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PREFACE

This book is written with the intention of making more easily

accessible techniques for studying Whitehead groups of finite groups, as

well as a variety of related topics such as induction theory and p-adic
logarithms. It developed out of a realization that most of the recent

work in the field is scattered over a large number of papers, making it
very difficult even for experts already working with K- and L-theory of

finite groups to find and use them. The book is aimed, not only at such

experts, but also at nonspecialists who either need some specific

application involving Whitehead groups, or who just want to get an

overview of the current state of knowledge in the subject. It is

especially with the latter group in mind that the lengthy introduction -

as well as the separate introductions to Parts I, II, and III - have been

written. They are designed to give a quick orientation to the contents of

the book, and in particular to the techniques available for describing

Whitehead groups.

I would like to thank several people, in particular Jim Davis, Erkki

Laitinen, Jim Schafer, Terry Wall, and Chuck Weibel, for all of their

helpful suggestions during the preparation of the book. Also, my many

thanks to Ioan James for encouraging me to write the book, and for

arranging its publication.





LIST OF NOTATION

The following is a list of some of the notation used throughout the

book. In many cases, these are defined again where used.

Groups:

NG(H), CG(H) denote the normalizer and centralizer of H in G

Gab = C/[G,G] (the abelianization) for any group G

Sp(G) denotes a p-Sylow subgroup of C

C denotes a (multiplicative) cyclic group of order n

D(2n), Q(2n), SD(2n) denote the dihedral, quaternion, and semidihedral
groups of order 2n

Sn, An denote the symmetric and alternating groups on n letters

HA G denotes a semidirect product where H is normal

GZCn and CS
n

denote the wreath products Gn 4 Cn and Gn A Sn

MG = {x E M: Cx = x} = H0(C;M) if C acts linearly on M (groups

M
G

= M/(gx-x: g EC, x EM) = H0(G;M) } of invariants and coinvariants)

Fields and rings:

Kp =
P
®Q K if K is any number field and p a rational prime (so Kp

is possibly a product of fields)

Rp = 7Lp ®Z R if R is the ring of integers in a number field

}K, (}tK)P (K any field) denote the groups of roots of unity, and p-th

power roots of unity, in K

fn (n Z 1) denotes a primitive n-th root of unity



En (n > 0), when some prime p is fixed, denotes the root of unity

exp(2iri/pn) E C.

KCn (for any field K and any n>- 1) denotes the smallest field

extension of K containing
n

J(R) denotes the Jacobson radical of the ring R

(-) means "subgroup (or 1p module) generated by"

(-)R means "R-ideal or R-module generated by"

er j = ei j(r) (where i, j > 1, 10 j, and r E R) denote the elementary
matrix with single off-diagonal entry r in the (i,j)-position

K-theory:

SK1(2l) = Ker[K1(2l) - K1(A)]

I

for any 7- or Z-order 2l in a semi-

Ki (2I) = K1(2I)/SK1(2l) simple Q- or s-algebra A

C11(2l) = Ker[SK1(21) --» 19 pSK1(2Ip)] for any 7-order 21

C(A) = SK1(21, I) for any semisimple I-algebra A and any 7-order
I

3 C A, where the limit is taken over all ideals of finite index
(see Definition 3.7)

Cp(A) denotes the p-power torsion in the finite group C(A)

Wh(R[G]) = K1(R[G])/(rg: r E WK, g E G) and Wh'(R[G]) = Wh(R[G])/SK1(R[G])

whenever R is the ring of integers in any finite extension K

of @ or (and G is any finite group)

Wh'(G) = Wh(G)/SK1(Z[G]) = Ki(7[G])/(±g) for any finite group C

K2(R,I) = Ker[K2(R) K2(R/I)] for any ring R and any ideal I C R

(see remarks in Section 3a)



Introduction 1

Historical survey 3
Algorithms for describing Wh(G) 4
Survey of computations 14

Part I General theory 20

Chapter 1. Basic algebraic background 21

la. Orders in semisimple algebras 21

lb. P-adic completion 27
lc. Semilocal rings and the Jacobson radical 32
ld. Bimodule-induced homomorphisms and Morita equivalence 37

Chapter 2. Structure theorems for K1 of orders 40
2a. Applications of the reduced norm 40
2b. Logarithmic and exponential maps in p-adic orders 50

Chapter 3. Continuous K2 and localization sequences 63
3a. Steinberg symbols in K2(R) 64
3b. Continuous K2 of p-adic orders and algebras 70
3c. Localization sequences for torsion in Whitehead groups 73

Chapter 4. The congruence subgroup problem 90
4a. Symbols in K2 of p-adic fields 91

4b. Continuous K2 of simple IQp-algebras 100

4c. The calculation of C(Q[G]) 115

Chapter 5 First applications of the congruence subgroup problem 127

5a. Constructing and detecting elements in SK1: an example 127
5b. C11(R[G]) and the complex representation ring 134
5c. The standard involution on Whitehead groups 148

Chapter 6. The integral p-adic logarithm 153

6a. The integral logarithm for p-adic group rings 153

6b. Variants of the integral logarithm 166

6c. Logarithms defined on K2($P[G]) 168

Part II Group rings of p-groups 172

Chapter 7. The torsion subgroup of Whitehead groups 173

Chapter S. The p-adic quotient of SK1(7L[G]): p-groups 183

8a. Detection of elements 183

8b. Establishing upper bounds 191

Sc. Examples 200



Chapter 9. C11(7L[G]) for p-groups 205

Chapter 10. The torsion free part of Wh(G) 229

Part III General finite groups 243

Chapter 11. A quick survey of induction theory 245
11a. Induction properties for Mackey functors and Green modules 246
l1b. Splitting p-local Mackey functors 254

Chapter 12. The p-adic quotient of SK1(7L[G]): finite groups 272

Chapter 13. C11(7L[G]) for finite groups 291
13a. Reduction to p-elementary groups 291

13b. Reduction to p-groups 305
13c. Splitting the inclusion C11(7L[G]) C SK1(7L[G]) 322

Chapter 14. Examples 328

References 340

Index 348



INTRODUCTION

For any associative ring R with unit, an abelian group K1(R) is

defined as follows. For each n >0, let CLn(R) denote the group of

invertible nxn-matrices with entries in R. Regard GLn(R) as a

subgroup of GLn+l(R) by identifying A E GLn(R) with (A 01) E GLn+l(R);

and set GL(R) = Un=1GLn(R). For each n, let En(R) C CLn(R) be the

subgroup generated by all elementary nxn-matrices - i. e., all those

which are the identity except for one nonzero off-diagonal entry - and

set E(R) = Un-1En(R). Then by Whitehead's lemma (Theorem 1.13 below),

E(R) = [GL(R),GL(R)], the commutator subgroup of GL(R). In particular,

E(R) 4 GL(R); and the quotient group

K1(R) = GL(R)/E(R)

is an abelian group.

One family of rings to which this applies is that of group rings. If

G is any group, and if R is any commutative ring, then the group ring

R[G] is the free R-module with basis G, where ring multiplication is

induced by the group product. In particular, group elements g E G, and

units u E R*, can be regarded as invertible 1xl-matrices over R[G],

and hence represent elements in K1(R[G]). The Whitehead group of G is

defined by setting

Wh(G) = K1(7L[G])/(±g: g E G).

By construction, K1(R) (or Wh(G)) measures the obstruction to

taking an arbitrary invertible matrix over R (or 7L[G]), and reducing

it to the identity (or to some ±g) via a series of elementary

operations. Here, an elementary operation is one of the familiar matrix

operations of adding a multiple of one row or column to another; and these



2 INTRODUCTION

elementary operations are very closely related to Whitehead's "elementary

deformations" of finite CW complexes. This relationship leads to the

definition of the Whitehead torsion

T(f) E Wh(al(X))

of any homotopy equivalence f: X -- Y between finite CW complexes;

where T(f) = 1 (i. e., the identity element) if and only if f is

induced by a series of elementary deformations which transform X into

Y. A homotopy equivalence f such that T(f) = 1 is called a simple

homotopy equivalence.

Whitehead torsion plays a role, not only in studying homotopy

equivalences of finite CW complexes, but also when classifying manifolds.

The s-cobordtsm theorem (see Mazur [1]) says that if M and N are

smooth closed n-dimensional manifolds, where n 5, and if W is a

compact (n+l)-dimensional manifold such that 8W = M II N, and such that

the inclusions M ' > W and N I i W are simple homotopy equivalences,

then W is diffeomorphic to M x [0,1]. In particular, M and N are

diffeomorphic in. this situation; and this theorem is one of the important

tools for proving that two manifolds are diffeomorphic. This theorem is

also one of the reasons for the importance of Whitehead groups when

computing surgery obstructions.

When G is a finite group, then K1(7L[G]) and Wh(G) are finitely

generated abelian groups, whose rank was described by Bass (see the

section on algorithms below, or Theorem 2.6). The main goal of this book

is to develop techniques which allow a more complete description of Wh(G)

for finite G; and in particular which describe the subgroup

SK1(7[G]) = Ker[K1(7[G]) K1(D[G])].

This is a finite subgroup (Theorem 2.5), and is in fact by a theorem of

Wall (Theorem 7.4 below) isomorphic to the full torsion subgroup of

Wh(C). When G is abelian, then SK1(7L[G]) = SL(7L[G])/E(7L[G]), where

SL(7L[G]) denotes the group of matrices of determinant 1.

Most of the general background results have been presented here

without proofs - especially when they can be referenced in standard

textbooks such as Bass [2], Curtis & Reiner [1], Janusz [1], Milnor
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[2], and Reiner [1]. Also, some of the longer and more technical proofs

have been omitted when they are well documented in the literature, or are

not needed for the central results. Proofs are included, or at least

sketched, for most results which deal directly with the problem of

describing Whitehead groups.

Historical survey

Whitehead groups were first defined by Whitehead [1], in order to

find an algebraic analog to his "elementary deformations" of finite CW

complexes, and to simple homotopy equivalences between finite CW

complexes. Whitehead also showed in [1] that Wh(G) = 1 if IGI 4 or

if G = 7L; and that Wh(C5) # 1. (Note that Cn always denotes a

multilicative cyclic group of order n.)

A more systematic understanding of the structure of the groups Wh(G)

came only with the development of algebraic K-theory. Bass' theorem [1,

Corollary 20.3], showing that the Wh(G) are finitely generated and

computing their rank, has already been mentioned. This made it natural to

focus attention on the torsion subgroup of Wh(G): shown by Higman [1]

and Wall [1] to be isomorphic to SK1(7L[G]).

Milnor, in [1, Appendix A], noted that if the "congruence subgroup

problem" could be proven, then it would follow that SK1(7L[G]) = 1 for

all finite abelian groups G. This conjecture was shown by Bass, Milnor,

and Serre [1] to be false (see Section 4c below); but their results were

still sufficient to show that SK1(7L[G]) vanishes for many abelian

groups. In particular, it was shown that SK1(7L[G]) = 1 if G is cyclic

(Bass et al [1, Proposition 4.14]), if G = Cp x Cp for any prime p

and any n (Lam, [1, Theorem 5.1.1]), or if G = (C2)n for some n

(Bass et al [1, Corollary 4.13]).

The first examples of finite groups for which SK1(7L[G]) # 1 were

constructed by Alperin, Dennis, and Stein [1]. They combined earlier

results from the solution to the congruence subgroup problem with theorems

about generators for K2 of finite rings, to explicitly describe

SK1(7L[G]) when G = (Cp)n, n > 3, and p is an odd prime. In
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particular, SK1(Z[G]) is nonvanishing for all such G. Their methods

were then carried further, and used to show that for finite abelian G,

SK1(7[C]) = 1 if and only if either G = (C2)n, or each Sylow subgroup

of G has the form Cp or Cpn x Cp.

Later results of Obayashi [1,2], Keating [1,2], and Magurn [1,2],

showed that SK1(7[G]) vanishes for many nonabelian metacyclic groups G,

and in particular when G is any dihedral group. These were proven using

various ad hoc methods, which did not give much hope for having

generalizations to arbitrary finite groups. To get general results, a

more systematic approach using localization sequences is needed -

extending the methods of Alperin, Dennis, and Stein - and it is that

approach which is the main focus of this book.

Algorithms for describing Wh(G)

If R is any commutative ring, then the usual matrix determinant

induces a homomorphism

det : K1(R) = GL(R)/E(R) - R.

This is split surjective - split by the homomorphism e -' K1(R)

induced by identifying R* = GL1(R). Hence, in this case, K1(R) factors

as a product

K1(R) = R* x SK1(R),

where

SK1(R) = SL(R)/E(R) and SL(R) = {A E GL(R) : det(A) =1).

If R = 7L[G], then this coincides with the definition of SK1(7L[G])

given earlier: Q[G] is a product of fields, so K1(D[G]) = (tD[G])*.

Determinants are not, in general, defined for noncommutative rings.

However, in the case of the group rings 7[G] and ID[G] for finite
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groups C, they can be replaced by certain analogous homomorphisms: the

reduced norm homomorphisms. One way to do this is to consider, for fixed

G, the Wedderburn decomposition

k

C[G] = Mr. (C)
i=1

of the complex group ring as a product of matrix rings (see Theorem 1.1).

For each n, the reduced norm on GL(Q[G]) is then defined to be the

composite

nr : GLn(Q[G]) incl
GLn(C[G]) - [I ri

(C) III ]]*.
i=1 i=1

These then factor through homomorphisms

nrZ[G] : K1(Z[G]) - n Cw and nrO[G] : K1(Q[G]) ---> II C*.

i=1 i=1

Also, nro[G] is injective (Theorem 2.3), and so

SK1(7L[G]) = Ker[K1(7L[G]) --f Kl((Q[G])] (by definition)

= Ker(nry[G]).

Note that when G is commutative, then

Ker(nrl[G]) = Ker[det: K1(7L[G]) - (7L[G])*];

(1)

so that the two definitions of SK1(7L[G]) coincide in this case. For

more details about reduced norms (and in more generality), see Section 2a.

Reduced norm homomorphisms are also the key to computing the ranks of

the finitely generated groups K1(7L[G]) and Wh(C). Not only is

SK1(7L[G]) = Ker(nrZ[G]) finite, but - once the target group has been

restricted appropriately - Coker(nry[G]) is also finite (Theorem 2.5).



6 INTRODUCTION

A straightforward computation using Dirichlet's unit theorem then yields

the formula

rk(K1(Z[C])) = rk(Wh(C))

= #(irreducible R[G]-modules) - #(irreducible O[G]-modules).

Furthermore, by the theorem of Higman [1] (for commutative C) and Wall

[1] (in the general case),

tors(K1(Z[G])) _ {±l} x Gab x SK1(Z[G])

(see Theorem 7.4 below). Thus, as abstract groups, at least, the

structure of K1(Z[G]) and Wh(G) will be completely understood once the

structure of the finite group SK1(Z[G]) is known.

A much more difficult problem arises if one needs to construct

explicit generators for the torsion free group Wh'(G) = Wh(G)/SK1(Z[G]).

One case where it is possible to get relatively good control of this is

when G is a p-group, for some regular prime p (including the case

p = 2). In this case, logarithmic methods can be used to identify the

p-adic completion p 0 Wh'(G) with a certain subgroup of H0(G;2p[G])

(i. e., the free i module with basis the set of conjugacy classes in G).

This is explained, and some applications are given, in Chapter 10; based

on Oliver & Taylor [1, Section 4].

SK1(Z[G]): When studying SK1(Z[G]), it is convenient to first

define a certain subgroup C11(Z[C]) C SK1(Z[G]). For each prime p, let

2p [G] and P[G] denote the p-adic completions of Z[G] and D[G] (see

Section lb); and set SK1(gp[G]) = Ker[K1(2p[G]) -4 K1(&[G])]. Then set

C11(Z[C]) = Ker[SK1(Z[G]) - ® SK1(7LP[G])]
P

The sum 19PSK1(2 P[G]) is, in fact, a finite sum - SK1( p[G])= 1
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whenever p4IGI - and the localization homomorphism B is onto (Theorem

3.9). Note that C11(7L[G]) = SK1(7L[G]) if G is abelian: K1(8p[G])

SK1(2p[G])x (Zp[G])* in this case, and matrices over a 2p-algebra can

always be diagonalized using elementary row and column operations (see

Theorem 1.14(1)).

In particular, SK1(g[C]) sits in an extension

1 ---> C11(7L[G]) --' SK1(7L[G]) a '' ®SKl(2p[G]) 1. (2)
p

The groups SK1(2 p[G]) and C11(Z[G]) are described independently, using

very different methods, and it is difficult to find a way of handling them

both simultaneously. In fact, one of the remaining problems is to

understand the extension (2) in 2-torsion (it does have a natural

splitting in odd torsion).

SK1( p[G]): By a theorem of Wall [1, Theorem 2.5], SK1(Zp[G]) is a

p-group for any prime p and any finite group G, and SK1(7Lp[G]) = 1

if the p-Sylow subgroup of G is abelian. In fact, for most "familiar"

groups G, SK1(2p[GI) = 1 for all p.

If G is a p-group, then

SK1(2p[G]) - H2(G)/H2b(G);

where

H2b(C) = Im [I {H2(K) : K C G, K abelian} ind) H2(C)]

= (g-hEH2(G) : g,hEG, gh=hg)

(3)

(see Section 8a). Formula (3) is shown in Theorem 8.6, and the

isomorphism itself is described in Proposition 8.4.

If G is an arbitrary finite group, and if p is a fixed prime,

then set Cr = {g E G: (the "p-regular" elements). Consider the

homology group H2(G;Zp(Gr)), where G acts on Zp(Gr) by conjugation.

Let
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(D : H2(G;2p(Gr)) ) H2(C;ap(Gr))

be induced by the endomorphism 4(Jrigi) = Jrigp on 2 p(Gr); and let

H2(G;2 p(Gr)), = H2(G;2p(Gr))/Im(1-4)

be the group of 4-coinvariants. Then

SK1(2p[G]) - )),/H2b(G;Zp(Gr)) (4)

(see Theorem 12.10). Here, in analogy with the p-group case:

H2b(G;7Lp(Gr)) = Im [
K C G

H2(K'2p(Kr)) i- H2(G.7Lp(Gr))41]

abelian

= ((g^h)O k : g,h E G, k E Gr, g,h,k commute pairwise).

The following alternative description of SK1(2 p[G]), for a non-p-

group G, is often easier to use. Let g1,...,gk E G be "gyp conjugacy"

class representatives for elements of G of order prime to p - where

two elements g,h E G are Qp conjugate if g is conjugate to hp for

some n. Set Zi = CG(gi) (the centralizer), and

Ni = {x E G :
xgix- 1

= gp , some n}.

Then by Theorem 12.5 below,

k
SK1(2p[G]) = HO(Ni/Zi; H2(Zi)I 2b(Zi))(pY

i=1

(5)

C11(Z[C]): The subgroup C11(7L[G]) C SK1(7L[G]) can be thought of as

the part of K1(7L[G]) which is hit from behind in localization sequences.

One way to study this is to consider, for any ideal I C 7L[G] of finite

index, the relative exact sequence
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K2(7L[G]/I) ---> SK1(7L[G],I) 4 SK1(7[G]) - K1(7L[G]/I)

of Milnor [2, Lemma 4.1 and Theorem 6.2]. After taking inverse limits

over all such I, this takes the form of a new exact sequence

® K2(7Lp[G]) -' m SK1(7L[G],I) -L+ SK1(7[G]) e ' ® SK1(Zp[G]) (6)

p
I

We now have another characterization of C11(7L[G]): it is the set of

elements in SK1(7L[G]) which can be represented by matrices congruent to

1 mod I, for arbitrarily small ideals I C 7L[G] of finite index.

The second term in (6) remains unchanged when 7L[G] is replaced by

any other 7L-order in Q[G]. Hence, it is convenient to define

C(I[G]) = Jim SK1(7L[G],I) (all I C 7L[G] of finite index)
I

Coker[K2(D[C]) - ® K2(®[G])].
P

PP

(Theorem 3.12)

This is a finite group; and C(-) is a functor on the category of finite

dimensional semisimple Q@-algebras. See Section 3c for more details.

The computation of C(I[G]) is based on the solution to the

congruence subgroup problem. In Theorem 4.13, it will be seen that for

each simple summand A of D[G] with center K,

1 if for some v: K IR, Qt®vKA = Mr(IR) (some r)
C(A) jIl

PK otherwise.
(7)

Here, } denotes the group of roots of unity in K. One convenient way

to use this involves the complex representation ring RC(C).

Fix a group G, and fix any even n such that exp(G) In. Then

K = O(Cn) is a splitting field for G, where cn is a primitive n-th

root of unity, and we can identify the representation rings RC(G) =R K(G)'

The group Cal(K/@) = (DJn)* thus acts both on RC(G) (via Galois

automorphisms) and on 7L/n (by multiplication). Regard R1(G) (the real
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representation ring) as a subgroup of RC(G) in the usual way, and set

RC/IR(G) = RC(C)N(G) for short. Then we will see in Lemma 5.9 that

C(D[G]) = [RC,(G) 0 Z/n] (Z/n)* (i. e., (Z/n)*-coinvariants)

= RC/R(G)/([V]- a-[7a(V)]: V E RC(G), (a,n)= 1, Ta C Cal(K/Q))

(8)

This description, while somewhat complicated, has the advantage of

being natural in that the induced epimorphisms

RC(G) C(D[G])\ja
C11(Z[G])

commute both with maps induced by group homomorphisms and with maps

induced by restriction to subgroups (Proposition 5.2). For example, one

immediate consequence of this is that Cll(Z[G]) is generated by

induction from elementary subgroups of G (i. e., products of cyclic

groups with p-groups) - since RC(G) is generated by elementary

induction by Brauer's induction theorem.

Odd torsion in C11(Z[C]) and SK1(Z[G]): For any finite group G,

the short exact sequence (2) has a natural splitting in odd torsion, to

give a direct sum decomposition

SK1(Z[G])[2] = C11(Z[G])[2] ® ®SKl(Zp[G])
P;'2

(9)

Furthermore, for odd p, there is a close relationship between the groups

K2(7Lp[G]) and H1(G;2p[C]) = H1(G;Z[G])(p) (where G again acts by

conjugation) - close enough so that (6) can be replaced by an isomorphism

Cl1(Z[G])[2] = Coker[H1(G;Z[G]) - C(D[G])][2] (10)
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When G is a p-group (and p is odd), this formula is shown in Theorem

9.5, and an explicit definition of yG is given in Definition 9.2. If G

is arbitrary, then the formula, as well as the definition of
*G'

are

derived in the discussion following Theorem 13.9.

When G is not a p-group, then an alternative description of

C11(7L[G])(p), for any finite G and any odd prime p, is given in

Theorem 13.9. This takes the form

k
C11(Z[G])(P)

® H0(Ni/zi;
li C11(Z[n])); (11)

i=1 (zi)

where al,...,°k C G is a set of conjugacy class representatives for

cyclic subgroups of order prime to p; and Ni = NG(ci), Z. = CG(ai),

and 5$(Zi) is the set of p-subgroups.

2-torsion in SK1(Z[C]): The description of Cl1(Z[G])(2) - even

when G is a 2-group - is still rather mysterious. If G is abelian,

then SK1(Z[C]) = C11(Z[G]) can be described via formulas analogous to

(10) above (see Theorem 9.6 for the case of an abelian 2-group, and

Theorem 13.13 for the general abelian case). When C is an arbitrary

2-group, we conjecture that SK1(7L[G]) can be (mostly) described via a

pushout square

H1(G;7L[G])
V

H2(G)

J'PG bC

C(Q[G])/CQ(Q[C]) SK1(Z[G])/Q(G)

Here, CQ(Q[G]) C C(Q[G]) denotes the subgroups of elements coming from

quaternionic summands: i. e., simple summands A of Q[G] which are
matrix algebras over division algebras of the form Q(fn,j) (C Ii), where

fn = exp(2ai/2n) E C (see Theorem 9.1). Also, Q(G) C C11(Z[G]) is the

image of CQ(Q[G]) under 8: C(Q[G]) - C11(Z[G]); and u is defined
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by setting u(g Oh) = g^h E H2(G) for commuting g,h E G. Note that

Coker(v) = H2(G)/b(G) = SK1(g2[G])

by (2). The most interesting point here is the conjectured existence of a

lifting ©G of the isomorphism in (2). This is currently the only hope

for constructing examples where extension (1) is not split. For more

details, see Conjecture 9.7, as well as Theorems 9.6, 13.4, 13.12, and
13.14.

Induction theory: Each of the functors SK1(2p[G]), and

C11(7L[G])(p) for odd p, has been given two descriptions above. The

direct sum formulas (5) and (11) are based on a general decomposition

formula in Theorem 11.8, and are usually the easiest to apply when

computing SK1(7Lp[G]) or C11(7L[G])(p) as an abstract group. The other

formulas ((4) and (10)) seem more natural, and are easier to use to

determine whether or not a given element vanishes.

In both cases - SK1(2 p[G]) and C11(7L[G])(p) - these formulas are

derived from those in the p-group case with the help of induction theory

as formulated by Dress [2]. In the terminology of Chapter 11, these two

functors are "computable" with respect to induction from p-elementary

subgroups (i. e., subgroups of the form Cn x v when n is a p-group).

See Chapter 11, and Theorems 12.4 and 13.5, for more details.

Detecting and constructing explicit elements: For simplicity, the

above algorithms have been stated so as to describe Wh(G) and SK1(7L[G])

as abstract groups. But in fact, they can in many cases be used to

determine whether or not a given invertible matrix over 7L[G] vanishes in

Wh(G); or to construct matrices representing given nonvanishing elements.

The procedures for constructing explicit nontrivial elements in

SK1(7L[G]) are fairly straightforward. One example of this, for the group

G = C4 X C2 X C21 is worked out in detail in Example 5.1; and essentially

the same procedure can be used to construct elements in C11(7L[G]) for

any finite G (once the group C11(7L[G]) itself is known, that is).
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Explicit elements in SK1(7Lp[G]) can be constructed using Proposition

8.4, or Theorem 12.5 or 12.10; although Theorem 8.13 provides a much

simpler way of doing this in many cases. The procedure for lifting an

element [A] E SK1(2 p[G]) to SK1(7L[C]) can be found in the proof of

Theorem 3.9; note however that this depends on finding an explicit

decomposition of A as a product of elementary matrices over OP[G].

If A E GL(7L[G]) is given, then the first step when determining
whether it vanishes in Wh(G) is to compute its reduced norm, and

determine (using (1)) whether or not [A] E SK1(7L[G]). Once this is done,

if C is abelian, then SK1(7L[G]) = Cl1(7L[G]), and the procedure for

determining whether [A] = 1 is fairly straightforward. The details are

described in the proof of Example 5.1, and in the discussion afterwards.

If C is nonabelian, and if [A] is known to lie in SK1(7L[G]),

then one must next check whether or not it vanishes in SK1(71p[G]) for

primes p1IGI. The procedure for doing this is described in Proposition

8.4 when C is a p-group, and in Theorem 12.10 for general finite G. In

both cases, this involves first choosing some group extension a: G - C

such that SK1(2 p[G]) maps trivially to SK1(2p[G]); then lifting A to

[A] E K1(2 p[G]), taking its logarithm (more precisely, its integral

logarithm r(W) E HO(G;7p[G])); and then composing that by a certain

explicit homomorphism to SK1(7Lp[G]) using formula (3) or (4) above.

The general procedure for detecting elements in C11(7L[G]) for

nonabelian G is much less clear, although there are some remarks about

that at the end of Section 5a. The main problem (once the group

Cl1(7L[G]) itself is understood) is to lift [M] E Cll(7L[G]) to C(D[G])

along the boundary map in sequence (6).

In some specialized cases, there are other ways of doing this. The

proofs Propositions 16-18 in Oliver [1] give one example, and can be used

to detect (certain) nonvanishing elements in C11(7L[G]) for many

nonabelian groups G. Another such example is given by the procedure in

Oliver [5] for detecting the Whitehead torsion of homotopy equivalences of

S1-bundles.
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Survey of computations

The examples listed here give both a survey of the type of

computations which can be made using the techniques sketched in the last

section, as well as an idea of some of the patterns which arise from the

computations. The first few examples give some conditions which are

necessary or sufficient for SK1(7L[G]) to vanish.

Example 1 (Theorem 5.6, or Alperin et al [3, Theorem 3.3])

SK1(R[Cn]) = 1 for any Finite cyclic group Cn, when R is the ring of

integers in any finite extension of Q.

Example 2 (Theorem 14.2 and Example 14.4) SK1(Z[G]) = 1 if C

Cp, or Cpn x Cp (for any prime p and any n), if G = (C2)n (any

n), or if G is any dihedral, quaternion, or semidihedral 2-group.

Conversely, if C is a p-group and C11(7L[G]) = 1, then either G is

one of the above groups, or p = 2 and Gab = (C2)n for some n.

The next example (as well as Example 12) helps to illustrate the role

played by the p-Sylow subgroup Sp(G) in determining the p-torsion in

SK1(7[G])

Example 3 (Theorem 14.2(i), or Oliver [1, Theorem 2])

SK1(7[G])(P)
=

1 if Sp(G) = Cpn or Cpn x p (any n).

The next example gives some completely different criteria for

SK1(7L[G]) (or Wh(G)) to vanish. This, together with the first three

examples, helps to show the hopelessness of finding general necessary and

sufficient conditions for SK1(7L[C]) = 1 (or Wh(G) = 1). Note in

particular that Wh(G) = 1 if C is any symmetric group.

Example 4 (Theorem 14.1) Let 'C C b' be the smallest classes of

finite groups which are closed under direct product and under wreath

product with any symmetric group S
n

; and such that T contains the



INTRODUCTION 15

trivial group and 'C' also contains all dihedral groups. (Note that 'e

contains D(8), as well as all symmetric groups.) Then Wh(G) = 1 for

all G E 'C, and SK1(Z[G]) = 1 for all G E V.

Note that the classes of finite groups G for which Wh(G) = 1, or

SK1(Z[G]) = 1, are not closed under products (see Example 6). A slightly

stronger version of Example 4 is given in Theorem 14.1.

We now consider examples where SK1(Z[G]) # 1. The easiest case is

that of abelian groups. In fact, the exponent of SKI(Z[G]) = C11(Z[G])

can be explicitly determined in this case.

Example 5 (Alperin et al [3, Theorem 4.8]) Let G be a finite

abelian group, and let k(G) be the product of the distinct primes

dividing IGI for which Sp(G) is not cyclic. Then

IGIexp(SKI(Z[G])) =
k(G (G)/;

where a=2 if

p

(i) G = (C2)n for some n Z 3, or

(ii) S2(G) = C2,, x C2 for some n Z 3, or

(iii) S2(G) = C2. x C2 x C 2 for some n Z 2;

and e =1 otherwise.

We now consider some more precise computations of SK1(Z[G]) in

cases where it is nonvanishing.

Example 6 (Example 9.8, and Alperin et al [3, Theorems 2.4, 5.1,

5.5, 5.6, and Corollary 5.9]) The following are examples of computations

of SK1(Z[G]) = C11(Z[G]) for some abelian p-groups G:
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(t) If p is odd, then

SK1(ZL( p)k]) = R/P)N, where N = p it - (P+P-1)

(ii) SK1(Z[Cp2 X CPn]) -
(1/P)(P-1)(n-1) (any prime P)

(iii) SK(Z[(C )2 x C ])n1
P P (Z/2)

n-1
if p = 2

(LP)nP(P-1)/2

if p is odd

i

(Z/P)p2-1 x (1p2)P-1
if p is odd

(iv) SK1(Z[Cp3 x Cp3])
4

1 (v2) if p = 2

®(Z/2s)
(v) SKl(ZL(C2)kxC2n]) = [r=2 J

L(r)_(U2r-1)] ®r

s=2 J

We now look at some nonabelian p-groups: first for odd p and then

for p = 2.

Example 7 (Example 9.9, and Oliver [7, Section 4]) Let p be an

odd prime, and let G be a nonabelian p-group. Then SK1(Z[G]) =

C11(Z[G]) =
(Z/p)P-1

if ICI = p3. If ICI = p4, then SK1(Z[G]) _

C11(7L[G]) and:

SK1(Z[G])

(UP) 2(P-1)

(vp)(p2+3p-6)/2

(vP)(p2+p-2)/2

(UP) 3(p-1)/2

if

if

if

if

(1fP)P-1 if

CP X Cpl

(CP)3, exp(G) = p

(C
p
)3, exp(G) = P2

Cp x CP, ( C

Gab = C
p

x CP, 3 Cp x Cpl C G.

Note that the p- and p2-rank of C11(Z[G]) is a polynomial in p

for each of the families listed in Examples 6 and 7 above. Presumably,

this holds in general, and is a formal consequence of Theorem 9.5 below;

but we know of no proof.
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Example 8 (Examples 9.9 and 9.10) If ICI = 16, then

I
1 if Gab = (C2)2

or (C2)3
SK1(l[G]) = Cll(7L[G]) b

8/2 if Ga C4 xCZ.

If G is any (nonabelian) quaternion or semtdthedral 2-group, then for

all k>0:

k

SKl(7LLG X (C2)k]) = Cl1(Z[G x (C2)k]) = (1/2)2
-k-1

We next give some examples of computations for three specific classes

of non-p-groups.

Example 9 (Example 14.4) Assume C is a finite group whose 2-Sylow

subgroups are dihedral, quaternionic, or semidihedral. Then

1(1LG])(2) = C11(7LG])(2) = (1/2)k

where k is the number of conjugacy classes of cyclic subgroups a C G

such that (a) lal is odd, (b) CG(a) has nonabettan 2-Sylow subgroup,

and (c) there is no g E NG(a) with gxg 1 = x 1 for all x E a.

Note, in the next two examples, the peculiar way in which 3-torsion

(and only 3-torsion) appears.

Example 10 (Theorem 14.5) For any prime p and any k > 1,

1 3 if p=3, 24k, k>5
SK1(1[PSL(2,pk)])

jl 1 otherwise.

and

-1/3x1/3 if p=3, 24k, k>5
SK1(1LSL(2,pk)])

1 otherwise.
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Example 11 (Theorem 14.6) For any n > 1, let An be the

alternating group on n letters. Then SK1(Z[G]) = C11(Z[G]), and

r
Z/3 if n = 13m` 2 27, m1 > m2 > ... > mr 2 0, Fjni odd

SK1(Z[An])
i=1

1 otherwise.

The next example involves the groups SK1(2 p[G]). Constructing a

group G for which SK1(2 p[G]) # 1 is rather complicated (note that

SK1(Z[G]) = C11(Z[G]) in all of the examples above); so instead of doing

that here we refer to Example 8.11 and the discussion after Theorem 14.1.

For now, we just note the following condition for SK1(2 p[G]) to vanish.

Example 12 (Proposition 12.7) SK1(Zp[G]) = 1 if the p-Sylow

subgroup of G has an abelian normal subgroup with cyclic quotient.

To end the section, we note two specific examples of concrete

matrices or units representing nontrivial elements in C11(Z[G]).

Example 13 (t) Set G = C4 xC2 xC2 = (g) x (h1) x (h2). Then

SK1(Z[G]) Z/2, and the nontrivial element is represented by the matrix

1 + 8(1-g2)(1+h1)(1+h2)(1-g) -(1-g2)(1+h1)(1+h2)(3+g)
E GL (Z[G])

-13(1-g2)(1+h1)(1+h2)(3-g) 1 + 8(1-g2)(1+h1)(1+h2)(1+gl)/ 2

(it) Set G = C3 x Q(8) = (g)x(a,b), where Q(8) is a quaternion

group of order S. Then SK1(Z[G]) = Z/2, and the nontrivial element is

represented by the unit

1 + (2-g-g2)(1-a2)(3g +a + 4g2a + 4(g2-g)b + Sab) E (Z[G])*.

The matrix in (i) is constructed in Example 5.1. In (ii), SK1(Z[G])

is computed as a special case of Example 9, and the explicit unit

representing its nontrivial element can be constructed using, the proof of
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Oliver [1, Proposition 17]. The general problem of determining whether or

not a given element of Wh(G) can be represented by a unit in Z[G] is

studied in Magurn et al [1], and is discussed briefly in Chapter 10

(Theorems 10.6 to 10.8) below.



PART I: GENERAL THEORY

These first six chapters give a general introduction to the tools

used when studying K1 of 7L- and 2p orders, and in particular of integral

group rings. While some concrete examples of computations of SK1(7L[G])

are given in Sections 5a and 5b, the systematic algorithms for making such

computations are not developed until Parts II and III.

The central chapters in Part I are Chapters 2, 3, and 4. The torsion

free part of K1(21), for any 7L- or 2p order 3, is studied in Chapter 2

using reduced norm homomorphisms and p-adic logarithms. In Chapter 3, the

continuous K2 for p-adic algebras and orders is defined, and then used

to construct the localization sequences which will be used later to study

SK1(7L[G]) for finite G. Chapter 4 is centered around the congruence

subgroup problem: the computation of one term

C(@[G]) = SK1(7L[G],n7L[G]) = Coker[K2(@[G]) -> K2(® [G])]

in the localization sequence of Chapter 3.

In addition, Chapter 1 provides a survey of some general background

material on such subjects as semisimple algebras and orders, number

theory, and K-theory of finite and semilocal rings. Chapter 5 collects

some miscellaneous quick applications of the results in Chapter 4: for

example, the results that C11(7L[G]) = 1 whenever G is cyclic,

dihedral, or quaternionic. Also, the "standard involution" on K1(7L[G]),

K2(2 p[G]), etc., studied in Section 5c, is the key to many of the later

results involving odd torsion in C11(7L[G]) C SK1(7L[G]). The integral

p-adic logarithm (Chapter 6), which at first glance seems useful only for

getting an additive description of K1(2 p[G])/torsion, will be seen later

to play a central role in the computations of both SK1(2 p[G]) and

C11(7L[G]).



Chapter 1 BASIC ALGEBRAIC BACKGROUND

By a Z-order 3 in a semisimple Q-algebra A is meant a 7L-lattice

(i. e., h is a finitely generated 7L-module and A = which is a

subring. One of the reasons why Whitehead groups are more easily studied

for finite groups than for infinite groups is that strong structure

theorems for semisimple Q-algebras and their orders are available as

tools. In fact, it is almost impossible to study the K-theory of group

rings 71[G] without considering some orders which are not themselves

group rings. Furthermore, the use of localization sequences as a tool for

studying K1(21) for 7-orders 2[ makes it also important to study the

K-theory of orders over the p-adic integers 2 p.

This chapter summarizes some of the basic background material about

semisimple algebras, orders, p-adic localization, semilocal rings, and

similar topics, which will be needed later on. The results are presented

mostly without proof. The first two sections are independent of K-theory.

Section lc includes some results about K1 of semilocal or finite rings,

as well as Quillen's localization sequence for a maximal order. Section

ld contains a short discussion about bimodule-induced homomorphisms for

Ki(-), and in particular about Morita equivalences.

Recall that a number field is any finite field extension of Q. The

ring of integers in a number field K is the integral closure of Z in

K: i. e., the set of elements in K which are roots of monic polynomials

over Z.

la. Semisimple algebras and maximal orders

The definition of a semisimple algebra (or ring) varies somewhat; the

most standard is to define it to be a ring which is semisimple (i. e., a

direct sum of modules with no proper submodules) as a (left or right)

module over itself. Then a simple algebra is a semisimple algebra which

has no proper 2-sided ideals. Throughout this book, whenever "semisimple
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algebra" is used, it is always assumed to mean finite dimensional over the

base field. Our main references for this topic are Curtis & Reiner [1,

Section 3] and Reiner [1, Section 7].

For any field K of characteristic zero, and any finite group G,

standard representation theory shows that K[G] is a semisimple

K-algebra. In particular, the structure of @[G] as a semisimple

D-algebra plays an important role when studying K1(Z[G]).

The center of any algebra A will be denoted Z(A).

Theorem 1.1 Let K be a field, and let A be any semtsimple

K-algebra. Then the following hold:

(t) (Wedderburn theorem) There are division algebras D1,...,Dk

over K, and numbers rl,...,rk > 0, such that A ni-1Mri(D1). Here,

each Mri(D1) is a simple algebra, and has a unique irreducible module

isomorphic to (D.)r'. Furthermore,

k k
Z(A) - [1 Z(Mri(Di)) = ll Z(Di);

i=1 i=1

and A is simple if and only if Z(A) is a field.

(it) If A is simple and Z(A)/K is separable, then for any field

extension L 2 K, LO
K
A is semtsimple with center LO

K
Z(A). In

particular, LO
K
A is simple if K = Z(A).

(iii) If A is a central simple K-algebra (i. e., K = Z(A)), then

[A:K] = n2 for some n E Z.

(iv) (Sholem-Noether theorem) If A is a central simple K-algebra,

and if B C A is a simple subalgebra which contains K, then any ring

homomorphtsm f: B - A which fixes K is the restriction of an inner

automorphtsm of A.

Proof The Wedderburn theorem is shown, for example, in Curtis &

Reiner [1, Theorems 3.22 and 3.28]; and the other statements in (i) are
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easy consequences of that. The other three points are shown in Reiner [1,

Theorem 7.18 and Corollary 7.8, Theorem 7.15, and Theorem 7.21]. 0

Note in particular that a commutative semisimple K-algebra always

factors as a product of fields. In the case of group rings of abelian

groups, one can be more specific. Recall that for any n,
n

denotes a

primitive n-th root of unity; and that for any field K, Kin denotes the

smallest field extension of K which contains the n-th roots of unity.

Example 1.2 For any n Z 1, D[Cn] =
More generally, for

any field K of characteristic zero and any finite abeltan group G,

K[G]
k

[[i_1Ki, where for each i, Ki = K(in) for some nilexp(G).

Proof For any n, a homomorphism

induced by setting ad(g) = rd

a-ilad:I[n])Rd Innd is

for some fixed generator g E C. Each

ad induces an irreducible Q[Cn]-representation Wd, and they are

distinct since n acts on Wd with order d. So a is surjective.

Since [Kd:Q] = Bp(d) for each d (see Janusz [1, Theorem I.9.2]), a

dimension count shows that a is an isomorphism.

The last point is clear: K[G] is a product of fields by Theorem

1.1, and each field component is generated by K and the images of the

elements of G, which must be roots of unity. 0

As another example, consider group rings C[G] and IR[G] for a

finite group G. The only (finite dimensional) division algebra over C

is C itself (this is the case for any algebraically closed field); and

the only division algebras over IR are IR, C, and IH (the quaternion

algebra). Note in particular that OI is not a C-algebra, since C is

not central in H. The Wedderburn theorem thus implies that for any

finite G, C[G] is a product of matrix algebras over C, and IR[G] is

a product of matrix algebras over IR, C, and HI. Also, by (ii), if A

is a simple IQ-algebra with center K, and if K '- Ot is any embedding,

then Ot®K A is a matrix algebra over either IR or IH. This last point

will play an important role later, for example when describing the image

of the reduced norm in Theorem 2.3.
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If A is a simple algebra with center K, and A = Mr(D) for some

division algebra D, then the index of A is defined by setting

ind(A) = ind(D) = [D:K]
1/2

(an integer by Theorem 1.1(iii)). A field L 2 K is called a splitting

field for A if L ®K A is a matrix algebra over L.

Proposition 1.3 Let A be a simple algebra with center K. Then

for any splitting field L D K for A, ind(A)I[L:K]. If A is a

division algebra, then any maximal subfield L C A is a splitting field

for A and satisfies [L:K] = [A:K]1/2

Proof See Reiner [1, Theorem 28.5, and Theorem 7.15]. 13

We now consider orders in semisimple algebras. If R is a Dedekind

domain with field of fractions K, an R-order 21 in a semisimple

K-algebra A is defined to be an R-lattice (i. e., 21 is a finitely

generated R-module and A) which is a subring. A maximal R-order

in A is just an order which is not contained in any larger order. Our

main reference for orders and maximal orders is Reiner [1]. The most

important properties of maximal orders needed when studying Whitehead

groups are listed in the next theorem (and Theorems 1.9 and 1.19 below).

Theorem 1.4 Fix a Dedekind domain R with field of fractions K of

characteristic zero, and let A be a semisimple K-algebra. Then the

following hold.

(i) A contains at least one maximal R-order, and any R-order in A

is contained in a maximal order.

(ii) If A = fl
1Ai,

where the Ai are simple and )1 C A is a

maximal R-order, then 1)1 splits as a product lB _ Ik=1Ni, where for all

i, Dii is a maximal order in Ai.
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(iii) If A is commutative, then there is a unique maximal R-order

I C A. If A = fi_1Ki where the Ki are finite field extensions of K,

then _ [[i_1Ri, where Ri is the ring of R-integers in K.: i. e.,

the integral closure of R in Ki.

(iv) Any maximal R-order Il C A is hereditary: all left (or right)

ideals in V are projective as 1-modules, and all finitely generated

R-torsion free 1R-modules are projective.

(u) If C is any finite group, and if Th C R[C] is a maximal order

containing R[G], then IGI'Th C R[G].

Proof These are shown in Reiner [1]: (1) in Corollary 10.4, (ii) in

Theorem 10.5(1), (iii) in Theorem 10.5(iii), (iv) in Theorem 21.4 and

Corollary 21.5, and (v) in Theorem 41.1. o

Note that point (i) above is false if A is not semisimple. For

example, for n > 2, the ring of upper triangular nxn matrices over R

has no maximal Z-orders.

Example 1.2 has already hinted at the important role played by

cyclotomic extensions when working with group rings. The following

properties will be useful later.

Theorem 1.5 Fix a field K, and n > 1 such that char(K).I'n. Let

KCn denote a field extension of K by a primitive n-th root of unity.

Then KC /K is an abelian Galois extension, and Gal(KCn/K) can be

identified as a subgroup of (Z/n)*: each T E Cal(Kcn/K) has the form

T(Cn) = Kn) a for some unique a E (Z/n)*. Furthermore:

(i) (K = @) Gal(Q'n/tD)
=

(ZJn)*, and
Zfn C QCn

is the ring of

integers. In particular, under the identification D[Cn] ndInnd'
the

maximal Z-order in ([C] is
ndInZCd-

(ii) (Brauer) If G is a finite group, and char(K)4'exp(G)In,

then K is a splitting field for G: i. e., KCn[G] is a product of
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matrix algebras over Kcn.

Proof The embedding Gal(Kcn/K) C (U/n)* is clear. When K

Gal(Kn//) = (7L/n)* since [Q(n:'D] = v(n) (see Janusz [1, Theorem

1.9.2]); and 7L[n is the ring of integers in QCn
by Janusz [1, §1.9,

Exercise 2]. The last statement in (i) then follows from Theorem

1.4(iii). Brauer's splitting theorem is shown in Curtis & Reiner [1,

Corollary 15.18 and Theorem 17.1]. O

Note that when R is the ring of integers in an arbitrary number

field K, then RCn need not be the integral closure of R in Kcn. For

example, Z[Z] is the ring of integers in f(v ), but 7[v ,i] is not

the ring of integers in D(v,i) = Q(C12)-

For any field K and any finite group G, two elements g,h E G of

order n prime to char(K) are called K-conjugate if ga = xhx 1 for

some x E G and some a E Gal(Kcn/K) C (7LJn)*. For example, g and h

are C-conjugate if and only if they are conjugate; and they are

In-conjugate if and only if (g) and (h) are conjugate subgroups of G.

The importance of K-conjugacy lies in the following theorem.

Theorem 1.6 (Witt-Berman theorem) For any field K of

characteristic zero, and for any finite group G. the number of

irreducible K[G]-modules - i. e., the number of simple summands of K[G]

- is equal to the number of K-conjugacy classes of elements in G.

Proof The characters of the irreducible K[G]-modules form a basis

for the vector space of all functions (C ---> C) which are constant on

K-conjugacy classes. This is shown, for example, in Curtis & Reiner [1,

Theorem 21.5] and Serre [2, §12.4, Corollary 2]. n

Note that there also is a version of the Witt-Berman theorem when

char(K) > 0: the number of distinct irreducible K[G]-modules is equal to

the number of K-conjugacy classes in G of elements of order prime to

char(K). See Curtis & Reiner [1,Theorem 21.25] for details.
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lb. P-adic completion

Let R be the ring of integers in any number field K. For any

maximal ideal p C R, the p-adtc completion of R and K are defined

by setting

Rp = im R/pn; Kp = p[p] (p = char(R/p)).
n

Then Rp is a local ring with unique maximal ideal pRp, and Kp is its

field of fractions. Furthermore, Kp is a finite extension of gyp, and

Rp is the integral closure of
1p

in Kp.

Alternatively, RP and Kp can be constructed using the p-adtc

valuation vp: K -+ 7 U -. This is defined by setting

vp(r) = max{n > 0 : r EP n}

for r E R, and vp(r/s) = vp(r)- vp(s) in general. This induces a

v (
topology on K - based on the norm Ixlp = p

px)
- and Kp and RR

are the corresponding completions of K and R. Note that Rp is

compact under this p-adic topology, since it is an inverse limit of finite

groups.

If p g R C K are as above, then for any semisimple K-algebra A

any R-order 21 C A, the p-adic completions of A and 21 are defined by

setting

2[p = H/per = Rp ®R 21, Ap=Kp®KA=K 0R21p.

Then AP is a semisimple %-algebra (where p = char(R/p)), and 21p

is a Z-order in Ap. Note that if we regard A as a l-algebra, then

for any rational prime p (i. e., p E 7), and any 21 C A, 2(p = Z
p

0 21

and Ap =
P

®Q A.

The importance of using p-adic completions when studying K1(21) for
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a 7-order 3 is due partly because it is far easier to identify the units

(and invertible matrices) in the 2p than in 2[, and partly because

analytic tools such as logarithms and exponents can be used when working

in K1(21p). For example, results in Chapters 6 and 8 illustrate how much

more simply the groups Ki(2p[G]) and SK1(2p[G]) are described than the

groups Ki(Z[G]) and SK1(7[G]).

Now let E/F be any pair of finite extensions of Qp, let R C F

and S C E be the rings of integers, and let p C R and q C S be the

maximal ideals. Then E/F is unramifted if q = pS, and is totally

ramified if S/q = R/p.

Theorem 1.7 Fix an algebraic number field K, and let R be its

ring of integers. Let A be any semisimple K-algebra, and let 2I be any

R-order in A.

(i) For any rational prime p,

R
p

IIK, k
p RR A = pA and u = n21

P
pip

p p
pip

p p
pip

p p
pip

p

Here, the products are taken over all maximal ideals p g R which divide

p (i. e., p 7 pR).

(ii) KpA (p = char(R/p)) is unramified for all but finitely many

maximal ideals p g R.

(tit) AP is a product of matrix rings over fields for all but

finitely many p C R

(iv) 2Cp is a maximal -order in Ap for almost all p in R;

and 2I is a maximal R-order in A if and only if 21P is a maximal

RR-order in AP for all p g R.

Proof The first two points are shown in Janusz [1]: (1) in Theorem
11.5.1, and (ii) in Theorem 1.7.3. Points (iii) and (iv) are shown in
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Reiner [1, Theorem 25.7 and Corollary 11.6]. 0

The next proposition gives information about the groups F* and R*,

when R is the ring of integers in a finite extension F of &. In

particular, the reciprocity map F*/N(E*) = Gal(E/F)ab in (ii) below is

the key to defining norm residue symbols in K2(F) (Section 3a).

Proposition 1.8 Let F be any Finite extension of and let

p C R C F be the maximal ideal and ring of integers.

(i) Let µ C R* be the group of all roots of unity of order prime

to p. Then projection mod p induces an isomorphism }t 2-5' (R/p) and

for any generator n of p:

R* = g x (1+p) and F* = u x (l+p) x ('r)

(ii) For any Finite Galots extension E/F, there is a canonical

i somorpht sm

s : F*/NE,,(E*) ) Gal(E/F)ab

(the reciprocity map). If E/F is not Galois, then F*/NE/F(E*)

Cal(E'/F), where E' denotes the maximal abelian Galois extension of F

contained in E.

(iii) If E/F is unramtfted, and if q C S C E are the maximal

ideal and ring of integers, then the norm and trace homomorphtsms

N = NS/R : S* N R* and Tr = TrS/R : S % R

are surjectiue. Also, for all n 1, N(l+gn) = 1+pn and Tr(gn) = pn,

Proof To see (i), just note that

R* _ L- (R/Pn)* = ((l+p)/(1+pn) x (R/p)*) - (l+p) x (R/p)*;
n n
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since (l+p)/(l+pn) is a p-group for each n, and ptI(R/p)*I. Point

(ii) is shown in Cassels & Frbhlich [1, §VI.2.2, and §VI.2.6, Proposition

4]. The surjectivity of NS/R and TrS/R in (iii) is shown in Serre [1,

Section V.2]: by filtering e and R by the pn, and then using

analogous results about norms and traces for finite fields. O

The following very powerful structure theorem for p-adic division

algebras and their maximal orders is due to Hasse [1].

Theorem 1.9 Fix a finite extension F of Q let R C F be the

ring of integers, and let D be a division algebra with center F. Set

n =
[D:F]1/2.

Then there exists a maximal subfield E C D, with ring of

integers S C E, and an element n E D such that irEa 1 = E, for which

the following hold:

n-1
(i) E/F is unramified, and D =

i=0

n-1
= i(ii) A ® is the unique maximal 2p -order in D

i=0

(iii) vA is the unique maximal ideal in A

(iv) irnR is the maximal ideal in R.

Furthermore, for any r > 1 and any maximal 1 order ]A in Mr(D), 7k

is conjugate (in Mr(D)) to Mr(A).

Proof See Hasse [1, Satze 10 & 47], or Reiner [1, Section 14 and

Theorem 17.3]. 0

We end the section by noting the following more specialized

properties of p-adic group rings.

Theorem 1.10 Fix a prime p, let F be any finite extension of

Q, and let R C F be the ring of integers.
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(t) For any n such that p4n, F[C

n]
= ni-1Fi, where the Fi are

finite unramifted extensions of F. Under this identification, R[Cn] _

ni=1Ri, where Ri is the ring of integers in F1. In particular, Fcn/F

is unramified, and R[Cn] is the ring of integers in F.

(ii) For any finite group G, F[G] is a product of matrix algebras

over division algebras of index dividing 2 (if p = 2) or p-1 (if p

is odd). More precisely, if p is odd and Cp E F, or if p = 2 and

i E F, then F[G] is a product of matrix algebras over fields.

Proof (i) Since
n
1 E R, R[Cn] is a maximal 2p order in F[C

n]
by

Theorem 1.4(v). Hence, R[Cn] = ni=1Ri where the R. are the rings of

integers in Fi. If p C R is the maximal ideal, then R/p[Cn] is a

product of finite fields (since p = char(R/p)Fn), so pRi is the

maximal ideal in R. for each i, and F./F is unramified. The last

statement follows since Fi = FCn for some i.

(ii) For any field K of characteristic zero, a cyclotomic algebra

over K is a twisted group ring of the form A = LP[G]t, where L is a

finite cyclotomic extension of K, G = Gal(L/K), and (3 E H2(G;pL) (so

A is a central simple K-algebra). By the Brauer-Witt theorem (see Witt

[1], or Yamada [1, Theorem 3.9]), any simple summand A of F[G] is

similar to a cyclotomic algebra over its center. Then by another theorem

of Witt [1, Satz 12] (see also Yamada [1, Proposition 4.8 and Corollary
5.4]), for any finite extension E 2 QP(Cp) (p odd) or E 3 42(i)

(p = 2), any cyclotomic algebra over E is a matrix algebra. This

proves the last statement in (ii). The first statement then follows from

Proposition 1.3: for any simple summand A of F[G] with center E D F,

ind(A)I[Ep:E]jp-1 if p is odd, and ind(A)j[E(i):E]j2 if p = 2. D

Many of the elementary properties of K1(2I), when H is a 2p order

in a semisimple
Qp

-algebra, are special cases of results about semilocal

rings. These will be discussed in the next section.
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lc. Semilocal rings and the Jacobson radical

For any ring R, the Jacobson radical J(R) is defined to be the

intersection of all maximal left ideals in R; or, equivalently, the

intersection of all maximal right ideals in R (see Bass [2, Section

111.2]). For example, the Jacobson radical of a local ring is its unique

maximal ideal, and the Jacobson radical of a semisimple ring is trivial.

An ideal I C R is called a radical ideal if it is contained in

J(R). If R is finite, then I C R is a radical ideal if and only if it

is nilpotent (see Reiner [1, Theorem 6.9]). If 21 is a 1p order in a
semisimple @p-algebra, then J(2I) p21 and J(21)/p21 = J(21/p21); so I C 21

is radical if and only if lim In = 0. The next theorem helps to explain
n-wo

the importance of radical ideals when working in K-theory.

Theorem 1.11 For any ring R with Jacobson radical J = J(R), and

any n >1, a matrix M E Mn(R) is invertible if and only if it becomes

invertible in Mn(R/J). In particular, 1+J C R*.

Proof See Bass [2, Proposition 111.2.2 and Corollary 111.2.7].

The next example shows that p-adic group rings of p-groups are, in

fact, local rings.

Example 1.12 If R is the ring of integers in any finite extension

of QP, if p C R is the maximal ideal, and if G is any p-group, then

R[G] is a local ring with unique maximal ideal

J(R[G]) = {jrlgi ri E R, gi E G, Zr, E p}.

In particular, R[C]/J(R[G]) = R/p.

Proof See Curtis & Reiner [1, Corollary 5.25].

We now recall some of the basic definitions and properties of K1(-).

For any ring R, let GL
n
(R) be the group of invertible nxn matrices
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over R (any n> 1); and set GL(R) = Un-1GLn(R). For any i#j and any

r E R, let eij E GL(R) denote the elementary matrix which is the

identity except for the entry r in the (i,j)-position; and let E(R) C

GL(R) be the subgroup generated by the eij. If I C R is any (2-sided)

ideal, then GL(R,I) denotes the group of invertible matrices which are

congruent to the identity modulo I; and E(R,I) denotes the smallest

normal subgroup of GL(R) containing all ei. for r E I. Finally, set

K1(R) = GL(R)/E(R) and K1(R,I) = GL(R,I)/E(R,I). That these are, in

fact, abelian groups will follow from the next theorem.

For the purposes of this chapter, we define K2(R), for any ring R,

by setting K2(R) = H2(E(R)). The usual definition (involving the

Steinberg group), as well as some of the basic properties of, e. g.,

Steinberg symbols in K2(R), will be given in Section 3a.

Theorem 1.13 (Whitehead's lemma) For any ring R, and any ideal

I C R,

E(R) = [GL(R),GL(R)] = [E(R),E(R)], and

E(R,I) = [GL(R),GL(R,I)] = [E(R),E(R,I)].

For any A,B E GLn(R,I), (0 A 1) E E2n(R,I), and [0 B] in

K1(R,I). Furthermore, there is an exact sequence

K2(R) -+ K2(R/I) -+ Kl(R,I) - K1(R) -i K1(R/I).

Proof The commutator relations are due to Whitehead and Bass, and

are shown in Milnor [2, Lemmas 3.1 and 4.3]. The relation

A

A '/ = l0 I/(-A 1 OI)(0 I/(0 I

I)Q 01)(I -I
(0

is clear from the definition of E2n(R,I) (and is part of the proof that

[GL(R),GL(R,I)] C E(R,I)); and [diag(A,B)] as

an immediate consequence. The exact sequence is constructed in Milnor [2,
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Lemma 4.1 and Theorem 6.2]; and can also be derived from the five term

exact homology sequence (see Theorem 8.2 below). 0

A ring R is called semilocal if R/J(R) is semisimple; or

equivalently, if R/J(R) is artinian (see Bass [2, §111.2]). Thus, any

finite ring, and any ip order, are semilocal. As one might guess, given

Theorem 1.11 above, the functor K1 behaves particularly nicely for

semilocal rings.

Theorem 1.14 The following hold for any semtlocal ring R.

(t) Any element of K1(R) is represented by a unit (t. e., by a

one-by-one matrix).

(it) If R is commutative, then K1(R) R*. In particular,

SK1(21) = 1 if 21 is any commutative 2p order.

(iii) If S is another semilocal ring, and a: R - S is an
eptmorphtsm, then the maps

GLn(a): CLn(R) - CLn(S) and K1(a): K1(R) - K1(S)

(any n 1) are all surjectiue.

Proof These are all shown in Bass [2]: (i) in Theorem V.9.1, (ii)

in Corollary V.9.2, and (iii) in Corollary 111.2.9. 0

The following relation in K1(R,I), due to Vaserstein [1], is often

useful, and helps to simplify some of the proofs in later chapters.

Swan's presentation of K2(R,I) below (when I is a radical ideal) will

be used in this book only in the case when I2 = 0.

Theorem 1.15 For any ring R and any ideal I C R, if r E R and

x E I are such that (l+rx) E R*, then (l+xr) E R* and

(l+rx)(l+xr)-1 E E(R,I).
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If I is a radical ideal (t. e., I C J(R)), then

K1(R,I) = (1+I)/((l+rx)(l+xr)-1 : r E R, x E I).

In particular, K1(R,I) = I/(rx - xr : rER, xE I) if I2 = 0.

Proof Recall that E(R,I) = [GL(R),GL(R,I)] (Theorem 1.13). Using

this, the relation

10 1/1x O1/10

1+xr0

-
(100rx O1(x

O1)l0 1/ (1)

shows that (l+xr) E R*, and that (l+rrx (1+0r)_1) E E(R,I). In

particular, since (0 u9 ) E E(R,I) for any u E (1+I)* (Theorem 1.13

again), this shows that (l+rx)(l+xr)-1 E E(R,I).

The presentation for K1(R,I), when I C J(R), is due to Swan

[2,Theorem 2.1]. The last presentation (when I2 = 0) is a special case

of Swan's presentation, but is also an easy consequence of Vaserstein's

identity. O

When studying K1(21), for a 2p -order 21, it is often necessary to

get information about K1(21/I) and K2(21/I) for ideals I C 21 of finite

index. The next result is a first step towards doing this.

Theorem 1.16 Let R be a finite ring. Then K1(R) and K2(R) are

finite. Furthermore, (i) K2(R) = 1 if R is semisimple; (it) K2(R)

is a p-group if R has p-power order (for any prime p); and (iii)

pj'IK1(R)I if R is semisimple and has p-power order for some prime p.

Proof By Theorem 1.14(i), R* surjects onto K1(R). By Dennis [1,

Theorem 1], there is a surjection of H2(E5(R)) onto K2(R). So K1(R)

and K2(R) are both finite. If R is semisimple, then by the Wedderburn

theorem, R = ni_1Mri(Di), where the D. are finite division algebras

and hence fields. Then GL(R) = [[k=1CL(Di), E(R) = ((i=1E(D1); and hence
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k
Kn(R) H1=1Kn(Di) for n = 1,2. So K2(R) = 1 by Milnor [2, Corollary

9.13]; and p4IK1(R)I if R (and hence the Di) have p-power order.

By Theorem 1.11, if J C R is the Jacobson radical, then the group

X = Ker[E(R) -v E(R/J)] S U (1+Mn(J))
n>1

is a union of finite p-groups. Hence H.(X)[p] =0 for all i > 0; and

the Hochschild-Serre spectral sequence (see Brown [1, Theorem VII.6.3])

applies to show that

K2(R)[p] = H2(E(R))[P] = H2(E(R/J))[p] = K2(R/J)[p]

Since R/J is semisimple, K2(R/J) = 1; and hence K2(R)[p] = 1. a

We end the section with some localization exact sequences which help

to describe Ki(1k) when M is a maximal g- or 1P order. They are

special cases of Quillen's localization sequences for regular rings (or

abelian categories).

Theorem 1.17 (i) For any prime p, if Li is a maximal 7L-order

in a semisimple Qp-algebra A, and if J c I is the Jacobson radical,

then there is for all n Z 0 an exact sequence

... > Ki+l(IR) - K,+1(A) -+ Ki(Dt/J) -' Ki(T) - Ki(A) - ....

In particular, p4'ISK1(R)I.

(ii) Fix a subring A C Q and a maximal A-order I in a semisimple

Q-algebra A, and let be any set of primes not invertible in A. Set

ffi[ Th[p:pE5'], and let Jp c Dtp (for p E f) be the Jacobson radical.

Then there is an exact sequence

.. - Ki+1(Th) - Ki+l(M[1]) - K1(ip/Jp) '--' Ki(l) - Ki(Th[.i]) - ....
pE#



CHAPTER 1. BASIC ALGEBRAIC BACKGROUND 37

Proof These follow from Quillen [1, Theorems 4 and 5]. For example,

in case (ii), if M(N), M(R[l]), and N'(-N) denote the categories of

finitely generated IR-modules, R[!]-modules, and !O-torsion R-modules,

respectively; then by Quillen [1, Theorem 5] there is an exact

localization sequence

Ki+l(M(1R[4])) -' Ki(Mt(R)) -' Ki(M(T)) -* K1(_(R[1])) -+ ...

Since R and DI[!] are hereditary (Theorem 1.4(iv)), all finitely

generated R- or ]R[!]-modules have finite projective resolutions. It

follows that Ki(M(IR)) = Ki(7R) and Ki(M(I[1])) = Ki(IR[l]). For any

JR-module M, M = ®(p), and each M(p) has a filtration by

R /Jp modules. So by devissage (Quillen [1, Theorem 4]),

K.(Mt(T)) = ® Ki(i Jp).

P

In case (i), SKl(At) = Im[K1(Th/J) - Kl(1)]. Since 7R/J is

semisimple, K1(]IVJ) has order prime to p by Theorem 1.16(iii), and so

p4'ISKI(m)I. o

ld. Bimodule-induced homomorphisms and Morita equivalence

Define the category of "rings with bimodule morphisms" to be the

category whose objects are rings; and where Mor(R,S), for any rings R

and S, is the Grothendieck group modulo short exact sequences of all

isomorphism classes of (S,R)-bimodules SMR such that M is finitely

generated and projective as a left S-module. Composition of morphisms is

given by tensor product. The usual category of rings with homomorphisms

is mapped to this category by sending any f: R -> S to the bimodule

SSR'
where s3s2f(r). The importance of this category for

our purposes here follows from the following proposition.
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Proposition 1.18 For each i, K. is an additive functor on the

category of rings with btmodule morphtsms.

Proof Any (S,R)-bimodule M which is finitely generated and

projective as a left S-module induces a functor

M®R : E(R) E(S);

where Z(-) denotes the category of finitely generated projective

modules. So the proposition follows immediately from Quillen's definition

in [1] of Ki(R) using the Q-construction on $(R).

In the case of K1(-) and K2(-), this can be seen much more

directly. Let
SMR

be any bimodule as above, and fix some isomorphism

M ®P = Sk of left S-modules. For each n Z 1, define homomorphisms

[M®R ]n: CLn(R) = AutR(Rn) - ) AutS(Snk) = GL (S)

by setting [NOR]n(a) = (M OR a) ®Id(Pn) for each a E Aut(Rn). The

[M®R]n are easily seen to be (up to inner automorphism and stabilizing)

independent of the choice of isomorphism M ®P = Sk; and hence induce

unique homomorphisms on K1(R) = H1(GL(R)) and K2(R) t--- H2(E(R)). 13

As one example, transfer homomorphisms in K-theory can be defined in

terms of bimodules. If R C S is any pair of rings such that S is

projective and finitely generated as an R-module, then

trfR = [SOS], : K1(S) -- K1(R);

when S is regarded as an (R,S)-bimodule in the obvious way. The above

proposition is often useful when verifying the commutativity of

K-theoretic diagrams which mix transfer homomorphisms, maps induced by

ring homomorphisms, and others: commutativity is checked by constructing

isomorphisms of bimodules. Examples of this can be seen in the proofs of

Proposition 5.2 and Theorem 12.3, as well as throughout Chapter 11.
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Another setting in which it is useful to regard Ki(-) as a functor

defined on rings with bimodule morphisms is that of Morita equivalence. A

Morita equivalence between two rings R and S is an "invertible"

bimodule : i. e., for some bimodule 0S, MORN=S and N ®S M=R

as bimodules. In particular, [M®R]* and [NOS]* are inverse

isomorphisms between K1(R) and K1(S).

The simplest example of this is a matrix algebra. For any ring R

and any n > 1, Rn is invertible when regarded as an (Mn(R),R)-bimodule.

In this case, the induced isomorphisms Ki(Mn(R)) = Ki(R) are precisely

those induced by identifying GLm(S) with CL
mn

(R).

In Theorem 1.9, we saw that any maximal 2P order in a simple

-algebra Mn(D) (D a division algebra) is conjugate to a matrix

algebra over the maximal order in D. This is not the case for maximal

Z-orders in simple Q-algebras; but a result which is almost as good can be

stated in terms of Morita equivalence.

Theorem 1.19 Fix a Dedektnd domain R with field of fractions K.

Let A be any simple K-algebra. Write A = Mn(D), where D is a

division algebra, and identify A = EndD(V) for some n-dimensional

D-module V. Let A C D be any maximal R-order. Then Mn(A) is a

maximal R-order in A; and any maximal R-order in A has the form N =

EndA(A) for some A-lattice A in V. Furthermore, A is inuertible as

an (T,A)-bimodule, and so A and V induce for all i a commutative

square

Ki(A)
id

Ki(D)

Ki(m)
incl

Ki(A) = Ki(Nn
(D)).

Proof See Reiner [1, Theorem 21.6 & Corollary 21.7]. a
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This chapter presents some of the basic applications of the reduced

norm and logarithm homomorphisms to describe K1(21) and K1(A), when 2[

is a 7-order or 2p order in a semisimple Q- or @p algebra A. For

example, K1(21) is shown to be finitely generated whenever 21 is a

7L-order; and is shown to be a product of a finite group with a finitely

generated 7L-module in the 7L-order case. In both cases, the rank of

K1(21) is determined. Also, SK1(21) is shown (for both 7L- and

2p orders) to be the kernel of the "reduced norm" homomorphism from K1(21)

to units in the center of A.

The results about reduced norms are dealt with in Section 2a. These

include all of the results about 7L-orders mentioned above, as well as some

properties of 2p orders. Then, in Section 2b, p-adic logarithms are

applied to show, for example, that for any 7l-order 21, E(21) is

p-adically closed in GL(21) (i. e., that K1(21) is Hausdorff in the

p-adic topology).

2a. Applications of the reduced norm

For any field F, and any central simple F-algebra A, the reduced

norm homomorphtsm nrA.K: A* - F* for A is defined as follows. Let

E D F be any extension which splits A, and fix an isomorphism

E®FA -4-> Mn(E). Then for any a E A*, set nrA/(a) = detE(pp(l®a.)) E E*.

This is independent of the choice of gyp: any two such isomorphisms differ

by an inner automorphism of Mn(E) by the Skolem-Noether theorem (Theorem

1.1(iv) above). Furthermore, nrA/F,(a) E F* (it is fixed by the action

of Cal(E/F) if E/F is Galois); and is independent of the choice of

splitting field E. For more details, see Reiner [1, Section 9a].
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As one easy example, consider the quaternion algebra IH with center

R. A C-linear ring isomorphism gyp: CO
IR
Ui =+ M2(C) is defined by setting

p(101) = (0 '). W(1®i) = (10 i )' p(10j) = (-l
0

O)' W(10k) =
li

0
/.

Then, for any f = a+bi+cj+dk E 1H,

nr (g) = det(-c+di c+bi
I - a2+b2+c2+d2.

It is immediate from the definition that nrA/F: A* -> F* is a

homomorphism. For any n > 1, Mn(A) is again a central simple F-

algebra, and is the extension to GLn(A) of nrMn_1(A)/F' So

the reduced norm extends to a homomorphism defined on GL(A), and hence

factors through its abelianization K1(A). For example, nr., induces

an isomorphism between K1(H) and the multiplicative group of positive

real numbers.

The first lemma lists some of the immediate properties of reduced

norms.

Lemma 2.1 Fix a field F, and let A be a central simple

F-algebra. Set n = [A:K]1"2. Then the following hold.

(t) detF(A ' A) = nrA/(u)n for any u E A*.

(ii) nrA/(u) = un for any u E F*.

(iii) If A = Mn(F), then nrA/F: A* --> F* is the determinant

homomorphism.

(iv) If E C A is a subfield containing F, and if B is the cen-

tralizer of E in A, then nr ,T(u) = NE/(nrB/E(u)) for any u E B*.

Proof The first three points are shown in Reiner [1, Section 9a].
Point (iv) is shown in Draxl [1, Corollary 22.5]; and also follows easily
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from the relations among (reduced) characteristic polynomials in Reiner

[1, Theorems 9.5, 9.6a, and 9.10(iii)]. 0

Now, for any semisimple Q- or %-algebra A = ([i=1Ai, where each

A i is simple with center Fi, and any Z- or 2p order 21, we let

nrA: K1(A) --> fi(F.)* = Z(A)* and nr21: K1(21) -* Z(A) *

denote the homomorphisms induced by the product of the reduced norm maps

for the Ai. Note that nrA and nr2[ are used here to denote the

homomorphisms defined on K1(-), while nrA,,F denotes the reduced norm

*as a map on e.

The following lemma will be useful when computing Ker(nrA).

Lemma 2.2 Let E F be any finite field extension of degree n,

and let A be any F-algebra. Then

Ker[K1(i):
K1(A) ) K1(E ®F A)]

(where i(x) = 1®x) has exponent dividing n.

Proof By Proposition 1.18, the composite

trf o K1(i) : K1(A) Kl(E ®F A) ) K1(A)

is induced by tensoring with E ®F A, regarded as an (A,A)-bimodule.

Since F is central in A, E ®F A = An as (A,A)-bimodules, and so

trf o K1(i) is multiplication by n. The result is now immediate. 0

If A is any simple ER-algebra with center K, then a real valuation

v of K (i. e., an embedding v: K y IR) is called ramified in A if

IR 0vK A is a matrix algebra over Ui.
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Theorem 2.3 Let A be a simple l- or Qp-algebra with center

F = Z(A), let 9 C A be a maximal 7L- or pp-order, and let R C F be

the ring of integers. Then

nrA : K1(A) 0 F*

is injectiue; and Im(nrA) and Im(nr,,,) are described as follows:

(t) If A is a %-algebra, then

nrA(K1(A)) = FTM and nrl(K1(IR)) = R*.

(ii) If A is a ID-algebra, then set

F* = {u E F* : v(u) > 0 for all ramified v: F '- Itl; R + = F+ fl R*.

Then

nrA(K1(A)) = F+ and nritK1(Th)) = R+.

Proof Recall that the index of A = Mr(D) (D a division algebra)

is defined by ind(A) = ind(D) =
[D:F]1/2.

Step 1 We first consider the formulas for Im(nrA) and Im(nrN).

Set n = ind(A). Note first that nrN(K1(M)) C R*: for any u E GLk(l),

nr
A/F(U)n

= detF(Ak u-> Ak) = detR(IRk
u* Thk) E R*

(Lemma 2.1(1)), and so nrA/F(u) E R*.

If F is a finite extension of Qp, then by Theorem 1.9, we can

write A = Mr(D) and Th = Mr(A), where D is a division algebra and

A C D a maximal order. Also by Theorem 1.9, there is a maximal subfield

E C D and an element a E D such that E/F is unramified, such that
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7Ea 1 = E, and such that nn generates the maximal ideal in R. By

Lemma 2.1(iv), nrDJE = NE/F the usual norm. If S C E is the ring of

integers, then NE',F(S*) = R* by Proposition 1.8(iii); and so

nr7(K1(71)) 2 (N ,(S*), nrD/F(a)) = (R*,
(-1)n-lan) = F*.

If F is a finite extension of Q, then the formula for nr,,(A*)

is the Hasse-Schilling-Maass norm theorem (see, e. g., Reiner [1, Theorem

33.15]). To see that nr,N(K1(N)) = R+, fix some u E R+, and choose

M E GL(A) such that nr(M) = u. Let n be the product of the

distinct primes at which M is not invertible; and set An = [[p'nAp,

Rn =
nplnRp, etc. Then nrAn([M]) E (Rn)* = nrin(K1(i n)). So assuming

the injectivity of nrl. = npinnrA (shown in Step 2 below), there exist

P

elementary matrices e l.iji (r1),...,e
ikJk

(rk) E E(A
n

) such that

M -e
iljl

(rj)... e
ikjk (rk) E

GL(iiin
).

Choose elements T1 , ... , Tk E DI[n] such that ft = rt (mod in) for all

t. Note that it suffices to do this on the individual coordinates (in

of the rt with respect to some fixed 7L-basis of fit. If we now set

then nrA,,F(M)=nrA,,F(M) = u and MEGL(IR).

Step 2 The injectivity of nrA was first shown by Nakayama &

Matsushima [1] in the p-adic case, and for lu-algebras by Wang [1]. The

following combined proof, using induction on [A:F], is modelled on that

in Draxl [1].

Step 2a Assume first that E C A is a subfield such that E/F is a

cyclic Galois extension of degree n > 1, and let B denote the

centralizer of E in A. We claim that [u] = 1 in K1(A) for any u E

B* such that nrA/F(u) = 1.

Note first that B is a simple algebra with center E (see Reiner
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[1, Theorem 7.11]), and that [B:E] < [A:F]. So nrB is injective by

the induction hypothesis. Furthermore, by Lemma 2.1(iv),

nrA/F(u) = NE, (nrB/E(u)) = 1. (2)

Set G = Gal(E/F) = 7Vn, and consider the exact sequence in cohomology

H 2(G;E*/nrB(B*)) --) fl-1 (G;nr B(e)) - H 1(G;E*).

Here, if J+ E G is a generator, we identify for any G-module M:

R-1
(G;M) = {x E M: NC(x) = x+4,(x)+...+P-l(x) = 0}/{y(x)-x : x E M}.

In particular, fl- 1(G;E*) = 1 by Hilbert's Theorem 90 (see Janusz [1,

Appendix A]). Also, by Step 1, fl-2(G; e/nrWe)) = 1: in the p-adic

case since E* = nrB(B*); and in the Q-algebra case since E*/nrB(B*)

is a product of copies of {±l} for certain real embeddings E and

these real embeddings are permuted freely by G.

Thus, H 1(G;nrB(B*)) = 1. So by (2), there is an element v E BTM

such that

,y(nrB/E(v)) (nrB/E(v))-1 = nrB,(u) .

Furthermore, by the Skolem-Noether theorem (Theorem 1.1(iv)), there is an

element a E A such that axa 1 = 4'(x) for all x E E. Then ava
1
E B

(B is the centralizer of E), and

nrB/E([a,v]) = nrB/E(ava 1)/nrB/E(v) = P(nrB/E(v))/(nrB/E(v)) = nrB/E(u)-

Thus I 1, so 1 in K1(B) by the

induction hypothesis; and hence [u] = 1 E K1(A).

Step 2b The rest of the proof consists of manipulations, using Lemma

2.2, to reduce the general case to that handled in Step 2a. Fix a prime
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P, and any u E A such that nrAfF(u) = 1. We will show that

[u] E K1(A) has finite order prime to p.

Let P F be a splitting field such that P/F is Calois, and let

F' C P be the fixed field of a p-Sylow subgroup of Cal(F/F). Then

p4'[F':F], and [P:F'] is a p-power. Write

F' ®F A - Mr(D) and [10u] = [v] E K1(D), (3)

where D is a division algebra, F' = Z(D), V E D*, and nrD/F(v) = 1.

Now let E 2 F'(v) be any

E Q E be any normal closure of

field of some p-Sylow subgroup

ind(D)= [E:F']I[P:F']

Set B = KOF' D.

maximal subfield containing v, and let

E over F'. Let K C E be the fixed

of Gal(E/F'). Thus, pl[K:F']; and

is a p-power by Proposition 1.3.

and identify v E D with 10v E B. Then nrB/(v)

=1, and v E L = K ®F, E. Also, L is a field, since [K:F'] and

[E:F'] are relatively prime; K C L C E, and is a Calois extension

of p-power degree. If L = K, then [B:K] = [L:K]2 = 1, and so v = 1.

Otherwise, there is a subfield L C L such that L/K is a degree p

Calois extension, and v centralizes L. In this case, since [B:K] _

[A:F], Step 2a applies to show that [v] = 1 E K1(B) = Kl(K ®F, D).

Lemma 2.2 now applies to show that

[10u][K:F'] = 1 E Kl(F' OF A)

[v][K:F'] = 1 in K1(D). Hence

by (3), and a second application of Lemma

2.2 shows that [u] [K:F] = 1 in K1(A). But p4[K:F] by construction,

and so [u] has order prime to p in K1(A). 0

The following lemma, due to Swan [2], makes it possible to compare

K1(21) with K1(B), when 4 C 23 is any pair of orders in the same

algebra. It will also be used in the next chapter when constructing

localization sequences.

Lemma 2.4 Let R C S be any pair of rings, and let I be any

S-ideal contained in R. Then

E(S,I2) 9 E(R,I) 9 E(R).
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If, furthermore, S/I2 is ftntte, then the induced map K1(R) --+ K1(S)

has finite kernel and cokernel.

Proof If eij denotes the elementary matrix with single off-

diagonal entry r in (i,j)-position, then eij = [eik,ekj] for any

r,s E I and any distinct i,j,k. Hence, since by definition E(S, 12) is

the smallest normal subgroup in CL(S) containing all such eij,

E(S, 12) C [E(S,I), E(S,I)] C [GL(S,I), CL(S,I)]

_ [CL(R,I), GL(R,I)] C [GL(R),CL(R,I)] = E(R,I)

(see Theorem 1.13).

Now consider the following diagram, with exact rows and column:

E(S,I2)/E(R,12)

K2(R/I2) K1(R,I2) --> K1(R) --' K1(R/12)

(2)

K2(S/I2) -) Kl(S,I2) -) K1(S) - ) K1(S/I2).

(1)

By Theorem 1.16, Ki(R/I2) and Ki(S/I2) (i = 1,2) are all finite.

Also, E(S,I2)/E(R,I2) is finite since by (1),

E(S,I2)/E(R,I2) C (E(R) fl GL(R,I2))/E(R,I2) = Ker[K1(R,I2) -4 K1(R)].

This shows that three of the maps in square (2) have finite kernel and

cokernel, and so the same holds for K1(R) -' K1(S). a

We are now ready to apply reduced norm homomorphisms to describe the

structure of K1(2f,I) - modulo finite groups, at least - when 2f is a

7- or 2 p order and I C 2f is an ideal of finite index.
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Theorem 2.5 Let A be a semtstmple Q- or %-algebra, let 21 be

any Z- or2p -order in A, and let I C 21 be an ideal of finite index.

Then

(t) SK1(21) = Ker(nr2) and is finite.

(it) nr2,I : K1(21,I) - R* has finite kernel and cokernel, where

e is the product of the rings of integers in the field components of the

center Z(A).

(iii) If A is a Q-algebra, then K1(21,I) is a finitely generated

abeltan group. If

q = number of simple summands of A, and

r = number of simple summands of fl ®Q A,

then rk2(K1(21,I)) = r - q.

Proof (i) The equality SK1(21) = Ker(nr2) is immediate from the

injectivity of nrA. If Th _D 21 is a maximal order, then Lemma 2.4 shows

that SK1(21) is finite if and only if SK1(II) is. By the localization

sequences of Theorem 1.17, SK1(71t) is torsion, and is finite if R is a

1p -order. (A proof of this which does not use Quillen's localization

sequence is given by Swan in [3, Chapter 8].)

When 21 is a Z-order, then by a theorem of Bass [1, Proposition

11.2], every element of K1(21) is represented by a 2x2 matrix. Also,

Siegel [1] has shown that GL2(21) is finitely generated. So SK1(21) is

finitely generated, and hence finite, in this case. Alternatively, the

finiteness of SKI(M) follows from Theorem 4.16(i) below.

(ii) Let M D 21 be a maximal order. Then the maps
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K1(21,I)
-)

K1(2l)
--' K1(N) nr)

R*

all have finite kernel and cokernel: the first since K2(2VI) and

K1(2VI) are finite (Theorem 1.16), the second by Lemma 2.4, and nr,, by

Theorem 2.3 and (i) above.

(iii) If A is a D-algebra, then write F = Z(A) = [IF1, where the

F. are fields, and let Ri C Fi be the ring of integers. By the

Dirichlet unit theorem (see Janusz [1, Theorem 1.11.19]), R* _ fl(R.)* is

finitely generated and

rk7(R*) _ rk7(R*) _ [(no. field summands of IR 0 Fi) - 1]
i=1 1 i=1

= (no. field summands of IR ®Q F) - q = r - q.

By (ii), the same holds for K1(21,I). o

In the case of an integral group ring, the formula for rk(K1(7L[G]))

can be given a still nicer form, using the concept of "K-conjugacy"

defined in Section la. Note that in any finite group G, two elements

g,h E G are IR-conjugate if g is conjugate to h or h-1; and are

ED-conjugate if the subgroups (g) and (h) are conjugate.

Theorem 2.6 Fix a ftntte group G, and set

r = no. of IR-conjugacy classes to G,

q = no. of D-conjugacy classes to G.

Then rk(Wh(G)) = rk(K1(7[G])) = r - q.

Proof By the Witt-Berman theorem (Theorem 1.6), for any K C C,
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(no. K-conjugacy classes in G) = (no. irred. K[G]-modules)

= (no. simple summands in K[G]).

The result is now immediate from Theorem 2.5(iii). o

2b. Logarithmic and exponential maps in p-adic orders

In the last section, reduced norms were used to compare K1(21), for

any2P -order 21, with the group of units in the center of the maximal

order. Now, p-adic logarithms will be used to get more information about
the structure of Kl(2[).

Throughout this section, p will be a fixed prime, and the term

"p-adic order" will be used to mean any 8p algebra which is finitely

generated and free as a 2 p module. The results here are shown for

arbitrary p-adic orders, to emphasize their independence of the more

specialized properties of orders in semisimple &-algebras. Any p-adic

order R is semilocal, since R/J(R) is finite. So by Theorem 1.14(1),

K1(R) is generated by units in R; and K1(R,I) is generated by units

in 1+I for any ideal I C R.

For any p-adic order R and any x E R, define

2 3 2 3
Log(l+x) = x -

2
+

3
- ... and Exp(x) = 1 + x + 2- + 3i + ...

whenever these series converge (in @ 01 R, at least). Just as is the

case with the usual logarithm on IR, p-adic logarithms can be used to

translate certain multiplicative problems involving units in a p-adic

order to additive problems - which usually are much simpler to study.

The main results of this section are, for any p-adic order R and any
ideal I C R, that Log induces a homomorphism

log, : K1(R,I) -+ Q ®Z (I/[R,I]),
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that Ker(logl) is finite and Im(logl) is a ap-lattice, and that

E(R,I)f1GLn(R,I) is closed in GLn(R,I) for all n.

Throughout this section Log and Exp are used to denote set maps

between subgroups of e and R, while log and exp denote induced

group homomorphisms. For any pair of ideals 11,12 c R, [11,12] denotes

the subgroup of R generated by elements [a,b] = ab - ba for all a E I1

and b E 12. Recall (Theorem 1.11) that for any radical ideal I c J(R),

every element in 1+I is invertible. The following lemma collects most

of the technical details which will be needed throughout the section.

Lemma 2.7 Let R be any p-adic order, let j = J(R) denote the

Jacobson radical, and let I C; J be any radical ideal.

(t) Set R0 = O ®Z R=R[ 1
] and IQ = @ ®g I = I[p]. Then for all

u,v E 1+ I, Log(u) and Log(v) converge in IQ, and

Log(uv) = Log(u) + Log(v) (mod [R0,I0]). (1)

(it) Assume I C fR for some central element f E Z(R) such that

fp E pfR. Then for all u,v E 1+ I, Log(u), Log(v) E I and

Log(uv) = Log(u) + Log(v) (mod [R,I]). (2)

(iii) Assume I c fR for some f E Z(R) such that fp E pfR, and

also that Ip c pIJ. Then Exp(x) converges in 1 + I for all x E I;

and Exp and Log are inverse bijecttons between I and 1 + I. In

addition, Exp([R,I]) C_ E(R,I), and for any x,y E I:

Exp(x + y) = Exp(x)'Exp(y) (mod E(R,I)). (3)

Proof The proof will be carried out in three steps. The convergence

of Log(u) or Exp(x) in all three cases will be shown in Step 1. The

congruences (1) and (2) will then be shown in Step 2, and congruence (3)

in Step 3.

Step 1 For any n Z1, J/pnR is nilpotent in R/pnR. Hence, for
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any x E I C J, lim(xn) = 0, and lim(xn/n) = 0. The series for
n-m n-m

Log(l+x) thus converges in IQ.

Under the hypotheses of (ii), IP C pI, and so In C nI for all
n >1 (all rational primes except p are inverted in 1p C R). So for

any x E I, xn/n E I for all n, and hence Log(l+x) E I.

To see that Exp(x) converges when Ip C pIJ, note first that for

any n > 1,

n!.P ([n/P]+[n/p2]+[n/p3]+...) E (2 )*
P

where [.] denotes greatest integer. For any n > p,

In C (IP)[n/P] C

n > p2, then In C
any n > 1,

Similarly, if

induction, for

and by

In C
p([n/P]+[n/p2]+...+[n/pk]).I.Jk

= nl.IJk (if pk < n<
pk+l). (4)

Thus, _L.In C I for all n, lim
_L. In

= 0; and so Exp(x) converges
n-

in 1+I for any x E I. The relations Log o Exp(x) = x and

E x p o Log(l+x) = l+x, for x E I, follow from (4) and the corresponding
relations for power series.

Step 2 For any radical ideal I C R, set

U(I) _ Z
m+n.[Im,In]

C [%,IQ], (5)
m,n>1

a 2p submodule of R. If I C fR, where f E Z(R) and fP E pER, then

fn E nfR for all n, and

/ m+n \
U(I) = ([r, n s] : m,n> 1, fmrE lm, fnsE ln, fr,fsE I) C [R,I].

So congruences (1) and (2) will both follow, once we have shown the



CHAPTER 2. STRUCTURE THEOREMS FOR K1 OF ORDERS 53

relation

Log((l+x)(1+y)) = Log(l+x) + Log(l+y) (mod U(I)) (6)

for any I and any x,y E I.
For ,each n> 1, let W. be the set of formal (ordered) monomials of

length n in two variables a, b. For w E W,,, set

C(w) = orbit of w in W. under cyclic permatations

k(w) = number of occurrences of ab in w

r(w) = coefficient of w in Log(1+a+b+ab)

k$w) (-1)n-i-1
1 (k(w) )

i=O r-i 1 i /'

To see the formula for r(w), note that for each i, w can be written in
``(k(w))

ways as a product of i (ab)'s and n-2i a's or b's.
i

Fix an ideal ICJ and elements x,y E I. For any n > 1, any

wEW,,, and any w' EC(w), w' is a cyclic permutation of w, and so

w'(x,y) = w(x,y) (mod [Ii,Ij]).

for some i,j such that i+j =n. It follows that

00

Log(l+x+y+xy) = I I r(w)'w(x,y)
n=1 wEW,

j r(w')).w(x,y) (mod U(I)).
n=l w'ECW

(7)

For fixed wEW,,, if IC(w)I = n/t (i. e., w has cyclic symmetry of
order t), and if

k = ma+(w') : w' E C(w)

then C(w) contains k/t elements with k-1 (ab)'s (i. e., those of the
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form b...a) and (n-k)/t elements with k (ab)'s. So

k

w'

r(w') = k(")]
CCw

k
(( 11 (( l1_ I (_1)n-i-l,n11,r(n_k)(k)

+ (k-i)( )]
1=0 L

1 k n i 1 (( k11
0 if k>O(-1

'l1=0 i / n if k=0 (so t=n).

Formula (7) now takes the form, for any x,y E I,

n
Log((1+x)(l+y)) a E

(_1}n-1,(nn +
n /

(mod U(I))
n=l /

= Log(l+x) + Log(l+y);

and this finishes the proof of (6).

Step 3 Now assume that I C fR for some central f E R such that

fp E pfR, and that Ip C pIJ. In particular, by Step 1, Exp and Log

are inverse bijections between I and 1+ I. So for any x,y E I,

Log(Exp(x)'Exp(y)) = x+ y (mod U(I))

by (6). It follows that

Exp(x)'Exp(y) E Exp(x + y+ U(I))

for x,y E I; and hence that

Exp(x)'Exp(y)'Exp(x+y)-1 E Exp(x+y+U(I))'Exp(-x-y)

C Exp(U(I)) C Exp([R,I]).

(8)

(9)

So it remains only to show that Exp([R,I]) C E(R,I). Note that for all

rER and xE I,
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n-1 00 ()n-1
Exp(rx)-Exp(xr)-1

= l1+ r( I
x

rn! ))(1+ (I
x

rn! )r)-1 E E(R,I)
l n=1 n=1

(10)

by Vaserstein's identity (Theorem 1.15).

Fix some 2p basis [rl,vl],...,[rm,v for [R,I], where

and v. E I. Definei

y : [R,I] -i Exp([R,I])

by setting, for any x = Gi-lai[ri,vi] E [R,I] (ai E 71p):

m I.
_ (Exp(airivi) Exp(aiviri) .

i=1

Then Im(y) C E(R,I) by (10). For any k > 1 and any x,y E pkI,

Exp(x)-Exp(y) ° Exp(x+y) (mod U(pkl) C p2kU(I) C p2k[R,I])

by (9). Also, for any k,e > 1 and any x E pk, y E peI,

Exp(x)-Exp(y) E Exp(y)'Exp(x) (mod [pkl,peI] pk+e[R,I]).

So for any e > k > 1, and any x E pk[R,I] and y E pk[R,I],

`1+(x) = Exp(x) (mod
p2k[R,I])

,P(x + y) = P(x)'J+(y) a (mod
pk+e[R,I]).

For arbitrary u E Exp(p[R,I]), define a sequence

ri ER

x0,xl,x2,...

[R,I] by setting

x0 = Log(u) E p[R,I]; xi+l = xi +
Log(,P(xi)-1.u).

By (11), applied inductively for all i > 0,

in

J+(xi) _ u,
xi+l = xi

(mod p2+i[R,I]).
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So {x.} converges, and u = P(lim x.). This shows that
1 i- 1

Exp(p[R,I]) C Im(y) C E(R,I). (12)

Now define subgroups Dk, for all k > 0, by setting

Dk = (rx - xr : xE I, rER, rx,xr E IJk) C [R,I] fl IJk.

Recall the hypotheses on I: I C ER, where f E Z(R) and Ep E pER,

and Ip C pIJ (so In C nIJ for all n). Then for all k > 0,

U(IJk) = V
m,n>1

(by (5))

n
C ([r, - s] : n >2, Er,Es E IJk, fnrs,,nsr E (IJk)n g nIJk+1\ C Dk.1

Together with (8), this shows that Exp(Dk) C Exp([R,I]) are both

(normal) subgroups of R*. Also, by (9), for any x,y E IJk,

Exp(x)-Exp(y) a Exp(x+y) (mod Exp(U(IJk)) C Exp(Dk+1)) (13)

For any k > 0 and any x E Dk, if we write x = Z(rixi - xiri) (where

ri E R, xi E I; rixi, x
i
r
i

E IJk), then

Exp(x) a
l(Exp(rixi)-Exp(xiri)-1) (mod Exp(Dk+1)) (by (13))

1 (mod E(R,I)). (by (10))

In other words, Exp(Dk) C for all k > O. But

Dk C p[R,I] for k large enough (Dk C [R,I]fllJk); and so using (12):

Exp([R,I]) = Exp(Do) C C E(R,I). 0

Constructing a homomorphism induced by logarithms is now straight-

forward.
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Theorem 2.8 For any p-adic order R with Jacobson radical J C R,

and any 2-sided ideal I C R, the p-adic logarithm Log(l+x) (for

x E If1J) induces a unique homomorphism

logl K1(R,I) -' ® (IILR,I])

If, furthermore, I C R for some central f E Z(R) such thatp E pER,

then the logarithm induces a homomorphism

log' K1(R,I) ---.+

and log' is an isomorphism if Ip C pIJ.

Proof Write R _ and I _for short, and let J be

the Jacobson radical of R. Assume first that I C J. By Lemma 2.7(i),

the composite

L : 1+I Log) I r°

is a homomorphism.

For each n > 1, let

(1)

Trn IQ/[RI@] (2)

be the homomorphism induced by the trace map. Then (1), applied to the

ideal M(I) C M(R), induces a homomorphism

Ln 1+ Mn(I) = GLn(R,I)
Log. Trn.

For any n, and any u E 1 + M( I) and r E GLn(R) ,

Ln([r,u]) = Ln(rur 1) - L(u) =
1)

- Trn(Log(u)) = 0;

and so L = U(L) factors through a homomorphism
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log, : K1(R,I) = GL(R,I)/[GL(R),GL(R,I)] ) IQ/[RQ,IQ].

Now assume that I is arbitrary, and set Io = If1J. Consider the

relative exact sequence

K2(R/Io,I/Io) -' K1(R,Io) -' KI(R,I) --> K1(R/IO,I/Io)

(see Milnor [2, Remark 6.6]). The surjection R/Io --% R/J sends I/Io

isomorphically to (I+J)/J, which is a 2-sided ideal and hence a ring

summand of R/J (R/J is semisimple). In particular, I/Io is a

semisimple ring summand of R/I0, and by Theorem 1.16,

K2(R/Io,I/Io) = K2(I/Io) = 1 and pl'IK1(R/Io,I/Io)I = IK1(I/I0)I.

So logo (Io C J) extends uniquely to a homomorphism

log, : K1(R,I) -* IQ/[%,IQ].

If I C gR for some central f E R such that fp E pER, then by

Lemma 2.7(ii), Log(1+I) C I, and the composite

L: 1+I -L'24 I » I/[R,I]

is a homomorphism. The same argument as before then shows that L

factors through a homomorphism logI defined on K1(R,I). If Ip C pIJ,

then Log is bijective and Log 1([R,I]) C E(R,I) by Lemma 2.7(iii); and

so logI is an isomorphism.

The next result is based on a theorem of Carl Riehm [1]. Roughly, it

says that for any p-adic order R, the p-adic topology on R* makes

K1(R) into a Hausdorff group.

Theorem 2.9 For any p-adic order R and any 2-stded ideal I C R,

Ker(log,) is finite; and for all n the group
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En(R,I) = GLn(R,I) fl E(R,I) = Ker[GLn(R,I) -+ K1(R,I)]

is closed (in GLn(R,I)) in the p-adtc topology.

Proof Set % = Q Oz R and I,, = @ ®g I as before, and write

L = log, o proj : GL1(R,I) --» K1(R,I) -1 IQ/[RR,IQ].

By Lemma 2.7(iii) and Theorem 2.8, Log: l+p21 -' p21 is a

homeomorphism, and factors through an isomorphism

logp2l : K1(R,p21) = (l+p21)rE1(R.P21) -_' P21/[R,P2I].

In particular, since [R,p2I] = Log(E1(R,p2I)) is open in [RO,I,4],

E1(R,p2I) C E1(R,I) are open subgroups of Ker(L).

Now, GL1(R,I) is compact: it is the inverse limit of the finite

groups GL1(R/pnR,(I+pnR)/pnR). So Ker(L) is compact, and any open

subgroup of Ker(L) has finite index. It follows that

Ker(log,) = Ker(L)/ 1(R,I)

is finite.

Any open subgroup of a topological group is also closed (its

complement is a union of open cosets). In particular, E1(R,I) is closed

in Ker(L) and hence also in GL1(R,I). To see that En(R,I) is closed

in GLn(R,I) for all n, just note that by definition, En(R,I) _

E1(Mn(R),Mn(I)). 0

The following description of the structure of K1(R,I) is an easy

consequence of Theorem 2.9.
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Theorem 2.10 For any p-adic order R with Jacobson radical J C R,

K1(R) - K1(R/J) ® K1(R,J),

where K1(R/J) is finite of order prime to p, and K1(R,J) is a

finitely generated p-module. If I C R is any (2-sided) ideal, then

(i) K1(R,I) is the product of a finite group with a finitely

generated 7LP module and

rk2 I/[R,I];
D

(ii) K1(R,I) is a -module (i. e., contains no torsion prime to

p) if I C J; and

(iii) K1(R,I) = im K1(R/pnR,(I+pnR)/p'1R)
n

Proof Note first that Log(1+p2I) = p2I by Lemma 2.7(iii). Hence,

since 1+p21 has finite index in 1+I, the image of

logl K1(R,I)

is a i lattice. Since Ker(logl) is finite by Theorem 2.9, K1(R,I) is

now seen to be a product of a finite group with a 7Lp module, and

rk$ K1(R,I) = rk I/[R,I].
P P

To prove (iii), note first that

GL1(R,I) = im GL1(R/pnR,(I+pnR)/p'1R).
n

Since E(R,I) fl GL1(R,I) is closed in GL1(R,I) (Theorem 2.9), it is

also an inverse limit of groups of elementary matrices over. R/p11R. The
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description of K1(R,I) as an inverse limit then follows since im

preserves exact sequences of finite groups.

If I C J, then

GL1(R/p"R, (I+PnR)/prR) = 1- (I+PnR)/PnR

is a p-group for all n. So K1(R,I) is a pro-p-group, and hence a

ip module, by (iii). Since K2(R/J) = 1 (Theorem 1.16), the sequence

1 - K1(R,J) K1(R) -* K1(R/J) - 1

is exact; and is split since K1(R,J) is a i module and K1(R/J) is

finite of order prime to p (Theorem 1.16 again). a

Theorem 2.10 will be the most important application of these results

needed in the next three chapters. P-adic logarithms will again be used

directly in Chapters 6 and 7, but in the form of "integral" logarithms for

p-adic group rings, whose image is much more easily identified.

We end the chapter with the following theorem of Kuku [1], which

applies results from both Sections 2a and 2b. Note in particular that if

D1 is a maximal i order in any semisimple Q-algebra, then SKI(M) = 1 if

and only if A is a product of matrix algebras over fields.

Theorem 2.11 Let A be a simple s-algebra with center F, and let

N C A be any maximal order. Then SK1(Th) is cyclic of order

(qn - 1)/(q - 1), where n = ind(A), and where q is the order of the

residue field of F.

Proof By Theorem 1.9, it suffices to show this when A is a

division algebra: otherwise, if A = Mr(D), and A C D is the maximal

order, then ]R = Mr(A) by Theorem 1.9. In particular, [A:F] = n2. Let

R C F be the ring of integers, and let p C R and J C DI be the maximal

ideals. By Hasse's description of W (Theorem 1.9), IVJ is a field and

[DVJ : R/p] = n. Also, pj1SKI(IR) I by Theorem 1.17(1). It follows that
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SK1(I) = Ker[nr,: K1(IR) --» K1(R)][P] (Theorem 2.5)

Ker[(WJ)* - (R/p)*]; (Theorem 2.10)

where the reduced norm is onto by Theorem 2.3(i). Since (IVJ)* is

cyclic, this shows that SK1(A1) is cyclic of order

I('d/J)*III(R/p)*I = (qn-1)/(q-1). 13
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So far, all we have shown about SK1(7L[G]) is that it is finite. In

order to learn more about its structure, except in the' simplest cases,

exact sequences which connect the functors K1 and K2 are necessary.

The Mayer-Vietoris sequences of Milnor [2, Theorems 3.3 and 6.4] are

sufficient for doing this in some cases (see, e. g., the computation of

SK1(7L[Q(8)]) by Keating [2]). But to get more systematic results, some

kind of localization exact sequence is needed which compares the K-theory

of Z[G] with that of Q[G] or a maximal order, and their p-adic

completions.

The results here on localization sequences are contained in Section

3c. The principal sequence to be used (Theorem 3.9) takes the form

K2(iip) -> C(A) SK1(21) - ® SK1(up) -i 1

for any Z-order 21 in a semisimple Q-algebra A. Here,

C(A) = 4 SK1(21,I) = Coker[K2(A) - ® K2(Ap)];

(1)

where the limit is taken over all ideals I C 21 of finite index, and

where the last isomorphism is constructed in Theorem 3.12. A specialized

version of (1) in the p-group case is derived in Theorem 3.15.

As can be seen above, the continuous K2 of p-adic orders and

algebras plays an important role in these sequences. These groups K2(-)

are defined in Section 3b, and some of their basic properties are derived

there. This, in turn, requires some results about Steinberg symbols and

symbol generators for K2(R): results which are surveyed in Section 3a.
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3a. Steinberg symbols in K2(R)

For any ring R, the Steinberg group St(R) is defined to be the

free group on generators xij for all i A j (i,j Z 1) and all r E R;

modulo the relations

xij xij = x.. for any r,s E R and any i # j

r s
[xij,xk8] _

i f iA B, jA k.1

X if i # 2, j = kJ i2

An epimorphism 4: St(R) -b E(R) is defined by letting q(xij) be the

elementary matrix whose single nonzero off-diagonal entry is r in the

(i,j)-position. Then St(R) is the "universal central extension" of

E(R) (in particular, Ker(o) C Z(St(R))), and

K2(R) = Ker(O) = H2(E(R)).

For details, see, e. g., Milnor [2, Chapter 5].

For any pair u,v E Rw of units, the Steinberg symbol {u,v} is

defined to be the commutator

{u,v} = [0-1(diag(u,u 1,1)) , m l(diag(v,l,v 1))] E St(R).

Since Ker(o) is central in St(R), this is independent of the choice of

liftings. We are mostly interested in the case where uv = uv, and hence

where {u,v} E Ker(#) = K2(R). However, it will occasionally be necessary

to work with the {u,v} for noncommuting u and v; for example, in

Lemma 4.10 and Proposition 13.3 below.

The next theorem lists some of the basic relations between Steinberg

symbols.

Theorem 3.1 For any ring R, the following relations hold in K2(R)

or St(R):
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(i) For any u E R*, {u,-u} = 1; and {u,l-u} = 1 if 1-u E R*.

(ii) For any u,v,w E R* such that uv = vu and uw = wu,

{u,vw} = and {v,u} = {u,v}-l.

(iii) For any x,y,r,s E R such that 0 = xy = xry = yx = ysx,

{1+xr,l+y} = {1+x,l+ry} and {l+sx,l+y} = {l+x, 1+ys}.

(iv) If X,Y E St(R) are such that ¢(X) = diag(ul,...,un) and

O(Y) = diag(vl,...,vn), where ui,vi E R*, and u
i
v

i
= viui for each

i > 2, then [X,Y] = [[i_1{uivi}.

(v) For any S C R such that R is finitely generated and

projective as an S-module, and any commuting units u E R* and v E S*,

trfs({u,v}) = {trfs(u),v}.

Here, trfs: Kn(R) --- Kn(S) denotes the transfer homomorphism.

Proof Point (i), and the relation {v,u} = {u,v}-1, are shown in

Milnor [2, Lemmas 9.8 and 8.2] and Silvester [1, Propositions 80 and 79]

(it clearly suffices to prove these for commutative R). The relations in

(iii) are shown by Dennis & Stein [1, Lemma 1.4(b)] in the commutative

case, and follow in the noncommutative case by the same proof.

Alternatively, using Dennis-Stein symbols, (iii) follows from the

relation: {l+x,l+y} = <x,y> whenever xy = O = yx (see Silvester [1,

Propositions 96 and 97]). The formula in (v) is shown in Milnor [2,

Theorem 14.1].

When proving (ii) and (iv), it will be convenient to adopt Milnor's

notation: A * B = [0 1(A), l(B)] E St(R) for any A,B E E(R). This is

uniquely defined since K2(R) = Ker(o) is central in St(R). Also, for

any u E
R*

and any i x j, dij(u) will denote the diagonal matrix with

entries u, u
1

in positions i and j (and 1's elsewhere). Note the

following two points:
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(1) A*B = 1 if A E EI(R), B E EJ(R), where I and J are

disjoint subsets of {1,2,3,...}. This follows easily from the defining

relation: [xi.,xkQ] = 1 whenever i # 2 and j # k.

(2) MAM 1*MBM 1 = A*B for any A,B,M E E(R) such that
[A,B] * M = 1; and in particular whenever [A,B] = 1. This is immediate

from the obvious relations among commutators.

Now, fix X,Y as in (iv), and set A = ¢(X) = diag(ul,...,un) and

B = (Y) = diag(vl,...,vn) (where [ui,vi] = 1 for all i > 2). Then

[X,Y] = A *B = diag(A,A 1,1) * diag(B,1,B 1) (by (1))

(dl,n+l(u1) * d1,2n+1(v1))**.(dn2n-1(un) dn,3n-l(vn))

(by (1))

= (d12(u1) * d13(v1))...(d12(un} d13(vn)) (by (2))

= {ul'v1}...{un,vn}.

To prove (ii), fix units u,v,w E R* such that [u,v] = 1 = [u,w].

Then, using the relation [a,bc] = we get

{u,vw} = d12(u) *d 13(vw)
= d12(u)

* (d lv 1))

= (d12(u) * d13(v)).(d12(u) * diag(w,l,vw lv d13(v))

= (by (iv)) 0

We now consider relative K2 groups. Keune [1] has defined groups

K2(R,I) which fit into a long exact sequence involving K2 and K3

(note that this is not the case with the K2(R,I) defined by Milnor in

[2, Section 6]). In this book, however, K3 never appears; and it is

most convenient to take as definition
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K2(R,I) = Ker[K2(R) - K2(R/I)],

for any ring R and any (2-sided) ideal I C R. In particular, symbol

relations which hold in K2(R) will automatically hold in K2(R,I) here.

The following lemma is frequently useful. It will also be needed in

the next section when defining continuous K2.

Lemma 3.2 For any pair S C R of rings, and any R-ideal I C S,

K2(R, 14) C Im[K2(S,I) --> K2(R)].

Proof Let I C R be any ideal, and consider the pullback square

D P2 R

Ji
I

R -) R/II

(D = ((rl,r2) E RxR ; rl-r2 E I)).

We identify Ker(p2) with I. By the Mayer-Vietoris sequence for the

above square (see Milnor [2, Theorem 6.4]), pl induces a surjection of

K2(D,I) onto K2(R,I). Also, E(D,I) = E(R,I) by Milnor [2, Lemma 6.3].

Since P2 is split by the diagonal map A: R -i D, there is a split

extension

1 - E(R,I) > E(D) ) E(R) -4 1. (1)

The Hochschild-Serre spectral sequence for (1) (see Brown [1, Theorem

VII.6.3]) then induces a surjection

ab
Ker[H2(E(D)) -+ H2(E(R))]

H1(E(R);E(R,I) ) _» _

Im[H2(E(R,I)) -> H2(E(D))]

(2)

Coker[H2(E(R,I)) -4 K2(D,I)] -* Coker[H2(E(R,I)) --> K2(R,I)].

This will now be applied to the ideals I4 C I2 C R. Note first that

E(R,I4) 9 [E(R,I2),E(R,I2)], since E(R, 14) is the smallest normal
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subgroup in GL(R) containing all elementary matrices e.'' = [eik,ekj],

for x,y E 12 and distinct indices i,j,k. Thus, E(R,I4)ab maps

trivially to
E(R,I2)ab,

and so by (2),

K2(R,I4) C Im[H2(E(R,I2)) - K2(R,I2)].

Furthermore, E(R, 12) C E(S,I) by Lemma 2.4, and hence

K2(R, 14) C Im[H2(E(R,I2)) -i K2(R)] C Im[H2(E(S,I)) --> K2(R)]

C Im[K2(S,I) -i K2(R)].

The next theorem lists some generating sets for the relative groups

K2(R,I). For the purposes in this book, Steinberg symbols are the

simplest elements to use as generators. However, in many situations, the

Dennis-Stein symbols <a,b> E K2(R) (defined for any commuting pair

a,b E R with l+ab E RM) are the most useful. We refer to Stein &

Dennis [1], and to Silvester [1, pp. 214-217], for their definition and

relations.

Theorem 3.3 Fix a noetherian ring R, let j = J(R) be its

Jacobson radical, and let I C R be a radical ideal of finite index such

that [J,I] = 0. Then

K2(R,I) = ({l+x,l+y} : xEJ, yE I) = (<x,y> : xEJ, yE I).

Moreover, if R is finite, and if either

(i) J = (a1,...,ak)R, or

(ii) J = (p,al,...,ak)R for some prime p, where p is odd or

I C (a1,...,ak)R,

then
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K2(R,I) = ({1+ai,l+x} : 1 <i <k, x E I).

Proof Set S = 7L+ I, a subring of R. Then by Lemma 3.2,

Im[K2(S,I) - K2(R)] Q K2(R,I') = Ker[K2(R,I) - K2(R/I',I/I')].

Also, since [J, I] = 0, any symbol {l+x,l+y}, for x E j/14 and

y E I/I', can be lifted to K2(R,I). Since R/I4 is finite by

assumption, this shows that we need prove the theorem only when either

R = 7L+ I, or R is finite.

Case 1 Assume R = 7L+ I. Then R is commutative. By Stein &

Dennis [1, Theorem 2.1] or Silvester [1, Corollary 104], K2(R,I) is

generated by symbols <r,x> for r E R and x E I. For any such r and
x, <r,x>= by relations shown in Silvester [1,

Propositions 96 and 97]. This procedure can be repeated until r E J or

r E -1 + J C R*; and in the latter case

<r,x> = {-r,l+rx} E {l+J,l+I}

by Silvester [1, Proposition 96(iv)].

Case 2 If R is finite, then j is nilpotent; and there is a

sequence I = 1
0
D I1 Q ... 2 In = 0 such that JIk + IkJ C Ik+1 for all

k. By using this to filter K2(R,I), all claims are reduced to the case

where IJ = 0 = JI. If this holds, then K2(R,I) = {l+J,1+I} by Oliver

[3, Proposition 2.3]; and {1+J,1+I} = <J,I> since {1+x,l+y} = <x,y>

whenever xy = 0 = yx. Point (i) is now an easy consequence of relation

(iii) in Theorem 3.1. The refinement in (ii) is shown in Oliver [7, Lemma

1.1], using an argument involving Dennis-Stein symbols similar to that

used in Case 1 above. 0

Even when Theorem 3.3 does not apply directly to K2(R,I), one can

often filter I by a sequence I = IO D I1 D ... of ideals such that

Theorem 3.3 applies to each of the groups K2(R/Ik'Ik-1/Ik)' and obtain
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generators for K2(R,I) from that. This technique is the basis of the

proofs of Theorem 4.11, Proposition 9.4, and Lemma 13.1 below.

The last part of Theorem 3.3 is especially useful in the case of

group rings of p-groups.

Corollary 3.4 Fix a prime p and a p-group G, and let R be the

ring of integers in some finite unramtFied extension of Q. Then, for

any pair Io C I C R[G] of ideals of finite index such that gx - xg E Io

for all gEG and x E I,

K2(R[G]/Io,I/Io) =({g,l+x} : g E C, x E I/Io)

if p is odd, or if p=2 and I C (4,g-1: gEG)RG

K2(R[G]/I0,I/Io) = {g,l+x} : gEG, x E I/Io) otherwise.

Proof By Example 1.12, the Jacobson radical J C R[G] is generated

by p, together with elements g-1 for g E G. So the result is

immediate from Theorem 3.3. a

Other theorems giving sets of generators for K2(R) or K2(R,I) are

shown in, for example, Stein & Dennis [1] and Silvester [1]. There are

also some much deeper theorems, which give presentations for K2(R) in

terms of Steinberg symbols or Dennis-Stein symbols. The first such result

was Matsumoto's presentation for K2 of a field (see Theorem 4.1 below).

Other examples of presentations of K2(R) or K2(R,I) have been given by

Maazen & Stienstra [1] and Keune [1] for radical ideals in commutative

rings, by Rehmann [1] for division algebras, and by Kolster [1] for

noncommutative local rings.

3b. Continuous K2 of p-adic orders and algebras

As mentioned above, the goal is to describe SK1(2l), for a Z-order

21 in a semisimple Q-algebra A, in terms of K1(A), Ki(2[p), and
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K1(Ap) (for i = 1,2). However, the groups K2(2 p) and K2(A) are

huge: for example, K2(F) has uncountable rank for any finite extension

F2& (see Bass & Tate [1, Proposition 5.10]). In contrast, we will see

in Theorem 4.4 that K2(F) - the continuous K2 - is finite for such F.

Several different definitions have been used for a "continuous"

functor K2(R) for a topological ring R, especially when R is an

algebra over Zp or Qp. Definitions involving continuous universal

central extensions of E(R) have been used by Moore [1] and Rehmann [1,

Section 5]; and Wagoner [1] has defined Kc(R) in all dimensions as a

limit of homotopy groups of certain simplicial complexes. But for the

purposes here, the following definition is the simplest and most

convenient.

For any prime p. any semisimple s-algebra A. and any p-order

2[ in A, set

K2(21) = Coker[K2(2l, p-2l) K2(21)]
k

and

K2 (A) = 4Lm Coker[K2(21, p'-4) K2(A)].
k

By Lemma 3.2, for any pair 2[ C B of orders in A and any k> 0,

Im[K2(B,p4kB) I K2(A)] C Im[K2(B,pk2!) --4 K2(A)].

So K2(A) is well defined, independently of the choice of order 3 C A.

Quillen's localization sequence for maximal 2p orders (Theorem 1.17)

can easily be reformulated in terms of K.

Theorem 3.5 Fix a prime p, let Th be a maximal 2p -order in a

semisimple %-algebra A, and let j C M be the Jacobson radical. Then

there is an exact sequence
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1 -' K ( ) ' K2(A) - K1(N/J) --> K1(Th) - Kl (A) --> ... .

Proof This is almost an immediate consequence of the localization

sequence in Theorem 1.17(1). Since IR/J is semisimple of p-power order,

K2(m/J) = 1 and p4IK1(m/J)I by Theorem 1.16. Hence K2(1t) injects into

K2(A); and so K2(V) injects into K2(A) by definition of K2. 11

The formula in the next proposition could just as easily have been

taken as the definition of K2(21). Recall that a pro-p-group is a group

which is the inverse limit of some system of finite p-groups.

Proposition 3.6 Fix a prime p, and let 21 be a 2p order in some

semisimple Qp-algebra A. Then

K2(21) = im K2(21/p )

k

In particular, K2(21) is a pro-p-group, and Kc(A) is the product of a

finite group and a pro-p-group.

Proof By definition,

K2(21) = im Coker[K2(21,pk21) -+ K2(21)].
k

The sequence

1 -4 Coker[K2(21,pkkti) ' K2(21)] - K2(Vpk21) - K1(2C,p )

is exact for all k, and hence is still exact after taking inverse

limits. But by Theorem 2.10(iii),

km
K1(21,p ) =

m
Kl(2/pn21,p pN)

Kl(2/p' 1,pn21/pn21) = 1.
n
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In particular, K2(2I) is a pro-p-group by Theorem 1.16(11). If

IRCA is any maximal order, then [K2(A) : K2(7)1)] is finite by Theorem

3.5, and so K2(A) is pro-finite since K2(A1) is.

In fact, in Chapter 4, K2(A) will be shown to always be finite.

3c. Localization sequences for torsion in Whitehead groups

We now want to describe SK1(21), when 21 is a 77-order in a
semisimple Q-algebra A, in terms of K1 and K2 of A, 21p and Ap

The usual way of doing this is via Mayer-Vietoris exact sequences based on

"arithmetic squares", and one example of such sequences is given at the

end of the section (Theorem 3.16). But for the purposes here, it has been

convenient to make a different approach, using the relative exact

sequences for ideals I C 21 of finite index. This will be based on the

following definitions.

Definition 3.7 For any semtstmpte Q-algebra A, and any 7L-order

2ICA, define

C11(21) = Ker[SKl(21) ®SKl(2Ip)].
p

More generally, for any (2-sided) ideal I C 21, set

SK1(2I,I) = Ker[K1(21,I) -) K1(A)] and

Cll(21,I) = Ker[SKl(21,I)®SKl(21p,Ip)].
p

Then define

C(A) = SK1(21,I)
I

where the itmit is taken over all ideals I C 21 of finite index.
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The subgroup C11(21) can be thought of as the part of SK1(21) which

is hit from behind (i. e., detected by K2) in the localization

sequences. Recall (Theorem 1.14(ii)) that SK1(21p) = 1 for all p if 21

is commutative, so that C11(21) = SK1(21) in this case.

As is suggested by the notation, C(A) = im SK1(21,I) is independent

of the choice of order 21 in A. This is an easy consequence of Lemma

2.4; and will be shown explicitly in Theorem 3.9. The C(A) can be

characterized in several ways:

C(A) = kim SK1(21,1) = Cll(21,I)

Cll(2I)

(Theorem 3.9)

(taken over all Z-orders 21 in A)

Coker[K2(A) - ® K2(Ap)].
p

(Theorem 3.12)

It is the last description of C(A), in terms of K2(-), which will be

used to calculate these groups in Section 4c below.

The appearance of C(A) in the localization sequence for SK1(21)

helps to explain the close connection between computations of SK1(21) and

the congruence subgroup problem. In fact, the original conjecture would

have implied that SK1(R,I) = 1 whenever R is the ring of integers in a

number field K and I C R is an ideal of finite index. The computation

of the groups C(K) = j SK1(R,I) follows as a special case of results

of Bass, Milnor, and Serre [1, Theorem 4.1 and Corollary 4.3] in their
solution to the problem.

One difficulty which always occurs in localization sequences based on

comparing Ki(21) with Ki(A) (when 21 C A is a 7L-order) is dealing with

the infinite products which arise in the p-adic completions of 21 and A.

The next lemma says that in the case of 0 SKI(21p) and 0 K2(ip), at

least, there is no problem - both of these are finite products.
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Lemma 3.8 For any semtstmpie Q-algebra A and any Z-order 21 C A,

K2(up) = 1 and SK1(21p) = 1 for almost all primes p.

Proof Let It J 21 be a maximal order. Then 2
P

= Ft
P

for all
pj'[1:21], and i is a maximal order in Ap by Theorem 1.7(iv). So we

can assume that 21 = V. Also, since Dt factors as a product of maximal

orders in the simple summands of A, we can assume that A is simple.

Let K = Z(A) be the center, let R K be the ring of integers,

and set n = [A:K] 1/2. Then
1p

= Mn(Kp) for almost all p (Theorem

1.7(iii)); and Aip - Mn(Rp) for such p by Theorem 1.9. In particular,

SK1(iip) = SK1(Rp) = 1 for almost all p by Theorem 1.14(11).

It remains to consider the case of K2(Dip) = K2(Rp); it suffices to

do this when A = K and R = R. Recall that for each p,
RP = npiPRp

and RP = [pIPRR, where the products are taken over all maximal ideals

p C R containing p. We claim that K2(Rp) = 1 for any p such that

(i) p = char(R/p) is odd, and (ii) RP is unramified over Q-P. By

Theorem 1.7(ii), this is the case for all but finitely many p.

Fix such a p. Then, RP is the ring of integers in K and pRp

is its maximal ideal by (ii). Thus, (R pRp)* has order prime to p.

Furthermore, (1 + p2K consists of p-th powers in Rp: p is odd, and

so the binomial series for (1 + p2x)1/P converges for any x E Rp. In

particular, by Proposition 1.8(i),

(Kp)* _ (up, 1-pup, p : u E (Rp)*).

This, together with identities of the form {a,l-a} = 1 = {a,-a}

(Theorem 3.1(1)), shows that K2(Kp) is generated by symbols of the form

{uP,v} (for u E (Rp)*, v E (Kp)*)

{p,p} = {-l,p} = {(-1)P,p}
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{p,l-pup} = {up,l-pup}-1

{l-pup,l-pvp} = {pvp(1-pup),l-pvp}

= {pvp(1-pup),(l-pvp)(1-pvp+p2upvp)-1} E {

(for u E (k
p
)*)

(for u,v E (Rp)*)

(Kp)*,1+p2Rp}.

In other words, every element of K2(Kp) is a p-th power. But the

localization sequence of Theorem 3.5 takes the form

c1 -> K2(Rp) - K2(Kp) (R/p)

K2 (Bp) is a pro-p-group and (R/p)* is finite, and so K2(Rp) = 1.

We are now ready to derive the main localization sequence for

describing SK1(21). At the same time, we show that C(A) is well

defined, independently of the choice of order 21 C A.

Theorem 3.9 For any 71-order 21 in a semi simple Q-algebra A, there

is an exact sequence

® K2(2Ip) C(A) SK1(21) ®SK1(3p) - 1; (1)

where 2 is induced by the inclusions 21 C 2[p, a by the inclusions

(21,I) C 21, and p by the composites K2(2 [p) --> K2(2p/Ip) ---' K1(21,I).

Furthermore,

C(A) = 4Lm SK1(21,I) = im C11(21,I); (I C 21 of finite index)
I I

and is independent of the choice of order 21 in A.

Proof For each ideal I C 21 of finite index, the relative exact

sequence for the pair (21,I) (Theorem 1.13) restricts to an exact

sequence
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K2(21/I) - ' SKl(21,I) -i SK1(21) - Kl(2VI).

The first term is finite (Theorem 1.16), and so taking the inverse limit

over all I gives a new exact sequence

Lm K2(2VI) - C(A) -f SKI(21) Kl(21/I). (2)
I I

The first term in (2) is isomorphic to $ K2(21p) by Proposition 3.6 (and

Lemma 3.8), and the last term is isomorphic to npKl(21p) by Theorem

2.10(iii). This shows that sequence (1) is defined, and is exact except

possibly for the surjectivity of E.

For each prime p, SK1(21p) is finite (Theorem 2.5(i)), and Kl(2p)

1im Kl(21/pk21). Since SKi(21p) = 1 for almost all p, this shows that

we can choose n > 1 such that for all primes p,

SK1(21p) }---' Kl(21 /-21p) (3)

is injective.

Fix a prime p and an element [M] E SK1(21p). In other words,

M E GL(2Ip) n E(Ap). Write

M =
eiiji(rl)...e.

(rk)'

a product of elementary matrices. Write n = p .m, where

ri, choose a global approximation I. E 21[1] such that

(ri E Ap)

pt.- For each

Ti = ri (mod pa21p), and

ri = 0 (mod m21).

Note that it suffices to do this on the individual coordinates (in p)
of ri with respect to some fixed 7L-basis of H. If we now set
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M
=

ei13i(rl)...e. (rk) E GL(21) fl E(A),

then ( = M (mod pa21p), M a I (mod m21), and

[M] E SKl(21) = Ker[Kl(21) -i Kl(A)].

By (3), the congruences guarantee that e([M]) = [M]. So a is onto.

It remains to prove the last statement. First let B C 21 be any

pair of Z-orders in A. For any 21-ideal I C B of finite index, there

is a short exact sequence

1 --> E(21,I)/E(B,I) ) SK1(B,I) I 1 SKl(21,I) --> 1.

By Lemma 2.4, E(21,I2) C E(B,I) for any such I, so that Ker(f12) maps

trivially to Ker(f1). In particular, the inclusion B C 21 induces an

isomorphism 4Lm SK1(B,I) = Jim SK1(21,I), so that C(A) is well defined.
I I

Also, by definition of C11(21,I), there is an exact sequence

1 -> Jim Cll(21,I) Jim SK1(21,I) ®Kl(2t ,Ip);
I I p p

Note in particular that for any 21, Cll(21) = Im[C(A) SK1(21)] in

the localization sequence above; and that SK1(21) sits in an extension

1 -* Cll(21) ' SKl(21) e + ® SKl(21p) - 1.
p

One easy consequence of Theorem 3.9 is the following:

Corollary 3.10 Let f: A - B be a surjectton of semtstmple

Q-algebras, and let 21 C A and B C B be Z-orders such that f(21) C B.

Then the Induced map
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C11(f) : C11(21) -» Cl1(B)

is surjectiue. If A = B and. 21 C B, then Ker(C11(f)) has torsion

only for primes PI[B:21]

Proof Consider the following diagram of localization sequences from

Theorem 3.9:

p K 2p) C(A) Cll(21) ---+ 1

K2(f) C(f) C11(f)

P

Since

$ K2(BD) C(B) -> C11(B) -> 1.

f: A -+ B is projection

Hence Cll(f) is also onto.

so Coker(K2(f)) surjects

whenever pI[B:21], K2(Bp)

onto a direct summand, C(f) is onto.

If A = B, then C(f) is an isomorphism,

onto

is

Ker(C11(f)). But K(B- p) = K2(up)

a pro-p-group for all p, and so

Coker(K2(f)) and Ker(C11(f)) have torsion only for primes PI[B:21]. o

We next want to prove an alternate description of C(A), in terms of

K2(-). The key problem when doing this is to define and compare certain

boundary maps for localization squares. In fact, given any

square

R a , R'

I

f

S

of rings, inverse boundary maps

b: Ker(Kn(a) $ Kn(f)) 1 Coker(Kn+l(f') $ Kn+1(R))

commutative

can always be defined (and the problem is to determine when 6 is an
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isomorphism). When n = 1, there are two obvious ways of defining 6:

(i) For any M E CL(R) such that [M] E Ker(K1(a) 0 K1(f)), choose

elements x E St(R') and y E St(S) such that +(x) = a(M), +(y) _

f(M). Then

61([M]) = [x 1y] E K2(S') (mod Im(K2(R) $ K2(f')))

(ii) Define

K1(a) = ir1(homotopy fiber of BGL(R) + -) BGL(R')+),

and similarly for K1((3). Consider the following diagram:

K2(a) 8 K K (a)
K2(R) - ) K2(R') a+

K1(a)
1('a). K1(R) 1 -) K1(R')

K2(f) 1K2(f') 1K1(fo) 1K1(f) 1K1(f')

ti I
K

fRIR)K
K

2K2(S)
l-'' Kl(S');P , Kl(R)1

) K2(S')
K1(13)

where the rows are induced by the homotopy exact sequence for a fibration;

and let 62 be the composite

62 = Ker(K1(a) $ K1(f)) 3 Coker(K2(13) (D K2(f'))

Note that any boundary homomorphisms constructed using Quillen's

localization sequences (Theorems 1.17 and 3.5) will be of type 62.

Lemma 3.11 Let

R R R'

S 13 , S'

jfr

be any commutatiue square of rings. Then
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S1 = S2 : Ker(K1(a) W K1(f)) ) Coker(K2((3) ® K2(f'))

Proof Note first the following more direct description of 62. Fix

any a: S1 -' BGL(R) + such that [a] E Ker(wl(a+) ® irl(f+)), and extend

a+oa and f+oa to maps

as : D2 ) BCL(R')+, of : D2 --) BGL(S)+.

Then 62([a]) is the homotopy class of the map

(f+oaa) U (R+ af) : S2 = D2 US1 D2 --' BG(S')+

Regard BGL(S) + as a CW complex whose 2-skeleton consists of one

vertex, a 1-cell (A) for each element A E GL(S), a 2-cell for each

relation among the elements in GL(S), and a 2-cell [xS.] for each

elementary matrix eS. E E(S). Then, given any A E E(S), a lifting of

A to some X E St(S) induces a null-homotopy of the loop (A). The same

argument applies to BGL(R') + and BGL(S')+, and shows that 61 = 62. 0

We are now ready to reinterpret C(A) in terms of K2(-). The

description of C(A) in the following theorem will be the basis of its

computation in the next chapter.

Theorem 3.12 For any semisimple Q-algebra A, there is a natural

tsomorphism

C(A) = Coker[K2(A) - ®K2(Ap)].
p

Under this identification, in the localization sequence

® K2 p(21 ) O C(A) a-> C11(21) -> 1
13

for a 7L-order 21 C A, W is induced by the inclusions 21p C Ap, and 8

is described as follows. Given any M E CL(21) such that
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[M] E C11(21) = Ker[K1(21) -i Kl(A) ® I Kl(21p)],
P

lift M to x E St(A) and to y = (yp) E II St(21p) such that x = yp in

p

St(Ap) for almost all p. Then [M] = 8([x 1y]) = 8([yx 1]), where

ly = yx
1
E Coker[K2(A) ® K2X (Ap)] = C(A).

P

Proof Fix a maximal Z-order 11 C A. For any x E K2(A), with

localizations Bp (x) E K2(Ap), £ (x) E Im[K2(ip) -i K2(Ap)] for almost

all p (this holds for each generator xr. E St(A)), and K2(uip) = 1

for almost all p by Lemma 3.8. This shows that K2(A) maps into the

direct sum 11 K2(Ap).

For each ideal I C 1l of finite index, consider the commutative

square

(1)

P

(1Ap, I
p
) -+p Ap

Recall (Milnor [2, Chapters 4 and 6]) that the Ki(111,I) can be regarded

as direct summands of K.(D), where D = {(r,s) E MxTh: r=s (mod I));

and similarly for Ki('Aip,Ip). So Lemma 3.11 can also be applied to this

relative case. The inverse boundary maps b3 =62 for (1) then take the

form

bI C11(L1,I) ) Coker[K2(A) ® ®K2(Dip,Ip) - ® K2(Ap)]

P P

To see that bl actually maps into the direct sum (as opposed to the

direct product), note that for any [M] E C11(21,I), and any explicit

decomposition of M as a product of elementary matrices over A, this
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decomposition will have coefficients in 1p for almost all p (so that

SI([M]) can be taken to be trivial in K2(AP) for such p).

For each p,
slim

Coker[K2(2P,Ip) -+ K2(Ap)] = K2(Ap) by definition

of K2(-). Since, in addition, K2(1p) = 1 for almost all p, the

inverse limit of the 61 takes the form

C(A) = 4Lm C11(LI,I) -j Coker[K2(A) - ® K2(Ap)].

Now consider the localization sequences

a
1 --' K2(T) K2(A) A ® K1(%/Jp) --- SK1(Li) - 1

I I

P
=IId

®a
1 -4 ® K2(T) -> ® K2(Ap) p-) K1(mp/JP) -> ® SK1(7AP) --> 1.

P p/ p P P

of Theorems 1.17 and 3.5 (where Jp C Atp is the Jacobson radical). This

diagram, together with the localization sequence of Theorem 3.9, induces

the following commutative diagram with exact rows:

Coker[K2(7R) -(1) K2(Di)] P a C(A) a C11(p) -> 1

-IId (2a) 18 (2b)
1Id

(2)

1 -4 Coker[K2(7R) --> ® K2(AP)] -4 Coker[K2(A) --> ® K2Ap)] - Cl1(1) --+ 1
P P

Square (2b) commutes since (a')-1 = 62 in the notation of Lemma 3.11.

To see that (2a) commutes (up to sign), fix x E 6 K2(fNp), and for each

I let xI E St(TR) be a mod I approximation to x (i. e., replace each

xr in x by some mod I approximation to r). Then

0(x) = ([#(xl)])1CM E SK1(N,I) = C(A).
- I



84 CHAPTER 3. CONTINUOUS K2 AND LOCALIZATION SEQUENCES

Each (x1) lifts to xI E St(A) and x 1xI E 0) pSt(i p,Ip); so that

go 'P(X) = (X-1 XI) -x
I

I
= x

-1

It now follows from (2) that b is an isomorphism. The descriptions

of b o V and 8 o b 1 are immediate. o

The description of 0: C(A) -» Cll(21) in Theorem 3.12 is in itself

of only limited use when working with concrete matrices. No matter how

well K2(Ap) is understood, it is difficult to deal with an element which

is presented only as a product of generators xri E St(Ap). In contrast,

the formula in the following proposition, while complicated to state, is

easily applied in many concrete calculations.

Proposition 3.13 Let 21 be a Z-order in a semistmple Q-algebra A,

and let

8 : Coker[K2(A) - ® K(Ap)] = C(A) » Cl (21)

be the boundary map of Theorems 3.9 and 3.12. Fix n > 1, and fix

factorizations 21[i] = B x B', A = B x B'; where B g B and B' C B'

are Z[!]-orders. Let (a d) E GL2(21) be any matrix such that ac = ca

and ad - cb =1, and such that

c E B* X B" , a E B x (B')and a E (2Ip)* for all pin.

Then [a a] = 8(X) E C11(21), where

X = ({a,c}-1,1) E Im[( ® Kc(B ) x ® Kc(B')) , C(A)]; and
pin 2 p pin 2 p

X = ({a,c},1) E Im[( ® K°(B ) x ®Kc(B')) ) C(A)].
Pjn

2
P Pjn

2(.9p

Proof Note first that these two definitions of X are equivalent:
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C(A) = Coker[K2(A) _- 4 ® K2(Ap)],

P

and ({a,c},1) E K2(B)x K2(B') = K2(A).

Consider the matrix decompositions

1a
c a = ca-'

01

0 a0' 0 al

b)
in E2(8 ) and E2(2p) (pin)

(a b1 (1 ac-' 0 -c-' 1 c-'d
c d) = (0 1 )1c 0 )(0 1 )

in E2(B).

These give liftings of (a d) to elements

85

ca-1.
x21 h21(a)-1

a12

b in St(B'), St(8p) (pin) and St(2p) (pin)

x12-1.w21(c)-x121d
in St(B), St(Bp) (P4n)

Here,

h21(a) = x21x12 x21x21x12x21
and w21(c)

= x21x12 x21

are liftings of (01

a)

and (0 grespectively (see Milnor [2,

Chapter 9] for more details). The description of 0 1([c d]) now follows

from the following computation in St(Bp) for pin, based on relations

in Milnor [2, Corollary 9.4 and Lemma 9.6]:

ca-' -1 a-'b ac-1 c-'d/-l

(x21
.h_1(a)

.x12 )(x12
.w21(c),x12

=
x21-1.h21(a)-1.x12-1c-1.w21(c)-1.x12°-1

(c ld - a lb = a 1c 1)

_ -1 ac -a-'c-' ac -1

= h21(a) .x21.x12 x21 w21(c)

=
w21(ac).w21(c)-1.h21(a)-1

=
h21(ac)'h21(c)-1.h21(a)-1 = {c,a} = {a,c}-1. O
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The use of this formula for detecting whether or not an explicit

matrix vanishes in Cl1(7L[C]) will be illustrated in Example 5.1 (Step

3). Note that when 2I is commutative, any element of SK1(2C) can be

reduced to a 2x2 matrix (a d) where ad - be =1 (see Bass [1,

Proposition 11.2]). So in principle Proposition 3.13 (or some variant)

can always be applied in this case. Another example where this formula is

used can be seen in Oliver [5, Proposition 2.6].

We now focus attention on group rings. The following theorem shows

that SK1(2 p[G]) is a p-group for any finite G, not only when G is a

p-group. This does not, of course, hold for arbitrary 2p orders.

Theorem 3.14 (Wall) Fix a prime p, let F/& be any finite

extension, and let R C F be the ring of integers. Then for any finite

group C, SK1(R[C]) is a p-group.

Proof Let J C R[G] be the Jacobson radical. Then SK1(R[G]) is

finite by Theorem 2.5(i), and Ker[K1(R[G]) - K1(R[C]/J)] is a

pro-p-group by Theorem 2.10(ii). So it will suffice to show that

SK1(R[G]) maps trivially to K1(R[G]/J).

Fix a finite extension E D F with ring of integers S C E, such

that the residue field S of S is a splitting field for G; i. e.,

such that S[G]/J is a product of matrix rings over S. Let u E (R[C])*

be such that [u] E SK1(R[G]). If V is any finitely generated

E[G]-module, and if M is any S[G]-lattice in V, then

detS(M u-4 M) = detE(V - V) = 1

since [u] = 1 in K1(F[C]). Hence, if we set M = S OS M, then

dets(M M) = 1. (1)

By the surjectivity of the decomposition map for modular representa-

tions (see Serre [2, §16.1, Theorem 33] or Curtis & Reiner [1, Corollary
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18.14]), the representation ring RS(G) = KO(S[G]/J) is generated by mod-

ules of the form M = SOS M. So (1) extends to show that det5(T --+T)=1

for any irreducible S[C]/J-module T. Since S[G]/J =- §OR- (R[G]/J), and

is a product of matrix algebras over S, it follows that

[u] E Ker[SK1(R[G]) > K1(R[G]/J) ) i K1(S[G]/J)]. o

The localization sequence of Theorem 3.9, in the case of group rings,

at least, can now be split up in a very simple fashion into their

p-primary components. For any semisimple (P-algebra A, we define Cp(A)

to be the p-localization of C(A). Note that C(A) splits as a direct

sum C(A) = 0pCp(A) - since C(A) is a quotient of 19 pK2(Ap). and each

K2(Ap) is a product of a finite group and a pro-p-group by Proposition

3.6. In fact, C(A) will be seen in Chapter 4 to be finite for all A.

Theorem 3.15 Fix a number field K, and let R be its ring of

integers. Then, for any finite group G and each prime p, there are

exact sequences

PP 8p

K2(Rp[G]) ) Cp(K[C]) G C11(R[G])(P)
1,

and

(1)

1 -> C11(R[G])(p), SK1(R[G])(P) 0 SK1(Rp[G])
-i 1. (2)

These sequences, together with the isomorphism

C(K[G]) ) Coker[K2(K[G]) -- ® K2(Kp[G])],

are natural with respect to homomorphisms of group rings, as well as

transfer (restriction) maps for inclusions of groups or of base rings.

Proof The sequences follow immediately from Theorems 3.9 and 3.14;

since K2(p[G]) is a pro-p-group for each p by Proposition 3.6.
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Naturality with respect to homomorphisms of group rings is immediate.

For any inclusion S[H] C R[G], where H C G and S is the ring of

integers in a subfield of K, the transfer maps for the terms in (1) and

(2) are all induced by some fixed inclusion R[G] C Mk(S[H]), together

with the usual isomorphisms Kj(Mk(S[H])) = Ki(S[H]), etc. Sequence (2)

is clearly natural with respect to these last isomorphisms, and the

naturality of (1) and follow from the descriptions of ,p and 8 in

Theorems 3.9 and 3.12. O

It has been simplest to derive the localization sequences used here

by indirect means. The usual way to regard localization sequences is as

Mayer-Vietoris sequences for certain "arithmetic" pullback squares. We

end the chapter with an example of such sequences, due to Bak [2] in dim-

ensions up to 2, and to Quillen (Grayson [1]) for arbitrary dimensions.

Theorem 3.16 Let 21 be any 7L-order in a semtsimpte Q-algebra A,

and Fix a set of (rational) primes. Define

21[57'] = 21[!: p

Then the pullback square

295 = nu ,
pE5$ p

21 -) 21[ ]

2(95 - A3,

induces a Mayer-Vie torts exact sequence

... - K1(21) -* K1(21[1]) W Ki (35,) - Ki %) -' Ki-i (2) - .. .
(1)

... - KO(H) -> W KO(2195) -> KO(213,)

Proof Let Pt(21,95) and Pt(21,9s) denote the categories of finitely

modules of projective dimension one.generated f-torsion 21- and
2155-
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These categories are equivalent: note, for example, that a finitely

generated #-torsion module over either 2I or 215$ must be finite. So

the localization sequences of Quillen for nonabelian categories (see

Grayson [1]) induce the following commutative diagram with exact rows:

... -> Ki( t(2I,55)) -* Ki(21) -* Ki(2I[1]) -i Ki-1(Pt(21,#)) --' ...
=1 1 1 =1 (2)

--> Ki(Pt(2I9,41)) -' K1(2[q) -* Ki(A) -' Ki-1(

The snake lemma applied to (2) now gives sequence (1), except for exact-

ess at KO(2I[!]) 0 KO(I ); and this last point is easily checked. o



Chapter 4 THE CONGRUENCE SUBGROUP PROBLEM

of

The central result in this chapter is the computation in Theorem 4.13

C(A) = Jim SK1(2I,I) = Coker[K2(A) -b ® K2(Ap)]
-I p

for a simple Q-algebra A: a complete computation when A is a summand

of any group ring K[G] for finite G, but only up to a factor (fl) in

the general case. This computation is closely related to the solution of

the congruence subgroup problem by Bass, Milnor, and Serre [1]. The

groups C(A) have already been seen (Theorems 3.9 and 3.15) to be

important for computing C11(21) for 7L-orders 2[ C A. In fact, Theorem

4.13 is needed when computing SK1(7L[G]) in all but the most elementary

cases.

It is the second formula for C(A) (involving K2(A) and K2(Ap))

which is used as the basis for the results here. This is the approach

originally taken by C. Moore in [1]. The idea is to construct isomor-

phisms between C(A) and K2(Ap) and certain groups of roots of unity.

Norm residue symbols are defined in Section 4a, and applied there to

prove Moore's theorem (Theorem 4.4) that K2(F) = µF, (the group of roots

of unity in F) for any finite field extension F Q In Section 4b,

this is extended to the case of a simple Qp -algebra A: the computation

of K2(A) is not complete but does at least include all simple summands

of p-adic group rings.

The final computation of ®p K2(Ap)/Im(K2(A)) is then carried out in

Section 4c, based on Moore's reciprocity law (Theorem 4.12), and results

of Suslin needed to handle certain division algebras. A few simple

applications are then listed: for example, that Cl1(21) = 1 whenever 2[

is a maximal 7-order, or an arbitrary A-order when 7L 5 A C Q.
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4a. Symbols in K2 of p-adic fields

By a symbol on a field F is meant a bimultiplicative function

X: F* x F* - G, where G is any abelian group, such that X(u,l-u) = 1

for any 1 X u E F*. The importance of symbols when working in K-theory

comes from the following theorem of Matsumoto, which says that the

Steinberg symbol with values in K2(F) is the "universal symbol" for F.

Theorem 4.1 (Matsumoto) For any field F, the Steinberg symbol

{,} : F* 0 F* ) K2(F)

is surjectiue, and its kernel is the subgroup generated by all elements

u®(1-u) for units 1$uEF*. In particular, any symbol X: F*xF* -> C
factors through a unique homomorphism X: K2(F) -i C.

Proof See, for example, Milnor [2, Theorem 11.1].

It is an easy exercise to show that the relations {u,-u} = 1 and

1 in K2(F) follow as a formal consequence of the identity

{u,l-u} = 1 (when F is a field, at least).

When constructing symbols, the hardest part is usually to check the

relation X(u,l-u) =1. The following general result is very often useful

when doing this.

Lemma 4.2 Fix a field F and an abelian group C. Let

XE : E*xE*-4G

be bimultiplicatiue maps, defined for each finite extension E 2 F, and

which satisfy the relations

XE(u,v) = XF(NE/F(u),v) (all u E E*, v E FTM)

for all E. Then, for any n Z 1 and any 1 # u E F*,
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xF(u,l-u) E (xE(v,l-v)n : E/F finite extension, 1 # v E E*).

In particular,
XF

is a symbol if G contains no nontrivial infinitely

divisible elements.

Proof Fix u E F*'-l, and let

k
xn - u = [[ f(x)e' E F[x]

i=1 1

be the factorization as a product of powers of distinct irreducible

polynomials. In some algebraic closure of F, fix roots ui of fi,

and set Fi = F(ui). Then ui = u for all i, and

k k
1 - u = ll fi(l)e' = Il NF /F(1-ui)e'.

i=l i=1

It follows that

k k
xF(u,l-u) = II xF(u,NFj/F(1-ui)ei) = D xF:(ui, (1-ui)e')

i=1 i=1

k

= (ui,l-ui)ne'. o

We now consider a more concrete example. Fix a prime p, let F be

any finite extension of and let
AF

be the group of roots of unity

in F. For any W C µF, the norm residue symbol

(,)
u

: F* ® F* ) W

is defined by setting (u,v)4 = s(v)(a)/a; where F(a)/F is some

extension such that an = u (n = IµI), and where

s : F*/NF(a)/F(F(a)*) ) Gal(F(a)/F)
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is the reciprocity map (see Proposition 1.8(11)).

Theorem 4.3 Let F be any finite extension of @p, and fix some

group µ C µF, of roots of unity in F. Then

(t) (,) : F* x F* p is a symbol.

(ii) If E 7 F is any finite extension, and if (,)u,E denotes the

symbol on E with values in µ, then for any u E F* and any v E E*,

(u,v)4,E = (u,NE/(v))u.

*
(iii) For any po C p, and any u,v E F ,

(u,v)W. = ((u,v)ul[1 1 o]

(iv) For any njIWI, and any u E F* such that u1/q f F for all

primes q;., there exists v E F* such that (u,v)A generates the

n-power torsion in .i.

Proof (ii,iii) Set n = Iµl and m = Iµol, fix u E F*, and let

E(a)/E be an extension such that an = u. The diagrams

E* E I Gal(E(a)/E) F* s) Gal(F(a)/F)

INS Is and

I

Id
I res

F* s > Gal(F(a)/F) F* So Gal(F(an/m)/F)

commute by Serre [1, Section XI.3], where s, sE' and so are the

reciprocity maps, and where res denotes restriction maps. By the

definition of (,)u, for any v E E*,

(u,N E/F(V)) = s(NE/F(v))(a)/a = 5E(v)(a)/a = (u'v)µ,E;



94 CHAPTER 4. THE CONGRUENCE SUBGROUP PROBLEM

and the proof of (iii) is similar.

(i) The relation (u,l-u)µ =1 is immediate from (ii) and Lemma 4.2.

(iv) It suffices to show this when n = q is prime. Fix u E F*

such that u1/q f F, set E = F(u1/q), and let µq be the group of q-th

roots of unity in F. Then the reciprocity map for E/F takes the form

F*/N (E*) Cal(E/F) = Z/q.

So for any v E F* - NE/F,(E*), (u,v)µQ = s(v)(u1/q)/ul/q generates µq,

and (u,v)W generates the q-power torsion in µ by (iii). a

Now, for any prime p and any finite extension F of 4p, (,)F

will denote the norm residue symbol for F with values in µF,: the group

of roots of unity of F. We can now prove the main theorem in this

section, which says that (')F is the universal continuous symbol for F.

Theorem 4.4 (C. Moore [1]) Let p be any prime, and let F be any

Finite extension of Q. Then the norm residue symbol (')F induces an

tsomorphism

a
K2(F) µF.

Furthermore, if R C F is the ring of integers, then K2(R) = K2(F)(P)

(µF,)P : the group of p-th power roots of unity.

Proof Let p C R be the maximal ideal. The relation K2 (R)

K2(F) (p) is clear from Theorem 3.5: K2(R) is a pro-p-group by

Proposition 3.6, and p4'IK1(R/p)I by Theorem 1.16.

By Matsumoto's theorem (Theorem 4.1), the norm residue symbol induces

a homomorphism aF: K2(F) -1 PF. If n = IpF.I, then K2(R,p2nR) =
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{R*,1+p2nR} (Theorem 3.3). Also, {R*,1+p2nR} C Ker(aF): all elements

of 1+p2nR are n-th powers, since the Taylor series for (l+p2nx)l/n

converges for x E R. So aF factors through a
F
: K2(F) --> µF.

Set n = IgFI, and let S E µF be a generator. By Theorem 4.3(iv),

there exists u E F* such that aF({c,u})
=

(c,u)F generates µF. Since

{c,u} has order at most n
(cn

= 1), this shows that aF is split

surjective. Also, in the localization sequence

1 -' K2 (R) K2 (F) - Kl(R/P)

of Theorem 3.5, K2(R) is a pro-p-group, and K1(R/p) = (µF)[p] by

Proposition 1.8(i). Thus, aF is an isomorphism of non-p-torsion; and we

will be done if we can show that

Z/p if pIiµFl
K2(F) @ Z/p 25

1 1 if pjiµFi .

(1)

Fix any it E p_p2. Then

F* = (n) x R* = (ir) x µ x (1+p) (2)

by Proposition 1.8(i). Let e be the ramification index of F (i. e.,

pR = pe), and set eo = e/(p-1). For any n > 1 and any r E R,

(l+irnr)p = 1 + pnrp (mod ppn+1) if n< eo

1 + pant +nrp (mod pn+e+l ) if n = eo (n+e = pn)

= 1 + pirnr (mod pn+e+l) if n> eo.

In particular,

(1 + n) C (1 +
n+1).(F*)p

if pin and n < peo,

(3)

(1 + pn) _ (1 +
pn-e)p

if n > peo.
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If (p-1)Ie (so eo E 7L), then consider the following diagram

1 --i 1 +
peo+l

1 + pep (1 + peo)/(1 + peo+l) - 1

at

lag
lao

1 -4 1 + ppeo+l -+ 1 + ppeo
(1 + ppeo)/(1 +

peo+l)

where a; (u) = up (and peo = eo + e). The domain and range of a3 have

the same order (both are isomorphic to R/p), and so

IKer(a2)I = IKer(a3)I = ICoker(a3)I = ICoker(a2)I

Also, IKer(a2)I = p or 1, depending on whether Cp E F. So whether or

not (p-1)Ie, one of the following two cases holds: either

(a) p1'IIFI, and (l+pm) C (F*)p for any m Z peo; or

(b) pIIµF,I, eo E Z. and there exists 6 E 1 + ppep such that

b C (1 + eo)p and (1 + ppep) = (6).(1 + peo)p.

In case (b), for any u E R*, there exists x E pep such that

6 a 1 - uxp (mod (1+ppeo+l) C (F*)p)

(every element of R is a p-th power mod p). Then

{u,S) _ {u, l-uxp} = a 1 (mod K2(F)p).

It follows that

{R*,6} C K2(F)p. (4)

Now fix any 1<n<peo. If p4n, then for any u E l+pn we can
write u = (1-anciy)n for some w E 4 and y E l+p (l+pn is a pro-p-

group); and so
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{a,u} = { rr, l-irnwy}n = {irn, l-anw} = {,rnw, l-a w} {w, l-irnw}-1 = 1

(mod {n,l+pn+1} K2(F)p).

If, on the other hand, n = pm < peo, then (3) applies to show that

{a,l+pn} C {a,l+pn+l} {ir,(F*)p} C {,,l+pn+l} K2(F)p.

This shows that if r is such that peo < r < peo+l, then

r c p - K2(F)p if P4IµFI
l+p} C {a, l+p } . K(F)2 ({a,16}) K2(F)p if pl IµF,I

(5)

Recall that n was an arbitrary element of p-p2, and that 6 was

chosen independently of jr. Hence, for any u E R*, it can be replaced

by ua in (5) to get

K2(F)p if p4IiF,I
{ua,l+p} C

({uv,b}) K2(F)p = ({a,.5}) K2(F)p if pl I,,FI;

where the last step follows from (4). By (2), and since {n,-a} = 1,

K2(F) = {µ,F*} {a, l+p} {R l+p} = {µ,F {Rir, l+p}

K2(F)p if pl IPF.I

{l (17r,6)) K2(F)p if pI I,F.I .

This proves (1), and hence the theorem. 0

One consequence of Theorem 4.4 is the following lemma, which is often

useful when checking naturality properties involving K2 (F).

Lemma 4.5 For any pair E J F 7 of finite extensions, there is a

sequence



98 CHAPTER 4. THE CONGRUENCE SUBGROUP PROBLEM

F=FOCF1 C ... CFk_l CFk=E

of intermediate Fields such that K2 (Fl) = {F*1,Fi_1} For each 1 < i S k.

Proof It will suffice to show that K2(E) = {E*,F*} whenever either

(a) E/F is a Galois extension of prime degree, or

(b) there is no intermediate field E C E such that E/F is Galois

and abelian.

In case (b), FI* = NEF,(E*) by Proposition 1.8(ii). Fix uEF* and

v E E* such that K2(F) = p . is generated by {u,NE/F,(v)} = trfF({u,v})

(see Theorem 3.1(v)). Since K2 (E) = K2(F) (µE = i since F(pE)/F is

an abelian Galois extension), this shows that {u,v} generates K2(E).

Now assume that E/F is Galois of prime degree. Fix any prime

gj1pEI. We claim that there exists u E F* such that u1/q f E; then by

Theorem 4.3(iv) there exists v E E* such that {u,v} generates

K2(E)(q), and so K2(E)(q) C (F 'E-1.

If q # [E:F], then we can take any u E F* with valuation 1 (u

has valuation 1 or [E:F] in E, and cannot be a q-th power). If

q = [E:F], then in particular, gII,iFI (otherwise, E = F(cqand

[E:F]Iq-1). Fix any element n E F* with valuation 1, and any E F*

which generates the group of q-th power roots of unity. Then f and a

are linearly independent in F*/(F*)q; and so at most one of them can be

a q-th power in E (see Janusz [1, Theorem 5.8.1] or Cassels & Frbhlich

[1, §111.2, Lemma 3]).

Lemma 4.5 implies in turn the following description of how the

isomorphism K2(F) = p. behaves under transfer maps. This can be useful

when making concrete calculations in SK1(7L[G]) for finite G.

Theorem 4.6 Fix a prime p and finite extensions E Q F 7 lp, and

let u 9 E* and A 9 F*flµ be groups of roots of unity. Set
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r = [y.: µ]. Then the following square commutes:

K2(E) (,)µ )

u

1trfF
( I; fir

c
(,)u

1

K2(F) L.

In particular, trfF is onto.

99

Proof By Lemma 4.5, it suffices to show this when K2(E) = {E*,F*}.

But for any uEE* and any vEF*,

(,)potrfF({u,v}) = (NE/F(u)'v)W,F (by Theorem 3.1(v))

= (u,v),E = ((u,v)µ,E)r (by Theorem 4.3(ii,iii)).

The surjectivity of trfF now follows from Moore's theorem. O

We finish the section by listing some explicit symbol formulas.

These are often useful when making computations: for example, in Example

5.1 below, when constructing matrices to represent nonvanishing elements

in SK1(7L[C4 X C2 X C2]); and in Chapter 9, when deriving the formula for

C11(7L[G]) when G is a p-group for odd p.

Theorem 4.7 (i) Let F be any finite extension of Qp, and let

p C R C F be the maximal ideal and ring of integers. Let p C µF be any

group of roots of unity of order prime to p, regard µ as a subgroup of

(R/p)and set m = [(R/p)*:p]. Then, for any u,v E F*,

(u,v)9 = ((-l)p(u)p(v).up(v)Ivp(u))m
E (R/p)*.

r r+l
Here, denotes the adic valuation u r if u Ep(-) p' CPC )= p

_p
)
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(it) Fix any prime power pn > 2, set C = exp(2iri/pn), and let

K Let Tr: K ->
p

and N: K* - (aP)* be the trace and norm

maps, and set µ = (c). Then for any u c 1+(1-z)2p[c], K,u)u = R

where (modulo pn):

N ( u )R 1
p n.Tr(log u) if p is odd

p u) if p = 2 (and n > 2).

Proof See Serre [1, Proposition XIV.8 and Corollary] for the first

formula (the tame symbol). The formula for (c,u)u is due to Artin &

Hasse [1]. O

Note that Artin & Hasse in [1] also derive a formula for symbols of

the form (1-c,u), in the situation of (ii) above.

4b. Continuous K2 of simple %-algebras

We now want to describe K2 (A), whenever A is a simple s-algebra

with center F, by comparing it with K2 (F). This will be based on a

homomorphism yA: K2(F) -+ K2(A), which is a special case of a

construction by Rehmann & Stuhler [1].

Proposition 4.8 If A is any simple Qp algebra with center F,

then there are unique homomorphisms

,PA : K2(F) - K2(A) and PA : K2(F) -4 K2(A)

such that 4A({u,nrA/(v)}) = {u,v} (and similarly for 4A) for any

u E F* and v E A*. Furthermore, the following naturality relations hold:

(i) If E C A is any self-centralizing subfield (e. g., if A is a

division algebra and E is a maximal subfield), then the following

triangle commutes:
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K2(E) K2(F)

yA
incl

K2(A)

(it) If E D F is any finite extension, then the following squares

commute:

C incl c trf c
K2(F) K2(E) K2(F)

c c c
+A jE0A 'PA

K2 (A)
10 K2(E®FA) trf , K2(A).

(iii) If E 7 F is any splitting field - i. e., E OF A = Mr(E)

for some r - then the following square commutes:

K2(F)
incl

K2(E)

j'PA
16

K2(A) K2(EOFA)

where 5 is induced by the identification GLk(Mr(E)) = GLrk(E).

(iv) For any r > 1, the triangle

K2 (F) - A K2 (A)

K2(Mr(A))

commutes; where S is again induced by GLk(Mr(A)) = GLkr(A).

Proof Let y denote the composite
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1 x(nrA)-1 * { }

= J+A F* x F* F x K1(A) ----) K2(A).

(nrA is an isomorphism by Theorem 2.3). By Matsumoto's theorem (Theorem

4.1), showing that PA factors through K2(F) is equivalent to checking

that 'y(u,l-u) = 1 for all u E

This will be done using Lemma 4.2. For any finite extension E/F,

define XE: E* x e --> K2(A) by setting

XE(u+v) = trfA A(yEOA(u,v)).

For any u E E*, any v E F*, and any rl E A* such that nrA/F(n) = v,

(Theorem 3.1(v))XE(u,v) = trfA®A({u,1o})
= (NE/F(U)"')

= XF(NE/F(u),v).

If n = [A:F]1/2; then Lemma 4.2 now shows that for any u E F

XF(u,l-u)
=
(u,l-u) is a product of elements

XE(v,l-v)n =
EOA

= trfA
EOA

({v,1-v}) = 1

for v E E*-{1} (nrEOA/E(l-v) = (1-v)n by Lemma 2.1(ii)).

This shows that PA is well defined on K2(F). If R C F is the

ring of integers, and if ]R C A is a maximal order, then for all k > 1,

*A(K2(R.pkR)) = `YA({l+pkR,R*})

= {l+pkR,ej C K2(p'p-j).

So yA factors through *A: K2(F) -> K2(A).

(Theorem 3.3)

To prove (i), choose intermediate fields F = F0 C F1 C ... C Fk = E

such that K2(Fi) = {Fi,Fi_1} for all i (use Lemma 4.5). For each i,
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let Ai g A denote the centralizer of Fi in A (so Ak = E). Consider

the following diagram:

K2(Fk) -> ... -> K2(Fi) t K2(F1-1) -' ... -+ K2(FO)ii1Y6 (1)I'I" I*i I_1
c c inc; cK2(Ak) K2(Ai) 2(A,-1) -' ... -+ K2(AO)

(where ¢i = 'PA. ) . For any u E Fi_1 and v E Ai ,

+i-lotrfi({u,nrA`/F`(v)}) = si-1({u,NF;/F:_1onrA;/F;(v)}) (Thm 3.1(v))

= 7-1((u,nrA._1/F,_1(v))) (Lemma 2.1(iv))

_ {u,v} = incioPl({u,nrA,/Fi(v)}).

Since c(F ) = {F,F } by assumption (and nr is onto by Theorem
K2 i i i-1 A; /F;

2.3), this shows that each square in (1) commutes. In particular,

inc1E = *iotrfF : K2 (E) ) K2 (A).

By Lemma 4.5, it suffices to prove point (ii) when K2(E)

And this follows easily upon noting that the reduced norm for A/F is the

restriction of the reduced norm for EO E (by definition).

The last two points are immediate, once one notes that for any A

and r, the standard isomorphism S: K2(A) ) K2(Mr(A)) sends {u,v},

for commuting u,v E Aw, to the symbol {diag(u,...,u),diag(v,l,...,1)}

(see Theorem 3.1(iv)). o

The goal now throughout the rest of the section is to show, for as

many simple &-algebras as possible, that yA is an isomorphism. The

difficult (and still not completely solved) problem is to prove

injectivity. The next proposition will be used to do this when p is

odd, and in certain cases when p = 2.
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Proposition 4.9 Fix a prime p, and let A be a simple -algebra

E Fwith center F. Assume that p is odd, or that p = 2 and
C2n -[0

for some n > 2, or that ind(A) is odd. Then there is a finite

extension E D F which splits A, and such that the induction map

K2(F) --> K2 (E) is injectiue.

Proof We first show that for any nlind(A), there is a cyclotomic

extension E D F of degree n such that the norm homomorphism
NE/F

restricts to a surjection of µE onto µF,. It suffices to do this when

n= q is prime, and to show surjectivity onto the group (PF,)q of q-power

roots of unity.

Write '("F.)ql = qr; we may assume r > 1. Set E = F(c), where

is a primitive qr+1-st root of unity. Then [E:F] = q. If q s p, then

E/F is unramified (Theorem 1.10(1)), and so
NE/F

induces a surjection

of (pE)q onto (lF)q by Proposition 1.8(iii). If qr > 2, then

NB(C) = (S).(cl+gr).(c1+2gr)...(cl+(q-1)qr)
=

jCq

generates (up)q. If p = qr = 2, then C2m - X21 E F by assumption (for

some m > 3); so C2m E E, and NE/F(CV)
= -1-

Now set n = ind(A). Let E 7 F be any extension of degree n such

that NE/F(lE) = p F. The condition [E:F] = n implies that E is a
splitting field for F (see Reiner [1, Corollary 31.10]). To see that

K2 (F) injects into K2 (E), consider the following diagram:

K2(E) trf
K2(F)

incl K2
(E)

°E
I °E

N

pE
E

l1F
C

AE'

This commutes by the naturality of aE: inclotrf is induced by tensoring

with the bimodule E®FE (see Proposition 1.18); and is hence the norm
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homomorphism for the action of Cal(E/F) on K2(E). Also, trf is onto

by Theorem 4.6, K2(F) = µF,; and so I Im(incl) I = I Im(NE/F,) I = IpFI =

IK2(F)I. El

The next lemma will be needed when showing that yA is injective for

any simple k-algebra A of index 2.

Lemma 4.10 Fix a finite extension F of Qp, and let D be a

division algebra with center F for which [D:F] = 4. Let IIi C D be the

maximal order. Then for any given n, each element in

Ker[K2(D) K2(D)] = Im[K2(F,piIIi) -i K2(D)]i=

=1

can be represented as a product of symbols {1+ pnx,1+ pny} for commuting

pairs of elements x,y E V.

Proof The proof is modelled on the proof by Rehmann & Stuhler [1,
Proposition 4.1] that K2(D) is generated by Steinberg symbols {u,v}

for commuting u,v E D*. However, since we have to work modulo pn'lfl, the

proof is much more delicate in this setting.

Fix n > 2, and define

Xn = ({u,v} : u,v E 1 + pnB, uv = vu) C K2(D).

We must show that Ker[K2(D) -+ K2(D)] C Xn.

Step 1 Recall the symbols {u,v} E St(D), defined in Section 3a for

any pair of units u,v E D*, and such that ({u,v}) = [u,v] (E GL1(D)).

We are particularly interested here in the case where u and v do not

commute. By Theorem 3.1(iv), {u,v} = [x,y] for any x,y E St(D) such

that

$(x) = diag(u,u2,...,uk) and 0(y) = diag(v,v2,...,Vk),
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and such that ui = 1 or vi = 1 for each 2 S i S k. Using this, the

following relations among symbols, for arbitrary u,v,x,y E D*, follow

easily from corresponding relations among commutators:

{v,u} = {u,v}-1 (1)

1,vyv l} _ {u,vy}; {uxu l,uvu {ux,v} (2)

{ux xvx (3)

NY l,YvY lv}. (Y = v lxyx lv) (4)

In particular, the relations in (2) show that for any u,v,x,y E l+pn1R
such that [u,y] = [v,x] = 1,

{u,v} a {u,vy} _- {ux,v} (mod Xn). (5)

Step 2 Set 2I = 2p + p2nB C D, a gp order in D. By definition of

K2(-) (and Lemma 3.2),

Ker[K2(D) --> K2(D)] C Im[K2(2[,p2n-N) --) K2(D)].

Also, since 2l is a local ring, results of Kolster [1] apply to show that

each element of K2(21) is a product of symbols {u,v} for (not

necessarily commuting) pairs of units u,v E 2l*. Since 2f is generated

by (2 p) * and 1 +p2n,,, relations (2) above show that any

f E Ker[K2(D) -i K2(D)] has the form

f =

E K2(2 p), is a product of symbols {(gp)*, 1+pi-11}, and

u;,v; E 1 + p 2,F-urthermore, vanishes under projection to
'In

K2(Z/p-_ L), so fo E K9(2 p,p2 p) = {(gp)* , l+p p}

(Theorem 3.3). But for any a E (2p)* and any x E Lt,
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{a,1+p2nx} _ {a(p-1)p" , (1+p2nx)1/(P'1)p"} E {l+pn+l p , l+pn5t1.

Here, the (p-1)pn-th root is taken using the binomial expansion.

We have now shown that

Ker[K2(D) -- + K2, (D)] C ({l+pnx,l+pny} : x,y E m) (C St(D)). (6)

Step 3 Let R be the ring of integers in F = Z(D), and let

p (a) C R be the maximal ideal. We regard V/p7R as a 4-dimensional

R/p-vector space. For any a E R, a denotes its image in 1/p0.

Define functions

A : (1 + pnB) - 1 -i (Th/pR) - 0 and v : (1 + pnI.) - 1 --> Z>0,

by setting, for any k 0 and any a E IR N p1R:

µ(l+pnaka) = a E B/p)R and

For a n y sequence u1 , ... ,uk E 1 + pnB, set

u(1+pn rrka) = k.

i(ul,...,uk) = (W(u1),...,W(uk),l)R/p g 1R/pX;

i. e., the R/p-vector subspace generated by these elements.

These functions will be used as a "bookkeeping system" when

manipulating symbols {u,v}. The following two points will be needed.

(7) For any u,v E 1 +pnR, there exist uo,vo E 1 +pn1R such that
v(vo) = 0 (alternatively, u(uo) = 0), W(uo) = -µ(v), µ(vo) = W(u),

and {uo,vo} E {u,v} (mod Xn). To see this, write u = l+pnrrka and

v = l+pnneb, where a,b E 1 N p1R. Then, by (5),

{u,v} a {l+pnirka,(l+pnveb)(l+pna)} = {l+pnrrka,l+pn(a+ireb+pnireba))

{(l+pnika)(l+pnak(a+aeb+pnieba))-1,1+pn(a+Teb+pnieba)1
(mod Xn)

=
{1-pn7 k+eb(l+pna)(l+pn7 k(a+rreb+pnneba))-l,l+pn(a+neb+pn\reba)I.
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This proves the claim if e > 0. If 2 = 0, then a third such operation

finishes the proof.

(8) For any u,v E 1 +p' R such that [u,v] # 1, there exists
uo,vo E 1+pN such that {uo,vo} = {u,v} (mod Xn), and such that

3. Furthermore, we can do this with uo = u if

dimRp(µ(u)) = 2; and similarly for v. To see this, again write

u = l+pn rra and v = l+pnireb where a,b E M'pM. The condition [u,v] # 1
implies that the elements l,u,v (and hence l,a,b) are F-linearly
independent in D. If dimRp(u(u)) =2, so that a E V - (pJRUR), then

we can write b = a+pa+rrmbo, where a,(3 E R and bo4(a,l)R/p. So

{u,v} = {1+pna a,(l+pn7r0b)(1+pnae(a+Ra))-1} (mod X
n

)

=
{u,1-pnV10+mbo(l+pnae(a+pa))-1} = {u,vo};

and µ(u,vo) = (a,bo,l)R/p is 3-dimensional. The proof when µ(v) is

2-dimensional is similar. If both }i(u) and µ(v) lie in R/p then an

analogous operation replaces u by uo such that W(uo) it R/p.

Step 4 Now consider a n y 4-tuple of elements u,v,x,y E 1 + p' 1 such

that µ(u,v) and µ(x,y) are 3-dimensional. We will show that there are

elements uo,vo,xo,yo E 1 + pnf)1 such that {uo,vo} a {u,v} and {xo,yo}

{x,y} (mod Xn); such that µ(uo,vo) = µ(u,v) and }i(xo,yo) = u(x+y);

and such that either vo = x0, or xolvo 2(uo,vo) = li(xo,yo)

Using (7), we may assume that v(v) = 0 = v(x). Write

u = l+pn rka, v = l+pnb, x = l+pnc, y = l+pnned,

where a,b,c,d E R - p7R. Since dimRp(T/pl) = 4, and since the sets

{a,b,l} and {c,d,1} are linearly independent, there is a relation

d+T = 0 E R/p); (9)

where K or A is nonzero and a or R is nonzero. Using (7) if
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necessary to make some switches, we can arrange that (3 x 0 X K.

For any a,(3,T E R such that (3 E R*,

{x,y} _ {1+pnc, (1+pnJred)(l+pn7rea3 1 c+pnirPi(3 1)} (mod Xn )

_ (1+ pnc , 1 + pnir8(d+a(31yc+T(3 1y) }

{(l+pnc)(1+pn((3d+ayc+"Ty)) , 1+pnne(d+aI3 lyc+TR 1y)}

_ < 1 + pn(c+Pxd+axyc+Txy) , 1+ pnr0(d+a(3 1yc+10 1y)}
=

{xo,Yo}.

Note in particular that v(xo) = 0, and that

+(3A(xo) = 11(Yo) = d+«J3 l 1.

Thus, µ(xo,Yo) = l(x,y). Similarly, for any K E R* and X E R, if

uo = 1+pnlrk(a+XK 1ub) and vo = 1+pn(b+iva+Xvub),

then {uo,vo} a {u,v} (mod Xn), and µ(uo,vo) = 1i(u,v).

Now consider the equation

(10)

By (9), we can find a,(3,7,K,X E R, where (3,K E R , such that (10)

holds (mod pM = wV). If (10) holds (mod aeM), for some e > 1, then

we can find a solution (mod
ire+11) unless

aer,

and r
R/p

= µ(u,v)+ µ(x,y). If this ever happens, then

11(xo1vo) = r 11(u,v)+Fl(x,Y) = A(uo,vo)+11(xo,Yo)+

and 1%(u,v) = µ(x,y) since each has codimension one. Otherwise,

successive approximations yield a,(3,1,K,X such that (10) holds, and
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hence such that vo = xo.

Step 5 We are now ready to prove the lemma. By Step 2, any element

E Ker[K2(D) --i K2(D)] is a product of symbols {u,v} for u,v E

1 + pn%l. So to show that $ E Xn, i. e., that f is a product of such

symbols for commuting pairs u,v E l+ pnB, it will suffice to show that

any product for u,v,x,y E 1+ pnLl, is congruent (mod X
n

)

to another single symbol of the same form.

Fix such u,v,x,y. We may assume that [u,v] A 1 0 [x,y]; and hence

(using (8)) that }i(u,v) and µ(x,y) are 3-dimensional. By Step 4,

there exist uo,vo,xo,yo such that and

such that either vo = xo or

xolvo f V(uo,vo) = u(u,v) = l(x,y) = u(xo,yo)

In the first case, we are done by relation (3). In the second case,

(mod Xn)

by (4), where Yo = volxoyoxolvo. Then µ(v1) = µ(vo)= µ(xo),

µ(x1)= µ(yo), and µ(y1)= µ(xolvo). So by (11),

dimp(µ(xo,yo)) = 3.

Step 4 (and (3)) can now be applied again, this time to

to show that it is congruent mod X
n

to a symbol of the same form.

The next theorem, due mostly to Bak & Rehmann [1], and Prasad &

Raghunathan [1], shows that yA is an isomorphism for many simple

s-algebras. Recall that the index of a central simple F-algebra A is

defined by setting ind(A) = [D:F]
1/2

if A = Mr(D) and D is a

division algebra.

Theorem 4.11 Fix a simple &-algebra A with center F. Then

there is a unique isomorphism
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oA : K2 (A) pF/T,

where T C {i1}, and such that for any a E F* and any u E A*:

CA({a,u}) = (a, nrA/F,(u))F.

Furthermore, T = 1 if any of the following three conditions hold:

E F for some n > 2; or(t) p is odd, or p = 2 and [2n
-C21

(it) 44ind(A); or

(tit) A is a simple summand of K[G], for some finite group G

and some finite extension K Q Q.

Also, for any maximal order JR C A, K2(11) = K2(A)(p) = (PF,)p/T.

Proof The last statement, that K2(1R) = K2(A)(p), is immediate from

the localization sequence of Theorem 3.5. By Theorem 4.4, it suffices to

show that yA : K2(F) - K2(A) is surjective with kernel of order at

most 2, and an isomorphism if any of conditions (i) to (iii) hold. The

proof will be carried out in three steps: torsion prime to p will be

dealt with in Step 1, the surjectivity of yA will be shown in Step 2,

and Ker(PA) will be handled in Step 3. By Proposition 4.8(iv), it

suffices to assume that A is a division algebra.

Let R C F be the ring of integers, and let j C 1R and p C R be

the maximal ideals. Set n = [A:F]1"2. By Theorem 1.9, A is generated

by a field E ? F and an element n such that

(a) E/F is unramified, [E:F] = n, and irETr 1 = E

(b) there is a generator 11 E Gal(E/F) such that irxir 1 = n(x) for
all xEE

(c) ]R = S[a] (where SCE is the ring of integers) ; J = J(R) =,rJ,
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An
E R, and n generates the maximal ideal p E R.

Step 1 By Theorem 2.11, ISK1(%I)I = IK1(IVJ)I/IK1(R/p)I. A

comparison of this with the localization sequence

i -> K2 (1l) K2 (A) --1 K1(m/J) -> SK1(M) - 1

of Theorem 3.5 shows that

IK2(A)[p]I = IK2(A)/2(h)I = 1(M)I = IK1(R/p)I = IK2(F)[p]I

Since E/F is unramified, the commutative diagram

c
A

K (R/p) E-- Kc(F)/Kc(R) - c(F)[1] K°(A)L1]1 2 - K2 p 2 p

I

1K1(S/pS) K2(E)/K2(S) = K2(E)[p] -+ K2(E®FA)[-]

(from Theorem 3.5 and Proposition 4.8(ii)) shows that yA induces an

injection of K2(F)[p1] into K2(A)/[1p], and hence a bijection.

Step 2 We next show that 4A(K2(R)) = K2(T), by filtering K2(9t)

via the subgroups K2(M,Jk). By Theorem 1.16, K2(7R/J) = 1, and so

K2(M) = K2(Th,J). By Theorem 3.3, for each k > 1,

K2(E/Jk,Jk-1/Jk)

=
({l+lr,l+airk-1}

: a E S).

If n1k, then for any a,b E S, the symbol relations in Theorem 3.1 show

that in
K2(V/Jk,Jk-1/Jk)

(1+T, 1+abirk-1 } = { l+ir, l+baak-1 } = { 1+ab, l+airk-1 }

= {l+rl(b)a,l+aak-1} = (1+7,

I

incl Ithcl
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= {1+ir,
k(b).irk-1}.

So { l+v, l+a(b-iik(b) )ak-1 )= 1, and b can be chosen so that b-71 k(b) E
(17k # 1 since n1k). Hence K2(M/Jk,Jk-1/Jk) = 1 in this case.

If nik, then consider the relative exact sequence

K2(m,Jk)
K2(IR/Jk,Jk-1/Jk)

a + Kl(1R,Jk)

I
K1(M/Jk+1,Jk/Jk+l).

Since nik, irk E R, and hence [V,Jk] C Jk+l. Then by Theorem 1.15,

K1(DI/Jk+1,Jk/Jk+l) = Jk/Jk+1 = Vk. 11/j.

For any {1+ir,l+airk-1} E K2(,R/Jk, Jk-1/Jk) (a E S),

8'({1+n,l+ank-1})

_
[l+a,l+atrk-1]

= 1 + k

and this vanishes if and only if a E R + pS.
This shows that K2(R) is generated by symbols {l+lr,l+aak}, for

k > 1 and a E R. In particular, using Proposition 4.8(i),

K2(%) C Im[K2(F(n)) 'n°l+ K2
(A)] = Im[K2(F(ir)) tr K2 (F) K2(A)]

(note that F(w) is its own centralizer in A). So K2(Th) C Im(4A), and

4cA
is onto.

Step 3 If none of conditions (i) to (iii) are fulfilled, then p = 2

and (}'F)2 = {fl}; and so IKer(4 ) I , 2. It thus remains to prove the

injectivity of yA in p-torsion, when (i), (ii), or (iii) holds. By

Theorem 1.10(ii), any simple summand of a 2-adic group ring has index at

most 2; so it suffices to consider the first two conditions.
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(i) E FAssume first that p is odd, or that p = 2 and
C2"

-C21

for some n 2 2, or that ind(A) is odd. Then by Proposition 4.9, there

is a splitting field E Q F for A such that the induced homomorphism

K2 (F) -' K2 (E) is injective. By Proposition 4.8(ii,iv), there is a

commutative square

K2(F) incl
)

K_ (E)

K2 (A) -' K2(E®FA);

and so PA is also injective.

(ii) Next assume that p = 2, and that ind(A) = 2. There is a

trancendental extension E F (the "Brauer field") such that E splits

A and such that F is algebraically closed in E (see, e. g., Roquette

[2, Lemma 3 and Proposition 7]). Then K2(F) injects into K2(E) by a

theorem of Suslin [1, Theorem 3.6]. The following square commutes by

Proposition 4.8(iii):

K2(F) 'ncl K2(E)

I 'PA Io

K2(A) --' K2(E®FA);

(note that we are using dtscrete K2 here); and so
PA

is injective.

On the other hand, yA is surjective by a theorem of Rehmann & Stuhler

[1, Theorem 4.3]. By Lemma 4.10, any r; E Ker[K2(A) -i K2(A)] is an

n-th power for arbitrary n > 1. Since yA is an isomorphism, and since

K2 (F) is finite, this implies that PA1(Tl) E Ker[K2(F) - K2(F)]. It

follows that K2(F) = K2(A).

Now assume that ind(A) = 2m, where m is odd. Let E 2 F be any

extension of degree m. Then E®FA is a central simple E-algebra of
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index 2: this follows from Reiner [1, Theorems 31.4 and 31.9]. Consider

the following commutative diagram of Proposition 4.8(ii):

K2 (F)
incl) K2(E) trf K (F)

c c c
'Pi yE®A *A

K2(A) 1- ) K (EOFA) tr K2(A).

The composite trf o incl in the top row is multiplication by m (use

Proposition 1.18), and so incl is injective in 2-power torsion. Hence

yA is also injective in 2-power torsion; and this finishes the proof. 0

It is still unknown whether K2(A) = K2(F) for an arbitrary simple

Q2 algebra A with center F. The argument in Step 3(ii) (based on

Suslin [1, Theorem 3.6]) shows that *A: K2(F) - K2(A) is always

injective (using discrete K2). But we have been unable to extend any of

these results to the case of continuous K
2-

This difference between

K2(-) and K2(-) is the source of the (erroneous) claim by Rehmann [2]

to show that K2(A) = K2(F) = µF in general.

4c. The calculation of C(Q[G])

If R is the ring of integers in a number field K, then a

congruence subgroup of SLn(R) (for any n Z 2) is a subgroup of the

form

SLn(R,I) = (M E SLn(R) : M =-1 (mod Mn(I))}.

for any nonzero ideal I C R. The congruence subgroup problem as

originally stated was to determine whether every subgroup of SLn(R) of

finite index contains a congruence subgroup.

Any subgroup of SLn(R) of finite index m contains En(R,mR): by
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definition, En(R,mR) is generated by m-th powers in En(R). Conversely,

if n > 3, the E(R,I) all have finite index in SLn(R) since

SK1(R,I) = SLn(R,I)/En(R,I)

(see Bass [2, Corollary V.4.5]) is finite. Furthermore, for any pair

J C I C R of nonzero ideals, SLn(R,I) is generated by SLn(R,J) and

En(R,I) - any matrix in SLn(R/J,I/J) can be diagonalized. Thus, the

conjecture holds for n>3 if and only if the groups SK1(R,I) vanish

for all I C R; if and only if the group C(K) = 4im SK1(R,I) vanishes.

For the original solution to the problem, where the use of Mennicke

symbols helps to maintain more clearly the connection with the groups

SLn(R, I) , we refer to the paper of Bass et al [1], as well as to the

treatment in Bass [2, Chapter VI]. The presentation here is based on the

approach of C. Moore, using the isomorphism

C(A) = 4Lm SK1(21,I) = Coker[K2(A) -e K2(Ap

shown in Theorem 3.12. The groups K2(Ap) have already been described in

Theorem 4.11; and so it remains only to understand the image of K2(A).

The key to doing this - for fields at least - is Moore's reciprocity

law. Norm residue symbols will again play a central role; and the

description of C(A) for a simple Q-algebra A (Theorem 4.13 below) will

be in terms of roots of unity in the center of A.

Recall that the valuations, or primes, in an algebraic number field

K consist of the prime ideals in the ring of integers (the "finite

primes"), and the real and complex embeddings of K.

Theorem 4.12 (Moore's reciprocity law) Let K be an algebraic

number field, and let A be a simple Q-algebra with center K. Let E

be the set of noncomplex valuations of K (i. e., the set of prime Ideals

and real embeddings) and set

2A = 2 - {v: K '-> f : Q2®vKA = Mr(W), some r}.
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Then the sequence

K* 0 nrAIK(A*) ® µK P , µK --> 1
vE'A

117

is exact. Here,
p'K

and µK denote the groups of roots of unity, and

for any C = (Cv)Vcl Kv E p k,):

p(U) _ [[
a)mV/m

vE2 v (mv = Iµj,I, m = 1 KI)

Proof This was proven (at least in the case A = K) by C. Moore [1,

Theorem 7.4].

Note that (K*,nrA/K(A*))v = 1 for any v E 2 2A: since v(a) > 0

(v: K y It) whenever a E nrA/K(A*). It thus suffices to prove the

statement p ol(,) = 1 when A = K (so 2A = B). This is just the

usual reciprocity law (see, e. g., Cassels & Frohlich [1, Exercise 2.9]).

For example, when A = K = @, and p and q are odd primes, the

relation p 1 reduces to classical quadratic reciprocity

using the formula in Theorem 4.7(1).

A second, shorter proof of the relation Ker(p) in the

case A = K, is given by Chase & Waterhouse in [1]. By the

Hasse-Schilling-Maass norm theorem (Theorem 2.3(ii) above),

nrA/K(A*) = {x E K : v(x) >0, all v E I- 7A} ;

and using this the proof in Chase & Waterhouse [1] of the relation Ker(p)

C is easily extended to cover arbitrary A. O

We are now ready to present the description of the groups C(A) - up

to a factor {ill, at least - in terms of norm residue symbols and roots

of unity. This is due to Bass, Milnor, and Serre [1] in the case where A

is a field; and (mostly) to Bak & Rehmann [1] and Prasad & Raghunathan [1]

in the general case.



118 CHAPTER 4. THE CONGRUENCE SUBGROUP PROBLEM

Theorem 4.13 Let A be a simple @-atgebra with center K, and let

µK denote the group of roots of unity in K. Then

(i) C(A) = 1 if IROvKA = Mr(IR) for some v: K I-- IR, some r

(ii) C(A) = µK if no embedding v: K JR splits A, and if for

each 2-adic valuation v of K, either
[2"-[21

E Kv for some n Z 2,

or 41ind(Av)

(iii) C(A) = µK or IK/{tl} otherwise.

More precisely, if C(A) = pK/T $ 1, then there is an isomorphism

aA: C(A) = Coker[K2(A) -> ®K2(Ap)] µK/T

p

such that for each p, each prime p1p of K, and each {a,u} E K2(Ap)

(where a E (I{p)* and u E (Ap)*),

aA({a,u}) = (a, nrA/K(u)) PK E PK.

In particular, each summand K2(Ap) surjects onto C(A).

Proof Let I be the set of all noncomplex valuations of K (i. e.,

all finite primes and real embeddings). Fix subsets 20 C 'A C 2: 20 is

the set of finite primes of K (i. e., prime ideals in the ring of

integers); and as in Theorem 4.12,

'A = 1 - {v: K '- IR : IR ®vK A = Mr(N), some r).

For each (rational) prime p, Kp = IVIPKv and 1P = IvI pAv (see Theorem

1.7(1)). In other words, we can identify (1) with ®vElK2(Av

Consider the following commutative diagram:
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K* ® nr (A*) ® } p , } - 1
A/K vE2o

Is

K2(A) ® K2(Av) ) C(A) -> 1.

(1)

Here, p is defined as in Theorem 4.12, and s is induced by the symbol

map

{,} : K* 0 K1(A) ) K2(A)

(where K1(A) = nr(A*) C K* by Theorem 2.3). Note that by Theorem

4.3(iii), the composite p o[[(orv) satisfies the above formula for cA.

If 20 2A, then

and so

I = {±1} (K C IR),

"vE2o(')v

uK
= }12 = {fl} for v E 'A-201

is onto by Theorem 4.12. Hence f is onto, and

C(A) = Coker(f) = 1 in this case.

If 'A = 2o, i. e., if A ramifies at all real places of K, then

both rows in (1) are exact. In particular, (1) induces a surjection of

pK
onto C(A). If A is a matrix algebra over a field, then s is

onto, and so C(A) = }.

Otherwise, we use the K2 reduced norm homomorphism of Suslin [1,

Corollary 5.7] to get control on Coker(s). If F is any field and A

is any central simple F-algebra, then there is a unique homomorphism

nr2: K2(A) -> K2(F) which satisfies the naturality condition:

(2) if E 7 F is any splitting field, then the square

K2(A) 1® K2(E ®F, A)

1nrA = Io

K2(F)
incl , K2(E)
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commutes, where 6 is induced by the isomorphism E 0
F
A = Mr(E).

Also, there is a splitting field E D F for A such that F is

algebraically closed in E (see, e. g., Roquette [2, Lemma 3 and

Proposition 7]). So by a theorem of Suslin [1, Theorem 3.6]:

(3) there exists a splitting field E F such that the induced map

K2(F)
i

K2(E) is injective.

Then (2) and (3) (and Proposition 4.8(ii)) combine to imply

(4) for any u E F* and any a E A*, nrA({u,a}) = {u,nrA/(a)}.

Assume now that condition (ii) holds; then yA K2(Kv) -_ KK(Av)

is an isomorphism for all v E 7o by Theorem 4.11. Consider the

following diagram:

(a^ )K2(A) f - ® K2(Av) " ® I{"
vE2o vE2o

nrA (5a) 0(yA")-1 (5b) incl

f ll(a^ )

K2(K) K2(Kv) K ® Wkv
vEy vEl

Here, for v E Y, - 2o, we define for convenience,

(5)

K2(R) = µ, _ {±1} (and

aIR({u,v}) = -1 if and only if u,v < 0). Square (5b) commutes by the

definition of the al.. If square (5a) also commutes, then a comparison

of diagrams (5) and (1) shows that

Im(n(oA") o f) C Im(n(ak")
o fK) fl ( ® pIC"/vElo

= Ker[p : ® K2(Kv) -» µJ
vE2o

and it follows that C(A) = Coker(f) = pK.
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It remains to check that (5a) commutes; we do this separately for
each v E 2. This splits into three cases.

Case 1 Assume first that Kv ) E,, where either p is odd, or p =

2 and C2n C2n E Kv for some n > 2, or p = 2 and ind(Av) is odd.

Then, by Proposition 4.9, there is a finite extension E 2 Kv which

splits Av, and such that K2(Kv) injects into K2(E). In the following

diagram:

K2(A) --' K2(Av) ) K2(E®KA)

Ir1rA (6a) 1v)_1 (6b) 6

K2(K) - K2(Kv) >--' K2(E)

(6)

square (6b) commutes by Proposition 4.8(ii,iv), and (6a+6b) commutes by

(2) above. So (6a) also commutes.

Case 2 Assume now that Kv 2 O, and that ind(Av) = 2m for some

odd m. Using Proposition 4.9 again, choose an extension E 2 1{v of

degree m such that K2(Kv) injects into K2(E). Then E @K A has index

2 (see Reiner [1, Theorems 31.4 and 31.9]). The same argument as in Case

1 shows that square (5a) commutes for
1v

if it commutes for E OK A; i.

e., that we are reduced to the case where ind(Av) = 2.

If ind(Av) = 2, then consider the following diagram:

K2(A) _--' K2(Av) K2(Av)

InrA (7a) nr2 (7b)

K2(K) -- K2(Kv) -> K2(Kv).

(7)

By Rehmann & Stuhler [1, Theorem 4.3], K2(Av) is generated by symbols of

the form {a,u} for a E (Kv)* and u E (Av)*; and so (7b) commutes by

(4) (and the definition of P). Square (7a) commutes by (2) and (3)
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above; and so (5a) commutes in this case.

Case 3 Finally, assume that v E 2 - 2o; 1. e. , that Av = Mr(11)

for some r. Then K2(Av) _ {(Kv)*,(Av)} by Rehmann & Stuhler [1,

x

Theorem 4.3]. The composite K2(Av) n' K2(Kv) - K2(Kv)- K2(lt)- {fl}

is thus trivial (use (4) again); and so (5a) also commutes at such v.

This finishes the proof of the theorem when (i) or (ii) holds. If

neither of these hold, then (''KK)2 = {±1}, so we need only check that

C(A) is isomorphic to { in odd torsion. The proof of this is

identical to that given above. o

Theorem 4.13 immediately suggests the following conjecture.

Conjecture 4.14 For any simple Q-algebra A with center K,

C(A)
(1
{l}11{

if I R O
vK

A = Mr(It) for some v: K '- -1 It and some r

otherwise.

By Theorems 1.10(ii) and 4.13, Conjecture 4.14 holds at least

whenever A is a simple summand of a group ring L[G], for any finite G

and any number field L. If Suslin's reduced norm homomorphism, when

applied to a simple s-algebra, could be shown always to factor through

K2(-), then the proof of Theorem 4.13 above could easily be modified to

prove the conjecture.

We now consider some easy consequences of Theorem 4.13. The next two

theorems depend, in fact, not on the full description of C(A) =

Coker[K2(A) - ®pK2(Ap)], but only on the property that each factor

K2(Ap) surjects onto C(A). The first explains why we focus so much

attention on a-orders: if any primes are inverted in a global order 3,

then C11(21) = 1.

Theorem 4.15 Let A C ID be any subrtng with A Z. Then, if 21

is any A-order in a semisimple ID-algebra A, Cl1(21) = 1. More
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precisely, if 9' denotes the set of primes not invertible in A, then

SK1(2I) = SK1(2Ip).
pE#

Proof Let IN D 2I be a maximal A-order in A. and set n = [M:2I].
The same construction as was used in the proof of Theorem 3.9 yields an

exact sequence

Jim SKi(2I,I) SKI(21) ® SKl(2[p) -> 1;
I pE9'

(1)

where the limit is taken over all ideals I C 21 of finite index, and

where SK1(21,I) = im Cll(T,I) for any maximal A-order 1R 2 21.

Furthermore, the same construction as that used in Theorem 3.12 (based on

Quillen's localization sequence for a maximal order) shows that

Im C11(IR,I) = Coker[f9': K2(A) -> K2(Ap)]. (2)

By Theorem 4.13, under the isomorphism

C(A) = Coker[K2(A) ® K2(Ap)],

P

each factor K2(Ap) surjects onto C(A). Hence, since 9' does not

include all primes, the map f51 in (2) is onto. It follows that

im SK1(2I,I) = 1 in (1), and hence that 2 is an isomorphism. o

The next theorem allows us, among other things, to extend Kuku's

description of SK1(Th) for a maximal i order I (Theorem 2.11) to

maximal Z-orders.

Theorem 4.16 (Bass et al [1]; Keating [3]) If 21 is any Z-order in

a semisimple D-algebra A, then C11(21) has p-torsion only at primes p

for which iP is not a maximal order. In particular:
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(i) C1I(21) = 1, and SK1(21) = ®pSKI(21p), if 21 is maximal;

(ii) SK1(R) = 1 if R is the ring of integers in any number field;

and

(iii) SK1(R[G]) has p-torsion only for primes phIGI, if G is a

finite group and R is the ring of integers in any number field.

Proof Let R J 21 be any maximal order in A; and consider the

localization exact sequence

® K2(fIp) C(A) -) SKI(') - ® SKI(i1p) - 1

of Theorem 3.9. For each p, c1K2(Ip) is the composite

K(Np)
incl

K2(Ap) (D K2(Ap)

P

and K2(Ap) surjects onto

K2(1p)(p) by Theorem 4.11,

torsion in C(A)). Hence

pro j,, Coker[K2(A) -> ® K2(Ap)] = C(A);

P

C(A) by Theorem 4.13. Also,

and

(P is

K2(ip) =

so (K2(9p)) = Cp(A) (the p-power

onto, and C11(1) = 1. Corollary 3.10

now applies to show that Cll(21) = Ker[C11(21) -+ Cll('N)] has p-torsion

only for primes pl[ffi:21].

It remains only to prove point (iii). For any group ring R[G] as

above, Bp [G] is a maximal order for all by Theorem 1.4(v). In

particular, pfl Cl1(R[G])I for such p, and p1'ISK1(Rp[G])I by Theorem

1.17(i). On the other hand, for each p. SKI(Rp[G]) is a p-group by

Wall's theorem (Theorem 3.14). So C11(R[G]) and ®pSKl(Rp[G]) both

have torsion only at primes dividing IGI. 0

Point (iii) above will be strengthened in Corollary 5.7 in the next

chapter: SKI(R[L]) has p-torsion only for primes p such that the

p-Sylow subgroup Sp(G) is noncyclic.
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We end the section with a somewhat more technical application of

Theorem 4.13; one which often will be useful when working with group

rings. For example, it allows us to compare C(@[G]), for a finite group

G, with C(K[G]) when K is a splitting field.

Lemma 4.17 Let K be any number field, and let A be a semistmple

K-algebra. Then for any finite extension L 3 K, the transfer map

trfK : C(L ®K A) -» C(A)

is surjecttue. If L/K is a Galois extension, then the induced

eptmorphtsm

trfo : HO(Gal(L/K); C(L ®K A)) - * C(A)

is an isomorphism in odd torsion; and is an isomorphism in 2-power torsion

if either (t) K has no real embedding and Conjecture 4.14 holds for

each simple summand of A, or (ii) A is simple and 21IC(A)I.

Proof Note first that trfK is a sum of transfer maps, one for each

simple summand of L®K A. When proving the surjectivity of trfK, it
thus suffices to consider the case where A is simple and K = Z(A). By

the description of C(A) in Theorem 3.12, it then suffices to show that

trf : K2(La OR Ap) K2(A,)

is surjective for any prime p in K, and any q I p in L. And this

follows since the following square commutes by Proposition 4.8(11):

K2(Lq)
trf N K2(Kp)

ISPc

14;c

K2(Lq OR A K2(Ap);

where the transfer for Lq 7 Kp is onto by Theorem 4.6, and the two maps
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*c
are onto by Theorem 4.11.

Now assume that L/K is Galois, and set C = Gal(L/K) for short.

It will suffice to show that if A is simple, then trfo is an

isomorphism in odd torsion, and an isomorphism if 21IC(A)I (so C(A)

NZ(A)). Write L ®K Z(A) _ II iLi, where each Li is a finite Calois

extension of Z(A); then L ®K A
Ii=lLi®Z(A)A

and C permutes the

factors transitively. Hence, if C1 C C is the subgroup of elements
which leave L1 invariant (so G1 = Gal(L1/Z(A))), then

HO(G; C(L ®K A)) = HO(G1; C(L1 ®Z(A) A)).

In other words, we are reduced to the case where K = Z(A) (and G = C1,

L = L1).

In particular, LO
K
A is now a simple algebra with center L. By

Theorem 4.13, there are isomorphisms

oLOA : C(L ®K A) µL/Tl and oA : C(A) PVTO

where I. {±l}. Furthermore, as abstract groups,

1K = HO(G; pL) ;

since for any group action on a finite cyclic group, the group of

coinvariants is isomorphic to the group of invariants. The domain and
range of trfo are thus isomorphic (in odd torsion if C(A) $ pK). Since

trfo is onto, it must be an isomorphism. 0
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The results in this chapter are a rather miscellaneous mixture.

Their main common feature is that they all are simple applications of the

congruence subgroup problem (Theorem 4.13) to study C11 of group rings;

applications which do not require any of the tools of the later chapters.

In Section 5a, the group G = C4 X C2 X C2 is used to illustrate the

computation of SK1(Z[G]) (= Z/2); as well as the procedures for

constructing and detecting explicit matrices representing elements of

SK1(Z[G]). Several vanishing results are then proven in Section 5b: for

example, that C11(R[G]) = 1 whenever G is cyclic and R is the ring

of integers in an algebraic number field (Theorem 5.6), that C11(Z[G]) = 1

if G is any dihedral, quaternion, or symmetric group (Example 5.8 and

Theorem 5.4), and that C11(R[G]) is generated by induction from

elementary subgroups of G (Theorem 5.3). These are all based on certain

natural epimorphisms $'R(;: RC(G) C11(R[G]); epimorphisms which are

constructed in Proposition 5.2. In Section 5c, the "standard involution"

on Whitehead groups is defined; and is shown, for example, to be the

identity on C(ID[G]) and C11(Z[G]) for any finite group C.

5a. Constructing and detecting elements in SK1(Z[G]): an example

We first focus attention on one particular group abelian G; and

sketch the procedures for computing SK1(Z[G]) (= C11(Z[G])), for con-

structing an explicit matrix to represent its nontrivial element, and for

detecting whether a given matrix does or does not vanish in SK1(Z[G]).

Example 5.1 Set G = C4 X C2 X C2. Let g,hl,h2 E G be generators,

where IgI = 4 and 1h1I = 1h21 = 2. Then SK1(Z[G]) - Z/2, and is
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generated by the element

11 + 8(1-gz)(1+h1)(l+hz)(l-g) -(1-gz)(1+h1)(1+hz)(3+g)

1

E SK (7L[G]).

-13(1-g2)(1+h1)(1+h2)(3-g) 1 + 8(1-gz)(l+hl)(1+hz)(l+g) 1

Proof This will be shown in three steps. The actual computation of

SK1(7L[G]) will be carried out in Step 1. In Step 2, the procedure for

constructing an explicit nontrivial element in SK1(7L[G]) is described.

Then, in Step 3, the matrix just constructed is used to illustrate the

procedure for lifting it back to C(@[G]) and determining whether or not

it vanishes in SK1(7[G]). This is, of course, redundant in the present

situation, but since the construction and detection procedures are very

different, it seems important to give an example of each.

Step 1 An easy check shows that D[G] splits as a product

Q[G] = Q8 X Q(i)4

By Theorem 4.13, C(@) = 1 and C(@(i)) = (i) = 7114. We must first
determine

ImkG : K2(Z2[G]) ) C(D[G]) = ((i))4]

For each r,s E {0,1}, let Krs. G -+ (i) denote the character:

)(rs(g) = i, Krs(hl) = (-1)r, Krs(h2) _ (-1)s. Each of these four

characters identifies one of the D(i)-sunvnands of D[G] with D(i) C C.

Let Ars denote the summand of Q[G] mapped isomorphically under Krs'

so that

Q[G] = @[G/(gz)] X Aoo X Aol X Alo X A11.

Recall that the isomorphism a: C(ID(i)) -_- (i) is

induced by the norm residue symbol. For the purposes here, the formula

a({i,u}) =
i(N(u)-1)/4

(N(a+bi) = a 2 + b2) (1)
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of Theorem 4.7(ii) will be the most useful. Consider the following table,

which (using (1)) lists values for p,(x) at the @(i)-summands, for some

chosen symbols x E K2(Z2[G]).

x a(Xoo(x)) a(Xol(x)) a(Xlo(x)) a(X11(x))

{g,l+(l+hl)g} i i 1 1

{g,l+(l+h2)g} i 1 i 1

{g,1+(1+hlhz)g} i 1 1 i

{-h2,1+(1+h1)g} -1 1 1 1

A quick inspection shows that Im(cp(,) has index at most 2.

To see that WG is not onto, we define a homomorphism

a C(M[G]) {fl}; a(x) _ a(Xrs(x))2
r,s

In other words, a sends each C(Q(i)) = (i) onto {±1); and 2

Ker(a) by the above table. To see that Ker(a) = Im(,pG), recall first

that by Corollary 3.4,

K2(7L2[G]) = ({-1,u}, {g,u}, {h1,u}, {h2,u} : u E (2[G])*).

The symbols ,pG({hi,u}) and pC({-1,u}) have order at most 2, are thus

squares in C(Q[G]), and lie in Ker(a). Also, for any u E (7L2[G])
*

,

a({g,u}) = a({i, I Xrs(u)})2 E {fl}.
r,s

Let R: 7L2[G] - 22[i][C2 xC2] be induced by 13(g) = i, and write

13(u) = a + bh1 + ch2 + dh1h2 (a,b,c,d E 22[i]).

A direct calculation now gives
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R Xrs(u) = (a+b+c+d)(a+b-c-d)(a-b+c-d)(a-b-c+d)
r,s

= (a2+b2-c2-d2)2 - (2ab-2cd)2 = 1 (mod 422[']).

Formula (1) now applies to show that a({g,u}) = 1.

This finishes the proof that Im(*G) = Ker(a). So by Theorem 3.15,

SK1(Z[G]) = Coker(,pG) = Z/2.

Step 2 Let N C Q[G] be the maximal order. Then N 7 Z[G], and

N - (Z) 13 X (Z[i])4. Under this identification, the M-ideal

I = (16Z)e x (8Z[i])' = (16.1, S N2 2

is in fact contained in Z[G]: to see this, just note that EI is

generated (over Z[G]) by the twelve idempotents

i6.(l+g2)(1±g)(1±h' )(lfh2) and 1)(12)

Consider the following homomorphisms:

SK1(Z[G],I) a , SK1(Z[G])

SK1(T,I) - SK1(Z,16)8 x SK1(Z[i],8)4.

Here, f is an isomorphism by Alperin et al [2, Theorem 1.3]. By Step 1,

SK1(Z[G]) is generated by 6o f-
1
(x), for any x E SK1(1,I) which

generates one of the SK1(Z[i],8) factors and vanishes in the others. So

an explicit generator of SK1(Z[G]) can be found by first constructing a

matrix A E GL(Z[i],8) such that [A] generates SK1(Z[i],S), and then

regarding GL(Z[i],S) as a summand of GL(1,I) = GL(Z[G],I) C CL(Z[G]).

To find a generator of SK1(Z[i],8), consider the epimorphisms
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(12[i]) --s K2(Z[i]/8)
8 s

SK1(Z[i]+8)

(recall that SK1(Z[i]) = 1 by Theorem 4.16(11)). By (1) above,

K2(a2[i]), and hence also K2(Z[i]/8), are generated by the symbol

{i,1+2i} = [+ 1(diag(i,l,i-1)) , + 1(diag(1+2i,(1+2i)-1,1))];

where +: St(Z[i]/8) -" E(Z[i]/8) is the canonical surjection. Hence

SK1(Z[i],8) is generated by the conmutator

8({i,1+2i}) = [diag(i,l,i-1), diag(M,1,M)] = [( 0), M] E CL(Z[i],8);

when M E GL2(7L[i]) is any mod 8 approximation to diag(1+2i,(1+2i)-1).

(Recall that diag(M,1,M 1) E E(Z[i]) by Theorem 1.13.)

To find M, we could take the usual decomposition

_1

diag(u,u 1) = e12* e21 *

u12'
e12. e211

e12 E E2(R),

then replace u by 1+2i and u 1 by any mod 8 approximation to

(1+2i)-1, and multiply it out. However, the ring 7L[i] is small enough

that it is easier to use trial and error. For example,

M = (
1+2i 8
8 13(1-2i)

can be used; and shows that SK1(7L[i],8) is generated by the matrix

A - (00 01
1
)(1+8i

13(81-2i))( 0
i 0)(13(-821)

1+2i/

65 - 641 -8(3+i)
E SL2(Z[i],8).

-104(3-i) 65 + 641
(2)

Under the inclusion of Q(i) as the simple summand Aoo of @[G], A

now lifts to the generator
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11 + 8(1-g2)(l+h1)(1+h2)(1-g) -(1-g2)(l+hi)(1+h2)(3+g)
E SK (7L[G]).

-13(1-g2)(1+h1)(1+h2)(3-g) 1 + 8(1-g2)(l+h,)(1+h2)(1+g) 1

Step 3 We now reverse the process, and demonstrate how to detect

whether or not a given matrix vanishes in SK1(Z[G]). We have seen in

Step 1 that the two epimorphisms

C11(Z[G]) «-- C(D[G]) a » {+l)

have the same kernel. So the idea is to first lift the matrix to an

element X E C(D[G]) using Proposition 3.13, and then compute a(X)

using the formula for the tame symbol in Theorem 4.7(i).

Consider the matrix A = (a

d)

E SL2(7L[G]) constructed in Step 2

above. Write Q[G] = Aoo x B, where Aoo = Q(i) is as in Step 1. Set

n = 130: the product of the primes at which Xoo(c) = -104(3-i) is not

invertible. Write 7L[n][G] = 2loo x B where Boo C Aoo and B C B. Then

a E B* (a = 1 in B), c E (2[00)* = (7L[n][i])*, and a E (7L p[G])* for

pin. By Proposition 3.13, [A] = 8(X), where

X = {Xoo(a),Xoo(c)} = (65-64i, -104(3-i))

E Im[ ®K2((Aoo)p) S ® K((Aoo)p)
proj),

C(Aoo) C C(Q[G])].
p jn p

It remains to show that a(X) = -1. We are interested in 2-power

torsion only, and at odd primes pJ130. Hence, we can use the formula

(u,v)p = ((_l)P(u)P(v).up(v)/vp(u))(N(p)-1)/4 E (i) C (7[i]/p)* (3)

(Theorem 4.7(i)) for each prime ideal plpjn in 7L[i]: where

N(p) = I7L[i]/pl and p(-) denotes the p-adic valuation. In particular,

(u,v)p = 1 if u and v are both units mod p. Since

N(65-64i) = 8321 = 53.157,

we are left with only these two primes to consider. Both split in 7L[i];
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and a direct computation shows that 65 - 641 is divisible only by the

prime ideals

pi = (7-2i): i = 30, c = -104(3-i) = -1 in 7[i]/p! = F53

P2 = (11-6i): i = 28, c = -104(3-i) = 88 in 7[i]/p2 = IF157

Formula (3), and the definition of a in Step 1, are now used to compute

a(X) = [(65-64i,-104(3-i))pj.(65-64i,-104(3-i))p2]2

= 153/.( 571 = (+1).(-1) = -1. 0

The above method for computing C C(Q[G]) is not very

practical for large groups; and much of the rest of the book (Chapters 9

and 13, in particular) is devoted to finding more effective ways of doing

this. Once is known, however, the construction and detection

procedures in Steps 2 and 3 above can be directly applied to SK1(7L[G])

for an arbitrary finite abelian group G. Note in particular that any

M E GL(7[G]) can be reduced using elementary operations to a 2x2 matrix

a b
with ad - be = 1 (see Bass [1, Proposition 11.2]). Also, when

c d

constructing matrices, it is most convenient to take as ideal I C Lt (in

Step 2) the conductor

I = {xET : x1RC7L[G]}

(i. e., the largest JR-ideal contained in Z[G]). Then Alperin et al [2,

Theorem 1.3] applies to show that SK1(7L[G],I) = SK1(Lt,I). Also, I and

iR both factor as products, one for each simple component of D[G], and

the rest of the procedures are carried out exactly as above.

When G is nonabelian, the procedure for constructing explicit

elements is similar. The main difference is that SK1(7L[G],I) need not

be isomorphic to SK1(H,I); so it might be necessary to replace I by

I2 (see Lemma 2.4); or to use the description in Bass et al [1, Theorem

4.1 and Corollary 4.3] to determine whether SK1(IR.I) is large enough.
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Theorem 4.11 can then be used to represent elements of K 2('1/1 by

symbols, which are lifted to SK1(bt,I) exactly as above.

The procedure for detecting a given [A] E C11(Z[G]) is much harder

in general in the nonabelian case. The main problem is that one must

know, not only that [A] lies in C11(7[G]), but also why it lies there.

One way of doing this (sometimes) is to first replace A by some A' a A

(mod E(Z[C])) such that A' a 1 (mod 12); where I C 7L[G] again

denotes the conductor from the maximal order IN. This is probably the

hardest part of the procedure - the descriptions of SK, (2
p
[G]) in

Chapters 8 and 12 are unfortunately too indirect to be of much use for

this - but Z[G]/12 is after all a finite ring. Then A' can be split

up and analyzed in the individual components, and in most cases reduced to

elements in SL2(R,I) for some ring of integers R.

For some nonabelian groups, there are alternate ways of detecting

elements in C11(7L[G]). Examples of such techniques can be extracted from

the proofs of Propositions 16, 17, and 18 in Oliver [1].

5b. C11(R[G]) and the complex representation ring

By Theorem 4.13, for any number field K and any finite group G,

C(K[G]) is isomorphic to a product of roots of unity in certain field

components of the center Z(D[G]). However, it is not always clear from

this description how C(K[G]) acts with respect to, for example, group

homomorphisms and transfer maps. One way of doing this is to use the

complex representation ring RC(G) for "bookkeeping" in C(K[G]).

Throughout this section, all number fields will be assumed to be

subfields of C. In particular, for any number field K, RK(G) can be

identified as a subgroup of RC(G); and RK(G) = RC(G) whenever K is a

splitting field for G (i. e., whenever K[G] is a product of matrix

rings over K). For any number field K with no real embeddings, the

norm residue symbol defines an isomorphism aK: C(K) _ pK C C* (Theorem

4.13). We fix a generator cK E C(K) by setting cK =

if IpKI = n and K has no real embeddings, and cK = 1 otherwise. By
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Theorem 4.6, for any pair L/K of number fields,

trfK(cL) = cK E C(K).

If G is any finite group, then we regard C(K) as a subgroup of

C(K[C]) - the subgroup corresponding to the sunenand K of K[G] with

trivial action - and in this way regard cK as an element of C(K[G]).

For fixed K and G, consider C(K[G]) as an RK(G)-module in the

usual way. In particular, multiplication by [V], for any finite

dimensional K[G]-module V, is the endomorphism induced by the functor

V ®K : K[G]-mmd ) K[G]-mMd.

Alternatively, in terms of Proposition 1.18, multiplication by [V] is

induced by the (K[G],K[G])-bimodule V ®K K[G], where the bimodule struc-

ture is induced by setting gv®ghk for g,h,k E G and v E V.

Similarly, if R C K is the ring of integers, then tensor product

over R by R[G]-modules makes Cl1(R[G]) into a G0(R[G])-module; where

G0(R[G]) is the Grothendieck group on all finitely generated (but not

necessarily projective) R[G]-modules. There are surjections

GO(R[G]) (K-
K0(K[G]) = RK(G) and C(K[G]) a a Cll(R[C]);

and 6 is GO(R[G])-linear by the description of a in Theorem 3.12. In

this way, C11(R[G]) can, in fact, be regarded as an RK(G)-module.

Now, if K is a splitting field for G, we define a homomorphism

'+KG : RC(G) = RK(G) --' C(K[G])

by setting 'KG(v) = v E RK(G). If K and C are arbitrary,

and if L 2 K is a splitting field for G, we let EKG be the composite

trf
YKG = trf o fLC : RC(G) ) C(L[G]) ) C(K[G]).
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Finally, if R. C K is the ring of integers, we write

$RG = 6RGoEKG : RC(G) - C11(R[G])

A more explicit formula for YRG will be given in Lemma 5.9(ii).

Proposition 5.2 Fix a number field K and a finite group G, and

let R C K be the ring of integers. Then
$KG

and.
$RG

are well

defined, independently of the choice of splitting field. Furthermore:

(L)
JKG and YRG are both surjecttue.

(ii) for any number field L D K with ring of integers S C L, the

following two triangles commute:

C(L[G]) C11(S[G])

RC(G) (1) trf

C(K[G])

and

C11(R[G]).

(iii) For any H C G and any group homomorphism f: G' -' G, the

following diagrams commute:

RC(G') - ' C(K[C']) RC(G') --L- Cll(R[G'I)

f* (2) IC(f) If* (2a)
I1(1 )

RC(G)t-- C(K[G]) and RC(G) --I- Cl,(R[C])

RC(H) C(K[H])

RC(G)

\
(la)

trf

1\

RC(H) ' .. Cl1(R[H]) .

: RA(G) > C(K[C]) and $RG : RC(G) --+ C11(R[G])(iv) &G

1Res (3) Itrf IRes (3a)
It1.1

I 7

are both RK(G)-linear.
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(u) If K C It, then R.(G) C Ker(&G).

Proof By Theorem 3.15, the boundary maps 8RG are surjective, and

are natural with respect to all of the induced maps used above. So it

suffices to prove the claims for

Note first that for any L D K, the transfer homomorphism

trfKG : C(L[G]) ) C(K[G])

is RK(G)-linear (RK(G) C RL(G)). In other words,

(v E RK(G), x E C(L[G])). (4)

This amounts to showing, for any K[G]-module V, the commutativity of

the following square

C(L[G])

ItrfKG

[L®KV].

[V]

C(L[C])

ItrfKG

C(K[G]).C(K[G])

This in turn follows from Proposition 1.18, since each side is induced by

the (K[G],L[G])-bimodule V ®K L[G] (where K[G] acts by left

multiplication on both factors, and L[G] by right multiplication on the

second factor).

If L ? K are both splitting fields for G, then RC(G) = RK(G) _

RL(G). So using (4), for any v E RC(G),

trfLG(f (v)) =KG LG KG L KG L K &G(v)-

In other words, triangle (1) commutes in this case. But by definition,

$KG = trfKGojKG for any splitting field K ? K. and so (1) commutes for

arbitrary L ? K. This proves (ii), and also shows that
YKG

is well

defined, independently of the choice of splitting field.
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To prove the surjectivity of
EKG'

again let L 2 K be a splitting

field for G. Then for each simple summand A of L[G] with irreducible

module V, tensoring by V is a Morita equivalence from L-MW to

A-m$d; and hence an isomorphism from C(L) to C(A). In other words,

the RL(G)-module structure on C(L[G]) restricts to an isomorphism

RC(G) 0 C(L) = RL(G) 0 C(L) C RL(G) 0 C(L[G]) C(L[G]);

and so fLC is onto. Also, trf G is onto by Lemma 4.17, and so
EKG =

trfKG
o $LG

is onto.

We next check point (iii). Using the commutativity of (1), it

suffices to show that squares (2) and (3) commute when K is a splitting

field for G', G, and H. This amounts to showing that the following

diagram commutes:

RK(f) ResH
R it__K(G') ' RK(G) ) RK(H)

(5a) (5b) I.cK

C(K[G'])
C(f)

C(K[G])
trf , C(K[H]).

(5)

For any K[G']-representation V, Proposition 1.18 again applies to show

that

RK(f)([V])'cK = [K[G] ®K[G,] V ®K,-(-K)

= [K[G] ®K[G,]]* c [V ®K]*(cK) = C(f)([VI-cK).

So (5a) commutes, and the proof for (5b) is similar.

To prove (iv), let L Q K be a splitting field for G. Fix

w E RK(G) and v E RL(G) = RC(G). Then by definition of (and (4)),

w'$'LC(v);

and so
JKG

is RK(G)-linear.
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Finally, assume K C IR is such that RK(G) = R1k(G), and let L K

be a splitting field for K. Then C(K) = 1 (Theorem 4.13), so cK = 1;

and using (4):

YKG(FIR(G)) = trfKG(RK(G).cL) = G(cL) = 1.

Thus, R.(G) C Ker(fKG) in this case; and the commutativity of (1) allows

us to extend this to arbitrary K C R. 0

These strong naturality properties of the YZG: RC(G) --» C(l[G])

make into an excellent bookkeeping device for comparing, for example,

C(®[G]) or C11(7L[G]) with C(l[H]) or C11(7[H]) for subgroups

H C G. The next few results present some applications of this, and more

will be seen in later chapters.

For any prime p, a p-elementary group is a finite group of the form

Cn x v, where n is a p-group. According to Brauer's induction theorem

(see Serre [2, §10, Theorems 18 and 19], or Theorem 11.2 below), for any

finite group G, RC(G) is generated by elements which are induced up

from elementary subgroups of G - i. e., subgroups which are

p-elementary for some prime p - and for each prime p, RC(G) (p) is

generated by induction from p-elementary subgroups. So Proposition 5.2

has as an immediate corollary:

Theorem 5.3 Let R be the ring of integers in any number field K.

Then for any finite group G, C(K[G]) and C11(R[G]) are generated by

induction from elementary subgroups of G. For each prime p, Cp(K[G])

and Cl1(R[G])(p) are generated by induction from p-elementary subgroups

of G. 0

The naturality properties of fRG in Proposition 5.2 can also be

used to show that SK1(7[C]) vanishes in many concrete cases. We start

with a very simple result, one which also could be shown directly using
Theorem 4.13(1).
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Theorem 5.4 Let G be a finite group such that IR[G] is a product

of matrix rings over R. Then C11(7L[G]) = 1.

Proof By hypothesis, RC(G) = R.(G). By Proposition 5.2(v),

RR(G) C Ker[RC(G) - * C(D[G])];

and so C(D[G]) = C11(7L[G]) = 1. a

Note in particular that Theorem 5.4 applies to elementary abelian

2-groups, to all dihedral groups, and to any symmetric group Sn (Q[Sn]

is a product of matrix algebras over @: see James & Kerber [1, Theorem

2.1.12]). This result will be sharpened in Theorem 14.1, with the help of

later results about SK1(2 p[G]) and Wh'(G).

We next consider cyclic groups, and show that SK1(R[Cn]) = 1 when

R is the ring of integers in any number field. Clearly, to do this, some

information about K2(Rp[Cn]) is needed, and this is provided by the

following technical lemma.

Lemma 5.5 Fix a prime p and a finite extension F of Qp, and

let R C F be the ring of integers. Then for any cyclic p-group G, the

transfer homomorphism

trfRG : K2(R[G]) ) K2(R)

is surjectiue.

Proof Let E D F be any finite extension, and let S C E be the

ring of integers. Then trf
R S
R o trfS = trf

R
RG o trfRGRC, and trf

R
R is onto

by Theorem 4.6. This shows that trfRG is onto if trfSG is. In

particular, if pk = IGI, it will suffice to prove the lemma under the

l/ k-1

assumption that
T
Spk+1 ,p p E F.

Sten 1 Let p g R be the maximal ideal, and let v: F* -1 7 be



CHAPTER 5. FIRST APPLICATIONS OF THE CONGRUENCE SUBGROUP PROBLEM 141

the valuation. Fix a primitive p-th root of unity C. Let e = v(p) be

the ramification index; i. e., pR = pe. By assumption,

e > e(o(cpk+1)) = Pk(P-1) (1)

Choose any x such that

v(x) =
e/(Pk-l(P-1))

- 1 > 0, (2)

k

and set u = 1- xP E R* (x E p). From (1) and (2) we get inequalities

v(x2pk)

2
v(PXpk)

Z

v(px2pk-1)

- pe/(p-1) = v(P(l-C));

k k k-1
and so x , pxp , px E p(1-c)R. It follows that

k-1 k k-1 k-1
(i+xP )p -1-(xk-1)P (mod p(1-C)R)

k

where xk-1 =
(-p)1/p-1.

x and v(xk-1) =
e/pk-1 +v(x)

= e/pk-2(p-1) - 1.

Upon repeating this procedure, we get sequences

x = xk , xk_l , ... , x0 E R and u = uk ' uk-l ' ... , uO E R*;

where for each 0 < i < k-1,

xi = (-P)1/p 'xi+1'
v(xi) =

e/(Pi-1(p-1))
- 1; and (3)

ui = (1 + (xi+l)P')P.ui+1 = 1 - (x,)1 (mod p(1-C)R).

In particular, uo - 1-xo (mod p(1-C)R), and p4v(xo) < v(p(1-c)). If

uo is a p-th power, then there exists y E p such that

uo - 1-x0 = (1+y)p = l+py+...+yp (mod P(1-c)R =
pe/(p-1)).

Then v(y) < e/(p-1), so v(py) > v(yp). It follows that v(xo)

= v(yP). But p4'v(xo) by (3), and this is a contradiction.

In other words, uo is not a p-th power in F. The same argument



142 CHAPTER 5. FIRST APPLICATIONS OF THE CONGRUENCE SUBGROUP PROBLEM

shows that uo is not a p-th power in any unramified extension of F,

since the valuations remain unchanged. So F(uo ) = F(ul/p) is ramified

over F.

Step 2 Now set E = F(u1/p), and let S C E be the ring of

integers. Since E/F is ramified,

R*/NE/F(S*) = F*/N (E*) - Z/p

by Proposition 1.8(ii). For any v E R* -N
E/F

(S
*
), if (,)p denotes the

norm residue symbol with values in (cp), then (v,u) p #i by definition.

Hence, by Moore's theorem (Theorem 4.4), {v,u} generates K2(R).

Furthermore, if g E G is any generator, then

k

{v,u} = {V,l-xpk} = SV, tl (1- 1X)
ll

i=1

= Sv,trfRG(l-gx)I = trfRG({v,l-gx}); (Theorem 3.1(v))

and so trfR : K2(R[G]) -* K2(R) is onto. o

For any cyclic p-group G, and any R 9 K such that K splits G,

Proposition 5.2(iv) can be used to make C11(R[G]) = SK1(R[G]) into a

quotient ring of the local ring RC(G)(p). So to show that SK1(R[G])=1,

it suffices to find any element x E Ker[jtiRG: RC(G)(p) -4 SK1(R[G])]

which is not contained in the unique maximal ideal of RC(G)(p). This is

the idea behind the proof of the following theorem.

Theorem 5.6 Let R be the ring of integers in any number field K.

Then, for any finite cyclic group Cn, SK1(R[Cn]) = 1.

Proof Set G = Cn, for short. If S is the ring of integers in

any finite extension L D K, then the transfer map from SK1(S[G]) to

SK1(R[G]) is surjective by Proposition 5.2(i,ii). It therefore suffices
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to prove that SK1(R[G]) = 1 when R contains the n-th roots of unity.

Assume first that G is a p-group for some prime p. Set pe =

'(PK)P 1. Consider the following commutative diagram:

K (RP[G]) Cp(K[G]) A-' R_((;)/PQ = LPQ[C ]

K2C(Rp)
0 o p(K) RC(l)/PQ = Ups.

j trfl
1trf2 1Res (GM = Hom(G,C*))

Here, trf1 is onto by Lemma 5.5, Coker(wo) = Cl (R) = 1 by Theorem

4.16(ii), fKG and K induce isomorphisms on Z/pe[e] and Z/pe by

Theorem 4.13 (K is a splitting field by assumption); and the right-hand

square commutes by Proposition 5.2(iii). If we identify Cp(K[G]) with

the ring Z/pe[G*], then Ker(trf2) is contained in the unique maximal

ideal by Example 1.12. Also, since JRG: RC(G) - SK1(R[G]) is

RC(G)-linear by Proposition 5.2(iv) (RC(G) = RK(G)),

Ker[8: Cp(K[G]) -s SK1(R[G])(P)] = Im[w: K2(RP[G])- p(K[G])]

is an ideal in Cp(K[G]) = Zlpe[G*]. But Cp(K[G]) = Im(v)+ Ker(trf2),

since Vootrf1 is surjective, and so SK1(R[G])(p) = Coker(q,) = 1.

Now assume that n = IGI is arbitrary. Fix a prime pin; we will

show that SK1(R[G]) is p-torsion free. Write n = where pjm.

Then K[Cm] = Km
n

E K by assumption); and by Theorem 1.4(v) there is

an inclusion R[Cm] C Rm of index prime to p. So by Corollary 3.10,

m
SK1(R[G])(P)

= SK1(R[Cm X Cpk]) = ®SK1(R[Cpk]) = 1. 0

If C is a finite group, and if Sp(G) (the p-Sylow subgroup) is

cyclic, then any p-elementary subgroup of G is cyclic. So Theorem 5.3

can be combined with Theorem 5.6 to give:
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Corollary 5.7 Let R be the ring of integers in any number field.

Then for any finite group G, and any prime p such that Sp(G) is

cyclic, C11(R[G])(p) = 1. O

By Theorem 5.6, together with the naturality properties of

RG'
RC(G) -+ Cll(R[G]) in Proposition 5.2, $RG factors through the

complex Artin cokernel

AC(G) = Coker[ ® RC(H) Ind) RC(G)]
= RC(G)/( I lnd (R (H))).

HCG HCG
cyclic cyclic

In fact, for any fixed G, $RG: AC(G) - Cl1(R[G]) is an isomorphism

for R large enough (see Oliver [7, Theorem 5.4]); so that AC(G)

represents the "upper bound" on the size of C11(R[G]) as R varies.

The next example deals with some other familiar classes of finite

groups, and illustrates the use of the Artin cokernel to get upper bounds

on the order of C11(R[G]).

Example 5.8 Let G be any finite dihedral, quaternionic, or semi-

dihedral group (not necessarily of 2-power order), and let R be the ring

of integers in any number field K. Then 1C11(R[G])j < 2, and

C11(R[G]) = 1 if either R has a real embedding, or if Gab is cyclic.

Proof As remarked above, by Proposition 5.2 and Theorem 5.6, there

is a surjection

YgG : AC(G) = RC(G)/( I IndH(RC(H))) Cll(R[G])
HCG

cyclic

By assumption, C contains a normal subgroup H a G of index 2.

All nonabelian irreducible C[G]-representations - i. e., those which do

not factor through Gab - are 2-dimensional, and are induced up from

representations of H. In particular, this shows that
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AC(G) = AC(Gab)

Thus, IC11(R[G])I < 2, and C11(R[G]) = 1 if Gab is cyclic.

If K has a real embedding and Gab = C2 X C21 then the composite

R.(G) C RC(G) _* AC(G) is onto
(RR(Gab) = RC(Gab)).

But by Proposition

5.2(v), R.(G) C Ker(fRG), and so C11(R[G]) = 1 in this case. n

In fact, in Lemma 14.3, we will see that C11(R[G]) = Z/2 in the

above situation, whenever Gab = C2 X C2 and K has no real embedding.

The results in this section have been obtained mostly without using

the precise computation of C(A) in Theorem 4.13. But it is sometimes

useful to have C(l[G]) presented as an explicit quotient group of

RC(G). Recall that for any group G and any Z[G]-module M, MG

if Gab is cyclic

if Gab = C2 X C2

denotes the group of G-coinvartants; i. e.,

MG = M/(gm - m : g E G, m E M) = HO(G;M).

By Brauer's theorem (Theorem 1.5(ii) above), for any finite G, if

n = exp(G), then

(Z/n)* = Gal(QCn/Q)

Qcn is a splitting field for G. In particular,

acts on RC(G) = RRn(G) in this case.

Lemma 5.9 Fix a finite group G.

(i) Write RC/jR(G) = RC(G)/R.(G) for short; and fix any even n

such that exp(G) In. Then (Z/n)* = Gal(QC n//) acts on RC(G) = Rc (G)
n

by Galois conjugation and on Z/n by multiplication, and factors

through an isomorphism

[RC,,, (G) ® Z/n] * ) C(Q[G])
(Z/n)

(it) For any irreducible C[G]-representation V, there is a unique

simple summand A of Q2[G] and a unique embedding a: Z(A) 1 1 C, such
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that V is a C®aZ(A) A-module. Then $,,,([V]) E C(A) C C(4?[G]). If

C(A) -1, so that °A: C(A) }Z(A) is an tsomorphtsm, and if

n = "'Z(A) , then

aAloa (exp(2ni/n)) E C(A).

Proof Set K = Qn (C C) for short.

(i) By construction, fw factors through the composite

I'
: RC(G) 0 Z/n = RK(G) 0 C(K) 1 C(K[G])

trf»
C(D[G]).

Any element of Gal(K/Q?) = (Z/n) * acts on RC(G) ®Z/n via the diagonal

action, and acts trivially on C(O[G]). Also, RI(G) 0 Z/n C Ker(J') by

Proposition 5.2(v); and so Y' factors through an epimorphism

gG
Z/n]

(Z/n)
*
- " C(ID[G])

To see that is an isomorphism, it remains only to compare

r.K0 (C 0 A)
0(It®A) ® -/n]

LK
(Z/n) *

and C(A)

(as abstract groups), separately for each simple summand A of D[G]. If

21IC(A)I, then

[KO(C % A) ® Z/n] * = HO(Gal(K//); C(K ®. A)) = C(A)
(Z/n)

by Lemma 4.17. If 2I' IC(A) I , then there is an embedding Z(A) I i It

such that It®Z(A) A is a matrix algebra over ll (Theorems 4.13(11) and

( ) ) ( ( )* K C ® AZ/n) and C(A) both vanish.1.10 1 i ; and so HO Z/n
' Ko(IR ® A)@

(ii) Write @[G] = ni=1Ai, where each Ai is simple with center
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K.. For each i, let

ai1,...,aim, : Ki ----+ K = QCn C C

be the distinct embeddings, and set Bij = K 0ai K,Ai for each J. Then

K[G] = K ®O Ai = n (n Bij);
i=1 i=1 j=1

where each Bij is simple by Theorem 1.1(11). In particular, for each

irreducible K[G]-representation V, V is the irreducible Bij-module

for some unique i and j; and E C(A.).

If C(Ai)# 1, then consider the following diagram:

CK E C(K) \ V 1 C(B1j)
trf

C(Ai)

aB.
;

aAi

Here, r(c) = for any S E {.K, where r = [µK:µK ] = n/Ip I.

Since Bij is a matrix algebra over K, by assumption, ,[V®K]* is a

Morita equivalence. The triangle commutes by definition of a (and

Proposition 4.8(iv)), and the square by Theorem 4.6 and Proposition

4.8(ii). So by definition of ,

A ( [V ) ) = trfo[V®K]*() = aA'(ro(7K(cK)) = a Aloaij(exp(2iri/lpKij)). n

Both parts of Lemma 5.9 can easily be generalized to apply to

C(K[G]), for any finite G and any number field K.
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5c. The "standard involution" on Wh(G)

As was seen in the introduction, the algorithms for describing the

odd torsion in SK1(Z[G]), for a finite group G, are much more complete

than those (discovered so far) for describing the 2-power torsion. The

reason in almost every case is that the standard involution on SK1(Z[G]),

C11(Z[G]), C(I[G]), etc., can be used to split the terms in the

localization sequence of Theorem 3.15 - in odd torsion - into their ±1

eigenspaces. It is of particular importance that C(@[G]) and

C11(Z[G]), as well as Wh'(G), all are fixed by the involution.

Throughout this chapter, an involution on a ring R will mean an

antiautomorphism r i--> F of order 2 (i. e., r = r and (rs)- =

If R is any ring with involution r N F, there are induced involutions

on GL(R) and St(R) defined by setting

M = (rji) if M = (rij) E GLn(R)

(i. e., conjugate transpose), and

x. = E St(R) if i,j Z 1, i# j, rER.

Then 0: St(R) --> GL(R) commutes with the involutions, and so this

defines induced involutions on K1(R) = Coker(+) and K2(R) = Ker(f).

We first note the following general properties of involutions:

Lemma 5.10 (t) If R is a ring with involution r H F, and if

a,b E R* are commuting units, then

{a,b} = {b,a) = {a,b}-1 E K2(R).

(it) If A is a central simple F-atgebra with tnuolution, then the

reduced norm map nrA/F: A* -> F* commutes with the tnuolutions on A

and on F = Z(A).
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Proof (i) Fix x,y E St(R) such that

4(x) = diag(a,a 1,1) and 4(y) = diag(b,l,b 1).

Then {a,b} = [x,y] E K2(R) (see Section 3a). Clearly,

4(R) = diag(a,a 1,1) and 4(y) = diag(b,l,b l);

and so (using Theorem 3.1(ii,iv))

{a,b} = [x.y] = = [y l,x 1] = {b l,a-1} =

(ii) Let TA: A - A denote the involution, set T = TAIF, and

let FT C F be the fixed field of T. Let E F be a splitting field

for A such that E/FT is Galois. Fix an isomorphism

f: E OF A Mn(E), let a E Gal(E/FT) be any extension of T, and set

a = f o (a ® TA) o f-1 : Mn(E) Mn(E).

Then a and (M i-+ a(M)t) are two antiautomorphisms of Mn(E) with the

same action on the center. By the Skolem-Noether theorem (Theorem

1.1(iv)), they differ by an inner automorphism.

Fix a E A*, and set M = f(l a) E Mn(E). By definition of nr
A/F

nrk(TA(a)) = detE(f(1®TA(a))) = detE(a(M)) = detE(a(M)t)

= a(detE(M)) = a(nrA/(a)) = T(nrA/(a));

and so nrA/F commutes with the involutions. 0

When G is a group and R is any commutative ring, the "standard

involution" on R[G] is the involution jaigi H jaigil. When G is

finite and R is the ring of integers in any algebraic number field K,

then this induces involutions on SK1(R[G]), C11(R[G]), and C(K[G]);
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as well as on SK1( p[G]) and K2(Rp[G]) for all primes p. In other

words, all terms in the localization sequences of Theorem 3.15 carry the

involution.

Proposition 5.11 The following hold for any Finite group G.

(t) If R is the ring of integers in some algebraic number field

K, then all homomorphisms in the Localization sequences for SK1(R[C])

of Theorem 3.15 commute with the involutions.

(it) Write Q[G] _ [[i=1Ai, where each Ai is simple with center

Then the involution on Q[G] leaves each Ai invariant, and acts

complex conjugation on each Fi.

Proof (i) This is clear, except for the boundary homomorphism

8 : C(K[G]) = Coker[K2(K[G]) -i ®K2(p[G])] C11(R[G]).

p

Fi.

via

For any [M] E C11(R[G]), the formula in Theorem 3.12 says that

6-1 (IMD = x lY E ®pK2(Kp[G]), where x E St(K[G]) and

fpSt(p[G]) are liftings of M E GL(R[G]), such that x = yp in

St(Kp[G]) for almost all p. Then

a 1([M]) = Y-x 1 = X 1'Y = 8 1([M])

(Y'x 1 = x 1'y since K2(Kp[G]) is central). So 8 commutes with the

involution.

(ii) It suffices to study the action of the involution on the center

Z(Q[C]) (see Theorem 1.1). In other words, it suffices to show that the

composite

Z(Q[G]) -+ Fi C
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(for each i and v) commutes with the involutions on C and Q[G].

Fix such i and v. Then C ®vFi Ai is simple with center C

(Theorem 1.1(ii)), hence is a matrix algebra over C, and so its

irreducible representation V is an irreducible C[G]-representation. If

d = dimC(V), and xV: G --> C is the character, then for any x = jaigi

E Z(Q[G]),

vopri(x) = a'Tr A(lox) = E C.

vF,

But for any g E G, x(') = XV(g); and so v o pri(E) = v o pri(x). n

The above results will now be applied to describe the involution on

C(f[G]) and C11(Z[G]). This will be important when describing the odd

torsion in C11(Z[G]) in Chapters 9 and 13.

Theorem 5.12 (Bak [1]) For any finite group G, the standard

involution acts on C(@[G]) and Cll(Z[G]) via the identity. More

generally, if K is an algebraic number field such that p is unramtfted

in K for all primes phIGI, and if R C K is the ring of integers,

then the standard involution acts via the identity on Cll(R[G]), and on

Cp(K[G]) for pIIGI.

Proof For convenience, let 9f be the set of all primes if K = Q,

and the set of primes pj1GI otherwise. By Theorem 4.16(111), C11(R[G])

has p-torsion only for p E So by Theorem 3.15 and Proposition

5.11(i), it suffices to show that the involution on C(K[G]) is trivial

for all p E 1.

Let A be a simple summand of a1[G], and set F = Z(A). Then by

Brauer's splitting theorem (Theorem 1.5(11)), F C D(cn), where n =

exp(G) and cn = exp(2iri/n). So the assumption on K implies that

Ff1K = ID under any embeddings into C. Hence, F' = KO
Q
F is a field

and A' = K®IDA is simple (Theorem 1.1). Furthermore, for any p E 9$,

F' has the same p-th power roots of unity as F.
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Fix p E ', and let (p,)p be the groups of p-th power roots of

unity in F (and F'). Assume that C(A') # 1 (otherwise there is

nothing to prove). Let

a : Cp(A') = Coker[K2(A') --> ®K2(Aq)](P)
(PF)P

q

be the isomorphism (p-locally) of Theorem 4.13. Set µ = (AF)p = (p'F')p'

Then for each (finite) prime q in F', and for any a E (F')* and any

a({a,u}) = (a,nrA'/F'(u))µ,F''

q

By Proposition 5.11(ii), the involution leaves F (and hence F')

invariant, and acts on µ = (iF,)p via (f I+ f-1). So by Lemma 5.10,

a({a,u}) = a({a,u}-1) =

(a, (by naturality: _ 1 for f E }i)

= a({a,u}).

Thus, {a,u} = {a,u} in Cp(A). Since Cp(A) is generated by such sym-

bols, the involution on Cp(A) is trivial. o

Note that Theorem 5.12 does not hold for arbitrary R[G]. Without

the above restrictions, it is easy to construct examples where the

standard involution on K[G] does not even leave all simple components

invariant. It is not hard to show that JKG: RC(G) -» C(K[G]) is always

negative equivariant with respect to the involution (note that the

involution on C(K) is (-1), by Lemma 5.10(1)).

In Chapter 7 (Corollary 7.5), we will see that the involution also

acts via the identity on Wh'(G) (= Wh(G)/SK1(Z[G])) for any finite G.



Chapter 6 THE INTEGRAL P-ADIC LOGARITHM

In Chapter 2, p-adic logarithms were used to get information about

the structure of Kl(21) for a g-order U. When 21 is a group ring,

there is also an "integral p-adic logarithm": defined by composing the

usual p-adic logarithm with a linear endomorphism to make it integral

valued. This yields a simple additive description of Ki(Zp[G]) for any

p-group G (Theorems 6.6 and 6.7); and in later chapters will play a key

role in studying Wh'(G) and SKl(7L[G]), as well as Ki(2p[G]) itself.

Integral logarithms have also been important when studying class

groups D(7L[G]) C K0(7L[G]) for finite G. One example of this is Martin

Taylor's proof in [2] of the Frohlich conjecture, which identifies the

class [R] E KO(Z[G]), when R is the ring of integers in a number field

L, L/K is a tamely ramified Galois extension, and G = Gal(L/K).

Another application is the logarithmic description of D(Z[G]), when G

is a p-group and p a regular prime, in Oliver & Taylor [1].

Throughout this chapter, p will denote a fixed prime. We will be

working with group rings of the form R[G], where G is a finite group

and R is the ring of integers in a finite extension F of Recall

from Example 1.12 that if G is a p-group, and if p g R is the maximal

ideal, then

J(R[G]) = (p,r(l-g): g E G, r E R) = {Irigi E R[G] : Jri E p}.

6a. The integral logarithm for p-adic group rings

In Theorem 2.8, a logarithm homomorphism

log,: Kl(2I,I) --> Q®Z (1/[21, 1])

was constructed, for any ideal I in a 2 p order H. When applying this
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to a p-adic group ring R[G], where R is the ring of integers in any

extension F of it is convenient to identify

F[G]/[F[G],F[G]] - HO(G;F[C]) and I/[R[G],I] - HO(G;I)

(for any ideal I C R[G]), where the homology in both cases is taken with

respect to the conjugation action of G on F[G]. In particular,

HO(G;F[G]) and HO(G;R[G]) can be regarded as the free F- and

R-modules with basis the set of conjugacy classes of elements of G.

Mostly, we will be working with R C F for which F is unramified

over Q; so that R/pR is a field and Gal((R/pR)/ffP).

Hence, in this case, there is a unique generator V E Gal(F/&) - the

Frobentus automorphism - such that p(r)E rp (mod pR) for any r E R.

Definition 6.1 (Compare M. Taylor [1, Section 1] and Oliver [2,

Section 2]). Let R be the ring of integers to any ftntte unramifted

extension F of @p. Define 4: HO(G;F[G]) --> HO(C;F[G]), for any

Finite group G, by setting

k k
aigi) p(ai)gi.

i=1 i=1

(ai E F, gi E G)

Define

r = rRG : K1(R[G]) - HO(G;F[G])

by setting r(u) = log(u) - for u E K1(R[G]).

To help motivate this construction, consider the case where G is

abelian. Then 4 is a ring endomorphism, and so

r([u]) = log(u) -

for u E 1+J(R[G]) (J = Jacobson radical). But up a $(u) (mod pR[C]),
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log(up/$(u)) E log(1+pR[G]) C pR[C],

and so r([u]) E R[G].

The proof that rRG also is integral valued in the nonabelian case

is more complicated.

Theorem 6.2 Let R be the ring of integers in some finite

unramifted extension F of Then for any finite group G,

rRG(Kl(R[G])) S HO(G;R[G])

The map r is natural with respect to maps induced by group homomorphisms

and Galois automorphisms of F. For any G and any extension K/F (both

finite and unramtfied over i), if SK and R C F denote the rings of

integers, then the following squares commute:

K1(R[G])
r

HO(G;R[G]) K1(S[G]) r HO(G;S[G1)

incl incl trf Tr

K1(S[G]) HO(C;S[G]) K1(R[G]) r - HO(G;R[G])

Proof Let J = J(R[G]) denote the Jacobson radical. For any x E J,

2 3

-I -L.[xpk - D(xk)]
k =l

(mod HO(G;R[C])).

So it suffices to show that pkl[xpk - 4(xk)] for all k; or (since all

primes other than p are invertible in R) that

pnl[xpn -
4,(xpn-1)]

(in HO(G;R[G])) for all n > 1 and all x E R[G].

Write x = jrigi, set q = pn, and consider a typical term in xq
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ril...riq.gi1...giq.

Let Z/pn act by cyclically permuting the gi's, so that we get a total

of p -t conjugate terms, where pt is the number of cyclic permutations

leaving each term invariant. Then is a pt-th power, and the
q

sum of the conjugate terms has the form

t pt -t pn-t
pn-t.Tp g_

E H0(G;R[G]) (r =

1-t

ri, , S = n gi,).

j=1
j=l J

If t = 0, then this is a multiple of pn. If t > 0, then there is a
t-1 t-i n-1

corresponding term in the expansion of xp It

remains only to show that

t t t-1. t-1 t-1 tpn-t rp ,g = pn-t.41(rp
gp ) =

pn-tP(rp
). (mod pn).

t pt pt-1 pBut p I[r since pI[r -'V(r)]

Naturality with respect to group homomorphisms is immediate from the

definitions, and naturality with respect to Galois automorphisms holds

since they all commute with the Frobenius automorphism ip (note that

Gal(F/&) is cyclic since F is unramified). If S D R, then r

commutes with the inclusion maps since %JR =
vR'

To see naturality with respect to the trace and transfer maps, first

note that 4' commutes with the trace (since it commutes with Galois

automorphisms). It suffices therefore to show that logotrf = Trolog.

For s E S, Tr(s) = TrS/R(s) is the trace of the matrix for

multiplication by s as an R-linear map (see Reiner [1, Section la]).

Hence, for any x E S[G] and any n > 0,

log(trf(l + pnx)) = log(1 +

Tr(log(l + pnx)) (mod p2n-1).

k

For any u E 1+J(R[G]), up E 1+pR[G] for some k (u has p-power order
k+n

in (R/p[G]) *). Then up E 1+pn+1R[G] for all n > 0, and so if n k:
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k+n
log(trf(u)) = p n-k. log(trf(up ))

=_
pk-n,Tr(log(upk+n)) = Tr(log(u)) (mod

p2n+l/pn+k = pn-k+l).

Since this holds for any n > k, the congruence is an equality. 13

In fact,
"RG

is also natural with respect to transfer homomor-

phisms for inclusions of groups, although in this case the corresponding

restriction map on H0(G;R[G]) is much less obvious. This will be shown,

for p-groups at least, in Theorem 6.8 below.

The next lemma collects some miscellaneous relations which will be

needed.

Lemma 6.3 (t) For any group C and any any element g E C.

(l-g)P = (l-gp) - p(1-g) (mod P(1-g)2Z[G])

(tt) Let K be any finite field of p-power order. Then the

sequence

0,IF -ino1)K 1p K Tr >ff -->0
p p

(1)

is exact, where Tr denotes the trace map.

Proof (i) Just note that

gP = [1 - (1-g)]P = 1 - P(1-g) + (-1)P(1-g)P

1 - p0-g) - (1-g)P (mod P(l-g)21[G])

(ii) The trace map is onto by Proposition 1.8(iii), Tr o (1-p) = 0

by definition of the trace, and Ker(1-gyp) = Fp since 'p generates

Gal(K/Fp). A counting argument then shows that (1) is exact. 13

Attention will now be restricted to p-groups. Both here, when

identifying the image of rG (or of its restrictions to certain
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subgroups), and later when studying SK1(R[G]), one of the main

techniques is to work inductively by comparing K1(R[G]) with K1(R[G/z])

for z E Z(G) central of order p. In particular, the case where z is

a commutator - i. e., z = [g,h] for some g,h E C (as opposed to a

product of such elements) plays a key role when doing this. The reason

for this is (in part) seen in the next proposition.

Proposition 6.4 Let R be the ring of integers in any finite

extension F of let p C R be the maximal ideal, and let T

denote the composite

T : R -»R/p Tr ,Fp.

Then for any p-group G and any central element z E G of order p,

there is an exact sequence

1 -, (z) ---, K1(R[G],(l-z)R[G])
lg.

H0(G;(1-z)R[G]) W-, ffp -4 0; (1)

where w((1-z)lrigi) = T(jri) for any ri E R and gi E G. If F/& is

unramified, and if we set

H0(G;(l-z)R[G]) = Im[HO(G;(1-z)R[G]) - HO(G;R[G])]

= Ker[H0(C;R[C]) -+ HO(G/z;R[G/z])];

then rRG(1+(1-z)f) = log(1+(1-z)f) in HO(G;(1-z)R[C]) for all f ER[G]

and

[HO(G;(1-z)R[G]) : rG(l+(1-z)R[G])] =
1 if z is a commutator

p otherwise.

Proof Set I = (1-z)R[G], for short, and let J = J(R[G]) denote

the Jacobson radical. Note that (1-z)p E p(1-z)R[G] by Lemma 6.3(1).

So Theorem 2.8 applies to show that the p-adic logarithm induces a homo-

'
Ii

morphism log and an isomorphism log , which sit in the following
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commutative diagram with exact rows:

Kl(R[ l--aG],(1-z)J) --> Kl(R[G],(1-z)R[G])
Kl ( (1-z

RG
)J

1-zRG
' (1-z)J

lloglJ Ilogl logo (2)

0 -> HO(G;(1-z)J) --> HO(G;(1-z)R[G]) ) HO G , (l-z)

Also, by Theorem 1.15 and Example 1.12, there are isomorphisms

-0.

-z)JG) - R[G]/J =- R/p =- HO(G .
(1z)RrG

);Kl((Rz)J '
(1z

where a(l+(1-z)g) = f for f E R[G]/J.

Now consider the following diagram

I

K1(R[G],(1-z)R[G])
log ) HO(G;(l-z)R[G])

0 --1 Fp ` ' R/p ->0
p

where a'(1+(1-z)lrigi) = Iri and a'((1-z)lrigi) = jr-,. Here, F E R/p

denotes the reduction of r ER. The bottom row is exact by Lemma 6.3(ii);

and square (3) commutes since for r E R and g E G,

a"(Log(l+(1-z)rg)) = a'((1-z)(rg-rpgp)) = r-p(r) E R/p.

Then (3) is a pullback square by diagram (2), and so logI and 1-p have

isomorphic kernel and cokernel. The exactness of (1) now follows since

w = Tr o a", and since a' maps (z) isomorphically to FP = Ker(l-ip).

If F/Op is unramified (so TG is defined), then for any E R[G],

log(1+(1-z)g) _ (1-z)i for some 17, and 4((l-z)ti) = (1-zp)$(ij) = 0. So

I'G(1+(1-z)f) = log(1+(1-z)f) in this case. By the exactness of (1),

I
a"

1 if (1-z)g = 0 E HO(C;R[G])

[HO(G;(1-z)R[G]) : rG(l+(1-z)R[G])] =
some g E C

p otherwise.
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In other words, the index is 1 if and only if g is conjugate to zg

for some g, if and only if z = [h,g] for some h,g E G. 0

The next lemma, on the existence of central commutators, will be

needed to apply Proposition 6.4.

Lemma 6.5 Let C be a p-group, and let H a C be a nontrivial

normal subgroup generated by commutators in G. Then H contains a

commutator z E Z(G) of order p. In particular, any nonabelian p-group

C contains a central commutator of order p.

Proof Fix any commutator xo E H-1. If xo is not central, then

choose any go E C not commuting with xo, and set x, = [xo,go] E HW1.

Since C is nilpotent, this procedure can be continued, setting x; =

[x;_1,g;_1] E HW1, until xk E H-1 is central for some k > 0. Then, if
n n-1 n-1

Xk = [g,h] and has order p for some n > 1, xpk = [g,hp ]

and

has order p. 0

The main result of this chapter can now be shown. It gives a very

simple description of the image of the integral logarithm on K1(R[G]).

Theorem 6.6 Fix a p-group C, and a finite unramifted extension F

of Q with ring of integers R C F. Set e = (-1)p-1, and define

w _ WRC : H0(G;R[G]) --) (E) x Gab by w(Jaigi) =
11(egi)Tr(a,)

Then the sequence

1 -4 K1(R[G])/torsion T) HO(G;R[G]) (E) xCab ---> 1 (1)

is exact.

Proof Assume first that G = 1, the trivial group. By Theorem 2.8,

Log(1 + pR) = pR if p is odd, and Log(1 +4R) = 4R if p = 2. Also, if

p = 2, then Log(1+2r) a 2(r-r2) a (mod 4R) for any r E R.

It follows that
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Log(R*) = Log(1+ pR) PR
if p is odd

=
p = 2.

Furthermore, since Log(1+pR) is c-invariant,

r(R*) _ ( 1 - '-Log(e) ( ( 1 - pic i(r)).
i=1

So Im(F) = Ker(w), and (1) is exact in this case.

Now assume that G is a nontrivial p-group. We first show that

WGoFG = 1; it suffices by naturality to do this when G is abelian and

R = 2p. Let I = {jrigi E R[G] : Zri = 0} denote the augmentation ideal.

For any u = l+Zri(1-ai)gi E 1+I, where riEZp

up = 1 + pZri(l-ai)gi + lrp(1-ai)pgi (mod pI2)

1 + plri(1-ai)gi + Zri[(1-ap) - p(1-ai)]gi (Lemma 6.3(i))

4(u) + pjri(1-ai)(gi-gp) a 'D(u) (p(ri) = ri)

This shows that up/4(u) E 1+p12, and hence that

F(u) = log(u) - 1.0(log(u)) = I.log(up/4(u)) E
12.

On the other hand, for any r E 2p and any a,b,g E G,

w(r(1-a)(1-b)g) = (Eg)r(.ag)-r(ebg)-r(eabg)r
= 1 E (e) x Cab.

Thus, T(1+I) c I2 C Ker((j), and so

r(K1(R[G])) = r(R*x (1+I)) = (I'(R*) , T(1+I)) C Ker((j). (3)

Now fix some central element z E Z(G) of order p, such that z

is a commutator if G is nonabelian (Lemma 6.5). Set G = C/z, assume

inductively that the theorem holds for d, and consider the following
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diagram (where a: G -* G denotes the projection):

1 1 1

1 1 1

1 -i K1(R[G],(1-z)R[G])/tore -r2-+ 9O(G;(1-z)R[G]) Ker(aab) + 1

I
r
C

1

1 -+ K1(R[G])/tors G HO(G;R[G]) C . (_).dab 1

I'<(a) IH(a)

j

laab

1 -> K1(R[G]))/tors G - HO(G;R[G]) -C , (e),Gab . 1

Since K(a) is onto (Theorem 1.14(111)), the columns are all exact. The

bottom row is exact by the induction hypothesis. Also, the top row is

exact: wo is clearly onto, To is injective by Proposition 6.4,

Im(To) C Ker(wo) by (3); and using Proposition 6.4 again:

IKer(aao)I = } = ICoker(To)I
1 if z is a commutator

p otherwise (i. e., if is abelian) JG

Since (iGorG = 1 by (3), the middle row is exact by the 3x3 lemma.

One simple application of Theorem 6.6 is to the following question of

Wall, which arises when computing surgery groups. Let G be an arbitrary

2-group, and set Wh'(22[G]) = K1(7l2[C])/({tl}x dab x SK1(22[G])). The

problem is to describe the cohomology group H1(Z/2;Wh'(7L2[G])), where

7/2 acts via the standard involution (g N g 1) (see Section 5c).

Assuming Theorem 7.3 below, Wh'(22[G]) is torsion free, and so the exact

sequence of Theorem 6.6 takes the form

1 ---1 Wh' (22[G]) - HO(G;7L2[G]) -- {tl} xGab _ 1;

with the obvious involution on each term. Also, H1(7L/2;HO(G;7L2[G])) = 1,
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since the involution permutes a a2 basis of HO(G;Z2[G]). We thus get an

exact sequence

HO(7L/2;HO(G;Z2[G])) 0 HO(7L/2;{tl}xCab) H1(Z/2;Wh'(12[G])) -i 1;

and this yields the simple formula

{[g]EGab : [g2]=l}
1H (l//2;Wh'(72[G]))

([g]: g conjugate g-1)

Theorem 6.6 gives a very simple description of K1(2p[G])/torsion,

and the torsion subgroup of K1(2p[G]) will be identified in the next

chapter (Theorem 7.3). This suffices for many applications; for example,

to prove the results on C11(7[G]) and SK1(7L[G]) in Chapters 8 and 9

below. But sometimes, a description of Ki(R[G]) (= K1(R[G])/SK1(R[G]))

up to extension only is not sufficient. The following version of the

logarithmic exact sequence helps take care of this problem.

Theorem 6.7 Let R be the ring of integers in any finite unramifted

extension F of Qp. For any p-group G, define

(v,A): Ki(R[G]) ) (Gab ® R) W (R/2) and

((j,O): HO(C;R[C]) (Gab ® R) ® (R/2)

by setting, for gi E C and a, ai E R (with reductions a, ai E R/2),

(u,e)((1+pa)(l+ l al(gl-l))) = (I gi® ai, a), and

(u,0)(Zaigi) = (I gi®ai, 1a1).

Then v, B, and r are all well defined on Ki(R[G]), and the sequence
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1 - K1(R[G])(p)
t u 8

HO(G;R[G]) ®
(Gab

® R) ® (R/2)

(w

10 (gyp-1) 0

A 0 1®
(Gab

® R) ® (R/2) --> 0

is exact.

Proof The main step is to show that the composite of the above two

homomorphisms is zero, and this is a direct calculation. The injectivity

of is a consequence of Theorem 7.3 below, which says that

Ker(rRG) = tors(Ki(R[G])) = tors(R*) x
Gab.

The exactness of the whole sequence then follows easily from Theorem 6.6.

See Oliver [8, Theorem 1.2] for more details. o

When G is an arbitrary finite group, then
TRG

sits in exact

sequences analogous to, but more complicated than, those in Theorems 6.6

and 6.7. Since their construction depends on induction theory, we wait

until Chapter 12 (Theorem 12.9) to state them.

Several naturality properties for r were shown in Theorem 6.2. One

more property, describing its behavior with respect to transfer maps for

inclusions of groups, is also often useful. To state this, we define, for

any prime p and any pair H C G of p-groups, a homomorphism

ResH : HO(G;7lp[G]) - HO(H;gp[H])

as follows. Fix g E G, let x1,...,xk be double coset representatives

for H\G/(g), and set ni = min In >0 : gn E xi1Hxi} for 1 < i K k. Then

define

ResH(g) _ xignlxil E H0(H;R[H])
i=1

For example, if G and H are p-groups and [C:H] = p, then
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p L-1

xlgx 1 (any x E G'H) if g E H

ResH(g) = i=O

if g f Hgp

Theorem 6.8 For any pair H C C of p-groups, the diagram

Ki(Lp[G]) --=- HO(G;Zp[G])

trf (1) IResH

rG
10C

H

Ki(2p[H]) HO(H;Zp[H])

r WG

(6)
x Gab -' 1

c
N

(a) x
jib

1

commutes. Here, e = (-1)p-l, (a) x Gab and (e) x e are identified

as subgroups of Ki(R[G]) and Ki(R[H]), and RH is the restriction of

the transfer map.

Proof The easiest way to prove the commutativity of (1) is to split

it up into two squares:

Kl(2p[G]) log HO(G;[G])

Itrf (la) Is

Kill p[H])
log ) HO(H;Q,[H])

p

11 -
p

)

Here, if al,.... am denote right coset representatives for H C G, then

res(g) = I{aigail 1 S i m, aigail E H) E

for any g E G. The commutativity of (lb) is straightforward, and the

commutativity of (la) follows from the relations

log(u) = lim -L. (up - 1); trf(u) = lim (1+
res(upn

- 1))l/'pn .
n-w pn n-

HO(G;QP[G])

(lb) 1ResH

.

See Oliver & Taylor [1, Theorem 1.4] for details. 0
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In Oliver & Taylor [1, Theorem 1.4], ResH is in fact defined for an

arbitrary pair H C G of finite groups (not only for p-groups). The

above formulas can also be extended to include the case of R[G], for any

R unramified over Z
p

; in this case the Frobenius automorphism for R

appears in the formula for ResH.

6b. Variants of the integral logarithm

We list here, mostly without proof, some useful variants of the

integral logarithm, and of the exact sequence describing its image. The

first theorem is a generalization of Proposition 6.4 and Theorem 6.6. It

is used in Oliver [4] to detect elements in K2(R[G]).

Theorem 6.9 Let R be the ring of integers in any ftntte unramtfled

extension F of Qp, let a: G ---i C be any surjectton of p-groups, and

set

Ia = Ker[R[G] 3 R[G]].

Set K = Ker(a) C G. Then there is an exact sequence

r
K1(R[G],Ia) H0(G;Ia) a K/[G,K] -i 1.

Here, for any r E R, g E G, and w E K, wa(r(l-w)g) = w
r(r).

Proof This is an easy consequence of results in Oliver [4]; but

since it was not stated explicitly there we sketch the proof here. Define

a p-group d and a Z-order 21 to be the pullbacks

Pt b,
G + G 2[ R[G]

1132 Ia lba
IRa

a a
G R[G] R R[G].



CHAPTER 6. THE INTEGRAL P-ADIC LOGARITHM 167

Set I; = Ker[R(3i : R[G] 0 R[G]] (i = 1,2), and let p: R[G] -4 21 be

the obvious projection. Then

Ker(,y) = I1 fl I2 = III,

(see Oliver [4, Lemma 2.4]); so 21 !--' R[d]/1112 and

K1(21) - K1(R[G])/(l+I1I2) (1)

Also, by Oliver [4, Theorem 1.1] (and this is the difficult point):

rRG(l + I1I2) = Im[I1I2 - HO(G;R[G])] (2)

Formulas (1) and (2), together with the exact sequence of Theorem 6.6

(applied to R[d]), now combine to give an exact sequence

K1(21) 21
HO(G;21) (e)xGab 1

(where e = (-1)p-l, as usual). We thus get a commutative diagram

K1(21) H0(G;21) -> (e) x C -- - 1

IKl2) Ib2) 132b

rC) HO(G;R[G]) R (E)
xG^ab -+ 1,

where the vertical maps are split surjective (split by the diagonal map

G)GCGxG). Then

Ker(K1(b2)) = K1(R[6],Ia), Ker(H(b2)) n-' HO(G;Ia), Ker((3zb) = KI[G,K]

and this proves the theorem. O

Logarithms can be used to study, not only the abelianization of

(R[G])*, but also its center. The following theorem is in a sense dual

to Theorem 6.6.



168 CHAPTER 6. THE INTEGRAL P-ADIC LOGARITHM

Theorem 6.10 Let R be the ring of integers in any finite

unramified extension F of Q. Then for any p-group G, there is an

exact sequence

1 -+ (e) x Z(G) lncl 1+ J(Z(R[G])) r Z(R[G]) ' (e) x Z(G) --+ 1.

Proof See Oliver [9]. o

The last result described here involves polynomial extensions of the

base ring.

Theorem 6.11 Let 7[s]p- denote the p-adic completion of the

polynomial algebra 7L[s]. For any p-group C, Let I C 7L[s]p[G] denote

the augmentation ideal, and define

Ki(R[S]p[G]+I) = Im[K1(Z[s]p[G],I) -' K1(Z[S]p[p][G])].

Then there is a short exact sequence

1 ---* Ki(7L[s]p[G].I) T HO(G;I) ® (Z[s]p®Gab)

u 4-1 (7L[s]p ® Gab) - 1.

Proof See Milgram & Oliver [1]. The homomorphisms are analogous to

those in Theorem 6.7 above. 0

6c. Logarithms defined on K( p[G])

The "logarithm" homomorphisms discussed here are not needed for

describing the odd torsion in C11(7L[G]), but they could be important in

describing the 2-power torsion, and do help to motivate the conjectures in

Chapter 9. In any case, Theorem 6.12 below does give a complete

description of K2(7Lp[G]) when p is any prime and G is an abelian

p-group; and Conjecture 6.13 would give an analogous description (though
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only up to extension, in general) for arbitrary p-groups.

The natural target group for K2 integral logarithms turns out to be

Connes' cyclic homology group HC1(-). If R is any commutative ring and

G is any finite group, then

HC1(R[G]) = H1(G;R[G])/(g®rg: g E G, r E R) and HC0(R[G]) = HO(G;R[G]);

where Hn(C;R[G]) is as usual defined with respect to the conjugation

action of C on R[G]. We identify H1(G;R[G]) with G ® R[G] whenever

G is abelian; and for arbitrary C this allows us to define elements
g®rh E H1(G;R[G]) for any r E R and any commuting pair g,h E G.

Theorem 6.12 Fix an unramified extension F of Q, and let R C F

be the ring of integers. Let Tr: R - 2p denote the trace map. Then,

for any abeltan p-group G, there is a short exact sequence

1 -> K2(R[G])/{±G,±G} F2. HCl(R[G]).

g®h+h®g -' O (1)

which is natural in G, and such that r2 and w2 satisfy the following

two formulas:

(t) For any g E G and any u E (R[G])*, F2({g,u}) = g ®F(u).

(ii) For any g,h E G and any r E R, G2(g ® ah) = O g 1h.

Proof See Oliver [6, Theorems 3.7 and 3.9]. o

Other explicit formulas for F2 are also given in Oliver [6]: for

example, formulas for F2({a,u}) when a E R* and u E (R[G])* (Oliver

[6, Theorem 4.3]). Also, F2 has been shown (Oliver [6, Theorem 4.8]) to

be natural with respect to transfer maps.

The obvious hope now is that similar natural exact sequences exist

for nonabelian p-groups. Some more definitions are needed before a

precise conjecture can be stated.

For an arbitrary group G, Dennis has defined an abelian group
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H2(G), which sits in a short exact sequence

0>7V2®Gab -->H2(G) ---- H2(G)--->0,

and such that H2(G) = (G ® G)/(g®h+h®g) whenever C is abelian. The

easiest way to define H2(G) for nonabelian G is as the pullback

H2(G) (Gab ®Gab)/(gOh+h®g)

I I

H2(G) ---> H2(Gab) = (Gab
® Gab)/(gog)

For any commuting pair g,h E C, g^h E H2(G) and g^h E H2(C) will

denote the images of g®h E H2((g,h)) and g®h E H2((g,h)), respectively

((g,h) being an abelian group).

For any G. Loday [1] has defined a natural homomorphism

XG
: H2(G) _+ K2(7L[G])/{-1,G},

which will be considered in more detail in Section 13b. For now, we just

note that AG(g^h) = {g,h} for any commuting pair g,h E G (recall that

{g,g} = {-l,g}). If R is the ring of integers in any finite extension

of Qp, then for the purposes here we set

Wh2(R[G]) = Coker[H2(G) ' + K2(7L[G])/{-1,iG) Z'-4R) K2(R[G])/{-l,:G}].

Note that when G is abelian, Wh2(R[G]) = K2(R[G])/{±G,EG}.

The obvious conjecture is now:

Conjecture 6.13 For any p-group G, and any unramtfted extension F

of
P

with ring of integers R, there is an exact sequence
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HC2(R[G]) (03 H3(G)
T - Wh2(R[C]) r? ,. HC1(R[G]) W2

H2(G)

Wh(R[G]) - HCO(R[G]) H1(G) --' 0,

natural in G, and satisfying the formulas:

(t) r2({g,u}) = g®fRH(u) if gEG, H=CG(g), and uER[H]*

(ii) tu2(g ® rh) = lh for commuting g,h E G.

Note that the existence and exactness of the last half of the above

sequence follows as a consequence of Theorems 6.6, 7.3, and 8.6 (and is

included here only to show how it connects with the first half). For

example, Coker(cw2) = H2(G)/H2b(G) = SKl(R[G]) by Theorem 8.6. See

Oliver [6, Conjectures 0.1 and 5.1] for some more detailed conjectures.

The results in Oliver [4] also help to motivate Conjecture 6.13. In

particular, by Oliver [4, Theorem 3.6], there is an exact sequence

H3(G) ---> Wh2(R[G]) 2) IH(R[G]) - 4 H2(G);

where Wh2(R[C]) is a certain quotient of Wh2(R[G]), and where

°i(R[G]) = H1(G;R[G])/(g®rgn: gEG, r E R, n>1)

(recall that HC1(R[G]) = H1(G;R[G])/(g®rg)). This helps to motivate the

conjectured contribution of H3(G) to Ker(r2), and shows that r2 is

at least defined to this quotient group N!(R[G]) of HC1(R[G]). This

sequence can also be combined with Theorem 6.12 to prove Conjecture 6.13

for some nonabelian groups, including some cases - such as G = Q(8) -

where ii # 1. But presumably completely different methods will be needed

to do this in general.
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We are now ready to study the more detailed structure of K1(Z[G])

for finite G. For various reasons, both the results themselves (e. g.,

the formulas for C11(Z[G]) and SK1(2p[G])), as well as the methods

used to obtain them, are simplest when G is a p-group. For example, in

some of the induction proofs, it is important that C is nilpotent and

2p [G]
is a local ring. Also, the image of the integral logarithm rG

(Theorem 6.6), and the structure of @[G] (Theorem 9.1), are simpler

when G is a p-group.

The central chapters, Chapters 8 and 9, deal with the computations of

SK1(2 p[G]) and C11(Z[G]), respectively. The most important results are

Theorem 8.6, where SK1(7Lp[G]) is described in terms of H2(G); and

Theorems 9.5 and 9.6, where formulas for C11(Z[G]) are derived. Some

examples are also worked out at the end of each of these chapters.

Chapter 7 is centered around Wall's theorem (Theorem 7.4) that

SK1(Z[G]) is the full torsion subgroup of Wh(G) for any finite group

G. In contrast, the torsion free part of Wh(G) is studied in Chapter

10, mostly using logarithmic methods. Also, the problem of representing

arbitrary elements of Wh'(G) (= Wh(G)/SK1(Z[G])) by units in Z[G] is

discussed at the end of Chapter 10. Note that Chapters 7 and 10, while

dealing predominantly with p-groups, are not completely limited to this

case.

These four chapters are mostly independent of each other. The main

exception is Theorem 7.1 (and Corollary 7.2), which give upper bounds on

the torsion in Wh(7Lp[G]) for a p-group G. These are used, both later

in Chapter 7 when showing that Wh'(2 p[G]) is torsion free, and in

Section 8b when establishing upper bounds on the size of SK1(2 p[G]).
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If G is any finite group, and if R is the ring of integers in any

finite extension F of Ill or Qp, then obvious torsion elements in

K1(R[G]) include roots of unity in F, elements of G, and elements in

SKI(R[L]). These elements generate a subgroup of the form

GabµFx x SK1(R[G]) C- K1(R[C]) (1)

To see that this is, in fact, a subgroup, note that µF,x Gab injects into

K1(F[G]) - since it is a subgroup of (F[Gab])* = K1(F[Gab]) - and hence

that pF x Gab C K1(R[G]) and (pF, x Gab) fl SK1(R[G]) = 1.

In particular, if we define the Whitehead group Wh(R[G]) by setting

Wh(R[G]) = Kl(R[G])/(pF x Gab),

then SKI(R[L]) can also be regarded as a subgroup of Wh(R[G]), and

Wh'(R[C]) = Wh(R[G])/SK1(R[G]) = Ki(R[G])/(UF x Gab).

Note that when R g 7L, this notation is far from standard (sometimes one

divides out by all units in R).

When G is abelian, then Ki(7L[G]) = (7L[G])*; and Higman [1] showed

that the only torsion in (7L[G])* is given by the units tg for g E G.

In particular, Wh'(G) is torsion free in this case. This provided the

motivation for Wall [1] to show that Wh'(G) is torsion free for any

finite group G; i. e., that the subgroup in (1) above is the full

torsion subgroup of KI(7L[G]). More generally, Wall showed that

Wh'(R[G]) is torsion free whenever F is a number field and G is

finite (Theorem 7.4 below), or whenever F is a finite extension of 1
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and G is a p-group (Theorem 7.3)

If one only is interested in the results on torsion in Wh'(R[G]),

then Theorem 7.1 and Corollary 7.2 below can be skipped. These are

directed towards showing that Wh(R[G]) is torsion free when R is the

ring of integers in a finite extension of Qp, and G is a p-group with

a normal abelian subgroup of index p. Wall's proof in [1] that

Wh'(R[G]) is torsion free in this situation is simpler than the proof

given here in Corollary 7.2. But the additional information in Corollary

7.2 (and in Theorem 7.1 as well) about Wh(R[C]) itself will be needed in

Chapter 8 to get upper bounds on the size of SK1(R[G]).

Recall the exact sequence of Proposition 6.4: if R is the ring of

integers in any finite extension of &, if G is any p-group, and if

z E G is central of order p, then there is an exact sequence

1 -> (z) ) K1(R[G],(1-z)R[G]) loo -> H0(G;(l-z)R[G]) ) ffp -+ 0.

In particular, this gives a precise description of the torsion subgroup of

K1(R[G],(1-z)R[G]). The next theorem gives an upper bound for the number

of those torsion elements which survive in K1(R[G]).

Theorem 7.1 Fix a prime p and a p-group G, and let z C C be

central of order p. Set

0 = {g E C : g conjugate zg} = {g E G : [g,h] = z, some h E G),

and let - be the equivalence relation on 0 generated by:

r g is conjugate to h, or
g ^- h if !l

[g,h] = zl for any i prime to p.

Then, if R is the ring of integers in any finite extension of %,

Ker[tors Wh(R[C]) - tors Wh(R[C/z])] = (Ulp)N,

where
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N = 0 if 0 = 0

N < 10/ - 1 if 0 0 0 (t. e., if z is a commutator).

More precisely, if 0 $ 0, let p g R be the maximal ideal, let

T: R - ' R/p
Tr+ Ip

be as in Proposition 6.4, and fix any r E R with T(r) g 0. Then if

{go,...,gk} are --equivalence class representatives in 0, the elements

Exp(r(1-z)(go-g,)) (for 1<i<k)

generate Ker[tors Wh(R[G]) --> tors Wh(R[G/z])].

Proof By Proposition 6.4, the logarithm induces a homomorphism

log : K1(R[G],(l-z)R[G]) -' HO(G;(1-z)R[G]);

where Ker(log) _ (z) and

ll

Im(log) _ {(1-z)jrigi : ri E R, gi EC, jr, E Ker(T)I.

By Theorem 2.9, for any u E 1+(1-z)R[G], [u] is torsion in Wh(R[C]) if

and only if [u] E Ker[logRG: Wh(R[G]) -+ HO(G;R[G])], if and only if

log(u) E Ker[HO(G;(1-z)R[G]) -' HO(G;R[G])]

= (r(1-z)g E HO(G;(l-z)R[G]) g conj. gz, r E R) = HO(G;(1-z)R(0)).

So if we set

ll

{rgi
ll

D = {f E R(0) : (1-z)E log(1+(1-z)R[G])J = E R(0) : Zri E Ker(T)I

and
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ll

C = {f E R(fl) : (1-z)f = Log(u), some u E Ker[l+(1-z)R[G] -> Wh(R[G])]I;

then

Ker[tors Wh(R[G]) -i tors Wh(R[G/z])] = D/C.

The theorem will now follow if we can show that

C D Ker[R(fl) pro-') R(fl/'-) IFp(fv.)]

= (sg, r(g-h) : r,sER, g,hEG, g-h, sEKer(T)).

Note that since Ker[Tr: R/p -i IFp] = (1-pp)R/p by Lemma 6.3(11),

(1)

Ker[T: R - R/p - IFp] = {r-rp: r E R} + p = (r-rp: r E R). (2)

For any gEfl and rER, and any k>2,

r(1-z)kg = r(1-z)k-1(g-zg) = 0 E HO(G;(1-z)R[G]).

In particular, by Lemma 6.3(1),

pr(1-z)g = -r(1-z)pg = 0 E HO(G;(1-z)R[G]);

and so

(a) (1-z)R(fl) C C.

Also, by definition,

(b) r(g-h) E C if r E R and g is conjugate to h.

So using (2), (1) will follow once we show, for all r E R and all
g,h E 0, that

(c) (r-rp)g E C, and



CHAPTER 7. THE TORSION SUBGROUP OF WHITEHEAD GROUPS 177

(d) r(g-h) E C if [g,h] = zi and poi.

Fix g,h E 1 with
i

[g,h] = z and pli. It suffices to prove (c)

and (d) when G = (g,h); in particular, when G/z is abelian. To

simplify calculations, set

C' = C W R(G-ft) C R[G].

Since G/z is abelian, all p-th powers in G lie in G'-O; and so by
(a), all p-th powers of elements in R[G] lie in C'. Hence, for any

f E R[G],

log(1+(l-z)f) = (1-z)f - 12 a (1-z)f (mod (1-z)C');

and so

[1+(1-z)f] = 1 E Wh(R[G]) implies f E C'. (3)

We now consider some specific commutators. For any k > 0,

[g lh,l-r(g-h)k] = 1 - (r(z ig-z ih)k - r(g-h)

1 + (1-z

1 - (g-h)k + r2(g-h)2k + r3(g-h)3k + ...) (mod (1-z)2).

Since poi, (3) shows that

kr(g-h) k + kr2(g-h)2k + kr3(g-h)3k + ... E C'

for any k > 1. For k large enough, r(g-h) k E C C' by (a). A

downwards induction on k now shows that

r(g-h) k E C' for all k > 0

(when plk this holds since C' contains all p-th powers). In

particular, r(g-h) E C' n R(0) = C.
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This proves (d). To prove (c), fix j such that [hj,g] = z, and

consider the comnutator

[hj,l-r(1-g)] = 1 - r((1-zg) -

1 - (1-Z) (rg + r2g(1-g) + r3g(1-g)2 + ...).

By (3),

rg - r2g(1-g) + r3 g(1-g)2 - ... E C'. (4)

By (d), rkge = rkh = rkg (mod C) for any k and any a prime to p;

and so (4) reduces to give

0 E rg + (-1)p-lrpg(1-g)p-l = (r-rp)g + rpgp = (r-rp)g (mod C').

It follows that (r-rp)g E C' fl R(fl) = C. 0

Later, in Section 8b, Theorem 7.1 will play a key role when obtaining

upper bounds for the size of SK1(R[G]). But for now, its main interest

lies in the following corollary.

Corollary 7.2 Fix a prime p, and let R be the ring of integers

in any finite extension of Let G be any p-group which contains an

abeltan normal subgroup H a G such that G/H is cyclic. Then Wh(R[G])

is torsion free. In particular, SK1(R[G]) = 1.

Proof This is clear if G = 1. Otherwise, we may assume H # 1,

choose z E Hf1Z(G) of order p, and assume inductively that Wh(R[G/z])

is torsion free. Define

0= {gEG : [g,h] = z, some hEG},

and let - be the equivalence relation on fl defined in Theorem 7.1. By

Theorem 7.1, we will be done upon showing that - is transitive on 0.

If fl # 0, then f ix any g E fl, and any x E G - H which generates
G/H. Choose h E 11 such that [g,h) = z. Either ghi or gih lies in
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H for some i (G/H being cyclic); we may assume by symmetry that ghi =

a E H. If we write h = bxj for some b E H, then

z = [g,h] = [ghi,h] = [a,bxf] = [a,x3] = [ax,xj]

= [ax,xj(ax)-3] =

the last step since
xi(ax)-3

E H. It follows that

g '- h - ghi = a - xf " a x ~ xi
(ax)- j ' x

in 0; and hence that the relation is transitive. o

We are now ready to describe the torsion in Wh(R[G]) in the p-adic

case.

Theorem 7.3 (Wall [1]) Fix a prime p, and let R be the ring of

integers in any finite extension F of 4lp. Then for any p-group G,

Wh'(R[G]) is torsion free. In other words,

tors(K1(R[G])) = ILF x Gab x SK1(R[G]);

where µF, C R* is the group of roots of unity in F.

Proof If G is abelian, then the theorem holds by Corollary 7.2.
So the result is equivalent to showing, for arbitrary G, that

pr* : tors Ki(R[G]) --> tors K1(R[Gab])

is injective on torsion.

Fix G, and assume inductively that the theorem holds for all of its

proper subgroups and quotients. If G is cyclic, dihedral, quaternionic,

or semidihedral, then the theorem holds by Corollary 7.2. Otherwise, all

simple summands of F[G] are detected by restriction to proper subgroups

and projection to proper quotients (see Roquette [1], Oliver & Taylor [1,

Proposition 2.5], or Theorem 9.1 below). In other words, the restriction

maps and quotient maps define a monomorphism
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ZResH $ ZProj : K1(F[G]) >--> ® K1(F[H]) ® ® K1(F[G/N]) (1)GIN
HC_G NAG

[G:H]=p INI=p

So the corresponding homomorphism for Ki(R[G]) is also injective.

For any H C G of index p, consider the following commutative

diagram:

tors Ki(R[G]) p> tors Ki(R[G/[H,H]]) >pr,, tors K1(R[Gab])

Iti It2

tors Ki(R[H]) . pea . tors
Ki(R[Hab]).

Here, the t; are transfer maps and the pr; are induced by projection;

pre is injective by the induction assumption, and pr3 by Corollary 7.2

(G/[H,H] contains an abelian subgroup of index p). Hence, for any

u E Ker(pr3oprl), tl(u) = 1 E Ki(R[H]).

Thus, for any u E Ker(pr*), TrfH(u) = 1 for all H C G of index

p. Also, Proj(u) = 1 for all N A G of order p (by the induction

hypothesis again); and so u = 1 by (1).

Note that Theorem 7.3 only holds for p-groups. Formulas describing

the torsion in Ki(R[G]) in the non-p-group case are given in Theorems

12.5 and 12.9 below.

In order to prove the corresponding theorem for global group rings

(in particular, for Wh(G)), some induction theory is needed. For this

reason, the next theorem might technically fit better after Chapter 11,

but organizationally it seems more appropriate to include it here.

Theorem 7.4 (Wall [1]) For any finite group G, Wh'(G) is torsion

free. More generally, if R is the ring of integers in any number field

K, and if pK C R* denotes the group of roots of unity in K, then

tors(K1(R[G])) = pK x
Gab

x SK1(R[G]). (1)
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Proof Fix a prime p. The proof of (1) for p-power torsion will be

carried out in three steps: when G is a p-group, when C is

p-hyperelementary, and when C is arbitrary. Note that for any prime

ideal p g R, the completion homomorphisms

K1(F[G]) - K1(Fp[G]), Ki(R[G]) >----% Ki(Rp[G])

are injective (the reduced norm maps are injective by Theorem 2.3).

Step 1 Assume G is a p-group. For any prime p1p in R,

pK x Gab C tors Ki(R[G]) -i tors Ki(Rp[G]) = µ(Kp)x
Gab.

Since the inclusion Ki(R[G]) >---> Ki(Rp[G]) contains (R* -- (Rp)*) as

a direct summand, this shows that tors Ki(R[G]) = w K-
Gab.

Step 2 Assume G is p-hyperelementary - i. e., G contains a

normal cyclic subgroup of p-power index - but not a p-group. Fix some

prime q A p dividing IGI, and let H a G be the q-Sylow subgroup. We

may assume inductively that the theorem holds for G/H.

Let q g; R be any prime ideal dividing q, and set

I = Ker[Rq[G] ) Rq[G/H]].

Then I is a radical ideal, since q D Zq and H is a q-group (this

follows from Example 1.12). Hence K1(Rq[G],I) is a pro-q-group (Theorem

2.10(11)), and so

torspKj(Rq[G]) = torspKj(Rq[G/H])

(p 0 q). But torspKj(R[G/H]) = (} x (C/H)ab)(p) by the induction

hypothesis, and so torspKi(R[G]) = (µK x Gab)(py

Step 3 By standard induction theory (see Lam [1, Chapter 4], Bass
[2, Chapter XI], or Theorem 11.2 below), for any finite group G,
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torspKl(R[G]) is generated by induction from p-hyperelementary subgroups.

So torspKj(R[G])
= (WK

x Gab)(p) by Step 2. 0

As an easy consequence of Theorem 7.4, we now get:

Corollary 7.5 (Wall) For any finite group

involution acts on Wh'(G) by the identity.

Proof Write Z(D[G]) = HFi,

G, the standard

where the F. are fields; and let

R. C F. denote the rings of integers. The involution on D[G] acts on

each Fi via complex conjugation (Proposition 5.11(11)), and the reduced

norm homomorphism

nrZ[G] : K1(Z[G]) --' R(R1)-

commutes with the involutions by Lemma 5.10(11). Also, Ker(nrZ[G]) =

SK1(Z[G]) is finite; and for each i, (Rj)*/torsion is fixed by complex

conjugation. So Wh'(G) = K1(Z[G])/torsion is also fixed by the

involution. O
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The central result of this chapter is the construction of an

isomorphism

0G : SK1(2p[G]) = SK1(7L[G])/C11(7z[G]) -'' H2(G)/12b(G)

for any prime p and any p-group C. Here, H2b(G) C H2(G) is the

subgroup generated by elements induced up from abelian subgroups of G.

In fact, in Theorem 8.7, we will see that SK1(R[C]) = H2(C)/H2b(G)

whenever R is the ring of integers in any finite extension of

In Section 8a, the homomorphisms ORG are constructed, and shown to

be surjective. The definition of 0RC involves lifting elements of

SK1(R[G]) to K1(R[G]), for some appropriate C surjecting onto C;

and then taking their integral logarithms (see Proposition 8.4). Section

8b then deals mostly with the proof that
0RG

is an isomorphism. In

Section 8c, some examples are given, both of groups for which

SK1(7Lp[G]) = 1, and of groups for which it is nonvanishing. The last

result, Theorem 8.13, gives one way of constructing explicit nonvanishing

elements of SK1(2 p[C]) in certain cases.

Throughout this chapter, p will denote a fixed prime.

8a. Detection of elements

The following proposition is the basis for detecting all elements in

SK1(2 p[G]).

Proposition 8.1 Let R be the ring of integers in any unramtfted

extension F of Qp. Then, for any extension 1 - K -- G C -4 1
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of p-groups,

Coker[SK1(Ra) : SK1(R[G]) -' SK,(R[G])] =
Kfl [G,G]

(1)
([g,h] E K: g,hE G)

More precisely, for any u E SK1(R[G]), and any lifting of u to

u E KI(R[G]), then TRG(u) = Jri(zi-1)gi for some g1E G, ri E R, and

z. K; and u corresponds under (1) to the element

nzir(r:)
E Kfl

Here, Tr: R - 2p is the trace map.

Proof For convenience, set

Ko = ([g,h] E K: g,h E G) and Ia = Ker[R[G] - 4 R[G]].

The snake lemma applied to the diagram

1 -i SKI(R[G]) xµF,xO^ab -+ Ki(R[G]) -i Wh'(R[G]) -+ 1
1SK1(Ra) x a b

I

K(a) !Th,(a)

1 - SKI (R[G]) x uF x dab - K1(R[G]) - Wh'(R[G]) -i 1

induces an exact sequence

K1(R[G],Ia) - Ker(Wh'(a)) - ) Coker(SKi(Ra)) -1 1. (2)

Also, the following diagram with exact rows

1 --> Wh'(R[G]) - HO(G;R[G]) -4 (e)xGab -> 1
Wh'(a) H(a) laab

I

1 -* Wh'(R[C]) HO(G; R[G]) (e) x}IGab 1
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(see Theorems 6.6 and 7.3) induces a short exact sequence of kernels

r -
K

1 -i Ker(Wh'(a)) - ) HO(G;I )a
Kfl[G,G]

-* 1

where HO(G;Ia) = Ker(H(a)) = Im[HO(G;Ia) 0 HO(G;R[G])].

(3)

It remains to describe r6(K1(R[6],Ia)). This could be done using

the exact sequence of Theorem 6.9, but we take an alternate approach here

to emphasize that the difficult part of that theorem is not needed.

We first check that there is a well defined homomorphism

HO(G;Ia) ) K/Ko

such that U(Jri(zi-1)gi) = nzTr(r') for rl E R, zi E K, and gi E G.

It suffices to check this when Ko = 1; 1. e., when K is central and

contains no commutators. In particular, HO(G;Ia) = Ho(G;Ia) in this

case, since two distinct elements of G in the same coset of K cannot

be conjugate. And U is well defined on HO(G;Ia)' since it is well

defined on Ia itself (and HO(G;K) = K/[G,K] = K).

Now define a = { (g,h) E G x a: a(g) = a(h) } , so that

is a pullback square. Set

K. = Ker((3i) (. K) and Ii = Ker[R(3i: R[G] -i+ R[G]] (i = 1,2).

Then /32 is split by the diagonal map from G to G. In particular,

R[G] = R[G] W I2, K1(R[G]) - K1(R[G]) ® Kl(R[G]+I2)+

and Gab = O^ab x (K2/[G,K2])

Consider the following diagram:
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K1(R[G]+I2) rG)
HO(G;I2)'G K2/[G,K2] - 1

rK1(R[G],Ia) HO(G;Ia) ) K/K- ----- 1;

(4)

where the f; are induced by (31: 6 - G. The top row is a direct

summand of the exact sequence of Theorem 6.6 applied to K1(R[6]), and

hence is exact. Furthermore, K2 = K, and so Ker(f3) is generated by

elements of the form

([g,h],l) = (ghg l,h)'(h,h)-1 = -6(r'((gghg 1,h)-(h,h))) E w6(Ker(f2))

for g,h E G such that [g,h] E K (and where Tr(r) = 1). In other
words, w6(Ker(f2)) = Ker(f3), and so the bottom row in (4) is exact.

It now follows that

Coker(SK1(Ra)) = Coker[K1(R[G],Ia) - 4 Ker(Wh'(a))] (by (2))

rG(Ker(Wh'(a)))/rG(K1(R[G],Ia)) (by (3))

io rG(Ker(Wh'(a))) (by (4))

If1

I

f2

I

f,

_ (Kfl[G,G])/Ko =
Kfl [G,G]

(by (3))
([g,h]EK: g,hEG)

The description of the isomorphism follows from the definition of ii. o

Proposition 8.1 shows that elements in SK1(R[G]) are detected by

the difference between commutators in K (when G = G/K), and products

of commutators in K. The functor H2(G) will now be used to provide a

"universal group" for Coker(SK1(a)), for all surjections a of p-groups

onto G.

If G is any group, and G = F/R where F is free, then by a

formula of Hopf (see, e. g., Hilton & Stammbach [1, Section VI.9]),
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H2(G) - (Rfl[F,F])/[R,F].

If g, h is any pair of commuting elements in G, we let

g-h E H2(G)

denote the element corresponding to [g,h] E Rfl[F,F] for any liftings of

g and h to g,h E F . If G is abelian, then H2(G) - A2(G) is

generated by such elements. So for arbitrary G,

H2b(G) = Im[[{H2(H): H C G, H abelian}
2Ind

H2(G)]

= (g-h: g,h E G, gh = hg) C H2(G).

Theorem 8.2 Let 1 1 K -4 G -4 G - 1 be any extension of

groups. Then for any Z[G]-module M, there is a "five term homology

exact sequence"

H2(G;M) * H2(G;M) M Kab 3M -+ H1(G;M) H1(G;M) -> 0.

In particular, when M = 7L, this takes the form

H2(G)
H a

H2(G)
3- K/[G,K] ---> b a , dab - 1;

where for any commuting pair g,h E G and any ltftings to g,h E

ba(g^h) = [g,h] (mod [G,K]).

If K is central, then this can be extended to a 6-term exact sequence

a ab
K ® G - H2(G) H a H2(G) b > K 0 ab a Gab -- 1,

where q(h ®g) = h-g E H2b(G) for any h E K and g E
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Proof The 5-term sequences are shown in Hilton & Stammbach [1,

Theorem VI.8.1 and Corollary VI.8.2]; and the formula for 6" follows

from the definition of g^h and naturality. The 6-term sequence, and the

formula for 7, are shown in Stammbach [1, V.2.2 and V.2.1]. 13

When 1-4 K G a G-* 1 is a central extension, then da

can be regarded as the image of the extension [a] E H2(G;K) under the

epimorphism

H2(G;K) - Hom(H2(G),K)

in the universal coefficient theorem. So it is not surprising that

central extensions can be constructed to realize any given homomorphism

H2(G) - + K.

Lemma 8.3 (i) For any finite group G and any subgroup T C H2(G),

there is a central extension 1 K -1 G G -4 1 such that

Sa: H2(G) -- b K is surjectiue with kernel T.

(ii) For any pair H C G of finite groups, there is an extension

1 -4K--'G-G-+ 1

of finite groups, such that if we set H = a-1(H) and ao = all H - H.

then H2(ao) = 0. If H a G, then can be chosen such that K C Z(H);

and if G is a p-group then G can also be taken to be a p-group.

(iii) For any finite group G, and any finitely generated Z[C]-

or 1P [G]-module M, there is an extension 1 -+ K -* G G --> 1 of

finite groups such that

H2(a;M) = 0 : H2(G;M) - H2(G;M).

Proof (i) Write G = F/R, where F is free. By Theorem 8.2,

there is an exact sequence
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F0 = H2(F) - H2(G)
) R/[F,R]

Fab _ Gab
1.

Furthermore, Fab and all of its subgroups are free abelian groups, and

so R/[F,R] splits as a product

R/[F,R] = Ro/[F,R] x J(H2(G))

for some Ro a F where [F,R] C Ro C R. If we now set G = F/Ro, and

let a: G -» G be the projection, then ba: H2(G) R/Ro is an iso-

morphism. So for any T C H2(G), aT: 6/6a(T) --3+ G has the property

that 6 is surjective with kernel T.

(iii) Again write C = F/R, where F is free and finitely

generated. By Theorem 8.2, there is an exact sequence

0 = H2(F;M) --> H2(G;M) --> Rab®Z[G]M H1(F;M).

Here, H2(G;M) is a finite p-group and Rab
0Z[G]

M is a finitely gener-

ated Z- or 1p module. So there is a normal subgroup T a F of finite

index such that [R,R] C T C R, and such that H2(G;M) still injects

into (R/T)
®Z[G]

M. If we now set G = F/T, K = R/T, and let a: G - G

be the surjection, then 6a is injective in the exact sequence

H2(G;M)
H

H2(G;M) K ®Z[G]M.

So H2(a;M) = 0.

(ii) Now fix H C C, and set M = Z(G/H). Then H2(G;M) - H2(H);

and H2(G;M) = H2(a H) for any a: G -» G. So by (iii), there is an

extension 1 -- K -+ G a G -+ 1, such that if we set H = a l(H)
and ao = alH, then H2(ao) = 0 and 6ao is injective. If H d C,

then [H,K] 4 G, and we can replace a by G/[H,K] (so K 9 Z(ff))
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without changing the injectivity of bao. If G is a p-group, then G

can be replaced by any p-Sylow subgroup. O

Now, for any extension 1 - K -> G G - 4 1 of p-groups, the

5-term exact sequence of Theorem 8.2 induces an exact sequence

b K fl [G,G]
(L)

([g,h]EK: g,hEG)

Coker(SKl(Ra))

By Lemma 8.3(i), for any G, there exists G -* G such that H2(a) = 0.

So H2(G)/H2b(G) represents the largest possible group Coker(SK1(Ra)),

among all a: G --» G. This is the basis of the following proposition:

Proposition 8.4 Let R be the ring of integers in any finite

unramified extension of Qp. Then for any p-group G, there is a natural

surjection

0RG : SKI(R[L]) _ H2((;)/&b(G),

characterized by the following property. For any extension

1 ->KC-> 1
of p-groups, for any u E SK1(R[G]), and for any lifting u E KI(R[G])

of u, if we write FRG(u) = jri(zi-l)gi (where ri ER, zi EK, and

gi E 6), then

Sa(ORG(u)) =
IIzr(r.) E K/([g,h] E K: g,h E G). (ba: H2(C) '-'' K/[G,K])

Furthermore, 0RC is an isomorphism if ORG is an isomorphism for any

p-group G surjecting onto G.

Proof The only thing left to check is the last statement. By the



CHAPTER S. THE P-ADIC QUOTIENT OF SK1(g[G]): P-GROUPS 191

above discussion, ORG is an isomorphism if and only if SK1(Ra) = 1 for

some surjection G a G of p-groups. Clearly, this property holds for

G if it holds for any p-group surjecting onto G. 0

8b. Establishing upper bounds

It remains to show that the epimorphism 0RG of Proposition 8.4 is

an isomorphism. While lower bounds for SK1(R[G]) were found by studying

Coker(SK1(Ra)) for surjections a: G - G, the upper bounds will be

established by studying Coker(SK1(f)) when f: H G is an inclusion

of a subgroup of index

tion step.

The following lemma provides the main induc-P.

Lemur 8.5 Let R be the ring of integers in any finite unramifted

extension of Qp. Then for any patr HG of p-groups with [G:H] = p,

if SK1(R[H]) = 1, then 0RG is an tsomorphism.

Proof For the purposes of induction, the following stronger state-

ment will be shown: for any pair G D H of p-groups with [G:H] = p,

0RG factors through an isomorphism

Oo : Coker[SK1(R[H]) -> SK1(R[G])]

_- Coker[H2(H)I 2b(H) -'-2(G)I2b(C)].

(1)

Note that Oo is onto by Proposition 8.4. Let f: H -4 G denote the

inclusion, and let

SK1(f): SK1(R[H]) -i SK1(R[G]), Wh(f): Wh(R[H]) -4 Wh(R[C'),

H2(f): H2(H) - H2(G), and H2IH2b(f): H2(H)I 2b(H) - H2(C)/H (C)

denote the induced homomorphisms. Fix some x E G'-H; and fix r E R such
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that Tr(r) =1E 2p (Proposition 1.8(111)).

Choose any f E SKI(R[L]) such that ABL(E) E I ( (f)). We

must show that f E Im(SK1(f)). This will be done in three steps. In

Step 1, Theorem 7.1 will be used to show that Wh(f)(fo), for some

fo E Wh(R[H]) such that F ( f o ) = Ji=1r(h1 - xh1x 1), and where the

h1 EH satisfy [h1,x] E [H,H]. In Step 2, we first identify

b(f)) with a certain subquotient of H; and then show that

Oo([f]) corresponds under this identification to Then, in Step

3, this is used to show that f E Im(SK1(f)).

Step 1 We can assume that H is nonabelian: otherwise SK1(R[G]) =

1 by Theorem 1.14(11). Fix z E [H,H] which is a central commutator of

order p in G (Lemma 6.5), set fl = H/z, G = G/z, and let

H f 0 G

fH G

be the induced maps. Consider the following commutative diagram:

Coker(SK1(f)) O ) Coker(H2/H b(f))

Coker(SK1(f)) Coker(H (f)).

Here, 0o is induced by 0RG (and is assumed inductively to be an iso-

morphism); and S(a) and H(a) are induced by a. In particular,

[f] E Ker(Oo) C Ker(S(a)).

Consider the following homomorphisms:

SK1(R[H])
SK f

SK1(R[G])
pr

) Coker(SK1(f)) -> 1

18K) ISKI(a)

1S(a)

SK1(R[H])
SK f

SK1(R[G]) - Coker(SK1(f)) -' 1

IS(a)
1H(a)
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Since S(a)([f]) = 1, there exists E SK1(R[H]) such that SK1(f)(ui) =

SK1(a)(f). By Proposition 8.1, we can lift ) to some 11 E Wh(R[H])

such that rRH(rf) = ra(1-z)go, for some a E Z and any desired go E H.

In particular, since z is a commutator in G, we may choose go such

that go is conjugate in C to zgo.

Now set

0 = {g E C : g conjugate zg} = {g E C : [g,h] = z, some h E C) $ 0,

and let - be the relation on n from Theorem 7.1. For any g E fl,
either g E H, or [g,h] = z for some h E H (since G/H is cyclic). So

each --equivalence class of n includes elements of H. By Theorem 7.1,

Ker(SK1(a)) = (Exp(r(1-z)(g-h)) : g,h E H fl 0)

c (Wh(f)(r1(r(g-zg))) : g E H, g conj. zg in C).

Since Wh(f)(i) a f (mod Ker(SK1(a))), this shows that we can write

f = Wh(f)(fo), where rRH(fo) = r(1-z). gi,

and where gi is conjugate in C to zgi for all i.

Recall that x E G generates G/H. Hence, for each i, there is

some ri S p-l such that xr'gix ri is conjugate in H to zgi. In

particular, rRH(Eo) = Jr(gi - xr'gix r') E HO(H;R[H]). By relabeling, we

can find elements hi,...,hn E H such that

rRH(fo) _ Z r(hi-xhix 1), and [hi,x] E [H,H] (all i). (2)

i=1

Step 2 Now set

K = Coker(H,,/ b(f)) = H2(G)I( b(G), Im(H2(f))),
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for short, and fix a central extension 1 -> K --> G -L G - 1 such

that

b : H2(C) --» K = Coker(H2/H2b(f))

is the projection (use Lemma 8.3(i)). In particular, Kfl[H,H] = 1

(where H = (3 1(H)), since Im(H2(f)) C Ker(b).

The Hochschild-Serre spectral sequence for 1 - H -L G -' Cp -4 1

(see Brown [1, Theorem VII.6.3]) induces an exact sequence

H3(Cp) C) H1(Cp;Hab) a3 , Coker(H2(f)) --' 0.

The usual identification of H1(Cp;-) with invariant elements modulo

norms takes here the form

H (C ;Hab) _
{h E Hab : xhx 1 = h in Hab} - {hEH: [h,x] E [H,H]}

1 p
(h.xhx

1...xp-lhxl-p:
h E H) hEH)

Under this identification, 8(H3(Cp)) = (xp) by naturality (compare this

with the corresponding sequence for 1 -4 (xp) --> (x) --' Cp --> 1). So

there is an isomorphism

at .

{hEH : [h,x]E[H,H])

hEH)
Coker(H2(f)).

Furthermore,

aiI(Uab(G))
_ (hEH : h conj. xhx l in H) Q ((hx)p : h E H);

and so a1 factors through an isomorphism

a :

{hEH: [h,x] E [H,H]}
Hab f

E H: h conj. xhxl in H)
Coker (H2 2 ( )) = K. (3)

By construction, for each h,
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a(h) = [(3 1x,(3 lh] (mod (4)

By (2), rRH(fo) = Zi-lr(hi-xhix l), where [hi,x] E [H,H] for all

i. Choose liftings hi,z E G of hi,x E G. Since K(1[U] = 1, there

are unique elements zi E K such that

[hi,x] = zi (mod (5)

Fix ui E Wh(R[H]) such that rltA(u. ) = r(hi - ix + (1-z.)) (use

Theorem 6.6). Then Wh((3IH)(ni=lui) - fo (mod SK1(R[H])). Also,

rRG(Wh(f)(ui)) = r(1-z1); and so by the formula in Proposition 8.4,

Oo([f]) _ II z.l E K = Coker(H2/H2b(f))
i=1 1

Then by (4) and (5), a 1(Oo(f))
= ni=l hi'

Step 3 Now by (3), we can write ai=l hi =

h where each hJ is conjugate in H to xhx 1. We may

assume n a m (mod 2) (otherwise just take hm+l =1). 6.6, we

can choose fl E Wh(R[H]) such that rR(f1) = r(?i=1hi
- L lh') Then

j= j

n
1fll) =

r(hi - xhix l) - r(fl) + 1

i=1

r(h'-xhix 1) = 0 E HO(H;R[H]);
i=1

and fo - [fl,x] (mod SK1(R[H])). It follows that f = Wh(f)(fo) E

Im(SK1(f)), and this finishes the proof. n

The proof that ORG always is an isomorphism is now just a matter of

choosing the right induction argument.
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Theorem 8.6 Let R be the ring of integers in any finite unramifted

extension of Q . Then for any p-group G,

0RG : SK1(R[G]) - ) H2( (G)

is an isomorphism. Furthermore, the standard involution

on SK1(R[G]) by negation.

(g '-4 1) acts

Proof This will be shown by induction on IC/Z(C)I. Fix any non-

abelian p-group G (SK1(R[G]) = 1 if C is abelian); and let H a C be

any index p subgroup such that H 2 Z(C). By Lemma 8.3(ii), there is a

surjection a1: G1 -» G/Z(G) of p-groups, with H1 = a,1(H/Z(G)), such

that Ker(aj) C Z(H1) and H2(a1IH1) = 0. Let G be the pullback

a
a

G

1 1

G1 a - - G/Z(G)

and set H = a 1(H). Then 1 - K -+ H H/Z(G) --> 1 is a central

extension, so IH/Z(H)I < IG/Z(G)I, and 0j@ is an isomorphism by the

induction hypothesis. Also, H2(a) = 0, since a factors through

ailHi; and so 112b(H) 2 Ker(H2(a)) = H2(H) by the 6-term exact sequence

of Theorem 8.2. This shows that SK1(R[H]) = H2(H)/H2b(H) = 0; and Lemma

8.5 now applies to show that ORG is an isomorphism. But G surjects

onto G, and so 0RG is an isomorphism by the last statement in

Proposition 8.4.

By the description of ORG in Proposition 8.4, for any

[u] E SK1(R[C]), 0RG([u]) = -0([u]). Since ORG is an isomorphism, this

shows that SK1(R[G]) is negated by the standard involution. o

Theorem 8.6 can in fact be extended to include group rings over

arbitrary finite extensions of Qp. This does not have the same import-
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ance when studying SK1(Z[G]) as does the case of unramified extensions;

but we include the next theorem for the sake of completeness.

Theorem 8.7 Let R be the ring of integers to any finite extension

F of
Q.

Then for any p-group G,

SK1(R[G]) = H2(G)

If E 7 F is a finite extension, and if S C E is the ring of integers,

then

(i) i* : SK1(R[G]) ) SK1(S[G]) (induced by inclusion) is an

isomorphism if E/F is totally ramified; and

(it) trf : SK1(S[G]) ' SK1(R[G]) (the transfer) is an

isomorphism if E/F is unramified.

Proof Note first that for any finite extension E of Qp, there is

a unique subfield F C E such that F/Qp is unramified and E/F is

totally ramified. To see this, let p C S C E be the maximal ideal and

ring of integers, and set m =
I(S/p)*I.

Let
um

be the group of m-th

roots of unity in E, and set F = Qp(µm) C E and R = 2p[µm]. By

Theorem 1.10, F/Op is unramified, and R C F is the ring of integers.

Also, E/F is totally ramified since IR/pRI = IS/pl = m+l.

In particular, this shows that it suffices to prove (i) and (ii)

under the assumption that F is unramified over Qp. If E is also

unramified, then the following triangle commutes by the description of

OSG and ORG in Proposition 8.4:

SK1(S[G])
trf)

SK1(R[G])

OSG - ORG
H2(G)1 -2b(G).
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So the transfer is an isomorphism in this case.

Now assume that E/F is totally ramified (and F/& is unramified).

Let p C S be the maximal ideal. Then

Ker[i*: SK1(R[G]) -+ SK1(S[G])]

Ker[SK1(R[G]) -' K1(R/p[G]) = K1(S/p[G])]

C torspIm[K1(R[G],p) -4 K1(R[G])].

Using the logarithm homomorphism log: K1(R[G],p) -9 HO(G;pR[G]) of

Theorem 2.8, one checks easily that K1(R[G],p) is p-torsion free if

is odd, and that the only torsion is {t1) if p = 2.

p

Thus, in either case, i* is injective. The surjectivity of i* is

now shown by induction on IGI, using Theorem 7.1 again. For details,

see Oliver [2, Proposition 15]. o

We end the section by showing that the isomorphisms 0RG are

natural, not only with respect to group homomorphisms, but also with

respect to transfer homomorphisms induced by inclusions of p-groups.

Proposition 8.8 Let R be the ring of integers in any finite

extension of
P.

Then for any pair H C G of p-groups, the square

SK1(R[G]) 0G H2(G)/ b(G)

trfSK ItrfH

SK1(R[H])

commutes. Here, trfSK and trfH are induced by the usual transfer

homomorphisms for K1 and H2, respectively.
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Proof By Theorem 8.7, it suffices to show this when R = Zp. Using

Lemma 8.3(11), choose an extension

1 -K-1G-c-+ G- 1, H=a 1(H), ao =alH

of p-groups, such that K C 2(H) and H2(ao) = 0. Then Sao: H2(H) '- K

is injective, and SK1(2 p[ao]) = 1 by Theorem 8.6. By the description of

0 in Proposition 8.4, it will suffice to show that the following squares

all commute:

SK1(2p[G]) ` 3 K1(2p[G]) ' K1(2p[G]) G , HO(G;$p[G])

trf
SK

1

(1) trfK (2) trfj (3) ResH

ao r

SKI(2p[H]) ` ' Kl(gp[H]) t
*

K1(Lp[H]) -H) HO(H; p[H])

HO(G;Ia) a K/([g,h] E K: g,h E G) H2(G) 2b (G)

IResH
NG/H (5)

so
HO(H;Iao)

ao
' K/([g,h] E K: g,h E H) H2(

Here, ResH is the homomorphism of Theorem 6.8;

NO (G;Ia) = Ker[HO(G;Zp[G]) -" HO(G;ap[G])]I

r

wa(I ri(1-a.)gi) = [Iaii

trfH

(ri E Zp, ai E K, gi E G),
p

(and similarly for HO(H;Iao) and w ); and N is the norm map for
ao

.1H

the conjugation action of G/H on K. The commutativity of (1) and (2)

is clear, (3) commutes by Theorem 6.8, and (4) by definition of Res

The commutativity of (5) follows since trfH splits as a composite
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H2(G) ) H2(G;7L(G/H)) --- H2(H)

(see Brown [1, Section 111.9]); and similarly for NG/H . Here, f1 and

f2 are induced by the inclusions il,i2: 7L 7L(G/H), where il(l) _

IgEG/fig
and i2(1) = 1 (note that i2 is only 7[H]-linear). n

Sc. Examples

It turns out that H2(G) need not be computed completely in order to

describe H2(G)/1 b(G) = SK1(7Lp[G]). In practice, the following formula

provides the easiest way to make computations and to construct examples.

Lemma 8.9 Fix a central extension 1 -* K -4 G G 1 of

p-groups, and define

A(G) = {g-h E H2(G) : g,h E G, gh = hg} C H2(G)

(a subset of H2(G)). Let Sa: H2(G) -+ K be the boundary map in the

5-term homology exact sequence (Theorem 8.2). Then, if R is the ring of

integers in any finite extension of

SK1(R[G]) = H2(G)/H2b(G) = Ker(Sa)/(A(G) fl Ker(Sa)).

In particular, SK1(R[G]) = 1 if H2(a) = 0.

Proof Consider again the 6-term homology exact sequence for a

central extension (Theorem 8.2):

a
K ® Gab

H2(G) H a H2 (G) S K GabI Gab 1.

Here, T(x®g) = x^g E H2b(G) for any x E K and any g E G. So

Ker(H2(a)) C H2b(G). Furthermore,
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H2(a)(H2b(G)) = (g-h E H2(G) : g,h lift to commuting elements in G)

= (A(G) fl Ker(ba));

and the result follows. o

As a first, simple application of Lemma 8.9, we note the following

conditions for SK1(2 p[G]) to vanish.

Theorem 8.10 Let R be the ring of integers in any finite extension

of Q. Then SK1(R[G]) = 1 if c is a p-group satifying any of the

following conditions:

(t) there exists H a G such that H is abeltan and G/H is

cyclic, or

(it) [G,G] is central and cyclic, or

(itt) G/Z(G) is abeltan of rank < 3.

Proof See Corollary 7.2 and Oliver [2, Proposition 23]. a

The smallest p-groups G with SK1(lLp[G]) A 1 have order 64 if

p = 2, or p5 if p is odd (see Oliver [2, Proposition 24]). The

following examples are larger, but are easier to describe.

Example 8.11 Fix n > 1, and set

G = (a,b,c,d : [G,[G,C]] = 1 = apn = bpn =
cpn

= dpn = [a,b][c,d]).

Then SK1(2p[C]) = z/p.

Proof By construction, G sits in a central extension

1 (Cpn)5 G , Gab = (Cpn)4 _ 1;
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where ba: H2(Gab) --> (C Pn)5 is surjective with kernel

Ker(Sa) = (a^b + c^d) = 7/pn.

Then A(Gab)f1Ker(ba) = 1, in the notation of Lemma 8.9, and the result

follows. O

Recall that for any G and n, GZCn denotes the wreath product

Gn M Cn. The next proposition describes how H2((;)/b(G) and SK1(2p[G])

act with respect to products and wreath products.

Proposition 8.12 For any finite groups G and H, and any n> 1,

H2(G x H) b(G x H) = H2(G)/-ab(G) 0 H2(H)/112b(H), and

H2(G2 Cn) = H2(G)/H2b(G)

In particular, if R is the ring of integers in any finite extension of

and if G and H are p-groups, then

SK1(R[G x H]) = SK1(R[G]) ® SK1(R[H]) and SK1(R[GZCp]) = SK1(R[G]).

Also, SK1(R[G]) = 1 if C is a p-Sylow subgroup in any symmetric group.

Proof See Oliver [2, Proposition 25]. The only point that is at all

complicated is that involving G2 n.

For 1 < i <n, let f; : G ---> C Cn be the inclusion into the i-th

factor of CP. Fix x E (G2Cn)'Gn such that xn = 1, and such that

x(91,....gn)x 1 = (g2,...,gn+g1) (for all (g,,...,gn) E GP).

Define

T = (fi(g)^f;(h) : g,h E G, i0J) 9 H2"(G2 n)
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A straightforward argument using the Hochschild-Serre spectral sequence

(see Brown [1, Theorem VII.6.3]) shows that f1 induces an isomorphism

fl* : H2((;) H2(GZCn)/T.

Then H2b(GZCn)/T is generated by fl*(H2b(G)) (i. e., elements g-h

for commuting g,h E Gn); as well as all gx^h for g,h E Gn such that

[gx,h] = 1. For elements of the last type, if g = and

h = then a direct computation shows that

gx"h = fl*((g,...g,)^h1) E fl*(H2b(G));

and so fl* induces an isomorphism H2(G)/H2b(G) = H2(G'Cn) b(G2 n).

By Theorem 7.1, if 1 -> (z) --> G a G -- 1 is any central
extension of p-groups such that Izi = p, then

Ker(SK1(2 pa)) = (Exp((1-z)(g-h)):
g,hE0`\).

(ft = {gEG: g conj. zg})

Also, for a n y r E 2p, [Exp(r(l-z)(g-h))] depends only on r (mod p2p),

and on the classes of g and h modulo a certain equivalence relation ti

in (1. It is natural now to check where these elements are sent under the

isomorphism EG. This is done in following theorem, which describes one

case where elements in SK1(2 p[G]) can be constructed or detected

directly (in contrast to the very indirect definition of 6G in

Proposition 8.4).

Theorem 8.13 Fix a p-group C and a central commutator z E G of

order p, and let a: C - C/z denote the projection. Let R be the

ring of integers in any finite extension of Qp, let p g R be the

maximal ideal, and let a: R[C] -s ffp[G/z] be the epimorphism induced

by a and by r: R -» R/p
Tr»

Fp. Set

0 = {gEG : g conjugate to zg} = {gEG : [g,h] = z, some h E G}.
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Define functions

Wp(n/z) 0 H2(G/z)/(Ker(ba) fl A(C/z)) < * { H2(G)/H2b(G)

where X(g) = a(g)-a(h) for any g,h E 0 such that [g,h] = z; and

where a* is induced by H2(a) (an injection by Lemma 8.9). Then for

any [u] = [1 + (1-z)f] E Ker(SK1(Ra)), if we set Log(u) = (1-z)D, then

a(n) = a(g - fp) E Fp(fl/z) and

-KG([u]) = a*1 o X(a(ii)) = a*1 o X(a(I; -Ep))-

Proof See Oliver [2, Proposition 26]. Note that if - is the

equivalence relation defined in Theorem 7.1, then X factors through

1p(0/-). This then gives a new interpretation of the inequality

rk,,(Ker(SK1(Ra))) In/-I-1

of Theorem 7.1. 0
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We now turn to the problem of describing C11(Z[G]), when G is a

p-group and p is any prime. This question is completely answered for

odd p in Theorem 9.5, and partly answered in the case of 2-groups in
Theorem 9.6. Conjecture 9.7 then suggests results which would go further

towards describing the structure of Cll(Z[G]) (and SK1(Z[G])) in the

2-group case. Some examples of computations of Cll(Z[G]) are given at

the end of the chapter, in Examples 9.8 and 9.9.

All of these results are based on the localization sequence

K2(Zp[C]) > Cp(Q[G]) - G ' Cll(Z[G]) -' 1

of Theorem 3.15. The group Cp(I[G]) has already been described in

two remaining problems to solve beforeTheorem 4.13. So there are

Cll(Z[G]) can

and

be computed:

a simple

in C(D[G]). The first

a set of generators must be found for

algorithm is needed for describing their

problem is

images

solved (in part) in Proposition 9.4,

and the second in Proposition 9.3.

If l[G] = ni=1A where the Ai

])k=lCC(Ai), and the Cp(A,) have been

unity in Z(A.). The following theorem

are simple, then Cp(D[G]) =

described in terms of roots of

helps to make this more explicit,

by listing all of the possible "representation types" which can occur in a

group ring of a p-group: i. e., all of the isomorphism types of simple

summands. As usual, when p is fixed, then fn (any n2 0) denotes the

root of unity fn = exp(2ai/pn) E C.

Theorem 9.1 Fix a prime p and a p-group C, and let A be any

simple summand of @[G]. If p is odd, then A is isomorphic to a
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matrix algebra over Q(fn) For some n > 0; and K2(Ap)(p) = (fn)

Cp(A). If p = 2, then A is a matrix algebra over one of the division

algebras D in the following table:

D KZ(A2) C(A) = C2(A)

Q {fl} 1

Q(fn) (n > 2)
(f n)

(fn)

Q(fn+fn-l ) (n>_ 3) {fl} 1

Q(fnfnl) (n > 3) {fl} {fl}

Q(fn, j) (S Di) (n > 2) {fl} {fl}

Proof See Roquette [1]. In Section 2 of [1], Roquette shows that

the division algebra for any irreducible representation of G is

isomorphic to that of a primitive, faithful representation of some

subquotient of G; and in Section 3 he shows that the only p-groups with

primitive faithful representations are the cyclic groups; and (if p = 2)

the dihedral, quaternion, and semidihedral groups. For each such G,

Q[G] has a unique faithful summand A, given by the following table:

G

A Q(fn)

D(2n+1)

M2(Q(fn+fn1) )

Q(2n+1)

Q(fn, j)

SD(2n+1)

M2(Q(fnfnl) )

The computations of K2(Ap) and Cp(A) follow immediately from Theorems

4.11 and 4.13. a

We next turn to the problem of describing ,p({g,u}) E Cp(Q[G]), for

certain Steinberg symbols {g,u} E K2(2p[G]). The homology group

H1(G;Z[G]), where G acts on 7L[G] via conjugation, provides a useful

bookkeeping device for doing this. Note that for any G, if g1,...,gk

are conjugacy class representatives for elements of C, then

k k
H1(C;7L[G]) = ®Hl(CG(gi))®Z(g=) = ®CG(g;)ab ®Z(gi)

i=1 i=1



CHAPTER 9. C11(71[G]) FOR P-GROUPS 207

In particular, H1(G;Z[C]) is generated by elements g@ h, for commuting

g,h E G.

Let

o(; : Cp(ID[G]) I (P{ )p
iEI '

be the isomorphism of Theorem 4.13: where @[G] = fi=1Ai, Ki = Z(A1),

and I C {1,...,k} is an appropriate subset.

Definition 9.2 Fix a prime p and a p-group G, and define a

homomorphtsm

yG : H1(G;Z[G]) = H1(G;2 p[G]) 0 Cp(ID[G])

as follows. Write (Q[G] _ Hk
Ai,

where each A. is simple with

irreducible module V. and center K Let I C {1,...,k} be the set of

all i such that CC(A.) X 1; i. e., such that Di = EndAi (V,) !9 R. For

each i E I, set

2r-1+1 if p = 2 and Ki
= Q(Er)

ei

1 otherwise.

Then, for any commuting pair g,h E C, set

,PG(g ®h) = a l((detK (g,Vh)E'/iEI/ E Cp(tD[G]). (Vi = {x E Vi: hx = x})

Note in particular the form taken by PG when C is abelian. Fix

such a G, write Q[G] = [Ik 1Ki where the K1 are fields, and let

Xi: G - *
PKi

be the corresponding character. Let ei be defined as in

Definition 9.2, and set I = {i: K. ¢ IR}. Then

aGo4G(g®h) = (yi(g®h))iEI E II

(PK:)piEI
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r Xi(g)6' if Xi(h) = 1
where yi (g ®h) _ {l

1 if Xi(h) # 1.

When p is odd, the yG are easily seen to be natural with respect

to homomorphisms between p-groups. This is not the case for 2-groups:

naturality fails even for the inclusion C2 '- C4.

We now focus attention on certain Steinberg symbols in K2(2p[G]):

symbols of the form {g,u} where g E G and u E ( [ (g)])*P CG (i. e.,

each term in u commutes with g). The next proposition describes how

yG is used to compute the images in C(@[G]) of the {g,u}. Afterwards,

Proposition 9.4 will show that when p is odd, Im(8C) is generated by

the images of such symbols.

Proposition 9.3 Fix a prime p and a p-group C. If p = 2, then

let All ...'A1 be the distinct quaterntonic simple summands of Q[G];

t. e., those simple summands which are matrix algebras over ID(fm,j) for

some m. Define Cp(@[G]) C Cp(O[G]) by setting

11 if p is odd

Cp(Q[C]) = 2

Hi=lCp(Ai) if p = 2.

Then, for any g E G, any H C C such that [g,H] = 1, and any

u E (Zp[H])*,

tiPG({g'u}) = 'PG(g ®rH(u)) (mod Cp(Q[G]))

Proof This is a direct application of the symbol formulas of Artin

and Hasse (see Theorem 4.7(11)).

Fix a simple summand A of D[G], let X: @[G] -> A be the

projection, and let V be the irreducible A-module. Let K = Z(A) be

the center, and assume that K has no real imbeddings. In other words,

K = Q(fr) (pr > 2) or Q(fr frl) (p =2, r Z 3) ; where fr = exp(2ai/pr)

as usual. Let
"A

and
'PA

denote the composites
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fA : K (Zp[G]) CC(Q[G])

C1
p(A), and

'PA : H1(G;Z[G]) -±G-. Cp(l[G])
Cps

p(A).

We must show that PA({g,u}) = PA(g or H(u)) for any g,u as above.

Set pn = exp(G), and let L = K(fn) = Q(fn). Define

EK =

1 if p > 2, or p=2 and K5--= @(f

1 1+2r-1 if p = 2 and K = @(f ) (r 2)

209

and similarly for EL. Set W = L ®K V, and let E (fn) be the

distinct eigenvalues of g on W. Write W = W1 ®... ®Wm, where Wj is

the eigenspace for nj. Then, for each h E H C CG(g), the action of h

on W leaves each Wj invariant.

Write

k k
Log(u) _ aihi, F(u) _ ai(hi -

i=1 i=1

Then by definition of y,

j=1

where aA: Cp(A) WK is the norm residue symbol isomorphism, and where

for each j,

T. =
k
k ai.[dimL((W.)hi) -

i i=1

1 ) (r 3)r-fr

(hi E H, ai E 4P)

CA0'A(g®rH(u)) _ fl (1)T'EK, (1)

(2)

Note that Ti E 2 for all j, since r1(u) E 2 [H] (modulo conjugacy).

L
denote the compositeNow let ,pA
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10
SPA : K2(Zp[G]) - p(A) -'' Cp(L®KA).

Then

aL®Ao*A({g,u}) = ll (Tij,detL(u,Wj))L.
j=1

The Artin-Hasse formula (Theorem 4.7(11)) takes here the form

°L®A°'PA((g,u)) = fl (T)j)S'E`'(3)
j=1

where for each j,

Si =

k k
= (4)

Here, Trj: EndL(Wi) - L is the trace map, and (h) is the character

(in L) of h on W..

For each C E (pL)p = (gn),

1-p if c=1
(c) _ - P if Ici = p

10 if ICI p2.

In particular, for each j and each h E CG(g),

Substituting this into (4) and comparing with (2) now gives

k
S. _ T..
i i_1
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Now consider the diagram

K2( p[G]) ' Cp(A) A -' (PK)p Cp(K)

I

10

(5a) It, (5b) incl (5)

1

UT

CP(L OK A) (90p E Cp(L).

Here, (5a+5b) commutes by Proposition 4.8(11), and so there is a

homomorphism c which makes each square commute. By (1) and (3),

UAOPA({g,u}) = II
(nj)TJeK and coaAo i (g®rH(u)) = II (Rj)SJeL

j=1 j=1

and S. = I. for all J. So the relation PA({g,u})
=
sA(g ®FH(u)) will

follow, once we show that i(c ) = TEL for any E (µK) P.b

It suffices to do this when [L:K] = p; i. e., when L = @(fn), and

K = O(fn-l) or Q(fnfnl). Consider the following diagram:

CP(L) -L
CP(K)

incl, Cp(L)

°L = °K °L

(µL)P (li)p l (11L)p;

where T(fn) = (fn)q if q = [(µL)P:(1K)P]. The left-hand square

commutes by Theorem 4.6. The composite inclo trf is induced by the

(L,L)-bimodule L ®K L (see Proposition 1.18), and is hence the norm

homomorphism for the action of Gal(L/K). If K then

1(fn-1)EK = LOT(fn)6K =
(pII1(fn)1+1p°")EK

= ((En)
e6)P+(Pi)Pf"1

i=-0

- (f n1 - fn-1 - (fn-1)EL
if p is odd

=
(fn)(l+2^"2)(2+2^"1)

= fn-i = if p = 2.
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If, on the other hand, K = l(En fnl), then e< = 1,

1(-I) Eg = LOT(En) = (fin)'(-fnl) _ -1 = (-1)

and this finishes the proof. 13

The remaining problem is to determine to what extent K2(!p[C]) is

generated by symbols {g,u} of the type dealt with in Proposition 9.3.

When G is abelian, then by Corollary 3.4, K2(p[G]) is generated by

such symbols (and {-1,-1} if p = 2). The next proposition gives some

partial answers to this in the nonabelian case. Recall that for any ring

R and any ideal I C R, we have defined K2(R,I) = Ker[K2(R) -+ K2(R/I)]

(and similarly for K2).

Proposition 9.4 Fix a prime p and a p-group G, and let R be

the ring of integers in some Finite unramifted extension F 2 %. Then

(i) For any central element z E Z(G),

\
K2(R[G],(l-z)R[G]) = ({g,l-r(1-z)ih} : g,h E G, gh = hg, r E R, i > 1).

(it) For any H a G such that Hfl[G,G] = 1, if a: G --b G/H

denotes the projection, and if Ia = Ker[[p[G] --v 2p[G/H]]1 then

K2(Ip[G],Ia) = ({g,l-r(1-z)h} : g,h E G, gh = hg, r E R, z E H).

(tit) If p is odd, then

K2(R[G])+ = ({g,u} : g E G, u E
K,(R[CG(g)])+\.

Here, K2(R[G])+ is the group of elements in K2(R[G]) fixed under the

standard involution.
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Proof The most important result here is the first point; all of the

others are easy consequences of that. The main idea when finding

generators for K2(R[G],(1-z)R[G]) is to construct a filtration

(1-z)R[C] = IO 2 I1 I2 2 ...,

W
where flk=llk = 0; and such that for each k, Corollary 3.4 applies to

give generators for K2(2p[G]/Ik,Ik_l/Ik). These generators are then

lifted in several stages to K2(2p[C]). The exact sequences for pairs of

ideals are used to show at each stage that all elements which can be

lifted are products of liftable Steinberg symbols; and that the given

symbols are the only ones which survive. The complete proof is given in

Oliver [7, Theorem 1.4].

(ii) If H a G and Hfl[G,G] = 1, then a pair of elements g,h E G

commutes in G if and only if it commutes in G/H. Hence, if

1 =HOCH1 C ... CHk=H

is any sequence such that H. a G and IHiI = pi for all i; then all

of the symbol generators given by (i) for each group

Ker[K2(2p[G/Hi]) - 2($p[i+l])J

lift to symbols in K2(ap[G]).

(iii) Now assume p is odd. For each h E G and each r E R,

define u(rh) E K1(R[(h)])+ such that T(h)(u(rh)) = 1) (see

Theorem 6.6). Note that this element is unique, since is

torsion free by Theorem 7.3.

Recall the formula for the action of the standard involution on a
symbol in Lemma 5.10(1). In particular, {g,u) = {g,u} for any commuting

g E G and u E (R[G]) *. So {g,u(rh)} E K2(R[G])+ for any commuting

g,h E G, and the homomorphism
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AG : H1(G;R[G]+) ) K2(R[G])+,

defined by setting Ay G(g 2
) = {g,u(rh)} for any commuting g,h E G

a n d a n y r E R, is uniquely defined and natural in G.

We claim that AG is surjective. This is clear if C = 1: K2 (R) _

1 since µp ¢ R. If IGI > 1, then fix a central element z E Z(C) of

order p, set G = G/z, and assume inductively that AG is onto. Set

Iz = (1-z)R[G], and consider the following diagram:

a
H1(G;R[G]+) ) H1(G;R[G]+) H + HO(G;Iz)

led
(la) IG (lb) L(1)

ti a

K2(R[G],Iz)+ -) K2(R[G])+ -- K2(R[G])+ K1(R[G],Iz)

where L is the logarithm homomorphism constructed in Theorem 2.8

((Izp) C Piz). Square (la) commutes by the naturality of A. The bottom

row is part of the relative exact sequence for the ideal Iz (see Theorem

1.13). The upper row is part of the homology sequence induced by the

conjugation G-action on the short exact sequence

0 1z R[G] --) R[G] -> 0

(and note that H1(G;R[G]) surjects onto Hl(a;R[G])).

To see that square (lb) commutes, fix any commuting

together with liftings g,h E G. Then, for any r E R.

LoaKoee(g 0 LoaK({g,u(rh)}) = Log([g,u(rh)]).

Set H = (z,h), an abelian group. Then, in (1-z)R[H],

Log([g,u(rh)]) = 1) - Log(u(rh))

g,h E a

= 1 - Log(u(rh))
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(1 - 1 - Log(u(rh))) l-zp = 0)

= l - F(u(rh))

=
.g l - r.h+2-1

= 6.(g ®
r.h+21).

The surjectivity of AG now follows from the commutativity of (1),

together with the fact that K2(R[G],Iz)+ C Im(OC) (by (1)). 13

The proof of Proposition 9.4(i) can also be adapted to show that for

any prime p, any p-group G, and any i> 1,

J ({g,l+plh} : g,hEG, gh=hg) if p'>2
K2(Zp[G],p i ) = 1

l {g,1-2h} : g,hEG, gh=hg) if pi=2.

The description of C11(Z[C]) when C is an odd p-group is now

immediate.

Theorem 9.5 For any odd prime p and any p-group G, the sequence

H1(G,Z[G]) G Cp(Q[G]) ) C11(Z[G]) - 1

is exact. In other words, if D[G] = Rk=1Ai, where each A. is simple

with center Ki, then

k
C11(Z[G]) = Coker[oGoyG : H1(G;Z[G]) (}1Ki)p]

i=1

k

[111 (UKI)p]/(UGo'G( h) : g,h E G, gh = hg).

Proof Consider the localization sequence

K2(Zp[G]) G Cp(l[G]) G + CI1(Z[G]) - 1
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of Theorem 3.15. By Proposition 5.11(1),
vG

and aG both commute with

the standard involution, and P(@[G]) is fixed by the involution by

Theorem 5.12. Hence

Im(cC) = V,(y( p[G])+

= (v,({g,u)) : g E G, u E K1(2 p[CC(g)])+) (Prop. 9.4(i1i))

= ($G(X) : g E G, x E r(K1(2 p[CG(g)])+)) (Prop. 9.3)

= 1G(Hi(G; p[G]+)). (Theorem 6.6)

But 4i(g®h) = JG(g®h 1) by definition, and so Im(f.) = Im(SPG). 0

Note in particular that by Theorem 9.5, for any odd prime p and any

p-group G, the kernel of 8G: Cp(f[G]) -» C11(Z[G]) is generated by

elements which come from rank 2 abelian subgroups of G. In other words,

if 4 denotes the set of rank 2 abelian subgroups H C G, then there is

a pushout square

® C (Q[H]) s ® Cl (Z[H])
HEdp H" 1

1 1

Cp(D[G]) s Cll(Z[G])

If, furthermore, C11(Z[H]) = 1 for all H E A (and by Example 9.8 below

this is the case whenever Cpl x Cpl ¢ G), then

C11(Z[G]) = Coker[ Cp(D[H]) Cp(Q[G])].

In the case of 2-groups, the situation is more complicated. The

following theorem gives an algorithm which completely describes C11(Z[G])

when G is abelian, but which only gives a lower bound in the nonabelian

case.
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Theorem 9.6 Fix a 2-group G, and set

X = (2g, (1-g)(1-h): g,h E G) C Z[G].

Write [Gab] = ni-1Ki where the Ki are fields, set

9 = (1Si5k : Ki ¢IR) = {1SiSk : Ki *Q};
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and f or each i let ki: G - ("K )2 be the character induced by

projection. Then if G is abelian, the sequence

C ox ' C('U[G]) ) C11(Z[G]) ----> 1

is exact; and so

SK1(Z[G]) = Cl1(Z[G]) - [
iE9

"K` .]/(cGo+C(g®x): g E G, x E X).

Otherwise, 8G induces a surjection

C11(Z[G]) » Coker[H1(C;Z[G]) G' C(@[G]) proj- C(D[Cb])]

Coker[cub o* : Hl(G;Z[G]) - iII'K]

Proof If G is abelian, then by Corollary 3.4, applied to the

augmentation ideal I = (g-1: g E G) C Z2[G],

K2(1[G]) = K2( ) ® K(22[G],I) 6 ({g,u} : g E G, u E 1+I).

Also, by Theorem 6.6, since (1-g)+ (1-h)=(1-gh) (mod I2) for g,h E G.

r(1+I) = Ker[w: HO(G;I) -, Gab, = { aigi: Iai = 0, fgi` = 4 = I2

*C aG

Hence, by Proposition 9.3,
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Im[,pG: K2(Z2[G]) -0 C(Q[G] )] = (J+G(g ®r(u)) : g E G, U E I+I) = +G(G 0 12).

The relations PG(g ®g) = 1 and PG(g ®h) = PG(g O h 1) show that

*G(G® I2) = 4G(G®X); and hence that

Cll(7[G]) = Coker(,pG) = C(l[G])Iq'G(G®X) = [ n (l . )]Ia o\G(G®X).
iE9 `

If G is nonabelian, let a: G -' Gab denote the projection, and

set Ia = Ker(22[G] 7L2[Cab]). Consider the following homomorphisms:

K(a)l K2(7L2[Gab] ) a K1(g2[G] , Ia)

I

r

HH1(Gab;22[Gab]) HO(GIa)

Both rows are exact, and ra is the homomorphism of Theorem 6.9. For any

g E Gab and u E 22[Gab], and any liftings to g E G and u E 22[G],

ra(aa({g,u})) = ra(Lg,u])

1 - rG(u) (by definition of Ia

= %(g®r(u)).

Hence, for any x E q(2 2[G])' if we write

k
K2(a)(x) = {-1,-1}r ll {gi,ui} (gi E Gab, ui E

i=1

(using Corollary 3.4), then

k k
aH( g®r(ui)) = ra oaa(ll {gi,ui}) = ra as K2(a)(x) = 1.

i=1 i=1
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In other words,

k
wO b(K2(a)(x)) _

E *dab(Ker(aH)) = C(a)opp(H1(G;Z2[G]))

So there is a surjection
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(Proposition 9.3)

C11(Z[G]) --s Coker[K2(22[G]) -C) C2(Q[G]) C a C2(D[Cab])]

and this finishes the proof. o

Recall Conjecture 6.13: that for any p-group G, there should be an

exact sequence

H3(G) -) W2(Zp[G])
r2

Hl(G;Zp[G])/(g®g) H2(G),

which is natural with respect to group homomorphisms. This would still

not be enough to give a general formula for C11(Z[G]) in the 2-group

case (for reasons discussed below), but it does at least suggest the

following approximation formula:

Conjecture 9.7 Fix a 2-group G, and write Q[G] = nk=1Ai, where

each Ai is a matrix algebra over a division algebra Di with center

Ki. Set

9={i : D1gIR} and $=(i :K1¢IR)

(so i E 1-1 if and only if D. is a quaternion algebra). Define
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C2(I[GJ) _ 11 C2(Ai) S C2(QLGJ); C1Q(z[C]) = aG(C2(QCGJ)) S C11(Z[C]);
iEl-$

and let

H1(G;Z[GJ) G > C2(RCGJ)/C2(QLGJ) G - C11(z[G])/Cll(Z[GJ)

be the homomorphisms induced by yG and 8G, respectively. Then there

are homomorphisms

gab: Uab(G)
--> C11(Z[G])/ClQ(Z[G]), 9: H2(G) -p SK1(Z[G])/C1Q(Z[G]),

such that the following are pushout squares:

H1(G;Z[C])
W2 _ vab G . r

H ( )

a'
G

C2(Q[G])/C2(Q[G]) Cl1(Z[G])/Cl1(Z[G])

2( )

19ab

1®
-> SK1(Z[G])/C1Q(Z[G]).

To see the connection between Conjectures 9.7 and 6.13, assume that

Conjecture 6.13 holds, and consider the following diagram:

Kj(Z2CGJ)
r2 ) H1(G;z2[G])/(g®g) 02 b(G) -> 0

=lid I

bI G
161

(22CGJ) G C2(Q[G])/C2(D[G]) G C11(z[GJ)/C1Q(Z[C]) . 1.

Both rows are exact; and the left-hand square computes on symbols {g,u},

when u E (22[CG(g)])*, by Proposition 9.3 (note that r2({g,u}) =

go r(u)). If r2 is also natural with respect to transfer homomorphisms

(see Oliver [6, Conjecture 5.1] for details), then the relation

pG = +G o r2
can be reduced to the case where G is cyclic or

semidihedral; and this is easily checked. The first part of the

conjecture would then follow immediately.

llpG

The second part of the conjecture (the existence of 6 defined on
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H2(G)) is motivated partly by the isomorphism

SK1(Z[G])/C11(Z[G]) = H2(G)/H2b(G)

of Theorem 8.6; and partly by the existence of homomorphisms

H2(G) --) Lp(Z[G]) E- H1(Zl2;SK1(Z[G]))

221

defined via surgery. There is some reason to think that this surgery

defined map can be used to show that Aab, at least, is well defined.

This conjecture seems at present to be the best chance for getting

information about the extension

1 - 1 Cll(Z[G]) - SK1(Z[G]) -'' SKi(2[G]) -' 1

when G is a 2-group. In fact, if the conjecture can be proven, it

should then be easy to construct examples of G where this extension does

not split. In contrast, it will be shown in Section 13c that this

extension always splits when G is a p-group and p is odd.

There seems to be no obvious conjecture which

C11(Z[C]) or SK1(Z[G]) completely. The problem

quaternionic components in the above diagram is that when

for example, the element x = (a2,r-1(l+a+b+ab)) E

property that r2(x)= 0, but pG(x)#l.

There are, however, some other cases which can

present techniques. For example, if G is a 2-group

central and cyclic, then K2($2[G]) can be shown

would describe

with including

G= (a,b) =Q(8),
K2 (22[G]) has the

be handled with the
such that [G,G] is

to be generated by

{-1,-1}, and symbols {g,u} for g E G and u E (I2[CC(g)])*. Using

this, the image of K2(7L2[C]) in C2(Q[G]) can be described - in

principal, at least - also when @[G] contains quaternionic components.

Another class of nonabelian 2-groups for which C11(Z[G]) can be

computed using Proposition 9.4 is that of products G x H, where H is

abelian and C11(Z[G]) is already known. Fix such G and H, and set
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I = Ker[Z[G x H] --4 Z[G]] and IQ = Ker[@[G x H] - + @[G]].

Then

C11(Z[G x H]) = C11(Z[G]) 0 Cl1(Z[C x H], I);

and using Proposition 9.4(11):

C11(Z[G x H], I) = Coker[K2(Z2[G x H],I2) -+ C(R[G x

C(@[GxH],IQ)/(v0({g,l+(1-z)h}): zEH, g,hEGxH, gh=hg).

A special case of this will be shown in Example 9.10 below.

We now look at some more specific examples of computations. The case

of abelian p-groups will first be considered.

It will sometimes be convenient to describe elements in C(I[G])

using the epimorphism $G: RC(G) )1 C(ID[G]) of Section 5b - or rather

its projection fG'p: RC(G) p(@[G]) to p-torsion. Recall the

description of G (but adapted to
G,P)

given in Lemma 5.9(11). For

any irreducible C[G]-representation V, let A be the unique simple

summand of Q[C], and let a: K = Z(A) '-1 C be the unique embedding,

such that V is the irreducible C @ K A-module. Then $G,P([V]) E Cp(A).

If CP(A) 1, if GA: Cp(A) (})p is the norm residue symbol

isomorphism, and if pn = I( )}
P

then

$G,P([V]) = aAloa 1(En) E CP(A). (fn = exp(2ni/Pn))

Example 9.8 Ftx any prime p. Then

(t) SK1(Z[CPn x CP]) = 1 for any n 2 0, and

(it) SK1(Z[CP2 X CP2]) -
(Z/p)P-1.
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Proof The two computations will be carried out separately. To

simplify the notation, the groups Cp(D[G]) are written additively here.

Step 1 For each n, write G = C n x C = (g,h), where

and IhI = p. We identify

n p p

Gn-1 = n/(gp- n-1)

Igl = pn

for each n. Then

SK1(Z[Go]) = 1 by Theorem 5.6. Also, if p = 2, then SK1(Z[Gi]) = 1

by Theorem 5.4 (C('D[G1]) = C(Q[C2xC2]) = 1). If p is odd, then

Cp(Q[Gi]) = (Z/p)p1 is easily seen to be generated by the elements

,P(h®ghi) (OS i Sp-l) and P(g®h).

Now fix n Z 2, and assume inductively that SK1(Z[n-1]) = 1. Set

(2a, (1-a)(1-b): a,b E G) Z[G if p = 2
X =

Z[G ] if p isn odd;

so that SK1(Z[Gn]) = Cp(D[Gn])/y(Gn®X) by Theorem 9.5 or 9.6. Write

@[Gn] = Q[Gn-1] x A, where A is the product of those simple summands

upon which g acts with order pn. For each r = 0,...,p-1, let Vr

denote the C[Gn]-representation with character XV,(g) _fin, )(V, (h) =
1

n-1
_ (En)rp (En = exp(2wi/pn)). Then CP(A) is generated by the

elements f(Vr), each of which has order pn.

Since SK1(Z[n-1]) = 1, we have

CC(Q[Gn]) = (Cp(A), *(Gn ®X))

Also, a direct computation shows that for each O S r p-1,

(1)
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'plg ®
(PZlgipn-2)(1 + (p-1)g rpn-1h

- Plgipn_t))
1-0 i-0

E
Y((p-l)-Vr) + P Cp(I[Gn-1])

if p is odd

-1]) if p = 2.nr

Together with (1), this shows that for each r, there is some 'q r E Gn ® X

such that

y(11r) E 3'(Vr) +

The elements y(,qr) then generate Cp(A). Together with (1), this shows

that y is onto, and hence that SK1(Z[Gn]) = 1.

Step 2 The proof that SK1(7[C4xC4]) = 1/2 is very similar to the

proof of Example 5.1, and we leave this as an exercise. So assume p is

odd. Write C = Cpl x Cpl for short, fix generators g,h E G, and set H

_ (gp,hp).

Let 1 and 512 denote the sets of irreducible C[G]-representa-

tions upon which C acts with order p and p2, respectively. Define

a . "2 - "1

by letting a(V), for any V E 312, be the representation whose character

satisfies
Xa(V) = ()(V)p.

Then by Definition 9.2, for any generating pair

a,b E C, p(a®b) = g(V O a(V)), where V E
2

is the unique representa-

tion such that XV(a) = f2 and XV(b) = 1.

Now define an epimorphism

p : Cp(@[G]) s p(Q[G/H]) = Cp(Q[ pxCp]) t--
(Z/p)p+l

by setting (V) for V E1; p(g(V)) = 4(a(V)) for V E2.
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We have just seen that Ker(13) C y(C ®Z[G]); and that poy(a®b) = 1 if

(a,b) = G. Also, /3oy(a®b) = 1 if a E H (since Cp(@[G/H]) has

exponent p); and j3oy(a®b) = (3oy(a®1) if b E H. Since y(a®a) = 1
for all a, it now follows that

SK1(Z[G]) = Cp(@[G/H])/(Roy(S®l), P-,P(hOl)) =
(Z/P)P-1.

O

Some more complicated examples of computations of SK1(Z[G]) for

abelian p-groups G can be found in Alperin et al [3, Section 5]. Some

of these are listed in Example 6 at the end of the introduction.

The next example illustrates some of the techniques for computing

Cll(Z[G]) for nonabelian p-groups G using Theorems 9.5 and 9.6. We

already have seen one example of this: C11(Z[G]) = 1 for any dihedral,

quaternion, or semidihedral (2-)group by Example 5.8. Note that for

groups of the same size, it is often easier to compute C11(Z[G]) when G

is nonabelian - C(@[G]) is smaller in this case, and computations can

frequently be carried out via comparison with proper subgroups H G for

which C11(Z[H]) is already known.

Example 9.9 Ftx a prime p, and let G be a nonabelian p-group.

Then C11(Z[G]) A 1, unless (possibly) p = 2 and Gab has exponent 2.

Also,

(i) SK1(Z[G]) = Cl1(Z[G]) = (Z/P)p-1 if p is odd and
jr,

= p3;

and

(it) if p = 2 and IGI = 16, then

11 if Gab . (C2) 2
SK (Z[G]) = C1 (Z[G])

1 1 Z/2 if Gab C, X C2 .

or (C2)3

Proof The proof will be split into two cases, depending on whether

p is odd or p = 2. Note first that all of the groups C in (i) and

(ii) have abelian subgroups of index p. Hence SK,(! [C]) = 1 for these
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G by Corollary 7.2, and SK1(Z[G]) = C11(Z[G]).

Case 1 Assume p is odd, and fix a nonabelian p-group G. Set

Ho = [G,G] a G. Then [G,Ho] Ho (G being nilpotent); and G/[G,Ho]

is also nonabelian. So b 0 1 in the five term homology exact sequence

H2(C) - H2(Gab) -' Ho/[G,Ho] - Gab (G/Ho)ab - 1

of Theorem 8.2. Write C/Ho = Gab = (g1) x... X(gk), where the g; are

ordered so that S(g1^g2)0 1; and let H a G be the subgroup such that

o=((gl)°+(g2)',go,.... gk)4G/Ho Then H has the property that any
commuting pair g,h E C generates a cyclic subgroup in G/H.

Now consider the composite

y
,P' : H1(G;Z[G]) G i Cp(f[G]) s Cp(D[G/H]) (1)

CP(D[CP x p]) = (Z/P)

By the construction of H, we see that Im(y') is generated by y'(g1@l)

and y'(g201) (y(a®a) = 1 for all a E G). Hence, there is a surjection

C11(Z[G]) ) Coker(*(,) a » Coker(*') = (Z/p)p-1; (2)

and C11(Z[G]) s 1.

If IGI = p3, so that H = [G,G] = Cp, then all nonabelian

C[G] -representations are induced up from proper subgroups K C G, for

which C11(Z[K]) = 1. So the Ker(a*) C Im(pp) in (1) above, and a is

an isomorphism in (2).

Case 2 Now assume that p = 2, and that G is a nonabelian p-group

such that dab is not elementary abelian. Set Ho = [G,C], as in Case

1, and write C/Ho = Gab = (gi) x ... x (gk) such that S(gl^g2) # 1 (i.

e., g1,g2 lift to noncommuting elements of G/[G,Ho]); but this time

arrange the gi so that Igil 2 4. Let H C C be such that H/Ho =

((g1)41(g2)2,g3,...,gk) Then G/H = C4 X C21 and no abelian subgroup of

G surjects onto C/H.
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Define

y' : H1(G;Z[G]) ' C(Q[G]) -a C(D[s])

C(ID[C4 xC2]) = (L4)2,

as before; so that there by Theorem 9.6 is a surjection

C11(Z[G]) » Coker(+').

Then in this case,

IM(V) = (`V'(g10 1), i'(g20 1)=`V'(g2g192),','(gi0 g2)),

and this has index 2 in C(Q[G/H]).

If G is any nonabelian group of order 16, then C11(Z[K]) = 1 for

all proper subgroups K G (see Examples 5.8 and 9.8, and Theorems 5.4

and 5.6). So by Proposition 5.2, there is a commutative square

RC(K) -5 ®C11(Z[K]) = 1
Nr-u

G
KEG

RC,,R(G) G - C1 l (Z[G]) ;

and hence IC11(Z[G])I < jCoker(f)j. Coker(f) is easily checked to have

order 2 if Gab = C4 X C2, and order 1 otherwise (note, for example,

that G always has an abelian subgroup K of index 2, and that all

nonabelian irreducible C[G]-representations are induced up from

C[K]-representations). We have seen that C11(Z[G]) has order at least

2 if GabC4xC2, and this completes the computation. o

As has been mentioned above, Proposition 9.4 can be used to calculate

C11(Z[C x H]), for any abelian 2-group H. and any 2-group G for which

Cll(Z[C]) is already known. The last example illustrates a special case

of this.
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Example 9.10 Let C be any 2-group. Then, for any k,

C11(Z[C X (C2)k]) = ®li/'C11(Z[G],21);

i=0

where for each i Z1,

C11(Z[G],21) - C2(D[G])/(p({g,l+2ih}): g,h E G, gh = hg).

In particular, if G is any quaternton or semidihedrat 2-group, then

k]) 2 k-k-1
C11(Z[G X (C2)

(U2)

Proof For abelian G, this is shown in Alperin et al [3, Theorems

1.10 and 1.11]. The proof in the nonabelian case is almost identical;

except that Proposition 9.4(i) is now used to construct generators for

p(K2(Z2[G],21)) C C2(@[G]). The last formula (when G is quaternion or

semidihedral) is an easy exercise. D
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So far, all of the results on K1(Z[G]) and Wh(G) presented here

have dealt with either their torsion subgroups or their ranks; and that

suffices when trying to detect whether or not any given x E Wh(G)

vanishes. For many problems, however, it is necessary to know specific

generators for Wh'(C) = Wh(G)/SK1(Z[G]); or to know generators p-locally

for some prime p. In general, this problem seems quite difficult, since

it depends on knowing generators for the units in rings of integers in

global cyclotomic fields, and this is in turn closely related to class

numbers.

One case which partly avoids these problems is that of p-groups for

regular primes p (including the case p = 2). For such G, Wh'(Zp[C])

is a free 2p module by Theorems 2.10(i) and 7.3; and so the inclusion

7L[G] C 2p [G] induces a homomorphism 1p @Wh'(G) -+ Wh'( p[G]). This is

a monomorphism (Theorem 10.3 below); and the image of the composite

TG : p 0 Wh' (G) }---i Wh' (Zp[C]) Y-G HO(G; p[C] )

will be described in Theorems 10.3 and 10.4. One consequence of these

results (Theorem 10.5) is a description of the behavior of Wh'(C) under

surjections, and under induction from cyclic subgroups of C.

In the last part of the chapter, we turn to the problem of

determining which elements of Wh'(C) (or of Wh(C)) are representable

by units. Theorem 10.7 gives some applications of logarithmic methods to

this problem in the case of 2-groups. For example, it is shown that not

all elements in Wh'(Q(32)x C2 X C2) are represented by units in the group

ring. In addition, some of the results in Magurn et al [1] are listed:

these include examples (Theorem 10.8) of quaternion groups for which

Wh'(G) is or is not generated by units.

The first step towards obtaining these results is to establish an

upper bound for the image of fC in HO(G;p[G]). This is based on a
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simple symmetry argument, and applies in fact to arbitrary finite G.

Lemma 10.1 Fix a prime p, and let G be any finite group. Let

FG: 2p @ Wh' (G) ---+ HO(C;p[C]) be defined as above, and set

Y(C) = (g+g-1 -gn-g n, h-hm : g,h E G, h conj. h 1,

(n,Igl)=1, (m,Ihl)=1) C HO(G;p[G]).

Then fG(2p O Wh'(G)) C Y(G).

Proof Set n = exp(G), K = Wn (In = exp(2ni/n)), and R = 7Lcn.

By Theorem 1.5, R is the ring of integers in K, and K is a splitting

field for G. In particular, we can write

k

K[G] n Mm.(K)
i=1

for some mi. Consider the following commutative diagram:

K1(7LCG])
Z "R K1(R[G]) f[ det o pr; ) [I R*

=1

I log Ilog

iInlog

k
HO(C; [C]) HO(G;KpCG])

fl.Tr o pri
fi K

i=1

p

where pri: K[G] --» M(K) denotes the projection onto the i-thm,

component.

By Theorem 1.5(1) again, for any a E (Uln)*, there is an element

rya E Gal(K//) = Ga1(QC n//) such that Ta(Cn) = (cn)a Also, (7/n)*

acts on HO(G;p[G]) and HO(G;Kp[G]) via the action ya(jrigi) =

17a(ri).gi.
Then fTropri commutes with the (Un)*-actions on

HO(G;Kp[G]) and ikp (note that each matrix pri(g) E Mri(K), for any

g E G, can be diagonalized).
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Write T = (Z/n)for short. For any u E R*,

u/u = i_1(u)/u E (±Cn) and H Ta(u) = NK, (u) E Z* _ (tl).
aET

So by the commutativity of (1), for any u E K1(Z[G]) and any 1Sis k,

T_1(Tropriolog(u)) = Troprlolog(u) and I Ta(Tropriolog(u)) = 0.

a T-linear isomorphism,

7_1(log(x)) = log(x) and 17 a(log(x)) = 0 (in HO(G;6p[G]))
aET

for all x E K1(Z[C]). Also, rG = (1 - and $ commutes with

the Ta (O(Zrigi) = jrigp). It follows that

rG(K1(Z[G])) S HO(G;Zp[G]) n x E x, I Ta(x) = 01
ll aET

= Y(G). a

We now restrict to the case where C is a p-group. The goal is to

show that TG(Zp ®Wh'(G)) = Y(G) whenever p is an odd regular prime,

and to describe Im(TG) when p = 2. The key to these results is the

following proposition, due to Weber for p = 2, and to Hilbert, and

Iwasawa for odd p.

Proposition 10.2 Fix a prime p and a number field K such that

K C ((En) for some n Z 1 (gn = exp(2ai/pn)). Let R = Z[gn]f1K be the

ring of integers. Then the homomorphism

LK : Zp®ZR ) (Rp)

induced by the inclusion R C Rp (and by the Zp-module structure on
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is injectiue. If p is regular (possibly p = 2), then

Coker(LK) is p-torsion free. If p = 2, and if K = Q(fn+fn (and

R = 7[in+(nl]), then

{u E R* : v(u) > 0, all v: K '4 IR}

=
{u2 : u E R*}. (1)

Proof The injectivity of cK is a special case of Leopoldt's

conjecture. For a proof, see, e. g., Washington [1,Corollary 5.32].

We next show that Coker(cK) is torsion free whenever p is

regular. If L C K is any subfield, then Coker(cL) is a subgroup of

Coker(cK); it thus suffices to consider the case K = D(fn). Set

if = fn, for short, and let p = (1-f)R C R denote the maximal ideal.

Define indexing sets

I = {i 1<i<pn, pli or i=pn}; J = {i : 1< i< (pn-3)/2, poi}.

Assume that {xi}iEI is any set of units in (Rp)* satisfying

x1 = f; xi = 1 + ai(1-f)i (mod pi+l) (some ai E 7L'p71) (2)

for all i E I . We can then define x i inductively for all l < i f I by

setting

(xi/p)p if p I i < pn
xl

ll (xi v(P) )P if i >pn
;

where v(p) = (p-1)pn-1 = [K is the p-adic valuation of p. One

easily checks that (2) is satisfied for all i > 1; and hence that the

xi generate l+p as a 7 L p module. Since rk2p(l+p) _ (p-1)pn-1 = I I I - 1,

and since x1 = if, this shows that the elements xi for 2 <iE I are a

basis for the torsion free part of (Rp)*.

Assume now that there exist real global units {uj}jEJ
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(uj E (7L[g+L-1])*) which satisfy

uj a 1 + bj(1-W(1- 1)J (mod p2j+1) (some bi E Z'p7L) (3)

for all j E J. If p is odd, then we can set x2j = uj for j E J,

and extend this to some set {xi}iE1 satisfying (2). If p = 2, a set

{xi}iEI can be chosen to satisfy (2) and such that x2j+1 =

for all jE J: note that 2 E pj+2 by assumption, and hence that

2 = (1+(1-f)j(1-f-1)j)(1+(1-f)j)-2 = 1+(l_E)j(l_f-1)j_(1_E)2j

= 1 + (1-02i(-if -1) a 1 + (1-02j+1 (mod p2j+2).

In either case, since rkk(R*) = IJI by Dirichlet's unit theorem (see

Janusz [1, Theorem 1.11.19]), this shows that there is a 7L-basis for

(Bp)*/(tif) which includes a 7L-basis for R*/(±E), and hence that

Coker(cK) is torsion free. Also, once the uj have been constructed,

this gives a second (and more elementary) proof that cK is injective.

If p is odd and regular, then global units satisfying

(3) are constructed by Hilbert [1, §138, Hilfsatz 29] when n = 1, and by

Galovich [1, Proposition 2.5] when n >1. We include here a construction

of the U. when p = 2, due to Hambleton & Milgram [1].

We may assume that n > 3 (otherwise J = 0). Set

A = g+g-1 = 2 - 1) (so AR =
1)R = p2).

Then (1+ X)(1 -X) = -(1 +f 2 +E-2); and an easy induction shows that

NKo/Q (1+A) = -1. (Ko = Q($)niR = Q(A)) (4)

Let g E Cal(K/a) be the element g(g) = if3. Then g(A) = A3 - 3A; and

so for all i > 1,
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g(Ai) -
Ai

=
(A3

-4X)( g(x)
R.
X
i-R-1

) E Ai+2R =
p21+4.

B=0
(5)

Set u1=1+ A (u1E R* by (4)); and define inductively uj = uj12-g(uj-2)

for all odd J 3. If congruence (3) holds for u.-2, then

uj = (l+Aj-2+a)-1.(1+g(Aj-2)+g(a)) (some
aEp2j-3(IIR=Aj-1R)

= 1 + (g(Aj-2) - Xj-2 + g(a) - a) (1 + AJ-2 + a)-1

1 + (g(AJ-2)-
Xj-2)

(mod Aj+1R + A2j 2R C Aj+1R)

= 1 +
(A3-3A)i-2 _ Aj-2 = 1 + NJ

(by (5))

(mod
Aj+1R = p2j+2).

In other words, congruences (3) are satisfied for all j; and this

finishes the proof that Coker(cK) is torsion free.

It remains to prove (1): the description of strictly positive units

in K = @( n+gn1). Set G = Cal(K/1D). Let V be the set of all real

places of K; i. e., all embeddings v: K y R. Define

A = $ X ® 7L/2:
vEV

Regard M = 0vEVDJ2 as a free

is a 7L/2[G]-submodule of M.

Then by

r 0 if v(u) > 0
where X (u) = jl

1 if v(u) < 0.

7L/2[G]-module of rank 1, so that Im(X)

By (4), NK/Q(l+L+f-1) = -1; and hence

Example 1.12, Im(X) ¢ the

unique maximal proper submodule of M; and so A is surjective. Also,

rk7(R) = [K:Q] - 1 = IVI - 1 and RM = ZIVl-1 x Zf2

by Dirichlet's unit theorem (Janusz

implies that

[1, Theorem 1.11.19]); and this

{u E R*: v(u) > 0, all v: K y IR} = Ker(X) = {u2 : u E R*}. o
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Proposition 10.2 will now be combined with a Mayer-Vietoris sequence

to give information about Wh'(G).

For any prime p and any p-group G, define

Yo(G) _ (g+g -gn-g n : g E C, pin) S HO(G;2p[G]);

Y(G) = Yo(C) + (g - gn : g E G, g conj. g 1, pin) S HO(G;2p[G])

Note that C Yo(G), that Y(G) = Yo(C) if p is odd or if G is

abelian, and that HO(G;7Lp[G])/Y(G) is torsion free. As before, rG

denotes the composite

r

rG : 7Lp ®Wh'(G) - Wh'(7Lp[G]) - HO(G;ap[GI),

where the first map is induced by the inclusion 7L[G] C 2 p[G] and the

2p module structure on Wh'(2 p[G]). By Lemma 10.1, Im(P.) C Y(G).

Theorem 10.3 For any prime p, for any p-group G. and for any

maximal order Al C Q[G], there is an exact sequence

1 ap ® Wh' (G) Y(G) - tors Coker[gp ®K' (T) - K'( 'Aip)1.

Furthermore,

(t) Im(IG) = Y(G) if p is an odd regular prime, or if p = 2 and

(Q[G] is a product of matrix algebras over fields; and

(ii) YO(G) C IM(TG) C Y(C) if G is an arbitrary 2-group.

Proof Write D[G] = ni-lAi, where each Ai is simple with center

Ki, and let R. C Ki be the ring of integers. By Theorem 9.1, each Ki

is contained in D(fi) for some i. In the following diagrams
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7Lp®Wh'(G) --- Wh'(7Lp[G]) 7Lp®K1(Di) --) K1(fRp)

[[nr (la) I am and
Inn!.

(lb) I (lnr (1)

11 *
fli,

K. _ ll * * Ki 1 ^*7Lp® (Ri) n(Ri)p (j71p0 (Ri) Il(Ri)p

the reduced norm homomorphisms have finite kernel and cokernel (Theorem

2.3 and Lemma 2.4), and the tKl are injective by Proposition 10.2. So

Ker(t) is finite. But Wh'(G) is torsion free, and hence t and

rG = rGot are both injective. Also, rk,(Wh(G)) = rk2(Y(G)) by Theorem
P

2.6, and so [Y(G):Im(fG)] is finite.

By Milnor [2, Theorem 3.3], for each n > 1 such that pnM C 7L[G],

there is a Mayer-Vietoris exact sequence

K1(7[G]) -) Kl (DI) ®Kl (7[G]/per) ) K1(R/p')

The group Ker[K1(7L[G]) -i Kl(71)] C SK1(7L[G]) is finite, by Theorem

2.5(i), and so this sequence remains exact after taking the inverse limit

over n. Since

nm
K1(Z[G]/p M) = and K1(V/p i) =- Ki(ip)

by Theorem 2.10(iii), this shows that the sequence

K1(7[G]) ) K1(N) ® K1(2p[G]) - K1('Np)

is exact; and remains exact after tensoring by 7Lp. Also, SK1(1A)

surjects onto SK1(Uip) (Theorem 3.9), and so the top row in the following

diagram is exact:

1 -, Ip ®Wh' (G) Wh' (2 p[G]) - Coker[8p ®K' (M) -' K' (ip)]
(p)

JrG JrG (2)

Y(G) ` 0 HO(C;7Lp[G])
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By Theorem 6.6, Y(C) C Im(rG). In particular, we can identify Y(G)

with rGI(Y(G)) C Wh'(1 p[G]). Since Y(G)/Im(fC) is finite, the top row

in (2) now restricts to an exact sequence

r1 -+ 7Lp ® Wh'(G) G Y(G) 4 tors Goker[[p®Kj(IR) Ki(ip)],

where 0= e o (rG1IY(G)).

If p is regular, and if D[G] is a product of matrix algebras over

fields, then the reduced norm homomorphisms in (1b) are isomorphisms, and

so Coker(t,,) is torsion free by Proposition 10.2. So Im(TG) = Y(G) in

this case. In particular, by Theorem 9.1, this always applies if p is

odd (and regular), or if p = 2 and G is abelian. If G is an
arbitrary 2-group, then Im(TG) contains the image of Y(H) = Yo(H) for

all cyclic H C G; and hence Im(1'G) ? Y0(G).

In principle, it should be possible to use these methods to get

information about Wh'(G) when G is a p-group and p an irregular

prime. With certain conditions on

torsion in Coker[E
P
0 (Z[fk])* (ap[fk])*]

p (see Ullom [1]), the p-power

is understood (see also

Washington [1, Theorem 13.56]). But most results which we know of, shown

using Theorem 10.3, seem either to be obtainable by simpler methods (as in

Ullom [1]); or to be quite technical.

The next theorem gives a precise description of CG(7L2 ® Wh'(G)) when

G is a nonabelian 2-group. Recall (Theorem 9.1) that if exp(G) = 2n,

then D[G] is isomorphic to a product of matrix algebras over subfields

of I(fn) (fn = exp(2ai/2n)), and over division algebras D(fk,j) (C M)

for k S n.

Theorem 10.4 Let G be a 2-group, and let Y(G) be as in Theorem

10.3. Then

k k
rG(22 ®Wh'(G)) = Ker[9G = ll

oG'i
: Y(G) - (Z/2),+

i=1 i=1
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where V1,...,Vk are the distinct irreducible C[G]-representations which

are quaternionic, and where

OG'i Y(G) C HO(G;Z2[G]) -4 7/2

is defined by setting

8G'1(g) = I dimm(fr-eigenspace of (g: Vi -> Vi)). (for g E G)
r>0

Proof This is based on the exact sequence

1 - 120Wh'(G) G+ Y(G) - tors Coker[22®Ki('R) - 4 Ki(12)] (1)

of Theorem 10.3; where iR C @[G] is a maximal order containing g[G],

and where 6(r(u)) = [u] E K1(N2)'

Write D[G] = nm-1Ai, where the A. are simple. Fix i, and set

A = Ai = Mr(D), where D is a division algebra with center K. Let

IRA C A be a maximal 7-order, and let R C K be the ring of integers. If

D = K (i. e., D is a field), then K C 1(fn) (fin = exp(2ai/2n)) for

some n by Theorem 9.1, and hence
NA

is Morita equivalent to R by

Theorem 1.19. So

Coker[220Kj(711A) I Ki(111A2)] = Coker[22®R* ) (R2)*]

is torsion free in this case by Proposition 10.2.

By Theorem 9.1 again, the only other possibility is that D = Q(fn,3)

(C al) for some n > 2 (so K = R(fn+(n1)). In this case, consider the

commutative diagram
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1 - ) 22 0 K1(vA) "
g2 ® R*

) ® Z/2

I C A
1

(2)

K1(IA2) - (g2)*

where X = ONv is defined by setting Av(u) = 0 if v(u) > 0; Av(u) = 1

if v(u) < 0. By Theorem 2.3, nr2 is an isomorphism, and the top row in

(2) is exact. By Proposition 10.2, X is onto and Coker(LK) is torsion

free; and so by (2),

tors Coker[22 0 Ki(MA) - Ki(iA2)] = (7(/2)IVI.

In other words, tors(Coker(cA)) includes one copy of 7l/2 for each

quaternion representation of IR % A. Sequence (1) now takes the form

1 . 22 ®Wh' (G) G , Y(G) e (7V2)k;

where k is the number of quaternion components in IR[G]. The details of

identifying 0 with 9 as defined above are shown in Oliver & Taylor

[1, Section 3]. o

A second description of Im(IG), when C is a 2-group, is given in

Oliver & Taylor [1, Propositions 4.4 and 4.5].

The next result is an easy application of Theorem 10.3.

Theorem 10.5 Fix a regular prime p and a p-group G.

(i) For any surjection a: G -* G of p-groups,

Wh'(a) : Wh'(G) 3 Wh'(G)

is surjectiue if p is odd or if C is abelian; and Coker(Wh'(a)) has

exponent at most 2 otherwise.
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(it) For any x E Wh'(G), x is a product of elements induced up

from cyclic subgroups of G if p is odd or if G is abettan; and x2

is a product of such elements otherwise.

Proof Fix a p-group G, and consider the group

C = Coker[j{Wh'(H) : H C G, H cyclic) ) Wh'(G)].

By a result of Lam [1, Section 4.2] (see also Theorem 11.2 below), C is

a finite p-group. So C = 1p O C is isomorphic to a subgroup of

Y(G)/Yo(G) by Theorem 10.3. By definition, Y(G)/Yo(G) is trivial if p

is odd or if G is abelian, and has exponent at most 2 otherwise.

This proves (ii). To prove (i), it now suffices to consider the case

where a and G are both cyclic. By Theorem 10.3, Zp 0 Wh'(G) surjects

onto 2p ®Wh'(C) in this case, and so Coker(Wh'(a)) is finite of order
k

prime to p. It thus suffices to show, for any u E (7L[G])*, that up E

Im(Wh'(a)) for some k.

Assume that G = Cp, and G = Cpn-1 ; and consider the pullback

square

7L[Cpn] Z[fn]

al

/p[Cpn-1]Z[Cpn- l

(fn = exp(2vi/pn))

This induces a Mayer-Vietoris exact sequence

K1(Z[CP ]) - K1(7L[Cpn-1]) $ K1(7L[fn]) ) (Z/Plc n-1]).

Set I = Ker[Zfp[Cpn_i] - up], the augmentation ideal. Then for any

u E K1(Z[Cpeither (3*(u) or (3M(-u) lies in 1+I, and this is a

k

group of p-power order. In other words, up E (-1,Ker(0,)) C Im(a*) for

some k; and we are done. 0
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The result that Wh'(a) is onto whenever a is a surjection of

cyclic p-groups (for regular p) is due to Kervaire & Murthy [1].

We now turn to the problem of determining, for a given finite group

G, which elements of K1(7[G]) or Wh(G) can be represented by units in

7[G]. This was studied in detail by Magurn, Oliver and Vaserstein in [1].

The main general results in that paper are summarized in the following

theorem.

A simple Q-algebra A with center K is called Eichler if there is

an embedding v: K '-> C such that either v(K) ¢ 1t, or v(K) C IR and

ROvK A IH. Note that A is always Eichler if [A:K] t 4. A semisimple

Q-algebra is called Eichler if all of its simple components are Eichler.

Theorem 10.6 Let A = V x B be any semisimple Q-algebra, where B

is the product of all commutative and all non-Etchler simple components in

A. Then for any 7L-order 21 in A, if B C B is the image of 21 under

projection to B, an element x E K1(21) can be represented by a unit if

and only if its image in K1(B) can be represented by a unit. In

particular, if A is Eichler - i. e., if B is commutative - then

there is an exact sequence

2I K1(2I)
21-*B SK1(B) -> 1.

Proof See Magurn et al [1, Theorems 6.2 and 6.3]. o

We now list two results containing examples of finite groups G

where Wh'(G) is or is not generated by units. The first theorem

involves 2-groups, and is an application of Theorems 10.4 and 10.5 above.

The second theorem will deal with generalized quaternion groups, and is

proven using Theorem 10.6.

Theorem 10.7 (i) For any 2-group G and any x E Wh'(G), x2 is

represented by some unit u E (g[C]) .

(ii) Set G = Q(32) X C2 X C2, where Q(32) is quaterntontc of order

32. Then Wh'(G) contains elements not represented by units in Z[G].
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Proof Point (i) is clear: x2 is a product of elements induced from

cyclic subgroups of G by Theorem 10.5(ii); and Ki(7L[G]) = (7L[G])* by

definition if G is abelian.

To prove (ii), fix any element a E Q(32) of order 16, and let
t1,t2 generate the two factors C2 in G = Q(32) X C2 X C2. Set

x = (1- ti)(1 - t2)(a-a3) E HO(G;7L2[G]).

A straightforward application of Theorem 10.4 (in fact, of Theorem 10.3)

shows that x E rC(7L2 ®Wh'(G)). Thus, if all elements of Wh'(G) are

represented by units, then there must be a unit u E (7L[G])* such that
Iu) = x (mod 64). But using the relation (g[ ,,J])* = ((7L[f+])*+J)
G(

(Magurn et al [1, Lemma 7.5(b)]), it can be shown that no such u

exists. See Oliver & Taylor [1, Theorem 4.7] for details. a

The following results are similar to those in Theorem 10.7, but for

generalized quaternion groups instead of 2-groups. Recall that for any

n > 2, Q(4n) denotes the quaternion group of order 4n.

Theorem 10.8 For any n > 2, and any x E Wh(Q(4n)), x2 is

represented by a unit in 7L[Q(4n)]. Furthermore:

(i) If n is a power of 2, then all elements of Wh(Q(4n)) can

be represented by units.

(ii) If p is an odd prime, then the elements of Wh(Q(4p)) can

all be represented by units, if and only if the class number hp is odd.

(iii) For any prime p ° -1 (mod 8), Wh(Q(16p)) contains elements

not represented by units.

Proof See Magurn et al [1, Theorems 7.15, 7.16, 7.18, and 7.22]. o

An obvious question now is whether, for any finite group G and any

x E Wh'(G), x2 is represented by a unit in 7L[G].
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One of the standard procedures when working with almost any

K-theoretic functor defined on group rings of finite groups, is to reduce

problems involving arbitrary groups to problems involving hyperelementary

groups: i. e., groups containing a normal cyclic subgroup of prime power

index. For most of the functors dealt with here, one can go even further.

The main idea, when dealing with SK1(7Lp[G]), C11(7[G])(p), etc., is to

reduce computations first to the case where G is p-elementary (i. e., a

product of a cyclic group with a p-group); and then from that to the case

where G is a p-group.

The formal machinery for the reduction to p-elementary groups is set

up in Chapter 11. The actual reductions to p-elementary groups, and then

to p-groups, are carried out in Chapters 12 (for SK1(2p[G])) and 13 (for

C11(7L[G])). The inclusion C11(7L[G]) C SK1(7L[G]) is then shown in

Section 13c to be split in odd torsion. Finally, in Chapter 14, some

applications of these results are listed.

Since much of the philosophy behind the reductions in Chapters 12 and

13 is similar, it seems appropriate to outline it here. The main tool

used in the reduction to p-elementary groups is induction theory as

formulated by Dress [2]. This sets up conditions for when .A(G), .N

being a functor defined on finite groups, can be completely completely

computed as the direct or inverse limit of the groups .N(H) for subgroups

H C G lying in some family. The main general results on this subject are

Theorem 11.1 (Dress' theorem), Theorem 11.8 (a decomposition formula for

certain functors defined on 1- or 2p orders), and Theorem 11.9 (conditions

for computability with respect to p-elementary subgroups).

Using these results, SK1(7[G])(p) is shown in Chapters 12 and 13 to

be p-elementary computable for odd p, and 2-IR-elementary comput-able

when p = 2 (Theorems 12.4 and 13.5). In particular, for odd p,

SK1(7[G])
-

liHC SK1(7L[H])
(p) (P)'
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where 8 is the set of p-elementary subgroups of G, and the limits are

taken with respect to inclusions of subgroups and conjugation by elements

of G. When p = 2, the connection between SK1(Z[G])(2) and 2-elemen-

tary subgroups is described by a pushout square (Theorem 13.5 again).

The process of reduction from p-elementary groups to p-groups is

simpler. Let G be a p-elementary group: G = Cn x v, where pIn and a

is a p-group. Write @p[Cn]
=

ni=1Fi, where the Fi are fields, and let

R. C F. be the ring of integers. Then

k
SK1(2 [G]) = ®SK1(Ri[ir]) and C1p 1(Z[G]) ®C11(ZCd[A])

i=1 din

the first isomorphism is induced by an isomorphism of rings (Theorem

1.10(i)), and the second by an inclusion Z[G] C ])dinZCd[A] of orders of

index prime to p (Example 1.2, Theorem 1.4(v), and Corollary 3.10). The

groups SK1(Ri[a]) have already been described in Theorem 8.6, and the

C11(ZCd[A]) are studied in Section 13b by comparing them with C11(Z[ir]).

These results then lead to explicit descriptions of SK1(2 p[G]) for

arbitrary p and G (Theorems 12.5 and 12.10), and of Cl1(Z[G])(p)

when p is odd (Theorem 13.9) or G is abelian (Theorem 13.13). For

nonabelian G, the situation in 2-torsion is as usual incomplete, but

partial descriptions of C11(Z[G])(2) in terms of C11(Z[v]) for

2-subgroups a can be pulled out of Theorems 13.5 and 13.12.
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The term "induction theory" refers here to techniques used to get

information about .M(G) in terms of the groups .N(H) for certain H C G,

when .1t is a functor defined on finite groups. Such methods were first

applied to K-theoretic functors by Swan [1], when studying the groups

K0(7L[G]) and G0(7L[G]) for finite G. Swan's techniques were

systematized by Lam [1]; whose Frobenius functors gave very general

conditions for .4(G) to be generated by induction from subgroups of G

lying in some family 9, or to be detected by restriction to subgroups in

5. later, Lam's ideas were developed further by Dress [2], who gave

conditions for when A(G) can be completely computed in terms of 4(H)

for subgroups H C G in 9.

The results of Dress are based on the concepts of Mackey functors,

and Green rings and modules, whose general definitions and properties are

summarized in Section lla. The central theorem, Theorem 11.1, gives

conditions for a Green module to be "computable" with respect to a certain

family of finite groups. Two examples of Green modules are then given:

functors defined on a certain category of R-orders (when R is any

Dedekind domain of characteristic zero) are shown to induce Green modules

over the Green ring G0(R[-]) (Theorem 11.2), and Mackey functors are

shown to be Green modules over the Burnside ring (Proposition 11.3).

In Section llb, attention is focused on p-local Mackey functors:

i. e., Mackey functors which take values in 2P modules. A decomposition

formula is obtained in Theorem 11.8, using idempotents in the localized

Burnside ring 12(c)
(p);

and this reduces the computation of

C11(7L[G])(p), SK1(7L[G])(p), SK1(2 p[G]), etc. to that of certain twisted

group rings over p-groups. This is the first step toward results in

Chapters 12 and 13, which reduce the computation of SK1(7L[G])(p) (at

least for odd p) to the case where G is a p-group.
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Ila. Induction properties for Mackey functors and Green modules

The following definitions are all due to Dress [2, Section 1].

(A) A Mackey functor is a bifunctor .,N = from the category

of finite groups with monomorphisms to the category of abelian groups,

such that 1' is contravariant, A. is covariant,

-P(G) = #*(G) = -A(G)

for all C, and the following conditions are satisfied:

(1) .N* and .N* send inner automorphisms to the identity.

(ii) For any isomorphism a: G -' G', .N *(a) = A,(a)-1.

(iii) The Mackey subgroup property holds for e and .Y*: for any

G, and any pair H,K C G, the composite

.N(H) .N(G) A -- A(K)

is equal to the sum, over all double cosets KgH C G, of the composites

* .41(c) .N

A(H) A-- A(g 1KgnH) 36 g A(KngHg 1) *) .I1(K).

Here, cg denotes conjugation by g.

(B) A Green ring IS is a Mackey functor together with a commutative

ring structure on '44(C) for all C, and satisfying the Frobenius

reciprocity conditions. More precisely, for any inclusion a: H I-- C,

a*(xy) = for x,y E '44(G)

x E '&(G), y E '44(H)
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for x E (A(H), y E 41(G)

(where a* = `3*(a) , a* = 3*(a)) .

(C) A Green module over a Green ring `3 is a Mackey functor A.

together with a 44(G)-module structure on A(G) for all G, such that

the same Frobenius relations hold as in (B), but with y E A(G) or

y E AI(H) instead.

(D) Let T be any class of finite groups closed under subgroups.

For each G, set T(G) = (H C G: H E T). Then a Mackey functor Al is

called 'e-generated if, for any finite G,

Al

® AI(H) ) .(G)
HE'C(G)

is onto; Al is called *-computable (with respect to induction) if, for
any G, A. induces an isomorphism

A(G) = li AI(H).
HE'9 G)

Here, the limit is taken with respect to all maps between subgroups

induced by inclusions, or by conjugation by elements of G. Similarly, A

is `6-detected, or `41-computable with respect to restriction, if for all

finite G the homomorphism

A(G) - Jim AI(H)
HE'e(G)

(induced by AI*) is a monomorphism or isomorphism, respectively.

For convenience of notation, if H C G is any pair of finite groups

and is H -1 C is the inclusion map, we usually write

Indd = Am(i) : A(H) -) AI(G), ResH = Al*(i) : A(G) - A4(H)

to denote the induced homomorphisms.
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The first theorem can be thought of as the "fundamental theorem" of

induction theory for Green modules.

Theorem 11.1 (Dress [2, Propositions 1.1' and 1.2]) Let .N be a

Green module over a Green ring 19, and let `44 be a class of finite
groups such that '& is '44-generated. Then .N is *-computable for both

induction and restriction.

Proof Fix any G, write '44 = '44(G) for short, and let

I : 1 .N(H) --> .N(G) and .N(G) -- j .p(H)
HE ET

be the induced maps. Choose elements aH E '44(H), for H E 'B, such that

IndH(aH) = 1 E 'Q(C).

HE'

For any x E .N(G),

x = E Im(I)
HE'44 HET

(1)

by Frobenius reciprocity. In particular, x = 0 if ResH(x) = 0 for all

H E '8, i. e., if R(x) = 0. Thus, I is onto and R is one-to-one.

To show that I is injective and R surjective, the Mackey subgroup

property is needed. For each pair H,K E '44, let gHKi (1 i S nHK) be

double coset representatives for H\G/K. Consider the maps

RHKI IHKi
.M(K)

I HK,
A(gHKiKgHKi nH) R A(H)

(and similarly for '&). Here, I and R denote induction and

restriction, while I' and R' are the induction and restriction maps

composed with conjugation by gxxi.

Fix any x E Ker(I). Write

x = [xK, K] E .M(K),

KE'C KE'C
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where xK E .N(K) and ZKEVInd4(xK) = 0. Then, in 1 A(K),

x = I [xK, K] = I [ResG(1).xK, K]
KEC KEG

K

= I I [(Re.G o K]
KEG HEM

nHK
[(IHKioRHKi(aH))'xK, K]

KEC HE'C i=1

nHK
[IHKi(RHKi(aH)-RHKi(xK)), K]

KEC HE* i=1

nHK
[IHKi(RHKi(aH)-RHKi(XK)), H]

HE* KET i=1

nHK

E H]
HET KET i=1

[aw (ResH o IndK(xK)), H]
HE'S KEC

I IndK(xK)), H] = 0;
HET KE

(by (1))

(by defn. of 1)

and so I is injective.

Now fix some element y = (yK)KET in 4im .11(H). Set
HE'S

E 41(G).y =
EM

Indd

Then, for each K E <C,

ResK(9) = I
HE<C

nHK
IHKioRHKi(aH.YH)

HET i=1
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nHc

E IHCI(RHKi(aH)'RHK (YH))
HE'Q, i=1

I nHc
= E IHCi(RHCi(aH)'RHCi(Yc)) (since (YH) C .N(H))

HE'S i=1

nHc
(IHKioRHK1(aH))'YK

HE'e i=1

(ResKoIndH(aH))'YK = ResK(l)'YK = YK.
HET

(by (1))

In other words, y = (YH)HET = R(y); and so k is surjective. 0

In fact, Dress [2] also proves that a Green module .N as above is

with respect to induction and restriction, in that the derived

functors for the limits in (D) above are all zero. This is important, for

example, if one is given a sequence of Mackey functors Ai which is exact

for all G E T, and which one wants to prove is exact for all finite G.

Recall that for any prime p, a p-hyperelementary group is a finite

group of the form Cn k v, where p.'n and n is a p-group. For any

field K of characteristic zero, a p-hyperelementary group C = Cn A r is

p-K-elementary if

Im[a cconj, Aut(Cn) = (8/n)*] C Gal(Kcn/K);

where cn is a primitive n-th root of unity, and Cal(Kcn/K) is regarded

as a subgroup of Aut(Cn) via the action on (fn) = Cn (Theorem 1.5). A

finite group is K-elementary if it is p-K-elementary for some p. Note

that hyperelementary is the same as Q-elementary (Gal(QCn/Q) = Aut(Cn)

by Theorem 1.5(1)); and that Cn A r is C-elementary only if it is a

direct product. A second characterization of p-K-elementary groups will

be given in Proposition 11.6 below.

The next theorem gives one way of constructing examples of Green

modules. For any ring R, G0(R) denotes the Grothendieck group on all



CHAPTER 11. A QUICK SURVEY OF INDUCTION THEORY 251

isomorphism classes of finitely generated R-modules, modulo the relation

[M] = [M'] + [M"] for any short exact sequence

0-.M'

As defined in Section ld, the category of "rings with bimodule morphisms"

is the category whose objects are rings; and where Mor(R,S), for any R

and S, is the Grothendieck group (modulo short exact sequences) of all

isomorphism classes of bimodules
S.d

such that M is finitely generated

and projective as a left S-module.

Theorem 11.2 Let R be a Dedektnd domain with field of fractions K

of characteristic zero, and let X be an additive functor from the

category of R-orders in semistmple K-algebras with bimodule morphtsms to

the category of abelian groups. Then, for finite G, ,M(G) = X(R[G]) is

a Mackey functor, and is a Green module over the Green ring C0(R[G]). In

particular, .N is computable with respect to induction from and

restriction to K-elementary subgroups; and 41(G) (p) (for any prime p)

is computable with respect to induction from and restriction to

p-K-elementary subgroups.

Proof Induction and restriction maps for pairs H C C are defined

using the obvious bimodules RGRGRH and RHRGRG. This makes

.U(C)= X(R[G]) into a Mackey functor: the properties all follow from easy

identities among bimodules. For example, the Mackey subgroup property for

a pair H,K C G follows upon decomposing <RCRH as a sum of bimodules,

one for each double coset KgH.

Next consider the G0(R[G])-module structure on X(R[G]). For any

finitely generated (left) R[G]-module M, make M ®R R[G] into an

(R[G],R[G])-bimodule by setting

gx ®gyh for g,h E G, x E M, y E R[G].

Then multiplication in X(R[C]) by [M] E G0(R[G]) is induced by

[M OR R[C] ] E Mor(R[G] , R[G]). The module relations, and the Frobenius
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reciprocity relations as well, are again immediate from bimodule

identities.

The computability of X(R[G]) will now follow from Theorem 11.1,

once we have checked that GO(R[G]) is generated by induction from

K-elementary subgroups (and G0(R[G])(p) from p-K-elementary subgroups).

For K0(K[G]) and KO(K[G]) (p), this is a theorem of Berman and Witt

(see Serre [2, §12.6, Theorems 27 and 28] or Curtis & Reiner [1, Theorem

21.6]). Also, for any maximal ideal p C R, GO(R/p[G]) is made into a

Green module over KO(K[G]) by the "decomposition map"

d : KO(K[G]) ) GO(R/p[G]);

where d([V]) = [M/pM] for any K[G]-module V and any G-invariant

R-lattice M in V (see Serre [2, §15.2] or Curtis & Reiner [1,

Proposition 16.17]). There is an exact localization sequence

® GO(R/p[G]) - GO(R[G]) --' KO(K[G]) - 0
p

(see Bass [2, Proposition IX.6.9]); and so GO(R[G]) and G0(R[G])(p)

are also generated by induction from K-elementary and p-K-elementary

subgroups, respectively. O

Note in particular that by Proposition 1.18, Theorem 11.2 applies to

the functors Kn(7L[G]), Cl1(7L[G]), SK1(7L[G]), SK1(2 p[G]), etc.

The next proposition gives another example of Green modules. For any

finite G, 0(G) denotes the Burnside ring: the Grothendieck group on

all finite G-sets (i. e., finite sets with G-action), where addition is

induced by disjoint union and multiplication by Cartesian product.

Additively, S1(G) is a free abelian group with basis the set of all

orbits G/H for H C G; where [G/H1] = [G/H2] if and only if H1 and

H2 are conjugate in G.

Proposition 11.3 The Burnside ring fl is a Green ring. Any Mackey

functor A is a Green module over 1], where the S1(G)-module structure

on .4(C) is given by
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IndH o ResH(x) for H C G, x E .N(G).

Proof For any pair H C G of finite groups,

IndH : 0(H) -' 0(G) and ResH : f)(G) ) f)(H)

are defined by setting IndH([S])
=

[G xH S] for any finite H-set S,

and ResH([T]) = [TIH] for any finite G-set T. The Mackey property and

Frobenius reciprocity are easily checked.

Now let .N be an arbitrary Mackey functor. To see that the above

definition does make .N(G) into an Q(G)-module for each G, note that

for any pair H,K C G,

H(IndoResH)o(IndKoResK) = Ind H o( Ind g_10(* Res g _1HM)oRes K
gEH\G/K

cg)

gEH\
/KInd Kg_lo(cg)* Resg_1 = gE Ind"Kg'oResG g_'

Thus, the composite of multiplication first by [G/K] and then by [G/H]

is multiplication by

I [GI(H1 Kg-')] = [(G/H)-(G/K)].
gEH\G/K

Checking the Frobenius relations for this module structure is

straightforward. o

Proposition 11.3 cannot be directly combined with Theorem 11.1 to

give general induction properties of Mackey functors: the Burnside ring

is not generated by induction from any proper family of finite groups.

But often an apparently weak induction property of a Mackey functor .N

implies that .M is a Green module over some quotient ring of 11, which

in turn yields stronger induction properties for A. One example of this

is seen in Proposition 11.5 below: any Mackey functor which is generated

by hyperelementary induction is also hyperelementary computable with

respect to both induction and restriction.
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llb. Splitting p-local Mackey functors

By a "p-local" Mackey functor, for any prime p, is meant a Mackey

functor .N for which 4(G) is a 71(p)-module for all G. In Proposition

11.5 below, we will see that for any p-local Mackey functor .N generated

by p-hyperelementary induction, .N(G) has for all G a natural splitting

indexed by conjugacy classes of cyclic subgroups of G of order prime to

p. Under certain conditions, these summands can be described in terms of

functors on twisted group rings (Lemma 11.7 and Theorem 11.8), and this is

then used to set up conditions for when .N is computable with respect to

p-elementary subgroups.

By Proposition 11.3, any p-local Mackey functor .M is a module over

the localized Burnside ring fl(-)(p). Hence, splittings of .N(G) are

automatically induced by idempotents in (1(G) (p). These idempotents were

first studied by Dress [1, Proposition 2].

When working with 0(G), it is often convenient to use its

"character" homomorphism

X = IIXH : (1(G) II Z.
HEY(G)

Here, 9'(G) denotes the set of conjugacy classes of subgroups of G, and

XH([S]) = ISHI for any finite G-set S and any H E &'(G). Note that

(1(G) and are free abelian groups of the same rank; and that

for H,K C G, XK([G/H]) is nonzero if and only if K C gHg-l for some

g E G. In other words, if the elements of H E f(G) are ordered

according to size, the matrix for X is triangular with nonzero diagonal

entries. So X is injective and has finite cokernel. In particular, an

element x E (1(G) (or x E O(G)(p)) is an idempotent if and only if

XH(x) E {0,1} for all H C G.

Lemma 11.4 Fix a prime p and a finite group G. Then, for any

cyclic subgroup C C G of order prime to p, there is an tdempotent

EC = EC(G) E f1(G)(p) such that for all H C G,
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XH(EC) =

1 tf for some C' conj. C, C' 4 H. H/C' a p-group

0 otherwise.

Proof Fix C. For each C C C, set

f(C) = H C G gCg 1 a H, H/(gCg 1) a p-group, some g E G)
-

We first claim that for any x E 12(G) (p),

XH(x) = XC(x) (mod Pl(p)) for all H E f(C). (1)

It suffices to check this when C a H and x =[S] (some finite G-set S);

and in this case the p-group C/H acts on SC SH without fixed points.

Fix some M C such that M/C is a p-Sylow subgroup of N(C)/C

(so M is maximal in f(C)). For any k > 0, and any H C G,

(P-1)Pk) = 1

(mod
pk+l

)

if I(G/M)HI it 0 (mod p)

f 0 (mod p
k+1

) if I(G/M)
H
I = 0 (mod p).

Since X = 1XH has finite cokernel, this shows that there exists

E E O(G)(P) such that

XH(E) =

1 if I(G/M)HI 0 (mod p)

{ 0 if I(G/W)HI = 0 (mod p).

In particular, if XH(E) = 1, then gHg 1 C M for some g; so H is

p-hyperelementary, and H E f(C) for some C C C. Also, by (1),

XH(E) = XC(E) if H E 4(C); and XC(E) = 1 since by choice of M:

I(G/M)Cj = j{gM: g 1Cg C M11 = IN(C)I/IMI 0 (mod p).

We may assume inductively that for each C C C, an idempotent EC

is defined such that XH(EC) = 1 if and only if H E f(C). Then EC can

be defined by setting
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EC=E-J{EC:CSC, x(E)=1}. o

Lemma 11.4 will now be applied to split p-local Mackey functors.

Assume that p is a fixed prime, and that A is a p-local Mackey
functor which is generated by p-hyperelementary induction. For each

finite G, let Cy(G) be a set of conjugacy class representatives of

cyclic subgroups C C C of order prime to p. For each C E Cy(G), let

EC(G) E O(G)(p) be the idempotent defined in Lemma 11.4, and set

AC(G) = EC(C)-A(G) C 4(G).

If G is p-hyperelementary - if G = Cn>4a where ptn and it is a
p-group - then for kin we write Ak(C)

=
.AC(C) when C C C is the

subgroup of order k (and set 4k(C) = 0 if k4n).

Proposition 11.5 Fix a prime p, and let A be any p-local Mackey

functor generated by p-hyperelementary induction. Then .M is

p-hyperelementary computable for induction and restriction. Also:

(i) 4(G) = ® .AC(G) for any finite G.

CECy(G)

(ii) For any finite C and each C E Cy(G),

AC(G) = li 4C(CAa) = Iim Ar(C>4 a)
TrEO(C)) 'RE9s(N(C))

Here, 56(-) denotes the set of p-subgroups, and the Limits are taken with

respect to A. (or 4M) applied to inclusions, and to conjugation by

elements in NG(C).

(itt) Assume G = Cn>la is p-hyperelementary (where pjn and w

is a p-group). Then for any H = Cm A w C G (min), ResH o IndH t s an

automorphism of 4(H); and for each kim the induction and restriction

maps



CHAPTER 11. A QUICK SURVEY OF INDUCTION THEORY 257

kIndC : Afk(H) Afk(G) and - ResH : 4k(G) _-> .k(H)

are tsomorphisms. Furthermore,

Afn(G) = Ker[ ® Res : A4(G) = A4(Cn A a) ) ®A1(Cn/p A a)].
pin

Proof (i) Let I denote the class of p-hyperelementary groups, for

short. Define Eo(G) _ E ,(G)EC(G) E O(G)(p). Then for any H C G,

XH(Eo(C)) _

1 if HEl(G)

0 otherwise.
(1)

In particular, Eo(G) is an idempotent. Also, ResH(Eo(G)) = 1 E f0(H)

for any H C *(G). Since A is generated by p-hyperelementary induction,

and since

IndH(x)

for any H E X(G) and any x E A4(H); this shows that

A4(G) = Eo(G) -A4(C) _ ® E (C) -A(G) _ ® M (G) (2)
CECy(G) C CECy(G) C

(iii) Now assume that G = CnAir is p-hyperelementary, and that

H = Cm Air for some min. Consider the maps

IndC
Alk(G)

kRes,
Alk(H).Alk(H) k (3)

Choose double coset representatives g1,...,gr for H\G/H such that

gi E n for all i. For each i, write

Ki = HflgiHgil = CmApi where pi = {xEw : gixgil=x (mod Cm)).

Then gi E NG(Ki), so pi and
gipig.

are both p-Sylow subgroups of
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Ki, and are therefore conjugate in Ki. It follows that conjugation by

gi is an inner automorphism of Ki. Hence, in (3),

r r

kResH o kIndH = I kIndK o (cg )* o kResK = I klnd,

and this is multiplication by

Ek(H)' [H/(HflgiHgil)] = E flk(H).

i=1

For any K C G such that XK(Ek(G)) = 1, Ck a K and K/Ck is a
p-group. Hence, for such K,

XK( ) = I(G/H)KI =
I(G/H)K/CkI

= IG/HI ig 0 (mod p).

This shows that iskinvertible in the p-local ring flk(G).

We have just seen that ResH o kIndH is multiplication by

E flk(H)*; and kIndH o kResC is multiplication by

C
andE flk(G)* by Proposition 11.3. It follows that kIndH

kResH are both isomorphisms between .Nk(H) and .Nk(G); and (after

summing over all klm) that ResH olndH is an isomorphism of .N(H) to

itself.

In particular, this shows that for any prime pin,

Ker[Res : 4(Cn >4 v) ' .A(C n/pXn)] = ® Ak(Cn Aa);
kin

kJn/p

and hence that

M7r)]An(Cn >4 a) = Ker[®Res : A(Cn>4 i) ) ®A(Cn/p
pin

(ii) Now let G be arbitrary, again, and define
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flo(G) = Eo(G)'G(G)(P) ® EC(G)-O(G)(P)
CECy(G)

Then flo(G) is a ring factor of fl(G)(p), and .M(G) is an flo(G)-module

by (2). Also, since ResH(Eo(G)) = Eo(H) for all H C G by (1), the

Frobenius reciprocity relations show that

.N is a Green module over flo.

.4 is

is a Green ring, and that

If G is not p-hyperelementary, then x(Eo(G)) = 0 by (1), and so

the coefficient of [G/G] in

multiplication by [G/H] E R(G)(p)

shows that 0o(G) =

subgroups in this case.

Theorem 11.1

restriction.

*-computable with respect to both induction and

In particular, for any C E Cy(G),

MG)).14(H) H Him ResH(EC(G))-A(H). (4)AC(C) = EC(G)'41(G) H G

By definition of EC(G), for H E 2I(G), 4C,(H) if

H D C' for some (unique) C' conjugate to C, and is zero otherwise.
Also, if H = Cn>r, where C' C Cn, pin, and it is a p-group, then

AC,(H) = AC,(C' >4 a) by (iii). So (4) now takes the form

AC(C) _ 25 lim
H

),NC(H) _ lim

CCH

where the limits here are taken with respect to conjugation in NG(C).

The proof for inverse limits is similar. 13

So far, the results in this section apply to any p-local Mackey

functor A. When .N(G) = X(R[G]) for some functor X on R-orders, then

the summands .NC(G) and .14(G) can sometimes be given a more accessible

description in terms of twisted group rings. Such rings arise naturally

as summands of (ordinary) group rings K[G] when G is p-hyper-

In other

Eo(G) E 0(G) (P)

is

0o

is zero.

IndH o ResH by definition,

Since

this

is generated by induction from proper

words, Oo is *-generated; and by
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elementary. This is explained in the following proposition. As usual,

denotes a primitive n-th root of unity.
n

Proposition 11.6 Fix a prime p, a field K of characteristic

zero, and a p-hyperelementary group G = C A a (pIn, it a p-group).

Write K[Cn] _
[lm-1Ki,

where the K. are fields. Then G is

p-K-elementary if and only if the conjugation action of a on K[Cn]

leaves each K. invariant. In this case, K[G] splits as a product

K[G] = K[Cn la] = II Ki[w]t.
i=1

where each Ki[lr]t is the twisted group ring with twisting map

t : n --> Cal(Ki/K)

induced by the conjugation action of a on Ki. If, Furthermore, R is

a Dedehind domain with field of fractions K, and if R. C K. is the

integral closure of R, then [lm R [a]t is an R-order in K[G] and
i=1 i

m

R[G] = R[Cni4ir] C [] R1[a]t C
i=1

Proof By Example 1.2, we can write K[Cn] = K ®Q Q[ n]
- H KO

Q QCd;
din

and it acts on each K ®Q QCd via the composite

a
con

Aut(Cn) -» Aut(Cd) = Gal(QC d/Q)

Then Gal(Kcd/K) is the subgroup of elements in Gal(Qcd/Q) which leave

all field summands of KO
Q QCd

invariant. So a leaves the K.

invariant if and only if Im[w -* Aut(Cd)] C Gal(Kcd/K) for all din,

if and only if G = C A a is p-K-elementary.
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The splitting K[G] = fl 1Ki[w]t is immediate. Also, li=1Ri is

the maximal R-order in K[Cn]
fi=1Ki;

and so

m
R[Cn] C II Ri C n]

i=1

by Theorem 1.4(v). o

As an example of how this can be used, consider the functor A1(G) =

C11(Z[G])(p). If G = Cn Air, where p4'n and a is a p-group, then by

the proposition, there is an inclusion Z[G] = Z[Cn A r] C ndInZcd[n]t of

orders of index prime to p. So by Corollary 3.10,

A1(G) Cl (Z[Cn AV])
(P) - ki®

Cll(ZCk[a]t)(P).
In

We thus have two decompositions of 1(G) - 19 kinAlk(G), both indexed on

divisors of n; and it is natural to expect that Alk(G) = Cll(Zck[lr]t)(p)

for each k. This is, in fact, the case; but the actual isomorphism is

fairly complicated.

Lemma 11.7 Fix a prime p, let X be an additive (covariant)

functor from the category of Z-orders in semisimple lQ-algebras with

bimodule morphtsms to Z(p)-modutes, and write A1(G) = X(Z[G]) for finite

G. Assume that for any p-hyperelementary group G = Cn k a v a

p-group), the projections Z[Cn] --» Z(k induce an Isomorphism

X(Z[G]) = () X(ZLk[n]t).
kin

Then there is an isomorphism

R : Aln(G) = Aln(Cn >4T) = X(Z1n[a] t )

(1)

which is natural with respect to both induction and restriction in n, as



262 CHAPTER 11. A QUICK SURVEY OF INDUCTION THEORY

well as to the Galots action of (Z/n) * on ZCn.

Proof The definition of %3, as well as the proof that it is an
isomorphism, are both fairly long and complicated. The best way to see

what is going on is to first read the proof under the assumption that n

is a square of a prime, or a product of two distinct primes.

Fix G = C >4r, where p4n and a is a p-group, and let G E Cn

be a generator. For all min, set Gm = Cm>4x C G; I. e., the subgroup

generated by gn/m and Y. For all klmin, we fix the following
homomorphisms:

(i) Indk : .M(Gk) --> .N(C) and Resk : .N(C) - .N(Gk) are

the induction and restriction maps

(ii) Prof : .N(Cm) --) 14(Ck) is induced by the surjection

Cm XT -» Ck X w which is the identity on v, and which on the q-Sylow

subgroup of Cm (any prime qlm) is induced by a H aqr for

appropriate r (so Prof o Indk = Id if (k,k) = 1)

(iii) Prk : 4(C ) = X(Z[Cm4w]) ) X(ZCk[a]t) is the composite

of Projk with the map induced by sending
gn/k

E Ck to Ck = exp(2vi/k)

(iv) Ik: x(Zck[ir]t) -. X(ZC m[v]t), Rk: X(ZCm[ir]t) X(ZCk[lr]t)

are the induction and restriction maps for ZCk[x]t C ZCm[A]t

For k > 0, let p(k) be the number of distinct prime divisors.

For each ulmin such that (u,u) = 1, set

l ' _ (-1)ll([k,u])-p(k).(Ikk'u]o Prk) N(Gm) ® X(ZZk[w]t)
klm ulklm

(where [k,u] denotes the least common multiple). We claim that
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= limo incl : ® 9k(Gm) 3 4(Gm) ® X(Zck[AJt)
ulklm ulklm

is an isomorphism for all ulmin such that (u,u) = 1. In particular,

the lemma will follow from the case %3 = %3i .

To simplify notation, we write

X(k) = X(Zck[lr]t) (any kin); AU(Cm) = ® Ak(Gm) (any ulmin).
ulkim

The following naturality relations will be needed in the proof below. The

naturality of Indm with respect to projections to the X(k) is

described by the commutative square

Indn

4(Gm)
m

4(Cn)

®Prk =
11BPrk

(a(m,k) = kW(k+m)) (2)

k

® X(k) ®klnla(m,k). X(k)

klm kin

(this is induced by a commutative square of rings). No analogous result

for Resm seems to hold in general; but if for some prime q,q2In

then the following square does commute:

Resn

4(Gn)
n/q 3 4(Gq)

D/q®Prk = Projn/g2 ® ®Prk/q

Resn/g2
A(G ) ® (D X(k) n/q 3 A(G 2) $ ® X(k/q).n/q kin ® ®R n/q kin

qJn/k
q

gJn/k

(3)

The commutativity of (3) follows upon comparing bimodules, and the

vertical maps are isomorphisms by (1). Since Res /q Indn/q is an

isomorphism (Proposition 11.5(iii)), (2) and (3) combine to show that

Rjq Ik/k q is an isomorphism whenever q2 In and q{(n/k). In particular,
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for each such k,

Ik/q®incl : X(k/q) ®Ker(Rq) X(k) (4)

is an isomorphism. Finally, the commutativity of the following square is

immediate from the definition of Prk:

.(C n)
Pro n

.N( m)

® X(k) RE214 ® X(k)
kin kim

It suffices to prove that %3m is an isomorphism in the case m = n.

Fix u, where (u,

u)

= 1. If u = 1, then (3u is an isomorphism by

(1). Otherwise, let qlu be any prime divisor, and define v, m, and

r to satisfy

r ru=qv, n=qm, q{v, qjm.

We assume inductively that - and both are isomorphisms.

Case 1 Assume first that r = 1; 1. e., that g2in, m = n/q, and

v= u/q. Consider the following diagram:

.NV(Gm) -

vIndm

.NV(Gn) -

1f

4u(G) -

f2

fa

®Prk =I®Prk (any min) (5)

A(Gm) 4-- ® X(k)
vlkim

Indn ® Ik ® (Ik
+ Iqk)

m

Iv1kin
(m'k) vikim k k

.N(Gn) X(k)
vikin

® (-lkk+ 1Qk)
vikim

C ® X(k)
ulkin

where vIndm is the restriction of Indm, and the fi are inclusion

maps. The two small squares commute - the right-hand square by (2) -
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and the lower rectangle commutes by definition of (3 and (3. Also,

fi ® vIndm is an isomorphism (recall .1&(C ) = Ak(Gn) for all kim, by

Proposition 11.5(iii)); and the right-hand column is short exact. Since

pmof2 = %3m and (3nof3 = Pn are isomorphisms, by assumption, this showsv v v v

that Ru is also an isomorphism.

Case 2 Now assume that g2In, and consider the following diagram:

vResn
.NV(G ) n/g .Mv(G

=f1 f2

vResn/g2
.NV(G ) ® ® X(k) g - v(G 2) ® ® X(k/q)n/q ulkln ® ®R q n/g ulkln

where

f 1 = ®(proj o An) and f2 = vProj,g219 (proj o A1q).

Diagram (6) commutes by (3), and the relations

n q

I[k/q,v]
o Rk - R[k,v] o I[k,v]

k/q Rk/q [k,v]/q k

when grIkIn (i. e., q.fk). The maps fl and f2 are isomorphisms:

(6)

_ (ITV %Id) o f i : .NV (Gn) X(k) - ® X(k) ,
ulkin vlkln

where Pv
An/q

are isomorphisms by assumption; and similarly for

f2. But now Ru is the composite
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.Nu(Gn) = Ker(vResn )
g

f i ) Ker(VResn/g2) ® ® Ker(Rk)n/g ulkln k/g

= N1g(Glg) ®u ®InKer(Rg)

r g® Id `
u/g _

) ® (X(k/g)®Ker(R g)J
ulkln

Ik ® inclq
_ ® X(k);

ulkin

and is hence an isomorphism. 0

(by (6))

(by (4))

Proposition 11.5 and Lemma 11.7 now lead to the following theorem,

which greatly simplifies the limits involved when applying Theorem 11.1 to

calculate SK1(7L[G]), C11(7L[G]), SK1(2p[G]), etc., in terms of

hyperelementary subgroups. Recall (Theorem 1.6) that if G is any finite

group, and if K is a field of characteristic zero, then two elements

g,h E G are called K-conjugate if h is conjugate to ga for some

a E Gal(Kcn/K), where n = IgI. Also, for any cyclic a = (g) C G, with

n= IgI = Ia1, we define

NG(a) = Na(g) _ {x CC : yg 1 _ ga,
some a E Gal(KCn/K)}.

Theorem 11.8 Fix a prime p and a Dedehtnd domain R with field of

fractions K of characteristic zero. Let X be an additive functor from

the category of R-orders in semisimple K-algebras with btmodule morphisms

to the category of 7L (p)-modules. Assume that any inclusion 21 C B of

orders, such that nB C 21 for some n prime to p, induces an

tsomorphism X(21) -_> X(8). Then, for any finite G, if g1,...,gk E G

are K-conjugacy class representatives for elements of order prime to p,

where ni = 1g11, there are isomorphtsms:

(Proposition 11.5(iii))
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k

X(R[G]) = ® 1 {X(RCn [n]t) : ,r E 106(gi))}

(where denotes the set of p-subgroups), and

k
X(R[G]) {X(RCni[i]t) it E 5(N6(gi))}.

(1)

(2)

Here, the limits are taken with respect to inclusion of subgroups, and

conjugation by elements of NG(gi). For all n, RC denotes the

integral closure of R in K. The first isomorphism is natural with

respect to induction, and the second with respect to restriction maps.

Proof Write A = X(R[-]), for convenience. Fix G, and let Cy(G)

be a set of conjugacy class representatives for cyclic subgroups C C G

of order prime to p. By Proposition 11.5,

A(G) = ® AC(C);
CECy(G)

where for each C, if n = ICI, then

A(G) = ll A(C>4a).
C irEJ(N(C)) n

(3)

(4)

Fix C E Cy(G), and set n = ICI. By Theorem 11.2, 44 is

computable with respect to p-K-elementary subgroups. In particular, for

any it E I(N(C)),

An(CAir) (A (CAp): p C nnNG(C)}.

Using this, the limit in (4) takes the form

AC(C) - HO(N(C)/N (C); 1 An(C A T)).

(NG(C))

(5)

This time, the limit is taken with respect to inclusion, and conjugation
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by elements in NG(C).

Now write K ®Q Dn
=

nr=,Ki, where Ki = KCn for each i; and let

Ri C K. be the integral closure of R. By Proposition 11.6,

R[C>4a] C ]{ R®Z7Lck[a]t C and
kin

r
R®g7Lcn[n]t C ll Ri[a]t C

i=1

So by Lemma 11.7 (applied to the functor 21 I-> X(R®72I) on 7L-orders),

for each a C 55(N6(C)),

Nn(C>an) = X(R®77Qn[a]t t) = X( fl
i=1

® X(Ri[n]t) = ®X(RCJw]t)
i=1 i=1

(6)

Note that r, the number of field summands of Wn ® K, is equal to

the number of equivalence classes of generators of C under the relation
g^'ga

if a E Gal(Kcn/K). The factors X(Ri[a]t) are permuted, under

conjugation by NG(C), in the same way that these equivalence classes are

permuted in G. Thus, if there are m K-conjugacy classes (in G) of

generators of C, then (5) and (6) combine to give an isomorphism

AC(G) = 9 14 {X(Rcn[n]t) ,r E 51(N6(C))), (7)

where again the limit is taken with respect to inclusion, and conjugation

by elements of NG(C). Formula (1) now follows upon combining (3) and

(7); and formula (2) (for restriction) is shown in a similar fashion. 0

Induction properties with respect to p-elementary groups - i. e.,

subgroups of the form n x a where p4'n and a is a p-group - will

play an important role in Chapters 12 and 13. The next theorem gives a
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simple criterion, in terms of twisted group rings, for checking them.

Theorem 11.9 Fix a prime p, and a Dedekind domain R with field

of fractions K. Let X be an additive functor on R-orders with btmodule

morphtsms satisfying the hypotheses of Theorem 11.8. For any n, let
n

be a primitive n-th root of unity, and let
RCn

denote the integral

closure of R in K. Then

(i) X(R[G]) is generated by (computable for) induction from

p-elementary subgroups if and only if for any n with pin, any p-group

v, and any t: v -i Gal(Kcn/K) with p = Ker(t), the induction map

ind : HO(n/p; X(Rcn[P])) ' X(RC n[w]t)

is surjecttue (bijecttue).

(ii) X(R[G]) is detected by (computable for) restriction to

p-elementary subgroups if and only if for any n with pin, any p-group

v, and any t: v - Gal(Kcn/K) with p = Ker(t), the restriction map

res : X(Rcn[w]t) - H0(ir/p; X(Rcn[P]))

is injectiue (bijectiue).

Proof We prove here point (i) for computability; the other claims

are shown similarly. Write 4(G) = X(R[G]). Then A is p-K-elementary

computable by Theorem 11.2; and Ak(C
n
mr) = .Nk(Ck >4v) if kin by

Proposition 11.5(iii). So A is p-elementary computable if and only if

A (Cn41r) 255 li An (H) (1)

for a n y p-K-elementary group of the form G = n A v; where pin, v is a

p-group, and 9 is the set of p-elementary subgroups of G.

For H 9 Cn >4 v, .Nn(H) = 0 unless nhIHi; i. e., unless n C H.
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Hence, if p = Ker[t: A --1 Gal(KCn/K)], then

HEM An(H)
25

a1C An( n x a)

where the limit is taken with respect to inclusion and conjugation in G.

In other words,

O An (H)
a5 liM An(n x a) H H0(ir/P; .Nn (C x p));

H11 _P

and the result follows from the isomorphisms

.Un(CnM r) H X(ROZZrn[w]t) H X(Rrn[ir]t)N

.Nn(Cnxp) H X(R®azcn[P]) H X(RCn[p])N

(where N = v(n)/[Kcn:K]) of Lemma 11.7. 0

Finally, we list some specific applications of Theorem 11.8, which

will be used in later chapters. For technical reasons, a new functor

SK[p] will be needed. If 21 is any Z-order in a semisimple Q-algebra,

and p is a prime, set

SKiP](21) = Ker[SK1(21) 1 II SKI(uq)J(P)
q;eP

In particular, there is a short exact sequence

1 -> C11(21)(P) ) SKiP](21) - ) SK1(i )(P) -' 1.
p

By Theorem 3.14, for any finite G, SKI(2q[G])(p) = 1 for all

primes q X p; and so SKlp](Z[G]) = SK1(7L[G])(p) in this case. This is,

however, not always the case for twisted group rings. For example, if q

is any odd prime, and C2 C Gal(QCq/Q), then it is not hard to show using

Theorems 2.5 and 2.10 that SKI(2gcq[C2]t) H Il(q-1). So in this case,
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SKi2](Zcq[C2]t) SK1(ZCQ[C2]t)(2).

Theorem 11.10 Fix a prime p and a finite group G. For any

H C G, 5$(H) denotes the set of p-subgroups. Let a1,.... ak be a set

of conjugacy classes of cyclic subgroups of G of order prime to p. Set

n1 = Ia, I and N1 =NG(a1). Then

k

(1) C11(ZCG])(p) ® E-(IJ,cl,(ZCn`[w]t(p)'

k
(2) SK1(a[G])(P) ®

Eurn
SK1p](Zcni[w]t), and

k
(3) Cp(Q[C]) liter cp(C [w]t).

i=1

Proof By Proposition 1.18, Cl1(-)(p), SKip], and Cp(Q OZ -) are

all functors on the category of Z-orders with bimodule morphisms. Also,

elements g,h E C are Q-conjugate if and only if they generate conjugate

subgroups (by Theorem 1.5(1)). The condition that X(21) = X(B) whenever

is trivial for Cp(Q®Z-); and holds for C11(-)(p) and SKEP]

by Corollary 3.10. So the above decomposition formulas follow from

Theorem 11.8. a
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The induction techniques of Chapter 11 will first be applied to

describe SK1( p[G]) = SK1(Z[G])/C11(Z[C]), as well as K1(2 [G])(p) and

Kj(7Lp[G])(p), for finite groups G. In particular, all three of these

functors are shown to be computable for induction from p-elementary

subgroups. A detection theorem would be still more useful; but in Example

12.6 a group G is constructed for which SK1(2p[G]) is not detected by

restriction to p-elementary subgroups.

These results lead to two sets of formulas for SK1(2 p[G]) and

torspKj( p[G]). The formulas in Theorem 12.5 are based on the direct sum

decompositions of Theorem 11.8, and involve only the functors Hb and

(_)ab.
They are the easiest to use when describing either SK1(2p[G]) or

torspKj(2 p[G]) as abstract groups. As applications of these formulas, we

show, for example, that SK1(2 p[tj) = 1 if Sp(G) contains a normal

abelian subgroup with cyclic quotient (Proposition 12.7), or if G is any

symmetric or alternating group (Example 12.8).

In Theorems 12.9 and 12.10, alternative descriptions of the groups

Ki(7Lp[G]), SK1(7Lp[G]) and torspKi(7Lp[G]) are derived, in terms of

homology groups of the form Hn(G;2p(Gr)), where Cr = {g E G: p.lgl}.

The formula for SK1(7Lp[G]), for example, can be applied directly to

determine whether a given element vanishes. The new formula for

torspKj(2 p[G]) is derived from two exact sequences which describe the

kernel and cokernel of

r
G: Ki(2p[G]) -4 HO(G; p[G])

for arbitrary finite G, and which generalize the exact sequences of

Theorems 6.6 and 6.7.

As was seen in Chapter 11, results on p-elementary induction are
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obtained by studying twisted group rings. This is the subject of the

first two technical lemmas. Each is stated in two parts: part (i)

contains (most of) what will be needed in this chapter, while part (ii) in

each lemma will be needed in Chapter 13 (in the proof of Lemma 13.1).

For convenience, for any finite extension F of Qp, Gal(F/&)

will be used to denote the group of all automorphisms of F fixing
P
-

whether or not the extension is Galois. In this situation, for any

a C Gal(Ff%), Fv will denote the fixed field.

Lemma 12.1 Fix a prime p, let F be any finite extension of

and Let R C F be the ring of integers. Let t: a --> Gal(F//p) be any

homomorphism such that it is a p-group, and such that the extension F/Fv

is unramified. Let R[a]t denote the induced twisted group ring; and set

p = Ker(t). Then the following hold.

(i) The inclusion R[p] C R[a]t induces a surjection

ind : K1(R[p]) -v K1(R[r]t)

(ii) For any a-inuartant radical ideal I C R[p] (i. e., gIg 1 = I

for all g E a), set I
IgEy

C R[a]t. Then

indI : K1(R[p],I) -v K1(R[a]t,I)

is onto.

Proof Set S = Ra, the ring of integers in FT, and let p C R

and q C S be the maximal ideals. Then p = qR, since F/F7 is

unramified, and

a/p = Gal(F/FT) = Gal((R/p)/(S/q)). (1)

We first prove point (ii). Choose some r E R whose image F E R/p

generates (R/p)*. Fix coset representatives 1 =
90'91'92 " " 'gm-1

for

p in a, and set
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si = r l.t(gi)(r) - 1 E R

for each i Z 1. Here, si E R* since t(g1)(F) # F in R/p by (1).

Now fix any ir-invariant radical ideal I C R[p], and any element

[u] E K1(R[a]t,I) (u E 1+1). We want to construct a convergent sequence

U= u1,u2,u3,..., such that for each k Z 1,

uk E 1+ I+I and [u] = [uk] E K1(R[w]t,I).

To do this, assume that

m-1
uk = 1 + xigi (x0EI, xiEIk for 1SkSm-1).

i-0

has been constructed. Then

m-i m-1

U.K a fi (l+ xigi) _ (1+x0) II (1 + xisil(r l't(gi)(r)-1)g1)
1=0 i=1

11_ (1 +

1

(1 + r-I(xisilgi)r - (xisiIgi))
i=1

m-1
(1 + x0) [r 1,1+ xisilgi].

i=1

(mod
Ik+l)

Thus, [uk] = [uk+l] for some uk+l E 1+ 1 + !k +1 with uk a uk+1 (mod

Ik). Hence, since (1+I)flE(R[lr]t,T) is p-adically closed (Theorem 2.9),

and since Ik -> 0 as k --> a (I is radical),

[u] = [lliimm uk] E Im[indI: K1(R[p],I) - Ki(R[n]t.I)]

It follows that indI is surjective.

To prove (i), let J = (jrigi : jri E p) be the Jacobson radical of

R[p] (see Example 1.12), and consider the following commutative diagram:
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Kl(R[P],J) - K1(R[P]) _+ K1(R[P]/J) -' 1

IindJ

find lid,/p

Kl(R[v]t,J) -'' Kl(R[ir]t) - KI(R[v]t/1) - 1.

The rows in (2) are exact, so ind is onto if ind./p is. Also,

R[p]/J = R/p and R[ir]ta = R/p[./p]t = Mm(S/q),

where m = Iv/pI = [R:S]. The composite

hid

KI(R/p)

A/o
K1(R/p[ir/p]t) = K1(S/q)

(2)

is the norm map for an inclusion of finite fields, and hence is onto. 0

The next lemma will be used to get control over the kernels of the

induction maps studied in Lemma 12.1.

Lemma 12.2 Let p g Y, R C F, and t: a -' Aut(F) be as in Lemma

12.1. Then the following hold.

(i) K1(R[p]), with the aip-actton induced by

it/p --> Aut(R) x Out(p),

is cohomologtcatly trivial.

(it) If SK1(R[p]) = 1, then there is a sequence R[p] 2 J = I1 2

I2 2 ... of u-inuartant ideals, where J is the Jacobson radical, such

CO

that
n
flk=lIk = 0, and such that for all k:

Ik+l 2 IkJ + JIk and ir(A/P;KI(R[P]/Ik)) = 1. (1)

Proof Set E = Fw. Since F/E is unramified, there exists r E R

with TrF/E(r) = 1 (see Proposition 1.8(i1i)). If M is any
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R[tr/p]t-module, then for all x E :d

I g(r-(g lx)) = I (t(g)(r)).x = x.
gEtr/p gEtr/p

In other words, the identity is a norm in End(M); and so M is cohomo-

logically trivial (see Cartan & Eilenberg [1, Proposition XII.2.4]).

In particular, if p is abelian, then this applies to any power of
the Jacobson radical J C R[p]; and so

H*(n/P;(l+Jk)/(1+Jk+1)) = Ir(w/p;Jk/Jk+l) = 0

for all Also, trip acts effectively on the finite field R[p]/J;

and (R[tr]/J)* is easily seen to be it/p-cohomologically trivial. Thus,

K1(R[P]/Jk) - (R[P])*/(1+Jk)

is cohomologically trivial for all k, and in the limit K1(R[p]) _

(R[p])* is cohomologically trivial.

Now assume that p is nonabelian. Let {z1,...,zk} C p be the set

of central commutators in p of order p, set a = (z1,...,zk) a p, let

a: p -I p/a be the projection, and set I. = Ker[R[p] -+ R[p/o]]. Then

a a v; and a X 1 by Lemma 6.5. We may assume inductively that the

lemma holds for R[p/o].

Define

k ll

9 = SI C R[p] : I v-invariant; I = p2IO+ 1 (1-zi)IQ, some IQ C R[p]I:
l B=1

a family of ideals in R[p]. For all I E .1, the group

Ki(R[P],I) = Im[K1(R[P],I) - K1(F[P])] C Ker[Kj(R[P]) -* Ki(R/p2[P/a])]

is torsion free: tors(Ki(R[p])) = tors(R*)x pab by Theorem 7.3, and this

injects into Ki(R/p2[p/a]). Hence, by Theorem 2.8 and Proposition 6.4,
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log, : K1(R[P],I) -1 HO(P;I) = Im[HO(P,I) - HO(P;R[P])]

is an isomorphism. In particular, K1(R[p],I) is it/p-cohomologically

trivial for I E 9, since HO(p;I) is an R[lr/p]t-module.

By Proposition 8.1, the map

SK1(Ra) : SK1(R[P]) 0 SK1(R[p/v]) (3)

is surjective. Hence, Ki(R[p/a]) = Ki(R[p])/Ki(R[p],Ia). Both

Ki(R[p/a]) and Ki(R[p],Ia) are cohomologically trivial: the first by

the induction hypothesis and the second since Ia E J. So Ki(R[p]) is

cohomologically trivial.

If SK1(R[p]) = 1, then SK1(R[p/a]) = 1 by (3). So we may assume

inductively that there are ideals J(R[p/a]) = Ii 7 I2 2 ... which

satisfy (1). Fix m such that Im C p2R[p/a], and set Ik = (Ra)-1(Ik)

for 1 S k S m. In particular, Ia C 1m g Ia + p2R[p]. So if we set

Ik = jk-M.
Im for k >m, then Ik E 9 for all such k, and

Kl(R[P]/Ik) = K1(R[P])IKi(R[P],1k)

is cohomologically trivial. But K1(R[p]/Ik) is cohomologically trivial

for k S m by assumption; and hence the Ik satisfy conditions (1). o

This will now be applied to describe the functors SK1, K1, and Ki

on twisted group rings.

Theorem 12.3 Fix a prime p, let F be any Finite extension of

Qp, and let R C F be the ring of integers. Let t: it -> Gal(F/Qp) be

any homomorphism such that a is a p-group, and such that the extension

F/Fr is unramifted. Set P = Ker(t), and let R[a]t denote the induced

twisted group ring. Then the inclusion R[p] C R[lr]t induces

isomorphisms
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(1) indSK : H0(v/p;SKl(R[P])) ' SK1(R[n]t)

(2) indK : HO(w/p;Kl(R[P])) ) K1(R[n]t)

(3) indK, : HO(w/P;Ki(R[P])) ) Ki(R[ir]t)

(4) trfK, Ki(R[a]t) H0(A/P;Ki(R[P]))

Proof Using Lemma 8.3(ii), choose an extension

1 -4a--->a- -(X-+ 7r-4 1

of p-groups, where a(p) and ao = aIp, such that a C Z(p) and

H2(ao) = 0. In particular, by Lemma 8.9, SK1(R[p]) = 1.

The composites

KI(R[P])
and, K1(R[n]t)

t K1(R[P])

Kj(R[p])
ind, Ki(R[w]t) t Kj(R[p])

are induced by tensoring with R[a]t or R[ir]t as bimodules (see

Proposition 1.18), and are hence the norm homomorphisms NT/p for the

n/p-actions. So Ker(ind) C Ker(N,R/P) in both cases. Since Kj(R[p])

(= Ki(R[p])) and Kj(R[p]) are cohomologically trivial by Lemma 12.2,

Ker(N,a/p) _ (g(x).x I : gEir/p, xEKi(R[P]))

Ker[ind: Kj(R[p]) --1 Ki(R[a]t)]

and similarly for K1(R[p]). Also, since HO(a/p;Ki(R[p])) = 1,

HO(ir/p;Ki(R[p])) = Im(N,/P). The induction maps are onto by Lemma 12.1,

and it now follows that
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indK : H0(ir/p;K1(R[P])) ' K1(R[5]t),

indK, : HO(a/p;Ki(R[p])) Ki(R[,r]t), and

trfK, : Kj(R[n]t) 10(A/p;Ki(R[p]))

(5)

are isomorphisms.

Now set I = Ker[R[p] - R[p]] and I = and consider the

following diagrams with exact rows:

K1(R[p],I) - HO(n/p;K1(R[P])) - HO(n/p;Kl(R[p])) '-' 1

IindI =lindK

K1(R[a]t,I) - K1(R[a]t) ---i K1(R[-]t) - 1

1 -4 H0('a/p;SKl(R[p])) - H0(n/p;Kl(R[p])) - HO(ir/p;Ki(R[p])) - 1

find
Ii1dK

a- indK,

1 ) SK1(R[a]t) ------------ ) Kl(R[w]t) ) Ki(R[a]t) -+ 1.

Then indK and indK, are isomorphisms by (5), indl is onto by Lemma

12.1, and hence indK and indSK are also isomorphisms. a

Theorem 12.3 applies in particular to twisted group rings Rfn[a]t

of the form occurring in Theorem 11.8: Fcn/F is unramified if p4'n by

Theorem 1.10(i). So Theorem 11.9 now implies as an immediate corollary:

Theorem 12.4 If p is any prime, and if R is the ring of integers

in any finite extension of Qp, then the functors SK1(R[G]),

K1(R[G])(p), and Kj(R[G]) (p) are alt computable with respect to

induction from p-elementary subgroups, and Kj(R[G]) (p) is computable

with respect to restriction to p-elementary subgroups. O

As another application of Theorem 12.3, the decomposition formulas of
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Theorem 11.8, when applied to SK1(R[G]) and tors Kj(R[G])(p), take the

following form:

Theorem 12.5 Fix a prime p, let F be any finite extension of

Qp, and let R C F be the ring of integers. For any finite group G,

let g1,...,gk be F-conjugacy class representatives for elements in G

of order prime to p, and set

N. = NF (g) = {x E G: xg x 1 =g,, asome a E Gal (Kc /K) } (ni = Igi 1)
G i i n;

and Zi = CG(gi). Then

k

(t) SK1(R[G]) = ®HO(N1/Zi; H2(Zi)/H2b(ZI))(P); and
i=1

k
(it) tors(Kj(R[G]))(P) [(uF)P]k 0 ®HO(Ni/Zi; b)(PY

Proof Set ni = IgiI, and let #(N1) and §$(Zi) be the sets of

p-subgroups. Then by Theorem 11.8,

k
SK1(R[C]) 1 SK1(Rrn.[R]t)

k
® li HO (w/(nnzi);SKI(RCn, [,rnZi1))
i=1 rE ; )

k

® HO(Ni/Zi; li SK1(Rcn,.[P]))
i=1 pETTR;)

k
,,aa

HO(Ni/Zi; li H2(P)/n2b(P))
i=1 pd;)
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k
(( / l

H0(Ni/Zi; H2(Zi)' Lb(Zi))(P).i=1

Here, the last step follows since H2(-)(p) and I-I2b(-)(P) both are

computable for induction from p-subgroups by Theorem 11.1: they are Green

modules over the functor HO(-;Z (p)).

The formula for torspKi(R[G]) is derived in a similar fashion, but

using inverse limits (and Theorem 7.3).

In contrast to the results for induction, the following example shows

that SK1(2 p[G]) is not in general detected by p-elementary restriction.

Example 12.6 Fix a prime p, and let p be any p-group such that

SK1(7Lp[p]) # 1. Set n=pp-1, let H = Cn>4 Cp be the semtdirect

product induced by the action of Cp - Gal(4p(cn)/4) on (cn), and set

G = p x H. Then SK1( P[G]) is not detected by restriction to

p-elementary subgroups of G.

Proof By Theorem 11.9, it suffices to show that the transfer map

trf : SK1(2 pcn[pxCp]t) - SK1(2 pcn[p])

is not injective. Since the conjugation action of Cp on SKl(Zpcn[P])
-

H2(p)/ 2b(p) is trivial, the inclusion induces an isomorphism

SK1(2 pCn[P X Cp]t) = SK1(aprn[P]) $ 1

by Theorem 12.3. The composite

SK1(7Lpcn[P])
1

8K (2prn[P x Cp]t)
try

SK1(7LpCn[P])

is the norm homomorphism for the C-action on SK1(2 pcn[P]) (use Prop-

osition 1.18); is hence multiplication by p, and not injective.

The next proposition gives some very general conditions for showing
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that SK1( p[G]) = 1. Note, for example, that it applies to the groups

SL(2,q) and PSL(2,q) for any prime power q.

Proposition 12.7 Let p be any prime, and let G be any finite

group. Then SK1(2 p[G]) = 1 if SKI(2
p
[w]) = 1 for all p-subgroups

a g; G. In particular, SKI(Zp[G]) = 1 if the p-Sylow subgroup Sp(G)

has a normal abeltan subgroup with cyclic quotient.

Proof By Theorem 12.5(1), SK1(2
p
[G]) = 1 if H2(a)

all p-subgroups a C G; and this holds if SKI(Zp[w]) = 1

( ) = 1 for

for all such

W. If a p-group a contains a normal abelian subgroup with cyclic

quotient, then SKI(Zp[T]) = 1 by Corollary 7.2. 0

As a second, more specialized example, we now consider the symmetric

and alternating groups. Note that Proposition 12.7 cannot be applied in

this case, since any p-group is a subgroup of some Sn.

Example 12.8 For any n 2 1 and any prime p,

SK1(2 p[Sn]) = SK1(2 p[An1) = 1.

Proof For any g E Sn of order prime to p, the centralizer

CS.(g) is a product of wreath products:

CS.(g) = Cm12Sn1 x ... X Cmk2Snk;

where for each i, and hence pFmi. So by Theorem 12.5(1),

SK1(2 p[Sn]) = SK1( p[An]) = 1, if H2(G)/b(G) = 0 whenever G is a

product of symmetric groups, or is of index 2 in such a product.

The groups H2(Sn) and H2(An) have been computed by Schur in [1,

Abschnitt 1]. It follows from the description there that for a n y n Z 4,

the maps
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H2(C2 x C2) -i H2(A4) --' H2(An) (2) o H2(Sn)

(induced by inclusion) are all isomorphisms. Furthermore, H2(An) is a

2-group unless n = 6 or 7, H2(A6) and H2(A7) both have order 6,

and A6 and A7 have abelian 3-Sylow subgroups. So for all n,

H2(An)/b(An) n-' H2(Sn)/b(Sn) = 0.

By Proposition 8.12, the functor Hb is multiplicative with

respect to direct products of groups. Thus, H2(G)/H2b(G) = 0 whenever

G is a product of symmetric or alternating groups. If C is a

semidirect product

G = (Anl x ... x Ank S( Y nl x ... X Snk ;

then since H1(Anl x ... x Ank) has odd order, H2(G) is generated by

H2(AnIx...xAnk) and H2((C2)
k-1

)

Thus, H2( ) = 0 for such C, and this finishes the proof. a(

Example 12.8 was the last step when showing that Wh(Sn)= 1 for all

n. We have already seen that Wh'(Sn) is finite (Theorem 2.6) and

torsion free (Theorem 7.4); and that Cll(Z[Sn])=1 (Theorem 5.4). The

computation of SK1(Z[An]) = C11(Z[An]) will be carried out in Theorem

14.6.

To end the chapter, we now want to give some alternative, and more

direct, descriptions, of SK1(p[G]), torspKi(Zp[G]), and Ki(Zp[G])

for arbitrary finite G. For any G, and any fixed prime p, C, will

denote the set of p-regular elements in G: i. e., elements of order

prime to p. For any g E C, g,.,g, E C will denote the unique elements

such that g,. E G,, g, has p-power order, g = g,.g, , and [g,. , g, ] = i
(note that g,.,g, E (g)). For any R, H1(G;R(G,.)) denotes the homology
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group induced by the conjugation action of C on R(Gr). It will be

convenient to represent elements of H1(G;R(Gr)) via the bar resolution:

H1(G;R(Gr)) = H1(Z[G]®7 Z[G]®z R(Gr)
02 - z[G]®7 R(Gr) i R(Gr)),

where 01(g®x) = x-gxg 1 and 02(g®h®x) = h®x-gh®x+g®hxh 1.
When R is the ring of integers in a finite unramified extension of

then 0 denotes the automorphism of Hn(G;R(Gr)) induced by the map

41(jrigl) = 1*(rl)g! on coefficients. As usual, we write

Hn(G;R(Gr))o = Hn(C;R(Gr))/(1-4); Hn(G;R(Gr))40 = Ker(1-4) C Hn(G;R(Gr)).

Theorem 12.9 Fix a prime p, an unramified extension F Qp, and

a finite group G. Let R C F be the ring of integers. Define

'RG : HO(G;R[G]) -' H1(G;R(Gr)) and ORG : HO(G;R[G]) -i HO(G;R/2(G,))

by setting, for r; E R and g; E G:

w(Gr.gi) = Yg: ® r; (g: ), and O(Zrig:) = Zri (g. )r (F, E R/2).

Then

(t) There are unique homomorphtsms

URG : K1(R[C]) -- i H1(G;R(Gr)) and 9RG:Ki(R[G]) -' HO(G;R/2(Gr)),

which are natural with respect to group homomorphtsms, and which are

characterized as follows. For any u E CL(R[G]), write u = Jir;g; and

1u = I js j h; , where r; , s; E Mn(R) and gi,hj E G. Then

u([u]) = I g; E H1(G;R(Gr)). (Tr: Mn(R) --> R)
i,j

If p=2, then for any commuting pair of subgroups H,irc G, where IHI
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is odd and it is a 2-group, and any x E J(R[H x v]), 8(1 +x) is the
image of x under the composite

J(R[H x v]) ,r,,. J(R[H]) = 2R[H] R[H] c R(G,.) *+ HO(G; R/2(G,.)) .

(it) The sequence

1 - K1(R[G])(P)
T u $8

HO(G;R[G]) 0 H1(G;R(Gr)) 0 HG(G;R/2(Gr))

1(1 ,-1 0
A 0 $-1

H1(G;R(Gr)) $ HG(G;R/2(Gr)) 0

is exact.

(iii) There is an exact sequence

0 --' H1(G;R(Gr))40 $ HO(G;R/2(Gr)) Kj(R[G])(P)

r ' HO(G;R[G]) -' H1(G;R(Gr))4, 0 HO(G;R/2(Gr))4 - 0.

In particular,

torspKi(R[G]) =
H1(G;R(Gr))40

S HO(G;R/2(Gr))41.

Proof Using the relation gh®x = h0x+g®hxh 1, for g,h E G and
x E R(Gr), one easily checks that the map uRG: GL(R[G]) -i H1(G;R(Gr))

defined in (i) is a homomorphism. Hence, this factors through K1(R[G]) =

GL(R[G]) ab. If G is p-elementary, then H1(G;R(Gr)) = H1(Gab;R((Gab)r))

and SK1(R[Gab]) = 1, so that SK1(R[G]) C Ker(uRG). Since SK1(R[G])

is generated by p-elementary induction, this shows that
uRC

factors

through Ki(R[G]) = K1(R[G])/SK1(R[G]) for arbitrary finite G.

To see that 9RC is well defined when p=2, assume first that

G= H x v where IHI is odd and it is a 2-group. Then J(R[H]) = 2R[H],

and so
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K1(R/4[H])(2) = K1(R/4[H],2) = HO(H;2R[H]/4R[H]) Q--' HO(G;R/2(Gr))

by Theorem 1.15. This shows that
0RG

is well defined in this case; and

in particular when G is 2-elementary. Since Kj(R[-]) is(2)

2-elementary computable, 6 now automatically extends to a homomorphism

defined for arbitrary finite G.

If G is p-elementary - if G = Cn x a where pjn and w is a
p-group - then R[G] is isomorphic to a product of rings R1[x] for

various unramified extensions R./R. So in this case, sequence (ii) is

exact by Theorem 6.7, and sequence (iii) by Theorems 6.6 and 7.3.

All terms in sequence (ii) are computable with respect to induction

from p-elementary subgroups. Hence, since the direct limits used here are

right exact, (ii) is exact except possibly at K1(R[G])(p). But then (ii)

is exact if and only if (iii) is, if and only if

IKer(r)I = IH1(G;R(Gr))"I'IHO(G;R/2(Gr))"I

Also, Ker(r) = Ker(log) = torspK'(R[G]) (Theorem 2.9), and so

(1)

(1)

follows from a straightforward computation based on Theorem 12.5(11). For

details, see Oliver [8, Theorem 1.7 and Corollary 1.8]. n

The above definition of v was suggested by Dennis' trace map from

K-theory to Hochschild homology (see Igusa [1]). We have been unable to

find a correspondingly satisfactory definition for A.

We saw in Theorem 6.8 that a restriction map on HO(G;R[G]) can be

defined, which makes rRG natural with respect to transfer homomorphisms.

Unfortunately, there is no way to define restriction maps on the other

terms in sequence (ii) above, to make the whole sequence natural with

respect to the transfer. If there were, the proof of the injectivity of

(r,v,49) would be simpler, since inverse limits are left exact.

We now end the chapter with a second description of SK1(2
p
[G]). For

any finite G and any unramified R, set

H2(G;R(Gr))4, = H2(G;R(Gr))/(0-1);
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where is induced by the automorphism $(rg) = .p(r)gp of R(Gr). In

analogy with the p-group case, we define

H2b(G;R(Gr))t = Im[ ® H2(H;R(Hr))
I

H2(G;R(Gr))$]
HCG

H abeltan

= ((g^h)®rk E H2(G;R(Gr) )0 : g, h E G, k E G,. , r E R, (g,h,k) abel tan).

The following formula for SK1(R[G]) is easily seen to be abstractly

the same as that in Theorem 12.5(1), but it allows a more direct procedure

for determining whether or not a given element in SK1(R[G]) vanishes.

This procedure is analogous to that in the p-group case described in

Proposition 8.4. Note, however, that in this case, once u E SK1(R[G])

has been lifted to a E K1(R[G]) for some appropriate G, it is

necessary to evaluate both G(a) and TG(a). Knowing TG(a) alone does

not in general suffice to determine whether or not u vanishes in

SK1(R[G]) - no matter how large G is.

Theorem 12.10 Fix a prime p, and let R be the ring of integers

in any finite unramifted extension F of Then, for any finite group

G, there is an isomorphism

0G : SK1(R[G]) H2(G;R(Gr)) b(G;R(Gr))O;V -2

which is described as follows. Let 1 --> K a G -> 1 be any
extension of finite groups such that

Im[H2(6;R((;r)) ) H2(C;R(Gr))] C H2b(G;R(Gr)) (1)

Consider the homomomorphtsms
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Ker[HO(G;R[G]) -t HO(C;R[G])]

Kab
®ZG R(C ) 6

ab '2(C;R(Gr) )6)

6a(Ha2b(G,R(Gr))+ (l-+)H2(G;R(Gr))) qb(G;R(Gr)),

(6)-1)o c'1

Ker[H1(G;R(Gr)) -t H1(G;R(Gr))]
(2)

(r(z-1)g) = for any zEK, rER, and gEG; andHere, toa

and c are induced b the five term exact se nce

H2(G;R(Gr)) H a
H2(G;R(Gr)) S b®ZGR(Cr)

(3)

C Hl(G;R(C,))
HI(a)

H1(C;R(Gr))

of Theorem 8.2. Let DG: K1(R[G]) -+ HI(G;R(Gr)) be induced by the

homomorphism
vRG

of Theorem 12.9(1). Then, for any [u] E SK1(R[G]),

and any ttfttng to [u] E K1(R[G]),

eG([u]) _
(Sab)-1(@a

rG(u)+ G(u))) E H2(G;R(Gr)) b(G;R(Gr)),t.V -2

Proof By (1) and (3), Sab and (6)-1)oc-I are well defined, and

hism To see that f is well defined first setis a monomor
a

S Pab a

Ia = Ker[R[G] -' R[G]]
and

HO(G;Ia) = Ker[HO(G;R[G]) -+ HO(G;R[C])]

for convenience. The map Ia HI(K;R(Gr)) = Kab ®R(Gr), defined by

sending (z-l)g to z O a(gr), is easily seen to be well defined; and

induces a homomorphism

wa : HO(G;Ia) '-' HO(G;HI(K;R(Gr))) =
Kab

OZG R(Gr)

Consider the following commutative diagram:
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H1(G;R[G]) HO(G;Ia) --' HO(G;R[ ]) -0 HO(G;R[G])

I)'
I W a Iw

H2(G;R(Gr)) -f- b®ZGR(G,) `-' HI(G;R(Gr))

where G is as in Theorem 12.9; and where

X(g®rh) = (a(g)^h) O

r E E E C such that [a(g),h] = 1. The rows in

(4) are exact, and HO(G;Ia) = Coker(aa); so
wa

factors through a

homomorphism 3a as in diagram (2).

For any u E K1(Ra)-1(SK1(R[G])), G(u) E Ker(H1(a)) = Im(c). By

the exact sequence in Theorem 12.9(11),

is TG(u)+ G(u))

I

Kab® R(G ) l
E Ker 7LG r Hl(G;R(G,.)) = Im(bab6a(

H2 (G;R(Gr)) + (1-$)H2(G;R(Gr))))

So to see that ©G is uniquely defined - with respect to a given a, at

least - it remains only to check that

a TG(u)+ (4-1)(c-luG(a)) = 0 for any u E Kl(R[G],Ia). (5)

To prove this, set G = {(g,h) E G: a(g)= a(h)}, so that

is a pullback square. Set I = Ker(R[P2]) C R[G]. Since 132 is split
surjective (split by the diagonal map), 6P2 = 1, and /31 induces a
homomorphism
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13, Ker[H1(G;R(Gr)) - H1(G;R(Gr))] = Kab ®Z R(Gr)

Kab®ZGR(Gr)

ba(` ab(G,R(Gr)) + (1-$)H2(G;R(Gr))
).

Then any u E K1(R[G],Ia) lifts to 6 E K1(R[G],I);

@a rG(u)+ ($-1)(L-luG(u))

= ($-1)(L-IuG(u))) = R1*(0)

by Theorem 12.9(ii); and this proves (5).

We have now shown that there is a well defined epimorphism

OG : SK1(R[C]) - H2(G;R(Cr)) -(G;R(Gr))$

such that 0G([u]) = [Sab(rG(u))] for any [u] E SK1(R[G]) and any

lifting to [u] E K1(R[G]). This is independent of a: given a second

surjection a' onto G, the maps 0G defined using a and a' can

each be compared to the map defined using their pullback. Also, the

existence of a satisfying (1) follows from Lemma 8.3.

To show that OG is an isomorphism, it remains to show that the two

groups are abstractly isomorphic. But this follows from the formula for

SK1(R[G]) in Theorem 12.5; the formula

m
H2(G;R(Gr)) ®H2(CG(gi)) 0 R(gi)

i=1

(when g1,...,gm are conjugacy class representatives for Cr); and the

description of NG(gl) in Oliver [8, Lemma 1.5].

Alternatively, since H2(G;R(Gr)) b(G;R(Gr))$ and SK1(R[C]) areV -2
both p-elementary computable, it suffices to show for p-elementary C

that 0G is an isomorphism. And this is an easy consequence of Theorem

8.6. o
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The goal now is to reduce as far as possible computations of

C11(Z[G])(p) and SK1(Z[G])(p), first to the case where G is

p-elementary, and then to the p-group case. The reduction to p-elementary

groups is dealt with in Section 13a. The main result in that section,

Theorem 13.5, says that C11(Z[G])(p) and SK1(Z[G])(p) are p-elementary

computable if p is odd; and that SK1(Z[G])(2) can be described in

terms of 2-elementary subgroups via a certain pushout square.

Section 13b deals with the reduction from p-elementary groups to

p-groups. In particular, explicit formulas for C11(Z[G])(p), in terms

of C11(Z[ir]) for p-subgroups a g G, are given in Theorems 13.9 (p

odd) and 13.13 (G abelian). Theorems 13.10 and 13.11 deal with some of

the special problems which arise when comparing C11(R[ir]) with

C11(Z[a]) - when a is a 2-group and R is the ring of integers in an

algebraic number field in which 2 is unramified.

In Section 13c, the extension

1 -> cll(Z[G]) ' SK1(Z[G]) ®SK1( p[G]) - 1
p

is shown to be naturally split in odd torsion. An example is then

constructed (Example 13.16) of a 2-elementary group C for which 2 has

no splitting which is natural with respect to automorphisms of G.

13a. Reduction to p-elementary groups

As seen in Theorem 11.9, reducing calculations to p-elementary groups

involves "untwisting" twisted group rings. Before results of this type

for C11(R[ir]t) and SK1(R[ir]t) can be proven, the other terms in the

localization sequence for SK1(-) must be studied. The main technical
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results for doing this are in Lemma 13.1 and Proposition 13.3.

Lemma 13.1 Fix a prime p, let F be any finite unramifted

extension of and let R C F be the ring of integers. Fix a p-group

a, and let t: it --> Cal(F/&) be any homomorphtsm. Set p = Ker(t),

and Let R[A]t denote the induced twisted group ring. Then the following

hold.

(t) For any radical ideal I C R[p] such that gIg 1 = I for all

g E n, set I = E R[a]t. Then the inclusion R[p] C R[lr]t

induces an isomorphism

indI : H0(n/p;K1(R[p],I)) K1(R[a]t,I).

(ii) If SK1(R[p]) = 1, then the inclusion R[p] C R[w] t induces

an epimorphism

indK2 : K2(R[p]) -" K?(R[ir]t).

Proof Let J C R[p] denote the Jacobson radical, and set if = yr/p.

For any pair Io C I C R[p] of a-invariant ideals of finite index, let

aI/Io
: H0(a/p;Kl(R[p]/Io,I/Io)) -* K1(R[ir]t/Io,I/Io)

13I/I0 . K2(R[p]/Io,I/Io) - K2(R[a]t/IIo,I/Io)

be the homomorphisms induced by the inclusion R[p] C R[a]t. The lemma

will be proven in three steps. To simplify notation, we write K1(I/Io)

for K.(R[p]/Io,I/Io), etc.

Step 1 Assume first that Io C I C R[p] are a-invariant ideals of

finite index such that IJ + JI C Io. We want to show that al/1o is an

isomorphism, and that PI/Io is surjective.

Write I = 1 0 I and Yo = Io ® To, where I = and
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To = jgCV,PI0-g. By Theorem 1.15,

K1(I/Io) = (I/Io)/[R[p]/Io,I/Io] = HO(p;I'/I)

and (since generates R[A]t as an additive group)

K1(I%Io) = (I/IIo)/[R[a]t/IIo.I/IIo] = HO(A;I/Io) $ HO(R'a;I/ o).

In particular, this shows that aI/Io is a monomorphism. But aI/Io is

surjective by Lemma 12.1(11), and is hence an isomorphism.

By Example 1.12, J = (p,g-1: g E p) (as an R[p]-ideal); and the

Jacobson radical J C R[a]t has the same generators as an ideal in

R[a]t. Hence, by Theorem 3.3, K2(I/Io) is generated by symbols {1+p,v}

and {g,v} for g E p and v E 1+I/Io. To show that
RI/Io

is onto, it

will thus suffice to show that {u,l+gg} = 1 whenever u E (R[p])E
I/Io, and g E amp. As in the proof of Lemma 12.1, choose r E R such

that t(g)(r) % r (mod pR) (Gal(F/&) = Gal((R/pR)/Fp)); and set

s= r-l. t(g)(r) - 1= r-l. grg 1- 1 E R*.

Then, since rur-1 = u,

{u, l+gg} = {u , I+ s 1(r 1.grg 1- 1)gg}

= {u, l+r 1(s l+s 1fg}-I = 1.

Step 2 In order to prove (i), we first show that aI/Io is an

isomorphism for any pair Io C I C R[p] of ir-invariant radical ideals

such that [I:Io] < -. This will be done by induction on II/Iol. Fix

Io C I, set I1 = Io + IJ + JI (so Io C I1 C I), and consider the
following diagram:
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K2(I/I1) --1 HO(?r;Kl(I1/Io)) -+ HO(W;K1(I/Io)) -4 HO(a;Kl(I/I1)) -4 1

1131/li

1aj1/Io

la1,10
-IocI/I1 (1)

K2(I/Ti) ) Kl(I1%Io) -- K1(ILI0) Kl(I/I1) -' 1.

The top row is exact, except possibly at HO(a;Kl(I1/Io)). By Step 1,

aI/I1 is an isomorphism and /3I/I1 is onto. Also, aI1/Io is an

isomorphism by the induction hypothesis, and so a
I/Io

is an isomorphism

by diagram (1).

Now, for any ir-invariant radical ideal I C R[p],

K1(R[p],I) = 4Lm Kl(I/Io) and K1(R[n]t,I) = Jim Kl(I/IIo)

by Theorem 2.10(1 i i) , where the limits are taken over all Io C I of
finite index. Also, HO(A;-) commutes with the inverse limits, since the

K1(I/Io) are finite. Since the aI/I0 are all isomorphisms,

aI = Lm aI/Io is also an isomorphism.

Step 3 Now assume that SK1(R[p]) = 1. By Lemma 12.2(11), there is

a sequence

R[p]2J=I1;? I2;? ...

of a-invariant ideals, such that JIk-l+Ik-lJ C Ik for all k, such that

flk-lIk = 0, and such that Kl(R[p]/Ik) is if-cohomologically trivial for

all k. We claim that /3R[p]/Ik is surjective for all k; this is clear

when k = 1 since K2(R[p]/J) = 1 (Theorem 1.16).

Fix k 0, and assume inductively that 13R[p]/Ik-1 is onto.

Consider the following diagram:
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K2(Ik-l/Ik) - K2(RLP]/Ik) -' Ho(W;K2(RLP]/Ik-1)) - HO(v'Kl(Ik-I/Ik))

1

19Ik-1/Ik RRLP]IIk j13R[P]/I1c_1 -JaIk-1/1' (2)

K2(Ik-l/-Ik) - K2(R[v]t/k) KI(R[v]t/ik-1) - Kl(lk-l/-Ik)

Since the last two terms in the exact sequence

K2(R[p]/Ik-1) -' Kl(Ik-l/Ik) - K1(R[P]/Ik) -.' Kl(RLP]/Ik-1) -' 1

are v-cohomologically trivial, by assumption, the top row in (2) is exact

at HO(v;K2(R[p]/Ik_l)). Also, by Step 1, aIk-1/Ik is an isomorphism

and
pIk-1/Ik

Is onto. We have assumed inductively that 13R[P]/Ik-1 is

onto, and so the same holds for "R[P]/Ik.

In particular, in the limit, ind
K2 =

im 13RLP]/Ik is onto. O

Under certain circumstances, twisted group rings actually become

matrix rings. This is the idea behind the next lemma.

Lemma 13.2 Let R = Ljn
=1
R C S be rings, and let v C e be a

i i

subgroup such that gRg
1 = R for all g E it, and such that this

conjugation action of it permutes the Ri transitively. Assume that it

generates S as a right R-module, and that gRI = R1 for any g E it

-

21

such that gR1g 1 = RI. Then there is an tsomorphism a: S 1 Mn(R1)

which sends R to the diagonal. More precisely, if g1,...,gn E it are

such that giR1gi1 = Ri, then a can be defined such that for any

r = (r1,...,rn) E R (r1 E Ri),

a(r) = a(rl,...,rn) = diag(g1 rlgl,...,gnlrngn).

Proof Fix elements g1,...,gn C it, and central idempotents

e1,...,en C R, such that gIR1gi1 = RI and Ri = Rei for each I. In

particular, if v' = {gEi: gRlg 1=R1}, then the gl are left coset
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representatives for n' in ir. We first claim that {glel,...,gnel} is

a basis for Se
1

as a right R1-module. The elements generate by

assumption (gRl = R1 for g E a'). To see that the g
i
e
i

are linearly

independent, note for any r1,...,rn E R1 such that J1g1r1 = 0, that

gjrj if i = j

eigjrj = )'gj =
0 if i 0 j

(gjrjgj E gjRlgj Rj),

so that for all i, girl = eigiri = 0.

In particular, if we consider Se
1

as an (S,R1)-bimodule, this

induces a homomorphism

a : S ) EndR,(Sel) = Mn(Rl).

Furthermore,

n n
n -1 n n

S = ® Sei = ® S.gielgi = ® gjRlgi ;

i=1 i=1 i=1 i=1 j=1

and for all i, j, and k,

gR if k = i
agjRlgilgkRd =

J
1 -1 -1

0 if k # i.
(elgi gkel = gi eiekgk = 0)

This shows that a is an isomorphism. The formula for ajR is clear.

As is suggested by Theorem 11.9, the goal now is to compare

SKI(R[lr]t), where R[a]t is a global twisted group ring and p = Ker(t),

with SK1(R[p]). The next proposition does this for the other terms in

the localization sequence of Theorem 3.15.

Recall the definition of Steinberg symbols in Section 3a:

{u,v} = [¢ 1(diag(u,u 1,1)) , $ l(diag(v,l,v 1)), E St(R)

for any (not necessarily commuting) u,v E R*. Here, : St(R) ---> E(R)
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denotes the standard projection. It will be convenient here to extend

this by defining, for arbitrary n >1 and arbitrary matrices

u,v E GLn(R), {u,v} E St(Mn(R)) = St(R).

Proposition 13.3 Fix a prime p, a p-group n, a number field K

in which p is unramifted, and a homomorphism t: a -4 Gal(K/f). Let

R C K be the ring of integers, set p = Ker(t), and let K[w]
t

and

R[a]t be the induced twisted group rings. Let

i HO(a/p;Cp(K[P])) -'' Cp(K[ir]t), i K2(Rp[P]) -' K2(Rp[lr]t),

iSKp : HO(n/p;SK1(Rp[P])) -i SK1(Rp[.r]t)

be the homomorphisms induced by the inclusion R[p] C R[a]t. Then

(t) iCp is surjectiue, and is an isomorphism if p is odd, or if

p = 2 and K'r has no real embedding;

(ii)
iSKp

is an isomorphism; and

(iii) there is an isomorphism

In (iii), for any f = 1k=1gi®a1 E H1(1r/P;SK1(Rp[P])), where g.Eir,

a
i
E SKl(Rp[p]), and 1, a(f) is defined as follows.

Fix matrices ui E GL(Rp[p]) which represent the ai, and write

[gl,ul][g2,u2]...[gk,uk] = (X) E E(Rp[P])

for some X E St(Rp[p]). Then

k

a(f) = ai) _ 1 E K2(Rp[a]t).
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Proof Point (i) will be proven in Step 1. Point (ii), and point

(iii) when SK1(Rp[a]) = 1, are then shown in Step 2; and the general

case of (iii) is shown in Step 3. Recall (Theorem 1.7) that 9P = n
PIPP

and Rp - IPIPII, where the products are taken over all prime ideals in

R which divide p.

Step 1 Set n = In/pI and Ko = Kim, for short. Then KO
Ko

K is a

product of n copies of K, KKK[p] = (K[p] )n; and the factors are

permuted transitively under the conjugation action of v. By Lemma 13.2,

KOKOK[7r]t - Mn(K[P]),

and the composite CP(K OKo K[p]) --> Cp(K ®Ko K[ir]t) = CP(K[p]) is the

transfer map. In the following commutative diagram:

CP(K ®Ko K[P])
trf» p(K[P]) = Cp(K OK. K[,r]t)

Itrf

I

trf

p(K[P])
iC0

4 CC(K[n]t).

the transfer maps are all onto by Lemma 4.17, and so iCP is onto.

If p is odd, or if p = 2 and Ko = K'r has no real embedding,

then by Lemma 4.17 again,

CC(K[a]t) - HO(Cal(K/Ko);CC(K ®Ko K[v]t)) - HO(Gal(K/Ko);CC(K[P]))

To see this when p = 2, note that Conjecture 4.14 holds for K[r]
t

by

Theorems 1.10(ii) and 4.13(11): since K2[n]t - [p12Kp[A]t, and each

factor is a summand of some 2-adic group ring of the form F[CC)4n]. By

the description of the isomorphism K ®Ko K[ir]t - Mn(K[p]) in Lemma 13.2,

the action of Gal(K/Ko) on CP(K[p]) is just the conjugation action of

n/p. So iCP is an isomorphism in this case.
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Step 2 Fix some prime pip in R, and let p=pl,...,pn be the

orbit of p under the conjugation action of w. Let ai C w be the

stabilizer of pi - wi = {g Eir: gipigi1 =pi} - and set q = pl...p .

Then Rq = [[i=1Rp . Consider the following homomorphisms:

n
H0(ir/P;SK1(Rq[P])) -f-L-- HO('R/p;i®SKl( pa[Ai]t f SKi(Rq[a]t).

Here, fl is an isomorphism by Theorem 12.3; and f2 is an isomorphism

Lemma 13.2: since Bq[a]t = Mn(Rp[ai]t), and the inclusion
li=1Rpi[,ri]t

C Aq[ir]t is the inclusion of the diagonal. If SK1(Rp[p]) = 1, then by

a similar argument,

K2(Rq[P]) = ®K2(Rp;[P]) ®K2(Rpi[nl]t) -" K2(Rq[a]t)

are surjections by Lemma 13.1. After summing over all ir-orbits of primes

pip in R, this shows that iSKp is an isomorphism, and that
iK2

is

surjective if SK1(Rp[p]) = 1.

Step 3 Now assume that SK1(Rp[p]) # 1. Using Lemma 8.3(11), choose

an extension

a ) i t a 1 where p = a 1(P). ao = aIP,

such that a C Z(p) and H2(ao) = 0. Then SK1(Rp[p]) = 1 by Lemma 8.9.

Consider the following commutative diagram:

K2(Rp[P]) - K2(Rp[P]) -1L H0(a/P;K1(Rp[P],I)) -L-> HO(ir/P;Kl(Rp[P]))

113 1i2 = 14 = is

K2(Rp[i]t) ---' K2(Rp[n]t) a-> K1(Rp[ir]t,I) -+ K1(Rp[ir]t).

Here, I = Ker[Rp[p] - Rp[p]] and 1 = Ker[Rp[ir]t - Ap[a]t]. Then i3
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is onto by Step 2 (SK1(Rp[p]) = 1), 14 is an isomorphism by Lemma

13.1(1), and i5 is an isomorphism by Theorem 12.3. Furthermore,

Ki(Rp[p]) and K1(Rp[p]) (= Ki(Rp[p])) are w/p-cohomologically trivial

by Lemma 12.2(1); and so a diagram chase gives isomorphisms

Coker(i2) = Ker(T)/Im(/i) H1(w/p;Kl(Rp[p])) = H1(ir/p;SKl(Rp[p]))

To check the formula for a(f) = a(ggi ®ai), lift gi, u1, and X

to gi E a, ai E GL(Rp[p]), and X E St(Rp[p]). Then g lifts to

[Sl,al]...[~gk,]'$(X)-1
E K1(Rp[P],I);

and as an element of K1(Rp[flt,I) this pulls back to

a(f) =
1 E K2(Rp[a]t). o

Now recall the functor SKip] of Theorem 11.10. This was defined so

that for any g-order 21, there is a short exact sequence

1 --> Cl1(a)(P)- SKip](2I) -- SKi(9p)(P) -- 1.

By Theorem 3.14, SK[p](R[G]) = SK1(R[G])(p) whenever G is a finite

group and R is the ring of integers in a number field.

Theorem 13.4 Fix a prime p and a number field K where p is

unramifted, and let R C K be the ring of integers. Let a be a

p-group, fix a homomorphism t: rr -+ Gal(K/@), and set p = Ker(t). Let

R[rr]t be the induced twisted group ring. Then

(i) iCl :HO(7r/p;Cll(R[p])) Cl1(R[ir]t)(p) is surjectiue, and

is an isomorphism if p is odd; and

(ii) iSK :HO(lr/p;SKI(R[p])) - SKip](R[a]t) is surjectiue, and

is an isomorphism if p is odd or if 0 has no real embedding.
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Here, iCl and iSK are induced by the inclusion R[p] C R[w]t. In

general, the following square is a pullback square:

HO(w/P;CP(K[P])) -!-- HO(ir/p;SKl(R[P]))

I IiSK (1)

P(K[w]t)
82 SK4P](R[1r]t).

Proof First consider the following two commutative diagrams, whose

rows are exact by Theorems 3.9 and 3.15:

K2(R [P]) ) HO(ir/P;CP(K[P])) HO(a/P;C11(R[P])) -' 1

IiK2

Iicp

(2b) jici (2)

K2(RP[w]t) -- CP(K[ir]t)
82

C11(R[a]t)(P) - 1

a'
H1(w/P;SK1(RP[P]))

HO(v/p;C11(R[P])) -L HO(,r/p;SK1(R[P])) -+ HO(ir/P;SKI(RP[P])) _"' 1

iCl (3a) ji

1 -, C11(R[a]t)(P)- SKIP](R[w]t SKl(RP[A]t)(P) 1.

Here, by Proposition 13.3, 1CP is surjective and
iSKp

is an

isomorphism. It follows that iCl and iSK are surjective.

From the exactness of the rows in (2) and (3), we see that (3a) is a

pushout square, and that (2b) is a pushout if iK2 is surjective. Thus,

the "obstruction" to (2b) being a pushout square is Coker(i)

Hl(a/p;SK1(RP[p])) (Proposition 13.3(iii)). on the other hand,

Hl(w/p;SKl(RP[p])) also occurs in (3), where it generates Ker(f). So if

we somehow can identify these two occurrences of Hl(ir/p;SKI(AP[p])),
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then (2b) and (3a) will combine to show that (1) is a pushout square.

To make this precise, consider the following square:

H1(ir/P;SK1(Rp[P])) 8 + HO(wr/p;Cll(R[P]))

a l-= proj

Coker(iK2) -) HO(ir/p;Cll(R[p]))/1(Ker(iCP )).

(4)

Here a is the isomorphism of Proposition 13.3(111), and $3 is induced

by diagram (2). Assume for the moment that (4) commutes. Then

Im(proj o 8') = Im((3) = Ker(iC1)/01(Ker(i,)).

It follows that

Ker(iC1) = a1(Ker(iCP))+Im(8') = c71(Ker(iCP ))+Ker(f);

and hence from (3) that

Ker(iSK) = f(Ker(iCi)) = foc71(Ker(iCP)) = 81(Ker(iCP)).

Since Coker(81) = Coker(02) by (3), this shows that (1) is a pushout

square.
If p is odd, or if p = 2 and Kx has no real embedding, then

iCP is an isomorphism by Proposition 13.3(1), and hence
iSK

is also an

isomorphism. If p is odd, then 8' = 1 in (3) - the standard

involution fixes C11(R[p]) (Theorem 5.12) and negates SK1(Rp[p])

(Theorem 8.6) - and so iCl is an isomorphism.

It remains to prove that (4) commutes. Fix

k
= E H1(ir/P;SK1(Rp[P])) (so fl(gi(ai)'a11)= 1E SKl(Rp[p]));

and represent each a1 by some u1 E GL(R[p]) (SK1(R[p]) surjects onto

SK1(Rp[p]) by Theorem 3.9). Write
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[gl,ul]...[gk,uk] = $(X) E E(Rp[p]) (X E St(Rp[p])).

By Proposition 13.3(111),

a(f) = {g1,u1}...{gk,uk}.X l E
(Rp[A]t),

Also, SK1(R[p][p]) = 1 by Theorems 4.15 and 3.14, so the u1 can be

lifted to x1 E St(R[p][p]). Then a(f) lifts to

n = gl(xl).x1-
1.g2(x2).x21 ...gk(xk).xkl'X

1 E 1(KpLPJ);

and the elements

gl(xl).xil.g2(x2).x21...gk(xk).1 E St(R[p]CPJ), X E St(Rp[p])

are both liftings of n[gi,u1] E CL(R[p]). From the description of 81

in Theorem 3.12, it now follows that

k
Roa(f) = l(n) = [gl,ul]...[gk,uk] = A

i=1

= 8'(f) E HO(n/p;Cll(R[p]))

Diagram (1)

by C11 (when

13c.

Recall that

0

above need not be a pushout square if SKI is replaced

p = 2). This is the basis of Example 13.16 in Section

a 2-hyperelementary group Cn >iir (21n, w

2-lt-elementary if

11.9, and 11.10 now

Im[a
con

Aut( n) = (Z/n)*] C {J1}.

combine to show:

a 2-group) is

Theorems 13.4,

Theorem 13.5 For any ftntte group G, C11(Z[G]) and SK1(Z[G])

are generated by tnductton from elementary subgroups of C. For any odd

prime p, C11(Z[C])(p) and SK1(Z[G])(p) are p-elementary computable;



304 CHAPTER 13. Cl1(Z[G]) FOR FINITE GROUPS

while for p = 2, SK1(7[G])(2) is 2-elementary generated and

2-IR-etementa.ry computable. Also, if 9 denotes the set of 2-elementary

subgroups of C, then the following is a pushout square:

(2)
l C(Q[H]) aa li SK1(Z[H])

HE
2I

HE

C2(l[G]) ' SK1(7[G])(2).

(1)

Proof For odd p, this is an immediate consequence of Theorems 13.4

and 11.9. As for 2-torsion, square (1) is a pushout square by Theorem

13.4 and the decomposition formula for SK[2] of Theorem 11.10. Note

that direct limits are right exact, so a direct limit of pushout squares

is again a pushout square.

Recall the formula

C(QCG]) = ["'(G) 0 7l/n]
u (Un)

of Lemma 5.9: where RC/R(G) = RC(G)/R.(G), 21n, and exp(G)ln. The

functor RCS(-)(2) is 2-IR-elementary computable by Theorem 11.2.

Tensoring by 7/n and taking coinvariants are both right exact functors,

so they commute with direct limits; and C2(l[G]) = C(D[G])(2) is thus

2-IR-elementary computable. Square (1) remains a pushout if the limits are

taken over 2--R-elementary subgroups; and so SK1(8[G])(2) is also comput-

able with respect to induction from 2-IR-elementary subgroups of G. 0

Square (1) above need not be a pushout square if SK1(7L[G])(2) is

replaced by C11(7L[G])(2); and C11(7L[G])(2) is not in general

2-IR-elementary computable. Counterexamples to both of these are

constructed in Example 13.16 below.

What would be more useful, of course, would be a result that

Cl1(7L[G]) and SK1(7L[G]) were detected by restriction to elementary

subgroups. Unfortunately, just as was the case for SK1(2 p[G]) (Example
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12.6), C11(Z[G])(p) is not in general p-elementary detected.

13b. Reduction to p-groups

The goal now is to compare C11(R[a]) to Cll(Z[a]), whenever w

is a p-group and R is the ring of integers in any algebraic number field

K in which p is unramified. The main results in this section are that

C11(R[a]) = C1l(Z[a]) if p is odd (Theorem 13.8); and that when p = 2,

Cll(R[a]) is isomorphic to one of the groups Cll(Z[ir]), C11(ZC7[ir]),

or Cl1(Zc3[a]) (Theorem 13.10). The differences between these last

three groups (when n is a 2-group) are examined in Theorems 13.11 and

13.12. When p is odd or G is abelian, these results then allow a

complete reduction of the computation of C11(Z[G])(p) to the p-group

case.

The main problem here is to get control over the relationship between

K2(Rp[a]) and K2(7Lp[a]) in the above situation. In fact, these two

groups can be compared using Proposition 13.3(iii) from the last section.

But first, some new homomorphisms, which connect K2(7Lp[n]) with H2(A),

must be defined.

For any group n,

X7 : H2(w) - K2(Z[v])/{-l,a}

will denote the homomorphism constructed by Loday [1]. One way to define

Aw is to fix any extension 1 --> R -+ F a n ---+ 1, where F is the

free group on elements a2,...,an; and let

A: F - St(Z[a])

be the homomorphism defined by setting A(ai) = h11(a(ai)). In

particular, (A(ai)) E E(Z[ir]) is a diagonal matrix with entries a(ai)

and alai)-1 in the first and i-th positions (and 1 elsewhere). Then
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for any a C R, $(A(a)) = diag(1,a(a2)j2,...,a(an)j") for some ji C Z;

and so A([R,F]) C ({g,g) ={-1,g}: g C C) _ (-1,r) by Theorem 3.1(i,iv).

Also, A(R n [F,F]) C Ker(#) = K2(Z[u]), and so A induces a homomorphism

A : H2(A) - (Rn [F,F])/[R,F] ' K2(Z[A])/{-l,ir}.

Note that a(g^h) = {g,h} for any commuting pair g,h E ir.

When tr is a p-group for some prime p, we let RV denote the

composite

Aa : H2(r) -'' K2(Z[ir])/{-l,n} (Z
K2( p

A splitting map for w is constructed in the next lemma. This map

9,w: K2(Zp[v]) -> H2(ir) can be thought of as a K2 version of the

homomorphism

v : K1(Zp[ir]) ) nab

of Theorem 6.7: defined by setting u (jrigi) =
(i')1/lr' for any unit

Jrigi E (2 p[a])*. One can also define 9,m using Dennis' trace map from

K-theory to Hochschild homology (see Igusa [1]); but for the purposes here

the following (albeit indirect) construction is the easiest to use.

Lemma 13.6 Fix a prime p and a p-group a. Then there is a unique

homomorphism

0 = 0 : K2(2p[n]) --) H2(A);

such that for any central extension 1 -- 4 a - 4 it n -9 1 of
p-groups, the following diagram commutes:
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K2(p[n]) 'I K1(2 p[a],I,)

9A ua Vi; (1)

a
bH2(ir) 0 a a .

Here, Ia = Ker[ p[A] -+ Zp[a]], u;R is the map defined above, and for

ri E p, g1 E W, and zi E a,

ua(1 + 2ri(zi-1)gi) = Hzi'.

In addition, the following two relations hold for 07:

(t) 9A factors through K2(2pand the composite

8H2(ir) " H2(w)

is the identity.

(it) For any g E n, any p g; a such that [g,p] = 1, and any

u E (Zp[p])*, 0ir({g,u}) = g"up(u).

Proof For any central extension 1 - a - 7r a> a -> 1, let Ia

be as above, and let I = Ker[Zp[ir] --» Zp] be the augmentation ideal.

Then ua factors as a composite

K1(ap[a] Ia) proj Ia I /I Id = HO(i; Ia/I Ia) a > a (2)

where the middle isomorphism follows from Theorem 1.15, and where

wa(Zri(zi-1)gi) = flzi' for r1E p, ziE a, and giE G. In particular,

this shows that ua is well defined. Since the rows in (1) are exact,

9,r can be defined uniquely to make (1) commute whenever

[A])1 K1(p

0

ba is

injective. There exist central extensions with ba injective by Lemma
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8.3(i); and two such central extensions are seen to induce the same 07

by comparing them with their pullback over n.

It remains to prove the last two points.

(i) Let n a a be such that sa: H2(a) -i a = Ker(a) is

injective. Fix x E H2(a), and write

sa(x) = [gl,hl]...[gk,h ] E afl[ir,ir].

By the above definition of Ir (and Theorem 3.1(iv)):

7(x) a {a(gl),a(h1)}...{a(gk),a(hk)) E K2(2p['r])/{-l,f,r}.

Then

OR
r(x)) = ua aoX7(x) =

ua([g1,h1]...[gk,hk])

([gi,hi] E
K1(2 pp],Ia)

= [gl,hl]...[gk,hk] = sa(x) E a;

and so 0 $ (x) = x.

(ii) Now let g and p be such that [g,p] = 1, and fix
u = Irihi E (2 p[p])*. Let 1 -- a -+ a al n --> 1 be as before,

choose liftings g,hi E it of g and hi; and set u = Jrihi. Then

a({g,u}) _ [g,u] in diagram (1); and

[g,u] = 1 + (gug 1 - u) u 1 = 1 +
(jri)-1(gg

- u) (mod

I again denotes the augmentation ideal). So
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e({g>u}) = (6«)-1(U«(Cg,u])) = (s«)-l(ua(l + (yr.)-1(gug
1 - u)))

l 1

(by (2))

_
(ba)-1(ua(1 +

(sa)-l(fl[8,hil]ri)1/2r; =
([I(g^hi)ri)l/lri = g^uP(u). 0

As was hinted above, 0 is needed here mainly as a tool for

describing the cokernel of certain transfer homomorphisms in K.

Lemma 13.7 Fix a prime p, and let R be the ring of integers in

any algebraic number field in which p is unramified. For each prime

pIp in R, set

kp = ordp([R/p:7L/P]) = ma"{i : PiI[R/p:Z/P] = [Kp: p]};

and set k = minplp(kp). Then for any p-group n, the sequence

e11

K
trf

K2(2p[n]) k ' vPk ® (H2(A)/x2b(n)) -4 0

is exact, where 6k is the reduction of 0V.

Proof Since Rp = [PIPRp (Theorem 1.7), it suffices to show that

0.1
K2(RP[-]) trf

YZ p171) PO (H 2(')//"2

is exact for each p. Since KvA is unramified, this involves only

cyclic Galois extensions of If
9;F

C Kp, p1[Kp:F], and S C F

is the ring of integers, then

trf : K2(RP[n]) -b K2(S[ir])

is surjective, since the composite trf o incl is multiplication by
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[Kp:F] on the pro-p-group K2(S[,r]). In particular, it suffices to prove

the exactness of (1) when [Ikp:Q] = pk for some k.

In this case, write C = Cal(R /& ), and consider the twisted group

ring Rp[,rx C]t. Then Rp[G]t is a maximal order (see Reiner [1, Theorem

40.14]), and so Rp[G]t = Mpk(Zp) by Theorem 1.9. The transfer thus

factors as a composite

trf : K2(Rp[,r]) is K2(Rp[axC]t) = I (Mpk(Zp['r])) ( pCA])

Proposition 13.3(iii) now applies to show that

Coker[trf: K2(Rp[,r]) - 2(zp[,r])] = H1(G;SK1(Rp[ir]))

GO (H2(w)/b(,r)) (Theorem 8.6)

Z/pk®(H2(v)/H (v))

The exactness of (1) will now follow, once we have shown that the

composite

0°
12(Rp[w]) trf K2(ZpC'r]) ;i' upk ®(H2(w)/H (w) )

vanishes. To see this, assume that H2(a)/H2b(,r) A 0, and fix an

extension 1 -> (z) - a a a -i 1 such that ba: H2(w) --» (z) = Cp

is surjective and Ker(ba) 7 H2b(a) (use Lemma 8.3(1)). Then z is not

a commutator in W. The induced map SK1(a): SK1(2 p[a]) -4 SK1(Zp[a])

is injective by Theorem 7.1, and its image has index p by Proposition

8.1. We can thus assume, by induction on ISK1(2 p[,r])I, that the result

holds for W.

Consider the following commutative diagram with exact rows:
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K2( p[TM]) R "' K2(Rp[a])

aR
) Kl(Rp[A],(1-z)) -

Iti
It2 It3

11i a

K2(2 p[ir]) K2(2 p[a]) -!Z- Kl(2 p[ai,(1-z));

K1(Rp[3])

where the t; are transfer homomorphisms. By Proposition 6.4, the only

torsion in K1(Rp[n],(i-z)) is (z) (HO(W;(1-z)Bp[n]) is torsion free

since z is not a commutator); and so this subgroup generates Im(OR).

It follows that K2(Rp[a]) is generated by iR(K2(Rp[ir]))
and

RV (H2(0) C K2(2p[,r]); and hence that

Im(t2) = (iZ(Im(t1)), K2(2p[lr])pk).

k

Clearly, K(2p[1r])p C Ker(87); and i1(Im(t1)) C iZ(Ker(O7')) Ker(O;)

by the induction assumption. O

Lemma 13.7 will now be applied to compare Cll(R[a]) with

C1l(Z[ir]), when a is a p-group and p is unramified in R. As usual,

this is easiest when p is odd.

Theorem 13.8 Fix an odd prime p, a p-group a, and a number Field

K in which p is unramtfied. Let R C K be the ring of integers. Then

the transfer homomorphism

trf : C11(R[ir]) -- Cll(Z[u])

is an tsomorph.tsm.

Proof Consider the following commutative diagram of localization

sequences (see Theorem 3.15):
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c(A [w]) - Cp(K[rr]) 1 C11(R[A]) -' 1

trfK2
ltrfCP

trfCl

K2(2
p[ir]) - p(Q[Tr]) ) C11(7L[r]) -9 I.

(1)

Here, trfCp is onto by Lemma 4.17. For any simple summand A of l[a]

with center F. F = L(fn) (En = exp(2rri/pn)) for some n by Theorem

9.1; and since p is unramified in K, K ®. F = Z(K ®1 A) is a field

with the same p-th power roots of unity as F. So Cp(K[rr]) = Cp(I[ir])

by Theorem 4.13; and trfCp is an isomorphism.

It follows from diagram (1) that trfCl is onto, and also (using

Lemma 13.7) that there is a surjection

Z/pk ® (H2( (a)) = Coker(trfK2) f s Ker(trfC1).

The standard involution is the identity on C11(R[w]) by Theorem 5.12;

and is (-1) on Coker(trfK2) by Lemma 13.7 (and the description of 0

in Lemma 13.6). Hence f =1, and trfCl is injective. a

This can now be combined with Theorems 11.10 and 13.4, to give the

following explicit description of C11(7L[G])(p) in terms of p-groups.

Theorem 13.9 Fix a finite group C and an odd prime p, and let

a1,...,ak C G be conjugacy class representatives for the cyclic subgroups

of order prime to p. For each i, set Ni = NG(ai), Z.
= CG(ai),

and

let 55(Zi) be the set of p-subgroups. Then

k
C11(7L[G])(P) k HO(Ni/Zi; lei Cl1(7L[ir])). o

i=1 rrE°P(Z; )

The formula in Theorem 13.9 gives a quick way of computing

C11(7L[G])(p) as an abstract group, but it is clearly not as useful if one

wants to detect a given element. The best thing would be. to find a
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generalization of the formula C11(7L[G]) = Coker(y(,) for p-groups in

Theorem 9.5. The main problem in doing this is to find a satisfactory

definition of
PC

in the general case. The closest we have come is to

show that for any finite C,

Cl1(7[G])[2] = Coker(H1(G;7L[G]) G ) [R,(G) ® Z/n] *)[2]
(8/n)

for any n such that exp(C)In, where PG(g0h) is defined for any

commuting pair g,h E C as follows. Let V1,...,Vm be the distinct

irreducible C[G]-representations. For each i, let Vi g Vi be the

subspace fixing h, and let Vi<g> C Vi be the sum of the

exp(2ai/d)-eigenspaces for g: Vi -i Vi, for all din. Then

*G(g ®h) = m E [RC,(G) ® 7L/n] *.

i=1 (7L/n)

Under the isomorphism [RC,,,(G) 0 7L/n] * = C(®[G]) of Lemma 5.9, this
(Z/n)

is easily seen to be equivalent to the definition of *G in Definition

9.2 when G is a p-group. Also, yG is natural with respect to

inclusions of groups; and so the isomorphism C11(7L[C])[2] = Coker(+G)[2]

follows from Theorems 9.5, 13.5, and 13.8.

In contrast to Theorem 13.8, when rr is a 2-group, it turns out that

there can be up to three different values for C11(R[a]) for varying R

(in which 2 is unramified). These are described more precisely in the

following theorem.

Theorem 13.10 Fix a 2-group a and a number field K where 2 is

unramified; and let R C K be the ring of integers. Consider the maps

w : K2 21w]) - C2(ID[v]) and K2 (2[A]) -'

Let
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0"
0 DJ2 ®(H2(w)

Ga

/,,ab(A) )

be the homomorphism induced by 9 Then

(i) C11(R[w]) = C2(D[ir])/Im(p) if K has a real embedding;

(ii) C11(R[w]) K is purely imaginary and

[R/p:F2] is odd for some prime p12 in R; and

(iii) C11(R[w]) = K2(k[w])/(Ker(e")) if K is purely imaginary

and [R/p:ff2] is even for all primes p12 in R.

Proof For any simple summand A of (Q[w] with center F,

F C @(fn) for some n (fn = exp(2wi/2n)) by Theorem 9.1. In

particular, since 2 is unramified in K, K % F = Z(K ®Q A) is a field

with the same 2-power roots of unity as F, F2, and KP % F for any

prime p12 in K. Furthermore, K % F has a real embedding if and only

if K and F both do. It follows that

C2(K[w]) - C2(Q[w]) if K has a real embedding; and

(1)

C2(K[w]) = K2(Kp[w])(2) = K is purely imaginary.

In the first case, the isomorphism is induced by the transfer map (which

is onto by Lemma 4.17). In the second case, we define an isomorphism a

to be the composite

a : C2(K[w]) = Coker[K2(K[w]) - ® K2(KP[w])](2) 0 12(Kp[w])(2)
P

=ltrf

for any prime p12 in K. To see that a is independent of the choice

of p, note that for any simple summand A of @[w], either



CHAPTER 13. Cl1(7[G]) FOR FINITE GROUPS

C2(K %A) = L/2 = K2(A2)

315

(and so there is only one possible isomorphism C2(K % A) = K2(A2)); or

else aIC2(K % A) is the composite

C2(K % A)
t

C2(A) r° K2(A2).

Now consider the following diagram:

(2)

K2(R2[A]) ) 2(g2(ir])/{-1,±r}
s

a/2k ®(H2(A)/l b(n)) 0,

where k = max{i: 211[R/p:W2], all p12 in R}, and tI is the transfer

map. By Lemma 13.7, the row in (2) is exact, and the triangle commutes.

Furthermore, 5v factors through K2(7L[a]), and the composite

K2(7L[n]) --) j SK1(7L[n],n)(2) = C2(D[w])

vanishes by construction (K2(2p[1r])(2) = 1 for odd p). It follows that

V2(221r]) = (Im(tl) , Im(am)) _ (Im(tl) , Ker(4p)). (3)

Similarly, since Ker(V) and differ by exponent 2 (Theorem 9.1),

Im(tl) C Ker(O") = Ker(01) C (Ker(9k), C (Im(tl),

K has a real embedding, there is a commutative diagram

K2(R2[a]) - C2(K[w]) C11(R[n]) -> 1

Itt It2 It3

H2(n)

7 proj

C2(D[w]) --> Cli(Z['m]) - 1,
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where the ti are transfer maps, and t2 is an isomorphism by (1). Then

Im(p)= by (3), and so t3 is an isomorphism.

If K has no real embedding, then we use the diagram

P
K2(R2[ir]) Rat C2(K[ir]) I Cll(R[a]) -' 1

c(82[r]) -' A[A])

where the top row is exact, and the square commutes by definition of a.

If [R/p:ff 2] is odd for some p12 in R (i. e., if k= 0), then t1 is

onto by (2), and so C11(R[a]) = Coker(4p). And if k > 0, then by (4),

C11(R[w]) = KA[w]/mPo t1) = (Ker(A")). o

In particular, for any 2-group it and any R (such that 2 is
unramified in R), C11(R[a]) is isomorphic to CI1(Z[ir]) (in case (i)),

C11(gc7[ir]) (case (ii)), or C11(7Lc3[7]) (case (iii)). Theorem 13.10

gives algorithms for computing these groups, and the "unknown quantity" in

all of them is K2 (22[a]). This is why one can hope that any procedure

for describing Cl1(7L[a]) will also extend to the other two cases. Note

that C11(ZC7[A]) = Cl1(7C3[ir]) if H2(v) = Hb(a) - in particular, if

n is abelian.
We now want to carry these results farther, and get lower bounds, at

least, for the differences between these groups C11(R[a]). We first

consider the case where it is abelian (so C11(R[a]) = SK1(R[a])).

Theorem 13.11 Let a be an abelian 2-group, and set k = rk(ir).

Then

2' SK1(ZC7[n]) 2' SK1(7[ir]) ® SK1(Z 3[v/n2])

SK1(Z[n]) ®
(8J2)2'`-1-k-(a).
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Here, ir2 = {g2: g E a} . If n = (C2)k (so a2 = 1), then the following

triangle commutes:

0

('ZLA]) H2(ir)\Jv
-1-k-1-k"

K2(&2[n])/{-l,kir} =
(Z/2)2

where V(g-h) = {g,h} for g,h E n and, is tnjecttue.

(1)

Proof For convenience, set n = 11/'R2, and let a: A -4 R be the
projection. For each simple summand A of Q[w], either A = Q and is

a simple summand of (Q[7r], in which case C(A) = 1; or A = Q(fi) for

some i Z 2, and C(A) = (gi) = K2(A2). See the table in Theorem 9.1 for

more details. In particular, this shows that

f1®f2 : C(Q[w]) $ K(%[n])

is an isomorphism; where f1 is the usual projection and f2 is induced

by a.

Let J = (2, 1-g : gEir) C 12[a] be the Jacobson radical (Example

1.12). From the relation

(g-l) + (h-1) = (gh-1) - (g-1)(h-1) ° (gh-1) (mod J2) (for g,h E a)

we get that (a2[,r]) = 1 + J = (±g, u: g E ir, u (: 1 + J2). So by Corollary

3.4,

K2(7L2[a]) = ({±g,±h}, {g,u} : g,hEa, uEl+J2). (2)

For any g,hEi,

{±g,±h} E Im[K2(Z[ir]) - K2(22[ir])] 9 Ker(flopv)
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by definition of C(R[w]). Also, {w,l+J2} C Ker(f24,d, since for any

uEl+J2, {g,u} maps to {il,l+4Z2} = 1 at each simple summand 2 of

42(1] (=
(42)2

). So by Theorem 13.10, (fl,f2) induces an isomorphism

w]) = Coker[4,R: K2(Z2Cw]) -' KZ(kCw]),1(ZS3C

i(ZCi]) ® SK1(Zc3Cn])

Now assume that w = it = (C2)k, and consider triangle (1). This

clearly commutes on symbols {ig,ih}. For any u C 1+ J2 and any g E w,

we have seen that gyp({g,u}) = 1; and 9w({g,u}) = g^uw(u) = 0 by Lemma

13.6(11). This shows that (1) commutes; and hence by Theorem 13.10 that

k

SK1(ZC3[w]) = SK1(ZC7[w]) = Coker(V).

Since 2[w] =
k

K2(k[w]) = (Z/2)2 by Theorem 4.4. So the

remaining claims - the injectivity of V and the ranks of Coker(V) and

will all follow, once we have shown, for any basis

{g1,...,gk} for w, that the set

3 = , {-l,gi} , {g1,gi} E KcA[w]) : 1 i < j Sk}

is linearly independent in K2(&2[w]).

To see this, define for each s E F a character Xs: w -' fill as

follows:

s = Xs(ge) = 1 (all e)

s = {-1,g1}: Xs(gi) = -1, Xs(ge) = 1 (all a #i)
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s = {gi,gj}: xs(gi) = Xs(gj) = -1, ks(ge) = 1 (all a Ai,j)

Then, if s: K2( [n]) -- K2(@2)= {tl} denotes the homomorphism induced

by XS, we see that KS(s) _ -1 for each s, while (under an obvious

ordering) x(s) = 1 for all t < s in V. This shows that P is

linearly independent in K2(@2[a]). 13

For nonabelian n, the best we can do in general is to give lower

bounds for the "differences" between the groups C11(Z[a]), C11(7Lc7[ir]),

and C11(ZC3[ir]). Recall that for any 2-group ir, the Frattint subgroup

is the subgroup generated by commutators and squares in a;

i. e., the subgroup such that a/Fr(a) = Z/20 nab.

Theorem 13.12 Let a be any 2-group, and set k = rk(a/Fr(ir)). Set

R = rk(Im[H2(a) --> H2(n/Fr(a) )] ); S = rk(Im[112b(a) -> H2(ir/Fr(ir) )] ),

so that S S R S (2). Then there are surjecttons

C11(Zc7[n]) 11 Cll(Z[v]) ®
(Z/2)2k-1-k-R

and

C11(Zc3[v]) = C11(ZC21[A]) --» C11(ZS7[n]) ®
(Z/2)R-S.

In particular, C11(Zc3[7]) $ Cll(ZC7[a]) if R > S.

Proof Set a = it/Fr(a) = (C2) k, and let a: n -+ fr be the

projection. Let

sA : K2ca2['r]) --p H2(w), s : K2(Z2[A]) - 112(i)

be the homomorphisms of Lemma 13.6. Consider the following commutative
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1
K2(22Cn])/{-l,fa}

K a
K2(2 2[R])/{-1,±ii} A » H2(r)

C2(D[w]) u f1 fz

Here, V(g-h) = {g,h}, and is injective by Theorem 13.11. Note in

particular the following three points:

(Z/2)2 -1-k'
(a) K2(k[W

k

13.11.

(b) Al 7 = Id by Lemma 13.6(1).

and VoO_ = p_, by Theorem

(c) pA = 1 since 7 factors through K2(Z[w]), and the

composite

Id
H2(n)

'r

/01
HZ(a) (1)

K2(7L[n]) ) K2(g2[w]) 'P ) 4im SK1(71[a],n)(2) = C2(Q[w])
n

vanishes by construction (K2(2 p[a])(2) = 1 for odd p).

Now consider the homomorphism

(f1,f2): KZ(k[ir])/{-1,fr} 1 c2(QCrJ) ® 2

Write D[a] = A x Q[R], where A is the product of all simple summands

of @[A] not isomorphic to Q. Then, since C2(Q[A]) = C2(A) (Theorem

4.13), (f1,f2) factors through a product of epimorphisms

[I (A2)/{-1,±r} -» C2(A)] x [K2(k[W])/{-l,fir} - K2c(E [R])/{-l,fi}].
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This shows that (f1,f2) is onto; and hence (using Theorem 13.10(11))

that there are surjections

C11(ZE7[ir]) = Coker(4p) » Coker((f1,f2)4) (by (d))

s S Coker(f24)

= Coker(.p) S Coker[H2(a)
H a

H2(n)

Cll(Z[v]) S
(Z/2)2'`-1-k-R

To compare C11(Zc3[a]) with C11(7Lc7[u]), set

D = Ker[A" : H2(a) -i Z/20 (H2(1r)/b(1r) ), ,

(by (a))

so that Cl1(Zr3[a] ) = K2(Q2[n])/v(O- (D)) by Theorem 13.10(111). Fix

any splitting $3: Im(f2 oip) of the inclusion

(K2(k[a]) has exponent 2). Then there is a surjection

-1 (proj pof2)
Cl (Zr[n]) = K(@2[A]) (A (D)) » Coker(p) ® _

1 3 n F2oc(0' (D) )7

Im(VoH2(a)) Im[H2(a) -i H2(a)]
19

VoH2(a)(D) Im[H2b(A) -* H2(r)]

Cl1(ZZ7[n]) S
(Z/2)R-S

0

The groups constructed in Example 8.11 (when p = 2) have the

property that R > S in the above theorem, and hence that C11(ZC3[wr]) $

C11(Zc7[ir]) for such v. This difference is the basis for the

construction in Example 13.16 below of a group G for which the inclusion

C11(Z[G]) C SK1(Z[G]) has no natural splitting.

When G is a finite abelian group, Theorems 13.8 and 13.11 yield as
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a corollary the following formula for SK1(Z[G])(p) (= C11(Z[G])(p)).

Note that this reduces the computation of SK1(Z[C]) (for abelian G) to

the p-group case - which is handled by Theorems 9.5 and 9.6.

Theorem 13.13 Fix an abeltan group G and a prime piIGi. Write

G = Hxw, where v is a p-group and p4IHI. Set k = rk(ir), and let n

denote the number of simple summands of Q[H]. Then

n
® SKJR[Ir ) if p is odd

sKl(ZCGJ)(P)

® SK1(Z[v)) 0 if p = 2.

Proof Identify @[H] = fi=1K where the Ki are fields. Let

R. Ki be the ring of integers. Then V = fl 1Ri is the maximal order

in K[H], and [1[a]: Z[G]] is prime to p by Theorem 1.4(v). Hence

n

SK (Z[G])() ® SK1(R1CAJ)
1 i=1

by Corollary 3.10, and the result follows from the formula in Theorem

13.11 (p = 2) or Theorem 13.8 (p odd). a

13c. Splitting the inclusion C11(Z[G]) C SK1(Z[G])

So far, all results about SK1(Z[G]) deal with its components

C11(Z[G]) and SK1(Zp[C.]) separately. It is also natural to consider

the extension

1 -- Cll(Z[G]) SK1(ZCGJ) E ® sK1($p[GJ) - 1;
P

and in particular to try to determine when it is split. The key to doing

this, in odd torsion at least, is the standard involution.
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Theorem 13.14 For any finite group C, there is a homomorphism

sG : SK1(Z[G]) ) C11(Z[G]),

natural in G, whose restriction to C11(7[C]) is multiplication by 2.

Proof This will be shown for SK1(7L[G])(p), one prime p at a

time. Fix p, and consider the short exact sequence

e

1 --> C11(7[G])(p)
)

SK1(7L[G])(p)
G SK1(2p[G]) -i 1

of Theorem 3.15.

Step 1 Assume first that G is p-elementary: G = Cn x w, where v

is a p-group and pin. Instead of the usual involution, we consider the

antiinvolution T on @[G] defined by:

T(Zairigi) = lair igi (ai E (D, r i E C 1, gi E n).

We claim that T* acts via the identity on Cl1(7L[G])(p), and via

negation on SK1(2 p[G]).

Step lA Let a E Aut(G) be the automorphism: a(rg) = r lg for

r E Cn and g E Y. Then T is the composite of @[a] with the usual

involution on @[G]. In particular, by Theorem 5.12, T* = a* on

C11(7[G])(p) and Cp(D[G]).

By construction, Q[a] fixes all p-th power roots of unity in the

center of @[G]. So by Theorem 4.13, a* is the identity on Cp(Q[G]),

and hence (by the localization sequence of Theorem 3.15) on CI1(7[G])(p).

It follows that T. = id on CI1(7L[G])(p).

Step lB Write & [Cn]
= nk=1FiI

and
Zp[Cn

]
= ni=1Ri, where the

Fi are unramified field extensions of and Ri C Fi is the ring of
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integers. Then this induces decompositions

k k
[G] =Z II Ri[a] and SK1(2 [G]) = II SK1(Ri[TM])p

i=1
p

i=1

By construction, T leaves each of these summands invariant, and acts on

each one via the identity on coefficients and by inverting elements of T.

By Theorem 8.6, T* acts on each SK1(R1[ir]), and hence on SK1(1 p[G]),

by negation.

Stev 1C Now define sG: SK1(2p[G]) - SK1(Z[G])(p) as follows:

given x E SK1(2 p[G]), lift x to x E SKI(Z[GI)
(p),

and set

SG(x) =

This is independent of the choice of lifting by Step lA, and its composite

with the projection to SK1(2p[G]) is multiplication by 2 (1. e.,

squaring) by Step 1B. By construction, sG is natural with respect to

homomorphisms between p-elementary groups.

Step 2 Now let G be an arbitrary finite group, and let 8 be the

set of p-elementary subgroups of G. By Theorem 12.4,

8K1(p[C]) = l sKl(Zp[H]),
HE

where the limit is taken with respect to inclusion and conjugation.

Hence, by Step 1, there is a well defined homomorphism

sG
H

sH : SK1(Z [C]) - H SK1(Z[H])(P)
_Ind

SKl(Z[G])(P)'

where sG is natural and 2G o sG is multiplication by 2. So

s
G
: SK,(Z[G])(p) --> Cl1(Z[G])(p) can be defined by setting:

SG(x) = x2-(sC 0 QG(x))-l. 13
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An immediate corollary to Theorem 13.14 is:

Theorem 13.15 For any finite group G and any odd prime p, the

p-power torsion in SKI(Z[G]) splits naturally as a direct sum

SKI(Z[G])(P) = C1I(Z[G])(P) ® SKI(ap[G]). a

The problem remains to describe the extension C11(Z[G]) C SKI(Z[G])

in 2-torsion, in general. It seems likely that examples exist of 2-groups

where the inclusion C11(Z[G]) C SKI(Z[G]) has no splitting at all. This

problem is closely related to Conjecture 9.7 above, and the discussion

following the conjecture. In particular, the splitting of the inclusion

Cl1(Z[G]) C SKI(Z[G]) seems likely to be closely related to the splitting

of H2b(G) C
H2(G)-

The following example shows, at least, that the inclusion C11(Z[G])

C SKI(Z[G]) need have no natural splitting in 2-torsion: more precisely,

no splitting which commutes with the action of the automorphism group

Aut(G). At the same time, it illustrates how Theorem 13.5 can fail if

SK1(-) is replaced by C11(-).

Example 13.16 Let a be any 2-group with the property that

Im[H2(a) -- H2(ir/Fr(ir))] Im[H2b(a) -i H2(a/Fr(,r))].

Set G = C7 x Sa x 7r, and Go = C7x C3 x 7 r a G (S3 = C3 A C2) . Then

(t) C11(Z[C])(2) is not 2-IR-elementary computable;

(it) the square

lim
H

C2(Q[H]) » li CII(Z[H]) (2)

1 1

(1)

C2(Q[G]) % ClI(Z[G])(2)
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is not a pushout square, where 9 denotes the set of 2-elementary

subgroups of G; and

(iii) the extension

1 -i C11(7[Go]) --' SK1(7L[Go]) - SK1(12[Go]) - 1 (2)

has no splitting which is natural with respect to automorphisms of Go.

Proof Set a = Gal((21/QC7) = C21 and let 7S21[7r xa]t be the
induced twisted group ring. Then a acts trivially on Cll(Zc21[ir]) (it

acts trivially on C2(D21[a]) by Theorem 4.13). Furthermore, there is

an inclusion

ZC21[lr x a]
t
C M2(ZC7[n])

of odd index (see Reiner [1, Theorem 40.14]); and so by Corollary 3.10 and

Theorem 13.12:

cll(7LC21[n x a]t) = C11(ZZ7[w]) Cl1(7c21[w]) = HO(a;Cll(7S21[A])) (3)

Note that C = C21 >4 (w x a). Just as in the proof of Theorem 11.9, this

shows that C11(7[G])(2) is not computable with respect to induction from

2-It-elementary subgroups. Also, since C2(7L[G]) is 2--R-elementary

computable, this shows that square (1) above is not a pushout square.

Now, by Theorem 13.4,

SKi2](z521[n x a]t) HO(a;SKl(ZC21[w]));

a n d similarly (by Proposition 13.3(11)) for X C I 2a]t). Together

with (3) above, this shows that the sequence

1 - H0(a;C11(7c21[n])) -' H0(a;SK1(7C21[7T])) -> H0(a;SKI(a2C21[A])) 1

is not exact. This implies in turn that the exact sequence
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1 - ) Cl1(gc21[r]) -) +SK1(7C21[ir]) --- sKl(22c21[n]) ' 1 (4)

has no splitting which commutes with the action of a. But (4) is a

direct summand of sequence (2) above by Corollary 3.10 (12c21[7] is a

direct summand of 22[Go]); and so (2) has no natural splitting. o

More concretely, consider the group

a = (a,b,c,d I a2 =b2= c2 =d 2= [a,b][c,d] = 1)

Then
nab

= (C2)4,
and

[ir,ir] = Z(a) = (C2)5 (see Example 8.11). If

a: 4 --a
,gab

is the projection, then H2(a) has image of rank one

(generated by a-b+c^d); while its restriction to H2b(a) is zero. So

n satisfies the hypotheses of Example 13.16.
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We now list some examples of calculations of SK1(Z[G]). These

illustrate a variety of techniques, and apply many of the results from

earlier chapters.

We have already seen, in Theorem 5.4, that C11(Z[G]) = I if R[C]

is a product of matrix algebras over R. The first theorem extends this

to some conditions which imply that SK1(Z[G]) = 1 or Wh(G) = 1. It

shows, for example, not only that the Whitehead group of any symmetric

group vanishes, but also that Wh(C) vanishes whenever G is a product

of symmetric groups, or a product of wreath products Sm2Sn, etc.

Theorem 14.1 Define classes 9, Q, 9) of finite groups by setting:

9 = {G : IR[G] is a product of matrix algebras over I+;

Q = {G : @[G] is a product of matrix algebras over a} C 91; and

2) = {G : H,(CG(g))

Then

( C(g)) = 0, all g E 4.

(i) Wh(G) = 1 for any G E Ql 1), SK1(Z[G]) = 1 for any G E kfl),

and SK1(Z[G]) = C11(Z[G]) for any G E 0;

(ii) all symmetric groups lie in Q11%, and all dihedral and

symmetric groups Lie in in!); and

(tit) all three of the classes 91, Q, and ) are closed under

products, and under wreath products with any symmetric group Sn.
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Proof By Theorem 12.5(1), SK1(Z[C])/C11(Z[G]) = 0pSK1(!p[G]) = 1

for any G E W. If G E 51, then C11(Z[G]) = 1 by Theorem 5.4. If

G E Q, then Wh'(G) = Wh(G)/SK1(Z[G]) is torsion free (Theorem 7.4) and

has rank zero (Theorem 2.5); and so Wh(G) = SK1(Z[G]) in this case.

For convenience, write 7I(G) = H2(G)/I1ab(G) for any G. By

Proposition 8.12, W is multiplicative; and so 9 is closed under taking

products (note that CC H(g,h) = CG(g) X CH(h)). When checking that

((CG2S (g)) = 0 for a n y G E T and any g E GZSn, we are quickly reduced

to the following two cases:

(a) $=(g1,...,gn)EGnCC Sn: then is a product of

wreath products (by symmetric groups) over the centralizers
CG(gi).

(b) where a=(12...n)ES then

(g,CG,n($)). and W(CG.n($)) =W(C(;($l...gn)) =0.

Using Proposition 8.12 again, we see that 2Y(CS) =0 if X(G)=O (any

p-Sylow subgroup of GZSn is contained in a product of wreath products

G2 p2...ZCp). Together, these relations show that GZSn ES if CE).

Clearly, 1 and Q are closed under products. Also, Q[Sn] is a

product of matrix rings over 0 (see James & Kerber [1, Theorem 2.1.12]);

and so Sn E Q C lt. Using this, it is an easy exercise in manipulating

twisted group rings to check that Q (or IR) is a splitting field for

@[GZSn] for all n, if it is a splitting field for @[G].

Finally, for each n, D(2n) E W, since X(G) = 0 whenever G

contains an abelian subgroup of prime index (see Proposition 12.7). And

IR[D(2n)] is easily seen to be a product of matrix algebras over R. 0

The condition that 0[G] be a product of matrix algebras over Q

does not by itself guarantee that Wh(G) = 1. The simplest counterexample

to this is the central extension
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1 - (C2)4-4 G- (C2)4--1 1;

defined by the relations:

G = (a,b,c,d : a2 = b2 = c2 = d2 = 1 [b,ac][c,d]

` = [a,cd][b,d]).

A straightforward check shows that D[G] is a product of copies of Mr (Q)

for r = 1,2,4; and so Wh(G) = SK1(Z2[G]) by the same arguments as in

the above proof. But using Lemur 8.9, applied with G = G/[G,G] (C2)4,

one can show that SK1(22[G]) n' - (Z/2)- (Z/2).

The next theorem gives necessary and sufficient conditions for when

SKI(Z[G]) = 1 in the case of an abelian group C. Note that while it

also gives some conditions for when SKI(Z[G]) or C11(Z[G]) does or

does not vanish for nonabelian G, a comparison of Theorems 14.1 and 14.2

indicates that a complete answer to this question is quite unlikely.

Theorem 14.2 Fix a finite group G.

(i) If each Sy l ow subgroup of C has the form Cpn or Cp x Cpn

(any n 0), then SKI(Z[G])(p) = 1.

(ii) If C is a p-group for some prime p, and if C11(Z[G]) = 1,

then either G =
Cpn

or Cp X Cpn for some n, or p = 2 and

Gab = (C2)k for some k.

(iii) If C is abelian, then SKI(Z[G]) = 1 if and only if either

(a) each Sylow subgroup of G has the form C
p
n or Cp x Cpn for some

n; or (b) C = (C2) k for some k.

Proof (i) By Theorem 5.3, SKI(Z[G])(p) is generated by induction

from p-elementary subgroups. Hence, it suffices to show for all n >1
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that SK1(Z[Cn]) = SK1(Z[Cp x n]) = 1. This follows from Example 9.8 when

n is a power of p; and from Theorem 13.13 in general.

(ii) For nonabelian G, this was shown in Example 9.9. In the

abelian case, recall first that a surjection G - G' of finite groups

induces a surjection Cl1(Z[G]) -» C11(Z[C']) (Corollary 3.10). So

C11(Z[G]) is nonvanishing if G surjects onto Cpl x Cpl (Example

9.8(ii)), onto C4 x C2 x C2 (Example 5.1), or onto (Cp)3 if p is odd

(Alperin et al [3, Theorem 2.4]). The only abelian p-groups which do not

surject onto one of these groups are Cpn, Cp X Cpn, and (C2)k.

(iii) By Theorem 13.13, for any finite abelian group G and any
prime phIGI, SK1(Z[G])(p) = 1 if and only if SK1(Z[Sp(G)]) = 1 and

(if p = 2 and G is not a 2-group) rk(S2(G)) S 2. By (i) and (ii),

this holds if and only if Sp(G) - Cpn or Cp x Cpn, or G = (C2)n. 0

Note that the exact exponent of SK1(Z[C]), for arbitrary abelian

G, is computed in Alperin et al [3, Theorem 4.8] (see Example 5 in the

introduction).

We next give a direct application of the results about twisted group

rings in Chapter 13. We want to describe the 2-power torsion in

SK1(Z[G]) when S2(G) is dihedral, quaternionic, or semidihedral. Note

that this includes all groups with periodic cohomology, in particular, all

groups which can act freely on spheres - and that was the original

motivation for studying this class. The following lemma deals with the

twisted group rings which arise.

Lemma 14.3 Let R be the ring of integers in an algebraic number

field K in which 2 is unramifted. Let x be any dihedral,

quaternionic, or semtdthedrat 2-group. Let t: a -4 Gal(K/@) be any

homomorphism, set p = Ker(t), and let K[ir] t and R[,r]t be the induced

twisted group rings. Then

_

1

Z/2 if p is nonabeltan and Kw ¢ ll
Cl1(R[w]t)(2)

1 otherwise.
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Proof Assume first that t = 1. If K has a real embedding, then

C11(R[ir]) = 1 by Example 5.8. If K has no real embedding, then

jC11(R[a])) 2 by Example 5.8 again; while 1C11(R[v])I 2 by Theorem

13.12 (H2(7) maps trivially to H2(vb) = 7/2).

Now assume that t: it --> Gal(K/@) is nontrivial, and set p =

Ker(t). By Theorem 13.4, Cll(R[p]) surjects onto C11(R[ir]t), and

C11(R[ir]t) = HC(ir/p;C11(R[p])) = ?/2

if KA has no real embedding. So it remains only to consider the case

where p is nonabelian, where Kw C IR, but where K !Z R.
Assume this, and consider the pushout square of Theorem 13.4:

a

HD(A/p;C2(K[p])) mss HD(v/p;Cll(R[p])) = Z/2

jiC2

C2(K[w]t) » Cl1(R[ir]t)(2).

We saw, when computing C11(R[p]) in Example 5.8, that 0P can be

identified with the composite

4

C2(K[p]) -s C2(K[pab]) = ®C2(K)
s_m4

C2(K) = 8/2;

(note that pab = C2 X C2). Also, it/[p,p] = D(8), the dihedral group of

order 8: since [w:p] = 2,
17abI

= 4, and D(8) is the only

nonabelian group of order 8 which contains C2 X C2- The pair

K[pab] C now splits as a product of inclusions

(K x K) x (K x K) C (M2(K)) X (M2(KA) X M2(KA)) .

Since C2(k) = 1 (Kw C IR), this shows that Ker(iC2) ¢ Ker(ap) in (2);

and hence that Cl1(R[ir]t)(2) = 1. o
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Applying this to integral group rings is now straightforward.

Example 14.4 Let G be a finite group such that the 2-Sylow

subgroups of G are dihedral, quaternionic, or semtdthedrat. Then

1(ZCG])(2) = C11(ZCG])(2) = (7/2)k,

where k is the number of conjugacy classes of cyclic subgroups a g G
such that (a) Jul is odd, (b) CG(a) has nonabelian 2-Sytow subgroup,

and (c) there is no g E NG(a) with gxg 1 = X-1
for all x E a.

Proof Note first that SK1(12[G]) = 1 by Proposition 12.7, so that

SK1(Z[G])(2) = C11(Z[G])(2). By Theorem 11.10, if al,...,ak are

conjugacy class representatives of cyclic subgroups of G of odd order,

and if ni = la iI and Ni = NG(a,), then

k
C11(ZCG])(2) =

i=®1 wEA(N
llii

)

C11(Zrn.[A]t(2),

where denotes the set of 2-subgroups. The result is now an

immediate consequence of Lemma 14.3. 0

We now finish by giving examples of two more specialized families of

groups for which SK1(Z[G]) is nonvanishing in general, but still can be

computed.

Theorem 14.5 For any prime power q = pk,

(i) SK1(Z[PSL(2,q)]) = 1/3 and SK1(Z[SL(2,q)]) = Z/3 x 113, if

p = 3 and k is odd, k 5; and

(ii) SK1(Z[PSL(2,q)]) = SK1(Z[SL(2,q)]) = 1 otherwise.

Proof Write G = PSL(2,q) and G = SL(2,q), for short. By Huppert

[1, Theorem II.8.27], the only noncyclic elementary subgroups of G and
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G are dihedral and quaternionic 2-groups, elementary abelian p-groups,

and (in a) products of C2 with elementary abelian p-groups. In

particular, SK1(Z[G]) = C11(Z[G]), and similarly for a, by Proposition

12.7. Furthermore, by Theorem 14.2 and Example 14.4, this list shows that

C11(Z[H]) = 1 for all elementary subgroups H in G or a, except

possibly for p-elementary subgroups when p is odd. Since C11(Z[G]) is

generated by elementary induction (Theorem 5.3), Cl1(Z[G]) and

C11(Z[G]) are p-groups, and vanish if p = 2 or k = 1.

Assume now that p is odd and k > 1. Most of the terms vanish in

the decomposition formulas for C11(Z[G])(p) and Cl1(Z[G])(p) of

Theorem 13.9; leaving only

C1 (Z[G]) = li C1 (Z[p])
1

PWG)
1

(where is the set of p-subgroups), and

Cl1(Z[G]) - 11i Cl1(Z[p]) x Cl (Z[p]).

P 76) P576)

Since these limits are all isomorphic, it remains only to show that

- Z/3 if p = 3, k Z 5, k odd
li C11(Z[p])
PE(G) 1 1 otherwise.

Furthermore, the p-Sylow subgroups of C are isomorphic to Fq, and any

two p-Sylow subgroups of G intersect trivially (any nontrivial element

of SL(2,q) of p-power order fixes some unique 1-dimensional subspace of

(ffq)z). Hence, for any p-Sylow subgroup P C G,

li Cl1(Z[p]) - HO(N(P)/P; C11(Z[P])) -
HO(F 2; Cli(Z[ff])).p(G)

q

Here, F*2 denotes the group of squares in FQ.q

Now, since e2 has order prime to p,
q
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*2
HC(F 2; C11(Z[Fq])) = Cil(Z[Fq])F (elements fixed by FQ2)

*2 *
Coker[(Fq 0 Z[Fq])F° -'

Also, any element a E Fp acts on Cp(@[Fq]) via (x N x ), and this

leaves no fixed elements if a 0 1. So HO(FQ2;Cl1(Z[Fq])) = 1 if

Fp fl FQ2 # 1; and this is the case if

even.

p25, or if p=3 and k is

Now assume that p = 3, k 2 3, and k is odd. Then ffQ2 permutes

the nontrivial summands of @[Fq] simply and transitively; so that

*2
p(D[Fq])F° = Cp(D3) = Z/3.

Furthermore, by Alperin et al [3, Proposition 2.5], there is an

isomorphism

Im1F 0 Z[F ] ' Cp(D[Fq] )] = S (Fq)

(the p-th symmetric power) which is natural with respect to automorphisms

of ffq. This now shows that HO(F 2; C11(Z[Fq])) = (Z/3)r, where

.2
r = 1 - rkffp(Ss(wq) ° ).

If we regard V = Ifq as an F [FQ2]-module, tensor up by the splitting

field Fq, and then look at eigenvalues in the symmetric product, we see

that Sp(Fq) has a component fixed by ffQ2 if and only if k = 3. 13

The last example is given by the alternating groups. These show the

same phenomenon: the only torsion in their Whitehead groups is at the

prime 3.
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Theorem 14.6 Fix n > 1, and let An be the alternating group on

n letters. Then

r

Z/3 if n = : 3m' 27, ml > ... > mr 2 0,
i-1

SK1(Z[An])
1(mi) odd

1 otherwise.

Proof We sketch here the main points in the proof. For more

details, see Oliver [3, Theorem 5.6].

(1) SK1(Z[An]) = C11(Z[An]): SK1(Zp[An]) = 1 for all p by

Example 12.8.

(2) Since [Sn:An] = 2, and Q[Sn] is a product of matrix algebras

over Q (see James & Kerber [1, Theorem 2.1.12]), Q[An] is a product of

matrix algebras over fields of degree at most 2 over Q. Hence, if p >

5, then p(Q[An]) = Cll(Z[An])(p) =
1.

(3) If a1,...,ak are conjugacy class representatives for cyclic

subgroups of An, and if mi = jail, then

k N(ai
Z(Q[An]) (Qcm: )

i=1

To see this, note that both sides are products of fields of degree at most

2 over Q. Hence, it suffices to show that both sides have the same

number of simple summands after tensoring by any quadratic extension K

of Q. This follows from the Witt-Berman theorem (Theorem 1.6): for each

K, the number of irreducible K[An]-modules equals the number of

K-conjugacy classes in An.

(4) By Theorem 4.13, C2(Q[An]) has rank equal to the number of

purely imaginary field summands of Q[An]; and by (3) this is equal to
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the number of conjugacy classes of cyclic subgroups a = (g) C n such

that g is not conjugate to g
-l. Each such g is a product of disjoint

cycles of lengths k1 > ... > ks, such that Dc,=n, ki is odd for all

i, and Z1(ki-1)/2 is odd. In particular, the centralizer CA. (a) has

odd order for each such a, and so by Theorem 13.4:

li ClI(ZCk[ir]t)(2) = 1
irE a)

(k = lal)

(55(Na) denotes here the set of 2-subgroups). On the other hand,

vE
C2(QCk[w]t) = 1 C2((lk)w) = 1/2

since (Q{n)
Na

it R. These terms thus account for all of C2(Q[An1) under

the decomposition of Theorem 11.8; and so C11(g[An])(2) = 1.

(5) By (3) again, C3(Q[An]) = (7/3)s, where s is the number of

conjugacy classes of cyclic a An such that 311a1, and such that

C3 C a is centralized by N(a). An easy check then shows that

s

Z/3 if n = 13m', m1 > m2 > ... > ms > 0,
1

odd

C3(Q[AnI) =
i 1

1 otherwise.

Assume that C3(D[An]) = 7/3: write n = Ii=13m', where the mi

are as above. Let P C An be the "standard" 3-Sylow subgroup. Then

P = P1 x ... X Ps, where P i is a 3-Sylow subgroup of A(3m'). Also,

pal
= (C3)m and NST(P)/P =

(C2)m.

In fact, there are bases g1,...,gm of Pab and x1,...,xm of N5 (P)/P

such that in P0, [xi,gj] = 1 if 1 0 j, and xigixil = giI for all

i. For example, if n = 12, then
Pab

= (C3)3 is generated by



338 CHAPTER 14. EXAMPLES

gl = (1 2 3), g2 = (1 4 7)(2 5 8)(3 6 9), g3 = (10 11 12);

while NSn(P)/P = (C2)3 is generated by

xl = (1 2)(4 5)(7 8), x2 = (1 4)(2 5)(3 6), x3 = (10 11).

For any el,.... em E Z/3, let V(el,...,em) denote the irreducible

e

Q[Pab]-module with character X(gi) = (c3) i' If any ei = 0, then

there is an element of NAn(P)/P which negates the character, and hence

m
negates the corresponding Z/3 summand in

C3(®[Pab]) _ (Z/3)(3 -1)1

The remaining irreducible representations of Pab ei = it for all i)

are permuted simply and transitively by NA.(P)/P; and hence

HO(N(P)/P; C3(@[Pab])) = Z/3.

If P' A P is any other 3-Sylow subgroup in An, then P'f1P is

contained in the subgroup generated by some proper subset of the gi. It

follows that the induced map

C3(@[P'f1P]) ) HO(N(P)/P; C3(Q[Pab]))

is trivial. Hence, there is a natural epimorphism

li C (Q[P]) --" HO (NA.(P)/P; C (R[ib])) = Z/3.pc(n)3 0 A 3

But by Theorem 11.8, this limit is a direct summand of C3(D[An]) = Z/3.

So with the help of Theorem 9.5 we now get

C11(Z[An]) = li C11(D[P]) = Coker[K2(Z3[P]) -i li C3(Q[P])]P ,, )

Coker[H1(P;Z[P]) '' HO(N(P)/P; C3(D[Pab])) = Z/3].
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The calculation now splits into the following cases:

n = 3.4: P = C3, so C11(Z[A1])(3) = 1 by Theorem 14.2(1).

n = 12.13: Z(g3 0 glg2g3) generates HO(N(P)/P; C3(a[Pab])) (where

gi are the elements defined above); so C11(Z[An]) = 1.

n = 27.28: The image of any abelian subgroup of P is cyclic in

Pab. Hence, Im(Z) = y(P 0 1) = 0, and C11(Z[An]) = Z/3-

n > 28: In this case, m = Iml > 5. By Alperin et al [3, Proposition

2.5],

Im[K2(2 31 Pab]) _ C3(@[Pab])] = S3(pab),

where S3(Pab) = S3(F3m) denotes the symmetric product. Furthermore,

since m > 5,
S3(Pab)N(P)/P S3(F3m)N(P)/P

= 0 by the above description

of N(P)/P. There are thus surjections

Z/3 = C3(D[An]) C11(Z[An]) - HO(N(P)/P; C11(Z[Pab]))

Coker[S3(Pab)N(P)/P -' C3(Q[pab])N(P)/P] = Z/3;

and so C11(Z[An]) = Z/3 in this case. 0
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