup containing the diagonal G ~ Gn. 

By the c orollary, Gn has a smooth action on a disk, with no isotropy sub 

group containing G, so restricting the action to G gives a fixed-point 

free smooth a ction of G on a disk . 11 

Notice that , if effective actions a re desired, the spaces may b e 

c ross ed by any e ffective action of the group on a disk, and the acyclic or 

contractibility conditions w ill still hold on the new compl e x. Thus, if 

H <l G are comp act Li e groups, the existence of a s moot h fixed- point free 

action of G/H o n a compact acy clic manifold or disk implies the existence 

o f an effective fixed-point free action on the same type of space . 
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It is also sometimes possible to go frorn actions of a subgroup to 

:.::~ons of the whole group, as described in the following proposition. 

? ::--opo sit ion 2 . Assume H ~ G, as subgroup with finite index n. If H 

:.:::s on X with fixed-point set F, then G has an action on Xn with 

=.xed-point set F', the image of F under the diagonal map t : X--'>- Xn. 

=:: X is a smooth manifold, with the action of H smooth, then G acts 

~oo thly on r . 

Proof: Let G/H be the finite set of right cosets; choose some splitting 

::::::tap t : G/H--+G with t(He)=e. Define p :G ~H byp(g)=g•t(Hg)-l. 

:-h e function p is continuous, and 

p(h) = h for h EH 

p ( hg) = h . p ( g) for hEH,gEG. 

n . G/H 
The space X can be described as X : the space of functions 

: !"om G/H--'>- X. Define the action -rr: G x XG/H-->- XG/H by 

-1 
-rr(g, ;)(Ha) = p(a) p(ag) • s(Ha g ) 

- 1 -1 
i s well-defined, since p(ha) p(hag) = (h•p(a)) (h•p(ag)) . It is an action 

of G, since 

-1 
-rr(g

1
, -rr(g

2
, ~))(Ha)= p(a) p(ag

1
)·-rr(g

2
, ;)(Ha g

1
) 

-1 -1 
= p(a) p(agl)•p(agl) p(aglg2)~(Haglg2) 

T he action is continuous; since for fixed g, the action on each coordinate 

i s the action of some h EH (with the coordinates permuted), -rr is smooth 
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~ : 2 e o riginal ac t io n w as s m ooth. 

Clearly, every point of F' = t, (F) is fixed by ,r. 

=-xed by ir : for any a E G, h EH , 

n 
For any ; EX , 

-1 -1 - 1 · 
~(Ha)= ,r(a ha , ~)(Ha)= p(a) p(ha)~(Ha) = (p(a) • h• p(a)]~ (Ha) 

::o ~(Ha) E F for all Ha E G/H . Then 

((He) = ir(a , ~)(He) = ~(Ha) 

: o r all aeG, and ~ e F'. II 

It should be noted that some of the constructions in this chapter 

..-ould be much simpler if one were only interested in finite groups. 

:- heo rem 1 could be proven as don e by Floyd and Richardson [9], by 

13 

embedding the complex simplicially in a sphere and taking t h e second 

d e rived neighborhooc:l, and then smoothing u sing the m ethods of Hirsch [12]. 

T he join constructions ar e also l ess awkward when finit e groups are 

involved. 
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III. GROUPS WITHOUT FIXED-POINT FREE ACTIONS 

This chapter will be devoted to proving Theo rem l stated below. 

_-_5ain, r/J is the collection of finite groups having a cyclic subgroup of 

:= -:.me power index, and r/J is the collection of finite groups G, with 
p 

14 

n 
=.:: rmal subgroup P of order p , such that G /Pe r/J. The following nota -

=:.on will be used throughout this chapter: 

An action of a group G on a space X will be said to have 

..., "* H 
=o ndition (F) if the Cech cohomology group H (X ; Z) of the fixed-point 

s e t of any subgroup H c G is finitely generated. 

:-h eorem 1 . Assume the finite group G acts on the finitistic space X 

77 ith condition (F). If Ge .fr and X is CU-acyclic, then XG -:f: ¢ . IfGErfl 
p 

G 
and X is Z -acyclic;:, then X -f. ¢. Here, the term finitistic is used as 

p 

c.efined by Bredon [2, p.133]: a paracompact Hausdorff space X is fin iti s tic 

:.f every open covering of X has a finite-dimensional refinement. Note 

:hat a closed subspace of a finitistic space X is finitistic; also, if the 

:inite group G acts on X, then X/G i s s till finitistic. 

The following standard theorems will be used in this chapter (see, 

e.g., Bredon [2, Chapter III, §7]) . 

T 1. Assume Z acts on the finitistic space 
p 

->-T* 
.1:1 (X; ~ ) 

p 
is finitely generated. 

X, where 

y* z "'* 
Then H {X P; Z ) and H (X/ Z ; Z ) 

p p p 

are finitely generated . 

T 2 . Assume Z acts on the finitistic Z -acyclic space X 
p p 
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V = - acyclic in t e rr.as o f Cec h cohorno logy) . 
":) 

=--acyclic. 

22.: 
T hen X p and X/ Z are 

p 

1 5 

T 3. Assume Z: a c ts on the finitistic space X, where 
p 

: =,x; Z ) is finitely generated. Then the Euler characteristics X (X), 
:z p 

V 

X p) and X(X/Z: ) 
p 

are well-defined in terms of Z Cech cohomology 
p 

=-i T 1 ) , and 

1 z: 
X(X/Z ) = - [X(X) + (p-1) X(X P)] 

p p 

z: 
:.=. particular, X(X) = X (X p) (mod p ). 

The following lemma follows from T 1: · 

_ emma 1. Let G be a finite solvable group acting continuously on the 

., J. ., 

E?ace X, where H "'(X ; Z) is finitely generated. Then H ':<(X/G ; Z ) i s 

:":..:iitely generated. 

Proof: Since, for K -<l H ~ G, X/H = (X/K) / (H/K), it will suffic e to 

~ ::-ove the theorem for G = Z:p, p prime. In this case, H *(X/G;Z ) is 
p 

-=:nitely generated, by T 1, and so (from the universal coefficient t heo rem) 

i::*(X/G;Z)® Z is a finitely generate d group. 
p 

This group is the cokernel of the map 

-hich is multiplication by p. That map is equal to the c omposition 

-: : the transfe r map and the map .induc ed by the p roj ection. Thus ( • p ) has 

.:-:nitely generated imag e and cokernel, and H'~(X/G;Z) is finitely gene r a ted. \ I 
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During the ·rest of the c h a p ter, all Eule r characteristics used will 

y 

~ e d efined in terms of rational Cech cohomology . They will be used only 

==- spaces with finitely generated integral cohomology, and so T 3 will still 

bol d . 

Theorem 1 will be proven by cornputing the Euler characteristics 

:::. f ixed-point sets of the group action . The first step is to do this for 

;:yclic group actions; the following lemma is needed. 

.:.. emma 2 . Assume Zl acts linearly on the rational vector space Olk . . n 

=.: s, t E Z generate the same subgroup, then their characters under the 
n 

~epresentation, X(s) and X(t), are equal. 

Proof: Let ME GL (UL k) be the matrix determined by the action of 

5 E ~ ; t = rs (mod n) for some r relatively prime to n, and Mr is the 
n 

-atrix corresponding to the action of tE Zn. Let PM(x), PMr(x) be the 

;:ha racteristic polynomials of the s e matrices; they are polynomials in 

'.:fx] all of whose roots in (t; are nth roots of unity. Furthermore , since 

.... : and Mr are diagonalizable ov er (t;, the roots of PMr(x) are the rth 

-:>0w ers of the roots of PM (x). 

It is a standard result of Galois theory (see, e . g. Lang[l7, p.206]) 

-°"'at for any positive integer m, TT (x- ;) , the product taken over the set 
~ES 

rn 

5 of all p r imitive m th roots of unity, is an irreducible poly no m ial ove r 
m 

::2 . Thus, for any m\n , the elements of S occur with equal mult iplicity 
m 

=.s roots of P (x) . The function ,; --+ ~r permutes the elements of S , 
M m 
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: :n any ml n, a nd so the characteristic polynomials PM (x) and PM .r\ x \ 

ar e equal. The trace of a matrix is determined by one coefficient in its 

c naracteristic polynomial, so tr(M) = tr (Mr), and X(s) = X(t). 11 

17 

The following proposition was proven by F loyd [8] in the case when 

::1 is a prime power . 

?roposition 1 . Assume the cyclic group Z acts on the finitistic space 
n 

X with condition (F) . L e t g : X ---> X be the action of 1 E Z . Then 
n 

Zn 
X (X ) = A(g) 

w h ere A(g) is the: Lefschetz number of g. 

Proof: 

J, ... , 

For some choice of basis of Hk(X;m), let Mk d enote the 

m atr ix of g . Then 

v k v k Zn 1 n i 
dim H (X/ Z ;m ) = dim [H (X;m) ] = - 6 tr (Mk:) 

n n i=l 

(since for V a rational r ep r esentation of a fin ite group G, VG® a; = CV® cr: )G). 

T hus, taking the alternating sum over integers k, 

1 n . 
X (X/ Z ) = - 6 A(g

1
). 

n n i=l 

Collecting t e rms on the right w hich are equ a l under Lemma 2, one gets 

1 n d 
X (X/ ~ ) = - ~ <P (-d) A(g ) 

n n d\n 

where <f)(k) is the E u le r <{) - function . Now, by induction on n, it w ill suffice 

to prove 

X(X/Z ) 
n 

1 ~ . n) 'X'T/un/d) 
- n \ <P{ d X 1 

d n 
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1 8 

o r 
l 'E,d 

X (X /'?L ) = 6 <.n( d ) X(X ) . 
n n d\n , 

( l ) 

If n = pa, a prime power , then the induced actio n o f Z = (?l )/ 'E, 
1

} 
p Ci. Q'.-

p p 
.., J . 

~ Ci. 
- X/ Z 

1 
has fixed-point set X p 

CJ.-
T 3 applies (H'''(X/Z ;?l ) is 

a - 1 p p 
--=:.t ely generated by T 1) , and 

:::e r ating this , one gets 

~o (1) is prov en in this case . 

Ci. . '7L, i 
= 6 <t)(p

1
) X (X P), 

i=O 

p 

It will now suffice to show that (1) holds for n = ab , when it is 

~s s umed t o hold for the r elativ ely p r ime intege r s a a n d b . No t e t h at , if 

' c l,\HI ) = 1 and GxH a cts o n the s p ace Y , then (YG)/H = (Y /H)G 

2.ny subg roup is o f the fo rm K x L) . T hen 

Co r o llary . 

'7L, 

X(X/'?Ln) = ¾ 6 <t)( e ) x((X/ '?Lb) e) 
e la 

I '7L, 
= - ~ cp ( e) X ( X e / '?Lb) 

a e\a 

1 l 'E, X 'E,£ 
=;: ~ <t)( e)•[b 6 <t) (f ) X (X e )] 

ela £l b 

1 'E, ef 1 '7L, d 
- n 6 <t)( ef) X(X ) = ~ 6 cp(d) X(X ) . l J 

efl a b d\n 

Assume '7L, act s o n the finiti s t ic 02-acyclic space X with n 

c ondition (F ). 
'E, 

Then X ( X n) = 1 . 11 
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: ::00£ of Theo r em. If Ge r!I , t hen the r e is .Z -<! G w ith 
n 

I G/ ~ I ;= 
n 

K 
q ' 

19 

~ a prime. If G acts on the finitistic 02-acyclic space X with condition 

? ), then so does Z , and X(~n) = 1. 
n 

G/ ~ acts on --?,n with fixed 
n 

~int set XG, and by T 3, Thus, 
G 

X f ¢. 

If G Er!/ , then there is ·p <l G with G/P Er!/. If G acts on the 
p 

.:~itistic Z - acyclic space X with condition (F), then Xp 
p 

is .Z -acyclic 
p 

""=)-T2. Now G/P acts on the ~ -acyclic (and thus 02-acyclic) 
p 

p 
space X 

-:-ith condition (F), and with fixed - point set XG . Thus , XG-/; ¢. 11 

It should be noted that the restrictions that X be finitistic and the 

act ion have conditton (F) include the cas e of a simplicial action of a finite 

g roup on a finite simplicial complex; in particular Theorem 1 applies to 

-:he case of a smooth action on a compact manifold. Thus, the following 

::o rollary, which is half of Theo rem I of Chapter I, follows : 

Co rollary . If GE r!I , G has no smooth fixed-point free action on any 
p 

;::ompact ~ -acyclic manifold; in particular, G has no fixed- point free 
p 

s mooth a c tion on any disk . If GE r!I, then G has no smooth fixed-point 

.:ree action on any compact 02-acyclic manifold. \ I 
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IV. EXPLICIT CON STRUCTIONS OF ACTIONS 

In this chapter, fixed- point free actions of specific groups G on 

= -acyclic complexes will be constructed, for various pairs (G, t). All 

-::::-::..n sformation groups considered will be finite, and all actions will have 

:..:.e structure of finite equivaria:ht CW complexes. The results of this 

:.::::Zpter will be summarized in Chapter V, and used to prove the other half 

:. : :h e theorem stated in Chapter I. 

First some specific constructions will be made. 

?-=oposition 1. Let G be a finite group, with subgroup Zn <JG of index 
p 

~ (p ,q distinct primes). Let ip: .tZ ---+Aut (Zn) be the action defined by 
q p 

:..::;::ijugation in G; assume Z acts freely on 'JI = [H c:: ,Zn: \ H \ = p n-l}. 
q - p 

==.en G has a fixed-point free action on a Zfacyclic space for any prime 

= p . 

? ::-oposition 2. 
2 

Zp acts on some Zf acyclic spac e wit h exactly (p+l) 

_...:xed-points, for any prime t f. p. 

Proof (of both propositions): Let h = \'JI\ 

-=- the case of Proposition 2). Give D
2 

a cellular structure w ith one 

- r a
1

, . .. , ah} -+'/:I some bijection. 

. n 2 
Def me X = ( Z X D ) /,..., , 

p 
with the action of Zn induced by multi -p . 

:_.::cation on the fir s t fa ctor, and the r elation ,..., d efine d by : 
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i=l, ... J h 

n 
(g,x) ....... (gh,x) for g e Z , xe a., hEH.= f(a. ) 

p l l l 

For H . E 'fl, X/H. consists of p copies of D
2

, glued together along 
l l 

a . ; it is thus contractible. It follows that 
J 

H. 
f""t-' l ,.._ rv 

H,,JX; F) = H ,..(X/H .; F ) = 0 
'T"' "I"' l 

- -= any field F of characteristic t f: p. Assume that F is a field of 

-=zracteristic t containing the pth roots of unity ; then r epresentations of 

.... - o ver F split as sums of one - dimensional representations, each of 
::, 

~ ::.:ch fixes some HEU'. Thus, H.JX;F)H = 0 for all HEU' implies that ~-

'::' (X; F) = 0, so H (X· Z ) = 0. 
~< ' t 

Thus, X is _z(acyclic for all primes t f: p . In the c ase n=2, 

7 -- fixes exactly h=p+l 
:? 

points of X (the vertic es [ v.} ) , thi s proves 
l 

?-::opo sition 2. 

To prove Proposition 

.:-::eely on ¾). Fix Z cG ; 
q-

1, note that q divides h (since Z acts 
q 

give D
2 

a Z -action which permutes the 
q 

: - cells freely, a nd now require that f: [ a.)--'?-:;/ be Z -equivariant. 
l q 

:::)efine an action of Z on X by 
q 

-1 
O! (g, x) = (O!g Q! , Q!X) 

n 2 
for O! E Z , g E ~ , x E D . 

q p 

=he action is clearly well -defined on the vertic es and the interiors of the 

: - cells of X, and is well - defined on the 1-cells since : 

-1 - 1 - 1 
a(gh,x) = ((o:go: )(o: ho: ),o:x) ...., (o:ga ,o:x) = cdg ,x) 
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n 
Ci E Z , g E Z , XE a., 

q p l 

-1 
hEH. (so Ciho: EaH.). 

l l 

. n ( Furthermore, for CJ. E Z , h E Z , g, x) E X: 
q p 

-1 -1 -1 -1 -1 
a(h(a (g,x))) = a(h(a get,Ci x)) = a(ho: go:,Ci x) 

-1 -1 
= (aha g,x) = (aha )(g ,x) 

~~ s o the actions of Zn and Z combine to give a well-defined action 
p q 

_: G on X. The action is fixed-point free by construction, and X has 

.::en shown to be Z -acyclic for all primes t i= p. \ I 
t . 

?=-oposition 3. For p,q distinct prim.es, assume z 2 
.() G with index q. 

p 
2 

:..et ,J> : Z ___,,.Aut (Z ) be the action defined by conjugation in G; assume 
q p 

2 
acts on the set 'Ji = [H C Z : \ H\ = p} fixing exactly two elements. 

q - p 

-:hen for any t -f. p, G has a fixed - point free action on a Z(acyclic space. 

Proof: Let k = p-l , the number of free orbits in the action of 2?.: 
q q 

" "'· 
...., 2 

Define the space Y = D with the following cellular structure : 

w, _____ __ .:::.s~-- ------.. w"" 

V.i. • • • V ,,-,)Jc-;;,.. 

Y has vertices 

and one 2-cell. 

on 

Denote by H
1

, H
2 

the elements of 'fl fixed by Z q. Define a one -
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- ::::1e map 

- ;:!'.l se image contains exactly (q-1) subgroups from each free orbit of z . . 
q 

Define Y' = (Z x Y) /-, where 
q 

:_eft multiplication in Z induces an a ction of Z on Y'. Let p: Y 1
---? Y 

q q 
- 1 -1 

_: e the orbit map ; 1 et Ai= p ( a i U w i) , V = p ( ( v 
O 

, . . . , v ( q _ 1) k}) , 

- -1 
~ =p ([b1 , ... ,b(q-l)k}). Definea .D1\ - equivariantmap f':B~¾- [H

1
,H

2
} 

-hich upon restriction to the elements of B on one leaf of y', is equal 

:0 £. 

2 ' / Define X = (Z xY ) "', 
p 

where the relation is given by: 

(gl,y) -(gz,Y) if 
2 

gl,g2e~p' yeV 

2 
(i =l, 2) (g, y) "'(gh, y) if g E Z , h EH., y EA. 

p l l 

2 
h E f 1 (b) (g, y) "'(gh, y) if geZ ,yebeB, 

p 

2 
Actions of Z and Z on X are induced by 

p q 

h(g,y) = (hg,y) 

k(g, y) = (iµk(g)' ky) 

. 2 
for h E Z , 

p 

for ke Z , 
q 

2 I 
(g,y)eZ xY 

p 

2 ' (g, y) E Z XY 
p 

These actions are well-defined under the relation (~). Furthermore, 

fixing Z c G, these two actions induce a well-defined fixe d - point fr e e 
q-

action of G on X. Calculations exactly parallel those in Proposition 1. 

As in Proposition 1, to prove tha t i\JX;Zt) = 0 for any· prime 

t f. p, it will suffice to prove that X/H is contractible, fo r any He¾. 
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..=. C of these cases, this orbit space con s ists of p copies o f Y' identifi ,-J 

.,._,c::.g a contractible subspace. The proposition follows. I\ 

Let ?Z: (q I p-1) be the non-abelian group of order pq (p,q prime). 
p,q 

:=-.:..e fourth space needed will be a ?Z:t-acyclic space, for t Ip, with a Z 
p,q 

__ :on having exactly q+l fixed points. The space will be constructed by 

e::z::::::::biting a connected one-dimensional complex Y (with the q+l fixed 

-~:..:its), and showing that H
1

(Y;Z ), with the induced ~ action, is a 
t p,q 

-=.ee Zt[Z ]-module. Then 2-cells can be added to produce a Zt-acyc lic 
p , q 

!":?.c e with Z action. 
- p,q 

In order to do this, it will be nee es sary to study some modular 

==->resentations of Z In general, for H _c G finite groups, ?Z:t[G/ H] 
- p,q 

~ ...:J be used to designate the Zt vector spac e with basis the elements of 

::- H; the action of G on G/H makes this into a Zt[G] module. The 

=.a.tural projection Zt[G/H] ~ Zt[G/K], for H 5= Kc G , will be denoted 

: H, K). When 1:,t \ K/H \, the transfer map Z/G/K] ~ ZiG/H] will be 

~enoted t(K, H), and when convenient Zt[G/K] will be identified with i ts 

The first two lemmas about projective Zt[G]-mo dules follow from 

; :andard theorems about modular representations and characters. (See, 

=. g. Serre [ 18, § 14. 3, 18. 1 , 18. 2]) . 

:.emma 1. Let M
1 

and M
2 

be finitely generated projective ZiG]

:::odules . Assume that for at least one cyclic s ubg roup Z c G from every 
n-

=onjugacy class such that t ,rn, M
1 

;; M
2 

as ZiZn] - modules. Then 
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::. '{ as - - -·-2 ~)G] - modules . 

er::-::::-1 a 2 . Let M
1

, M
2

, M
3 

be finitely generated projective 22.:t[G]-modules. 

_ !..:: @M
2 
~ M

1 
$M

3
, then M

2 
~ M

3
. 

?roof: From the theory of 1nodular charact ers, XM (g), 
i 

: G of order prime to t, depends only on the action of g on 

defined for 

M.; then, 
1 

g) is the cyclic group generated by g, XM (g) = XM (g) if the modules 
1 2 

-=e i somorphic as Zt[ (g)] modules. · Characters are constant on conjugacy 

~sses, so the hypothesis of L emma 1 implies that X (g) = XM (g) for 
. M 

. 1 2 

g of order prime to t. Since the M. are projective, 
1 

Lerruna 2 results from the fact that finitely generated projective 

= J G]-modules split uniquely into sums of indecomposable projectives . 

:-his second l emma will no t be used until later in the chapt er). 11 

:.emma 3. Let O -->H -;>G -;> 22.:t --? 0 be a short exact sequence of 

::...nite groups, where t f \HI. For M a 22.:t[G] - module, if M is projective 

as a Zt[.~\J-module, for some fixed 22.:t ~ G, then M is a projective 

Zlt[ G]-module. 

Proof: For L some free Z [G]-module, there is a .t2.: [G]-lin ear 
t t 

surjection p: L --')- lv.[, M is projective as a .blt[~'.)-module, so there is 

a map f
0

: M ~ L linear over this sub ring, such that p£
0 

= 1. Set 

1 ""' -1 f(m) =~ L.J h•f (h m). 
1Hi hEH 0 
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F or g E z~ , 
~ 

1 ~ - 1 1 ~ - 1 - 1 -1 
- prl) =-- -, LJ h•f (h gm) =-IHI LJ g•(g hg) · fo((g hg) m) 

I H heH O heH 

= g•f(m). 

5o f is .Z [G] - linear, pf= 1, and it follows that M is projective. 11 
t 

:. emma 4. M,N R-modules, p : MEBN -l>N an R-linear surjection, with 

~ 1N an isomorphism. Then Ker p;; M . 

Proof: proj M The composite Ker p -->M EBN > is an isomorphism. 

:.emma 5. Let G = ~ , fixing some subgroup .Z c G. Let 
p,q q -

~~i = Ker p(l, .Z ): .Zt[G] ~z [G/.Z ]. 
p t p 

~ =Ker p(.Z ,G): .Z [G/.Z ] -'>-2 
q t q t 

7ihere t is some prime not equal to p. 

Then M 

Proof: 

and N are projective .Z [G]-modules , and M ~Nq. 
t 

.Z acts freely on G and G / ~ (under left translation) and 
q p 

so, as .Z [ .Z ]-modules, the first projection becomes 
t q 

p p 
p(l, .Z ) = EB Id: EB .Z [.Z ] ---+ .Zt[.Z ] 

p t q q 

p - 1 
a nd by Lemma 4, M ;; EB .Z [ .Z ] . .Z acts on G / ~ fixing one cos et 

t q q q 

a nd acting fr e ely on the others , and so as ~t[ .Z q]-modules , the s econd 

p rojection b e comes 
E_:-1 . p - 1 

p(~q,G) = IdEB( EBq p(l,.Zq)) : Z tEB ( EBq .Zt[.zqJ)~zt 

11 
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~ 
q 

-~ k ernel N ~ El, Z [Z ] by L emma 4 . 
t q 

Thus , M and N are both free as .tZ [Z ]-modules, so if t = q, 
t q 

and N are projective .tZiGJ-modules, by Lemma 3. If t -.f. q, then 

27 

'= l' GI, -~\[G] is semi-simple, and so M and N are trivially projective, 

M ~ Nq as .tZ [Z ]-modules. 
t q . 

-Upon restriction to .tZ [Z ], the second projection becomes 
t p 

p(l, z ): Zlt[.tZ ] ---+Zl 
p p t 

_..::.e first projection becomes 

~ us, M ~ Nq as Z [Z ]-modules, and by Lemma 1, 
t p . 

::::: [G]--modules. 11 
t 

::?ropo sition 4 . Let G = .tZ , t a prime not equal to p. Then Z 
p,q . p,q 

:::a s an action on a Z(acycl~c space with exactly (qt l) fixed points. 

Proof: Given s-1 
a cellular structure with vertices 

~d I -cells [a
0

, ... , a q}. Let Y = (G x S
1

) / ~, with the G action induced 

~- left multiplication in the first factor, where the relation is giv~n by: 

(g·,x) ~ (gh,x) for xea
0

, geG, he .tZP<lG 

(g,x) ..... (gh,x) for xea. {i=l, ... ,q), geG, heZl 
l q 

for some fixed Z c G. 
q -
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Y is connected , so it remains to calculate H
1 

(Y; Zi:t) as a G- rep re-

=--::ation. since tt p, the 

:::-.:..:isfer map splits C (Y;Zi: ) as the chain complex direct sum ,:, t 

-::.i. so in homology 

-=:c e Zi: <) G, Y / Zi: has an induced G action; the projection and transfer 
p p 

-:;,? s are equivariant, so the direct sum decompositions hold as G-repre-

:: ::::itations. 

The space Y /Z!: has the homotopy type of a fixed point with q 
p 

-=:on s attached , where Zi: = G/'JZ permutes the loops freely . Thus , 
- q p 

2. (Y / 'JZ ; '!Zt) ;; '!Zt[ G / ZL ] . 
- p p 

':.- . = Ker (Z [G/Z ]-?-Z/:t[G/'JZ ]) EB /Ker(Z [G/'JZ ] -?- 'JZ ))q = Nq ;;M_ 
- t p p \ t q q 

::::::
0

= 0, so H
1 

(K,:J;; M (as in Lemma 5), and 

The composite ,r 
1 

(Y) ~ H
1 

(Y ; Z) ~ H
1 

(Y ;'!Zt) is surjective, so let 

_. i~ YE ,r 1 (Y) b e in the inverse image of a g enerator of '!Zt[G] ;; H
1 

(Y ; Z?:t). 

:.et gcp be the c omposite with the action of g on Y; then [gcp: g E G} 

_;;ene rates , under its image in H
1 

(Y;'!Zt), a basis as a ZL(vector s p ace, and 

2 [ } :.:ie space X = Y U (G x D ) is a -~\- acyclic G- space, still w ith v i t he 
gcp 
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~:- fixed points. 11 

The next step is to show how the spaces constructed in Propositions 

: and 4 can be combined to give fixed-point free actions of larger groups 

. 2 
:::ot e that, by the results of Chapter III, neither Z nor ~ have them-

p p, q 

Ealves fixed-point fr ee actions on 02-acyclic spaces) . The technique will be 

;:;:; show that, under the right conditions, certain fixed - point sets may be 

=emoved . 

.:..emma6. Assume G acts on the space X withfixed- pointset F. 

_.:,..s sume G also acts on some space E, and that there is an equivariant 

-,ap <.()! E -7F (i.e., cp factors through E/G) which is an R - homology 

equivalence (some ring R). Then there is a G- space Y, with fixed-point 

s et homeo1norphic to EG, such that H_JY; R) ;:; H _,_(X; R ) . .... .... 

Proof: 
n 

Let i: X --'.>M be an embedding of X into a smooth compact 

::::ianifold, given by Theorem 1 in Chapter II (X-l> M and F --l>- MG are 

::to mo logy equival ences). Then i.(p: E --'.> MG is an equivariant R-homology 

equivalence. Let ~ be the equivariant normal bundle to MG in M, and 

17 = (i.(p) * ~ its pullback, as a G - equivariant bundle over E. Letting D and 

S denote the associated disk and sphere bundles, respectively, one has 

as an R-homolo gy equivalence. Let Y = Dn U (M-D~). By the equivariant 

ic.() I S77 
skeletal appro ximation theorem (se e Illman [15]), the attaching map may be 

a ssumed to preserve skeleta, for some equivariant CW structure on (M -D~) , 
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- ::J Y is a finite G-equ ivariant CW c o mplex. The induced m a p lb : Y --;:- M 

~ R-homology equivalence. 
G- G 

Cle9-rly Y = E . I I 

~ .m.a 7. Assume the finite group G has a normal subgroup H of index 

1 
.;h ere -e R . 

q 
If G acts on the R-acyclic space X with XG 

-= acts on some R-acyclic space · Y with YG = ¢. 

1 
=S, 

Proof: Let E = s1 
with the G-action induced by a free ~ -action. 

q 

then 

:-.=.en E/G '; s1, and the resulting e quivariant map E --'?ff ;:; XG is an 

.::..-homology equiv alence. By Lemma 6, G a c ts on some R-acyclic space 

G- G II Y w ith Y = E = ¢. 

Denote by A a discrete s et of n points, B ~ !;A the (unr educed) 
n .n r 

E".::spens ion. A U B will refer t o the disjoint union of the two spac e s. 
m n 

:..emma 8. G, R as above. Assume G acts on the R..: acyclic spac e X 

G-
-it h X = A U B (n~ 2, m 2: 1). Then G acts on some R - acyclic space 

m n 

h 
G,..., 

!" wit Y = A 
2 

U B . 
n- m 

....., 1 
Proof: G acts on !;X w ith fixed-point s et F = B U (A >:< S ) , w here 

ml/) n 

:or b
1 

~ b
2 

the sus pension poin ts of B m' 1/): [b
1

, b
2

} -->An ,:< s1 
is some 

:nap. Define l/J':[b
1

, b
2

} ~ An* s1 
which sends the bi to two distinc t 

?Qints of A c A * Si . Thus F 1 = B U (A ,:, Si) has the homotopy type of 
n- n miµ' n 

F . The action 0£ G on Si induced by the fr ee action of ~ ~ G/H induc es 
q 

• f I ' h 1 I 'l ,.._, ,,.._, an act10n o G on F , ana an R - om o o gy equiv ale nce F _,,..F G = F - F. 

Lemma 6 applies , and G ha s a n action on some R - acyclic space Y, with 
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F')G ~A 2UB . II 
n- m 

-=::-::~sition 5 . Assume G is a finite group with a norm.al subgroup H 

1 
-=..dex q, where - E R . If G acts on the R - acyclic spaces X and Y 

q 

31 

...:::: (l+ m) and (l+n) fixed points, respectively, where (m,n) = 1, then 

- 2s a fixed-point free action on some R-acyclic space . 

?roof: Choose positive integers a and b such that bn-am = 1. 

,. a II b 
X= VX, Y= VY : the one-point unions (at a fixed - point) of a and b 

fl " = -:::es of X, Y respectively. G acts on X and Y with ( 1 + am) and 

- - ·:m) fixed - points. 

" " The one-point union YV ~X is R - acyclic and has fixed-po int s e t 

.::i===i.eomorphic to Abn U Bbn. If bn is odd, repeated application of L emma 

~ :? =-o duces a G-space with fixed - po int set A
1 

U B
1

, w ho se suspension has 

--Ied -point set homotopic ally e quivalent to s1
. If bn is even, the same 

-:: ::-:>duces a G-space with fixed-point set B
2 
~ s1

. In e ithe r case, L emma 7 

e..-;?lie s to pro duc e an R-acyclic spac e with a fixed- po int free G-action. \ ! 

Proposition 5 c an be immediately applied to the spaces constructed 

-=- Propositions 2 and 3 to give a wide vari ety of fixed - point fre e actions. 

::> rollary . d . . . t '772 ,n '"97'2 "77 1· For 1stinct primes p, q, , L.4,p w a...q acts on a .a...(acyc 1c 

-=-:,ac e witho u t fixed point. 

Proof: 2 77 2 
~p' a...q act o n Zt-acyclic spaces with (p+l), (q+ l ) fixed points. 11 
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:.: !"ollary . 
2 

F o r distin ct prirn es p, q , r , w here r ! q-1, a n d t t- p ,q, .2Z e LZ 
p q , r 

~::ts on a Zt -acyclic space without fi_xed - point . \ \ 

:orollary. For distinct primes p , q,r , s, qjp-1, s\ r-1, and t -I p,r, 

EBZ acts on a .Zt-acyclic space without fixed point . I! 
?, q r,s 

For nl p-1, where p is prime but n need not be, let ~ denote 
p,n 

:..:ie extension of .Z by ~ under a monomorphism ~ ---+Aut (Zi'.: ) . 
p n n p 

:::0 rollary . For distinct primes p,q,r, where qr\p - 1, and t -Ip, 

.:Y, acts without fixed points on a ~t -:- acyclic space. ! I 
p ,qr 

Proof : One may assume t -I q without loss of generality; then 

2l -<JZ has index q. By Proposition 4, the subgroups Z?; and 
p,r p,qr p , q 

~ induce actions of Z?; on Z - acyclic spaces with (q+l), (r+l) 
p,r p,qr t 

.:ixed points, so Proposition 4 applies. 1 1 

2 2 
For qj p-1, let G(p , q) be t he extension of Zi'.: by 

p 

-':)y a monomorphism Zi'.: ---+Aut (.Z
2

) into the center of Aut 
q p 

.Z defined 
q 
2 

(.Z ). 
p 

Corollary. For q\p-1, t -I p,q, 
2 

G(p , q) has a fixed-point free action 

o n a Zt -acyclic space. 1 1 

Proof: G(p 
2

, q) has subgroup s ~
2 

and Z 
p p,q 11 

The explicit construction of one furthe r spa ce with action will .be 

n eeded in the follow i n g chapter . For p , q prim .e s w ith q \ p-1 , let G= G (p
2

,q), 

the group of order p
2

q as d efine d above; a fix ed-point free a ction of G on 
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= -acyclic space will be constructed. 
q 

33 

2 ,.._, 2 
Let K be the normal subgroup of G of order p , K = Z . Let . 

p 

={H~K:[H!=p}. For HE¾, set 

M = Ker p(H, K) : Z [G/H]--> Z [G/K] 
H q q 

NH= Ker p(HZ ,G-): Z [G/HZ ] ~ ~ 
q q q q 

and NH are induced from the modules M and N of Lemma 5 (for 

- = q) under the homomorphism G ~ .G/H;; Z Thus, as Z [G]-
p, q q 

o dules, MH and NH are projective (Zq[G/H] is a direct summand of 

- [ ] d ,.._, q _ q G ) , an MH = NH . 

The following lemma for decomposing Z [K] will be needed. 
q 

:.emma 9. For He¾, let N' = Ker (Z [K/H]----->Z ). Then 
H q q 

__ , c z [K/H] c z [K] under the transfer map, Z c Z [K] under the 
H- q - q q - q 

-:ransfer map t(K, 0), and 

Z [K] = Z + EB 
q q He¾ 

Proof: For any Zq[K]-linear map <p: ZiK/H
1

]-----> Zq[K/H 2 ], when 

H
1 

/. H
2

, any x E lm<p is fixed by the actions of both H
1 

and H
2

; thus 

Im<p ~ Zq[K/H
2

]K = Zq. Since Ni.r ::: Zq[K/H2], and Ni.r n Zq= 0, one has 
2 2 

Homz [K](Z [K/H1], Ni.r) = 0, or 
q q 2 

Hom= [Kl (N' , N' ) = Homz [K] (Z , N~ ) = 0 
F.4, q J Hl H2 q q 2 

Since (N' )K = 0 for all H 
H ' Hom /Z [K] (Ni.r, Z ) = 0. 

q q 
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Since each o f t he submodules Z?:q or N~ is a direct sun 1rnand of 

==:K] (qf I Kj ), and the corresponding projections 

:EN' ~ :;z , 
H q 

=-=e zero, the submodules must be linearly independent . Counting dimensions 

::.-;-er the field Z ) 
q 

dim ( Z ) + ~ dim N~ 
q He¾ 

~d so Z{; [ K] = z + EB N~. I I 
q q He¾ 

In a similar manner , one has the inclusions Z: , N c Z{; [G/ Z ] 
q H- q q 

~ d :;z [G/K], MHc Z [G]. 
q - q 

?..egarded as representati o n s o f K, the first inclusions are isomorphic to 

-::-:O se Z{; , N
1 c Z [K ], and the inclu sions in Z [G] decompose into a 

q H- q q 

~ rect sum of q copies of it. Thus 

:;z [G /Z?: ] = Z + EB NH and 
q q q HEU' 

Z [G] = Z [G /K] + EB M . 
q q H EU' H 

:?u rthermore, the kernel of p(Z: , G ): Z: [G/Z: ]-->-Z: is isomorphic to 
q q q q 

? ropo sition 6. G has a fixed-point free action on a ~ - acyclic c omplex . 
q 

Proof: As in the construction of the Z -action, a one - dimensional 
p,q 
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:- - ::omplex will be constr ucted (without fixed ·point) such that H (Y; '.:% ) i s 
1 q· 

!. : r ee ~ [G]-module . Then 2-cells can be attached to produce the G-space 
q 

-, which is ~ -acyclic, and with the action on (X- Y) free . 
q 

· Define Y = (G x Y) / ,,._, , where Y is the orbit space pictured below, 

:.::1d therelation (-) is : (g,x)-_(gh,x) for gEG, 
,...._, I 

xE Y and hE G , the 

~ bgroup of G associated to the cell containing x. 

K .. 

K 
K 

I< H, 

K 

K 

Here, 'JI = [H
0

, . .. , Hp} , and each Hi ~q is the isotropy subgroup at 

exactly one vertex in Y = Y /G . Each subgroup H. is the isotr opy subgroup 
1 

over exactly (p+ l - E.=.!_)one-cellsof Y. 
q 

Consider Y/K . As a (G/K)-space, it h as the same orbit spac e Y, 

with the following isotr opy subgroups: 

I< 
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- Y / K has the homotopy type of a "many-leafed clove r , 11 and, as a G -

-==?resentation, 
p+l 

H
1 

(Y /K; Z ) ;:; E9 Z [G /K]. 
q q 

Let K...., be the kernel of the projection C (Y; Z ) _,,_ C (Y /K; Z ) . 
~ :;~ p * p 

:-=.e projection and transfer maps .are equivariant chain maps, so as G -

=e:>res entations 

H.(Y; Z ) ;' H.(Y /K; Z ) E9 H.(K ). 
l q l q l ,:< 

~e spaces Y and Y /K a re both connected, so H
0 

(K*) = 0 and H
1 
(K,) 

_; the kernel of the surjection K
1 
~ K

0
. 

From the construction of Y, and from previous lemmas, 

(from the G/ Z orbits) 
q 

(from the G/'E, orbits) 
q 

(from the G/'E, orbit) 
q 

(from the G/H'E, orbits) 
q 

:_:: rejective, so H
1 

(K ,:) E9 K
0

;:; K
1

; and by L emma 2, 

,__, ( ) {ptl )q ( )p+ l 
::1 (K,:) = $ NH = EB MH . 

H e¾ He¾ 

+l f+l tl 
Thus, H (Y;?Z ) ~ ~ [G/Kt E9 ( $ M-) ~ Z [G]P . 

l q q \ Hei H q 
11 
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V. PROOF OF THE MAIN THEOREM 

In Chapter IV, fixed-point free actions of a group G on a finite 

- ,. -acyclic G-equivariant CW complex were constructed for a wide variety 

::~ pairs (G, t) . The results of that chapter are listed below (where p, q , r 

~ d s are always distinct primes)": 

- ) 

Z) 

3) 

~) 

3) 

5) 

7) 

G 

Zn <I G of index q, where the induced action of Z on 
p q 

Zn leaves no index p subgroup invariant 
p 

z 2 
<l G of index q, where the induced action of Z on 

p q 

exactly two index p subgroups invariant 
2 

Jg; leaves 
p 

2 
G(p , q) 

z 
p,qr 

Z
2
$Z 

2 
p q 

2 z $~ 
p q,r 

~ $~ 
p,q r, s 

t 

t#p 

t;ep 

t#p 

t # p, q 

t #p, r 

Cases 1) and 2) follow from Propositions 1 and 3 of Chapter IV. Part of 

c ase 3) follows from Proposition 5. The other cas es were proven in cor

o llaries to Proposition 4. 

These seven cases will be extended to prove the remaining half of 

Theorem 1 in Chapter I. Roughly, it will be shown that for any finite solvable 

G not in ~t' there are s ubgroups H-<1 Kc G such that K/H is listed abo ve 

as having a fixed-point free action on a finite JX;t -acyclic complex, thus on 
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"" _::::c10act Zi': - acyclic manifold. It then follows, b y P ropositio n 2 of C:i.;:i.p:-:- -:: 
t 

- • :nat G also has such an action. 

In order to simplify some of the proofs in this chapter, 11,i/ 11 will 
p 

·= ::sed to denote the collection of finite solvable groups which do not have 

-:,0th fixed-point free actions on compact 22: - acyclic manifolds. The 
. p 

=::.:.n theorem in this chapter will be that r/J1 c rlt . 
p- p 

The first step is to combine and extend cases 1) to 3) to a larger 

=-.:.s s of groups. Three lemmas will be needed. 

:_e:nma 1 . If the finite group G is not abelian, then G / Z(G) is not 

:-die. (In particular, [G: Z (G)] is not prime.) 

Proof: Assume otherwise: if G/Z (G) ;;' ~ , choose xe G which 
n 

2-p s to a generator _of G/Z (G). Any element of G can be written in the 

: :: ::-rn xk z for z e Z (G), and any two of these commute. This contradicts 

::-:..e assumption that G is not abelian. 11 

:_emma 2. Let G be a finite group, q a prime not dividing the orde r of 

Let ~: G ~G be an automorphism fixing some subgroup H<JG; 

::.s sume ~q = 1. If ~\ H: H-->H and ;IH: G/H ~G/H are both the 

. =.entity, then ~ = 1 . 

Proof: 
-1 -1 -1 

For any xE G, x ~(x) EH, so ((x ~(x)) = x ~(x). This implies 

/ (x) = x(x -\ (x) / ; by induction 

n - 1 n 
( (x) = x(x ~ {x)) . 

q - 1 q -1 q I :-hen x=~ (x) =x(x ~(x}) , so (x ((x)) = 1 and x=((x). I 
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.:...emma 3 . For p prime, pfn, if an= 1 (mod p
1
n) a nd a ~ 1 (m.odp), 

m 
~en a= I (modp ) . 

Proof: (
an-1)= 
a-1 

n-1 n-2 L(an-1) . 
a + a + . .. + 1 = n (modp) ; thus pl ~. 

?roposition 1. Let O -?:".> ~G ~ Z ~ 0 be a short exact sequence, 
q 

-nere P is a non-cyclic p - group, for p and q distinct primes . If 

:? ell' , for any prime t -f. p, then G;; P$~ 
t q 

Proof: Fix ~ c G, fix x E ~ 
q- q a generator. Let ~: P ~p be the 

=iap taking 
- 1 

g ---'>-xgx It will suffice to show that ~ = I. 

First assume P ;; z 2
. L et 'JI = [H e P: I H I = p}; ~ induces an 

p 

?.ction of ZLq on 'JI. Since 'JI has o r der (p+l), and qfp, the number of 

:.::.variant subgroups cannot be one. If the numb e r were zero or two, case 

: or 2) wou ld imply G ¢II~. Thus , at least three subgroups are invariant; 

::noose a, b E P such that a, b and (ab) generate these subgroups. Then 

; (a)=aa., ~(b)=b/3, ;(ab) =a'YbY = aa.bf3, so Q'.=y=f3(modp), and 

O'. ,.._, 2 / 
; (g) = g fo r any g E P . If Cl ;. 1 (modp) then G = G (p , q) i/rflt (case 3). 

:: follows that a:: = 1 (modp), and ~ is the identity. 

,.._, n 
Next, take the case P = Z (n > 2) , and assume the proposition 

p 

k I n-1 2 s been proven for Z (2< k< n). Again, let 'JI= [He P: I H = p }. 
p -

: h e map ~: P ---+P must leave some subgroup in 'ff invariant, otherwise 

::::;¢ r11' by case 1). Let H " '){ be invariant; HZ Er!t', as a subgroup of G, 
t q t 

;_nd so b y the induction hypothes i s, ~I H = 1. L et Kc H be a prop e r 
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sub g r oup; G / Ke &~ , s o a ga in by induc t ion, t he indu ced m ap (~/ K ) : G/ K ··- ,..C .. 

:. s the identity. By Lemma 2, ~ = 1. 

Now let P be any non-cyclic abelian p-group; again assume the 

? roposition has been proven for abelian groups of smaller order . Let 

4 p A - n 
P = [g e P : g = 1 }; P = Z , some n > 1, and is invariant under ~- So 

p 
~ 
PZ c G is in 

q-
rB~, and by the previous paragraph, ~ \ i = l. Moreover, 

is the identity (by the 
11 

G / Pe al~, so if 
A A A 

P / P is not cyclic , ~ / Pe Aut (P /P) 

:..nduction hypothes i s) and ~ = 1 by Lemma 2 . 

A A -
If P = P we are clearly done: so assume P / P = Z k fo r k _:::: 1. 

k p 
/II A . 

Choose ye P suc h that (yP) generates P / P, then yP -# 1 is the smallest 

A 
?OWer of y in P. 

k , A p 
Let P c P be the subgroup generated by y ; then 

P / P' is not cyclic (otherwise P would be cyclic or P' a direct summand) . 

)low ~/p ' = 1 (G / P' e rB'), and it follows from Lemma 2 that t = 1 . . t <; 

It remains to consider the case when P is not abelian . A g ain, the 

? roposition will b e assumed for non- cyclic groups of smaller order. By 

..uemma 1, P / Z (P) is not cyclic (and Z (P) f. 1), so ~ / Z (P ) = 1. Choo se 

A A 
some normal subgroup P<lP suc h t hat Z (P) c P w ith index p (s o 

l 

? ~P). 
-I 
A 

; \ p = 1 

A /II 
If P is not cyclic, P Z e r91 and by the i n duction hypothesis, 

q t 
/II - s 

and ~ = 1. If P = Z k is generated by g, then ~(g) = g , and 
·p 

On the othe r hand, 
-1 

g ~(g ) E Z (P) (~ / Z (P ) = 1 ) so 

S =l(modp). 
k 

ItfollowsbyLemma3that s=l(modp ), so ~(g ) =g. 

,. 
-~gain , ~ \P = 1 and so ~ = 1. 11 

We are now r eady to prove the ma in theo r em of this chapter. T his 
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w ill be done by sin1pli.fying a normal series of GE ,J?;' until it fits the 
p 

41 

d efinition of It . The following not~tion will be used: G will be said to be 
p 

of type (F 
1

, F 
2

, . .. , Fn) if it has a normal series 

0 = HocHlc .. . CH= G (H.<lG) - - - n 1 

-:vith F. = H. /H. 
1

. Under this notation, rB is the collection of all groups 
l l 1-

of type (~ ,Q), where Q is of prime power order, and r!I consists of 
n p 

all groups of type (P, ~ , Q), where P is of p - power order and Q of 
n 

?rime power order (for some prime possibly equal to p). 

The following theorem of P. Hall_ [11, ·p . 99] will be used : if G is 

:. solvable group of order ab, for relatively prime a and b, then G has 

?. subgroup of order a, and any two such are conjugate . In particular, a 

.E~o rt exact sequence of solvable groups, w ith k ernel and cokernel of rela-

_-:-ely prime order, splits. 

_.:.eo rem 1. For any solvable group G ef r!I , G has a smooth fixed-point 
p 

-=ee action on a ~ -acyclic manifold. 
p 

Proof: This is equivalent to showing rl/ 1 c r!I • Choose any GE r!I' , 
t- t t 

Cil Cik 
- :. s solvable and is thus of the type (~ , . .. , ~ ) for some collection 

pl pk 

- ==· ementary abelian p-groups . The theorem will be proven in four reductions: 

Step 1. 

--== ? -groups. 

Step 2. 

and the P. 
l 

where Q. is a 
1 

-~ ::-oup for primes q
1 

> q
2

> ... > qk (all distinct from p). 
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G isoftheform {P
1
,~a, EB QjEBP

2
}, where Qj 

q~-group, all q~, p are distinct primes not dividing a . 
J J 

Step 3 . i s a 

Step 4 . G isoftheform (P ,~ ,Q), where P i sap-group, 
n 

Q a q-group (po ssibly q =p) and som e n . 

Step 1 . It will suffice, by induction, to prove the following: If G is 

of the form ( H , z;,P1 ,K, P 2), for q :/. p , Pf \K\ and Pi p-groups, 

,-...J n ,..._, ,..._, 
then G is of t h e form (H,P

1
,~q, K,P

2 
) , where Pi are p - groups. 

42 

Let H<1H
1 

<JH
2

<::J H
3

<::J G be the normal subgroups of G which 

determine the form described above . Set S = [H
2 

/H, G \HJ<) G (and con-

t ained in H
2

/ H) . Let cp: G/H ~Aut (Z:) b e the map induced b y conju-

n ,..._, 
gation in ~q = H 1 / H . Since H

2 
/ HE <II' , cp \ H / H is the identity unles s 

p 2 

n= l ; in either case, its image is in the cent e r o f Aut (~n), and s o cp \ S 
q 

go es to the identity. L et S1 -<TG /H be t he subgrou p generated by S and 

~n, thus cp \ S1 goes to the identity and s';; Zn EB ·(S'/~n) (it is already 
q q q 

a s emidirect product by the above theorem of Hall). Thus, G is of the 

:o rm 

L et ip: G/S1H ~Aut (H
2

/S'H) be the map d etermined by conjugation ; 

:o r 
- 1 - 1 I 

g e G, h e H 
2 

, ( g h g ) h e S H, so im './J = 1 e Aut (H
2 

/S'H). In particular, 

H
3

/ S'H;; K$(P
1
/1\), and G i softh efo rm (H,F\,zq,K,P

2
) for 

P
2

;; G/H
2

K, a p-group . 

St ep 2. 
kl k2 

It w ill suffice to show that if G is of the form (H
1

, ~ , ~ , H
2
), 

rl r 2 

,·here r 
1 

< r 
2 

are primes distinct from p , the n G is of the form 
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Let H
1 

<J K
1 

-<J K
2 

<l G be the normal subgroups of G determining 

the above form. Since K
2 

/H
1 

E r!J~, then by Proposition 1, either k
1 

= I 

kl k2 
= ~ EBZ 

rl r2 
In the latter case, we are done; in the former 

c ase, r 2 doesnotdividetheorderof Aut(Zr
1

) and so K
2

/H
1 

sum anyway . 

is a direct 

Step 3. Here, it will suffice to show that if G' = G/P
1 

is of the form 

(K 1 , Q, K 2 ), where pf I K11, IQ\, the order of Q is relatively prime to 

the orders of K
1 

and K
2

, K
1 

is cyclic, and Q is a q-group, then G' 

G ' has the second form . 

Let H<J G' be the normal subgroup of type (K
1

, Q). The exact 

.=cequence O -+H/K
1 
-+G'/K

1 
~ G'/H~O splits, determining a map. 

_ : K
2 

= G' /H ~Aut (Q). If Q is not cyclic, then for any g E K
2 

of prime 

-1 / 
=:-der, rr ((g)) Er!J and so cp(g) = I, by Proposition I. The same holds 

p 

=-,.ie for g of prime power order: if cp(i) = I (whe re I g \ is a power of 

-1 
is normal in rr ( (g)), and the application of Proposition 1 

- 1 t 
.:::: rr ( (g)) / (g ) implies cp(g) = I. It follows that cp(g) = 1 for all g E K

2
, 

!.::d so G'/K
1 

;'. QEB K
2

. 

If Q is cyclic .. and cp is trivial, then it is still the case that 

- ::< ;'. Q EB K
2

. Assume cp -f. l: then for some g E G' /K
1

, of order n 

-:::C..tively pri.rne to q, 
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-1 k Q gxg = x £0 r all x E , 

n m 
-=..::e k = 1 (mod q ) , then k ~ 1 (mod q) (by Lemma 3). Thus, 

-: - 1 k-1 , ] 
--: x = x generates Q, so [H/~, G /K

1 
= H/K

1
. Conjugation also 

_:oc_es ¢: G' /~ ~Aut (K
1
); since Aut (K

1
) is abelian, any commutator 

-:: =~ to the identity. Thus, IJ)(Q) = 1, so H ';; Q EB K
1

. 

St ep 4 . We now have G in the form (P
1

, ~a' EB Qj E9 P
2
), where Q~ 

J 
I .: ~ q . - group , 
J . 

q~ distinct primes differing from p, and a relatively 
J -

--= -:::::ie to p and q~ . Note that any non-cyclic q-group has a normal subgroup 
J 

2 
-~ quotient isomorphic to ::Z : this is ·obvious for an abelian group, and 

q 

-== a non-abelian group it follows by repeatedly dividing out its center 

~ :..ng Lemma 1). Also observe that if ::Z n is extended non-trivially by 
q 

- ~'- g roup Q'(q':# q), then the extension contains 

-:=: some subgroup: the image of Q~Aut (~ n) 
q 

.::Z , as a quotient group 
q,q 

lies i n the subgroup of 

- =::.e r (q-1), and so Q acts non-trivially on ::Z n/::Z n - 1 . 
. q q 

Thus, under the action of EB Qj EB P
2 

on ~ a' at most one of the 

~ ::nmands can act non- trivially (applying c ases 4) and 7)) . Let Q b e that 

~ mand; if Q :# P
2

, then P
2 

can be absorbed into P
1

; and G can now 

_ _ expressedintheform (P,::Z EB(EBQ':),Q) (Pap-group), w here Q = l 
a J 

Q acts non-trivially on Z and trivially on the other facto rs. In the 
a 

-,,::te r case, one must hav e EB Q'! cyclic, by case 6), and GE ,g . If Q = 1, 
J p 

~: m ost one of the Q~' c an be non-cyclic (case 5)) and so GE~ in this 
J p 

;:as e . \ \ 
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Corollary. F o r any finite group Gr/. ;}}, G has a smooth fi x ed- po int free 

action on a compact ©-acyclic manifold. 

Proof: If . G is solvable, then G r/ rl!I £or some prime p (take, e. g. , 
p 

p f I GI) and G acts without fixed point on a compact ~p-acyclic manifold. 

If G is not solvable, then for some H<lK~ G, K/H is simple and has a 

fixed-point free action on some even dim.ensional projective space (Proposi-

tion 2, Chapter VI). Then G has a fixed-point free action on some product 

of even dime~sional projective spaces, which is ~ -acyclic for any odd 
q 

prime q. \ \ 

Theorem 1 can now be combined with Proposition 1 of Chapter II 

and with the results of Chapter III to give the main result: 

Corollary. A finite solvable group G has a smooth fixed-point free action 

o n a disk if and only if Gr/ rP, for all primes p . I\ 
p 

In particular, one gets for abelian groups: 

Corollary. A finite abelian group G has a smooth fixed- point free action 

o n a disk if and only if three or mo re of the Sylow subgroups of G are 

non- cyclic. \ \ 

T he smallest ab e lian group with such an action is ~
30 

EB ~
30

, with order 900. 

There are two solvable groups of order 72 which have smooth fixed-

?O int free actions on disks: A
4 

EB s
3 

a n d S 
4 

EB ~
3

. Each of thes e h a s quotient 

g roups of subgroups isomorphic to A
4 

and z
3 

EB s
3

, where actions of these 



48

46 

~ro ups on ?Zfacyclic co1n plexe s for t :/; 2, t :/:- 3 r esp ectively , were con 

s t ructed directly in Chapter IV (Propositions 1 and 3, re spectively). That 

:h ese are the smallest solvable groups with smooth fixed - point free actions 

o n disks is shown by the following: 

Theorem 2 . If G is a finite solvabl e group of order less t h a n 72 , then 

G e I/ for some prime p. p . 

Proof: Any group of order p~q or p qr, for primes p,q,r, is in 

some I/ by examination of its composition s e ries. T his leave s the cases 
p 

jG\ = 36 or 60 . 

If IG\ = 36, G has a no rmal series all of whose components are 

elementary p - groups; the only possibilities which do not immediately show 

. 2 
G e "z or I/ 3 are ( ?Z 3' ?Z 2 ' .;z 3 , ?Z 2 ) ' ( ?Z 2' .?Z 3, .?Z 2' .?Z 3 ) ' ( ?Z 2 , .?Z 3, Z 2 ) and 

2 
( ?Z

3
, .:z

2
,.?Z

3
) . Sincetheonlyextensionof .?Z

2 
by .?Z

3 
is z

6
, thefirst 

c ase reduces to (.?Z
3

,?Z
6

,.?Z
2

) , or GE~
3

, andthe .second case to (z
6
,z

6
), 

w hich has the same form as the first cas e. Similarly, t he thi rd case 

2 
r educes to (z

2 
EB z

3
, ?Z

2
) or Ge ~

3
. In the fourth case, either G is of 

2 
type <z

3
, ?Z

2
EB?Z

3
) (and Gel/

3
) or G isoftype ( ?Z

3
,A

4
). Since A

4 

has no subgro up of index 2, . ?Z
3 

must be in the cente r of G . Thus, G is 

2 
also of the form (.:z

3 
EB ?Z

2
, ?Z

3
), and GE ~

2
-

If \G 1 = 60, there are e ight po ssibilities for the components of a 

no rmal series which do not immediately show G ~
2

,~
3

,1/
5

. Four of them , 

imply Ge J/
2

,~
2

,i1
3

,~
5

, respectively , since ?Z
15 

is the only group of type 
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z 3 , z 5 ) or ( 2
5

, 2
3

) , etc. H G is of type (~
2

, :E.
3

, z
2

, Z1:
5

) or 

z 2 , .z 5,z2 ,z3 ), thenitisoftype (~
2
,z

3
, z

10
) or (z

2
,z

5
,:E.

6
), 
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2 ::.a.s eswhichwere considered above (Ge~
2

). A group of type (z
3
, z

2
,z

5
) 

2 2 
:sin ~ 3 , since z 2 EJ,z

5 
istheonlygroupoftype (z

2
,z

5
). If G isof 

2 ) ....., 2 ....., 
=:;-p e (z5 , z 2 , z 3 , then G/Z

5
::: z

2 
$ z

3 
(so G e~

5
), or G/:E.

5 
= A

4
. 

~ this last case G is a semi-direct product; the only homomorphism 
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VI. NON -SOLVABLE A N D POSITIVE- DIMENSIONAL G R O UPS 

In the prev ious three chapters , a complete description has been 

g iv en of which finite solvable group s have smooth fixed-point free actions 

o n disks, and on c ertain other classes of compact acyclic manifolds. In 

:his chapter, partial results are given towards extending this to all compact 

Li e groups. 

The first step in extending the r esults of Chapter III i s the following 

:emrna: 

Lemma 1 . Assume a torus T acts on the compact space X . If X is 

" (Z-acyclic, Z -acyclic) (under Cec h cohomology), then so is the fixed-
p 

point ·set XT (assuming i'.r*{ XT) fin itely generated in the Z.-acyclic case). 

Proof: As sume- fi rst that X is Z -acyclic. There is a sequenc e 
p 

~\ ~ P
2

~ P
3 
~ . .. ~ T of finite s ubgro ups of T of p-power orde r such that 

0) 

!J P. 
:. =l 1 

is dense in T: for ins tance, set P. 
1 

n 
= ( ~ .. ) , when T is the 

pl 

P. 
::i-dimen s ional torus . By T 2 ( Chapter III), e a c h fixed-point s e t X 

1 
is 

~ -acyclic. 
p 

T co p. "* T -- ~, P. 
Since X = n X 1, it follows that H {X ;Z )=lim H (X 1

, ~ ) 
i=l p ~ p 

= ol (all of the spaces a r e compact). Thus, XT is Z -acycli c. 
p p 

If X is ol-acyclic, it is ol -acyclic for all primes p . By the above , 
p 

XT is Z - acyclic for all p, and so is ol-acyclic. 11 
p 

With this l emma, the probl em for c ompact L i e groups w ith a belian 

:d entity component is reduced to that for finite groups: 
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?roposition 1. L et G be a cornpact Lie group with abelian identity corr. -

-;:,onent T . Then G has a smooth fixed-point free action on a c01npact 

(~-, Z - , Q-acyclic) manifold if and only if the finite group G/T does . \ \ 
p 

Thus, it remains to see what happens with finite non- solvable 

g roups, and with compact Lie groups with non-abelian identity component. 

It is conjectured that all of t:hese have smooth fixed-point free actions on 

d isks . By application of Proposition 2 of Chapter II (an action of H on X 

n 
induces an action of G on X , w here H __::= G has finite index n), it would 

s uffice to construct smooth fixed-point free actions of any finite non-

abelian simple group, and any compact connected non-abelian Lie group, 

on disks . The following proposition further reduces the problem: 

Proposition 2. Assume G is compact connect e d non-ab elian, or finite 

non-abelian simple. Then G has a smooth fixed-point free action o n a 

compact Z - acyclic manifold for any odd prime p . 
p 

Proof: By a theorem of Hsiang and Hsiang [1 4 , p. 366], every compact 

connected non-abelian Lie group has an irredu c ible representation on 

2k+l 
lR for some k >l . If G is a finite non-abelian simple g r o up, it has 

even order [7], and so the decomposition of the l eft r egular representation 

on lR[G] must yield at l e ast one odd- dimensional i rreducible representa -

t io n other than the trivial on e, which must therefore b e of dimension at 

least three. 
2ktl 

In either c ase, the r epresentation of G on ]R induces 

a smooth fixed - point free action on P
2
k, w hic h is ~ - acyclic for a ll odd 

p 
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:Hime s p. \ \ 

Thus, by Proposition 1 of Chapter II, it would suffice to construct 

.:inite ~
2
-acyclic G- equivariant complexes without fixed-points for the 

g roups G described above. This has been done for the groups SU (2) 

and SU (3). 

The following notation will b e used for subgroups of U (n). Let 

--< = (k
1
,k

2
, . .. ,k) be a partition of n (k. >0, I;k,= n). Then set 

s l l 

A A 
U(k) = U(k

1
) x .. . x U(k ) c U(n). Set T(k) to be the inverse image of 

s -

sk x . .. x sk 
1 s 

under the projection N(T) ----'-'>N(T)/T ~ S 
n 

group of diagonal matrices, a maximal torus). 

~,::: 
Lemma 2 . For any n, H (U(n) /N(T);m) = 0. 

(T is the sub-

Proof: U(l)/T' is a point . In general, the fibration U(n-1) - ;>U(n} 

2n-l n-1 n n-1 
--'J>S induces a fibration U(n-1}/T --?U(n}/T --'J>(CP . The 

Serre spectral sequence shows that if the base space of a fibration 

:!::: ;{::: 
F --> E --'J> B is simply connected, and H (F, ~), H (B ; ~} are both zero 

in odd dimensions and free finitely generated groups in even dimensions, 

..,_ ..,_ ..... 
then H ,,.. (E; ~} ~ H..,.(B ;~) ® H-.-(F ;~). In particular , by induction on the 

above fibration 

n-1 
;~ n * k 

H (U(n}/T ;~) = ® H (<CP ;~}. 
k=l 

Thus, 
* n n H (U (n) /T ;m) is zero in odd dimension, and X (U(n) / T ) = n: 

The finite group S acts freely on U (n) /Tn with orbit space U (n) / N(T); 
n 
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- ~s X(U(n)/N(T)) = 1 and 

. * ,:c * 
proj : H (U(n) /N(T) ;02) -+ H (U(n) /T ;02) 

.., _ 

_; a monomorphism. Then dim[H,.,,( U(n)/N(T);02)] = 1 and the space is 

:.-acyclic. \ \ 

II 
::?~position 3. For k = (k

1
, .... , ks) a partition of n, consider the following 

-aps induced by the natural projections: 

* I\ 
H (U(n)/T(k);~) 

f * . 
H (U(n)/T;Z) 

A 
g 

* II 
H (U(n)/U(k);Z) 

* A :-hen H (U(n)/T(k);.&?:) = K e r (f)EB i m(g), and g is one-to-one. 

Proof: It will suffice to show that h is one - to - one and that 

::rn (f) = Im (h). Two fib rations will be considered: 

1) 
S k. 11 11 II II 

X (U(k.)/N(T 
1

) ) = U(k)/T(k) --+U(n)/T(k)--+U(n)/U(k) 
i=l l 

' 2) 
S k. II /I 

X (U(k.)/T 1
) = U(k)/Tn--+U(n)/Tn - ;)"U(n)/U(k) 

i=l l 

I\ I\ 
Since U(k) /'T(k) is 02-acyclic, by Lemma 1, the map 

* ~ * A 
g © CO: H (U(n)/U(k);02)--+H (U(n)/T{k);02) is an isomorphism, by (1), 

and Im(£) /Im (h) is finite (all cohomology is finitely generated s ince all 

* " spaces are compact manifolds). Furthermore, H (U(n) /U (k); .&?:) must be 
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* A * 
:::.nite in odd dimensions, since H (U (n) / T(k);O)) '.::: H (U(n)/T;<J2) which is 

* " _zero in odd dimensions. By a result of Borel [l,p. 202], H (U(n)/U(k) ; ;E) 

:. s free. 

Thus , referring to the proof of Lemma 2, all spaces in the fibration 

(2) have integral cohomology zero in odd dimensions and free in even 

d imensions . The spectral sequen-c e must collapse, and so 

* A * h : H (U(n)/U(k);~) ~H (U(n)/T ;~) is one-to-one . Furthermore, 

J, 

H ... (U{n) /T; ~) /Im (h) is free . So Im (f) /Im (h) is a finite subgroup of a 

fr ee group, and thus zero . \ \ 

The next step is to establish a formula for computing the cohomology 

o f the orbit space of a finite group action in a certain situation: when G 

acts on X, and the co homology of X/H is know n , for some He G, we 

V )~ 

w ant to compute H (X /G ;R) if [G :H] is invertible in R . It w ill b e 

V 

a ssumed that X is finitistic, and Cech cohomology w ill be used. The 

derivation exactly parallels the calculations in [3, Ch. XII, §§8-9] , where 

it is done for group cohomology. 

For any subgroups H 2:: K 2:: G, the insertion H ~ K induce s a 

projection X/H --> X/K ; the induced map on cohomology will be denoted 

V ,:=: V :<c 
i(K,H) : H (X / K ;R) ~H (X/H;R). U sing the techniques in Bredon [2, Ch. 

V ;~ V1'< 
III, § 6], the transfer map t(H, K): H (X/H ;R) ~~ H (X/K;R) i s defined, and 

v,!c v;~ 

t(H, K) i (K, H) = [K:H] • id: H (K /H;R) ~ H (K/H;R). If [K:H] is invertible 

in R, the compos ition is an isomorphism, and so i (K, H) 1s a monomer-

phism. 
V ) ~ 

Thus, the problem is reduc ed to identi fying a subspace of H (X/H;R). 
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For any a eG, let r : X ~ x be the action of a : r (x) = ax . 
a a 

For any H ~ G, 
-1 

this induces a map r : X/H--+ X/aHa ; denote by 
a 

* V',~ -1 v* 
r : H (X/aHa ;R) ~ H (X/H ;R) the induced map in cohomology. 

a 

..., ;'i: 

Lemma 3 . For He G, for z e H (X/H;R), 

" ,:. -1 -1 -1 
i(G ,H)t(H,G )z =LJ r t(H n a.Ha. ~ a.Ha. ) i (H, H n a.Ha. ) z 

i a. 1 1 1 1 1 1 
l 
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where [a . } is a s e t of double cos et r epre s entatives for H: G = 
l 

U H a.H is 
1 l 

a disjoint union. 

Proof: The corresponding theorem for h0mology can easily be p r oven 

in the case of a simplicial action on a complex: it can be proven on the 

chain l evel by r egarding C _JX/K) as a subspace of C_JX) (under the 
~ ~ 

t ransfer map) and doing all calculations in CJ_(X). The original equation .,, 

w ill then hold on co chains, and thus in simplicial co homology. One may 

then generalize this to an arbitrary continuous action on a finitistic space 

by using G -covering approximations on X, and taking direct limits to 

obta in Cech cohomology . 11 

From t h is lemma, the desired condition follows immediate ly. 

First note that for any a e G, K
1 
~ K

2
~ G , 

and 

Proposition 4. Let H ~ G, and assume [G:H] is invertible in R. Then 
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VJ, 

:;:; r z E H.,,(X / H ;R ), z E Im i (G , H ) if a n d only if 

* -1 -1 
r i(H, H naHa )z = i(H , a Ha n H) z 

a 

::o r at least one a in every double cos et Ha H c G . 

Proof: 
* -1 

If z = i(G, H) x, then r i(H, H n aHa ) z 
a 

* -1 * ,:< -1 - 1 
= [ r i(G,H n aHa )r - 1Jr x= i(G,a Ha n H)x= i(H,a Ha n H)z . 

a a a 
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If the equation holds for all a., where [a.} is a set of double c oset 
l l 

representatives , then 

* - 1 -1 -1 
r t(H n a.Ha. , a.Ha. ) i(H, H n a.Ha. ) z 
a. 1 1 1 1 1 1 

l 

* -1 . - 1 ,~ -1 
= r t(H n a.Ha. , a. H a. )r - 1 i(H, a. Ha. n H ) z 

a. 1 1 1 1 a . 1 1 
l l 

-1 -1 -1 
= t(a. Ha. n H , H) i(H, a. Ha. n H)z = [H: a. Ha. n H ] z 

l l l l l l 

so i(G,H)t(H,G)z = (6 [H: a~
1

Ha. nHJ)~z = [G: H ] z . . 
l l l 

~ -1 
(The identity [G : H] = /...J [H: a . Ha. n H] can be obtained by a pplying t he 

. l l l 

lemma to a fixe d a c tion on some space.) T hus , [G : H]zelm (i(G,H)), and 

so i s z. 11 

Proposition 5. T he sequence 

* ..... 
"' 

* 3 pl * Pz * 3 
0 ---?-H (U( 3)/N(T );~

2
)~H (U(3)/ T(2 ,1);~

2
)->-H (U(3)/T ;~

2
) 

i s exact in positive dim ensions . 

Proof: 
3 

Let X = U(3)/T , then S3' the Weyl group of U (3) , acts 
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_:-eely on X, w ith U(3)/N(T
3

) = X/S
3

, U(3)/T(2, 1 ) = X / '7L.
2

, for some 

..... 

~2 ~ s3
. In particular, since [s

3
: 'E,

2
] = 3 , p; is a monomorphism. 

Choose z E H*(X/ '7L.
2

; a::
2

) with p; (z) = 0. If s
3 

is the permutation 

5 r oup on [I, 2, 3}, and 'E,
2 

is generated by (12}, then [ e, (23)} are a set 

::, f double co s et repre sentative s. The condition of Propo sition 4 c ertainly 

-1 
::.o lds for a= e. If a= (23), H=(e, (12 }}, then aHa n H= (e,(1 3}}n(e,(12)} 

= [ e }. 
.,_ 

:'hus 
tr -1 - 1 

p
2 

= i(H, H naHa } = i(H, a Ha nH}, and since p;(z } = 0, the hypothes is 

of Proposition 4 is fulfilled: z E Imp:. Thus , ker (p;) ~ im (p:). 

;~ 3 
In the proof of L emma 2, it was shown that H (U(3)/T ; 'E,) is fre e; 

rn particular, 
__,~:::: 

By L emma 2 , H (U(3)/N(T); 'E, ) con-

tains only torsion so in integral homology , the map 

* * 3 H (U(3)/N(T); 'E,} --?H (U(3)/T ; 'E,} is zero in po sitive dimensions. T hus , 

_._ ..... 
-r -,. 

in 'E,
2
-cohomology, p

2
p

1 
is zero in positive dimensions. 11 

Corollary. 

Let p;: H >:< (U(3)/U(2,l} ; '7L.
2

} -->H ~~ (U(3}/T(2,l); '7L.
2

) be as in Proposition 1 . 

Then p: EB p; is an isomorphism in positive dimensions, and onto w ith 

k ernel 'E,
2 

in dimension zero . 

* Proof: B y Propos ition 3, p
3 

isl-lwith 

~:< :>!< 

Im p
3 

EB Kerp
2 

* = H (U(3)/T (2,l ); 'E,
2

) 

* w here p
2 

is as in Proposition 5. By Propo sition 5, Ker p; ;; Im p~' , 1n 
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_,_ ~-
?() Si ti v e dimen sions , and p

1 
is one-to -one. Thus, 

* * * * * ?
3 

EB pl: H (U(3 )/N(T); :.z
2

) EBH (U(3 )/U (2,1) ;:.Z
2

) ~ H (U(3)/T(2,l) ;~
2

) is an 

: somorphism in positive dimensions . In dimension zero, thi s is just the 

:nap id$ id: Z?:
2 

e :.z
2 
~ Z'.;

2 
w hich is surjective . 11 
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?reposition 6. U(3) has a fixed - point free action on a finite Z'.;
2
-acyclic 

equivariant CW - complex, such that all isotropy subgroups contain a max

imal to ru s • 

Proof: Set X = (U(3) x I )/-, where 

(g, t) "-' (gh, t) 

(g, 0) ""'(gh,O) 

(g,l) ,.., (gh, 1) 

for tE I, g E U(3), h E T(2,l) 

for g EU(3), hE U(2,l) 

3 
for g EU(3), h E N(T ) 

Then U(3) a cts on X with the required isotropy subgroups. 

H'\x; Z'.;2) is acyclic: apply the Meyer-Vietoris sequence and us e 

the preceding corollar y . I\ 

Corollary. Let G b e a compact Lie group w ith an ir reducible t h ree -

dimensional representation G -->U(3) not induced from any repr esent ation 

o f a subgroup. Then G has a smooth fixed-point free action on a compact 

~
2
-acyclic manifold. 

P roof: It follows from Proposition 6, and from T heorem 1 of Chapter 

II, that U( 3) has a smooth action on a con1pact ~
2
-acyclic manifold, with 

all isotropy subgroups contained in a conjugate of U(2) x U( 1) or N(T
3

) . 
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~:nee the representation G ~ U (3) is irreducible, the image of G is not 

-=::::i.ta~ned in any conjugate of U(2) x .U(l); since it is not induced, the image 

3 
-:.; G is not contained in any conjugate of N(T ) . Thus, the image of G 

.; not contained in any isotropy subgroup of the action of U(3), and so the 

..:::.d.uc ed action of G on the same space is without fixed-point. I \ 

:O rollary. SU(3), SU(2), U(2), S0(3), and A
5 

all have smooth fixed-

-:a i.nt free actions on compact z
2
-acyclic manifolds (and thus on disks ) . 1 1 

The above procedure suggests one possible way to attack the main 

-:::-:;blem: construct actions of unitary (o.r orthogonal) groups w ith restric -

- ::s on the . isotropy subgroups which occur, so that fixed-point free actions 

_ a=.1 other desired groups can be induced via representations. On e pos-

'..:"= :lity would be the following: 

-=:-ouo sition 7. Assume that for all n 2: 1, there exists an action of 

- : :i+ l) on a finite ~
2
-acyclic equivariant CW compl ex (and thus on some 

.=::::J.p act z
2

- acyclic manifold Mn) such that every isotropy subgroup is 

,. ,. 
= ::jugate to a subgroup of N(U(k)) for some partition k of 2ntl. Then 

-ery compact connected non-abelian Lie group, and every non- abelian 

-=..:te simple ·group, would have s mooth fixed-point free actio ns on disks. 

Proof: The conditions on the isotropy subgroups would imply that 

~ irreducible r epresentation G -->- U(2n+l), not induced from any repre-

--=.:::.tation of a subgroup, induces a fixed - point free action of G on M . 
n 

: - e. ry compact connecte d non-ab e lian Lie group has an irreducible odd -
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din1ens ional complex representation: the complexification of t h e repre-

s entation constructed by Hsiang and Hsiang [14, p. 366] ; since the group 

has no closed subgroups of finite index, the representation is not induced . 

In the case of finite simple groups, it suffices to construct actions 

o f the minimal simple groups, as classified by Thompson [21 J. These 

include: 

1 ) PSL(2, q) for q = 2P or 3P (p prime) or q=±2 (mod 5) 

and q prime, q >3 

2) Sz (q) for q = 2P , p an odd prime 

3) PSL (3, 3) 

In case 1), when q is odd, PSL(2, q) has an irreducible q-dimensional 

representation, and no subgroups of index a factor of q. When q = 2P , 

PSL(2, q) has an irreducible (q-1)-dimensional rep resentation, and no sub

g roups of index a factor of (q-1). Suzuki[20]has shown that Sz(q) has 

2 
i rreducible representations of dimension (q-1) (q-2rtl) (where q = 2 r ) , 

and again no subgroups of index dividing that dimension. 

The third case i s even easier: PSL(3, 3) has a subgroup isomorphic 

to z
3 

EB s
3

, for w hich a fixed-point fr ee action on a 22:
2
-acy clic complex 

ha s already b e en constructed (Proposition 3 of Chapter IV) . 11 

It shoul d also be noted that certain of the g roups PSL(2, q) h ave 

solvable subgroups which have fixed - point free actions on a':
2
-acyclic 

spaces from the r e sult s of Chapter IV. For instance, if q is prime, and 

q-1 
n = -

2
- is not a p rim e powe r, then PSL(2, q) has subgroups i somorphic to 

~ , and the fourth corollary t o Propos it ion 5 of Chapt e r IV applies . 
q , n 

J 



61

59 

Bibliography 

1. Borel, ''Sur 1,;.~ cohomologie des espaces fibres principaux et des 
espaces homogenes de groupes de Lie compacts, tr Annals 51_ (1953), 
pp . 11 5 - 2 0 7. 

2. Bredon, Introduction to Compact Transformation Groups (Acad. 
Press, 1972) . 

3. Cartan and Eilenberg, Homological Algebra (Princeton, 19 56). 

4. Cbnner and Floyd, 11On the construction of periodic maps without 
fixed points, 11 Proc . AMS ]:_Q_ (1959) , pp. 354-360 . 

5. Conner and Montgomery, "An example for SO(3)," Proc . Nat'l. 
Acad . Sci . USA 48 (1962), pp. 1918-1922 . 

6. Eilenberg, "On the problems of topology, 11 Annals 22_ (1949), 
pp. 247-260. 

7. Feit and Thompson, "Solvability of groups of odd order, 11 Pacific 
J. Math.~ (1963), pp. 755-1029. 

8. Floyd, "On related periodic m aps," Amer. J. Math. 74 (1952), 
pp . 547-554. 

9 . Floyd and R ichardson, ' 'An action of a finite g roup on an n-cell 
without stationary points, 11 Bull. AMS .§..2 (1959), pp. 73-76. 

10. Greever, "Stationary points for finite transformation groups, 11 

Duke Math. Journal 27 (1 9 60), pp. 163 -1 70 . 

11. Hall, "A note on solvable groups, 11 J. London Math. So c . I (192 8), 
pp . 98-105. 

12. Hirsch, "On combinatorial submanifolds of differ entiable m.anifolds, 11 

Comm. Math. Helv . ~ (1961-62), pp . 103 -1 11. 

13. Hsiang and Hsiang, "Differentiabl e actions of compact connected 
classical groups I, 11 Ar.11e r. J . Math. ~ (196 7), pp. 705- 7 86. 

14. _ ____ _ "On the compact subgroups of the diffeomorphism 
groups of Kervaire spheres, ;r Annals. §2_ (i96 7 ), pp. 359 - 369. 

:s . Illman, Equiv ariant Alg ebraic Topolo gy, Thesis, Princeton Univer
sity (1972) . 



62

16 . Kis ter, 11 Examples of periodic maps on E uclidean soa ces withou ~ 
fixed points , 11 Bull. AMS 67 (1961), pp . 471 - 474. 

17. Lang, Algebra (Addison- Wesley, 1965). 

60 

18. Serre , R epresent ations L ineaires des Groupes F inis (Herman, 196 7) . 

19. Srnith, "Statio nary points of transformation group s, 11 Proc. Nat 11. 

Acad. Sc i . ~ (1942), pp. 293-297. 

20. Suzuki, "A n ew type of simpl e groups of finite order, 11 Proc. Nat 11. 

Acad. Sci. 46 (1960), .?P· 868-870. 

21 . Thompson, 11Non- solvable finite groups all of whose local subg roups 
are solvable, 11 Bull . AMS 74 (1968), pp. 383 - 43 7. 

22 . Whitehead , "Simplicial spaces, nucl ei, and m - groups, 11 P roc. 
London Math. Soc. 45 (1938 - 39), p p . 243 - 327. 



63

61 

A b stract 

This thesis is centered around the problem of under what conditions 

a compact Lie group can act without fixed points on an acyclic spac e , 

especially on disks and other compact acyclic manifolds : the fact that 

cycli c groups of non-prime- power order can act smoothly without fixed 

poin ts on Euclidean space , hut not on any compact , rationally acyclic 

manifol d (by the L efschetz fixed-point theorem) illustrates immediately 

how significant the r e striction imposed by compactness is . 

In the case of finite solvabl e groups , I use the following notation . 

Let r!J be the collection of finite groups w hich have a cyclic n ormal sub-

group of prime- pow er index. For any p r ime p , let rl!J be the collection 
p 

of finite groups G, w ith no r m al subg rou p P, such that \ P \ = pn a nd 

G/P E rl!J. The following theorem i s then pro ven : 

L et G be a finite sol v able group . G has a f ix e d - po int free action 

on a (sufficiently h igh -dime n s iona l) d isk if a nd only if Gr/. r!J , fo r all 
p 

primes p . G has a s m ooth fixed - po int free a c tion on some compact £ -p 

acyclic m anifold if and o nly i f G rt rl!J • G has such an action on some 
p 

c ompact 02 - a cy cli c m a nifo ld i f a n d only i f G rt J . Thus , a finit e abel i an 

group has a smooth fixed- point free action on a d i sk if and only if it has 

thre e o r m o re no n - cycli c Sylow s ubgroups . 

In particular, thes e conditions s how that the smallest abel ian group 

w ith a smooth fix ed- point fre e act ion on a d i sk i s £
3 0 

EB :??:
30

, o f order 

90 0. T h e small e st sol vable groups w ith suc h a ction s hav e o rder 7 2: two 
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such groups are S
3

EBA
4 

and Z?;
3

EB S
4

. 

Results for finite non- solvable groups , or for positive-dimensional 

compact Lie groups, are more scattered. Smooth fixed-point free actions 

on disks can be constructed for a number of simple groups using the same 

constructions as for solvable groups , but constructing such actions in 

general is more con1.plicated . Examples of such actions are also constructed 

for two compact simple Lie groups , SU(2) and SU(3), and the general 

problem of classifying which compact Lie groups have smooth fixe d - point 

free actions on disks is discussed briefly. 




