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PREFACE

This book is written with the intention of making more easily
accessible techniques for studying Whitehead groups of finite groups, as
well as a variety of related topics such as induction theory and p-adic
logarithms. It developed out of a realization that most of the recent
work in the field is scattered over a large number of papers, making it
very difficult even for experts already working with K- and L-theory of
finite groups to find and use them. The book is aimed, not only at such
experts, but also at nonspecialists who either need some specific
application involving Whitehead groups, or who just want to get an
overview of the current state of knowledge in the subject. It is
especially with the latter group in mind that the lengthy introduction —
as well as the separate introductions to Parts I, II, and III — have been
written. They are designed to give a quick orientation to the contents of
the book, and in particular to the techniques available for describing
Whitehead groups.

I would like to thank several people, in particular Jim Davis, Erkki
Laitinen, Jim Schafer, Terry Wall, and Chuck Weibel, for all of their
helpful suggestions during the preparation of the book. Also, my many
thanks to Ioan James for encouraging me to write the book, and for

arranging its publication.






LIST OF NOTATION

The following is a list of some of the notation used throughout the

book. In many cases, these are defined again where used.

Groups:

NG(H), CG(H) denote the normalizer and centralizer of H in G
Gab = G/[G,G] (the abelianization) for any group G

Sp(G) denotes a p—Sylow subgroup of G

Cn denotes a (multiplicative) cyclic group of order n

D(2n), Q(2n), SD(2n) denote the dihedral, quaternion, and semidihedral
groups of order 2n

S, An denote the symmetric and alternating groups on n letters
HXMG denotes a semidirect product where H is normal

G?Cn and G?Sn denote the wreath products Gn>'1Cn and Gn>'1Sn

MG = {x € M: Gx = x} S HO(G;M) if G acts linearly on M (groups
MG = M/(gx-x: g€G, xEM) = HO(G;M) of invariants and coinvariants)

Fields and rings:

ﬁp = QPQQK if K 1is any number field and p a rational prime (so ﬁp
is possibly a product of fields)

ﬁp = ip@ZR if R 1is the ring of integers in a number field

Py (V'K)p (K any field) denote the groups of roots of unity, and p-th

power roots of unity, in K

¢

n (n21) denotes a primitive n-th root of unity



En (n20), vwhen some prime p 1is fixed, denotes the root of unity
exp(21ri/pn) €C.

K(n (for any field K and any n21) denotes the smallest field

extension of K containing (n
J(R) denotes the Jacobson radical of the ring R
{-) means “subgroup (or ip—module) generated by"”
(—)R means "R-ideal or R-module generated by"

e;j=eij(r) (where 1i,j21, 1i#j, and r€R) denote the elementary

matrix with single off-diagonal entry r 1in the (i,j)-position

K-theory:

SK1(2I) = Ker[Kl(ﬂ) —_ KI(A)] } for any Z~ or ip-order A in a semi-

Kj (1) = K, (1)/SK, (%) simple @ or 6p-a1gebra A

Cl,(A) = Ker[sk (1) —> epsxl(ﬁp)] for any Z-order A

C(A) = lim SK1(2I,I) for any semisimple @-algebra A and any Z-order
I

A C A, where the limit is taken over all ideals of finite index
(see Definition 3.7)

Cp(A) denotes the p-power torsion in the finite group C(A)

Wh(R[G]) = K, (R[G])/(rg: r €, g€G) and Wh'(R[G]) = Wh(R[G])/SK, (R[G])
whenever R 1is the ring of integers in any finite extension K

of @ or ﬁp (and G 1is any finite group)
¥h'(G) = Wh(G)/SKl(Z[G]) = Ki(Z[G])/(ig) for any finite group G

K2(R,I) = Ker[Kz(R) — K2(R/I)] for any ring R and any ideal I CR

(see remarks in Section 3a)
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INTRODUCTION

For any associative ring R with unit, an abelian group KI(R) is
defined as follows. For each n >0, let GLn(R) denote the group of
invertible nxn-matrices with entries in R. Regard GLn(R) as a

- e s . AO .
subgroup of GLn+1(R) by identifying A € GLn(R) with (O 1) € GLn+1(R),
and set GL(R) = U:_chn(R). For each n, let E (R) € GL (R) be the

subgroup generated by all elementary nxn-matrices — i. e., all those
which are the identity except for one nonzero off-diagonal entry — and
set E(R) = U:—lEn(R)° Then by Whitehead’s lemma (Theorem 1.13 below),

E(R) = [GL(R),GL(R)], the commutator subgroup of GL(R). In particular,
E(R) < GL(R); and the quotient group

K,(R) = GL(R)/E(R)

is an abelian group.

One family of rings to which this applies is that of group rings. If
G is any group, and if R 1is any commutative ring, then the group ring
R[G] 1is the free R-module with basis G, where ring multiplication is
induced by the group product. In particular, group elements g € G, and
units u € R*, can be regarded as invertible 1xl-matrices over R[G],

and hence represent elements in Kl(R[G]). The Whitehead group of G is

defined by setting
¥h(G) = K, (Z[C])/(1g: g € G).

By construction, KI(R) (or Wh(G)) measures the obstruction to

taking an arbitrary invertible matrix over R (or Z[G]), and reducing
it to the identity {(or to some ig) via a series of elementary
operations. Here, an elementary operation is one of the familiar matrix

operations of adding a multiple of one row or column to another; and these
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elementary operations are very closely related to Whitehead’s "elementary
deformations” of finite CW complexes. This relationship leads to the

definition of the Whitehead torsion
T(f) € Wh(wy (X))

of any homotopy equivalence f: X — Y  Tbetween finite CW complexes;
where T(f) =1 (i. e., the identity element) if and only if f is
induced by a series of elementary deformations which transform X into
Y. A homotopy equivalence f such that 7(f) =1 is called a simple
homotopy equivalence.

Whitehead torsion plays a role, not only in studying homotopy
equivalences of finite CW complexes, but also when classifying manifolds.
The s-cobordism theorem (see Mazur [1]) says that if M and N are
smooth closed n-dimensional manifolds, where n25, and if W is a
compact (n+l)-dimensional manifold such that W = M I N, and such that
the inclusions M “— W and N “— W are simple homotopy equivalences,
then W is diffeomorphic to Mx[0,1]. 1In particular, M and N are
diffeomorphic in this situation; and this theorem is one of the important
tools for proving that two manifolds are diffeomorphic. This theorem is
also one of the reasons for the importance of Whitehead groups when
computing surgery obstructions.

Vhen G is a finite group, then KI(Z[G]) and Wh(G) are finitely

generated abelian groups, whose rank was described by Bass (see the
section on algorithms below, or Theorem 2.6). The main goal of this book
is to develop techniques which allow a more complete description of Wh(G)

for finite G; and in particular which describe the subgroup
SK, (Z[C]) = Ker[Kl(Z[G]) — KI(Q[G])].

This is a finite subgroup (Theorem 2.5), and is in fact by a theorem of
Wall (Theorem 7.4 below) isomorphic to the full torsion subgroup of
Wh(G). When G is abelian, then SK, (Z[G]) = SL(Z[G])/E(Z[G]), where

SL(Z[G]) denotes the group of matrices of determinant 1.
Most of the general background results have been presented here
without proofs — especially when they can be referenced in standard

textbooks such as Bass [2], Curtis & Reiner [1], Janusz [1], Milnor
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[2], and Reiner [1]. Also, some of the longer and more technical proofs
have been omitted when they are well documented in the literature, or are
not needed for the central results. Proofs are included, or at least
sketched, for most results which deal directly with the problem of
describing Whitehead groups.

Historical survey

Whitehead groups were first defined by Whitehead [1], in order to
find an algebraic analog to his "elementary deformations” of finite CW
complexes, and to simple homotopy equivalences between finite CW
complexes. Whitehead also showed in [1] that Wh(G) =1 if |Gl (4 or
if G=21Z; and that Wh(CS) # 1. (Note that Cn always denotes a

multilicative cyclic group of order n.)

A more systematic understanding of the structure of the groups Wh(G)
came only with the development of algebraic K-theory. Bass’ theorem [1,
Corollary 20.3], showing that the Wh(G) are finitely generated and
computing their rank, has already been mentioned. This made it natural to
focus attention on the torsion subgroup of Wh(G): shown by Higman [1]
and Wall [1] to be isomorphic to SKI(Z[G]).

Milnor, in [1, Appendix A], noted that if the "congruence subgroup
problem” could be proven, then it would follow that SKI(Z[G]) =1 for

all finite abelian groups G. This conjecture was shown by Bass, Milnor,
and Serre [1] to be false (see Section 4c below); but their results were

still sufficient to show that SKI(Z[G]) vanishes for many abelian
groups. In particular, it was shown that SKI(Z[G]) =1 if G is cyclic
(Bass et al [1, Proposition 4.14]), if G = CpnxCp for any prime p
and any n (Lam, [1, Theorem 5.1.1]), or if G & (02)n for some n

(Bass et al [1, Corollary 4.13]).
The first examples of finite groups for which SKI(Z[G]) #1 were

constructed by Alperin, Dennis, and Stein [1]. They combined earlier
results from the solution to the congruence subgroup problem with theorems

about generators for K2 of finite rings, to explicitly describe

SKI(Z[G]) when G = (Cp)n, n23, and p is an odd prime. In
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particular, SKI(Z[G]) is nonvanishing for all such G. Their methods

were then carried further, and used to show that for finite abelian G,

SKI(Z[G]) =1 if and only if either G ¥ (Cz)n, or each Sylow subgroup
of G has the form C,n or C .xC.
P P P

Later results of Obayashi [1,2], Keating [1,2], and Magurn [1,2],

showed that SKI(Z[G]) vanishes for many nonabelian metacyclic groups G,

and in particular when G is any dihedral group. These were proven using
various ad hoc methods, which did not give much hope for having
generalizations to arbitrary finite groups. To get general results, a
more systematic approach wusing localization sequences is needed —
extending the methods of Alperin, Dennis, and Stein — and it is that

approach which is the main focus of this book.

Algorithms for describing Wh(G)

If R 1is any commutative ring, then the usual matrix determinant

induces a homomorphism

det : K (R) = GL(R)/E(R) — R".

This is split surjective — split by the homomorphism R* — KI(R)
induced by identifying RS = GLl(R). Hence, in this case, KI(R) factors

as a product

K,(R) = R x SK, (R),
where

SK,(R) = SL(R)/E(R)  and  SL(R) = {A € GL(R) : det(A) =1}.

If R =2Z[G], then this coincides with the definition of SKI(Z[G])
given earlier: @Q[G] is a product of fields, so KI(Q[G]) 2 (Q[G])*.

Determinants are not, in general, defined for noncommutative rings.

However, in the case of the group rings Z[G] and @Q[G] for finite
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groups G, they can be replaced by certain analogous homomorphisms: the

reduced norm homomorphisms. One way to do this is to consider, for fixed

G, the Wedderburn decomposition
k
cel1 = MM _(C)
i=1 !

of the complex group ring as a product of matrix rings (see Theorem 1.1).

For each n, the reduced norm on GLn(Q[G]) is then defined to be the

composite

incl Mdet ﬁ C*

k
nr : GLn(Q[G]) —_— GLn(C[G]) z [l GLn.r.(C)
i=1 ! i=1

These then factor through homomorphisms

k * k ¢ 3
nTze] K,(Z[c]) — _[_]lc and nTorey ¢ K,(Q[6c]) — iglc .

i=

Also, nrQ[G] is injective (Theorem 2.3), and so

SK, (Z[C]) = Ker[K, (2[C1) — K, (@[C]) ] (by definition)

Ker(nrz[c]). (1)
Note that when G is commutative, then
Ker(nrgpey) = Ker[det: K, (2[G]) — (z[c])];

so that the two definitions of SKI(Z[G]) coincide in this case. For

more details about reduced norms (and in more generality), see Section 2a.
Reduced norm homomorphisms are also the key to computing the ranks of

the finitely generated groups KI(Z[G]) and Wh(G). Not only is
SKI(Z[G]) = Ker(nrz[c]) finite, but — once the target group has been

restricted appropriately — Coker(nrz[c]) is also finite (Theorem 2.5).
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A straightforward computation using Dirichlet’s unit theorem then yields

the formula

rk(Kl(Z[G])) = rk(Wh(G))
= #(irreducible lR[G]—modules) - #(irreducible Q[G]—modules).

Furthermore, by the theorem of Higman [1] (for commutative G) and Wall

[1] (in the general case),

tors(K, (2[C])) = {1} x ¢ x sk, (2[C)

(see Theorem 7.4 below). Thus, as abstract groups, at least, the

structure of KI(Z[G]) and Wh(G) will be completely understood once the
structure of the finite group SKI(Z[G]) is known.

A much wmore difficult problem arises if one needs to construct

explicit generators for the torsion free group Wh'(G) = Wh(G)/SKl(Z[G]).

One case where it is possible to get relatively good control of this is
when G 1is a p-group, for some regular prime p (including the case
p=2). In this case, logarithmic methods can be used to identify the
p-adic completion 2p®Wh’(G) with a certain subgroup of HO(G;ip[G])

(i. e., the free 2p—module with basis the set of conjugacy classes in G).

This is explained, and some applications are given, in Chapter 10; based
on Oliver & Taylor [1, Section 4].

SKI(Z[G]): When studying SKI(Z[G]), it is convenient to first
define a certain subgroup Cll(Z[G]) c SKI(Z[G]). For each prime p, let
2p[G] and 6])[0] denote the p-adic completions of Z[G] and Q[G] (see

Section 1b); and set SKl(ip[G]) = Ker[Kl(ip[G]) e Kl(ﬁp[G])]. Then set
C1,(Z[C]) = Ker[SK (Z[c]) —&> @ sk, (2 [c])].
1 1 D 1*p

The sum $pSK1(2p[G]) is, in fact, a finite sum — SKl(ip[G])zl
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whenever p}lGl — and the localization homomorphism £ is onto (Theorem
3.9). Note that Cl (Z[G]) = SK,(Z[G]) if G is abelian: Kl(ip[c]) x

Sl(l(ip[G])x (2P[G])* in this case, and matrices over a ip—algebra can

always be diagonalized using elementary row and column operations (see
Theorem 1.14(1)).
In particular, SKI(Z[G]) sits in an extension

1 — c1,@[e]) — s, @) —-@sK @ [e) — 1. (2)
P
The groups SK1 (2P[G]) and Cll(Z[G]) are described independently, using

very different methods, and it is difficult to find a way of handling them
both simultaneously. In fact, one of the remaining problems is to
understand the extension (2) in 2-torsion (it does have a natural

splitting in odd torsion).

SKl(ip[G]): By a theorem of Wall [1, Theorem 2.5], SKl(ip[G]) is a
p-group for any prime p and any finite group G, and SKl(ip[G]) =1

if the p-Sylow subgroup of G 1is abelian. In fact, for most "familiar”
groups G, Sl(l(ip[G]) =1 for all p.

If G is a p-group, then

S, (2,[6]) = Hy(G)/H"(G): 3)

where

H3°(C)

In[ T {Hy(K) : K€ G, K abelian) —24 Hy(q)]

(g-h€Hy(G) : g,h€G, gh=hg)

(see Section 8a). Formula (3) is shown in Theorem 8.6, and the
isomorphism itself is described in Proposition 8.4.

If G 1is an arbitrary finite group, and if p 1is a fixed prime,
then set Gr = {g € G: p}lgl} (the "p-regular” elements). Consider the
homology group l-lz(G;Zp(Gr)), where G acts on Zp(Gr) by conjugation.

Let
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6 : Hz(c;ip(cr)) _— Hz(c;ip(cr))

be induced by the endomorphism @(Zrigi) = Zrigg on ip(Gr); and let

Hz(c;ip(cr))(b = H2(G;ip(Gr))/Im(l—<l>)
be the group of ¢-coinvariants. Then
SK, (2_[C]) = Hy(G52_(€,))/Ma (G2 (G)) (4)
1*7p 2 p'r 2 pr r’’/d

(see Theorem 12.10). Here, in analogy with the p-group case:

H50(6:2,(6,)) = Im[K I 2, 06) 0, 1, (G2,(6,)), ]

abelian

= {(g~h)®k : g,h €G, k € G, g,hk commute pairwise).

The following alternative description of SKl(ip[G]), for a non-p-
group G, 1is often easier to use. lLet SRR - € G be "@p—conjugacy"

class representatives for elements of G of order prime to p — where

A~ n
two elements g,h € G are Qp—conjugate if g 1is conjugate to hP for

some n. Set Zi = G(gi) (the centralizer), and
N, = {x€G: xg x_l = gpn some n}.
i i i’

Then by Theorem 12.5 below,
R k b
SK, (2 [¢]) = iezalHO(Ni/zi; Hy(Z,)/ 13 (zi))(p). (5)

Cll(Z[G]): The subgroup Cll(Z[G]) C SKI(Z[G]) can be thought of as
the part of KI(Z[G]) which is hit from behind in localization sequences.

One way to study this is to consider, for any ideal I C Z[G] of finite

index, the relative exact sequence
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Ky(Z[G]/1) — SK,(2[G],1) — SK, (2[C]) — K, (2C/1)

of Milnor [2, Lemma 4.1 and Theorem 6.2]. After taking inverse limits

over all such I, this takes the form of a new exact sequence

D K(2,[61) — Lim K, (2(C].1) & sk, (2161 —"’—»fsxl(iptcl). (6)

We now have another characterization of Cll(Z[G]): it is the set of
elements in SKl(Z[G]) which can be represented by matrices congruent to

1 mod I, for arbitrarily small ideals I C Z[G] of finite index.
The second term in (6) remains unchanged when Z[G] is replaced by

any other Z-order in Q[G]. Hence, it is convenient to define

C(Q[G]) = lim Sl(l(Z[G],I) (all ICZ[G] of finite index)
I
x Coker[Kz(Q[G]) — O K;(ﬁp[G])] (Theorem 3.12)
P

This is a finite group; and C(-) 1is a functor on the category of finite
dimensional semisimple Q-algebras. See Section 3c for more details.

The computation of C(Q[G]) is based on the solution to the
congruence subgroup problem. In Theorem 4.13, it will be seen that for

each simple summand A of Q@[G] with center K,

1 if for some v: K — R, [R@vKA £ Mr([R) (some r)
C(A) = (M

b o therwise.

Here, My denotes the group of roots of unity in K. One convenient way
to use this involves the complex representation ring RC(G)'

Fix a group G, and fix any even n such that exp(G)|n. Then
K= Q(gn) is a splitting field for G, where gn is a primitive n-th

root of unity, and we can identify the representation rings RC(G) =RK(G).
The group Gal(K/@) = (Z/n)* thus acts both on RC(G) (via Galois

automorphisms) and on Z/n (by multiplication). Regard RIR(G) (the real
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representation ring) as a subgroup of RC(G) in the usual way, and set

RC/IR(G) = RC(G)/RIR(G) for short. Then we will see in Lemma 5.9 that

(i. e., (Z/n)*—coinvaria.nts)

(8)

c(@[e]) = [Re,p(G) @ 2/n]

(@/n)*

= Rp p(6)/([V]-a-[1,(V)]: V € R(G), (a,n)=1, 7, €Gal(kK/Q)).

This description, while somewhat complicated, has the advantage of

being natural in that the induced epimorphisms

~

e
Rp(G) ——» C(Q[C])

o a

c1,(2[6))

commute both with maps induced by group homomorphisms and with maps
induced by restriction to subgroups (Proposition 5.2). For example, one

immediate consequence of this is that Cll(Z[G]) is generated by

induction from elementary subgroups of G (i. e., products of cyclic

groups with p-groups) — since RC(G) is generated by elementary

induction by Brauer’s induction theorem.

Odd torsion in Cll(Z[G]) and SKl(Z[G]): For any finite group G,

the short exact sequence (2) has a natural splitting in odd torsion, to

give a direct sum decomposition

1 ~ 1 2
,@GDI5] = O ACDI5] © &K, (2,[6D)- (9)

Furthermore, for odd p, there is a close relationship between the groups
K;(ip[c]) and Hl(G;ip[G]) = Hl(G;Z[G])(p) (where G again acts by

conjugation) — close enough so that (6) can be replaced by an isomorphism

¥
C1, (Z[61)[5] & Coker|H, (6:2[C]) —— c(a[e]) [(31- (10)
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When G 1is a p-group (and p is odd), this formula is shown in Theorem
9.5, and an explicit definition of \PG is given in Definition 9.2. If G

is arbitrary, then the formula, as well as the definition of \PG' are

derived in the discussion following Theorem 13.9.
When G is not a p-group, then an alternative description of

Cll(Z[G])(p), for any finite G and any odd prime p, 1is given in

Theorem 13.9. This takes the form

k
€1, (@[E]) ) & i?lHO(Ni/Zi;wre%,)CII(Z[W])); (11)
1

where Opreee C G 1is a set of conjugacy class representatives for

'ak
cyclic subgroups of order prime to p; and Ni = NG(ai)’ Zi = CG(ai)'

and ?P(Zi) is the set of p-subgroups.

2-torsion in SKl(l[G]): The description of Cll(Z[G])(z) — even

when G 1is a 2-group — is still rather mysterious. If G 1is abelian,
then SKl(Z[G]) = Cll(Z[G]) can be described via formulas analogous to

(10) above (see Theorem 9.6 for the case of an abelian 2-group, and
Theorem 13.13 for the general abelian case). When G is an arbitrary

2-group, we conjecture that SKl(Z[G]) can be (mostly) described via a

pushout square

H)(G;Z[6]) —— > Hy(6)

Yo 16(:
crercl)/care]) —2— sk, (Z[61)/(6).

Here, CQ(Q[G]) C C(Q[G]) denotes the subgroups of elements coming from
quaternionic summands: 1i. e., simple summands A of Q[G] which are

matrix algebras over division algebras of the form Q(fn..j) (C H), where
fn = exp(21ri/2n) € C (see Theorem 9.1). Also, Q(G) C Cll(Z[G]) is the

image of CQ(Q[G]) under 3: C(Q[G]) —»Cll(Z[G]); and v is defined
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by setting wv(g®h) = g~h € H2(G) for conmuting g,h € G. Note that
b ~ E
Coker(v) = }12(c)/n‘21 (G) = SK, (Z,[G])

by (2). The most interesting point here is the conjectured existence of a

lifting 6G of the isomorphism in (2). This is currently the only hope

for constructing examples where extension (1) is not split. For more
details, see Conjecture 9.7, as well as Theorems 9.6, 13.4, 13.12, and
13.14.

Induction theory: Each of the functors SKl(ip[G]), and
Cll(Z[G])(p) for odd p, has been given two descriptions above. The

direct sum formulas (5) and (11) are based on a general decomposition
formula in Theorem 11.8, and are usually the easiest to apply when

computing SKl(ip[G]) or Cll(Z[G])(p) as an abstract group. The other

formulas ((4) and (10)) seem more natural, and are easier to use to
determine whether or not a given element vanishes.
In both cases — SKl(ip[G]) and Cll(Z[G])(p) — these formulas are

derived from those in the p-group case with the help of induction theory
as formulated by Dress [2]. In the terminology of Chapter 11, these two
functors are "computable” with respect to induction from p-elementary

subgroups (i. e., subgroups of the form Cnx1r when w7 is a p-group).

See Chapter 11, and Theorems 12.4 and 13.5, for more details.

Detecting and constructing explicit elements: For simplicity, the
above algorithms have been stated so as to describe Wh(G) and SKI(Z[G])

as abstract groups. But in fact, they can in many cases be used to
determine whether or not a given invertible matrix over Z[G] vanishes in
Wh(G); or to construct matrices representing given nonvanishing elements.

The procedures for constructing explicit nontrivial elements in

SKI(Z[G]) are fairly straightforward. One example of this, for the group

G = C4,xCs xC>, 1is worked out in detail in Example 5.1; and essentially

the same procedure can be used to construct elements in Cll(Z[G]) for

any finite G (once the group Cll(Z[G]) itself is known, that is).
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Explicit elements in SKl(ip[G]) can be constructed using Proposition

8.4, or Theorem 12.5 or 12.10; although Theorem 8.13 provides a much
simpler way of doing this in many cases. The procedure for lifting an
element [A] € SKl(ip[G]) to SKI(Z[G]) can be found in the proof of

Theorem 3.9; note however that this depends on finding an explicit

decomposition of A as a product of elementary matrices over QP[G].

If A € GL(Z[G]) 1is given, then the first step when determining
whether it vanishes in  Wh(G) is to compute its reduced norm, and
determine (using (1)) whether or not [A] € SKl(Z[G]). Once this is done,

if G 1is abelian, then SKl(Z[G]) = Cll(Z[G]), and the procedure for

determining whether [A] = 1 is fairly straightforward. The details are
described in the proof of Example 5.1, and in the discussion afterwards.

If G is nonabelian, and if [A] is known to lie in SKI(Z[G]),
then one must next check whether or not it vanishes in SKl(ip[G]) for

primes pllGl. The procedure for doing this is described in Proposition
8.4 when G is a p-group, and in Theorem 12.10 for general finite G. In
both cases, this involves first choosing some group extension a: ¢ —» G
such that SKl(ip[E]) maps trivially to SKl(ip[G]); then lifting A to

[X] € Kl(ip[a]), taking its logarithm (more precisely, its integral
logarithm F(X) € HO(E;ip[E])); and then composing that by a certain
explicit homomorphism to SKl(ip[G]) using formula (3) or (4) above.

The general procedure for detecting elements in Cll(Z[G]) for

nonabelian G 1is much less clear, although there are some remarks about
that at the end of Section 5a. The main problem (once the group
Cll(Z[G]) itself is understood) is to lift [M] € Cll(Z[G]) to C(Q[G])

along the boundary map in sequence (6).
In some specialized cases, there are other ways of doing this. The
proofs Propositions 16-18 in Oliver [1] give one example, and can be used

to detect (certain) nonvanishing elements in Cll(Z[G]) for many

nonabelian groups G. Another such example is given by the procedure in
Oliver [5] for detecting the Whitehead torsion of homotopy equivalences of
Sl—bundles.
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Survey of computations

The examples listed here give both a survey of the type of
computations which can be made using the techniques sketched in the last
section, as well as an idea of some of the patterns which arise from the
computations. The first few examples give some conditions which are

necessary or sufficient for SKI(Z[G]) to vanish.

Example 1 (Theorem 5.6, or Alperin et al [3, Theorem 3.3])
SKI(R[Cn]) =1 for any finite cyclic group Cn’ when R is the ring of

integers in any finite extension of Q.

Example 2 (Theorem 14.2 and Example 14.4) SKI(Z[G]) =1 if G=
Cp" or Cp“ X Cp (for any prime p oand any n), if G = (Cz)n (any

n), or if G 1is any dihedral, gquaternion, or semidihedral 2-group.
Conversely, if G 1is a p-group and Cll(Z[G]) =1, then either G 1is

one of the abouve groups, or p =2 and Gab = (Cz)n for some n.

The next example (as well as Example 12) helps to illustrate the role
played by the p-Sylow subgroup Sp(G) in determining the p—-torsion in

SK, (Z[€1)-

Example 3 (Theorem 14.2(i), or Oliver [1, Theorem 2])
SKI(Z[G])(p) =1 if Sp(G) ECpn or Cpn x Cp (any n).

The next example gives some completely different criteria for

SKl(Z[G]) (or Wh(G)) to vanish. This, together with the first three

examples, helps to show the hopelessness of finding general necessary and
sufficient conditions for SKl(Z[G]) =1 (or Wh(G) = 1). Note in

particular that Wh(G) =1 if G is any symmetric group.
Example 4 (Theorem 14.1) Let € C €' be the smallest classes of

finite groups which are closed under direct product ond under wreath
product with any symmetric group Sn; and such that € contains the
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trivial group and €' also contains all dihedral groups. (Note that <€
contains D(8), as well as all symmetric groups.) Then Wh(G) =1 for
all G€ ¢, and SKl(Z[G]) =1 forall GE€ €.

Note that the classes of finite groups G for which Wh(G) =1, or
SKI(Z[G]) = 1, are not closed under products (see Example 6). A slightly

stronger version of Example 4 is given in Theorem 14.1.
Ve now consider examples where SKl(Z[G]) # 1. The easiest case is

that of abelian groups. In fact, the exponent of SKl(Z[G]) = Cll(Z[G])

can be explicitly determined in this case.
Example 5 (Alperin et al [3, Theorem 4.8]) Let G be a finite

abelian group, and let k(G) be the product of the distinct primes p
dividing |G| For which SP(G) is not cyclic. Then

exp(SK, (Z[G])) = F-'ng(eXP(G) ’ ]W%);

where e= if

N{=

(t) G6= (C2)n for some n23, or

124

(ii) Sz(G) Cznxczn for some n23, or

(111) S,(G) & Cgn x C

on X 02 for some n22;

and e=1 otherwise.

We now consider some more precise computations of SKI(Z[G]) in

cases where it is nonvanishing.

Example 6 (Example 9.8, and Alperin et al [3, Theorems 2.4, 5.1,
5.5, 5.6, and Corollary 5.9]) The following are examples of computations
of SKI(Z[G]) = Cll(Z[G]) for some abelian p-groups G:
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(t) If p is odd, then

Ky & (770N -1 _ (p+k-1
sk, (Z[(C,)*D) = @), where N =Bl - (P71

(1) sK(@CzxCp)) = @) P D™ (any prine p)

] {(Z/p)np(p-l)/2 i b s odd
iii) SK.(Z[(C Cn 1
(Lii) Ky (ZL(C,)" x CpnD) @2)™! tf p=2

1

2—- —
@p)® P x @p*P! tf p ts odd

i SK. (Z[C 3 xC 3]) &
(iv) SK(Z[C,oxCya]) {(vz)‘* ¢ ooes

(V) 8K (Z[(Cy)" xCpal) = [$2(‘:)-(Z/2"‘)] ® [592(2/25)]
= S=.

We now look at some nonabelian p-groups: first for odd p and then
for p = 2.

Example 7 (Example 9.9, and Oliver [7, Section 4]) Let p be an
odd prime, and let G be a nonabelian p-group. Then SKI(Z[G])

c1,(2[6)) = @p)® ! if 16l = p>. IF I1Gl = pt, then sK, (2[C1)

"

Cl,(Z[G]) and:

[ (wp)2PD) if = C, x Cpe
(2/p) (P*+39-6)/2 if ¢z (€)% ex(6) =p

+p—2)/2 o @

R

s, (zc]) = | @p)® (€)%  em(e) = p?

P

3(p-1)/2

) b . s
(Z/p) if & 2c xC, 3(C)cC

L @p)P! if 2Pz c,x ¢, 3C xCace.

Note that the p- and p>-rank of Cll(Z[G]) is a polynomial in p

for each of the families listed in Examples 6 and 7 above. Presumably,
this holds in general, and is a formal consequence of Theorem 9.5 below;

but we know of no proof.
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Example 8 (Examples 9.9 and 9.10) If |Gl =16, then

1 if Gabs(cz)2 or (Cz)3

If G is any (nonabelian) quaternion or semidihedral 2-group, then for
all k20:

SK, (Z[6 % (C2)*]) = C1 (26 x (C2)¥D) = @2)® 7.

Ve next give some examples of computations for three specific classes

of non-p-groups.

Example 9 (Example 14.4) Assume G 1is a finite group whose 2-Sylow

subgroups are dihedral, quaternionic, or semidihedral. Then
~ k
SKI(Z[G])(z) = Cll(Z[G])(z) z (v2),

where k is the number of conjugacy classes of cyclic subgroups o C G
such that (a) lol is odd, (b) CG(U) has nonabelian 2-Sylow subgroup,

and (c) there is no g € NG(a) with gxg_1 = x_l for all x € o.

Note, in the next two examples, the peculiar way in which 3-torsion

(and only 3-torsion) appears.

Example 10 (Theorem 14.5) For any prime p and any k 2 1,

X /3 if p=3, 2k, k25
SK, (Z[PSL(2,p7)]) =

1 otherwise.

X /3 xL/3 if p=3, 2k, k25
SK, (Z[SL(2,p)]) =

otherwise.
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Example 11 (Theorem 14.6) For any n > 1, let An be the

alternating group on n letters. Then SKI(Z[G]) =C11(Z[G]), and

r
/3 if n= 23" 227, mOmy>...0m 20, Jm odd

~ i=1
SK1 (Z[An]) £

1 otherwise.

The next example involves the groups SKl(ip[G]). Constructing a
group G for which SKl(ip[G]) # 1 1is rather complicated (note that
SKI(Z[G]) = Cll(Z[G]) in all of the examples above); so instead of doing

that here we refer to Example 8.11 and the discussion after Theorem 14.1.
For now, we just note the following condition for SKl(ip[G]) to vanish.

Example 12 (Proposition 12.7) sxl(ip[c]) = 1 if the p-Sylow

subgroup of G has an abelian normal subgroup with cyclic quotient.

To end the section, we note two specific examples of concrete

matrices or units representing nontrivial elements in Cll(Z[G]).

Example 13 (i) Set G = Cy4xCoxCy; = {g)x{(hy)x(hz). Then
SKI(Z[G]) x Z/2, oand the nontrivial element is represented by the matrix

1 + 8(1-g*)(1+hy)(1+h*) (1-g) -(1-g%)(1+h, ) (1+hz)(3+g)

€ GL,(Z[€C])
~13(1-g®) (1+h,) (1+h;)(3-g) 1 + 8(1-g%)(1+hy ) (1+h2) (1+g)

(it) Set G = C3xQ(8) = {g) x{a,b), uwhere Q(8) is a quaternion
group of order 8. Then SKI(Z[G]) £ Z/2, and the nontrivial element is

represented by the unit
2 2 2 2 »*
1+ (2-8%)(1-a)(3g + a + 4g% + 4(g-)b+ 8ab) € (2[C])".

The matrix in (i) is constructed in Example 5.1. In (ii), SKI(Z[G])

is computed as a special case of Example 9, and the explicit wunit

representing its nontrivial element can be constructed using. the proof of
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Oliver [1, Proposition 17]. The general problem of determining whether or

not a given element of Wh(G) can be represented by a unit in Z[G] is

studied in Magurn et al [1], and is discussed briefly in Chapter 10
(Theorems 10.6 to 10.8) below.



PART I: GENERAL THEORY

These first six chapters give a general introduction to the tools

used when studying K1 of Z- and ip—orders, and in particular of integral
group rings. While some concrete examples of computations of SKI(Z[G])

are given in Sections 5a and 5b, the systematic algorithms for making such
computations are not developed until Parts II and III.

The central chapters in Part I are Chapters 2, 3, and 4. The torsion
free part of Kl(ﬂ), for any Z- or ip—order A, 1is studied in Chapter 2

using reduced norm homomorphisms and p-adic logarithms. In Chapter 3, the

continuous K2 for p-adic algebras and orders is defined, and then used

to construct the localization sequences which will be used later to study

SKI(Z[G]) for finite G. Chapter 4 is centered around the congruence

subgroup problem: the computation of one term

C(RIG]) = Lim SK, (2[G],n2[6]) & Coker[Ky(@IG]) — @ K3(@,[cD)]
n P

in the localization sequence of Chapter 3.

In addition, Chapter 1 provides a survey of some general background
material on such subjects as semisimple algebras and orders, number
theory, and K-theory of finite and semilocal rings. Chapter 5 collects
some miscellaneous quick applications of the results in Chapter 4: for

example, the results that Cll(Z[G]) = 1 whenever G is cyclic,
dihedral, or quaternionic. Also, the "standard involution” on Kl(Z[G]),
K;(ip[G]), etc., studied in Section 5c, is the key to many of the later
results involving odd torsion in Cll(Z[G]) c SKI(Z[G]). The integral

p-adic logarithm (Chapter 6), which at first glance seems useful only for
getting an additive description of Kl(ip[G])/torsion, will be seen later

to play a central role in the computations of both SKl(ip[G]) and

c1,(z[6)).



Chapter 1 BASIC ALGEBRAIC BACKGROUND

By a Z-order A in a semisimple @Q-algebra A is meant a Z-lattice
(i. e., A 1is a finitely generated Z-module and A = Q-A) which is a
subring. One of the reasons why Whitehead groups are more easily studied
for finite groups than for infinite groups is that strong structure
theorems for semisimple (@-algebras and their orders are available as
tools. In fact, it is almost impossible to study the K-theory of group
rings Z[G] without considering some orders which are not themselves
group rings. Furthermore, the use of localization sequences as a tool for

studying Kl(u) for Z-orders A makes it also important to study the
K-theory of orders over the p-adic integers ip.

This chapter summarizes some of the basic background material about
semisimple algebras, orders, p-adic localization, semilocal rings, and
similar topics, which will be needed later on. The results are presented
mostly without proof. The first two sections are independent of K-theory.

Section lc includes some results about Kl of semilocal or finite rings,

as well as Quillen’s localization sequence for a maximal order. Section
1d contains a short discussion about bimodule-induced homomorphisms for

Ki(—), and in particular about Morita equivalences.

Recall that a number field is any finite field extension of @Q. The
ring of integers in a number field K 1is the integral closure of Z in
K: i. e., the set of elements in K which are roots of monic polynomials

over Z.

la. Semisimple algebras and maximal orders

The definition of a semisimple algebra (or ring) varies somewhat; the
most standard is to define it to be a ring which is semisimple (i. e., a
direct sum of modules with no proper submodules) as a (left or right)
module over itself. Then a simple algebra is a semisimple algebra which

has no proper 2-sided ideals. Throughout this book, whenever "semisimple
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algebra” is used, it is always assumed to mean finite dimensional over the
base field. Our main references for this topic are Curtis & Reiner [1,
Section 3] and Reiner [1, Section 7].

For any field K of characteristic zero, and any finite group G,
standard representation theory shows that K[G] is a semisimple
K-algebra. In particular, the structure of Q[G] as a semisimple

Q-algebra plays an important role when studying Kl(Z[G]).

The center of any algebra A will be denoted Z(A).

Theorem 1.1 Let K be a field, and let A be any semisimple
K-algebra. Then the following hold:

(i) (Wedderburn theorem) There are division algebras Dl""’Dk

k
i=lur; (Di) . Here,

each Mr- (Di) is a simple algebra, and has a unique irreducible module

over K, and numbers LIPRRRNS > 0, such that A Z ]|
isomorphic to (Di)ri. Furthermore,
k k
za) = Nzoe, (o)) = 1 2(0,);
i=1 : i=1

and A 1is simple if and only if Z(A) 1is a field.

(it) If A is simple and Z(A)/K is separable, then for any fteld
extension L 3 K, L@KA is semisimple with center L@KZ(A). In

particular, L@KA is simple if K = Z(A).

(iit) If A 1is a central simple K-algebra (i. e., K = Z(A)), then
[A:K] = n® for some n € Z.

(iv) (Skolem-Noether theorem) If A is a central simple K-algebra,
and if B C A 1is a simple subalgebra which contains K, then any ring
homomorphism f: B — A which fixes K 1is the restriction of an inner

automorphism of A.

Proof The Wedderburn theorem is shown, for example, in Curtis &
Reiner [1, Theorems 3.22 and 3.28]; and the other statements in (i) are
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easy consequences of that. The other three points are shown in Reiner [1,
Theorem 7.18 and Corollary 7.8, Theorem 7.15, and Theorem 7.21]. 1]

Note in particular that a commutative semisimple K-algebra always
factors as a product of fields. In the case of group rings of abelian

groups, one can be more specific. Recall that for any n, (n denotes a
primitive n-th root of unity; and that for any field K, K(n denotes the

smallest field extension of K which contains the n-th roots of unity.

. R = . R
Example 1.2 For any n 2 1 Q[Cn] ndlnm-d More generally, for

any field K of characteristic zero and any finite abelian group G,

K[G] = n]i<=lKi’ where for each i, Ki = K((ni) for some nilexp(G).

Proof For any n, a homoworphism a = ﬂad: Q[Cn] — ndlnqd is
induced by setting ad(g) = (d for some fixed generator g € Cn. Each

ay induces an irreducible Q[Cn]—representation Q(d, and they are

distinct since Cn acts on Wd with order d. So a 1is surjective.
Since [Q(d:Q] = ¢(d) for each d (see Janusz [1, Theorem 1.9.2]), a

dimension count shows that a is an isomorphism.
The last point is clear: K[G] 1is a product of fields by Theorem
1.1, and each field component is generated by K and the images of the

elements of G, which must be roots of unity. o

As another example, consider group rings C[G] and R[G] for a
finite group G. The only (finite dimensional) division algebra over C
is € 1itself (this is the case for any algebraically closed field); and
the only division algebras over R are R, C, and H (the quaternion
algebra). Note in particular that H 1is not a C-algebra, since C is
not central in H. The Wedderburn theorem thus implies that for any
finite G, C[G] 1is a product of matrix algebras over C, and R[G] is
a product of matrix algebras over R, €, and M. Also, by (ii), if A
is a simple @Q-algebra with center K, and if K “ R is any embedding,

then IR@KA is a matrix algebra over either R or M. This last point

will play an important role later, for example when describing the image

of the reduced norm in Theorem 2.3.
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If A is a simple algebra with center K, and A = Mr(D) for some

division algebra D, then the index of A is defined by setting
ind(A) = ind(D) = [D:K]/2

(an integer by Theorem 1.1(iii)). A field L 2 K is called a splitting
field for A if L @K A is a matrix algebra over L.

Proposition 1.3 Let A be a simple algebra with center K. Then
for any splitting field L 2 K for A, ind(A)|[L:K]. If A is a
division algebra, then any maximal subfield L C A 1is a splitting field
for A and satisfies [L:K] = [A:K]l/z.

Proof See Reiner [1, Theorem 28.5, and Theorem 7.15]. 1]

We now consider orders in semisimple algebras. If R is a Dedekind
domain with field of fractions K, an R-order 2 in a semisimple
K-algebra A 1is defined to be an R-lattice (i. e., A 1is a finitely
generated R-module and K-A = A) which is a subring. A maximal R-order
in A 1is just an order which is not contained in any larger order. Our
main reference for orders and maximal orders is Reiner [1]. The most
important properties of maximal orders needed when studying Whitehead

groups are listed in the next theorem (and Theorems 1.9 and 1.19 below).

Theorem 1.4 Fix a Dedekind domain R with field of fractions K of
characteristic zero, and let A Dbe a semisimple K-algebra. Then the
following hold.

(i) A contains at least one maximal R-order, and any R-order in A
is contained in a maximal order.

(it) If A= Hl::lAi’ where the A are simple and M C A is a

i
maximal R-order, then M splits as a product M = ﬂ?_lmi, where for all

i, mi is a maximal order in Ai.
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(iit) If A is commutative, then there is a unigue maximal R-order

MCA. If A= Hli(—lKi where the Ki are finite field extensions of K,

then R = Hli(-lRi’ where Ri is the ring of R-integers in Ki: i. e.,

the integral closure of R in Ki'

(iv) Any maximal R-order M C A is hereditary: all left (or right}
ideals in R are projective as M-modules, and all finitely generated

R-torsion free M-modules are projective.

(v} If G 1is any finite group, and if M C R[G] is a maximal order
containing R[G], then |G|-® C R[G].

Proof These are shown in Reiner [1]: (i) in Corollary 10.4, (ii) in
Theorem 10.5(i), (iii) in Theorem 10.5(iii), (iv) in Theorem 21.4 and
Corollary 21.5, and (v) in Theorem 41.1. O

Note that point (i) above is false if A is not semisimple. For
example, for n 2 2, the ring of upper triangular nxn matrices over Q
has no maximal Z-orders.

Example 1.2 has already hinted at the important role played by
cyclotomic extensions when working with group rings. The following

properties will be useful later.

Theorem 1.5 Fix a field K, and n > 1 such that char(K){n. Let
K(n denote a field extension of K by a primitive n-th root of unity.

Then K(n/K is an abelian Galois extension, and Gal(K(n/K) can be
identified as a subgroup of (Z/n)*: each 17 € Gal(K(n/K) has the form

'I(fn) = (fn)a for some unique a € (Z/n)*. Furthermore :

(i) K=@) Gal(ﬂKn/Q) = (Z/n)*. and Z(n c ﬂKn is the ring of
integers. In particular, under the identification Q[Cn] = Hdlnqd’ the
maximal Z-order in Q[Cn] is Hdlnzcd'

(it) (Brauer) If G is a finite group, and char(K)}exp(G)|n,
then K 1is a splitting field for G: i. e., K(n[G] is a product of
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matrix algebras over K(n.

Proof The embedding Cal(K(n/K) (7/n)* is clear. When K = Q,
Gal(dKn/Q) = (Wn)* since [dKn:Q]

1.9.2]); and Z(n is the ring of integers in dKn by Janusz [1, $I.9,

[in]

¢(n) (see Janusz [1, Theorem

Exercise 2]. The last statement in (i) then follows from Theorem
1.4(iii). Brauer's splitting theorem is shown in Curtis & Reiner [1,
Corollary 15.18 and Theorem 17.1]. 0O

Note that when R 1is the ring of integers in an arbitrary number
field K, then R(n need not be the integral closure of R in K(n. For

example, Z[vV3] is the ring of integers in @(v3), but Z[V3,i] is not
the ring of integers in Q(v3,i) = Q({:2).

For any field K and any finite group G, two elements g,h € G of
order n prime to char(K) are called K-conjugate if ga = xhx_1 for

some x € G and some a € Gal(K(n/K) Cc (Ijn)*. For example, g and h

are C-conjugate if and only if they are conjugate; and they are
Q-conjugate if and only if {(g) and <(h) are conjugate subgroups of G.

The importance of K-conjugacy lies in the following theorem.

Theorem 1.6 (Witt-Berman theorem) For any field K of
characteristic zero, and for any finite group G, the number of
irreducible K[G]-modules — i. e., the number of simple summands of K[G]

— is equal to the number of K-conjugacy classes of elements in G.

Proof The characters of the irreducible K[G]-modules form a basis
for the vector space of all functions (G — C) which are constant on
K-conjugacy classes. This is shown, for example, in Curtis & Reiner [1,
Theorem 21.5] and Serre [2, §12.4, Corollary 2]. O

Note that there also is a version of the Witt-Berman theorem when
char(K) > O: the number of distinct irreducible K[G]-modules is equal to
the number of K-~conjugacy classes in G of elements of order prime to
char(K). See Curtis & Reiner [1,Theorem 21.25] for details.
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1b. P-adic completion

Let R be the ring of integers in any number field K. For any
maximal ideal p C R, the p-adic completions of R and K are defined

by setting

~ ~ a1
R = u . R =R[= = char(R/p)).
, = dn R/p L =R (R/p))
Then ﬁp is a local ring with unique maximal ideal pﬁp, and kp is its
field of fractions. Furthermore, kp is a finite extension of ﬁp’ and

ﬁp is the integral closure of Z in K.

P P
Alternatively, ﬁp and Rp can be constructed using the p-adic

valuation vp: K — ZUw®, This is defined by setting
n
vp(r):ma.x{nZO:er}

for r € R, and vp(r/s) = vp(r)—vp(s) in general. This induces a

v, (x) N N
topology on K — based on the norm lep =p P — and Kp and Rp
are the corresponding completions of K and R. Note that R is

compact under this p-adic topology, since it is an inverse limit of finite
groups.

If pCRCK are as above, then for any semisimple K-algebra A
any R-order A C A, the p-adic completions of A and A are defined by
setting

A o= u =R e, A, A =R o aAzKke, o.
p%u/p » R » = e K R “p

Then Kp is a semisimple ﬁp—algebra (wvhere p = char(R/p)), and ﬁp

is a ip—order in Kp' Note that if we regard A as a Q-algebra, then

for any rational prime p (i. e., p € Z), and any A CA, ﬁp = ip@ A
d A =@ .

an Ap QPGQA

The importance of using p-adic completions when studying Kl(Zl) for

z
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a Z-order A 1is due partly because it is far easier to identify the units
(and invertible matrices) in the ﬁp than in A, and partly because

analytic tools such as logarithms and exponents can be used when working
in Kl(flp). For example, results in Chapters 6 and 8 illustrate how much
more simply the groups Ki(ip[G]) and SKl(ip[G]) are described than the
groups Ki(Z[G]) and SKI(Z[G]).

Now let E/F be any pair of finite extensions of ﬁp’ let RCF

and S CE be the rings of integers, and let pCR and g C S be the
maximal ideals. Then E/F 1is unramified if ¢ = pS, and is totally
ramified if S/g = R/p.

Theorem 1.7 Fix an algebraic number field K, and let R be its
ring of integers. Let A be any semisimple K-algebra, and let A be any
R-order in A.

(i) For any rational prime p,

R =2 IR, R =R, 12

IR
=
el
£
IR
=
£

plp

Here, the products are taken over all maximal ideals p C R which divide
p (i. e., p2IpR).

(it) ﬁp/ap (p = char(R/p)) is unramified for all but finitely many

maximal ideals p C R.

(iti) Kp is a product of matrix rings over fields for all but

finitely many p CR

(iv) ﬁp is a maximal ﬁp-order in Kp for almost all p in R;
and A is a maximal R-order in A if and only if ﬁp is a maximal

R -order in A for all p CR.
| 4 |4

Proof The first two points are shown in Janusz [1]: (i) in Theorem

I11.5.1, and (ii) in Theorem I.7.3. Points (iii) and (iv) are shown in
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Reiner [1, Theorem 25.7 and Corollary 11.6]. 0O

The next proposition gives information about the groups F* and R*,
when R is the ring of integers in a finite extension F of ﬁp In
particular, the reciprocity map F*/N(E*) = Gal(E/F)ab in (ii) below is
the key to defining norm residue symbols in K2(F) (Section 3a).

Proposition 1.8 Let F be any finite extension of ﬁp, and let

PCRCF be the maximal ideal and ring of integers.

(i) Let pc R® be the group of all roots of unity of order prime
to p. Then projection mod p induces an isomorphism p 2 (R/p)*; and

for any generator w of p:

Rf=px (1+4p) and F = p x (1+p) x (w).

(ii) For any finite Galois extension E/F, there is a canonical

isomorphism

% ] = ab
s :F /NE/F(E ) —— Gal(E/F)

R

(the reciprocity map). If E/F is not Galois, then F*/NE/F(E*)

Gal(E’/F), where E’ denotes the maximal abelian Galois extension of F

contained in E.

(iii) If E/F is unramified, and if g € S C E are the maximal

ideal and ring of integers, then the norm and trace homomorphisms

L2 2
N=NS/R:S —» R and Tr=TrS/R:S—»R

are surjective. Also, for all n 2 1, N(1+qn) = l+'pn and Tr(qn) = pn.
Proof To see (i}, just note that

R = Lim (R/A™M™ 2 Lim ((140)/(16™) x (R/p)") = (140) x (R/P)
n n



30 CHAPTER 1. BASIC ALGEBRAIC BACKGROUND

since (1+p)/(1+p") 1is a p-group for each n, and pol'I(R/p)*I. Point
(ii) is shown in Cassels & Frohlich [1, $§VI.2.2, and $§VI.2.6, Proposition
4]. The surjectivity of NS/R and TrS/R in (iii) is shown in Serre [1,
Section V.2]: by filtering R and R by the pn, and then using

analogous results about norms and traces for finite fields. u]

The following very powerful structure theorem for p-adic division

algebras and their maximal orders is due to Hasse [1].

Theorem 1.9 Fix a finite extension F of @p, let RCF be the

ring of integers, and let D be a division algebra with center F. Set

n= [D:F]1/2. Then there exists a maximal subfield E C D, with ring of

integers S CE, and an element w € D such that 1rI-:1r_1 = E, for which
the following hold:

n-1 .
(i) E/F is unramified, and D = DE-w
i=0

n-1
(ii) A = @Swri is the unique maximal ip—ord.er in D
i=0

(iti) wA is the unique maximal ideal in A
(iv) 7R is the maximal ideal in R.

Furthermore, for any r 2> 1 and any maximal ip—order R in Mr(D)’ L

is conjugate (in Mr(D)) to Mr(A)'

Proof See Hasse [1, Sdtze 10 & 47], or Reiner [1, Section 14 and
Theorem 17.3]. 0

We end the section by noting the following more specialized

properties of p-adic group rings.

Theorem 1.10 Fix a prime p, let F be any finite extension of
ﬁp, and let R CF be the ring of integers.
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(i) For any n such that p*n, F[Cn] x "?—lFi’ where the Fi are
finite unramified extensions of F. Under this identification, R[Cn] =

ﬂ?—lRi’ where Ri is the ring of integers in Fi' In particular, FCH/F

is unramified, and R[Cn] is the ring of integers in F(n.

(ii) For any finite group G, F[G] 1is a product of matrix algebras
over division algebras of index dividing 2 (if p=2) or p-1 (if p
is odd). More precisely, if p is odd and Cp €F, orif p=2 and

i € F, then F[G] is a product of matrix algebras over fields.

Proof (i) Since é € R, R[Cn] is a maximal ip~order in F[Cn] by

Theorem 1.4(v). Hence, R[Cn] = ﬂl;_lRi where the Ri are the rings of

integers in Fi' If p €R is the maximal ideal, then R/p[Cn] is a
product of finite fields (since p = char(R/p)}4n), so pRi is the

maximal ideal in Ri for each i, and Fi/F is unramified. The last

statement follows since Fi = FCn for some 1.

(ii) For any field K of characteristic zero, a cyclotomic algebra
over K is a twisted group ring of the form A = LB[G]t, where L is a
finite cyclotomic extension of K, G = Gal(L/K), and B € H2(G;uL) (so

A is a central simple K-algebra). By the Brauer-Witt theorem {see Witt
[1], or Yamada [1, Theorem 3.9]), any simple summand A of F[G] is
similar to a cyclotomic algebra over its center. Then by another theorem
of Witt [1, Satz 12] (see also Yamada [1, Proposition 4.8 and Corollary
5.4]), for any finite extension E 2 ﬁp((p) (p o0dd) or ED ﬁz(i)

(p = 2), any cyclotomic algebra over E is a matrix algebra. This
proves the last statement in (ii). The first statement then follows from
Proposition 1.3: for any simple suinmand A of F[G] with center E2JF,
ind(A)l[liZSp:E]lp-l if p 1is odd, and ind(A)|[E(i):E]|2 if p=2. O

Many of the elementary properties of Kl(u), when A is a ip—order
in a semisimple ﬁp—algebra, are special cases of results about semilocal

rings. These will be discussed in the next section.
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1lc. Semilocal rings and the Jacobson radical

For any ring R, the Jacobson radical J(R) 1is defined to be the
intersection of all maximal left ideals in R; or, equivalently, the
intersection of all maximal right ideals in R (see Bass [2, Section
I111.2]). For example, the Jacobson radical of a local ring is its unique
maximal ideal, and the Jacobson radical of a semisimple ring is trivial.

An ideal I € R 1is called a radical ideal if it is contained in

J(R). If R is finite, then I CR 1is a radical ideal if and only if it

is nilpotent (see Reiner [1, Theorem 6.9]). If A is a ip—order in a
semisimple ﬁp—algebra, then J(A) 2 pd and J(A)/pU = J(A/pA); so IC2A

is radical if and only if lim I™ = 0. The next theorem helps to explain
n-ow

the importance of radical ideals when working in K-theory.

Theorem 1.11 For any ring R with Jacobson radical J = J(R), and

any n>l, a matrix M € Mn(R) is invertible if and only if it becomes

invertible in Mn(R/J). In particular, 1+JC R".

Proof See Bass [2, Proposition III.2.2 and Corollary III.2.7]. O

The next example shows that p-adic group rings of p-groups are, in

fact, local rings.

Example 1.12 If R 1is the ring of integers in any finite extension
of ﬁp’ if pC€R is the maximal ideal, and if G {is any p-group, then

R[G] 1is a local ring with unique maximal ideal
J(R[G]) = {Zrigi tr, €R, g; €6, Zri € p).
In particular, R[G]/J(R[G]) & R/p.
Proof See Curtis & Reiner [1, Corollary 5.25]. O

We now recall some of the basic definitions and properties of Kl(—).

For any ring R, let GLn(R) be the group of invertible nxn matrices
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over R (any n21); and set GL(R) =U:—IGLn(R)' For any i#j and any

oF
ij

identity except for the entry r 1in the (i,j)-position; and let E(R) C
If ICR 1is any (2-sided)

r€R, let € GL(R) denote the elementary matrix which is the

GL(R) be the subgroup generated by the e: i’

ideal, then GL(R,I) denotes the group of invertible matrices which are
congruent to the identity modulo I; and E(R,I) denotes the smallest

normal subgroup of GL(R) containing all e;j for r€lI. Finally, set
K(R) = GL(R)/E(R) and K,R,T) = GL(R,I)/E(R,I). That these are, in

fact, abelian groups will follow from the next theorem.

For the purposes of this chapter, we define K2(R), for any ring R,
by setting K2(R) = H2(E(R)). The usual definition (involving the

Steinberg group), as well as some of the basic properties of, e. g.,

Steinberg symbols in K2(R), will be given in Section 3a.

Theorem 1.13 (Whitehead’'s lemma) For any ring R, and any ideal
I CR,

E(R) = [GL(R),GL(R)] = [E(R),E(R)], and
E(R,I) = [GL(R),GL(R,I)] = [E(R),E(R,I)].

For any ABecL (1), (4 A(')‘) € Ey (R,I), and [A]-[B] = [8 o w

KI(R,I). Furthermore, thére is an exact sequence
K2(R) —_ K2(R/I) _— KI(R,I) _— KI(R) —_— KI(R/I).

Proof The commutator relations are due to Whitehead and Bass, and

are shown in Milnor [2, Lemmas 3.1 and 4.3]. The relation

o) = (o Do+ Do D)o T D6 ) € Eantre:

is clear from the definition of E2n(R’I) (and is part of the proof that

[GL(R),GL(R,I)]CE(R,I)); and [A]-[B]=[A]-[diag(I,B)]=[diag(A,B)] as

an immediate consequence. The exact sequence is constructed in Milnor [2,
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Lemma 4.1 and Theorem 6.2]; and can also be derived from the five term

exact homology sequence (see Theorem 8.2 below). 0O

A ring R is called semilocal if R/J(R) is semisimple; or
equivalently, if R/J(R) is artinian (see Bass [2, §III.2]). Thus, any

finite ring, and any 2p—order, are semilocal. As one might guess, given
Theorem 1.11 above, the functor Kl behaves particularly nicely for

semilocal rings.
Theorem 1.14 The following hold for any semilocal ring R.

(i) Any element of KI(R) is represented by a unit (i. e., by a

one-by-one matrix).

i is commutative, then = . n particular,
ti) If R hen K (R) = R'. I !

SK1(2I) =1 if A is any commutative 2p—order.

(iit) If S is another semilocal ring, and a: R — S is an
epimorphism, then the maps

GLn(a): GLn(R) — GLn(S) and Kl(a): Kl(R) —_— Kl(S)

(any n 2 1) are all surjective.

Proof These are all shown in Bass [2]: (i) in Theorem V.9.1, (ii)
in Corollary V.9.2, and (iii) in Corollary III.2.9. O

The following relation in Kl(R,I), due to Vaserstein [1], is often

useful, and helps to simplify some of the proofs in later chapters.

Swan’s presentation of K2(R,I) below (when I 1is a radical ideal) will

be used in this book only in the case when IZ = O.

Theorem_1.15 For any ring R and any ideal I CR, if r € R and

x € I are such that (l+rx) € R*, then (l+xr) € R® and

(l+rx)(l+xr)—1 € E(R,I).
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If T is a radical ideal (i. e., I C J(R)), then
K (R,I) & (1+1)/((1+rx)(1+xr) " & r € R, x € I).

In particular, Kl(R,I) = 1/(rx~xr : T€R, x€1I) if I?® =0.

Proof Recall that E(R,I) = [GL(R),GL(R,I)] (Theorem 1.13). Using

this, the relation

1 r\f1 o0\(1 0 ) _ (l+rx 0}(1 oO\/1 r)
(o 1)(x 1)(0 o) = (%5 1)(x o 1
% 1+rx 0
shows that (l+xr) € R, and that ( : (lm_)-,) € E(R,I). In

u 0
Out

again), this shows that (1+rx)(1+xr)_1 € E(R,I).
The presentation for Kl(R,I), when I C J(R), is due to Swan

particular, since ( € E(R,I) for any u € (1+I)* (Theorem 1.13

[2,Theorem 2.1]. The last presentation (when IZ% = 0) is a special case
of Swan’'s presentation, but is also an easy consequence of Vaserstein’s

identity. o

When studying KI(ZI), for a 2p—order A, it is often necessary to
get information about KI(ZI/I) and K2(2[/I) for ideals I C A of finite

index. The next result is a first step towards doing this.

Theorem 1.16 Let R be a finite ring. Then KI(R) and K2(R) are
finite. Furthermore, (i) K2(R)=l if R is semisimple; (ii) K2(R)

is a p-group if R has p-power order (for any prime p); and (iii)
prKl(R)I if R is semisimple and has p-power order for some prime p.

Proof By Theorem 1.14(i), R® surjects onto KI(R)' By Dennis [1,
Theorem 1], there is a surjection of H2(E5(R)) onto K2(R). So KI(R)
and K2(R) are both finite. If R 1is semisimple, then by the Wedderburn
theorem, R = “1i<=1Mr; (Di)’ where the Di are finite division algebras

and hence fields. Then GL(R) & [lli‘ﬂcL(Di), E(R) & l']l;:lE(Di); and hence
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~ ik
K (R) = 1[I

9.13]; and pHKl(R)l if R (and hence the Di) have p-power order.

1=1Kn(Di) for n=1,2. So K2(R) =1 by Milnor [2, Corollary

By Theorem 1.11, if JC R 1is the Jacobson radical, then the group

X = Ker|{E(R) — E(R/J)| € U (1+M _(J
er[ER) — E®R/)] L ()

is a union of finite p-groups. Hence Hi(X)[]l)] =0 for all 1i>0; and

the Hochschild-Serre spectral sequence (see Brown [1, Theorem VII.6.3])
applies to show that

1 o 1 o 1 1
Ky(R)[5] = Hy(E(R))LT] = Hy(E(R/N)IT] = Ky (R7I)[]-
Since R/]J 1is semisimple, K2(R/J) = 1; and hence K2(R)[]l)] =1. o

We end the section with some localization exact sequences which help

to describe Ki(m) when R 1is a maximal Z- or ip—order. They are

special cases of Quillen’s localization sequences for regular rings (or

abelian categories).

Theorem 1.17 (i)} For any prime p, if B 1is a maximal ip—order
in a semisimple 6p—algebra A, and if JC R ts the Jacobson radical,

then there is for all n 2 O an exact seguence

— Ki+1(’“) — Ki+1(A) — Ki(m/J) — Ki(m) — Ki(A) — ...
In particular, p“SKl(m)l.

(ii) Fix a subring A C Q and a maximal A-order M 1in a semisimple
Q-algebra A, and let % be any set of primes not invertible in A. Set
m[%] = m[%:p@], and let Jp c ﬁp (for p € $) be the Jacobson radical.

Then there is an exact sequence

C o K, (B) — K, (5]) — p%xi(ﬁp/Jp) = K (W) — K, (R[5]) = ....
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Proof These follow from Quillen [1, Theorems 4 and 5]. For example,
in case (ii), if M(R), g(m[%]), and ut(m) denote the categories of

finitely generated M-modules, m[é]-modules, and $-torsion R-modules,

respectively; then by Quillen [1, Theorem 5] there is an exact

localization sequence
vee — Km(g(m[%])) - Ki(nt(m)) — K, (¥(m)) — Ki(ﬂ(m[él)) - ...

Since M and m[%] are hereditary (Theorem 1.4(iv)), all finitely
generated M- or m[%]-modules have finite projective resolutions. It
follows that K (M(W)) 2 K (W) and K (M(W[31)) = K,(R[3]). For any
$-torsion M-module M, M = epé@“(p)’ and each M(p) has a filtration by

mp/,]p—modules. So by devissage (Quillen [1, Theorem 4]),
t ~ A
K®) = 0 K, E /).

In case (i), sxl(m) = Im[Kl(m/J) o Kl(m)]. Since W] is
semisimple, Kl(m/,]) has order prime to p by Theorem 1.16(iii), and so

pJ(lsxl(m)l. o

1d. Bimodule-induced homomorphisms and Morita equivalence

Define the category of ‘"rings with bimodule morphisms™ to be the
category whose objects are rings; and where Mor(R,S), for any rings R
and S, is the Grothendieck group modulo short exact sequences of all

isomorphism classes of (S,R)-bimodules SMR such that M is finitely

generated and projective as a left S-module. Composition of morphisms is
given by tensor product. The usual category of rings with homomorphisms
is mapped to this category by sending any f: R —> S to the bimodule
SSR’ where si*(sz2)'r = s;spf(r). The importance of this category for

our purposes here follows from the following proposition.
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Proposition 1.18 For each i, Ki is an additive functor on the

category of rings with bimodule morphisms.

Proof Any (S,R)-bimodule M which is finitely generated and

projective as a left S-module induces a functor
M8y : B(R) — B(S);

where P() denotes the category of finitely generated projective

modules. So the proposition follows immediately from Quillen’s definition

in [1] of Ki(R) using the Q-construction on P(R).
In the case of Kl(-) and K2(—), this can be seen much more

directly. Let S"R be any bimodule as above, and fix some isomorphism

k

MéP =S of left S-modules. For each n 2 1, define homomorphisms

[M8] : GL_(R) & Auty(R®) —— Autg(s™) = L _ (S)

by setting [M@R]n(a) = (M@Ra)QId(Pn) for each a € Aut(Rn). The

[M@R]n are easily seen to be (up to inner automorphism and stabilizing)

independent of the choice of isomorphism MQPESk; and hence induce

unique homomorphisms on KI(R) = HI(GL(R)) and K2(R) = H2(E(R)). n]

As one example, transfer homomorphisms in K-theory can be defined in
terms of bimodules. If R C S 1is any pair of rings such that S is

projective and finitely generated as an R-module, then

S
triy = [88], : K (S) — K, (R);

when S is regarded as an (R,S)-bimodule in the obvious way. The above
proposition is often wuseful when verifying the commutativity of
K-theoretic diagrams which mix transfer homomorphisms, maps induced by
ring homomorphisms, and others: commutativity is checked by constructing
isomorphisms of bimodules. Examples of this can be seen in the proofs of

Proposition 5.2 and Theorem 12.3, as well as throughout Chapter 11.
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Another setting in which it is useful to regard Ki(—) as a functor

defined on rings with bimodule morphisms is that of Morita equivalence. A
Morita equivalence between two rings R and S is an "invertible”
bimodule SHR: i. e., for some bimodule RNS’ M@RN £ 8 and N@SM ZR

as bimodules. In particular, [M@R]* and [N@S]* are inverse
isomorphisms between Ki(R) and Ki(S).

The simplest example of this is a matrix algebra. For any ring R
and any n>1, R™ 1is invertible when regarded as an (Mn(R),R)—bimodule.

In this case, the induced isomorphisms Ki(Mn(R)) = Ki(R) are precisely
those induced by identifying GLm(S) with GLmn(R)'

In Theorem 1.9, we saw that any maximal ip-order in a simple
ﬁp—algebra Mn(D) (D a division algebra) is conjugate to a matrix

algebra over the maximal order in D. This is not the case for maximal
Z-orders in simple @Q-algebras; but a result which is almost as good can be

stated in terms of Morita equivalence.

Theorem 1.19 Fix a Dedekind domain R with field of fractions K.
Let A be any simple K-algebra. Write A=Mn(D), where D is a

division algebra, and identify A = EndD(V) for some n-dimensional
D-module V. Let A € D be any maximal R-order. Then Mn(A) is a

maximal R-order in A; and any maximal R-order in A has the form R =
EndA(A) for some A-lattice A in V. Furthermore, A 1is invertible as

an (M,A)-bimodule, and so A and V induce for all 1 a commutative
square

incl
K, (4) == K, (D)
2|[A],, 2|V,
incl

K, (®) —2% K (A) = K (M (D).

Proof See Reiner [1, Theorem 21.6 & Corollary 21.7]. o
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This chapter presents some of the basic applications of the reduced
norm and logarithm homomorphisms to describe Kl(u) and Kl(A), when A

is a Z-order or ip—order in a semisimple @ or ﬁp—algebra A. For
example, Kl(u) is shown to be finitely generated whenever A is a

Z-order; and is shown to be a product of a finite group with a finitely

generated ip—module in the ip—order case. In both cases, the rank of
Kl(u) is determined. Also, SKI(H) is shown (for both Z- and
ip—orders) to be the kernel of the "reduced norm"” homomorphism from Kl(u)

to units in the center of A.
The results about reduced norms are dealt with in Section 2a. These
include all of the results about Z-orders mentioned above, as well as some

properties of ip—orders. Then, in Section 2b, p-adic logarithms are
applied to show, for example, that for any ip—order A, E(A) is
p-adically closed in GL(A) (i. e., that Kl(u) is Hausdorff in the

p-adic topology).

2a. Applications of the reduced norm

For any field F, and any central simple F-algebra A, the reduced

norm homomorphism nr, e A* — F* for A is defined as follows. Let

EDF be any extension which splits A, and fix an isomorphism
LN * - %*
E@FA = Mn(E). Then for any a € A, set nrA/F(a) detE(¢(l®a)) €E.

This is independent of the choice of ¢: any two such isomorphisms differ

by an inner automorphism of Mn(E) by the Skolem-Noether theorem (Theorem
1.1(iv) above). Furthermore, nrA/F(a) €F (it is fixed by the action

of Gal(E/F) if E/F 1is Galois); and is independent of the choice of

splitting field E. For more details, see Reiner [1, Section 9a].
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As one easy example, consider the quaternion algebra H with center

R. A C-linear ring isomorphism ¢: C® H — Mz(lD) is defined by setting

R

e181) = (3 9). wi0n) = (5 ). even = (5 o) e = (3 g)-

Then, for any § = a+bi+cj+dk € H,

a+bi c+di 2, .2 2 2
nrm(f) = det(—c+di abi) =2 +b“+c”+d".

»* »*
It is immediate from the definition that nr, o A — F is a

homomorphism. For any n > 1, Mn(A) is again a central simple F-
algebra, and nrM,,(A)/F is the extension to GLn(A) of nan_i(A)/F' So

the reduced norm extends to a homomorphism defined on GL(A), and hence

factors through its abelianization KI(A)' For example, nre R induces

an isomorphism between Kl(ll-l) and the multiplicative group of positive

real numbers.
The first lemma lists some of the immediate properties of reduced

norms.

Lemma 2.1 Fix a field F, and let A be a central simple
F-algebra. Set n = [A:K]l/z. Then the following hold.

(i) detF(A — A) = nr for any u € A",

aE()”
(it) nrA/F(u) =u" for any u € F.

(iit) If A= Mn(F), then nr, o A — F' is the determinant

homomorphism.

(iv) If ECA is a subfield containing F, and if B is the cen-
. 2%
tralizer of E in A, then nrA/F(u) = NE/F(an/E(u)) for any u € B.

Proof The first three points are shown in Reiner [1, Section 9a].

Point (iv) is shown in Draxl [1, Corollary 22.5]; and also follows easily
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from the relations among (reduced) characteristic polynomials in Reiner
[1, Theorems 9.5, 9.6a, and 9.10(iii)]. o

Now, for any semisimple @ or ﬁp-algebra A= n];—lAi’ where each

Ai is simple with center Fi’ and any Z- or ip-—order A, we let
nr,: K (A) — [L(F.)% = z(A)®  and  nr;: K (4) — Z(A)™
AT 1 ivti? < A1

denote the homomorphisms induced by the product of the reduced norm maps

for the Ai' Note that nr, and nry  are used here to denote the
homomorphisms defined on Kl(—), while nr A/F denotes the reduced norm

»*
as a map on A .

The following lemma will be useful when computing Ker(nrA).

Lemma 2.2 let E D F be any finite field extension of degree n,
and let A be any F-algebra. Then

Ker[K, (1): K (A) ——— K (E®;A) |

(where i(x) = 1®x) has exponent dividing n.

Proof By Proposition 1.18, the composite

trf oK (1) : K (A) — K (E8LA) — K (A)

is induced by tensoring with E@FA, regarded as an (A,A)-bimodule.
Since F is central in A, E@FAEAn as (A,A)-bimodules, and so

trf oKl(i) is multiplication by n. The result is now immediate. O

If A is any simple @Q-algebra with center K, then a real valuation
v of K (i. e., an embedding v: K < R) is called ramifted in A if

IR@VKA is a matrix algebra over H.
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Theorem 2.3 Let A be a simple @ or @p-algebra with center
F=2Z(A), let RCA be a maximal Z- or ip-order, and let RCF be

the ring of integers. Then

nr, : Kl(A) —F
is injective; and Im(nrA) and Im(nrm) are described as follows:
(i) If A isa ﬁp—algebra, then
nr, (K (A)) = F' oand  nrg(K (W) = RS

(it) If A is a Q-algebra, then set

F = {u €F' :v(u) >0 for all ramified v: F < m}; Ry = F, NR".

Then

nr, (K, (A)) = F, and nrg(K (B) = R

Proof Recall that the index of A & Mr(D) (D a division algebra)

is defined by ind(A) = ind(D) = [D:F]l/z.

Step 1 We first consider the formulas for Im(nrA) and Im(nrm).
Set n = ind(A). Note first that nrm(Kl(m)) c R for any u € G]..k(lﬁ),
nry e ()" = det (AF 5 A¥) = det (8 2 5¥) € R
3¢
(Lemma 2.1(i)), and so nrA/F(u) €ER.
If F 1is a finite extension of ﬁp’ then by Theorem 1.9, we can
write A = Mr(D) and M = Mr(A), where D is a division algebra and

ACD a maximal order. Also by Theorem 1.9, there is a maximal subfield

D and an element w7 € D such that E/F is unramified, such that

N N
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WEW—I = E, and such that = generates the maximal ideal in R. By
Lemma 2.1(iv), nrDIE = NE/F’ the usual norm. If S C E is the ring of

integers, then NE/F(S*) =R by Proposition 1.8(iii); and so
2 2 -1 2
nry(K; (1)) 2 (Np p(8), nrp o(m) = (R, (-1)"7") = F .

If F is a finite extension of @, then the formula for nrA/F(A*)

is the Hasse-Schilling-Maass norm theorem (see, e. g., Reiner [1, Theorem
33.15]). To see that nrm(Kl(m)) = R:, fix some u € R:, and choose
M € GL(A) such that nrA/F(M) =u. Let n be the product of the
distinct primes at which M is not invertible; and set A = I A s
n pin'p
a a PO A .
Rn = ﬂplan’ etc. Then nrxn([M]) € (Rn) = nrﬁn(Kl(mn)). So assuming

the injectivity of nry = ﬂplnnrﬁ (shown in Step 2 below), there exist
n
P

elementary matrices e, . (r;),...,e, . (ry) € E(K )} such that
11]1 1xJx n
M.eiiji(ri)...eikjk(rk) € GL(mn).
Choose elements f©,,...,T, € m[%] such that T¢ = r¢ (mod ﬁn) for all

Note that it suffices to do this on the individual coordinates (in

) of the r. with respect to some fixed Z-basis of M. If we now set

= de):-r

=M-eiiji(ri)”-eikjk(rk), then nrA/F(ﬁ)=nrA/F(M) =u and MeGL(W).

Step 2 The injectivity of nr,  was first shown by Nakayama &

Matsushima [1] in the p-adic case, and for Q-algebras by Wang [1]. The
following combined proof, using induction on [A:F], 1is modelled on that
in Drax] [1].

Step 2a Assume first that E C A is a subfield such that E/F is a
cyclic Galois extension of degree n > 1, and let B denote the

centralizer of E in A. We claim that [u] =1 in KI(A) for any u €
B® such that nrA/F(u) = 1.

Note first that B is a simple algebra with center E (see Reiner
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{1, Theorem 7.11]), and that ([B:E] < [A:F]. So nr is injective by

B
the induction hypothesis. Furthermore, by Lemma 2.1(iv),

nrA/F(u) = NB/F(an/E(u)) = 1. (2)
Set G = Gal(E/F) £ Z/n, and consider the exact sequence in cohomology

A72(GE/nrg(B)) —— B (Ginrg(B)) — 871 (6:E).

Here, if ¢ € G 1is a generator, we identify for any G-module M:
a1 -1
HO(G:M) = {x € M : Ny(x) = x+(x)+. . P (x) = O}/{¥(x)-x : x € M}.

In particular, ﬁ—l(G;E*) = 1 by Hilbert’s Theorem 90 (see Janusz [1,
Appendix A]). Also, by Step 1, ﬁ—z(G;E*/an(B*)) = 1: in the p-adic

case since E = an(B*); and in the Q@-algebra case since E*/an(B*)

is a product of copies of {11} for certain real embeddings E — R, and
these real embeddings are permuted freely by G.
Thus, ﬁ—l(G;an(B*)) = 1. So by (2), there is an element v € B"

such that
Wrp £ (1)) (g x(0)) 7 = nrp p(w).

Fur thermore, by the Skolem-Noether theorem (Theorem 1.1(iv)), there is an
element a € A such that axa—l = ¥(x) for all x € E. Then ozva“1 €B

(B is the centralizer of E), and
nry p([a,v]) = nry plava )/nrg p(v) = ¥(arg £ (V))/(nrg p(v)) = nrg p(u).

Thus, an/E(u°[a,v}_1) =1, so u-[a,v}—l =1 in KI(B) by the

induction hypothesis; and hence [u] =1 € KI(A)°

Step 2b The rest of the proof consists of manipulations, using Lemma

2.2, to reduce the general case to that handled in Step 2a. Fix a prime
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P, and any u € A¥  such that nrA/F(u) =1. We will show that
[u] € KI(A) has finite order prime to p.

Let F D F be a splitting field such that f/F is Galois, and let
F' ¢ f be the fixed field of a p-Sylow subgroup of Gal(ﬁ/F). Then
p{[F':F], and [f‘:F'] is a p-power. Write

F'8;A = M (D) and [18u] = [v] € K, (D), (3)

where D 1is a division algebra, F’' =Z(D), v € D*, and nrD/F(v) = 1.

Now let E 2 F’(v) be any maximal subfield containing v, and let
£ 2 E be any normal closure of E over F’'. Let K C E be the fixed
field of some p-Sylow subgroup of Gal(ﬁ/F'). Thus, p{[K:F']; and
ind(D) =[E:F']|[f‘:F'] is a p-power by Proposition 1.3.

Set B = K@F, D, and identify v € D with 18v € B. Then an/K(v)
=1, and v €l = K@F, E. Also, [ 1is a field, since [K:F’'] and
[E:F’'] are relatively prime; K C £ [ ﬁ, and E/K 1is a Galois extension
of p-power degree. If [ =K, then [B:K] = [IA..:K]2 =1, and so v = 1.
Otherwise, there is a subfield L Cf such that L/K 1is a degree p
Galois extension, and v centralizes L. In this case, since [B:K] =

[A:F], Step 2a applies to show that [v] =1 € KI(B) = Kl(KQF, D).

Lemma 2.2 now applies to show that [v][K:F,:| =1 in KI(D)' Hence
[l@u][K:F,:I =1 € KI(F' @FA) by (3), and a second application of Lemma
2.2 shows that [u][K:F:I =1 in KI(A)' But p{[K:F] by construction,

and so [u] has order prime to p in KI(A)' o]

The following lemma, due to Swan [2], makes it possible to compare
K1(2l) with KI(B)’ wvhen A C B is any pair of orders in the same

algebra. It will also be used in the next chapter when constructing

localization sequences.

Lemma 2.4 Let R C S be any pair of rings, and let I be any
S-ideal contained in R. Then

E(S,I?) € E(R,I) C E(R).
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If, furthermore, S/I® is finite, then the induced map KI(R) - KI(S)

has finite kernel and cokernel.

Proof If e:j denotes the elementary matrix with single off-
. rs r s
diagonal entry r in (i,j)-position, then €5 = [eik’ekj] for any

r,s€I and any distinct 1i,j,k. Hence, since by definition E(S,Iz) is

rs

the smallest normal subgroup in GL(S) containing all such eij’
E(S,I?) C [E(S,I), E(S,I)] C [GL(S,I), GL(S,I)]
= [GL(R,I), GL(R,I)] € [CL(R),GL(R,I)] = E(R,I) )

(see Theorem 1.13).

Now consider the following diagram, with exact rows and column:

E(S,1%)/E(R,I?)

K2(R/12) _ KI(R,IZ) K, (R) K, (R/T?)
(2)

Ky(8/1%) — K, (S,1%) > K, (8) > Kl(S/12).

By Theorem 1.16, Ki(R/Iz) and Ki(S/12) (i = 1,2) are all finite.

Also, E(S,I%)/E(R,I?) is finite since by (1),

E(S,I%)/E(R,I?) C (E(R) N GL(R,I?*))/E(R,I?) = Ker[Kl(R,Iz) — K, (R)].

This shows that three of the maps in square (2) have finite kernel and
cokernel, and so the same holds for KI(R) — KI(S). o

We are now ready to apply reduced norm homomorphisms to describe the

structure of K1(2I,I) — modulo finite groups, at least — when A is a

Z- or ip-order and I C2A 1is an ideal of finite index.
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Theorem 2.5 Let A be a semisimple Q- or ﬁp-algebra, let A be
any Z- or ip—order in A, and let I C A be an ideal of finite index.

Then

(i) SKI(ZI) = Ker(nru) and is finite.

(it) nry ¢ KI(ZI,I) — R* has finite kernel and cokernel, where

R* is the product of the rings of integers in the field components of the
center Z(A).

(tit) If A is a Q@Q-algebra, then KI(ZI,I) is a finitely generated

abelian group. If
q = number of simple summands of A, and

r = number of simple summands of R OQ A,

then rkZ(Kl(ZI,I)) =r-q.

Proof (i) The equality SKI(ZI) = Ker(nru) is immediate from the
injectivity of nr,. If M2 A is a maximal order, then Lemma 2.4 shows
that SKI(ZI) is finite if and only if sxl(m) is. By the localization
sequences of Theorem 1.17, sxl(m) is torsion, and is finite if ® is a
ip—order. (A proof of this which does not use Quillen’s localization

sequence is given by Swan in [3, Chapter 8].)
WVhen A 1is a Z-order, then by a theorem of Bass [1, Proposition
11.2], every element of KI(ZI) is represented by a 2x2 matrix. Also,

Siegel [1] has shown that GL2(ZI) is finitely generated. So SKI(ZI) is

finitely generated, and hence finite, in this case. Alternatively, the
finiteness of sxl(m) follows from Theorem 4.16(i) below.

(ii) Let B2 A be a maximal order. Then the maps
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nrm 2
K, (3,1) » K (%) » K (B) — R

all have finite kernel and cokernel: the first since K2(2I/I) and

K1(2I/I) are finite (Theorem 1.16), the second by Lemma 2.4, and nr, by

|
Theorem 2.3 and (i) above.

(iii) If A 1is a Q@Q-algebra, then write F = Z(A) = "Fi’ where the
Fi are fields, and let Ri c Fi be the ring of integers. By the
Dirichlet unit theorem (see Janusz [1, Theorem I.11.19]), R = "(Ri)* is

finitely generated and

rkZ(R*) - iglrkZ(R?) = igl[(no. field summands of R @Q Fi) - 1]

= (no. field summands of R @Q F)-q=r-q.
By (ii), the same holds for K1(2l,I). o

In the case of an integral group ring, the formula for rk(Kl(Z[G]))

can be given a still nicer form, using the concept of "K-conjugacy"

defined in Section la. Note that in any finite group G, two elements

g,h € G are R-conjugate if g is conjugate to h or h_l; and are

Q-conjugate if the subgroups (g) and ¢(h) are conjugate.
Theorem 2.6 Fix a finite group G, and set
r = no. of R-conjugacy classes in G,

no. of Q@-conjugacy classes in G.

oL
]

Then rk(Wh(G)) = rk(Kl(Z[G])) =r - q.

Proof By the Witt-Berman theorem {Theorem 1.6), for any K C C,
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(no. K-conjugacy classes in G) = (no. irred. K[G]-modules)
= (no. simple summands in K[G]).

The result is now immediate from Theorem 2.5(iii). O

2b. Logarithmic and exponential maps in p-adic orders

In the last section, reduced norms were used to compare Kl(?.[), for
any ip—order A, with the group of units in the center of the maximal

order. Now, p-adic logarithms will be used to get more information about
the structure of KI(ZI).

Throughout this section, p will be a fixed prime, and the term
"p-adic order” will be used to mean any ip—algebra which is finitely

generated and free as a ip—module. The results here are shown for

arbitrary p-adic orders, to emphasize their independence of the more

specialized properties of orders in semisimple 6p—algebras. Any p-adic

order R is semilocal, since R/J(R) is finite. So by Theorem 1.14(i),
KI(R) is generated by units in R; and KI(R,I) is generated by units

in 141 for any ideal I CR.
For any p-adic order R and any x € R, define

x2 x3 x2 x3
Log(1+x)=x--§+-§—... and Exp(x)=1+x+-2—!+-3—!-+...
whenever these series converge (in QOZR, at least). Just as is the

case with the usual logarithm on R, p-adic logarithms can be used to
translate certain multiplicative problems involving units in a p-adic
order to additive problems — which usually are much simpler to study.
The main results of this section are, for any p-adic order R and any

ideal I C R, that Log induces a homomorphism

log; : K, (R,I) —— Q@Z(I/[RJ]).
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that Ker(logI) is finite and Im(logI) is a ip—lattice, and that
E(R,I)ﬂGLn(R,I) is closed in GLn(R,I) for all n.

Throughout this section Log and Exp are used to denote set maps
between subgroups of R* and R, while log and exp denote induced
group homomorphisms. For any pair of ideals I,,I> CR, [I,,I>] denotes
the subgroup of R generated by elements [a,b] = ab-ba for all a € I,
and b € I,. Recall (Theorem 1.11) that for any radical ideal I C J(R),
every element in 1+I 1is invertible. The following lemma collects most

of the technical details which will be needed throughout the section.

Lemma 2.7 Let R be any p-adic order, let J = J(R) denote the
Jacobson radical, and let I CJ be any radical ideal.

(1) Set Ry =Qe;R = R[%] and 1y = Q8,1 = 1[%]. Then for all

u,v € 1+I, Log(u) and Log(v) converge in I and

Q’
Log(uv) = Log(u) + Log(v) (mod [RQ’IQ])' (1)

(ii) Assume I C §R for some central element § € Z(R) such that
t® € pER. Then for all u,v € 1+1I, Log(u), Log(v) € I and

Log(uv) = Log(u) + Log(v) (mod [R,I]). (2)

(iii) Assume I C FR for some £ € Z(R) such that EP € pER, and
also that IP C plJ. Then Exp(x) converges in 1+I for all x € I;
and Exp and Log are inverse bijections between I and 1+I. In
addition, Exp([R,I]) € E(R,I), and for any x,y € I:

Exp(x +y) = Exp(x)'Exp(y) (mod E(R,I)). 3)
Proof The proof will be carried out in three steps. The convergence
of Log(u) or Exp(x) 1in all three cases will be shown in Step 1. The

congruences (1) and (2) will then be shown in Step 2, and congruence (3)
in Step 3.

Step.1 For any n21, J/an is nilpotent in R/an Hence, for
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any x€1I C J, lim(xn) = 0, and lim(xn/n) = 0. The series for
n-o n->o

Log(1+x) thus converges in I

Q
Under the hypotheses of (ii), P ¢ pl, and so I" ¢ nI for all
n21 (all rational primes except p are inverted in ip C R). So for

any x € I, x"™/n € I for all n, and hence Log(1+x) € I.
To see that Exp(x) converges when P C plJ, note first that for

any n2 1,

n! .p'([n/P]+[n/p2]+[n/p°]+. ) e (ip)x

where [*] denotes greatest integer. For any n 2 p,

In g (Ip)[n/p] g p[n/p].l[n/p].J'

2 2
Similarly, if n 2 p%, then m o p[n/p].(p[n/p ]'I[n/p ]'J)'J: and by

induction, for any n 2> 1,

" c p([n/P]+[n/P2]+- . -+[n/Pk]).I.Jk =n! .IJk (if pk {n< pk+1), (4)

Thus, n—l,-In(_:I for all n, lim ;ll—,-In=0; and so Exp(x) converges
! e D!

in 1+1 for any x€l. The relations Log o Exp(x) =x and
Exp o Log(1+x) = 1+x, for x€I, follow from (4) and the corresponding

relations for power series.

Step 2 For any radical ideal I CR, set

u(D) = zzlﬁ-[l“'.f‘] € [Ry.Ig): 5)

m,n

a ip—submodule of R. If I CER, where § € Z(R) and ‘g’p € pfR, then

" € nfR for all n, and
m+n
(1) = <[r,§m+—n-s] :mn2l, Erel”, eI, fr,Fse€ 1) C [R,I].

So congruences (1) and (2) will both follow, once we have shown the
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relation

Log((1+x)(1+y)) = Log(1+x) + Log(1l+y) (mod U(I)) (6)

for any I and any x,y € I.
For each n>»1, let W, be the set of formal (ordered) monomials of

length n in two variables a, b. For w € W,, set

C(w) orbit of w in W, under cyclic permatations

k(w) = number of occurrences of ab in w

r(w)

coefficient of w in Log(l+a+b+ab)

=k w) (-l)n—i—l',%f'(k(iw))'

To see the formula for r(w), note that for each i, w can be written in
(k(iw)) ways as a product of i (ab)’'s and n-2i a’s or b’s.

Fix an ideal ICJ and elements x,y € I. For any n2>1l, any

w€EW,, and any w’ €C(w), w is a cyclic permutation of w, and so

W (x,y) = w(x,y) (mod [I',197).

for some i,j such that i+j=n. It follows that

Log(l+x+y+xy) = ) ) r(w)-w(x,y)
n=1 weW,

(M

0

= ) ) 2 r(W’))‘W(XsY) (mod U(I}).
n=1 weW,/C\w’€Cw

For fixed wé€W,, if I[C(w)l = n/t (i. e., w has cyclic symmetry of

order t), and if
k = nax{k(w') tw € C(w)},

then C(w) contains k/t elements with k-1 (ab)’s (i. e., those of the
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form b+-+a) and (n-k)/t elements with k (ab)’s. So

L 1) =3 L 0™ [waf) « ()]

w'eCw i

2)[\477‘

- -igo(—1)“ L [(n—k)(k) + (k—i)(k)]

. k _1yn-i-1 (k) _
Feorgy-{

o =

0 if k>0

(l)nll

|
L L

if k=0 (so t=n).

Formula (7) now takes the form, for any x,y€lI,

S (L,
T (E L) (mea u(D)

n=1 n

Log((1+x)(1+y))

Log(1+x) + Log(1+y);
and this finishes the proof of (6).

Step 3 Now assume that I C EFR for some central £ € R such that
€P € pER, and that IP C pIJ. In particular, by Step 1, Exp and Log

are inverse bijections between I and 1+1I. So for any x,y € I,

Log(Exp(x)-Exp(y)) = x+y (mod U(I))

by (6). It follows that

Exp(x)-Exp(y) € Exp(x+y+U(I)) (8)

for x,y € I; and hence that

Exp(x) -Exp(y) ‘Exp(x +y) "} € Exp(x+y+U(I)) Exp(-x-y)
()
C Exp(U(1)) C Exp([R,1]).

So it remains only to show that Exp([R,I]) C E(R,I). Note that for all
r€R and x €1,
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® n-1 ® n-1
E‘.:ncp(rx)-Exp(xr)_l = (l +r( Zlﬁ%z—))(l+( Zl:—‘-(—%-}—)r)_l € E(R,I)
n= n=
(10)

by Vaserstein’s identity (Theorem 1.15).

Fix some Zp—basis [rl,vl],...,[rm,vm] for [R,I], where riGR

and vi€I. Define
¥ : [R,I] —— Exp([R,I])

by setting, for any x = Z?:lai[ri’vi] € [R,I] (ai € Zp):

111

n -1
460 = I (Bxp(aryvy) Botayyr)™).
1=

Then Im(y) C E(R,I) by (10). For any k 21 and any x,y € ka,

Exp(xty)  (mod U(*T) € p2¥U(I) € p>¥[R,1])

1

Exp(x) ‘Exp(y)
k &
by (9). Also, for any k,2 21 andany x€pl, y€pl,
Exp(x)Exp(y) = Bxp(y)-Exp(x)  (mod [p°I,p’1] € p**’[R,11).
So for any & >k 2 1, and any x€pk[R,I] and y€pe[R,I],

Exp(x)  (mod p>¥[R,I])

¥(x)

(11)
W(x+y) = w(x)9(y) = ¥(x)-Exp(y)  (mod p<eR,ID).

For arbitrary u € Exp(p[R,I]), define a sequence XgrXpsXgseee in
[R,I] by setting

-1
xo = LOg(u) € p[R,I]; xi+l = xi + LOg(“‘(xi) 'u)‘

By (11), applied inductively for all i > O,

w(xi) = u, X = Xg {mod p2+1

i+l [R’I])‘
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So {xi} converges, and u = y(lim xi). This shows that
{0

Exp(p[R,I]) C Im(y) C E(R,I). (12)
Now define subgroups D,, for all k 2> 0, by setting

Dy = <rx-xr : x€I, r€RrR, rx,xr € IJk> c [R,I] N IJk.

Recall the hypotheses on I: I C FR, where § € Z(R) and fp € pER,
and IP € pIJ (so I" CnlJ for all n). Then for all k > O,

u(1s5y Z)laig-[(IJk)”,(IJk)“] (by (5))
m,n>

n
C <[r,§;°s] : n>2, Er,Es€1J%, Ers,f%r € (1N ¢ nIJk+1> C Dyus.

Together with (8), this shows that Exp(D.) C Exp([R,I]) are both
(normal) subgroups of R". Also, by (9), for any x,y € IJk,

Exp(x) -Exp(y) = Exp(xty)  (mod Exp(U(LJX)) C Exp(Dy+1)) (13)

For any k> 0O and any x € D,, if we write x = Z(rixi -x,r,) (where

k
ry € R, X, € I; roX., X;TL € 1J7), then

Bo(x) = [(Bo(rx) Botgr) ™) (md Bo@..)) (v (13)

1 (mod E(R,I)). (vy (10}))

In other words, Exp(D,) C E(R,I)-Exp(Dy.:) for all k0. But
Dy C p[R,I] for k large enough (D, C [R,I]ﬂIJk); and so using (12):

Exp([R,1]) = Exp(Do) € E(R,I)-Exp(p[R,I]) C E(R,I). o

Constructing a homomorphism induced by logarithms is now straight-

forward.
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Theorem 2.8 For any p-adic order R with Jacobson radical J C R,
and any 2-sided ideal I CR, the p-adic logarithm Log(1l4+x) (for

x € INJ) tinduces a unique homomorphism

log; : K,(R,I) —— Q@Z(I/[R,I]).

If, furthermore, I C ER for some central £ € Z(R) such that Ep € pER,
then the logarithm induces a homomorphism

log! : K, (R, 1) — I/[R,1];

and logI is an isomorphism if P C pllJ.

Proof Write RQ=QQZR and IQ

the Jacobson radical of R. Assume first that I C J. By Lemma 2.7(i),

= Q@ZI, for short, and let J be

the composite

L : 141 —L08, Iq 2% 10/[R0.To] (1)

is a homomorphism.

For each n > 1, let
Tr, + M (10)/[H, (R) M, (1)1 — 1o/[Re.1g] (2)

be the homomorphism induced by the trace map. Then (1), applied to the

ideal Mn(I) C Mn(R), induces a homomorphism

Ly ¢ 1+M (D) = G (R.T) =25 N (10)/[M (Ro) M, (19)] =25 1o/[Rg.ToT.
For any n, and any u € 1+Mn(I) and r € GLn(R),

Ln([r,u]) = Ln(rur_l) - Ln(u) = Trn(r-Log(u)-r_l) - Trn(Log(u)) = 0;

and so L = U(Ln) factors through a homomorphism
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log; : K (R,I) = GL(R,I)/[GL(R),GL(R,I)] — I¢/[Rq.Tg]-

Now assume that I is arbitrary, and set Ig = INNJ. Consider the

relative exact sequence

Ky(R/1o,1/15) — K, (R,1o) — K (R,1) — K, (R/I0,1/1o)

(see Milnor [2, Remark 6.6]). The surjection R/I; —» R/J sends I1/Ig
isomorphically to (I+J)/J, which is a 2-sided ideal and hence a ring
summand of R/J (R/J is semisimple). In particular, 1/1, is a
semisimple ring summand of R/Iy, and by Theorem 1.16,

K2(R/I°,I/I°) x K2(I/I°) =1 and p*IKl(R/Io,I/Io)I = IKI(I/IO)I.
So 1ogI (Io € J) extends uniquely to a homomorphism
[+
log; : K;(R,]) — IQ/[Rq,IQ].

If I € ER for some central £ € R such that fp € pfR, then by
Lemma 2.7(ii), Log(1+I) C I, and the composite

L : 1+1 08, 1 Bred, 1/[r,13

is a homomorphism. The same argument as before then shows that L

factors through a homomorphism 1ogI defined on KI(R,I). I 1P c plJ,

then Log 1is bijective and Log_l([R,I]) C E(R,I) by Lemma 2.7(iii); and

so log is an isomorphism. o

The next result is based on a theorem of Carl Riehm [1]. Roughly, it
says that for any p-adic order R, the p-adic topology on Rx makes
KI(R) into a Hausdorff group.

Theorem 2.9 For any p-adic order R and any 2-sided ideal 1 C R,

Ker(logI) is finite; and for all n the group
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E_(R,I) = GL_(R,I) N E(R,I) = Ker[GLn(R,I) _ Kl(R,I)]
is closed (in GLn(R,I)) in the p-adic topology.
Proof Set RQ = Q @Z R and IQ = Q @Z I as before, and write
L = logjoproj : GL,(R,I) — K, (R,I) — IQ/[RQ,IQ].

By Lemma 2.7(iii) and Theorem 2.8, Log: 1+p°I — pZI is a

homeomorphism, and factors through an isomorphism

2 ~
logP T : K (R,p?I) 2 (14+p°I)/E, (R,p°I) —=— p?I/[R,p°I].

In particular, since [R,p%I] = Log(fl(R,pZI)) is open in [RQ,IQ],
EI(R,pZI) c EI(R,I) are open subgroups of Ker(L).

Now, GLl(R,I) is compact: it is the inverse limit of the finite
groups GLl(R/an,(I+an)/an). So Ker(lL) 1is compact, and any open

subgroup of Ker(L) has finite index. It follows that
Ker(log;) = Ker(L)/El(R,I)

is finite.

Any open subgroup of a topological group is also closed (its

complement is a union of open cosets). In particular, EI(R,I) is closed
in Ker(L) and hence also in GLl(R,I). To see that En(R,I) is closed
in GLn(R,I) for all n, just note that by definition, fn(R,I) =

El(un(n) M (1)), o

The following description of the structure of Kl(R,I) is an easy

consequence of Theorem 2.9,
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Theorem 2.10 For any p-adic order R with Jacobson radical JCR,

K,(R) =K (R/]) ® K, (R,]),

where Kl(R/J) is fintte of order prime to p, and Kl(R,J) is a

finitely generated ip-module. If TCR is any (2-sided) ideal, then

(i) Kl(R,I) is the product of a finite group with a finitely

generated ip—module and

rkZpKl(R,I) = rkZpI/[R,I];

(ii) Kl(R,I) is a ip-module (i. e., contains no torsion prime to

p) if 1CJ; and

(ti1) K (R,I) = lim K, (R/P"R, (I+p"R)/p R).
n

Proof Note first that Log(l+p®I) = p?I by Lemma 2.7(iii). Hence,

since 1+p%?I has finite index in 1+I, the image of
log, : K (R,I) — @,8, (I/[R,I])
1 1 2,

is a ip-lattice. Since Ker(logI) is finite by Theorem 2.9, Kl(R,I) is

now seen to be a product of a finite group with a ip—module, and

rkZpKl(R,I) = rkZpI/[R,I].
To prove (iii), note first that

GL,(R,I) = % GLl(R/an,(I+an)/an).

Since E(R,I) N GLI(R,I) is closed in GLl(R,I) (Theorem 2.9), it is

also an inverse limit of groups of elementary matrices over. R/an. The
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description of Kl(R,I) as an inverse limit then follows since lim

preserves exact sequences of finite groups.
If ICcJ, then

GL, (R/P"R, (I+p"R)/P'R) = 1+ (I+p"R)/p"R

is a p-group for all n. So Kl(R,I) is a pro-p-group, and hence a

ip—module, by (iii). Since K2(R/J) = 1 (Theorem 1.16), the sequence
1 — K, (R,J) — K,(R) — K, (R/J) — 1

is exact; and is split since Kl(R,J) is a 2p—modu1e and Kl(R/J) is

finite of order prime to p (Theorem 1.16 again). D

Theorem 2.10 will be the most important application of these results
needed in the next three chapters. P-adic logarithms will again be used
directly in Chapters 6 and 7, but in the form of "integral" logarithms for
p-adic group rings, whose image is much more easily identified.

We end the chapter with the following theorem of Kuku [1], which
applies results from both Sections 2a and 2b. Note in particular that if
M is a maximal ip—order in any semisimple ﬁp—algebra, then sxl(m) =1 if

and only if A is a product of matrix algebras over fields.

Theorem 2.11 Let A be a simple ﬁp-algebr‘a with center F, and let
RCA be any maximal order. Then sxl(m) is cyclic of order

(qn—l)/(q—l), where n = ind(A), ond where q is the order of the
residue field of F.

Proof By Theorem 1.9, it suffices to show this when A is a

division algebra: otherwise, if A = Mr(D)’ and A CD is the maximal

order, then R = Mr(A) by Theorem 1.9. In particular, [A:F] = n2. Let

RCF be the ring of integers, and let pCR and JCEM be the maximal
ideals. By Hasse's description of M (Theorem 1.9), MW/J is a field and
[®/J : R/p] = n. Also, pHSKl(m)I by Theorem 1.17(i). It follows that
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K, ()

Z Ker nrp: Kl(m) — Kl(R)][%,] (Theorem 2.5)

IR

Ker[(m/J)* —» (R/p)*]; (Theorem 2.10)

where the reduced norm is onto by Theorem 2.3(i). Since (m/J)* is

cyclic, this shows that sxl(m) is cyclic of order

lovay*)/|®Rp)*| = (®-1)/(a-1). o



Chapter 3 OONTINUOUS K2 AND LOCALIZATION SEQUENCES

So far, all we have shown about SKI(Z[G]) is that it is finite. In

order to learn more about its structure, except in the simplest cases,

exact sequences which connect the functors K1 and K2 are necessary.

The Mayer-Vietoris sequences of Milnor [2, Theorems 3.3 and 6.4] are
sufficient for doing this in some cases (see, e. g., the computation of

SKI(Z[Q(S)]) by Keating [2]). But to get more systematic results, some

kind of localization exact sequence is needed which compares the K-theory
of Z[G] with that of @Q[G] or a maximal order, and their p-adic
completions.

The results here on localization sequences are contained in Section

3c. The principal sequence to be used (Theorem 3.9) takes the form

QK (A ) — C(A) — sk () — DK (@A) — 1 (1)
P P

for any Z-order A in a semisimple Q-algebra A. Here,

C(A) = lim SK.(¥,1) = Coker|K (A) — @ K(A ) |;
() = Lim sk, (1.1) er[K,(A) pz(p)]

vhere the limit is taken over all ideals I C A of finite index, and
vhere the last isomorphism is constructed in Theorem 3.12. A specialized
version of (1) in the p-group case is derived in Theorem 3.15.

As can be seen above, the continuous K. of p-adic orders and

2

algebras plays an important role in these sequences. These groups K;(—)

are defined in Section 3b, and some of their basic properties are derived
there. This, in turn, requires some results about Steinberg symbols and

symbol generators for K2(R): results which are surveyed in Section 3a.
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3a. Steinberg symbols in K2(R)

For any ring R, the Steinberg group St(R) is defined to be the

free group on generators x;j for all i #j (i,j 2 1) and all r € R;

modulo the relations

r+s

s
157%ij = xij for any r,s € R and any i # j

rs
Xie

G ] - if i#£8 j=k
Xij%ked = .

if 1£8, j#k.

An epimorphism ¢: St(R) —» E(R) is defined by letting ¢(x;j) be the

elementary matrix whose single nonzero off-diagonal entry is r in the
(i,j)-position. Then St{(R) is the "universal central extension” of
E(R) (in particular, Ker(¢) C Z(St(R))), and

K2(R) = Ker(¢) = H2(E(R)).

For details, see, e. g., Milnor [2, Chapter 5].
For any pair u,v € R* of units, the Steinberg symbol {u,v} is

defined to be the commutator
(v = [¢7 @iag(u,u™ 1), ¢ (dtag(v, 1,57 ] € seem).

Since Ker(¢) is central in St(R), this is independent of the choice of
liftings. We are mostly interested in the case where uv = uv, and hence

where {u,v} € Ker(¢) = K2(R). However, it will occasionally be necessary

to work with the {u,v} for noncommuting u and v; for example, in
Lemma 4.10 and Proposition 13.3 below.
The next theorem lists some of the basic relations between Steinberg

symbols.

Theorem 3.1 For any ring R, the following relations hold in K2(R)

or St(R):
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(1) For any u € RY, {u,—u} =1; and {u,1-u} =1 if l-u € R%.
(it) For any u,v,w € R* such that uv = vu and uw = wu,
{u,vw} = {u,v}-{u,w}, and {v,u} = {u,v} L.

(iii) For any Xx,y,r,s € R such that O = Xy = Xry = yx = ysX,

{14+xr,1+y} = {1+x,1l+ry} and {1+sx,1+y} = {1+x, l+ys}.

(iv) If X,Y € St(R) are such that ¢(X) = diag(ul,...,un) and
oY) = diag(vl,...,vn), where u,,v, € R*, and wv o= v, for each

i>2, then [X,Y] = [[’i‘zl{ui,vi}.

(v) For any S C R such that R is finitely generated and

projective as an S-module, and any commuting units u € R* and Vv € S*,
trig({u,v}) = {trig(u),v}.

Here, trfgz Kn(R) — Kn(S) denotes the transfer homomorphism.

Proof Point (i), and the relation {v,u} = {u,v}—l, are shown in
Milnor [2, Lemmas 9.8 and 8.2] and Silvester [1, Propositions 80 and 79]
(it clearly suffices to prove these for commutative R). The relations in
(iii) are shown by Dennis & Stein [1, Lemma 1.4(b)] in the commutative
case, and follow in the noncommutative case by the same proof.
Alternatively, using Dennis-Stein symbols, (iii) follows from the
relation: {1+x,1+y} = <X,y> vwhenever xy=0=yx (see Silvester [1,
Propositions 96 and 97]). The formula in (v) is shown in Milnor [2,
Theorem 14.17.

When proving (ii) and (iv), it will be convenient to adopt Milnor's
notation: A%B = [¢ '(A),¢ '(B)] € St(R) for any A,B € E(R). This is
uniquely defined since K2(R) = Ker(¢) 1is central in St(R). Also, for

any u € R* and any i # j, dij(u) will denote the diagonal matrix with

entries u, u_1 in positions i and j (and 1's elsewhere). Note the

following two points:
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(1) A*B =1 if AGEI(R), BGEJ(R), where I and J are

disjoint subsets of {1,2,3,...}. This follows easily from the defining

relation: [x;j,x;e]=1 whenever i#& and j#k.

-1 1

*MBM ° = A%B  for any A,B,M € E(R) such that
[A,B]%*M = 1; and in particular whenever [A,B] = 1. This is immediate
from the obvious relations among commutators.

(2) MAM

Now, fix X,Y as in (iv), and set A = ¢(X) = diag(ul,...,un) and

B = ¢(Y) = diag(vl,...,vn) (where [ui,vi] =1 for all i 2 2). Then
[X,Y] = A%B = diag(A,A",1) % diag(B,1,8™}) (by (1))

= (dl,n+1(u1) * d1,2n+1(v1))”.(dn,2n—1(un) * dn,i?.n—l(vn))

(by (1))

(d12(“1) * d13("1))"'(‘112(%) * d13(":1)) (by (2)}

{ul ,vl} oo {un,vn} .

To prove (ii), fix units u,v,w € R® such that [u,v] = 1 = [u,w].

Then, using the relation [a,bc] = [a,b]-[a,c]:[[c,a],b], we get

{u,vw) = d5(u) *d,5(vw) = d;(u) % (413(v)-diag(w,1,vw“1v‘1))

(4,90 4 4(v) ) (4,5 (u) % diaglw, 1,vw vy )+(1%d;45(0) )

{u,v}-{u,w}. (by (iv)) O

We now consider relative K2—groups. Keune [1] has defined groups
K2(R,I) which fit into a long exact sequence involving K2 and K3
(note that this is not the case with the K2(R,I) defined by Milnor in
[2, Section 6]). In this book, however, K3 never appears; and it is

most convenient to take as definition
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Ky(R.I) = Ker[Kz(R) N K2(R/I)],

for any ring R and any (2-sided) ideal I € R. In particular, symbol
relations which hold in K2(R) will automatically hold in K2(R,I) here.

The following lemma is frequently useful. It will also be needed in

the next section when defining continuous K2.

Lemma 3.2 For any pair S C R of rings, and any R-ideal I C S,

Ky(R,1*) C Im[Kz(S,I) — K2(R)].

Proof Let I CR be any ideal, and consider the pullback square

lp1 l (D = {(ri,r2) € RxR ; ry -T2 € I}).
R — R/1
Ve identify Ker(pz) with I. By the Mayer-Vietoris sequence for the

above square (see Milnor [2, Theorem 6.4]), p; induces a surjection of

K2(D,T) onto Kz(R,T). Also, E(D,I) £ E(R,I) by Milnor [2, Lemma 6.3].

Since pz is split by the diagonal map A: R — D, there is a split

extension

1 — E(R,T) E(D) E(R) — 1. (1)

The Hochschild-Serre spectral sequence for (1) (see Brown [1, Theorem

VII.6.3]) then induces a surjection

e b, & Ker[Hy(E(D)) = Hy(E(R))]
H, (E(R):E(R,T)*") — -
In[Hy(E(R,T)) — Hy(E(D))]

(2)
=, Coker[ﬂ2(E(R,T)) - K2(D,T)] — Coker[ﬂz(E(R,T)) - K2(R,T)].

This will now be applied to the ideals I* C I? CR. Note first that
E(R,I*) C [E(R,I®),E(R,I?)], since E(R,I*) 1is the smallest normal
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subgroup in GL(R) containing all elementary matrices e)iq.]( = [e’.:k,eij],
for x,y € I? and distinct indices 1i,j,k. Thus, E(R,I‘)ab maps

trivially to E(R,12)2®, and so by (2),

Ky(R,I*) € Im[H2(E(R,Iz)) —_ K2(R,12)].
Furthermore, E(R,I%?) C E(S,I) by Lemma 2.4, and hence
Ky (R, I*) € Im[H2(E(R,Iz)) — K2(R)] c Im[H2(E(S,I)) —_— K2(R)]
c Im[K2(S,I) — K2(R)]. o

The next theorem lists some generating sets for the relative groups

K2(R,I). For the purposes in this book, Steinberg symbols are the

simplest elements to use as generators. However, in many situations, the

Dennis~Stein symbols <a,b> € K2(R) (defined for any commuting pair

a,b € R with 1l+ab € R*) are the most useful. We refer to Stein &
Dennis [1], and to Silvester [1, pp. 214-217], for their definition and
relations.

Theorem 3.3 Fix a noetherian ring R, let J = J(R) be its
Jacobson radical, and let I CR be a radical ideal of finite index such
that [J,I] = O. Then

K2(R,I) = {({l4x,1+y} : x€]J, y€I) = {<x,y> : x€]J, y€I).
Moreover, if R 1is finite, and if either
(i) J= (al,...,a.k)R, or

(ii) J = (p,al,...,a.k)R for some prime p, where p is odd or

IcC (al’”"a'k)R’

then
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Ky(R,1) = ({I+a ,1+x} : 1<i<k, x € I).

Proof Set S =Z+1, a subring of R. Then by Lemma 3.2,
Im[K2(S,I) — K2(R)] 2 K2(R,I‘) = Ker[K2(R,I) — K2(R/I‘,I/I4)].

Also, since [J,I] =0, any symbol {1+x,l+y}, for x € J/I* and
y € I/I1*,  can be lifted to Ky(R,I).  Since R/I* is finite by

assumption, this shows that we need prove the theorem only when either

R=Z+1I, or R is finite.

Case 1 Assume R = Z+1I. Then R is commutative. By Stein &

Dennis [1, Theorem 2.1] or Silvester [1, Corollary 104], K2(R,I) is

generated by symbols <r,x> for r€R and x€I1. For any such r and
x, <£r,x>=<r,x>+<{-~1,x>=<r-1-rx,x> by relations shown in Silvester [1,
Propositions 96 and 97]. This procedure can be repeated until r € J or

re€-~-1+Jc R*; and in the latter case
{r,x> = {-r,1+rx} € {1+]J,1+1}
by Silvester [1, Proposition 96(iv}].

Case 2 If R is finite, then J 1is nilpotent; and there is a

sequence I =1.231 23...23 In = 0 such that JIk + IkJ CI for all

0 1

k. By using this to filter K2(R,I), all claims are reduced to the case

k+1

where 1J = 0 = JI. If this holds, then K2(R,I) = {1+J,1+I} by Oliver

[3, Proposition 2.3]; and {1+J,1+I} = <J,I> since {l+x,1+y} = <x,y>
whenever xy = O = yx. Point (i) is now an easy consequence of relation
(iii) in Theorem 3.1. The refinement in (ii) is shown in Oliver [7, Lemma
1.1], using an argument involving Demnis-Stein symbols similar to that

used in Case 1 above. o

Even when Theorem 3.3 does not apply directly to K2(R,I), ohe can

often filter I by a sequence I = I, 2 I 3 ... of ideals such that

0 1
Theorem 3.3 applies to each of the groups K2(R/Ik,Ik_1/Ik), and obtain
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generators for K2(R,I) from that. This technique is the basis of the

proofs of Theorem 4.11, Proposition 9.4, and Lemma 13.1 below.
The last part of Theorem 3.3 is especially useful in the case of
group rings of p-groups.

Corollary 3.4 Fix a prime p and a p-group G, and let R be the

ring of integers in some finite unramified extension of Qp Then, for

any pair Io € I € R[G] of ideals of finite index such that gx-xg € Ip
for all g€ G and x € I,

K2(R[G]/I°,I/I°) = {({g,1+x} : g € G, x € I/Ip)

if p isodd, or if p=2 and I C {4,g-1: gGG)RG
K2(R[G]/I°,I/Io) = {{-1,-1}, {g.,1+x} : g€G, x€1/I,) otherwise.

Proof By Example 1.12, the Jacobson radical J C R[G] is generated
by p, together with elements g-1 for g € G. So the result is

immediate from Theorem 3.3. 1]

Other theorems giving sets of generators for K2(R) or K2(R,I) are

shown in, for example, Stein & Dennis [1] and Silvester [1]. There are

also some much deeper theorems, which give presentations for K2(R) in

terms of Steinberg symbols or Dennis-Stein symbols. The first such result

was Matsumoto’s presentation for K2 of a field (see Theorem 4.1 below).
Other examples of presentations of K2(R) or K2(R,I) have been given by

Maazen & Stienstra [1] and Keune [1] for radical ideals in commutative
rings, by Rehmann [1] for division algebras, and by Kolster [1] for

noncommutative local rings.

3b. Continuous K2 of p-adic orders and algebras

As mentioned above, the goal is to describe SK1(2I), for a Z-order

A in a semisimple Q-algebra A, in terms of Ki(A)’ Ki(ﬁp), and
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Ki(ﬁp) (for i = 1,2). However, the groups K2(ﬁp) and Kz(ﬁp) are
huge: for example, ‘K2(F) has uncountable rank for any finite extension
Fgﬁp (see Bass & Tate [1, Proposition 5.10]). In contrast, we will see
in Theorem 4.4 that K;(F) — the continuous K2 — is finite for such F.

Several different definitions have been used for a ™continuous”

functor K;(R) for a topological ring R, especially when R is an
algebra over ip or ﬁp Definitions involving continuous universal

central extensions of E(R) have been used by Moore [1] and Rehmann [1,
Section 5]; and Wagoner [1] has defined K:i(R) in all dimensions as a

limit of homotopy groups of certain simplicial complexes. But for the
purposes here, the following definition is the simplest and most
convenient.

For any prime p, any semisimple ﬁp—algebra A, and any ip—order

A in A, set

KS(1) = Lin Coker[K2(2l, py —s K2(2[)]

KS(A) = Lin Coker[K2(2l, Py ——s K2(A)].

By Lemma 3.2, for any pair A C B of orders in A and any k>0,
Im[Kz(B,p4kB) — K2(A)] c Im[K2(2l,pk2l) — K2(A)].

So K;(A) is well defined, independently of the choice of order A C A.
Quillen’s localization sequence for maximal ip—orders (Theorem 1.17)

can easily be reformulated in terms of K;

Theorem 3.5 Fix a prime p, let M be a maximal ip—order in a
semisimple ﬁp—algebra A, and let JCM be the Jacobson radical. Then

there is an exact sequence
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C C
1 = K (B) — K,(A) — Kl(m/J) — K, (W) — K, (A) — ....

Proof This is almost an immediate consequence of the localization

sequence in Theorem 1.17(i). Since MW/J 1is semisimple of p-power order,
K2(m/J)=l and p+|K1(m/J)| by Theorem 1.16. Hence K,(R) injects into

K2(A); and so K;(m) injects into K;(A) by definition of K;. o

The formula in the next proposition could just as easily have been
taken as the definition of K;(M). Recall that a pro-p-group is a group

which is the inverse limit of some system of finite p-groups.

A be a ip—order in some

Proposition 3.6 Fix a prime p, and let

semisimple ﬁp—algebra A. Then
K3() ¥ Lin K, (1/p%) .

In particular, K;(H) is a pro-p-group, and K;(A) is the product of a

finite group and a pro-p-group.

Proof By definition,

KS(1) = Lin Coker[K2(2I,pk?l) — K2(21)].

The sequence

1 — COker[Kz(z:,pku) — K2(2I)] —— Ky (W/p"U) — K, (2,p"%)

is exact for all k, and hence is still exact after taking inverse

limits. But by Theorem 2.10(iii),

% Kl(ﬂ,pkﬂ) = % Kl(ﬂ/pn?l,pk?l/pn?l)

= lim Kl(u/p“u,p“u/p“u) =1.
n
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In particular, K;(Zl) is a pro-p-group by Theorem 1.16(ii). If
MCA 1is any maximal order, then [K;(A) : K;(m)] is finite by Theorem

3.5, and so K;(A) is pro-finite since K;(m) is. O

In fact, in Chapter 4, K;(A) will be shown to always be finite.

3c. Localization sequences for torsion in Whitehead groups

We now want to describe SKl(Zl), when U is a Z-order in a

semisimple @Q-algebra A, in terms of K1 and K2 of A, ﬁp and Xp.

The usual way of doing this is via Mayer-Vietoris exact sequences based on
"arithmetic squares”, and one example of such sequences is given at the
end of the section (Theorem 3.16). But for the purposes here, it has been
convenient to make a different approach, using the relative exact
sequences for ideals I C A of finite index. This will be based on the

following definitions.

Definition 3.7 For any semisimple Q-algebra A, and any Z-order
AC A, define

C1, (1) = Ker|sK, (u) L»?sxl(ﬁp)].

More generally, for any (2-sided) ideal I C A, set

SK, (,1) = Ker[K, (a,1) — Kl(A)] and

c1,(1,1) Ker[SK a1y s @k, (¢ ,1 )].
1 1 P 1Y'p’''p

Then define

C(A) = lim SK (2,1)
I

where the limit is taken over all ideals I C A of finite index.
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The subgroup Cll(2I) can be thought of as the part of SK1(2I) which
is hit from behind (i. e., detected by K2) in the localization
sequences. Recall (Theorem 1.14(ii)) that SKl(ﬁp) =1 for all p if A
is commutative, so that Cll(2I) = SK1(2I) in this case.

As is suggested by the notation, C(A) = lim SK1(2I,I) is independent

of the choice of order 2 in A. This is an easy consequence of Lemma
2.4; and will be shown explicitly in Theorem 3.9. The C(A) can be

characterized in several ways:

C(A) = lim SK (2,1)  lim C1 (4,1) (Theorem 3.9)
I I
2 lim C1,(A taken over all Z-orders A in A)
1
A
= Coker[K2(A) —’@K;(Kp)]. (Theorem 3.12)
P

It is the last description of C(A), in terms of K2(—), which will be

used to calculate these groups in Section 4c below.

The appearance of C(A) in the localization sequence for SK1(2I)
helps to explain the close connection between computations of SK1(2I) and

the congruence subgroup problem. In fact, the original conjecture would

have implied that SKl(R,I) =1 whenever R 1is the ring of integers in a

number field K and I €CR 1is an ideal of finite index. The computation
of the groups C(K) Z lim SKl(R,I) follows as a special case of results

of Bass, Milnor, and Serre [1, Theorem 4.1 and Corollary 4.3] in their

solution to the problem.
One difficulty which always occurs in localization sequences based on

comparing Ki(2l) with Ki(A) (wvhen A C A 1is a Z-order) is dealing with

the infinite products which arise in the p-adic completions of A and A.

The next lemma says that in the case of @ SK (ﬁ ) and @& Kc(ﬁ ), at
p 1'p p2'p

least, there is no problem — both of these are finite products.
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Lemma 3.8 For any semisimple Q-algebra A and any Z-order A C A,
Kg(ﬁp) =1 and SKl(ﬁp) =1 for almost all primes p.

Proof Let M 2 A be a maximal order. Then A = fip for all
pt[Mm:A], and ﬁp is a maximal order in Kp by Theorem 1.7(iv). So we

can assume that A = M. Also, since M factors as a product of maximal

orders in the simple summands of A, we can assume that A is simple.
Let K = Z(A) be the center, let R C K be the ring of integers,

and set n = [A:K]1/2. Then Xp = Mn(ﬁp) for almost all p (Theorem

1.7(iii)); and W = M (R
(ii1)); and B = M (R)
sxl(ﬁp) x sxl(ﬁp) =1 for almost all p by Theorem 1.14(ii).

for such p by Theorem 1.9. In particular,

It remains to consider the case of K;(ﬁp) = K;(ﬁp); it suffices to

N

do this when A =K and M = R. Recall that for each p, R = I R
p  plpw

and R = | where the products are taken over all maximal ideals

R,

P plp'p

p € R containing p. We claim that K;(ﬁp) =1 for any p such that
(i) p = char(R/p) is odd, and (ii) ﬁp is unramified over QP By

Theorem 1.7(ii), this is the case for all but finitely many p.

Fix such a p. Then, ﬁp is the ring of integers in ﬁp’ and pﬁp
is its maximal ideal by (ii). Thus, (ﬁp/pﬁp)* has order prime to p.
Furthermore, (1 + pzﬁp) consists of p-th powers in ﬁp: p is odd, and
so the binomial series for (1 + p2x)1/p converges for any x € ﬁp' In

particular, by Proposition 1.8(i),
(R )™ = (WP, 1puP, p o we (R)9).

This, together with identities of the form {a,l1-a} = 1 = {a,-a}
(Theorem 3.1(i)), shows that K;(ﬁp) is generated by symbols of the form

{up,v} (for u € (ﬁp)*, v € (ﬁp)*)

{p.p} = {-1,p} = {(-1)P.p}
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1

(p.1-puP} = {uP,1-puP}~ (for u € (ﬁp)*)

{1-puP,1-pvP} = {pvP(1-puP),1-pvP} (for u,v € (ﬁp)*)
= (PP (1-pvP). (1-pvP) (1-pvPap™aPP) 1} € (R )™ 14pR ).

In other words, every element of K;(ﬁp) is a p-th power. But the

localization sequence of Theorem 3.5 takes the form
c 5 c, s %*
1= KR) — K(K) — R/p)s
K;(ﬁp) is a pro-p-group and (R/p)* is finite, and so K;(ﬁp) =1. 0O

We are now ready to derive the main localization sequence for

describing SKI(QI). At the same time, we show that C(A) is well

defined, independently of the choice of order A C A.

Theorem 3.9 For any Z-order A in a semisimple Q-algebra A, there

is an exact sequence

d

SK, (%) L»easxl(ﬁp) — 1 (1)

O K (E) —- c(a)
P P

where &€ is induced by the inclusions A C ﬁp’ d by the inclusions

(4,I1) €A, and ¢ by the composites K;(ﬁp) — Kz(ﬁp/fp) — Kl(ﬂ,I).

Furthermore,

C(A) = m SKI(U,I) = m Cll(ﬂ,I); (I CA of finite index)
I I

and is independent of the choice of order A in A.

Proof For each ideal I C A of finite index, the relative exact
sequence for the pair (4,1) (Theorem 1.13) restricts to an exact

sequence
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Ko(W/1) —— SK, (4,1) — SK, (4) — K (W/1).

The first term is finite (Theorem 1.16), and so taking the inverse limit

over all I gives a new exact sequence

. N .
l%m K2(H/I) C(A) SKI(M/ — l%m KI(H/I). (2)
The first term in (2) is isomorphic to $pK;(ﬁp) by Proposition 3.6 (and
Lemma 3.8), and the last term is isomorphic to ﬂpKl(ﬁp) by Theorem

2.10(iii). This shows that sequence (1) is defined, and is exact except
possibly for the surjectivity of &.
For each prime p, SKl(ﬁp) is finite (Theorem 2.5(i)), and Kl(ﬁp)

g lim Kl(u/pkﬂ). Since SKl(ﬁp) = 1 for almost all p, this shows that

we can choose n 2 1 such that for all primes p,
sxl(up) —_— Kl(up/nup) 3)

is injective.
Fix a prime p and an element [M] € SKl(ﬁp). In other words,

M€ cL(z‘lp) n E(Kp). Write

= eiiji(rl)-‘-eikjk(rk), (ri € Ap)

. . a
a product of elementary matrices. Write n = p °'m, where p*m. For each

o choose a global approximation ?i € M[%] such that

-
1]

r, {mod paﬂp), and

14
11}

0 (mod mA).

Note that it suffices to do this on the individual coordinates (in Qp)

of T, with respect to some fixed Z-basis of A. If we now set
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~

M=o  (F)eoe | (F) €GLEA) NEA),
then ¥ =M (mod paﬁp), =1 (mod md), and
[H] € sk, (1) = Ker[xl(u) — k(W]

By (3), the congruences guarantee that e(['ﬁ]) = [M]. So ¢ is onto.
It remains to prove the last statement. First let B C A be any
pair of Z-orders in A. For any 2A-ideal I C B of finite index, there

is a short exact sequence

£
1 — E(2,1)/E(8,T) — K, (8,1) —I— sk, (1,1) — 1.

By Lemma 2.4, E(?l,I2) C E(B,I) for any such I, so that Ker(fIz) maps
trivially to Ker(fI). In particular, the inclusion B C 2 induces an

isomorphism lim SKI(B,I) g lim SK1(2I,I), so that C(A) is well defined.
I I

Also, by definition of C11(2I,I), there is an exact sequence
1 — }%1 Cll(ﬂ,I) —_— % SK1(2I,I) — @?Kl(ﬂp,lp);

and the last term vanishes by Theorem 2.10(iii). O

Note in particular that for any A, Cll(ﬂ) = Im[C(A) 4, SK1(2I)] in

the localization sequence above; and that SK1(2I) sits in an extension

1 — Cl,(8) — SK, (%) L»easxl(ﬁp) — 1.
p

One easy consequence of Theorem 3.9 is the following:

Corollary 3.10 Let f: A— B be a surjection of semisimple
Q-algebras, and let A CA and B CB be Z-orders such that f(d) C B.
Then the induced map
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Cl,(f) : Cl,(a) —> C1(B)

is surjective. If A =B and A C B, then Ker(Cll(f)) has torsion

only for primes p|[B:A].

Proof Consider the following diagram of localization sequences from
Theorem 3.9:

® K;(ﬁ ) — C(A) —— C1, () — 1
P
C,A

Ko(f) c(f) CL,(f)

® K;(ﬁp) ——— C¢(B) — C1,(8) — 1.
p

Since f: A — B is projection onto a direct summand, C(f) 1is onto.

Hence Cll(f) is also onto. If A =B, then C(f) 1is an isomorphism,
c 4 . (PO _ LCrh

so Coker(Kz(f)) sur jects onto Ker(Cll(f)). But K2(Bp) = K2(2Ip)

whenever p'f[B:ZI], K;(ﬁp) is a pro-p-group for all P and so

Coker(K;(?)) and Ker(Cll(f)) have torsion only for primes p|[B:2]. O

We next want to prove an alternate description of C(A), in terms of

Kz(—). The key problem when doing this is to define and compare certain

boundary maps for localization squares. In fact, given any commutative

L

s —L g

square

of rings, inverse boundary maps

6: Ker(Kn(a) o Kn(f)) — Coker(Km_l(f’) o Kn+1([3))

can always be defined (and the problem is to determine when &6 is an
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isomorphism). When n = 1, there are two obvious ways of defining &:

(i) For any M € GL(R) such that [M] € Ker(Kl(a) ] Kl(f))’ choose

elements x € St(R’) and y € St(S) such that ¢(x) = a(M), ¢(y) =
f(M). Then
5:([M]) = [x 'y] € Ky(S')  (mod Im(Ky(B) ® Ko(£'))).
(ii) Define

K, (a) = wl(homotopy fiber of BGL(R)Y — BGL(R')+),

and similarly for Kl(ﬁ). Consider the following diagram:

K, (a) 3 K, (i) K. (a)
Ky(R) —2— Ky (R') —» K, (a) ——2> K, (R) —— K, (R")
Ky (F) Ky(£)  [Ky(fo) K, (f) Ky (£)
K,(B) a K,(i;) K
Ky(S) —2— Ky(s') — & (8) ——E5 k, (R) —— k(")

where the rows are induced by the homotopy exact sequence for a fibration;

and let 02 be the composite
by = za;lokl(fo)okl(im)'1 : Ker(K,(a) ® K, (£)) — Coker (K, (8) ® K,(£')).

Note that any boundary homomorphisms constructed using Quillen’s
localization sequences (Theorems 1.17 and 3.5) will be of type 62z.

Lemma 3.11 Let

be any commutative square of rings. Then
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6y = 62 : Ker(Kl(a) GKl(f)) — Coker(Kz([)‘) o K2(f')).

Proof Note first the following more direct description of 6. Fix
any o: S* — BCL(R)+ such that [o] € Ker(wl(a+) ] 1r1(f+)), and extend

o, o0 and f+oa to maps

5, : D — BGL(R*)", G : D* — BeL(s)".

Then 62([0]) is the homotopy class of the map

(£,05,) U (B,o3;) : § = D* Uy, D — BaL(s’')".

Regard BCL(S)+ as a CW complex whose 2-skeleton consists of one
vertex, a l-cell (A) for each element A € GL(S), a 2-cell for each

relation among the elements in GL(S), and a 2-cell [xfj] for each
elementary matrix ejj € E(S). Then, given any A € E(S), a lifting of

A to some X € St(S) induces a null-homotopy of the loop (A). The same
argument applies to BCL(R’)+ and BCL(S’)+, and shows that &, = 6. O

Ve are now ready to reinterpret C(A) in terms of K2(—). The

description of C(A) 1in the following theorem will be the basis of its

computation in the next chapter.

Theorem 3.12 For any semisimple Q-algebra A, there is a natural
isomorphism

IR

C(A) Coker[Kz(A) — exg(xp)].
P

Under this identification, in the localization sequence

PE <)
fx‘;wp) —E- o) oy — 1

for a Z-order A C A, ¢ 1is induced by the inclusions ﬁp cA , and @

is described as follows, Given any M € GL(A) such that
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[M] € C1 (2) = Ker[Kl(H) — Kk Ay ol Kl(ﬁp)],
)

lift M to x €St(A) and to y=(y) € N s:(ﬁp) such that x =y_ in
P

St(ﬁp) for almost all p. Then [M] = 6([x—ly]) = 6([yx—l]), where

xly = yx € Coker[K,(A) — @ KI(A )] = C(A).
p P
Proof Fix a maximal Z-order M C€C A. For any x € K2(A), with
. [P c a N

localizations ep(x) € K2(Ap), ep(x) € Im[Kz(mp) — K;(Ap)] for almost
all p (this holds for each generator x;j € St(A)), and K;(ﬁp) =1
for almost all p by Lemma 3.8. This shows that K2(A) maps into the
direct ® KS(A ).
lrect sum @] 2( p)

For each ideal I C M of finite index, consider the commutative

square

mIi) ——A

]

Recall (Milnor [2, Chapters 4 and 6]) that the Ki(ﬂ,I) can be regarded
as direct summands of Ki(D)’ where D = {(r,s) € ®xM: r=s (mod I)};
and similarly for Ki(ﬁp,fp). So Lemma 3.11 can also be applied to this

relative case. The inverse boundary maps &; =62 for (1) then take the

form

c A ~ c ~
5, : Cl,(M,I) ——> Coker[Kz(A) ® ©K(M .1 ) —»exz(Ap)].
P P
To see that 6I actually maps into the direct sum (as opposed to the

direct product), note that for any [M] € Cll(2I,I), and any explicit

decomposition of M as a product of elementary matrices over A, this
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decomposition will have coefficients in ip for almost all p (so that
61([11]) can be taken to be trivial in K;(Kp) for such p).

For each p, % Coker[K;(ﬁp,ip) — K;(Kp)] = K;(Kp) by definition
of K;(—). Since, in addition, K;(ﬁp) = 1 for almost all p, the

inverse limit of the 61 takes the form
A ~ C,2
6 : C(A) = % Cll(m,I) _— Coker[K2(A) ——)?K2(Ap)].
Now consider the localization sequences

a
1 — Ky(B) —— Ky(A) — = @K B /] ) — sk, () — 1

N

C, 4 C, 4 & &
1 _’?Kz(’“p) —)?Kz(Ap) _P"?Kl(”‘p/Jp) —’?SKI(WP) — 1.

of Theorems 1.17 and 3.5 (where Jp c ﬁp is the Jacobson radical). This

diagram, together with the localization sequence of Theorem 3.9, induces

the following commutative diagram with exact rows:

a

Coker [Ky(H) — ? K;(ﬁp)] £ C(A)
Elld (2a) 13 (2b) Elld (2)

cL,(m) — 1

1 — Coker[Ky(¥) — @ KS(f )] —> Coker[Ky(A) = D K3(A )] s cym — 1
P P

Square (2b) commutes since (6')_1 = 62 in the notation of Lemma 3.11.

To see that (2a) commutes (up to sign), fix x € QPK;(ﬁp), and for each
I let Xq € St(M) bea mod I approximation to x (i. e., replace each

x;j in x by some mod I approximation to r). Then

#0x) = ([40)D rcy € Ym SKy(B1) = C(A).
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Each ¢(xI) lifts to x; € St(A) and x_lxI € 0pSt(ﬁp,ip); so that

I

3o¢(x) = (x_lxI)°xIl = x“l.

It now follows from (2) that 5 1is an isomorphism. The descriptions

of 3o¢ and 603_1 are immediate. a]

The description of &: C(A) —» Cll(?l) in Theorem 3.12 is in itself

of only limited use when working with concrete matrices. No matter how
well Kg(xp) is understood, it is difficult to deal with an element which

is presented only as a product of generators xli‘j € St(ﬁp). In contrast,

the formula in the following proposition, while complicated to state, is

easily applied in many concrete calculations.

Proposition 3.13 Let A be a Z-order in a semisimple Q-algebra A,
and let

3 : Coker[Kz(A) —>®K§(Xp)] = c(A) — C1,(¥)

be the boundary map of Theorems 3.9 and 3.12. Fix n 2 1, and fix
factorizations Zl[rll] =B xB', A=zBxB'; where BCB and B' C B’

are Z[Ill]—orders. Let (2 :) € GL2(ZI) be any matrix such that ac=ca

and ad-cb=1, and such that

c € B*xB’, a € Bx(B’)*, and a € (ﬁp)* for all pin.

Then [2 g] = 8(X) € C1,(¥), uhere

>
L[}

(faey 1) € mf( @ KB ) x DKE(B:)) — c(a)]s and
pin P* pin P

>
[}

(fa.ch1) € I ( @ KS(B)) x DKS(B)) — cw]-
pin P pn P

Proof Note first that these two definitions of X are equivalent:
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C(A) = Coker[Kz(A) —® K;(Sp)],
)

and ({a,c},1) € K,(B) xKy(B') = K,(A).

Consider the matrix decompositions

(230 = e DELNST) 0 By ana 5@ @i

a b) 1 ac") 0 -c") 1 c d

cdl=lo 1 Nec o 01)“‘}32(3)'

These give liftings of (2 z) to elements

-1 -

X2 hy () 18, P i sy, st(8;) (ptn) and St(d) (pln)

1

- c”'d . N
x?; "Wy (€)X, in St(B), St(Bp) (pin).

Here,

h,,(a) = a x_a-ixa _lxl -1 and Wy, (c) = e x—‘::-1 e
21 ¥21%12  *21%21%12%21 211¢) = Xo1%12 %91
-1 -1
are liftings of ao Z) and (2 g ), respectively (see Milnor [2,
Chapter 9] for more details). The description of 6_1([2 Z]) now follows
from the following computation in St(ﬁp) for pln, based on relations

in Milnor [2, Corollary 9.4 and Lemma 9.6]:

ca”! -1 a"b) ac™?! c"d)—l
("21 hy () “oxpp X tWoy(e)xpy

-1 — — -1 =1 - - -1 - - - -
=xS& h,.(a 1-xa ¢ . (c) l.xac (c 1d-—a1b=a 1c 1)
X291 "Poi 12 21 12
- h (a)-l- ac.x—a'ic'i. ac, ( )—1
= fop %217 *12 Xo1 ¥g;lc

h21 (a)-1 -w21(ac) W91 (c)—1

Wy, (ac) Wy (€) " ohy; (2) !

hy,(ac)-hy; () T hy (@) ! = {cia} = fac)'. @
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The use of this formula for detecting whether or not an explicit
matrix vanishes in Cll(Z[G]) will be illustrated in Example 5.1 (Step

3). Note that when A is commutative, any element of SKI(ZI) can be
reduced to a 2x2 matrix (2‘ s) where ad -bc =1 (see Bass [1,

Proposition 11.2]). So in principle Proposition 3,13 (or some variant)
can always be applied in this case. Another example where this formula is
used can be seen in Oliver [5, Proposition 2.6].

We now focus attention on group rings. The following theorem shows

that SKl(ip[G]) is a p-group for any finite G, not only when G is a

p-group. This does not, of course, hold for arbitrary 2p—orders.

Theorem_3.14 (Wall) Fix a prime p, let F/ﬁp be any finite

extension, and let R C F be the ring of integers. Then for any finite
group G, SKI(R[G]) is a p~group.

Proof Let J C R[G] be the Jacobson radical. Then SKI(R[G]) is
finite by Theorem 2.5(i), and Ker[Kl(R[G]) — KI(R[G]/J)] is a

pro-p-group by Theorem 2.10(ii). So it will suffice to show that
SKI(R[G]) maps trivially to KI(R[G]/J).

Fix a finite extension E J F with ring of integers S C E, such
that the residue field S of S is a splitting field for G; 1i. e.,
such that S[G]/J 1is a product of matrix rings over S. Let u € (R[G])*

be such that [u] € SKI(R[G]). If V is any finitely generated

E[G]-module, and if M is any S[G]-lattice in V, then

detg(M = M) = det (V 25V

[}
—

since [u] =1 in KI(F[G]). Hence, if we set M = SO_M, then
detg(M 25 H) = 1. (1)

By the surjectivity of the decomposition map for modular representa-
tions (see Serre [2, §16.1, Theorem 33] or Curtis & Reiner [1, Corollary
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18.14]), the representation ring R§(G) = KO(S[G]/J) is generated by mod-
ules of the form M = §OSM. So (1) extends to show that detg(TL)T)=l
for any irreducible S[G]/J-module T. Since S[G]/J & §@§ (R[G)/J), and

is a product of matrix algebras over S, it follows that

[u] € Ker[SKl(R[G]) — K, (R[G)/J) — KI(S[G]/J)]- o

The localization sequence of Theorem 3.9, in the case of group rings,
at least, can now be split up in a very simple fashion into their

p-primary components. For any semisimple Q-algebra A, we define Cp(A)

to be the p-localization of C(A). Note that C(A) splits as a direct
sum C(A) = QPCP(A) — since C(A) is a quotient of GPK;(KP), and each

K;(Kp) is a product of a finite group and a pro-p-group by Proposition
3.6. In fact, C(A) will be seen in Chapter 4 to be finite for all A,
Theorem 3.15 Fix a number field K, and let R be its ring of

integers. Then, for any finite group G and each prime p, there are

exact sequences

o s 9% 3
K5(R [G]) — C_(K[G]) —— CI,(RE]) ) — 1, (1)

1 — CL(RICD) ) — SK;(R[GD) () — SK; (R [G]) — 1. (2)

These sequences, together with the isomorphism

3 : C(K[G]) —=, Coker[Kz(K[G]) —>@K§(f<p[G])],
P

are natural with respect to homomorphisms of group rings, as well as

transfer (restriction) maps for inclusions of groups or of base rings.

Proof The sequences follow immediately from Theorems 3.9 and 3.14;

since K;(ﬁp[c]) is a pro-p-group for each p by Proposition 3.6.
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Naturality with respect to homomorphisms of group rings is immediate.
For any inclusion S[H] C R[G], where HC G and S is the ring of
integers in a subfield of K, the transfer maps for the terms in (1) and
(2) are all induced by some fixed inclusion R[G] C Mk(S[H]), together

with the usual isomorphisms Ki(Mk(s[H])) = Ki(S[H]). etc. Sequence (2)

is clearly natural with respect to these last isomorphisms, and the
naturality of (1) and 3 follow from the descriptions of ¢ and @ in
Theorems 3.9 and 3.12. s]

It has been simplest to derive the localization sequences used here
by indirect means. The usual way to regard localization sequences is as
Mayer-Vietoris sequences for certain "arithmetic” pullback squares. We
end the chapter with an example of such sequences, due to Bak [2] in dim-

ensions up to 2, and to Quillen (Grayson [1]) for arbitrary dimensions.

Theorem 3.16 Let A be any Z-order in a semisimple Q-algebra A,
and fix a set % of (rational) primes. Define

1 1 o o N o 1
A= = A[=: p € %], A= 14, Ay = U =]
] P % pe? P % $L3
Then the pullback square
A ———— u[g]

induces a Mayer-Vietoris exact sequence

e K () — K (A[3]) 0 K () — K (fg) — K_ (1) — ...

1)
cee — Ky () — K A[3D) 0 K (3y) — K (8y).

Proof Let g‘(u,@) and gt(ﬁy.v) denote the categories of finitely

generated %-torsion - and Hy—modules of projective dimension one.
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These categories are equivalent: note, for example, that a finitely

generated %-torsion module over either A or ﬁg must be finite. So

the localization sequences of Quillen for nonabelian categories (see

Grayson [1]) induce the following commutative diagram with exact rows:

e — K (B 1L,9) — K (1) — Ki(?.l[%]) — K, (°@.9)) — ...

gl l l zl (2)

= K (g 9) — K () — K (Rg) — K, (B°(Hg9)) — ...

The snake lemma applied to (2) now gives sequence (1), except for exact-—

ess at KO(?‘[[E%‘]) (] Ko(ﬁg); and this last point is easily checked. O



Chapter 4 THE CONGRUENCE SUBGROUP PROBLEM

The central result in this chapter is the computation in Theorem 4.13
of

C(A) = % SK, (¥,1) = Coker[K2(A) —_ @Kg(ﬁp)]
p

for a simple Q-algebra A: a complete computation when A is a summand
of any group ring K[G] for finite G, but only up to a factor {i1} in
the general case. This computation is closely related to the solution of
the congruence subgroup problem by Bass, Milnor, and Serre [1]. The
groups C(A) have already been seen (Theorems 3.9 and 3.15) to be
important for computing Cll(ﬂ) for Z-orders U € A. In fact, Theorem

4.13 is needed when computing SKI(Z[G]) in all but the most elementary

cases.

It is the second formula for C(A) (involving K2(A) and K;(Kp))

which is used as the basis for the results here. This is the approach
originally taken by C. Moore in [1]. The idea is to construct isomor-
phisms between C(A) and K;(xp) and certain groups of roots of unity.

Norm residue symbols are defined in Section 4a, and applied there to

prove Moore's theorem (Theorem 4.4) that K;‘F) x Mg (the group of roots
of unity in F) for any finite field extension F D ﬁp In Section 4b,
this is extended to the case of a simple ﬁp—algebra A: the computation
of K;(A) is not complete but does at least include all simple summands
of p-adic group rings.

The final computation of @pK;(xp)/Im(Kz(A)) is then carried out in
Section 4c, based on Moore’s reciprocity law (Theorem 4.12), and results

of Suslin needed to handle certain division algebras. A few simple
applications are then listed: for example, that Cll(ZI) = 1 whenever A

is a maximal Z-order, or an arbitrary A-order when Z € A C Q.
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4a. Symbols in K2 of p-adic fields

By a symbol on a field F is meant a bimultiplicative function
X: Ff x Ff — G, where G is any abelian group, such that x(u,1-u) =1
for any 1 # u € Fr. The importance of symbols when working in K-theory
comes from the following theorem of Matsumoto, which says that the
Steinberg symbol with values in K2(F) is the "universal symbol"” for F.

Theorem 4.1 (Matsumoto) For any field F, the Steinberg symbol

{,} : FF8F —— Ky (F)

is surjective, and its kernel is the subgroup generated by all elements
u® (1-u) for units l;éuGF*. In particular, any symbol x: F*xF* — G
factors through a unique homomorphism X: K2(F) — G.

Proof See, for example, Milnor [2, Theorem 11.1]. DO

It is an easy exercise to show that the relations {u,-u}=1 and

{u,v}-{v,u}=1 1in K2(F) follow as a formal consequence of the identity
{u,1-u} =1 (when F is a field, at least).

When constructing symbols, the hardest part is usually to check the
relation x(u,1-u)=1. The following general result is very often useful
when doing this.

Lemma 4.2 Fix a field F and an abelian group G. Let

xE:E*xE*—>G

be bimultiplicative maps, defined for each finite extension E 2 F, and
which satisfy the relations

)(E(u,v) = )(F(NE/F(u),v) (all u € E*, v € F*)

for all E. Then, for any n 2 1 and any l;éuGF*,
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xF(u,l—u) € <)(E(v,1—v)n : E/F finite extension, 1 # v € E*>.

In particular, Xp is a symbol if G contains no nontrivial infinitely

divisible elements.

Proof Fix u € F'~1, and let

k
S -u= [l fi(x)ei € F[x]
i=1

be the factorization as a product of powers of distinct irreducible

polynomials. In some algebraic closure of F, fix roots uy of fi,

and set Fi = F(ui). Then u? =u for all i, and

==

k
1-u=1 fi(l)e‘ = NFi/F(l-ui)e‘.
i=1 i=1

It follows that

k k
xF(u,l—u) = iEIXF(U,NFi/F(l—ui)ei) = iEIXFi(u?,(l_ui)ei)

k
ne;
i!lxpi(ui,l—ui) . o

We now consider a more concrete example. Fix a prime p, let F be

any finite extension of ﬁp’ and let Hp be the group of roots of unity

in F. For any u C Hps the norm residue symbol

(')M tFeF —> i

is defined by setting (u,v)u' = s(v){(a)/a; where F(a)/F is some

extension such that o = u (n = lul), and where

s F*/NF(a) SE(F@) —= | Gal(F(a)/F)
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is the reciprocity map (see Proposition 1.8(ii)).

Theorem 4.3 Let F be any finite extension of ﬁp, and fix some

group p C Hp of roots of unity in F. Then

(i) (9)u : Frox F*—)p. is a symbol.

(ii) If EQF 1is any finite extension, and if (’)V» E denotes the

symbol on E with values in u, then for any u € F* and any Vv € E*,

(u’v)u,E = (ust(v))u'

. ]
0 = s . )

(iit) For any po Cu, and any u,v € F

(u’v)p,o = ((u,v)u)[ﬂzﬂo].

(iv) For any n|lul, and any u € F' such that ul/q € F for all

2
primes q'., there exists v € F such that (u,v)u generates the
n-power torsion in pu.

Proof (ii,iii) Set n = |lpl and m = lpol,

E(a)/E be an extension such that " = u.

fix u € F*, and let
The diagrams

g N Gal(E(a)/E) F* —=  Gal(F(a)/F)

‘NE/F ‘res and JId lres

F' —= 5 Gal(F(a)/F) F* —S0 , Gal(F(a™™)/F)

commute by Serre [1, Section XI.3], where s, Sps and sg are the

reciprocity maps, and where res

denotes restriction maps.
]
definition of (’)ll’ for any v €E,

By the

(W Ny p(M),, = s p(M)(@)/a = sp(v)(@)/a = (u,v), ps
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and the proof of (iii) is similar.

(i) The relation (u,l—u)u=1 is immediate from (ii) and Lemma 4.2.

{iv) It suffices to show this when n = q is prime. Fix u € F
such that ul/cl ¢€F, set E-= F(ul/q), and let p.q be the group of gq-th

roots of unity in F. Then the reciprocity map for E/F takes the form

F/Ng p(E)) —5— Gal(E/F) = 2/q.

So for any v € F*\NE/F(E*), (u,v)uq = s(v)(ul/q)/ul/cl generates p.q,

and (u,v)u generates the q-power torsion in u by (iii). o

Now, for any prime p and any finite extension F of ﬁp’ (,)F
will denote the norm residue symbol for F with values in Mg the group

of roots of unity of F. We can now prove the main theorem in this

section, which says that (,)F is the universal continuous symbol for F.
Theorem 4.4 (C. Moore [1]) Let p be any prime, and let F be any
finite extension of ﬁp Then the norm residue symbol (,)F induces an

isomorphism

KS(F) —F—
2(F) == g

IR

Furthermore, if R C F 1is the ring of integers, then Kg(R) -1 Kg(F)(p)

(p.F)p: the group of p-th power roots of unity.

IR

Proof Let p € R be the maximal ideal. The relation K;(R)
K;(F)(p) is clear from Theorem 3.5: Kg(R) is a pro—p-group by
Proposition 3.6, and p*IKl(R/p)I by Theorem 1.16.

By Matsumoto’s theorem (Theorem 4.1), the norm residue symbol induces

a homomorphism EF: Ky(F) — M- I n= Ip.FI, then K2(R,p2nR) =
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{R",14p’nR} (Theorem 3.3). Also, {R",1+p°nR} C Ker(&;): all elements

of 1+p?nR are n-th powers, since the Taylor series for (1+p®nx) 1/n

converges for x € R. So O factors through oF* K;(F) _—_ Hp

Set n = IuFI , and let ( € Hp be a generator. By Theorem 4.3(iv),
there exists u € F' such that UF({L',u}) = ((,u)F generates pr. Since
{C,u} has order at most n ((n = 1), this shows that op is split

surjective. Also, in the localization sequence
1 — K5(R) — Ko(F) — K (R/p)
K 1

c ~ 1
of Theorem 3.5, K2(R) is a pro-p-group, and KI(R/p) = (”F)[B] by
Proposition 1.8(i). Thus, % is an isomorphism of non-p—-torsion; and we

will be done if we can show that

Z/p if pflucl
Ko(F) 8 Z/p = { F (1)
1 if pJ(IuFI.
Fix any w € p~p2. Then
F* = (1") X R* = (1!') X U X (l+'p) (2)

by Proposition 1.8(i). Let e be the ramification index of F (i. e.,
PR = pe), and set ep = e/(p-1). Forany n2>1 and any r € R,

(l+1rnr)p 1+ 7P (mod ppn+l) if n<eq

1+prir+7 n.P (mod pn+e+l

1]

) if n=eg (n+te=pn)

=1+ p1rnr (mod pn+e+l) if ndeo.
In particular,
(1+ pn) c(+ pn+l)_(F*)p if piln and n < peo,
3)
(1+ pn) =(1+ pn—e)p if n > peo.
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If (p-1)|e (so eo € Z), then consider the following diagram

1—14+p% 1% (14 p%0)/(1 4

glm laz laa

1— 14 Pt 4 P (14 BP)/(1 4 PNy —

eo+1) —_1

P

where a;(u) = u (and peo = eot+e). The domain and range of a5 have

the same order (both are isomorphic to R/p), and so
|Ker(az)| = |Ker(as)| = |Coker(as)| = |Coker(az)|.

Also, |Ker(az)| =p or 1, depending on whether (p € F. So whether or

not (p—1)|e, one of the following two cases holds: either
(a) p»l’luFI, and (1+pm) c (F*)p for any m 2 peo; or
() pl I;LFI, eo € Z, and there exists & € 1 + p’°° such that
5 € (1 +p0)P and (1 + pP®0) = (8)-(1 + p®°)P,

In case (b), for any u € R*, there exists x € pe° such that

[~
m

1 - ux? (mod (1+ppe°+1) c (FH)P)

(every element of R is a p-th power mod p). Then

-1 _

{u,8} = {u, 1-u®} = {wP, 1w} (P, 1-wxP) " =1 (mod KS(FIP).

It follows that
%
{R",8) € K;(F)P. 4
Now fix any 1<{n<peg. If p*n, then for any u € 1+pn we can

write u = (1—1rnmy)n for some w € and y € l4p (1+pn is a pro-p-

group); and so
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{wr,u} = {w,l—wnwy}n = {wn,l—wnm} = {wnm,l—wnm}-{m,l—wnm}—l =1

} - K5(F)P).

{mod {w,1+pn+1

If, on the other hand, n = pm < peo, then (3) applies to show that

{m 143"} € {m 1™ ) - (n, (FYP) € (m109™ ) - KS(P)P.

This shows that if r is such that peg { r < peo+l, then

KS(F)P if phip.l
{m,1+p} C {m,14p} - Kg(F)p ) { . C P F (5)
({m,8}) * K5(F) if plingl

Recall that 7 was an arbitrary element of p\pz, and that &6 was
chosen independently of w. Hence, for any u € R*, 7 can be replaced

by uwr in (5) to get

K;(F)p if phlpgl
{ur,1+p} € . cp
({um,8}) - K5(F)P = {{m,5}) - K3(F) if pllugls

where the last step follows from (4). By (2), and since {w,-w} =1,

KS(F) = (w.F) - (m14p) - (R, 145} = (uF") - (R7r,14p)

{Kgmp if phiugl
Sl k5P ar el

This proves (1), and hence the theorem. u]

One consequence of Theorem 4.4 is the following lemma, which is often

useful when checking naturality properties involving K;(F).

Lemma 4.5 For any pair E 3 F 2 ﬁp of finite extensions, there is a

sequence
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F=F0§F1§...§F CF =E

of intermediate fields such that K;(Fi) = {FT’F);—I} for each 1 < i < k.
Proof It will suffice to show that K;(E) = {E*,F*} whenever either

(a) E/F 1is a Galois extension of prime degree, or

{b) there is no intermediate field E C E such that E/F 1is Galois

and abelian.

In case (b), P;‘ = NE/F(E*) by Proposition 1.8(ii). Fix weF' and

* c ~ : E

v€E  such that K2(F) 2 pp is generated by {u,NE/F(v)} = trfF({u,v})
(see Theorem 3.1(v)). Since K;(E) = K;(F) (uE=;.LF since F(p.E)/F is
an abelian Galois extension), this shows that {u,v} generates K;(E).

Now assume that E/F is Galois of prime degree. Fix any prime

q| I”’EI' We claim that there exists u € F* such that ul/q € E; then by

Theorem 4.3(iv) there exists v € EX such that {u,v} generates

¥ I
K;(E)(q), and so Kg(E)(q) C {F ,E).

If q#[E:F], then we can take any u € F' with valuation 1 (u
has valuation 1 or [E:F] in E, and cannot be a g-th power). If
q=[E:F], then in particular, q||;.LFI (otherwise, E = F((q), and

[E:F]|lg-1). Fix any element = € F* with valuation 1, and any § € o
which generates the group of q-th power roots of unity. Then § and
are linearly independent in F*/(F*)q; and so at most one of them can be
a q-th power in E (see Janusz [1, Theorem 5.8.1] or Cassels & Frohlich
[1, 8III.2, Lemma 3]). O

Lemma 4.5 implies in turn the following description of how the
isomorphism K;(F) = Hp behaves under transfer maps. This can be useful

vwhen making concrete calculations in SKI(Z[G]) for finite G.

A

Theorem 4.6 Fix a prime p and finite extensions E 2 F 2 Qp, and

let fCE and ugF*ﬂﬁ be groups of roots of unity. Set
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r = [fi:u]. Then the following square commutes:

KS(E) U,
ltrfﬁ l(c Y

K;(F) ﬁl*‘_., u.

In particular, trf{:‘ is onto.

Proof By Lemma 4.5, it suffices to show this when K;(E) = {E*,F*}.

But for any u € E* and any v € F*,
E
(,)uotrfl_,({u,v}) = (Nm(u),v)u’}, (by Theorem 3.1(v))
r .
= (u,v)u’E = ((u,v)ﬁ’E) (by Theorem 4.3(ii,iii)).
The surjectivity of trf]l:_‘: now follows from Moore’s theorem. u]

We finish the section by listing some explicit symbol formulas.
These are of ten useful when making computations: for example, in Example
5.1 below, when constructing matrices to represent nonvanishing elements

in SKI(Z[04 xCzxCz]); and in Chapter 9, when deriving the formula for

Cll(Z[G]) when G is a p-group for odd p.

Theorem 4.7 (i) Let F be any finite extension of ﬁp’ and let
PCRCF be the maximal ideal and ring of integers. Let u C Hp be any

group of roots of unity of order prime to p, regard p as a subgroup of
(R/p)*, and set m [(R/p)*:p.]. Then, for any u,v € F*,

(u’v)u ((_I)P(U)p(v).up(V)/vP(U))m c (R/p)*.

1

Here, p(-) denotes the p-adic valuation (p(u)=r if qur\pr+ ).
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(ti) Fix any prime power pn 22, set = exp(21ri/pn), and let
K= ﬁp(f). Let Tr: K — ﬁp and N: Kf — (ﬁp)* be the trace and norm
maps, and set p = {{). Then for any u € 1+(1—z)ip[§], ((,u)u = gR,

where (modulo pn) :

N(u) - 1 _ {p~n°Tr(log u) if p is odd
R = ~ =

(142" 1.2 Tr(log u) if p=2 (and n 2 2).

Proof See Serre [1, Proposition XIV.8 and Corollary] for the first
formula (the tame symbol). The formula for ((,u)u is due to Artin &

Hasse [1]. O

Note that Artin & Hasse in [1] also derive a formula for symbols of
the form (l—(,u)u, in the situation of (ii) above.

4b. Continuous K2 of simple ﬁp—algebras

Ve now want to describe K;(A), whenever A 1is a simple ﬁp—algebra
with center F, by comparing it with K;(F). This will be based on a
homomorphism \ﬁx: K;(F) — K;(A), which is a special case of a

construction by Rehmann & Stuhler [1].

Proposition 4.8 If A is any simple @p—algebra with center F,

then there are unique homomorphtisms
¥y ¢ Ky(F) — K, (A) and ¢Z : K;(F) —_— K;(A)
such that \ﬁA({u,nrA/F(v)}) = {u,v} (and similarly for \#Z) for any
we€F and v € A%, Furthermore, the following naturality relations hold:
(i) If ECA tis any self-centralizing subfield (e. g., if A is a

division algebra and E is a maximal subfield), then the following

triangle commutes:
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trf
K5 (E) —— K5(F)
wc
incl A
Ko(A)

101

(it) If EDF 1is any finite extension, then the following squares

commute :

K;(F) incl K;(E) trf K;(F)
p: 1@ [w:
KS(A) N KS (BB ;A) trf KS(A).

(iti) If EDF is any splitting field — i. e.,

for some r — then the following square commutes:

incl

Ko(F) —2%0 K, (E)

P

Ky(A) —18— K, (BOpA)

E@FA=

where & is induced by the identification G]"k(Mr(E)) = Ger(E).

(iv) For any r > 1, the triangle

¥a
Ko(F) —— K3(A)

=5
“‘Mr& l

Ko (M_(A))

commutes; where &6 is again induced by G]"k(Mr(A)) = G]"kr(A)'

Proof Let $ denote the composite

M (E)
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-1
~ ~ 1 x(nr,) s
V=3, P x P A Pk (A) — Ky(A).
(nrA is an isomorphism by Theorem 2.3). By Matsumoto’s theorem (Theorem
4.1), showing that Q;A factors through K2(F) is equivalent to checking

that Y(u,1-u) = 1 for all u € F~{1}.
This will be done using Lemma 4.2. For any finite extension E/F,
define Xg: EfxE' — K2(A) by setting

xg(u:v) = trfROA G (u,v).

For any u € E*, any v € F*, and any 7 € A® such that nrA/F(n) =v,

Xg(u,v) = trf, t({u,18n}) = {Ng p(u).m} (Theorem 3.1(v))
= xF(NE/F(u),v).
172 %
If n = [A:F] ; then Lemma 4.2 now shows that for any u € F ~{1},

xF(u,l—u) = $(u,1—u) is a product of elements
E®A -1 E®A
xg(v,1-v)" = trf, ({v,anQA/E(l—v)n}) = trf, ({vi1-v}) = 1

2
for v € E ~{1} (nrmA/E(l—v) = (l—v)n by Lemma 2.1(ii)).
This shows that \PA is well defined on K2(F). If RCECF is the

ring of integers, and if M C A is a maximal order, then for all k 2 1,
V(Ko (R,DMR)) = v, ({1+p"R,E)) (Theorem 3.3)
= {1+p"R, ") € Ky(m,pMW).

So ¥, factors through wﬁ: K;(F) — K;(A).
To prove (i), choose intermediate fields F = FO [ Fl c... C Fk =E

such that KS(F,) = {F;,F, |} for all i (use Lemm 4.5). For each f,
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let AigA denote the centralizer of Fi in A (so Ak=E). Consider

the following diagram:

KS(F,) — ... — KS(F,) <L kS(F, ) — ... — KS(F,)

lw§= 1d lwf lwf_l lwgwﬁ (1)
S — e — 1) I ) — s — KGRy

(where »p(; = \p:i ). For any u € F:_l and v € A’:,

\p(i:_lotrfi({u,nrAi JF; M} = \p(;_l({u,NFi/Fi oM, /R (M)}  (Thm 3.1(v))

VU, e (D) (Lemma 2.1(iv))

{u,v} = inciow(;({u,nrAi/Fi -

Since K;(Fi) = {F:,F’:_l} by assumption (and nr is onto by Theorem

A; /F;
2.3), this shows that each square in (1) commutes. In particular,

A E
inclE = \p:otrfF : K;(E) — Kg(A)-

By Lemma 4.5, it suffices to prove point (ii) when Kg(E) = {E*,F*}.

And this follows easily upon noting that the reduced norm for A/F is the
restriction of the reduced norm for E@FA/E (by definition).

The last two points are immediate, once one notes that for any A
and r, the standard isomorphism &: K2(A) —=—>K2(Mr(A)) sends {u,v},

for commuting u,v € A*, to the symbol {diag(u,...,u),diag(v,1,...,1)}
(see Theorem 3.1(iv)). O

The goal now throughout the rest of the section is to show, for as

many simple ﬁp—algebras as possible, that \p: is an isomorphism. The

difficult (and still not completely solved) problem 1is to prove
injectivity. The next proposition will be used to do this when p is

odd, and in certain cases when p = 2.
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Propogsition 4.9 Fix a prime p, and let A be a simple ﬁ\lp~algebra
with center F. Assume that p is odd, or that p = 2 and (2,,—(;,1, €F

for some n > 2, or that ind(A) 1is odd. Then there is a finite
extension E D F which splits A, and such that the induction map
K;(F) — K;(E) is injective.

Proof We first show that for any n|ind(A), there is a cyclotomic

extension E D F of degree n such that the norm homomorphism NE/F

restricts to a surjection of Mg onto Hp+ It suffices to do this when
n=q is prime, and to show surjectivity onto the group ()_LF)q of gq-power
roots of unity.

Write I(;_LF)qI =q"; we may assume r > 1. Set E = F({), where ¢(

is a primitive qr+1—st root of unity. Then [E:F] =q. If q#p, then

E/F 1is unramified (Theorem 1.10(i)), and so NE/F

of (;J.E)q onto (].LF)q by Proposition 1.8(iii). If qr>2, then

induces a surjection

N p(€) = (€ (€ ) (20 oo (@) _ g0

generates (;_LF)q. If p= qr = 2, then (2.,.—(;,}. € F by assumption (for

-1
some m 2 3); so §2m € E, and NE/F(c2"‘) = (C2m)°(‘f2m) = -1,
Now set n = ind(A). Let E D F be any extension of degree n such
that NE/F(}LE) = U The condition [E:F] = n implies that E 1is a

splitting field for F (see Reiner [1, Corollary 31.10]). To see that
K;(F) injects into K;(E), consider the following diagram:

c trf c incl c
KS(E) — 5 K5(F) 2% KS(E)
= UE =‘UE
Ne/F c
53 > iy € Hp:
This commutes by the naturality of o,.: inclotrf 1is induced by tensoring

E
with the bimodule E@FE (see Proposition 1.18); and is hence the norm
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homomorphism for the action of Gal(E/F) on Kg(E). Also, trf 1is onto
by Theorem 4.6, Kg(F) £ Hp and so |Im{incl)| = IIm(NE/F)I = Ip,FI =

[K(F)l. o

The next lemma will be needed when showing that \JJK is injective for

any simple ﬁz—algebra A of index 2.
Lemma 4.10 Fix a finite extension F of 6]:’ and let D be a

division algebra with center F for which [D:F] = 4. Let MCD be the

maximal order. Then for any given n, each element in

Ker[Kz(D) — K;(D)] - ‘zllm[x2(m,pim) — K2(D)]
1=

can be represented as a product of symbols {1 +pnx,1 +pny} for commuting

pairs of elements x,y € M.

Proof The proof is modelled on the proof by Rehmann & Stuhler [1,
Proposition 4.1] that K2(D) is generated by Steinberg symbols {u,v}

3
for commuting u,v € D . However, since we have to work modulo pn'lﬁ, the
proof is much more delicate in this setting.

Fix n > 2, and define

Xn = {({u,v} : u,v € 1+p™, uv = vu) C K2(D).
We must show that Ker[Kz(D) — Kg(D)] c Xn.

Step 1 Recall the symbols {u,v} € St(D), defined in Section 3a for
any pair of units u,v € D*, and such that ¢{({u,v}) = [u,v] (€ GLl(D)).

We are particularly interested here in the case where u and v do not
commute. By Theorem 3.1(iv), {u,v} = [x,y] for any x,y € St(D) such
that

¢(x) = diag(u,uz,... ,uk) and ¢(y) = diag(v,vz,... . k),
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and such that uy = 1 or vy = 1 for each 2 ¢ i { k. Using this, the

following relations among symbols, for arbitrary wu,v,x,y € D*, follow

easily from corresponding relations among commutators:

v.u) = (o) (1)
vy o L = s e e ) = vy (@)
{wvhe{vax} = fux Lol (3)
vy oy = (L gy 3= v e (4)

In particular, the relations in (2) show that for any u,v,x,y € 1+pn'll
such that [u,y] = [v,x] =1,

{u,v} = {u,vy} = {ux,v} (mod X ). ()

Step 2 Set A = ip+p2“m CD. af -order in D. By definition of

K;(—) (and Lemma 3.2),
Ker[Ky(D) —— K(m)] ¢ In] K, (21,p%"M) —— K, (D) |-

Also, since A 1is a local ring, results of Kolster [1] apply to show that
each element of K2(2l) is a product of symbols {u,v} for (not

necessarily commuting) pairs of units u,v € Zl*. Since ZI* is generated

by (ip)* and 1+p2“m, relations (2) above show that any

§ € Ker[K,(D) — K3(D)] has the form

€ = Eo'E1{us,vi}-{uz-va}ee-{ux,vi};

where §o € K2(2p), E1 1is a product of symbols {(ip)*, 1+p2“m}, and

u;,vi € 1+ pz"m. Fur thermore, S vanishes under projection to
2 ~ 2 ~ 2ns _ AW A
KT 2 K2/, so o € KyB 7)) = ()" 1p7L)

(Theorem 3.3). But for any a € (ip)* and any x € R,
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{a,1+ pznx} = {a(p—l )p” s (1 + p2nx)1/(p—1)p“} € {1 + pn+lip , 14+ pD‘R}

Here, the (p—l)pn-th root is taken using the binomial expansion.
We have now shown that

ker[Ky0) — KE@)] € (1™, 198"} + xy € W) (€S- (®)

Step 3 Let R be the ring of integers in F = Z(D), and let
p={7r) CR be the maximal ideal. We regard U#/pR as a 4-dimensional
R/p—vector space. For any a € B, a denotes its image in m/pm.

Define functions

T (1+p“m)\1 — (MW/pM)~0 and v : (1+p“m)\1 —>Z>o,

by setting, for any k 2 O and any a € W~ ph:
n_k = n_k
p(l+p™rta) = a € B/pn and v(l+4p 7w a) = k.
For any sequence uj,...,u; € 1+p'R, set

Aug,.eouy) = (V-(ui)t"'tu(uk)tl)R/p c m/pm;

i. e., the R/p-vector subspace generated by these elements.
These functions will be used as a "bookkeeping system” when

manipulating symbols {u,v}. The following two points will be needed.

(7) For any u,v € 1+p“m, there exist ug,vo € 1+p“m such that
v(ve) = O (alternatively, v(ug) = 0), p{uo) = -p(v), n(vo) = p(u),

and {uo,vo} = {u,v} (mod Xn). To see this, write u = 1+pn1rka and

v = 1+pn1reb, where a,b € i~pR. Then, by (5),
{uv} = (140", (1ep"r'b) (147)) = {14, 1ep"(arn bep"nba))

= {( 1+pn1rka) ( 1+pn1rk( a+1reb+pn1reba) )-1 , 1+pn( a+1reb+pn1reba)} (mod Xn)

= {l—pnﬂk+eb( 1 +pna) ( 1+pn1rk( a+1reb+pn1reba) )—1 , 1+pn( a+1reb+pn1reba)} .
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This proves the claim if £€>0. If &€ = 0, then a third such operation

finishes the proof.

(8) For any wu,v € 1+pnﬂ such that [u,v] # 1, there exists
ug,Vo € 1+pnll such that {up,voe} = {u,v} (mod Xn), and such that

dimR/p(ﬁ(uo,vo))=3. Furthermore, we can do this with wup = u if
dimR/p(ﬁ(u))=2; and similarly for V. To see this, again write

u = 1+pn1rka and v = 1+pn1reb where a,b € M~pR. The condition [u,v]#1
implies that the elements 1,u,v (and hence 1,a,b) are F-linearly
independent in D. If dimR/p(ﬁ(u)) =2, so that a € B~ (pMUR), then

we can write b = a+l3a+1rmbo, where «o,B € R and l_)o¢<5.,l)R/p. So
{uv} = (14", (14 ’b) (149 (a4pa)) ) (mod X

= {u, 1-p"r Moo (14p 78 (a+pa)) 1} = {u,vo)s

and {i(u,vo) = (5.,1_30,1)R/p is 3-dimensional. The proof when {i(v) is

2-dimensional is similar. If both p(u) and p(v) lie in R/p then an

analogous operation replaces u by up such that p(ug) € R/p.

Step 4 Now consider any 4-tuple of elements u,v,x,y € 1+p“m such
that fi(u,v) and {i(x,y) are 3-dimensional. We will show that there are
elements ug,vVo,X0,¥o € 1+p“m such that {ug,vo} = {u,v} and {Xo,yo} =

{x,y} (mod X ); such that fi(uo,vo) = fi(u,v) and {i(xo0,¥o) = fi(x,y);

and such that either vo = Xg, Or xglvo € {i(uo,vo) = ii(%X0,¥0)-

Using (7), we may assume that v(v) = 0 = v(x). Write
n_k oy n n_&
u=l+4p'7ra, v = 1+p'b, x = l+p ¢, y=1lpwd,

where a,b,c,d € R~pll. Since dimR/p(m/p'm) = 4, and since the sets

{5.,1_),1) and {€,d,1} are linearly independent, there is a relation

k-a+AN-b+a-c+p-d+7=0 (@,B,7,8E,\ € R/p); %)

where K or A is nonzero and & or is nonzero. Using (7) if

@I
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necessary to make some switches, we can arrange that B # 0 # k.
For any a,B,7 € R such that B € R*,

{xy} = (149", (1+p"r'Q) 1+ "l o+ pMrlap 7)) (mod X))
= {1+p%, 1+p"’(arap lyerply))
= {(1 +pc) (1 +p"(Bdtayerry)) , 1+ p (A +ap Tyc+ w’ly)}
= {1 + p"(c+Pxdtaxyctyxy) 1+p“1re(d+aﬁ‘1yc+w'ly)} = {Xo.¥o}-
Note in particular that wv(xg) = O, and that

c+B-d+a-c+3, mlyo) = d+ap c+7F L.

n(xo)
Thus, f{i(X0,¥o) = fi(x,y). Similarly, for any « € R and A€ R, if
n_k -1 n
U = 1+p 7w (a+X ub) and vg = 1+p (b+kva+Avub),

then {uo,vo} = {u,v} (mod Xn), and {i(uo,vo) = A(u,v).

Now consider the equation
keva+ (14A\-vu)+b = B-xd + (1+a*xy) c+7°xy. (10)

By (9), we can find «a,B,7,k,A € R, vwhere B,k € R*, such that (10)

holds (mod oM = 7). If (10) holds (mod 1re1ﬁ), for some & > 1, then

&+1

we can find a solution (mod = "M) unless

(K°va+ (1+}\°vu)°b) - ([3°xd+ (l+a°xy)°c+1°xy) = 1rer,
and T € (E,E,E,E,I)R/p = {i(u,v) +ji(x,y). If this ever happens, then

-1 A n o ~
(%0 vo) = T € fi(u,v) +ii(x,y) = {i(uo,vo) +#(*X0,¥o0)3

and  fi(u,v) = f(x,y) since each has codimension one. Otherwise,

successive approximations yield «,B,7,k,A such that (10) holds, and
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hence such that vg = Xo.

Step 5 We are now ready to prove the lemma. By Step 2, any element
£ € Ker[K2(D) — K;(D)] is a product of symbols {u,v} for wu,v €

1+pnm. So to show that § € Xn, i. e., that § 1is a product of such

symbols for commuting pairs u,v € 1+pn1ﬁ, it will suffice to show that
any product {u,v}-{x,y}, for u,v,x,y € 1+pn11|, is congruent (mod Xn)

to another single symbol of the same form.

Fix such wu,v,x,y. We may assume that [u,v] # 1 # [x,y]; and hence
(using (8)) that {i(u,v) and {i(x,y) are 3-dimensional. By Step 4,
there exist uo,Vo,Xo,¥o sSuch that {uo,vo}'{Xo,yo} = {u,v}-{x,y}; and

such that either vg = xo or

-1 ~ ~ ~ ~

Xo Vo € {i(uo,vo) = fi(u,v) = fi(x,y) = ii(xo0,¥o)- (11)
In the first case, we are done by relation (3). In the second case,

{80+Va} " {X0.¥o} = {uc¥a'.Fova¥a'}* {Forxa Vo) = {ussva}-{xs,ys} (mod X )

by (4), where  ¥o=vo XoyoXe .Vo. Then (V1) =h(Vo) =k(xo),
-1
M(Xa) =I1(Yo). and u(y,) =u(xo Vo)- So by (11),

dimR/p(ﬁ(u,,v,) +ﬁ(x,,y1)) > dimR/p(li(XOsYO)) = 3.

Step 4 (and (3)) can now be applied again, this time to {us,vi}-{x1.¥1},

to show that it is congruent mod Xn to a symbol of the same form. ul

The next theorem, due mostly to Bak & Rehmann [1], and Prasad &
Raghunathan [1], shows that \[4: is an isomorphism for many simple

Qp—algebras. Recall that the index of a central simple F-algebra A is
defined by setting ind(A) = [D:F1Y? 1f A =M (D) and D isa

division algebra.

Theorem 4.11 Fix a simple Qp—algebra A with center F. Then

there is a unique isomorphism
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o, + KS(A) —— /T,
where T C {$1}, and such that for any a € F* and any u € A%
GA({a,u}) = (a, nrm(u))F.

Furthermore, T =1 if any of the following three conditions hold:

(i) p isodd, or p=2 and (2,,—(;,1,617 for some n 2 2; or

(it) 4}tind(A); or

(iii) A is a simple summand of K[G], for some finite group G

and some finite extension K 2 Qp
Also, for any maximal order M C A, K;(m) & K;(A)(p) 2 (uF)p/T

Proof The last statement, that K;(m) = K;(A)(p), is immediate from

the localization sequence of Theorem 3.5. By Theorem 4.4, it suffices to
show that ‘4:: : K;(F) - K;(A) is surjective with kernel of order at

most 2, and an isomorphism if any of conditions (i) to (iii) hold. The
proof will be carried out in three steps: torsion prime to p will be
dealt with in Step 1, the surjectivity of ‘#: will be shown in Step 2,

and Ker(‘#:) will be handled in Step 3. By Proposition 4.8(iv), it

suffices to assume that A is a division algebra.
Let RCF be the ring of integers, and let JCMH and pCR be
the maximal ideals. Set n = [A:F]Uz. By Theorem 1.9, A 1is generated

by a field E 2 F and an element 7 such that
(a) E/F 1is unramified, [E:F] =n, and 1rE1r-1 =E

(b) there is a generator 7 € Gal(E/F) such that ‘er'lr-1 = n(x) for
all x € E

(c) M = S[w] (where SCE is the ring of integers); J=J(M)=7R,
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e R, and " generates the maximal ideal p € R.

Step 1 By Theorem 2.11, |sxl(m)| = |K1(R/J)|/|K1(R/p)|. A

comparison of this with the localization sequence

1 — K;(‘m) —_— K;(A) — K (W]) — SK (%) — 1

of Theorem 3.5 shows that
KA = IS/ = K DI/ ISk ®| = K Rp)] = IKSEII

Since E/F 1is unramified, the commutative diagram

= vy
K, (R/p) —=— KS(FI/KG(R) = KS(FILE] —— K3(A)[3]

I lincl lincl

K, (8/pS) —=— KS(E)/KS(S) = Kg(E)[%,] —= Kg(mFA)[%]

(from Theorem 3.5 and Proposition 4.8(ii)) shows that \p: induces an

injection of K;(F)[%] into K;(A)/[El)], and hence a bijection.

Step 2 We next show that WK(K;(R)) = K;(m), by filtering K;(M)
via the subgroups K;(N,Jk). By Theorem 1.16, Kz(m/J) =1, and so

K;(m) = K;(N,J). By Theorem 3.3, for each k > 1,

-1

Ky(0/35,37Y/5%) = (o, 14a®y s a € 8).

If nfk, then for any a,b € S, the symbol relations in Theorem 3.1 show
that in K (w/J%,J%71/0%).

k-1

k-l} = (l+w,l+bawk_l} = {l4wb, l+aw

{147, l+abrw

}

= (1+n(b)1r,l+a1rk_l} = {1+w, l+a1rk_l-n(b)}
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-1

= {1+mw, 1~0-a-'rpk(b)~1rk }.

So {1+1r,1+a(b—nk(b))1rk-1)= 1, and b can be chosen so that b—nk(b)GS*
(nk # 1 since n}k). Hence Kz(m/Jk,Jk_l/Jk) =1 in this case.

If nlk, then consider the relative exact sequence

k k-1 k k-1,k d k
KS(M,J) —— KGR, J*) — Ky(W/ I, T /) == K (R, J)

Kl(m/Jk+1, k/Jk'l-l).

Since nlk, 1rk € R, and hence [m,Jk] Cc Jk+1. Then by Theorem 1.15,

N CARR A s T A LR VAR

For any {1+1r,1+a1rk_1) € K2(m/Jk,Jk_1/Jk) (a €8),

k-1

8’ ({1+w,1+ar k-1

}) = (147, 14275 1] = 1 + (n(a)-a)r,

and this vanishes if and only if a € R + pS.
This shows that Kg(M) is generated by symbols {1+1r,1+a1rk), for

k>1 and a € R. In particular, using Proposition 4.8(i),

C
Yo

K5(m) € W[KG(F(m) <2 k5(4)] = Im[KS(F(m)) —25s K(F) —2 K5(A)]

(note that F(w) is its own centralizer in A). So Kg(m) c Im(\P:), and

c .
‘I‘A is onto.

Step 3 If none of conditions (i) to (iii) are fulfilled, then p =2
and ("'F)2 = {#1}; and so |Ker(\p:)| ¢ 2. It thus remains to prove the

injectivity of \PX in p-torsion, when (i), (ii), or (iii) holds. By

Theorem 1.10(ii), any simple summand of a 2-adic group ring has index at

most 2; so it suffices to consider the first two conditions.
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(i) Assume first that p 1is odd, or that p =2 and (2n_(;}x €F

for some n » 2, or that ind(A) 1is odd. Then by Proposition 4.9, there
is a splitting field EQF for A such that the induced homomorphism
K;(F) —_ K;(E) is injective. By Proposition 4.8(ii,iv), there is a

commutative square

incl
K5(F) =< K (E)
i

c c
K2(A) _— Kz(mFA);
and so \p: is also injective.

(ii) Next assume that p = 2, and that ind(A) = 2. There is a
trancendental extension E 2 F (the "Brauer field") such that E splits
A and such that F is algebraically closed in E (see, e. g., Roquette
[2, Lemma 3 and Proposition 7]). Then K2(F) injects into K2(E) by a

theorem of Suslin [1, Theorem 3.6]. The following square commutes by

Proposition 4.8(iii):

incl
Ko(F) =55 K, (E)

oo

Ky(A) —— Ky(BOLA);

(note that we are using discrete K2 here); and so \pA is injective.
On the other hand, \pA is surjective by a theorem of Rehmann & Stuhler
[1, Theorem 4.3]. By Lemma 4.10, any 7 € Ker[Kz(A) o K;(A)] is an
n—th power for arbitrary n)>1. Since \pA is an isomorphism, and since
KJ(F) is finite, this implies that v, (n) € Ker[K,(F) — K5(F)]. It
follows that K;(F) x K;(A).

Now assume that ind(A) = 2m, where m is odd. Let E 2 F be any

extension of degree m. Then E‘@FA is a central simple E-algebra of
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index 2: this follows from Reiner [1, Theorems 31.4 and 31.9]. Consider
the following commutative diagram of Proposition 4.8(ii):

kS(F) —2¢bs S(E) —Es KS(F)

P

KS(A) 225 KS(EsA) L KS(A).

The composite trfoincl in the top row is multiplication by m (use
Proposition 1.18), and so incl 1is injective in 2-power torsion. Hence

\IIK is also injective in 2-power torsion; and this finishes the proof. O

It is still unknown whether KZ(A) = KZ(F) for an arbitrary simple
@z—algebra A with center F. The argument in Step 3(ii) (based on
Suslin [1, Theorem 3.6]) shows that ¥y K2(F) e K2(A) is always
injective (using discrete K2). But we have been unable to extend any of
these results to the case of continuous K2 This difference between
K2(—) and Kg(—) is the source of the (erroneous) claim by Rehmann [2]

to show that K2(A) = K;(F) pp in general.

4c. The calculation of C(Q[G])

If R is the ring of integers in a number field K, then a
congruence subgroup of SLn(R) (for any n 2 2) 1is a subgroup of the

form
SLn(R,I) = {M€SLn(R) : M=1 (mod Mn(I))}.

for any nonzero ideal I € R. The congruence subgroup problem as

originally stated was to determine whether every subgroup of SLn(R) of

finite index contains a congruence subgroup.

Any subgroup of SLn(R) of finite index m contains En(R,mR): by
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definition, En(R,mR) is generated by m-th powers in En(R)' Conversely,

if n 2 3, the En(R,I) all have finite index in SLn(R) since
SK, (R, I) = SLn(R,I)/En(R,I)

(see Bass [2, Corollary V.4.5]) is finite. Furthermore, for any pair
JCICR of nonzero ideals, SLn(R,I) is generated by SLn(R,J) and

En(R,I) — any matrix in SLn(R/J,I/J) can be diagonalized. Thus, the
conjecture holds for n23 if and only if the groups SKI(R,I) vanish
for all T CR; if and only if the group C(K) = lim SKI(R,I) vanishes.

For the original solution to the problem, where the use of Mennicke
symbols helps to maintain more clearly the connection with the groups

SLn(R,I), we refer to the paper of Bass et al [1], as well as to the

treatment in Bass [2, Chapter VI]. The presentation here is based on the

approach of C. Moore, using the isomorphism

C(A) = Lim SK, (1.1 = Coker| K, (A) ——)@K;(Kp)]
P

shown in Theorem 3.12. The groups K;(Kp) have already been described in
Theorem 4.11; and so it remains only to understand the image of K2(A).

The key to doing this — for fields at least — is Moore’s reciprocity
law. Norm residue symbols will again play a central role; and the
description of C(A) for a simple @-algebra A (Theorem 4.13 below) will
be in terms of roots of unity in the center of A.

Recall that the valuations, or primes, in an algebraic number field
K consist of the prime ideals in the ring of integers (the "finite

primes"), and the real and complex embeddings of K.

Theorem 4.12 (Moore’s reciprocity law) Let K be an algebraic
number field, and let A be a simple Q-algebra with center K. Let 2
be the set of noncomplex valuations of K (i. e., the set of prime ideals
and real embeddings) and set

2

A = S~ {viKoR: IR@VKA EMr(lH), some r}.
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Then the sequence

K*enr, . (A%) G, g ng, —Eo e — 1

A A

is exact. Here, "'R and "'K denote the groups of roots of unity, and

for any ( = (gv)VGE (gv € "’Rv):
p() = vgz(cv)'“v/“'. (m, = lug 1, m= ligl)

Proof This was proven (at least in the case A =K) by C. Moore [1,
Theorem 7.4].

Note that (K*'nrA/K(A*))v =1 for any Vv € E\EA: since v(a)>0

(vi K & R) whenever a € nrA/K(A*). It thus suffices to prove the
statement poll(,)y =1 when A=K (so %, =3). This is just the

usual reciprocity law (see, e. g., Cassels & Frohlich [1, Exercise 2.9]).
For example, when A =K = Q, and p and q are odd primes, the
relation poll(,)v({P,q}) = 1 reduces to classical quadratic reciprocity
using the formula in Theorem 4.7(i).

A second, shorter proof of the relation Ker(p) C Im([[(,),), 1in the
case A = K, is given by Chase & Waterhouse in [1]. By the
Hasse~Schilling-Maass norm theorem (Theorem 2.3(ii) above),

2
nrA/K(A )={x€K:v(x)>0, all vE€ E\EA};

and using this the proof in Chase & Waterhouse [1] of the relation Ker(p)
€ Im([I(,)v) 1is easily extended to cover arbitrary A. 0O

We are now ready to present the description of the groups C(A) — up
to a factor {+1}, at least — in terms of norm residue symbols and roots
of unity. This is due to Bass, Milnor, and Serre [1] in the case where A
is a field; and (mostly) to Bak & Rehmann [1] and Prasad & Raghunathan [1]

in the general case.
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Theorem 4.13 Let A be a simple Q-algebra with center K, and let
By denote the group of roots of unity in K. Then

(1) c(A) =1 if [R@vKAEMr([R) for some v: K“— R, some T

(it) C(A) = My if no embedding v: K “— R splits A, and if for
each 2-adic valuation v of K, either (2,..—§;}. € ﬁv for some n 2 2,

or 4*ind(ﬁv)
(iit) C(A) = py or uK/{:tl} otherwise.
More precisely, if C(A) = uK/T # 1, then there is an isomorphism

: C(A)

IR

c, A =
o, Coker[Kz(A) — ?K2(Ap)] —E /T
such that for each p, each prime p|lp of K, and each {a,u} € K;(Kp)
(where a € (ﬁp)* and u € (Kp)*),

, = , € .
op@u)) = (@ mryp(), ©ug
In particular, each summand K;(Kp) sur jects onto C(A).

Proof Let I be the set of all noncomplex valuations of K (i. e.,

all finite primes and real embeddings). Fix subsets 35 C ZA C3: 3o is

the set of finite primes of K (i. e., prime ideals in the ring of

integers); and as in Theorem 4.12,
2A=2 ~{viK<>R: [R@vKA=Mr(IH), some T}.

For each (rational) prime p, Kp = “vIpKv and Ap X nvIpAv (see Theorem

: < 1 . C 1
1.7(1)). In other words, we can identify @pK;(Ap) with ®v€ZDK2(AV)'

Consider the following commutative diagram:
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K*QnrA/K(A*)—“-(-'-)—Y—-) Opp —L—p — 1
v€2° M
ls gln(a,;v) (1)
Ky(h) ——— @ KyR)) —— c(a) — 1.

V€3

Here, p 1is defined as in Theorem 4.12, and s 1is induced by the symbol

map

o} + K' @ K (A) — Ky(A)

(where Kl(A) = nrA/K(A*) c K* by Theorem 2.3). Note that by Theorem
4.3(iii), the composite por[(ax ) satisfies the above formula for Oy
v

If 3 & ZA, then
Mg = {t1} (K C R), BR, = HR = {1} for v € ZA\ZO,

and so “vezo(’)v is onto by Theorem 4.12. Hence f is onto, and

C(A) = Coker(f) = 1 in this case.
If ZA =2, 1i. e., if A ramifies at all real places of K, then

both rows in (1) are exact. In particular, (1) induces a surjection of

B onto C(A). If A 1is a matrix algebra over a field, then s is
onto, and so C(A) Z My
Otherwise, we use the K2 reduced norm homomorphism of Suslin [1,

Corollary 5.7] to get control on Coker(s). If F 1is any field and A
is any central simple F-algebra, then there is a unique homomorphism

nri: K2(A) — K2(F) which satisfies the naturality condition:

(2) if EDF 1is any splitting field, then the square

Ky(A) —18 K (E 8. 4)

lnri E‘B

K,(F) —2¢L— K (E)
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commutes, where & 1is induced by the isomorphism E @F A= Mr(E)°

Also, there is a splitting field E D F for A such that F is
algebraically closed in E (see, e. g., Roquette [2, Lemma 3 and
Proposition 7]). So by a theorem of Suslin [1, Theorem 3.6]:

(3) there exists a splitting field E D F such that the induced map

K2(F) inel, K2(E) is injective.

Then (2) and (3) (and Proposition 4.8(ii)) combine to imply
(4) for any u € F' and any a € A*, nri({u,a}) = {u,nrA/F(a)}.
c [P 2 ¢
Assume now that condition (ii) holds; then \laxv. K2(Kv) — K2(Av)

is an isomorphism for all v € 3o by Theorem 4.11. Consider the
following diagram:

fl(ez )
f c,2 A
K, (A) (53] A = D s
2 V€20K2( V) = VGEOMKV
nri (5a) ﬂ)(\p§ )“1 (5b) incl )
£ ll(oz )
K C, s K
(K) D K (K — Bus .
‘2 ves 20 v = ves B

Here, for v € 3~3,, we define for convenience, K;(IR) =yp = {1} (and
alR({u,v}) = -1 if and only if wu,v < 0). Square (5b) commutes by the
definition of the UK,,' If square (5a) also commutes, then a comparison
of diagrams (5) and (1) shows that

wlfog) o) € {2 5 0 (@ 3,

VGEO

= Ker[p: (4] K2(ﬁv) — LLK];

VGEO

and it follows that C(A) = Coker(f) = My
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It remains to check that (5a) commutes; we do this separately for

each v€3. This splits into three cases.

Case 1 Assume first that ﬁv 2 ﬁp’ where either p is odd, or p =
2 and (2n-(;,1, € ﬁv for some n 2> 2, or p =2 and 1nd(Kv) is odd.
Then, by Proposition 4.9, there is a finite extension E 2 ﬁv which

splits Kv’ and such that Kg(ﬁv) injects into K;(E). In the following

diagram:

Ko(A) ——— K3(A)

lnrg (6a) Elw};v)

Ko (E8A)

“1 (eb) zla (6)

Ko(K) —— Kg(R ) ———— K3 (E)

square (6b) commutes by Proposition 4.8(ii,iv), and (6a+6b) commutes by

(2) above. So (6a) also commutes.

Case 2 Assume now that ﬁv n} 62, and that 1nd(3v) = 2m for some
odd m. Using Proposition 4.9 again, choose an extension - E J ﬁv of

degree m such that K;(ﬁv) injects into K;(E). Then E@KA has index

2 (see Reiner [1, Theorems 31.4 and 31.9]). The same argument as in Case
1 shows that square (5a) commutes for Kv if it commutes for E@KA; i.

e., that we are reduced to the case where ind(ﬁv) = 2.

If ind(Kv) = 2, then consider the following diagram:

Ky(A) —— K, () —— K5(A)

lnrz (7a) lnr2 () El(\pﬁ )_1 (7)
Ky(K) —— Ky (R)) —— Ko(R,)-
By Rehmann & Stuhler [1, Theorem 4.3], K2(Kv) is generated by symbols of

the form {a,u} for a € (ﬁv)* and u € (Kv)*; and so (7b) commutes by

(4) (and the definition of ). Square (7a) commutes by (2) and (3)
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above; and so (5a) commutes in this case.

Case 3 Finally, assume that v € ~3g; 1i. e., that Xv = M_(H)

~ A ¥ A
for some r. Then K2(Av) = {(Kv) ,(Av) } by Rehmann & Stuhler {1,

Theorem 4.3]. The composite K2(Kv) ﬂf—* K2(Il€v) —_— Kg(ﬁv)EK;(IR)E{:H}

is thus trivial (use (4) again); and so (5a) also commutes at such v.

This finishes the proof of the theorem when (i) or (ii) holds. If
neither of these hold, then (y.K)2 = {#1}, so we need only check that

C(A) is isomorphic to Mg in odd torsion. The proof of this is

identical to that given above. a
Theorem 4.13 immediately suggests the following conjecture.

Conjecture 4.14 For any simple Q-algebra A with center K,

1 if IR@KA&‘M(IR) for some v: K“— R and some r
C(A) = v T

Mg otherwise.

By Theorems 1.10(ii) and 4.13, Conjecture 4.14 holds at least
whenever A 1is a simple summand of a group ring L[G], for any finite G
and any number field L. If Suslin’s reduced norm homomorphism, when

applied to a simple Qp—algebra, could be shown always to factor through
K;(—), then the proof of Theorem 4.13 above could easily be modified to

prove the conjecture.
We now consider some easy consequences of Theorem 4.13. The next two
theorems depend, in fact, not on the full description of C(A) =

Coker[K2(A) — @pK;(Xp)], but only on the property that each factor
K;(xp) surjects onto C(A). The first explains why we focus so much

attention on Z-orders: if any primes are inverted in a global order 2,
then Cll(?l) = 1.

Theorem 4.15 Let A C Q be any subring with A 2 Z. Then, if A
is any A-order in a semisimple Q-algebra A, Cll(?l) = 1. More
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precisely, if % denotes the set of primes not invertible in A, then

SK, (A) = p%SKl(”p)'

Proof Let % 2 A be a maximal A-order in A, and set n = [W:A].
The same construction as was used in the proof of Theorem 3.9 yields an

exact sequence

e o
im SK,(A,1) — SK, () — P SK, (A ) — 13 1
Lin K, (21.1) e & s, (1)

where the limit is taken over all ideals I C A of finite index, and

where lim SK1(2I,I) £ lim 011(m,1) for any maximal A-order %R 2 .

Furthermore, the same construction as that used in Theorem 3.12 (based on

Quillen’s localization sequence for a maximal order) shows that

L o1, () 2 Coker £5: K, (A) — pgxg(xp)]. (2)

By Theorem 4.13, under the isomorphism

C(A) % Coker[Ky(A) —— ? x;(xp)].

each factor K;(Xp) surjects onto C(A). Hence, since % does not
include all primes, the map fg in (2) is onto. It follows that

lim SK1(2I,I) =1 in (1), and hence that ¢ 1is an isomorphism. O

The next theorem allows us, among other things, to extend Kuku’s

description of sxl(m) for a maximal ip-order #  (Theorem 2.11) to

maximal Z-orders.

Theorem 4.16 (Bass et al [1]; Keating [3]) If A is any Z-order in
a semisimple Q-algebra A, then Cll(2l) has p-torsion only at primes p

for which ﬁp is not a maximal order. In particular:
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(1) CL () =1, and SK (A) = eapsxl(ﬁp), if A is maximal;
(it) SKl(R) =1 if R 1is the ring of integers in any number field;

(iit) SKl(R[G]) has p-torsion only for primes p|lGl, if G isa

finite group and R is the ring of integers in any number field.

Progof Let MW 2 A be any maximal order in A; and consider the

localization exact sequence

C & L4 — % —_—
egxz(mp) > C(A) > SK, (1) ?SKl(”p) 1

of Theorem 3.9. For each p, gpll(;(fip) is the composite
a incl .c 2 c e ro j c 4 o~ .
K 2eb kA ) ¢ DK3(A,) —Brol, coker[K,(A) — ?K2(Ap)] = C(A);

and K;(Xp) surjects onto C(A) by Theorem 4.13. Also, K;(ﬁp) =
K;(Xp)(p) by Theorem 4.11, and so gp(K;(ﬁp)) = Cp(A) (the p-power
torsion in C(A)). Hence ¢ 1is onto, and Cll(m) = 1. Corollary 3.10
now applies to show that Cll(ZI) = Ker[Cll(Zl) e 011(151)] has p-torsion

only for primes p|[M:A].
It remains only to prove point (iii). For any group ring R[G] as
above, ﬁp[G] is a maximal order for all p}|Gl by Theorem 1.4(v). In

particular, p*lCll(R[G])l for such p, and p“SKl(ﬁp[G])I by Theorem
1.17(i). On the other hand, for each p, SKl(ﬁp[G]) is a p-group by
Wall’'s theorem (Theorem 3.14). So Cll(R[G]) and @pSKl(ﬁp[G]) both

have torsion only at primes dividing |[G|. O

Point (iii) above will be strengthened in Corollary 5.7 in the next
chapter: SKl(R[G]) has p-torsion only for primes p such that the

P-Sylow subgroup Sp(G) is noncyclic.
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We end the section with a somewhat more technical application of
Theorem 4.13; one which often will be useful when working with group
rings. For example, it allows us to compare C(Q[G]), for a finite group
G, with C(K[G]) when K 1is a splitting field.

Lemma 4.17 Let K be any number field, and let A be a semisimple
K-algebra. Then for any finite extension L D K, the transfer map

trfl : C(L®, A) — C(A)
K K
is surjective. If L/K is a Galois extension, then the induced

epimorphism

trfo : Hy(Gal(L/K); C(L & A)) —> C(A)

is an isomorphism in odd torsion; and is an isomorphism in 2-power torsion
if either (i) K has no real embedding and Conjecture 4.1k holds for
each simple summand of A, or (ii) A is simple and 2|IC(A)1.

Proof Note first that trfllz is a sum of transfer maps, one for each

simple summand of L@KA. When proving the surjectivity of trfk,
thus suffices to consider the case where A 1is simple and K = Z(A). By

it

the description of C(A) in Theorem 3.12, it then suffices to show that

c A A c A
erf : Ky(L o A) — K@)
P

is surjective for any prime p in K, and any qglp in L. And this

follows since the following square commutes by Proposition 4.8(ii):

c, trf C, 5

K2(Lq) K2(Kp)
C ~ trf C, 4
Kz(Lqu{ A) — K2(Ap),

vhere the transfer for f,q 2 I'{p is onto by Theorem 4.6, and the two maps
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C

v

are onto by Theorem 4.11.

Now assume that L/K 1is Galois, and set G = Gal(L/K) for short.
It will suffice to show that if A is simple, then trf, is an
isomorphism in odd torsion, and an isomorphism if 2|IC(A)I (so C(A) =
uZ(A))' Write L@KZ(A) = HT=1Li, where each L; isa finite Galois

~ Tm
A = ML 8704

factors transitively. Hence, if G; € G 1is the subgroup of elements

vhich leave L; invariant (so G; & Gal(L:/Z(A))), then

extension of Z(A); then L® A and G permutes the

Hy(Gs C(L8yA)) = Hy(Gys C(L18,y) A))-

In other words, we are reduced to the case where K = Z(A) (and G = G,
L =1L1,).

In particular, L@KA is now a simple algebra with center L. By

Theorem 4.13, there are isomorphisms

a,

n : C(A) — = w /T

A Cc(L QK A) — p.L/T1 and o, 0

where Ti C {#1}. Furthermore, as abstract groups,

Mg = (uL)G = Hy(Gs 1)

since for any group action on a finite cyclic group, the group of
coinvariants is isomorphic to the group of invariants. The domain and

range of trfp are thus isomorphic (in odd torsion if C(A) % uK) Since

trfo 1is onto, it must be an isomorphism. u]
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The results in this chapter are a rather miscellaneous mixture.
Their main common feature is that they all are simple applications of the

congruence subgroup problem (Theorem 4.13) to study Cl1 of group rings;

applications which do not require any of the tools of the later chapters.
In Section 5a, the group G = C4 xCz xC, is used to illustrate the
computation of SKI(Z[G]) (2 2/2); as well as the procedures for

constructing and detecting explicit matrices representing elements of

SKl(Z[G]). Several vanishing results are then proven in Section 5b: for
example, that Cll(R[G]) =1 whenever G 1is cyclic and R is the ring
of integers in an algebraic number field (Theorem 5.6), that Cll(Z[G]) =1

if G is any dihedral, quaternion, or symmetric group (Example 5.8 and
Theorem 5.4), and that Cll(R[G]) is generated by induction from

elementary subgroups of G (Theorem 5.3). These are all based on certain

natural epimorphisms yRG: RC(G) —» Cll(R[G]); epimorphisms which are

constructed in Proposition 5.2. In Section 5c, the "standard involution”
on Whitehead groups is defined; and is shown, for example, to be the
identity on C(Q[G]) and Cll(Z[G]) for any finite group G.

Sa. Constructing and detecting elements in SKl(Z[G]): an example

We first focus attention on one particular group abelian G; and

sketch the procedures for computing SKI(Z[G]) (= Cll(Z[G])) , for con-

structing an explicit matrix to represent its nontrivial element, and for

detecting whether a given matrix does or does not vanish in SKl(Z[G]).

Example 5.1 Set G = C4xC>;xC,. Let g,h,,h € G be generators,
where lgl = 4 and |hyl = Ihal = 2. Then SKl(Z[G]) % /2, and is
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generated by the element

[1 + 8(1-g%)(1+h,)(1+hz)(1-g) -(1-g%)(1+hy)(1+h2) (3+g)

] € SKI(Z[G]).
-13(1-g®)(1+h,)(1+h2)(3-g) 1 + 8(1-g®)(1+h,)(1+h2)(1+g)

Proof This will be shown in three steps. The actual computation of
SKl(Z[G]) will be carried out in Step 1. In Step 2, the procedure for

constructing an explicit nontrivial element in SKl(Z[G]) is described.

Then, in Step 3, the matrix just constructed is used to illustrate the
procedure for lifting it back to C(Q[G]) and determining whether or not
it vanishes in SKI(Z[G]). This is, of course, redundant in the present

situation, but since the construction and detection procedures are very

different, it seems important to give an example of each.
Step 1 An easy check shows that Q[G] splits as a product

are] = o x a(i)?.

R

By Theorem 4.13, C(Q) 21 and C(Q(i))

determine

{i) = Z/4. We must first

e+ Kg(Ey[c1) — crare]) = (i)*].

For each r,s € {0,1}, let x_: G — (i) denote the character:

rs
X, (8) = i, x (h) = -nF, X 4(hz) = (-1)°.  Each of these four
characters identifies one of the @Q(i)-summands of Q[G] with Q(i) C C.

Let Ars denote the summand of Q[G] mapped isomorphically under Xpg?

so that
Q[G] = Q[G/(g2>] X Ago X Ao1 X Ajo X Ayg.
Recall that the isomorphism o: K;(ﬁ2(i)) = C(Q(i)) — (1) is
induced by the norm residue symbol. For the purposes here, the formula

(N(u)-1)/4

o({iu}) = (N(a#bi) = a® + b?) (1)
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of Theorem 4.7(ii) will be the most useful. Consider the following table,
vwhich (using (1)) lists values for pG(x) at the Q(i)-summands, for some

chosen symbols x € K;(iz[c]).

X o(Xoo(x)) o(xo1(x)) o{x10(x)) o{x11(x))
{g,1+(1+h,)g} i i 1 1
{g,1+(1+hz)g} i 1 i 1
{g,1+(1+h;h3)g} i 1 1 i
{-hz,1+(1+h,)g} -1 1 1 1

A quick inspection shows that Im(pG) has index at most 2.

To see that pG is not onto, we define a homomorphism

a s c@E]) — {#1);  ax) = [ ot 6N
S

r,

In other words, a sends each C(Q(i))

14

(i) onto {#1}; and Im(eg) 2
Ker(a) by the above table. To see that Ker(a) = Im(pG), recall first

that by Corollary 3.4,
Ky(Z,[G1) = {{-1.u}, {g.u}, {hi.u}, {ha,u) : ue(Z,LC])).

The symbols pG({hi,u}) and pG({—l,u}) have order at most 2, are thus

squares in C(Q[G]), and lie in Ker{a). Also, for any u € (22[0])*,
s 2
a({g.u)) = o({1, N x_(mn? € (#1).
r,s
Let B: 22[0] e iz[i][Cz xCz] be induced by B(g) = i, and write
B(u) = a + bhy + chy + dhyh, (a,b,c,d € iz[i]).

A direct calculation now gives
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I xrs(u) (a+b+c+d)(a+b-c-d)(a-b+c-d)(a~b-c+d)
'S

r

(a2 +1b%-c%-d?)%? - (2ab - 2cd)?

1 (mod 422[1]).

Formula (1) now applies to show that a({g,u}) = 1.
This finishes the proof that Im(¢G) = Ker(a). So by Theorem 3.15,

SK, (Z[G]) = Coker(#g) % Z/2.

Step 2 Let X C Q[G] be the maximal order. Then M 2 Z[G], and
M= (Z)®x (Z[i])*. Under this identification, the B-ideal

I = (16Z)° x (8Z[i])* = (16-325: 8-1—'25i)m cHn

is in fact contained in Z[G]: to see this, just note that M is
generated (over Z[G]) by the twelve idempotents

75 (14¢) (1) (1h, ) (1¢h;)  and 3+ (1-8%)(1#hy)(1hs).

Consider the following homomorphisms:

SK, (2[C],1) —2— sk, (Z[€])

f‘g

sK, (R, 1) = K, (2,16)° x sk (2[1],8)".

Here, f is an isomorphism by Alperin et al [2, Theorem 1.3]. By Step 1,
SKI(Z[G]) is generated by do f_l(x), for any x € SKl(m,I) which

generates one of the SKl(Z[i],S) factors and vanishes in the others. So
an explicit generator of SKl(Z[G]) can be found by first constructing a
matrix A € GL(Z[i],8) such that [A] generates SKl(Z[i],S), and then

regarding GL(Z[i],8) as a summand of GL(®,I) = GL(Z[G],I) € GL(Z[G]).
To find a generator of SKl(Z[i],S), consider the epimorphisms
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5 ad .
Ko(Z,[11) — Ky(2[11/8) ——> SK,(Z[11.8)

(recall that SKI(Z[i]) = 1 by Theorem 4.16(ii)). By (1) above,

Kg(iz[i]), and hence also Kz(Z[i]/S), are generated by the symbol
(1,1421) = [¢‘1(diag(i,1,i‘1)) . ¢ Hatag(1e21, (1420) 1)) ]

where ¢: St(Z[i]/8) —» E(Z[i]/8) 1is the canonical surjection. Hence
SKI(Z[i],S) is generated by the commutator

a({i,1+2i}) = [diag(i,1,i"}), diag(¥,1,M)] = [(é 9 ,M] € GL(Z[1].8);

when HGGLz(Z[i]) is any mod 8 approximation to diag(l+2i,(1+2i)_l).

(Recall that diag(M,1,M ') € E(Z[1]) by Theorem 1.13.)
To find M, we could take the usual decomposition
. -1 u_ -u* u_ -1.1_ -1
diag(u,u 7) = ejycey) ‘ejy7eip e n € Ex(R),
then replace u by 1+2i and u_1 by any mod 8 approximation to
(1+2i)_1, and multiply it out. However, the ring Z[i] is small enough

that it is easier to use trial and error. For example,

1+2i 8
M= ( 8 13(1—2i))

can be used; and shows that SKl(Z[i],S) is generated by the matrix

>
|

_ (1 0 (1+21

1o -i0 (13(1—2i) -8 )

8
8 13(1—21))( 01 -8 1421

65 - 64i -8(3+i)

) € SL,(Z[1].8). (2)
-104(3-1) 65 + 64i

Under the inclusion of @Q(i) as the simple summand Ago of Q[G], A

now lifts to the generator
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[1 + 8(1-g%)(1+h) (1+h2)(1-g) -(1-g%) (1+h,) (1+h2) (3+g)

] € SK (Z[G])-
-13(1-g®)(1+h,) (1+h2)(3-g) 1 + 8(1-g®) (1+hy)(1+hz)(1+g)

Step 3 We now reverse the process, and demonstrate how to detect

whether or not a given matrix vanishes in SKI(Z[G]). We have seen in

Step 1 that the two epimorphisms

c1,(2[6)) «2— c(@[c]) —E» (41}

have the same kernel. So the idea is to first 1lift the matrix to an
element X € C(Q[G]) |wusing Proposition 3.13, and then compute a(X)

using the formula for the tame symbol in Theorem 4.7(i).
Consider the matrix A = (: 2) € SLZ(Z[G]) constructed in Step 2

above. Write Q@Q[G] = AgoxB, where Ago £ Q(i) 1is as in Step 1. Set
n=130: the product of the primes at which xgo{c) = -104(3-i) 1is not
invertible. Write Z[Ill][G] = oo XB where oo C Ago and B C B. Then

a€8" (a=1 in B), c€ (o) = (ZLIiD*, and ace (ip[c])* for

pln. By Proposition 3.13, [A] = 8(X), where
X = {xoo{a),Xoo(c)} = {65-64i, -104(3-i)}

€ In| K5 (hoo)y) €D KG((hno)y) -Brol, ¢(aqe) € C(@[G])]-
p1n P

It remains to show that a(X) = -1. We are interested in 2-power

torsion only, and at odd primes p*lBO. Hence, we can use the formula

(u,v)p - ((_I)P(“)P(V),“P(V)/vp(“))(N(P)‘l)/4 € (i) ¢ (Z[i]/p)* 3)

(Theorem 4.7(i)) for each prime ideal plpin in Z[i]: where
N(p) = |Z[i]/p| and p(-) denotes the p-adic valuation. In particular,

(u,v)p:l if u and v are both units mod p. Since

N(65-64i) = 8321 = 53-157,

we are left with only these two primes to consider. Both split in Z[i];
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and a direct computation shows that 65 -64i is divisible only by the

prime ideals

(7-21): i

"
8

P -104(3-i) = -1 in Z[i]/ps Z Fes

(11-6i): i

8

P2 ~104(3-i) = 88 in Z[i]/pz & Fis+.

Formula (3), and the definition of a in Step 1, are now used to compute

a(X) = [(65—64i,-104(3—i))p1-(65—64i,—104(3-i))p2]2
- (2)(&) = ¢ = 1. o

The above method for computing Im(¢G) C C(Q[G]) is not very

practical for large groups; and much of the rest of the book (Chapters 9
and 13, in particular) is devoted to finding more effective ways of doing

this. Once Im(¢G) is known, however, the construction and detection
procedures in Steps 2 and 3 above can be directly applied to SKI(Z[G])

for an arbitrary finite abelian group G. Note in particular that any
M € GL(Z[G]) can be reduced using elementary operations to a 2x2 matrix
(: 2) with ad-bc=1 (see Bass [1, Proposition 11.2]). Also, when
constructing matrices, it is most convenient to take as ideal I C %R (in
Step 2) the conductor

I={x€MN: xmCIG]}

(i. e., the largest R-ideal contained in Z[G]). Then Alperin et al [2,
Theorem 1.3] applies to show that SKI(Z[G],I) £ SKl(m,I). Also, I and

® both factor as products, one for each simple component of @Q[G], and
the rest of the procedures are carried out exactly as above.

WVhen G is nonabelian, the procedure for constructing explicit
elements is similar. The main difference is that SKI(Z[G],I) need not

be isomorphic to SKI(N,I); so it might be necessary to replace I by

I? (see Lemma 2.4); or to use the description in Bass et al [1, Theorem

4.1 and Corollary 4.3] to determine whether SKI(N,I) is large enough.
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Theorem 4.11 can then be used to represent elements of K2(1R/I) by
symbols, which are lifted to SKI(R,I) exactly as above.
The procedure for detecting a given [A] € Cll(Z[G]) is much harder

in general in the nonabelian case. The main problem is that one must

know, not only that [A] lies in Cll(Z[G]), but also why it lies there.

One way of doing this (sometimes) is to first replace A by some A’ = A
(mod E(Z[G])) such that A’ =1 (mod I?); where I C Z[G] again
denotes the conductor from the maximal order M. This is probably the

hardest part of the procedure — the descriptions of SKl(ip[G]) in

Chapters 8 and 12 are unfortunately too indirect to be of much use for
this — but Z[G]/I® is after all a finite ring. Then A’ can be split
up and analyzed in the individual components, and in most cases reduced to

elements in SL2(R,I) for some ring of integers R.

For some nonabelian groups, there are alternate ways of detecting

elements in Cll(Z[G]). Examples of such techniques can be extracted from

the proofs of Propositions 16, 17, and 18 in Oliver [1].

5b. Cll(R[G]) and the complex representation ring

By Theorem 4.13, for any number field K and any finite group G,
C(K[G]) 1is isomorphic to a product of roots of unity in certain field
components of the center Z(Q[G]). However, it is not always clear from
this description how C(K[G]) acts with respect to, for example, group
homomorphisms and transfer maps. One way of doing this is to use the
complex representation ring RID(G) for "bookkeeping” in C(K[G]).

Throughout this section, all number fields will be assumed to be
subfields of €. In particular, for any number field K, RK(G) can be

identified as a subgroup of RID(G); and RK(G) = RID(G) whenever K 1is a

splitting field for G (i. e., whenever K[G] is a product of matrix
rings over K). For any number field K with no real embeddings, the

norm residue symbol defines an isomorphism ox’ C(K) = Pk c c* (Theorem
4.13). We fix a generator cx € C(K) by setting g = al.(l(exp(2wi/n))

if luKI =n and K has no real embeddings, and K =1 otherwise. By
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Theorem 4.6, for any pair L/K of number fields,
trfl(c, ) = c, € C(K)
K\°L} = %k :

If G is any finite group, then we regard C(K) as a subgroup of
C(K[G]) — the subgroup corresponding to the summand K of K[G] with
trivial action — and in this way regard cg as an element of C(K[G]).

For fixed K and G, consider C(K[G]) as an RK(G)—module in the

usual way. In particular, multiplication by [vl, for any finite

dimensional K[G]-module V, is the endomorphism induced by the functor

Ve, : K[G]-mod — K[G]-mod.

Alternatively, in terms of Proposition 1.18, multiplication by [V] is
induced by the (K[G],K[G])-bimodule V@KK[G], where the bimodule struc-

ture is induced by setting g+(v®h):k = gv®hk for g,h,k€G and V€YV,
Similarly, if R € K 1is the ring of integers, then tensor product
over R by R[G]-modules makes Cll(R[G]) into a GO(R[G])—module; where

GO(R[G]) is the Grothendieck group on all finitely generated (but not

necessarily projective) R[G]-modules. There are surjections

(K®p), a3

GO(R[G]) e KO(K[G]) = RK(G) and C(K[G]) — Cll(R[G]);
and 8 is GO(R[G])—linear by the description of 8 in Theorem 3.12. In
this way, Cll(R[G]) can, in fact, be regarded as an RK(G)-module.

Now, if K 1is a splitting field for G, we define a homomorphism
Fec * Rp(€) = Re(6) — C(K[C])

by setting ?KG(V) = veep for VGRK(G). If K and G are arbitrary,

and if L DK is a splitting field for G, we let §KG be the composite

Feo = triod s ¢ R(€) — c(LIC]) s c(krel).
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Finally, if R C K is the ring of integers, we write

e = aRGo}*KG : Rp(G) — C1,(R[C]).

A more explicit formula for ?RG will be given in Lemma 5.9(ii).

Proposition 5.2 Fix a number field K and a finite group G, and
let R C K be the ring of integers. Then §KG and ?RG are well

defined, independently of the choice of splitting field. Furthermore:

(1) §KG and ?RG are both surjective.

(ii) for any number field L 2 K with ring of integers S C L, the

following two triangles commute:

. C(LIE]) c1,(slel)
R(C) _ (1) |*F and Re(G) | (1a) |*F

¥
C(K[G]) c1,(R[G]).

(iti) For any H C G and any group homomorphism f: G' — G, the

following diagrams commute :

Rp(G") — c(k[e' D) Rp(G') —-» 1, (R[G"])
lf,6 (2) lC(f) lf* (22) lCll(f)

R(C) —E» C(KICD)  and  Rg(6) —&» C1,(REGD)
lRes (3) ltrf ‘Res (3a) ltrf

Rp(H) —&» C(K[H]) Rp(H) —> C1 (R[H]).

(iv) Fo ¢+ R(G) — C(K[G]) and  Jp. : Rp(6) — C1,(R[G])

are both RK(G)-linear.
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(v) If KCR, then Rp(G)C Ker(}KG).

Proof By Theorem 3.15, the boundary maps aRG are surjective, and

are natural with respect to all of the induced maps used above. So it
suffices to prove the claims for §

Note first that for any L 2 K, the transfer homomorphism

trige : C(L[G]) — C(K[G])

is RK(G)—linear (RK(G) c RL(G)). In other words,
trfllzg(wx) = v-trfkg(x) (v € Re(G), x € C(L[G])). (4)

This amounts to showing, for any K[G]-module V, the commutativity of
the following square

[Le, V]
c(L[6¢]) ———— C(L[G])
LG LG
lterG lterG
vl

C(K[C]) —— C(K[C])-

This in turn follows from Proposition 1.18, since each side is induced by
the (K[G],L[G])-bimodule V@K L[G] (where K[G] acts by left

multiplication on both factors, and L[G] by right multiplication on the
second factor).

If L 2K are both splitting fields for G, then RC(G) = RK(G) =

RL(G). So using (4), for any v € RC(G)’
trfllzg(gLG(v)) = trfllzg(wcL) = v-trfllzg(cL) =vee, = ;KG(V).

In other words, triangle (1) commutes in this case. But by definition,
iKG = trfﬁgogkc for any splitting field K 2 K, and so (1) commutes for
arbitrary L 2 K. This proves (ii), and also shows that §KG is well
defined, independently of the choice of splitting field.
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To prove the surjectivity of §KG’ again let L 2 K be a splitting

field for G. Then for each simple sunmand A of L[G] with irreducible
module V, tensoring by V 1is a Morita equivalence from L-pod to

A-mod; and hence an isomorphism from C(L) to C(A). In other words,

the RL(G)-module structure on C(L[G]) restricts to an isomorphism
RG(G) 8C(L) = R (€)8C(L) C R (G) 8 C(L[G]) —— C(L[G]);

and so ";DG is onto. Also, trbe

KG is onto by Lemma 4.17, and so ?KG =

LG ~
terG ° ym

We next check point (iii). Using the commutativity of (1), it

is onto.

suffices to show that squares (2) and (3) commute when K 1is a splitting
field for G’, G, and H. This amounts to showing that the following

diagram commutes:

G
(f) Res
R (C") x R,(G) s R ()

1'°K (52) [CK (5b) ch ®)
cxre' 1) —E— ckrey) —EE— cu).

For any K[G’]-representation V, Proposition 1.18 again applies to show
that

Re(F)(IV]) oy = [KICT8ypc. 1 V1o = [KIGT8reqV 8 uley)
= [KLC] 8ypq 1w o [V 8leleg) = CUEIVI ep)-

So (5a) commutes, and the proof for (5b) is similar.
To prove (iv), let L 2K be a splitting field for G. Fix
wER(G) and v € R (G) = R(G). Then by definition of ¥ (and (4)),

§KG(W'V) = termc(w-v-cL) = w-terwG(v-cL) = w-?m(v);

and so iKG is RK(G)—linear.
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Finally, assume K CR is such that RK(G) = RIR(G)’ and let L 2K
be a splitting field for K. Then C(K) =1 (Theorem 4.13), so cx = 1;
and using (4):

Feo(R(©)) = triLo(R (G)-c) = RK(c)-terLg(cL) = R.(C)-ey = 1.

Thus, RIR(G) c Ker(iKG) in this case; and the commutativity of (1) allows

us to extend this to arbitrary K C R. u]

These strong naturality properties of the EZG: RC(G) —» C(Q[G])

make 5 into an excellent bookkeeping device for comparing, for example,
C(Q[G]) or Cll(Z[G]) with C(Q[H]) or Cll(Z[H]) for subgroups

H C G. The next few results present some applications of this, and more
will be seen in later chapters.
For any prime p, a p-elementary group is a finite group of the form

Cnxw, where w7 1is a p-group. According to Brauer’s induction theorem

(see Serre [2, §10, Theorems 18 and 19], or Theorem 11.2 below), for any
finite group G, RC(G) is generated by elements which are induced up

from elementary subgroups of G — 1i. e., subgroups which are

p-elementary for some prime p — and for each prime p, RC(G)(p) is

generated by induction from p-elementary subgroups. So Proposition 5.2

has as an immediate corollary:

Theorem 5.3 Let R be the ring of integers in any number field K.
Then for any finite group G, C(K[G]) and Cll(R[G]) are generated by

induction from elementary subgroups of G. For each prime p, Cp(K[G])
and Cll(R[G])(p) are generated by induction from p-elementary subgroups

of G. u]

The naturality properties of ‘?RG in Proposition 5.2 can also be
used to show that SKI(Z[G]) vanishes in many concrete cases. We start

with a very simple result, one which also could be shown directly using
Theorem 4.13(1).
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Theorem 5.4 Let G be a finite group such that R[G] 1is a product
of matrix rings over R. Then Cll(Z[G]) = 1.

Proof By hypothesis, R‘D(G) = RIR(G)° By Proposition 5.2(v),

Rp(©) € Ker[Ry(6) — c(ae) |;
and so C(Q[G]) = C1,(Z[c¢]) = 1. O

Note in particular that Theorem 5.4 applies to elementary abelian

2~-groups, to all dihedral groups, and to any symmetric group Sn (Q[Sn]

is a product of matrix algebras over Q: see James & Kerber [1, Theorem
2.1.12]). This result will be sharpened in Theorem 14.1, with the help of
later results about SKl(ip[G]) and Wh'(G).

Ve next consider cyclic groups, and show that SKI(R[Cn]) =1 wvhen

R is the ring of integers in any number field. Clearly, to do this, some

information about K;(ﬁp[cn]) is needed, and this is provided by the

following technical lemma.

Lemma 5.5 Fix a prime p oand a finite extension F of ﬁp’ and

let RCF be the ring of integers. Then for any cyclic p-group G, the

transfer homomorphism

RG

trfR

: K5(R[G]) — K5(R)

is surjective.

Proof Let E D F be any finite extension, and let S C E be the

< S SG RG SG S

ring of integers. Then trfRo trfs = trfR o trfRG, and trfR is onto
by Theorem 4.6. This shows that trfgc is onto if trf:G is. In
particular, if pk= IGI, it will suffice to prove the lemma under the

k-1
assumption that cp"” s Pl/p € F.

Step 1 Let p CR be the maximal ideal, and let v: F. — Z be
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the valuation. Fix a primitive p-th root of unity {. Let e = v(p) be

the ramification index; i. e., pR = pe. By assumption,
e 2 e(@(C xe1)) = P (p-1). (1)
- P
Choose any x such that
k-1
v(x) = ¢/(p" (p1)) - 1> 0, 2)
k
and set u=1-x* €R" (x € p). From (1) and (2) we get inequalities
k k k-1
voP ) 2 v ) 2 v ) 2 pe/(p-1) = v(p(1-0))s
k k k-1
and so x2p s pxp s px2p € p(1-C)R. It follows that
k-1

1+p-xp

(1P PP 1-¢_ )" (med p(1-)R)

where X1 = (—p)l/pk-i-x and v(xk_l) = e/pk_-l +v(x) = e pk_z(p—l)— 1.

Upon repeating this procedure, we get sequences

2
x=xk,xk_l,...,xo€R and u=uk,uk_l,...,uo€R;

where for each 0 ¢ i ¢ k-1,

]
i

o) Pk, V) = o/(0M 1)) - 1 and (3)

i (“(xiu)pl)p'“in = 1"(xi)pl (mod  p(1-()R).

o
l

In particular, up = 1-Xo ({mod p(1-C)R), and piv(xo) <v(p{(1-C)). If
ug 1is a p-th power, then there exists y € p such that

o= 1-x0 = (1+y)° = 1+py+...+y’ (mod p(1-)R = P/ (P71,
Then v(y) < e/(p-1), so v(py) > p'v(y) = v(yp). It follows that v(xo)

= v(yp). But p{v(xe) by (3), and this is a contradiction.

In other words, wug is not a p-th power in F. The same argument
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shows that wue 1is not a p-th power in any unramified extension of F,
since the valuations remain unchanged. So F(utl,/p) = F(ul/p) is ramified

over F,

Step 2 Now set E = F(ul/p), and let S C E be the ring of

integers. Since E/F is ramified,
2 . *.
R/NE/F(S)=F/NE/F(E)=Z/p

by Proposition 1.8(ii). For any v € R*\NE/F(S*), if (,)p denotes the
norm residue symbol with values in ((p), then (v,u)p#l by definition.
Hence, by Moore’'s theorem (Theorem 4.4), {v,u} generates K;(R).
Furthermore, if g € G is any generator, then

k

x P 5
=8y = {v. T (g0} (€ = C»)

1=

{v,u}

{v,trfgc(l-gx)} = trfgc({v,l—gx}); (Theorem 3.1(v))

RG

end so trfp : KS(R[G]) — K3(R) is onto. @

For any cyclic p—group G, and any R & K such that K splits G,
Proposition 5.2(iv) can be used to make Cll(R[G]) = SKI(R[G]) into a

quotient ring of the local ring R(D(G)(p)' So to show that SKI(R[G])=1,
it suffices to find any element x € Ker[?RG: R(D(G)(p) —» SKI(R[G])]
which is not contained in the unique maximal ideal of RC(G)(p)' This is

the idea behind the proof of the following theorem.

Theorem 5.6 Let R be the ring of integers in any number field K.
Then, for any finite cyclic group Cn' SKI(R[Cn]) = 1.

Proof Set G = Cn' for short. If S is the ring of integers in
any finite extension L 2 K, then the transfer map from SKI(S[G]) to

SKI(R[G]) is surjective by Proposition 5.2(i,ii). It therefore suffices
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to prove that SKI(R[G]) =1 when R contains the n-th roots of unity.

Assume first that G is a p-group for some prime p. Set pe =

|(p.K)p| Consider the following commutative diagram:

~

A 3
KR [6]) —£= ¢ (KIGY) <= Rp(@)/p” = 23°[6]
ttrf, ]trfz lRes (G* = Hom(G,C*))
: 3
KS(R) —2— ¢ (1) —z— R(1)/p® 2 2",

Here, trf; 1is onto by Lemma 5.5, Coker(yo) = Cll(R) =1 by Theorem
4.16(ii), }KG and }K induce isomorphisms on Z/pe[G*] and Z/pe by

Theorem 4.13 (K 1is a splitting field by assumption); and the right-hand
square commutes by Proposition 5.2(iii). If we identify CP(K[G]) with

the ring Z/pe[G*], then Ker(trfz) is contained in the unique maximal
ideal by Example 1.12. Also, since '?RG: RC(G) —» SKl(R[G]) is

Rc(G)-linear by Proposition 5.2(iv) (RC(G) = RK(G)),

Ker] : C,(K[G1) —> SK, (R[C]) (p)] = In[y: KR [6]) — cp(K[c])]

is an ideal in CP(K[G]) = Z/pe[G*]. But CP(K[G]) = Im(«p)+Ker(trf2),
since ¢gotrfy; is surjective, and so SKI(R[G])(p) % Coker(y¢) = 1.

Now assume that n = |G| 1is arbitrary. Fix a prime pln; we will
show that SKI(R[G]) is p-torsion free. Write n = pk-m where pim.

Then K[Cm] ' ((n € K by assumption); and by Theorem 1.4(v) there is

an inclusion R[Cm] C R" of index prime to p. So by Corollary 3.10,

m
SK, (RIC]) () = SK;(R[C, xCx]) = ©SK,(RICx]) = 1. O

If G 1is a finite group, and if SP(G) (the p-Sylow subgroup) is

cyclic, then any p-elementary subgroup of G 1is cyclic. So Theorem 5.3
can be combined with Theorem 5.6 to give:
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Corollary 5.7 Let R be the ring of integers in any number field.
Then for any finite group G, and any prime p such that Sp(G) is

cyclic, Cll(R[G])(p) =1. 0

By Theorem 5.6, together with the naturality properties of
’RG: RC(G) —»Cll(R[G]) in Proposition 5.2, ’RG factors through the

complex Artin cokernel

Ag(G) = Coker| 8 Reth) =24 @ ] = Re@)/( T 1ni(Re))-

cyclic cyc_lic

In fact, for any fixed G, }écz AC(G) — Cll(R[G]) is an isomorphism
for R large enough (see Oliver [7, Theorem 5.4]); so that AC(G)
represents the "upper bound” on the size of Cll(R[G]) as R wvaries.

The next example deals with some other familiar classes of finite
groups, and illustrates the use of the Artin cokernel to get upper bounds
on the order of Cll(R[G]).

Example 5.8 Let G be any finite dihedral, quaternionic, or semi-
dihedral group (not necessarily of 2-power order), and let R be the ring
of integers in any number field K. Then ICII(R[G])I < 2, and

Cl,(R[C]) = 1 if elther R has a real embedding, or if G*® is cyclic.

Proof As remarked above, by Proposition 5.2 and Theorem 5.6, there

is a surjection

fre ¢ Ac(G) = RC(G)/( ch Indg(Rc(H))) — C1,(R[C]).

cyc_l ic

By assumption, G contains a normal subgroup H<G of index 2.
All nonabelian irreducible C[G]-representations — i. e., those which do
not factor through & b __ are 2-dimensional, and are induced up from

representations of H. In particular, this shows that
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A(©)

IR
&
L}
Q
A4
IR

{ 1 if Gab is cyclic

2 if & =z, xC,.

Thus, ICll(R[G])I <2, and Cll(R[G]) =1 if Gab is cyclic.

If K has a real embedding and Gab 2 CaxCz, then the composite
b b .
RIR(G) c RC(G) —» AID(G) is onto (RlR(Ga ) = RC(Ga )). But by Proposition

5.2(v), RIR(G) c Ker(}’RG), and so Cll(R[G]) =1 1in this case. 0O

In fact, in Lemma 14.3, we will see that Cll(R[G]) 2 Z/2 in the

above situation, whenever & b 2 Ca;xCz and K has no real embedding.
The results in this section have been obtained mostly without using

the precise computation of C(A) in Theorem 4.13. But it is sometimes

useful to have C(Q[G]) ©presented as an explicit quotient group of

RC(G)' Recall that for any group G and any Z[G]-module M, MG

denotes the group of G-coinvariants; i. e.,
My = M/(gm-m : g €G, m €M) = H(GH).

By Brauer’s theorem (Theorem 1.5(ii) above), for any finite G, if
n = exp(G), then Q(n is a splitting field for G. In particular,

(Wn)* = Gal(d)(n/@) acts on RC(G) = R‘IK (G) 1in this case.
Lemma 5.9 Fix a finite group G.

(i) VWrite RC/[R(G) = RC(G)/RIR(G) for short; and fix any even n
such that exp(G)|n. Then (I/n)* = Gal(Q(n/Q) acts on RC(G) = R‘IK (G)
n
by Galois conjugation and on Z/n by multiplication, and §QG factors
through an isomorphism

95+ [Rem© o I/n](yn)* —= . careD).

(it} For any irreducible C[G]-representation V, there is a unique
simple summand A of Q[G] oand a unique embedding a: Z(A) — C, such
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that V 1is a COaZ(A)

C(A)#1, so that % C(A) = "Z(A) is an isomorphism, and if

n = h‘Z(A)l' then

A-module. Then }m([V]) € C(A) € C(a[G]). If

Foe (VD) = oy oo™ (exp(2mi/m)) € C(A).

Proof Set K = dKn (€ C) for short.

(i) By construction, factors through the composite

fec
#' : R(G)®Z/n = R (G) @ C(K) ——> C(K[G]) —rf, c(ere)).

Any element of Gal(K/Q) = (Z/n)* acts on Rc(G)OZ/n via the diagonal

action, and acts trivially on C(Q[G]). Also, RR(G)OZ/n C Ker(g') by

Proposition 5.2(v); and so ¢’ factors through an epimorphism

95t [Re/m(©) © Z/n](zxn)* ——» C(Q[C]).

To see that J’Z is an isomorphism, it remains only to compare

o(C®A)

o (RO A) ® Z/n] and C(A)

(mn)*

(as abstract groups), separately for each simple summand A of Q[G]. If
2| IC(A)I, then

R

[KO(COQA) ® Z/n| = H(Gal(K/Q); C(K8GA)) = C(A)

(z/n)

by Lemma 4.17. If 2}IC(A)l, then there is an embedding Z(A) <~ R
such that IRQZ(A)A is a matrix algebra over R (Theorems 4.13(ii) and

1.10(i1)); and so Ho((vn)*;u—'-(%}ovn) and C(A) both vanish.

(ii) Write Q[G] = "lf-lAi’ where each Ai is simple with center
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Ki' For each i, let
(1“,...,(1““i : Ki — K = an ccC
be the distinct embeddings, and set Bij =K Oa- 'K'Ai for each j. Then
1) 1

i m(fs,)
K[G] = K® A, = B B
rel 1=1 Q1 gl U

where each Bij is simple by Theorem 1.1(ii). In particular, for each
irreducible K[G]-representation V, V is the irreducible Bij-module
for some unique i and j; and ?m([V]) € C(Ai).

If C(Ai) #1, then consider the following diagram:

v
ey € C(K) _E_:.l:_f.]i, c(B trf

-1
Here, T7({) = aij(fr) for any { € u., where r = [V'KV'K.] = n/lp.Ki |.
Since Bij is a matrix algebra over K, by assumption, [VOK]* is a

Morita equivalence. The triangle commutes by definition of ¢ (and
Proposition 4.8(iv)), and the square by Theorem 4.6 and Proposition
4.8(ii). So by definition of ¥,

Foc(VY) = erfolVe], (c) = 0, (Tooy(cy)) = o loay j(exp(2nt/lm ). o

Both parts of Lemma 5.9 can easily be generalized to apply to
C(K[G]), for any finite G and any number field K.
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5c. The "standard involution” on Wh(G)

As was seen in the introduction, the algorithms for describing the
odd torsion in SKI(Z[G]), for a finite group G, are much more complete

than those (discovered so far) for describing the 2-power torsion. The

reason in almost every case is that the standard involution on SKI(Z[G]),
Cll(Z[G]), C(Q[G]), etc., can be used to split the terms in the

localization sequence of Theorem 3.15 — in odd torsion — into their #1
eigenspaces. It is of particular importance that C(Q[G]) and
Cll(Z[G]), as well as Wh’(G), all are fixed by the involution.

Throughout this chapter, an involution on a ring R will mean an
antiautomorphism r — ¥ of order 2 (i. e., T =r and (rs)” = §°T).
If R 1is any ring with involution r — T, there are induced involutions
on GL(R) and St(R) defined by setting

M= (T

) i M= (r;) €CL(R)

(i. e., conjugate transpose), and

r T
xij -xjiGSt(R) if i,j21, 1i#j, re€R.

Then ¢: St(R) — GL(R) commutes with the involutions, and so this
defines induced involutions on KI(R) = Coker(¢) and K2(R) = Ker(¢).

We first note the following general properties of involutions:

Lemma 5.10 (i) If R is a ring with tnvolution r W T, and if

%
a,b € R are commuting units, then

@b} = {b.a) = {a,b)"}

€ K,(R).

(ii) If A 1is a central simple F-algebra with involution, then the

»* »*
reduced norm map nr, o A —F commutes with the involutions on A

and on F = Z(A).
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Proof (i) Fix x,y € St(R) such that

#(x) = disg(a,a ',1) and  #(y) = diag(b,1,b7}).
Then {a,b} = [x,y] € K2(R) (see Section 3a). Clearly,

1

$(%) = diag(a,a ',1) and $(F) = diag(h,1,67));

and so (using Theorem 3.1(ii,iv))

@bl =yl = O M@ yx =l 37La ) - 5.a).

(ii) Let Ty A —> A denote the involution, set T = 'rAlF, and

let F' C F be the fixed field of 7. Let EDF be a splitting field
for A such that E/FT is Galois. Fix an isomorphism

f: E@FA = Mn(E), let o € Gal(E/FT) be any extension of T, and set

1

a=fo(o® TA)of“ : M (E) —= M (E).

Then a and (M +— U(M)t) are two antiautomorphisms of Mn(E) with the

same action on the center. By the Skolem-Noether theorem (Theorem
1.1(iv)), they differ by an inner automorphism.

Fix a € AY, and set M = f(18a) € M (E). By definition of nr, .,

nr, p(7,(a)) = det (£(187,(a))) = det (a(M)) = detE(a(H)t)
= a(detE(M)) = a(nrA/F(a)) = -r(nrA/F(a));
and so nr, commutes with the involutions. o

WVhen G 1is a group and R is any commutative ring, the "standard

involution” on R[G] 1is the involution Zaigi — Zaig‘i_l. ¥hen G is

finite and R is the ring of integers in any algebraic number field K,
then this induces involutions on SKI(R[G]), Cll(R[G]), and C(K[G]):
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as well as on Sl(l(ﬁp[G]) and l(;(ﬁp[G]) for all primes p. In other

words, all terms in the localization sequences of Theorem 3.15 carry the

involution.

Proposition 5.11 The following hold for any finite group G.

(i) If R 1is the ring of integers in some algebraic number field
K, then all homomorphisms in the localization sequences for SKI(R[G])

of Theorem 3.15 commute with the involutions.

k

(ii) Write Q[G] =II; ,A,, vhere each Ai is simple with center Fi'

i=1"1’
Then the involution on @Q[G] leaves each A, invariont, and acts via

complex conjugation on each Fi'

Proof (i) This is clear, except for the boundary homomorphism

3 : C(K[G]) & Coker[Kz(K[G]) — exz(f(p[c])] — C1,(R[G).
P

For any [M] € Cll(R[G]), the formula in Theorem 3.12 says that
sl =xlye ® KR [C]), where x € St(K[G]) and y = (v)) €
ﬂpSt(ﬁp[G]) are liftings of M € GL(R[G]), such that x =y in

P
St(ﬁp[G]) for almost all p. Then

gl =551 =51y = a7l(HD)

(i-i_l =§_1-? since Kz(ﬁp[G]) is central). So 3 commutes with the

involution.

(ii) It suffices to study the action of the involution on the center
Z(®[G]) (see Theorem 1.1). In other words, it suffices to show that the
composi te

z@[c]) o F, ——> ¢
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(for each i and v) commutes with the involutions on € and Q[G].

Fix such 1 and v. Then C@v A is simple with center €

F; i
(Theorem 1.1(ii)), hence is a matrix algebra over C, and so its
irreducible representation V 1is an irreducible C[G]-representation. If
d = dimc(V), and Xy G — € 1is the character, then for any x = )a

€ Z(e[6]),

181

1 1
vopri(x) = a-Trm - A(1®x) = E-Zai-xv(gi) € C.
vi;

But for any g € G, xv(g_l) = )(v(g); and so vopri()'c) = vopri(x). o

The above results will now be applied to describe the involution on
C(Q[G]) and Cll(Z[G]). This will be important when describing the odd

torsion in Cll(Z[G]) in Chapters 9 and 13.

Theorem 5.12 (Bak [1]) For any finite group G, the standard
involution acts on C(Q[G]) and Cll(Z[G]) via the identity. More

generally, if K 1is an algebraic number field such that p is unramified
in K for all primes p|IGI, and if R C K 1is the ring of integers,
then the standard involution acts via the identity on Cll(R[G]), and on

CP(K[G]) for plIGl.

Proof For convenience, let % be the set of all primes if K = Q,
and the set of primes p|lGl otherwise. By Theorem 4.16(iii), Cll(R[G])

has p-torsion only for p € ®$. So by Theorem 3.15 and Proposition
5.11(1), it suffices to show that the involution on CP(K[G]) is trivial

for all p € %.
Let A be a simple summand of Q[G], and set F = Z(A). Then by
Brauer’'s splitting theorem (Theorem 1.5(ii)), F C Q((n), where n =

exp(G) and (n = exp(2wri/n). So the assumption on K implies that
FNK = Q@ under any embeddings into €. Hence, F’' = KQQF is a field
and A’ = K® A is simple (Theorem 1.1). Furthermore, for any p € &,

Q
F’ has the same p—-th power roots of unity as F.
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Fix p € #, and let (u-F)p be the groups of p-th power roots of

unity in F (and F’). Assume that C(A') # 1 (otherwise there is
nothing to prove). Let

o : C(A) = Coker[Kz(A') -— ?K;(ﬁé)](p) — (ep),,

be the isomorphism (p-locally) of Theorem 4.13. Set u = (uF)p = (u.F,)p.
Then for each (finite) prime g in F’, and for any a € (f’c")* and any

1 %* '
we () (& = ﬂAq),
a({a,u}) = (a,nrA,/F,(u))u’f.,.
q

By Proposition 5.11(ii), the involution leaves F (and hence F')
invariant, and acts on u = (u.F)p via (§ v E_l). So by Lemma 5.10,

o(fau]) = o({&,0) 1) = (@nry, 0, (@), = (@57, 0 (W),
= (a, nrA,/F,(u))u (by naturality: § = E_l for € € u)

= o({a,u}).

Thus, {a,u} = {a,u} in Cp(A). Since Cp(A) is generated by such sym-

bols, the involution on Cp(A) is trivial. 0o

Note that Theorem 5.12 does not hold for arbitrary R[G]. Without
the above restrictions, it is easy to construct examples where the
standard involution on K[G] does not even leave all simple components

invariant. It is not hard to show that §KG= RC(G) —» C(K[G]) 1is always

negative equivariant with respect to the involution (note that the
involution on C(K) is (-1), by Lemma 5.10(i)).

In Chapter 7 (Corollary 7.5), we will see that the involution also
acts via the identity on Wh'(G) (= Wh(G)/SKl(Z[G])) for any finite G.



Chapter 6 THE INTEGRAL P-ADIC LOGARITHM

In Chapter 2, p-adic logarithms were used to get information about
the structure of Kl(ZI) for a ip—order A, When A is a group ring,

there is also an "integral p-adic logarithm"”: defined by composing the
usual p-adic logarithm with a linear endomorphism to make it integral
valued. This yields a simple additive description of K‘l(ip[G]) for any

p-group G (Theorems 6.6 and 6.7); and in later chapters will play a key
role in studying Wh’(G) and SKI(Z[G]), as well as Ki(ip[G]) itself.

Integral logarithms have also been important when studying class
groups D(Z[G]) C RO(Z[G]) for finite G. One example of this is Martin

Taylor's proof in [2] of the Frohlich conjecture, which identifies the

class [R] € RO(Z[G]), when R is the ring of integers in a number field

L, L/K is a tamely ramified Galois extension, and G = Gal(L/K).
Another application is the logarithmic description of D(Z[G]), when G
is a p-group and p a regular prime, in Oliver & Taylor [1].

Throughout this chapter, p will denote a fixed prime. We will be
working with group rings of the form R[G], where G 1is a finite group

and R 1is the ring of integers in a finite extension F of 6]) Recall

from Example 1.12 that if G is a p-group, and if p C R is the maximal

ideal, then

J(R[G]) = {(p,r(1-g): g€G, re€R) = {Zrigi € R[G] : Zri € p}.

6a. The integral logarithm for p-adic group rings
In Theorem 2.8, a logarithm homomorphism

log;: K (¥,1) — @&, (1/[%4,1])

was constructed, for any ideal I 1in a ip—order A. When applying this
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to a p-adic group ring R[G], where R is the ring of integers in any
extension F of ﬁp’ it is convenient to identify

F[G)/[F[G],F[G]] & HO(G;F[G]) and I/[R[G],I] & HO(G;I)

(for any ideal I C R[G]), where the homology in both cases is taken with
respect to the conjugation action of G on F[G]. In particular,
HO(G;F[G]) and HO(G;R[G]) can be regarded as the free F- and

R-modules with basis the set of conjugacy classes of elements of G.
Mostly, we will be working with R C F for which F {is unramified
over ﬁp; so that R/pR 1is a field and Gal(F/ﬁp) = Gal((R/pR)/le).

Hence, in this case, there is a unique generator ¢ € Gal(F/ﬁp) — the

Frobenius automorphism — such that gp(r)Erp (mod pR) for any r € R.
Definition 6.1 (Compare M. Taylor [1, Section 1] and Oliver [2,

Section 2]). Let R be the ring of integers in any finite unramified

extension F of ﬁp. Define &: HO(G;F[G])—>HO(G;F[G]), for any

finite group G, by setting
k k
¢(i)=jlaigi) = i§1¢(ai)g‘i’. (a; €F, g, €G)

Define

[ = Tpg ¢ K (R[G]) —— H,(G:F[G)

RG

by setting T (u) = log(u) - %@(log(u)) for u € KI(R[G]).

To help motivate this construction, consider the case where G is

abelian. Then ¢ 1is a ring endomorphism, and so
1 1
M([u]) = log(u) - 2-log(¥(u)) = 3~ log(uP/(u))

for u € 1+J(R[G]) (J = Jacobson radical). But WP = ®(u) (mod pR[G]),
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log(u®/®(u)) € log(1+pR[G]) C PR[G],

and so T([u]) € R[G].

The proof that ch also is integral valued in the nonabelian case

is more complicated.

Theorem 6.2 Let R be the ring of integers in some finite
unramified extension F of 6}) Then for any finite group G,

Tpc(K; (RIG1)) € Hy(G3RET).

The map T 1is natural with respect to maps induced by group homomorphisms
and Galois automorphisms of F. For any G and any extension K/F (both
finite and unramified over 6})), if SCK and RCF denote the rings of

integers, then the following squares commute:

I r
K, (R[G]) —— Hy(G:R[C]) K, (S[G1) —— Hy(G:SIE])
incl incl trf Tr
r I
K, (S[G]) —— Hy(G;S[G]) K, (R[G]) —— H(G;R[G])

Proof Let J = J(R[G]) denote the Jacobson radical. For any x€],

r(l—x) = - [x + x2_2 + x?:’ + ] + I:(Mpxl + ®(2f) + @(3,;3) + ]
=-1 B - 0] (mod H,(G:RLC])).

So it suffices to show that pkl[xpk - @(xk)] for all k; or (since all
primes other than p are invertible in R) that

P - o )]

(in HO(G;R[G])) for all n > 1 and all x € R[G].

Write x = Zr set q = pn, and consider a typical term in x4

%4’
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rii.”riq.gii'”giq'

Let Z/pn act by cyclically permuting the gi's, so that we get a total

n-t

of p conjugate terms, where pt is the number of cyclic permutations

leaving each term invariant. Then g " 8y is a pt-th power, and the
1 q

sum of the conjugate terms has the form
B ¢ ¢ pn n

PP 2P e H(GRIG)  (F= M or, . &=

= i =

If t = 0, then this is a multiple of pn. If t > O, then there is a
n—t Apt- A ¢ -t n-1
corresponding term p T gp in the expansion of & . It

remains only to show that
n—-t . ¢ A ¢ ~ _n—t A t-1 A ¢t n-t A t-1 A ¢ n
p7 fP gP =p"he(RP 2P ) = p"e(RP )8P (med 7).
t Pod t Pod t—i Py A A
But p'[[#P -¢(f )1, since p|[FP-o(F)].

Naturality with respect to group homomorphisms is immediate from the
definitions, and naturality with respect to Galois automorphisms holds
since they all commute with the Frobenius automorphism ¢ (note that

Gal(F/ﬁp) is cyclic since F is unramified). If S 2 R, then T
commutes with the inclusion maps since 'PSIR = #p-

To see naturality with respect to the trace and transfer maps, first
note that ¢ commutes with the trace (since it commutes with Galois
automorphisms). It suffices therefore to show that logotrf = Trolog.
For s € S, Tr(s) = TrS/R(s) is the trace of the matrix for

multiplication by s as an R-linear map (see Reiner [1, Section la]).

Hence, for any x € S[G] and any n > O,

log(trf(1l+ pnx)) = log(1+ pn-Tr(x))

= p™Tr(x) = Tr(log(l +p"x)) (mod p2n—1).

k
For any u € 1+J(R[G]), w o€ 1+pR[G] for some k (u has p-power order

k+n
in (R/p[G])*). Then uP €1+pn+1R[G] for all n>0, and so if n2k:
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n-k k+n

log(trf(u)) = p -log(t:rf(up )

k+n

p XM Tr(log(wP ) = Tr(log(w))  (mod p2*!pPtkopnkHl),

Since this holds for any n 2 k, the congruence is an equality. o

In fact, FRG is also natural with respect to transfer homomor-

phisms for inclusions of groups, although in this case the corresponding
restriction map on HO(G;R[G]) is much less obvious. This will be shown,

for p—groups at least, in Theorem 6.8 below.

The next lemma collects some miscellaneous relations which will be
needed.

Lemma 6.3 (i) For any group G and any any element g € G,
(1-)° = (1-¢") - p(1-g)  (mod p(1-2)°Z[CI).

(it) Let K be any finite field of p-power order. Then the

sequence

o —F, el g I g T —o (1)

is exact, where Tr denotes the trace map.

Proof (i) Just note that

g =[1- (I =1-p1g + (-1’

1 - p(1-g) - (1-g)P (mod p(1-8)Z[C]).

(ii) The trace map is onto by Proposition 1.8(iii), Tro (l-¢) =0
by definition of the trace, and Ker(l-¢) = IFp since ¢ generates

Gal(K/IFp). A counting argument then shows that (1) is exact. O

Attention will now be restricted to p-groups. Both here, when
identifying the image of I‘G (or of its restrictions to certain
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subgroups), and later when studying SKl(R[G]), one of the main
techniques is to work inductively by comparing Kl(R[G]) with Kl(R[G/z])

for z € Z(G) central of order p. In particular, the case where z is
a commutator — i. e., z=[g,h] for some g,h € G (as opposed to a
product of such elements) plays a key role when doing this. The reason

for this is (in part) seen in the next proposition.

Proposition 6.4 Let R be the ring of integers in any finite
extension F of ﬁp, let p CR be the maximal ideal, and let T

denote the composite

N Tr
T:R R/p F,

Then for any p-group G and any central element z € G of order p,

there is an exact sequence

1 = (2) — K (R[G], (1-2)R[C]) %> Ho(Gi (1-2)R[C]) 5> F, = 05 (1)

where m((l-z)Zrigi) =T(Zri) for any r, €R and gi€G. If F/ﬁ\),p is

unramified, and if we set

H,(G; (1-2)R[G]) = In[H,(G:(1-z)R[G]) — Ho(G:RICD) |

Ker[H,(G:R[G]) — Hy(6/2:R[G/2]) |

then Tp (1+(1-2)E) = log(1+(1-2)E) in ﬁo(c;u-z)k[c]) for all F€R[G]
and

1 if z is a commutator

[ﬁo(c;u-z)n[c]) : I‘G(1+(1—z)R[G])] ={

p otherwise.

Proof Set I = (1-z)R[G], for short, and let J = J(R[G]) denote
the Jacobson radical. Note that (l-z)p € p(1-z)R[G] by Lemma 6.3(i).
So Theorem 2.8 applies to show that the p-adic logarithm induces a homo-

morphism logI and an isomorphism logIJ, which sit in the following
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commutative diagram with exact rows:

K, (RIC]. (1-2)J) — K, (RIC], (1-2)RIC]) — K,(FAle)y, LAl — 4

%llogIJ llogI logo (2)

0 = Hy(G;(1-2)J) — Hy(G:(1-z)R[G]) —— Ho(G , (Hfz)];J[GJ) —o0.

Also, by Theorem 1.15 and Example 1.12, there are isomorphisms

i (RIEL., (-zIRIC]

(1-2)]* (1-2)J R[C])/J = Rfp = Ho((; Ltﬂﬂsl);

' (1-z)J

124 13

where a(1+(1-z)E) = £ for £ € R[G)/J.
Now consider the following diagram

I
K, (R[C], (1-2)R[C]) —%E— H(G; (1-z)RIC])

la’ (3) la" \
T

0 —F, — R/p Lo¢ — Rfp —+ > F, — 0

where a'(l+(l-z)Zrigi) = ZFi and a"((l—-z)Zrigi) = Zfi' Here, T € R/p

denotes the reduction of r€R. The bottom row is exact by Lemma 6.3(ii);

and square (3) commutes since for r€R and g€gG,
a"(Log(1l + (1-z)rg)) = a"((1-z)(rg - rpgp)) =r-9¢(r) € R/p.

Then (3) is a pullback square by diagram (2), and so logI and 1-¢ have
isomorphic kernel and cokernel. The exactness of (1) now follows since

w=Troa", and since a' maps {z) isomorphically to IFp = Ker(1-¢).

If F/A is unramified (so T, 1is defined), then for any § € R[G],
G

log(1+(1-z)E) = (1-z)n for some 7, and &((1-z)n) = (1-zF)®(n) = 0. So
I‘G(l+(l—z)§) = log(1+(1-z)§) 1in this case. By the exactness of (1),

1 if (1-z)g =0 € HO(G;R[G])
[ﬁo(G;(l—z)R[G]) : rG(1+(1—z)R[c])] = some g € G

p otherwise.
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In other words, the index is 1 if and only if g 1is conjugate to zg
for some g, if and only if z = [h,g] for some h,g € G. D

The next lemma, on the existence of central commutators, will be

needed to apply Proposition 6.4.

Lemma 6.5 Let G be a p-group, and let H 9 G be a nontrivial
normal subgroup generated by commutators in G. Then H contains a
commutator z € Z(G) of order p. In particular, any nonabelian p-group

G contains a central commutator of order p.

Proof Fix any commutator xp € H~1. If Xy 1is not central, then
choose any go € G not commuting with xo, and set x; = [Xo,80] € H-1.
Since G is nilpotent, this procedure can be continued, setting x; =
[xi-1.8i-1] € H~1, until x, € H~1 is central for some k > O. Then, if

n-1 -

n pn-i
Xx = [g,h] and has order p for some n 2 1, x]k) [g,h ] and

has order p. 0

The main result of this chapter can now be shown. It gives a very

simple description of the image of the integral logarithm on KI(R[G]).

Theorem 6.6 Fix a p-group G, and a finite unramified extension F
of 6]) with ring of integers R C F. Set e = (_l)p-—l' and define

W=Wps ¢ HO(G:R[G]) e (e)xGab by w(Zaigi) = H(egi)Tr(ai).

Then the sequence

1 —> K, (R[G])/torsion —— H,(G:R[C]) —2— () x¢™® — 1 (1)

is exact.

Proof Assume first that G = 1, the trivial group. By Theorem 2.8,
Log(1+pR) = pR if p 1is odd, and Log(l+4R) = 4R if p = 2. Also, if
p=2, then Log(l+2r) = 2(r-r®) = 2(r-¢(r)) (mod 4R) for any r € R.
It follows that
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* pR if p is odd
Log(R") = Log(1+pR) = = p*Ker(w)

4R + 2(1-¢)R if p=2.

Fur thermore, since Log(1+pR) is ¢-invariant,

MR = (1-3-¢)(Log(®)) =

T

Log®) (-39 ) = - TetTim).
i=1

So Im(I') = Ker(w), and (1) is exact in this case.

Now assume that G is a nontrivial p-group. We first show that

wGoFG = 1; it suffices by naturality to do this when G is abelian and
R = ip' Let I = {Zrigi € R[G] : Zri=0} denote the augmentation ideal.
For any u = 1+Zri(1—ai)gi € 1+1, where riGZp,
P = Pf1_. \P 2
P = 1+ pir;(1a))e; + Iri(1-a,)%s] (mod pI)
=1+ pir (1-a)g; + Ir,[(1- ®) - p(1—ai)]g§’ (Lemma 6.3(i))
= ®(u) + plr (1-a,)(g;8}) = ¢(u) (o(r;)=r,)

This shows that up/‘b(u) € 1+p12, and hence that

r(u) = log(u) - 2-¢(log(u)) = 3-log(uP/e(u)) € 1°.

On the other hand, for any r € ip and any a,b,g € G,
o(r(1-a)(1-b)g) = (eg)" (cag) " (ebg) " (eabg)” = 1 € (&) x "
Thus, T(1+I) C 12 C Ker(w), and so

I(K,(R[G])) = T(R® x (1+41)) = (T(R¥) , T(1+I)) C Ker (o). (3)

Now fix some central element z € Z(G) of order p, such that =z
is a commutator if G is nonabelian (Lemma 6.5). Set G = G/z, assume

inductively that the theorem holds for 6:, and consider the following
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diagram (where a: G —» G denotes the projection):

1 1 1

| | |

1 — K, (R[G],(1-2)R[G])/tors Lo, Hy(G3 (1-2)R[C]) 0, Ker(a®?) — 1

r
1 — K, (R[G])/tors ——S—— H_(G;R[C]) %6, (e — 1
K(a) H(a) aa‘b
T'a w '

1 — Kl(R[G])/tors —c Ho(é;n[é]) —é> (e)xéab — 1

| | |

1 1 1

Since K(a) is onto (Theorem 1.14(iii)), the columns are all exact. The
bottom row is exact by the induction hypothesis. Also, the top row is
exact: Wo is clearly onto, To is injective by Proposition 6.4,

Im(To) C Ker(wo) by (3); and using Proposition 6.4 again:

ab 1 if z 1is a commutator
|Ker(a™) | =

= lCoker(l"o)l.
P otherwise (i. e., if G 1is abelian)

Since wGoI'G =1 by (3), the middle row is exact by the 3x3 lemma. o

One simple application of Theorem 6.6 is to the following question of
Wall, which arises when computing surgery groups. lLet G be an arbitrary
2-group, and set Wh'(2,0G]) = K,(Z,[C1)/({#1} xC™®xSK (Z,[C])). The

problem is to describe the cohomology group HI(Z/2;Wh’(22[G])), where

Z/2 acts via the standard involution (g = g_l) (see Section 5c).

Assuming Theorem 7.3 below, Wh’(iz[G]) is torsion free, and so the exact

sequence of Theorem 6.6 takes the form

1 — Wb (2,[6]) — Hy(GsZ,[C]) — {#1} x> — 1;

with the obvious involution on each term. Also, HI(Z/2;H0(G;22[G])) =1,
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since the involution permutes a 22—basis of HO(G;22[G]). We thus get an

exact sequence
HO@/2:H,(6:2,[61)) — Ko@/2: (11x¢*) — vl @/2:Wh (2,[6])) — 1
and this yields the simple formula

{elec® : [g?1=1}

([g]: g conjugate g™*)

H' (2/2:Wh' (2,[€])) 2

Theorem 6.6 gives a very simple description of Kl(ip[G])/torsion,
and the torsion subgroup of Kl(ip[G]) will be identified in the next

chapter (Theorem 7.3). This suffices for many applications; for example,
to prove the results on Cll(Z[G]) and SKI(Z[G]) in Chapters 8 and 9

below. But sometimes, a description of K’l(R[G]) (= Kl(R[G])/SKl(R[G]))

up to extension only is not sufficient. The following version of the

logarithmic exact sequence helps take care of this problem.

Theorem 6.7 Let R be the ring of integers in any finite unramified
extension F of QP For any p-group G, define

(v.8): KI(R[C]) — (@ o R)® (R/2) and
(@,6): Hy(G:R[C]) — (A 9 r) 8 (R/2)

by setting, for g5 €G and a, a, € R (with reductions &, ai € R/2),
(v.8)((1+pa) (1+ L a,(g;~1))) = (I g, ®a , &), ond
(©.0)(Ja;8;) = ( g;®a,. J&,).

Then v, 0, and T are all well defined on Ki(R[G]), and the sequence
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1 — K{(RIG]),, AL;0,98), Hy(G:R[G]) @ (¢*° 6 R) 6 (R/2)

(w 18 (¢-1) 0 )
] 0 10 (¢-1)

> (*® 9 R) ® (R/72) — O
is exact.

Proof The main step is to show that the composite of the above two
homomorphisms is zero, and this is a direct calculation. The injectivity

of (F,w,wﬁ) is a consequence of Theorem 7.3 below, which says that

Ker(Ipg) = tors(K!(R[G])) = tors(R") x¢*®.

The exactness of the whole sequence then follows easily from Theorem 6.6.

See Oliver [8, Theorem 1.2] for more details. 1]

When G is an arbitrary finite group, then FRG sits in exact

sequences analogous to, but more complicated than, those in Theorems 6.6
and 6.7. Since their construction depends on induction theory, we wait
until Chapter 12 (Theorem 12.9) to state them.

Several naturality properties for I were shown in Theorem 6.2. One
more property, describing its behavior with respect to transfer maps for
inclusions of groups, is also often useful. To state this, we define, for

any prime p and any pair H C G of p-groups, a homomorphism

Resy Ho(GiZ [G1) —— Ho(H:Z [H])

as follows. Fix g € G, let XiseeorXy be double coset representatives
for H\G/{g), and set n, = min {n>0 : gn € x;IH)(i} for 1<i<k. Then

define

n,

k i -1
Exig x; € H(H;R[H]).

G
ResH(g) . i

i

For example, if G and H are p-groups and [G:H] = p, then
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p-1 .

Y xlgx ! (any x € GNH) if g€H
Resii(g) = | 1=

P if g ¢ H.

Theorem 6.8 For any pair HC G of p-groups, the diagram

(2 e, b (a2 2P

ltrf (1) Res lRH

a rH
K} (2, [H]) — H,

(2 [H]) — (&) x 2>
commutes. Here, € = (—l)p_l, {e) x Gab and (e) x Hab are identified

as subgroups of Ki(R[G]) and K'I(R[H]), and RG

q is the restriction of

the transfer map.

Proof The easiest way to prove the commutativity of (1) is to split

it up into two squares:

1
1-=0
Kj(2,[61) —1%— Hy(6i@ [6]) —R— Hy(G:@, [6])
ltrf (1a) ‘res (1b) lResg
1-1.e

Ky(2,0H]) —1%— B (@ [H]) —2— H (8 [H]).

Here, if a say denote right coset representatives for H C G, then

1°°"

res(g) = Z{aiga;1 :1<igm, aiga;1 € H) € HO(H;ﬁp[H])

for any g € G. The commutativity of (1b) is straightforward, and the

commutativity of (la) follows from the relations

n n
log(u) = lim 1. (u -1); trf(u) = lim (1 +res(up - 1))1/p .
n-o© p n o

See Oliver & Taylor [1, Theorem 1.4] for details. D
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In Oliver & Taylor [1, Theorem 1.4], ResI(_:l is in fact defined for an

arbitrary pair H C G of finite groups (not only for p-groups). The

above formulas can also be extended to include the case of R[G], for any

R unramified over ip; in this case the Frobenius automorphism for R

appears in the formula for Resg.

6b. Variants of the integral logarithm

We list here, mostly without proof, some useful variants of the
integral logarithm, and of the exact sequence describing its image. The
first theorem is a generalization of Proposition 6.4 and Theorem 6.6. It
is used in Oliver [4] to detect elements in K;(R[G]).

Theorem 6.9 Let R be the ring of integers in any finite unramified
extension F of ﬁp, let a: G — G be any surjection of p-groups, and

set
I, = Ker[R[E] i R[G]].

Set K = Ker(a) C E Then there is an exact sequence
K;(R[G],I ) —— Hy(GiI ) — K/[G,K] — 1.

Here, for any r € R, g € ¢, and w €K, wa(r(l-w)g) - wTr(r).

Proof This is an easy consequence of results in Oliver [4]; but
since it was not stated explicitly there we sketch the proof here. Define

a p-group ¢ and a ip—order A to be the pullbacks

by

B ~ ~
—_— 4 — R[E]
B2

la lbz lna

—2 5 R[E] 22— R[G].

— )

(224
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Set I; = Ker[RBi: R[G] — R[E]] (i =1,2), and let : R[G] — A be

the obvious projection. Then
Ker(y) = I,NI, = I,I,
(see Oliver [4, Lemma 2.4]); so A = R[G]/I,I, and
K, (%) 2 K (RICD)/(1+1,1z). (1)
Also, by Oliver [4, Theorem 1.1] (and this is the difficult point):
Fpa(1+ Li2) = In[ 1T, — H (G:RIED)]. 2)

Formulas (1) and (2), together with the exact sequence of Theorem 6.6

(applied to R[G]), now combine to give an exact sequence

r
K, (1) —2— 1 (8:2) L ey X

(where € = (—l)p_l, as usual). We thus get a commutative diagram

T,

Kl(?,l) N SN Ho(é;?,l) " (e} xBP — 1
lxlcbz) H(bz) 52"
Trg

K, (REE1) —Rs my@RiED) —Km ()& — 1,

where the vertical maps are split surjective (split by the diagonal map
G—Gc EXE) Then

Ker(K,(b2)) = K (R[E1.T ), Ker(H(bz)) = H (&1 ), Ker (622 = K/[G.K]
and this proves the theorem. D

Logarithms can be used to study, not only the abelianization of

(R[G])*, but also its center. The following theorem is in a sense dual
to Theorem 6.6.
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Theorem_ 6.10 Let R be the ring of integers in any finite
unramified extension F of Qp Then for any p-group G, there is an

exact sequence
1 — (e)x2(6) 2L 14 j(z(R[6])) — = Z(RIC]) —2— (e) xZ(C) — 1.

Proof See Oliver [9]. O

The last result described here involves polynomial extensions of the

base ring.

Theorem 6.11 Let Z(s]; denote the p-adic completion of the
polynomial algebra Z[s]. For any p-group G, let 1IC Z[s];(G] denote

the augmentation ideal, and define
Z[STLC] 1) = - +(L
K{@[s1(C1.1) = In[K, (2[s1[61.T) — K, (@sI(3106D)].
Then there is a short exact sequence

1 — Kj(2Z[s1(61.1) L0), Hy(G:T) @ (Z(s];@Gab)

L2.21), 71578 %) — 1.
p

Proof See Milgram & Oliver [1]. The homomorphisms are analogous to

those in Theorem 6.7 above. o

6¢c. Logarithms defined on Kg(ip[c])

The "logarithm" homomorphisms discussed here are not needed for

describing the odd torsion in Cll(Z[G]), but they could be important in

describing the 2-power torsion, and do help to motivate the conjectures in
Chapter 9. In any case, Theorem 6.12 below does give a complete

description of Kg(ip(c]) when p is any prime and G 1is an abelian

p-group; and Conjecture 6.13 would give an analogous description (though
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only up to extension, in general) for arbitrary p-groups.

The natural target group for K2 integral logarithms turns out to be
Connes’ cyclic homology group HCl(—). If R 1is any commutative ring and

G is any finite group, then
HC, (R[C]) = HI(G;R[G])/(gQrg: g€G, r€R) and HCH(R[C]) = Hy(G;R[C]);

where Hn(G;R[G]) is as usual defined with respect to the conjugation
action of G on R[G]. We identify HI(G;R[G]) with G ® R[G] whenever

G is abelian; and for arbitrary G this allows us to define elements

g@rh € HI(G;R[G]) for any r € R and any commuting pair g,h € G.

Theorem 6.12 Fix an unramified extension F of @Q, and let RCF
be the ring of integers. Let Tr: R — ip denote the trace map. Then,

for any abelian p-group G, there is a short exact sequence

G®G

g®h+h®g —0 (1)

1 — KS(R[C])/(46,46) L2 ne (R[C]) 22—

which is natural in G, and such that Tz and wz satisfy the following

two formulas:
(i) For any g € G and any u € (R[C])", T2({g.u}) = g®T(u).
1

(ii) For any g,h € G and any r € R, w2(g ® ah) = Tr(r)g®g h.

Proof See Oliver [6, Theorems 3.7 and 3.9]. O

Other explicit formulas for I, are also given in Oliver [6]: for
example, formulas for T,{{a,u}) when a € R and u € (R[G])* (Oliver
[6, Theorem 4.3]). Also, Iz has been shown (Oliver [6, Theorem 4.8]) to
be natural with respect to transfer maps.

The obvious hope now is that similar natural exact sequences exist
for nonabelian p-groups. Some more definitions are needed before a
precise conjecture can be stated.

For an arbitrary group G, Dennis has defined an abelian group
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l-[2(G), which sits in a short exact sequence

0 — z/2 & ° fi,(c) Hy(G) — O,

and such that ﬁz(c) Z (G o G)/(g®h+h®g) whenever G is abelian. The

easiest way to define ﬁz(G) for nonabelian G 1is as the pullback

(¢® 8 ¢?P)/(g8h+heg)

l

Hy(G) — Hy(¢*) = (P9 6™)/(g8e).

Hy(c)

For any commuting pair g,h € G, g~h € H2(G) and g*h € ﬁz(G) will
denote the images of g®h € }[2((g,h)) and g®h € ’l:'[2((g,h)), respectively

({g,h) being an abelian group).
For any G, Loday [1] has defined a natural homomorphism

Ag ¢ Hy(6) — K2(Z[G])/{—1,G},

which will be considered in more detail in Section 13b. For now, we just

note that )\G(gAh) = {g,h} for any commuting pair g,h € G (recall that

{g.g} = {-1,g}). If R is the ring of integers in any finite extension
of ﬁp’ then for the purposes here we set

WhS(RIC]) = Coker[Hy(G) —2 Ky@IC1)/(-1.46} E2Rs Ky (RECD/A-1,46}]-

Note that when G is abelian, Wh;(R[G]) = K;(R[G])/{ic,ic}.

The obvious conjecture is now:

Conjecture 6.13 For any p-group G, and any unramified extension F
of ﬁp with ring of integers R, there is an exact seguence
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HC,(R[G]) ~23— Hy(6) —I— WhS(R[G]) —2— HC,(R[C]) ~2— H(C)
—— Wn(R[C]) —— HCy(R[E]) —— H(6) — o,

natural in G, and satisfying the formulas:

(1) Ta({z.u}) = g®Tpy(u) if g€G, H=Cy(g), and ueR[H]"

(ii) wz(g ® rh) = Tr(r)-g’xg_lh for commuting g,h€G.

Note that the existence and exactness of the last half of the above
sequence follows as a consequence of Theorems 6.6, 7.3, and 8.6 (and is
included here only to show how it connects with the first half). For
example, Coker(wz) & H2(G)/H;b(G) £ SKI(R[G]) by Theorem 8.6. See

Oliver [6, Conjectures 0.1 and 5.1] for some more detailed conjectures.
The results in Oliver [4] also help to motivate Conjecture 6.13. In

particular, by Oliver [4, Theorem 3.6], there is an exact sequence
* ¥
Hy(G) — Why(R[G]) —2— A(R[C]) — H,(G);
where Wh;(R[G]) is a certain quotient of Wh;(R[G]), and where
Y(R[C]) = H,(G;R[G])/(ebre": g€G, r€R, n21)

(recall that HC,(R[G]) = HI(G;R[G])/(g@rg)). This helps to motivate the
conjectured contribution of HB(G) to Ker(lz), and shows that T[> is
at least defined to this quotient group AU(R[G]) of HCl(R[G]). This

sequence can also be combined with Theorem 6.12 to prove Conjecture 6.13
for some nonabelian groups, including some cases — such as G = Q(8) —
where 7 # 1. But presumably completely different methods will be needed
to do this in general.



PART II: GROUP RINGS OF P-GROUPS

We are now ready to study the more detailed structure of Kl(Z[G])

for finite G. For various reasons, both the results themselves (e. g.,

the formulas for Cll(Z[G]) and SKl(ip[G])), as well as the methods

used to obtain them, are simplest when G is a p-group. For example, in
some of the induction proofs, it is important that G is nilpotent and
ip[G] is a local ring. Also, the image of the integral logarithm PG

(Theorem 6.6), and the structure of Q[G] (Theorem 9.1), are simpler
wvhen G is a p-group.

The central chapters, Chapters 8 and 9, deal with the computations of
SKl(ip[G]) and Cll(Z[G]), respectively. The most important results are

Theorem 8.6, where SKl(ip[G]) is described in terms of H2(G); and
Theorems 9.5 and 9.6, where formulas for Cll(Z[G]) are derived. Some

examples are also worked out at the end of each of these chapters.
Chapter 7 is centered around Wall's theorem (Theorem 7.4) that
SKI(Z[G]) is the full torsion subgroup of Wh(G) for any finite group

G. In contrast, the torsion free part of Wh(G) 1is studied in Chapter
10, mostly using logarithmic methods. Also, the problem of representing
arbitrary elements of Wh'(G) (= Wh(G)/SKl(Z[G])) by units in Z[G] is

discussed at the end of Chapter 10. Note that Chapters 7 and 10, while

dealing predominantly with p-groups, are not completely limited to this
case.

These four chapters are mostly independent of each other. The main
exception is Theorem 7.1 (and Corollary 7.2), which give upper bounds on
the torsion in Wh(ip[G]) for a p-group G. These are used, both later
in Chapter 7 when showing that Wh'(ip[G]) is torsion free, and in

Section 8b when establishing upper bounds on the size of SKl(ip[G]).



Chapter 7 THE TORSION SUBGROUP OF WHITEHEAD GROUPS

If G is any finite group, and if R 1is the ring of integers in any

finite extension F of Q or 6]:’ then obvious torsion elements in
Kl(R[G]) include roots of unity in F, elements of G, and elements in

SKI(R[G]). These elements generate a subgroup of the form
b
upx 627 x SK, (R[C]) € K, (R[C]). (1)

To see that this is, in fact, a subgroup, note that p.FxGab injects into

Kl(F[G]) — since it is a subgroup of (F[Gab])* = Kl(F[Gab]) — and hence
b b

that ppxG? C K,(R[G]) and (quGa ) NSK, (R[G]) = 1.

In particular, if we define the Whitehead group Wh(R[G]) by setting
Wh(R[C]) = K, (RIG1)/ (g x &),
then SK,(R[G]) can also be regarded as a subgroup of Wh(R[G]), and
Wh' (R[G]) = Wh(R[G1)/SK, (R[G]) = K! (RLG1)/(u ).

Note that when R # Z, this notation is far from standard (sometimes one
divides out by all units in R).
When G is abelian, then Ki(Z[G]) = (Z[G])*; and Higman [1] showed

that the only torsion in (Z[G])* is given by the units 1g for g € G.
In particular, Wh’(G) is torsion free in this case. This provided the
motivation for Wall [1] to show that Wh’(G) is torsion free for any
finite group G; i. e., that the subgroup in (1) above is the full
torsion subgroup of KI(Z[G]). More generally, Wall showed that

¥h’'(R[G]) 1is torsion free whenever F is a number field and G is

finite (Theorem 7.4 below)}, or whenever F is a finite extension of 0]:
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and G 1is a p-group (Theorem 7.3)

If one only is interested in the results on torsion in Wh’'(R[G]),
then Theorem 7.1 and Corollary 7.2 below can be skipped. These are
directed towards showing that Wh(R[G]) is torsion free when R 1is the
ring of integers in a finite extension of ﬁp, and G is a p-group with

a normal abelian subgroup of index p- Wall’s proof in [1] that
¥h'(R[G]) 1is torsion free in this situation is simpler than the proof
given here in Corollary 7.2. But the additional information in Corollary
7.2 (and in Theorem 7.1 as well) about Wh(R[G]) itself will be needed in
Chapter 8 to get upper bounds on the size of SKI(R[G]).

Recall the exact sequence of Proposition 6.4: if R 1is the ring of
integers in any finite extension of Qp' if G 1is any p-group, and if

z € G is central of order p, then there is an exact sequence

1 — (z) — K, (R[G],(1-2)R[G]) Loz, Hy(G; (1-2)R[G]) — F, — oO.

In particular, this gives a precise description of the torsion subgroup of

KI(R[G],(I-Z)R[G]). The next theorem gives an upper bound for the number

of those torsion elements which survive in KI(R[G]).

Theorem 7.1 Fix a prime p and a p-group G, and let z €G be

central of order p. Set
1={g€G: gconjugate zg} = {g € G : [g,h] =z, some h € G},

and let ~ be the equivalence relation on 1 generated by:

g 1is conjugate to h, or
g ~h if

[g.,h] = z'  for any i prime to p.

Then, if R 1is the ring of integers in any finite extension of ﬁp,
Ker[tors Wh(R[G]) — tors Wh(R[G/z])] = (Z/p)N,

where
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N=0 if =0

N ¢ |Q/~| -1 if Q#0 (i.e., if z 1is a commutator).

More precisely, if 1 # @, let p CR be the maximal ideal, let

T:R—*R/p—T—r-’le

be as in Proposition 6.4, and fix any r € R with 7(r) # 0. Then if

{Z0,..-+8x} are ~-equivalence class representatives in I, the elements
Exp(r(1-z)(go-gi)) (for 1<i<k)

generate Ker[tors Wh(R[G]) —— tors Wh(R[G/z])].

Proof By Proposition 6.4, the logarithm induces a homomorphism

log : K, (R[C], (1-2)R[G]) — Hy(G; (1-z)R[C]);

where Ker(log) = {z) and
Im(log) = {(l—z)Zrigi : riGR, giGG, Zri € Ker('r)}.

By Theorem 2.9, for any u € 1+(1-z)R[G], [u] is torsion in Wh(R[G]) if
and only if [u] € Ker[logRG: Wh(R[G]) — HO(G;R[G])], if and only if

log(u) € Ker|Hy(G; (1-2)R[G]) — Ho(GiRICD) |
= <r(1—z)g € Hy(G; (1-z)R[G]) : g conj. gz, r€R> = Hy(Gs (1-2)R(D)).
So if we set
D= {§ € R(N) : (1-2)§ € 10g(1+(1-z)R[G])} = {Zrigi € R(Q) : Zri € Ker(‘r)}

and



176 CHAPTER 7. THE TORSION SUBGROUP OF WHITEHEAD GROUPS
C= {§en(n) : (1-z)E = Log(u), some u€ Ker[l+(l—z)R[G] — wn(n[c])]};
then

Ker[tors Wh(R[C]) — tors Wh(R[G/z])] = p/C.

The theorem will now follow if we can show that

co Ker[R(Q) -Proj, pra/my —I rp(n/~)]

(1)
= (sg, r(g-h) : r,s€R, g,h€G, g-h, s€Ker(T)).
Note that since Ker[Tr: R/p — IFp] = (1-¢)R/p by Lemma 6.3(ii),
Ker[T: R —» R/p Ir, IFp] = {r—rp: r €R} +p = (r-rP: r € R). (2)

For any g € Q and r € R, and any k 2 2,

r(1-2)%g = r(1-2)*"(g-z8) = 0 € Hy(G; (1-2)R[C]).

In particular, by Lemma 6.3(i),

pr(l-z)g = —r(l—z)pg =0 € HO(G;(I—z)R[G]);

and so
(2) p-R(Q) + (1-z)R(?) C C.
Also, by definition,
(b) r(g-h) € C if r €R and g is conjugate to h.

So using (2), (1) will follow once we show, for all r € R and all
g,h € Q, that

(¢) (r-rP)gecC, and
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i

(d) r(g-h) € C if [g,h] =z and pfi.

Fix g,h € 0 with [g,h] = zi and pti. It suffices to prove (c)
and (d) when G = (g,h); in particular, when G/z is abelian. To
simplify calculations, set

C' = C @ R(G2) C R[G].

Since G/z 1is abelian, all p-th powers in G lie in G-~{1; and so by

(a), all p-th powers of elements in R[G] lie in C’'. Hence, for any
§ € R[G],
log(1+(1-2)E) = (1-2)E - fl‘zl)f-gz +...=(12)f  (mod (1-2)C’');
and so
[1+(1-2)E] = 1 € Wh(R[G]) implies £ € C'. (3)

We now consider some specific commutators. For any k 2 O,

[ th,1-r(g-n)¥] = 1 - (1‘(z_i1;-z_]lh)k - r(g-h)k)'(l-r(g-h)k)_l

1+ (l—z_ik)r(g—h)k-(1--1‘(g—h)k)—1

1]

1 - (1-2)ike(r(e-h)* + P2e-n) + Pen) 4 o) (mod (1-2)?).

Since pti, (3) shows that
kr(g-h)¥ + kr2(g-h)%X + kr3(g-h)K + ... € C’

for any k 2 1. For k large enough, r(g—h)k € pR[G] C C’ by (a). A

downwards induction on k now shows that
k ,
r(g-h)" €C for all k 20

(when plk this holds since C’ contains all p-th powers). In
particular, r(g-h) € C’ N R(Q) = C.
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This proves (d). To prove (c), fix Jj such that [hj,g] =z, and

consider the commutator

[nd, 1-r(1-g)]

1 - r{(1-2g) - (1-8))-(1-r(1-8) ) !

1- (l—z)(rg + rzg(l—g) + r3g(1—g)2 + ).
By (3),

rg - rzg(l—g) + r3g(1—g)2 - ... €C’, (4)

By (d), rkgeErkhErkg (mod C) for any k and any & prime to p;

and so (4) reduces to give
- -1 1_ - ,
0=rg+ (-1)P rPg(1-g)" = (r-rP)g + 2% = (x-rP)g  (moa C).
It follows that (r-rP)g € C' NR(Q) =C. O

Later, in Section 8b, Theorem 7.1 will play a key role when obtaining
upper bounds for the size of SKI(R[G]). But for now, its main interest

lies in the following corollary.

Corollary 7.2 Fix a prime p, and let R be the ring of integers
in any finite extension of ﬁp Let G be any p-group which contains an

abelian normal subgroup H 4 G such that G/H is cyclic. Then Wh(R[G])
is torsion free. In particular, SKI(R[G]) = 1.

Proof This is clear if G = 1. Otherwise, we may assume H # 1,
choose z € HNZ(G) of order p, and assume inductively that Wh(R[G/z])

is torsion free. Define
0 ={g€G: [g,h] =z, some hEG},

and let ~ be the equivalence relation on I defined in Theorem 7.1. By
Theorem 7.1, we will be done upon showing that ~ 1is transitive on 1.

If Q # @, then fix any g€Ql, and any x€G-~H which generates
G/H. Choose h € 0 such that [g.,h] = z. Either ghl or glh lies in
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H for some i (G/H being cyclic); we may assume by symmetry that gh:l =
a € H. If we write h = bxd for some b € H, then

z = [g,h] = [ghi,h] = [a,hxj] = [a,xj] = [ax,xj]

= [ax,xd(ax) ™7 = [x,xI (ax) 7

the last step since xj(a.x)_‘:I € H. It follows that

J

g~h~gh1=a~x ~ax~xj(ax)_j~x

in ; and hence that the relation is transitive. O

We are now ready to describe the torsion in Wh(R[G]) in the p-adic

case.

Theorem 7.3 (Wall [1]) Fix a prime p, and let R be the ring of
integers in any finite extension F of ﬁp' Then for any p-group G,

Wh’ (R[G]) is torsion free. In other words,

tors(K, (RIG1)) = mp x G x K, (R[C]);
where Hp Cc R* is the group of roots of unity in F.

Proof If G is abelian, then the theorem holds by Corollary 7.2.
So the result is equivalent to showing, for arbitrary G, that

pr, : tors Ki(R[G]) — tors K;(R[G®"])

is injective on torsion.

Fix G, and assume inductively that the theorem holds for all of its
proper subgroups and quotients. If G is cyclic, dihedral, quaternionic,
or semidihedral, then the theorem holds by Corollary 7.2. Otherwise, all
simple summands of F[G] are detected by restriction to proper subgroups
and projection to proper quotients (see Roquette [1], Oliver & Taylor [1,
Proposition 2.5], or Theorem 9.1 below). In other words, the restriction

maps and quotient maps define a monomorphism
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TResg; @ IProj y ¢ K, (F[G]) —> Hecac K, (F[H]) @ Nejc K, (FIC/N]) (1)

[G:H]=p IN|=p

So the corresponding homomorphism for Ki(R[G]) is also injective.

For any H € G of index ©p, consider the following commutative
diagram:

tors Ki(R[G]) -PLi, tors Ki(R[G/[H,H]]) L2 tors Ki(R[Gab])

T

tors Kj (R[H]) =22 tors Kj(R[H*"]).

Here, the t; are transfer maps and the pr; are induced by projection;
prz 1is injective by the induction assumption, and prsg by Corollary 7.2
(G/[H,H] contains an abelian subgroup of index p). Hence, for any
u € Ker(praoprs), ti(u) =1¢€ Ki(R[H]).

Thus, for any u € Ker(pr,), Trfg(u) =1 for all HC G of index
p. Also, Projg/N(u) =1 for all N9 G of order p (by the induction

hypothesis again); and so u=1 by (1). 0

Note that Theorem 7.3 only holds for p-groups. Formulas describing

the torsion in Ki(R[G]) in the non-p—group case are given in Theorems

12.5 and 12.9 below.

In order to prove the corresponding theorem for global group rings
(in particular, for Wh(G)), some induction theory is needed. For this
reason, the next theorem might technically fit better after Chapter 11,

but organizationally it seems more appropriate to include it here.
Theorem_7.4 (Wall [1]) For any finite group G, Wh'(G) 1is torsion

free. More generally, if R 1is the ring of integers in any number field
K, and if Mg Cc R denotes the group of roots of unity in K, then

tors(K, (R[G])) = m x & x SK, (R[C]). (1)
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Proof Fix a prime p. The proof of (1) for p-power torsion will be
carried out in three steps: when G is a p-group, when G is
p-hyperelementary, and when G 1is arbitrary. Note that for any prime
ideal p C R, the completion homomorphisms
K, (F[G]) — K, (F,[C]), K{(R[G]) —— K{(R [C])
are injective (the reduced norm maps are injective by Theorem 2.3).

Step 1 Assume G is a p—group. For any prime p|p in R,

nyGab C tors Ki(R[G]) —— tors Ki(ﬁp[G]) = u(ﬁp) x G2,

Since the inclusion Ki(R[G]) — Ki(ﬁp[G]) contains (R* — (ﬁp)*) as

a direct summand, this shows that tors Ki(R[G]) = nyGab.

Step 2 Assume G 1is p-hyperelementary — i. e., G contains a
normal cyclic subgroup of p-power index — but not a p-group. Fix some

prime q # p dividing IGl, and let H 9 G be the q-Sylow subgroup. We
may assume inductively that the theorem holds for G/H.
Let g C R be any prime ideal dividing q, and set

I-= Ker[ﬁq[c] —_ ﬁq[G/H]].

Then I 1is a radical ideal, since ﬁq:—)iq and H 1is a q-group (this
follows from Example 1.12). Hence Kl(ﬁq[G],I) is a pro-q-group (Theorem

2.10(ii)), and so

torspKi(ﬁq[G]) x torspxi(ﬁq[c/n])

(p#4q)- But torspK'l(R[G/H]) = (pK x (G/H)ab) (®) by the induction

hypothesis, and so torspKi(R[G]) = (]JKXGab)(p)

Step_ 3 By standard induction theory (see Lam [1, Chapter 4], Bass
[2, Chapter XI]}, or Theorem 11.2 below), for any finite group G,
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torspKi(R[G]) is generated by induction from p-hyperelementary subgroups.

So torspKi(R[G]) = (p.KxGab)(p) by Step 2. O

As an easy consequence of Theorem 7.4, we now get:

Corollary 7.5 (Wall) For any finite group G, the standard
involution acts on Wh’(G) by the identity.

Proof VWrite Z(Q[G]) = HFi’ where the Fi are fields; and let
R, CF, denote the rings of integers. The involution on Q[G] acts on

each Fi via complex conjugation (Proposition 5.11(ii)), and the reduced

norm homomorphism
nrzrc] KI(Z[G]) —_— H(Ri)*

commutes with the involutions by Lemma 5.10(ii). Also, Ker(nrz[c]) =
SKI(Z[G]) is finite; and for each i, (Ri)*/torsion is fixed by complex
conjugation. So Wh'(G) = KI(Z[G])/torsion is also fixed by the

involution. 1]
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The central result of this chapter is the construction of an

isomorphism

5 - = b
O ¢ SK (2 [G]) = SK, (2[C1)/C1,(Z[C]) — Hy(G)/H (C)

for any prime p and any p-group G. Here, Hgb(G) C H2(G) is the

subgroup generated by elements induced up from abelian subgroups of G.
In fact, in Theorem 8.7, we will see that SK,(R[C]) 2 H,(C)/H>(C)
whenever R 1is the ring of integers in any finite extension of ﬁp

In Section 8a, the homomorphisms ORG are constructed, and shown to
be surjective. The definition of GRG involves lifting elements of
SKl(R[G]) to Kl(R[E]), for some appropriate G surjecting onto G;
and then taking their integral logarithms (see Proposition 8.4). Section

8b then deals mostly with the proof that ORG is an isomorphism. In

Section 8c, some examples are given, both of groups for which

SKl(ip[G]) =1, and of groups for which it is nonvanishing. The last

result, Theorem 8.13, gives one way of constructing explicit nonvanishing

elements of SKl(ip[G]) in certain cases.

Throughout this chapter, p will denote a fixed prime.

8a. Detection of elements

The following proposition is the basis for detecting all elements in
SKI(Zp[G])'

Proposition 8.1 Let R be the ring of integers in any unramified

extension F of ﬁp Then, for any extension 1 —3 K —> ¢ N G—1
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of p-groups,

KN [G,G]

Coker[SKl(Ra) : SKI(R[E]) - SKI(R[G])] = ([g.,h] €K hGE) )
£, g

More precisely, for any u € SKI(R[G]), and any lifting of u

U € KI(R[E]), then I'RE('&') =Zri(zi-1)gi for some g €G, r, €R,

i
ziGK; and u corresponds under (1) to the element

1T € e (g,
Here, Tr: R — ip is the trace map.
Proof For convenience, set
Ko = ([g,h] €K: gh €8) and I = Ker[R[E] — R[G]].

The snake lemma applied to the diagram

1 — sK, (R[E]) quxE:ab — K, (R[E]) — Wh’ (R[E]) — 1

ab

SK, (Ra) xa K(a) ¥h' (a)

1 — K, (R[C]) x pp x *® — K (R[G]) — Wh (R[C]) — 1

induces an exact sequence

KI(R[E],Ia) — Ker(Wh’(a)) — Coker(SK, (Ra)) — 1.

Also, the following diagram with exact rows

'~
1 — Wb’ (R[E]) - HO(E;R[E]) %, (e)x& — 1
Wh' (a) H(a) 2P

r
1 — Wh’ (R[C]) — H,(G;R[C1) 26, ()@ — g

(1)

to

(2)
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(see Theorems 6.6 and 7.3) induces a short exact sequence of kernels

K
1 —> Ker(Wh' (a)) —> A1) —2> ——— — 1 3)
KN[G,G]
where ﬁo(a;la) = Ker(H(a)) = Im[Ho(a; Ia) — Ho(a;R[a])].
It remains to describe FE(KI(R[E]’Ia))' This could be done using
the exact sequence of Theorem 6.9, but we take an alternate approach here

to emphasize that the difficult part of that theorem is not needed.
We first check that there is a well defined homomorphism

R EO(E:';Ia) — K/Ko

such that ﬁ(Zri(zi—l)gi) = ]']z}‘r(ri) for r, € R, z, €K, and g4 € ¢.

i
It suffices to check this when Kg = 1; 1i. e., when K 1is central and

contains no commutators. In particular, ﬁo(G;Ia) = HO(G;Ia) in this

case, since two distinct elements of ¢ in the same coset of K cannot

be conjugate. And & is well defined on HO(G;Ia), since it is well
defined on Ia itself (and HO(G;K) = K/[G,K] = K).

Now define G = {(g,h)€axaz a(g) =a(h)}, so that

¢ —B2 , &
o
'é__a_,c

is a pullback square. Set

K; =Ker(;) (2K) and I, = Ker[Rﬁi: R[G] — R[E]] (i =1,2).

Then Bz 1is split by the diagonal map from ¢ to G. In particular,

R[G] = R[C] ® I, K (R[E]) = K,(R[C]) @ K, (R[€].I2),

and & = @Py (K,/[C.K21).
Consider the following diagram:
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. ral . wgl .
K, (R[C],I2) — Hy(GiI2) — K2/[G.K2] — 1

lf1 Ifz lfa (4)
ral

K, (RIE1,1.) £, Hy(G1) —2— KfiKo — 13

where the f; are induced by pBi: 6 —» G. The top row is a direct
summand of the exact sequence of Theorem 6.6 applied to Kl(R[a]), and

hence is exact. Furthermore, K, = K, and so Ker(fs) 1is generated by

elements of the form

([g.b1.1) = (ghg™",h)- (h,h) ™" = wg(r- ((ghe™! h)-(h,h))) € wg(Ker(f2))

for g,h € G such that [g,h] € K (and where Tr(r) = 1). In other

words, ma(Ker(fz)) = Ker(f3), and so the bottom row in (4) is exact.

It now follows that

Coker (SK, (Ra)) = COker[Kl(R[E],Ia) N Ker(Wh'(a))] (by (2))
= Tg(Ker(Wh' (2)))/Tg(K, (RG], 1)) (by (3))
= G o TglKer (V' (o)) (by (4)
o K n [¢,6]
= (KN[G,C1)/Ko = (by (3))

([g;h]€K: g,h€C)
The description of the isomorphism follows from the definition of &. a

Proposition 8.1 shows that elements in SKI(R[G]) are detected by

the difference between commitators in K (when G = E/K), and products
of commutators in K. The functor H2(G) will now be used to provide a
"universal group” for Coker(SKl(a)), for all surjections a of p-groups

onto G.

If G 1is any group, and G =2 F/R where F is free, then by a
formula of Hopf (see, e. g., Hilton & Stammbach [1, Section VI.9]),
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Hy(G) = (RN[F,F1)/[R,F].
If g, h is any pair of commuting elements in G, we let
g~h € H,(G)

denote the element corresponding to [E.ﬁ] € RN[F,F] for any liftings of
g and h to gZhe€F . If G is abelian, then Hy(G) = Ay(G) s

generated by such elements. So for arbitrary G,

H3°(C) = Im[Z{Hz(H): HC G, H abelian) 224 1 (q)]
= {g~h: g,h€G, gh=hg) C H2(G).

Theorem 8.2 Let 1 — K — G -5 G — 1 be any extension of
groups. Then for any Z[G]-module M, there is a “five term homology

exact sequence”

a

Ho(E:M) —2 H_(GsN f—}l»xabe M — H.(&M) —% H.(G:M) — O
L@EM) H(GM) 2161 (&) (G54 — o.

In particular, when M = Z, this takes the form

6(1

b
Hy (G) Hz(a), Hy(G) » K/[G,K] — &P o @b, 15

wvhere for any commuting pair g,h € G and any liftings to §,ﬂ € G,
6*(g~h) = [&,5] (mod [G,K]).

If K 1is central, then this can be extended to a 6-term exact sequence

a ab
Ko& —Io Hy@) H2(a), (o) Lok — T 2 P — g,

wvhere 7(h®g) =hAg€H§b(G) for any h € K and gGE.
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Proof The 5-~term sequences are shown in Hilton & Stammbach [1,
Theorem VI.8.1 and Corollary VI.8.2]; and the formula for & follows
from the definition of g~h and naturality. The 6~term sequence, and the

formula for 7, are shown in Stammbach [1, V.2.2 and V.2.1]. O

~ . . a
When 1 — K — & % ¢ — 1 1is a central extension, then 6

can be regarded as the image of the extension [a] € H2(G;K) under the
epimorphism

H2(G;K) —» Hom(H,(G) ,K)

in the universal coefficient theorem. So it is not surprising that
central extensions can be constructed to realize any given homomorphism
H2(G) — K.

Lemma 8.3 (i) For any finite group G and any subgroup T C H2(G),

there is a central extension 1 >K—o&5Hc¢c—o1 such that

8%: H2(G) —» K is surjective with kernel T.

(it) For any pair HC G of finite groups, there is an extension
1—K—¢Hc—1

of finite groups, such that if we set f= a_l(H) and ag = a|ﬁ: H— H,
then H2(ao) =0. If H<G, then G can be chosen such that K C Z(ﬁ);

and if G 1is a p-group then ¢ can also be taken to be a p-group.

(iiit) For any finite group G, and any finitely generated Z[G]-

or ip[G]—nwdule M, there is an extension 1 — K — cS5Hc—1 of

finite groups such that
Hy(a;M) = O : Hz(é;n) — Hy(G:M).

Proof (i) Write G = F/R, vwhere F is free. By Theorem 8.2,

there is an exact sequence
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s b b
0 = Hy(F) — Hy(G) —— R/[F.R] — P — ¢®° — 1.

Furthermore, Fab and all of its subgroups are free abelian groups, and

so R/[F,R] splits as a product
R/[F.R] 2 Ro/[F,R] x & (H,(C))

for some Ro 9« F where [F,R] C Rop C R. If we now set ¢ = F/Ro, and
let a: G —» G be the projection, then Ga: H2(G) = R/Rp 1is an iso-
morphism. So for any T C H2(G), aps E/Ga(T) —» G has the property

(Lr

that & is surjective with kernel T.

(iii) Again write G = F/R, +where F is free and finitely

generated. By Theorem 8.2, there is an exact sequence

ab

0 = Hy(F;M) — Hy(G:M) — R*"@

ey — Hy(F3H).

ab i
Here, H2(G,M) is a finite p-group and R QZ[G]M is a finitely gener-
ated Z- or i-p—module. So there is a normal subgroup T 9 F of finite
index such that [R,R]C TCR, and such that H2(G;M) still injects

into (R/T) & If we now set G = F/T, K =R/T, and let a: G—»G

2rc ™

be the surjection, then 8% is injective in the exact sequence

. (e ]
Hy(&m) Hz(@iM), g g;m) —&— Kezrg M-

So H2(a;ll) = 0.

(ii) Now fix HC G, and set M = Z(G/H). Then H2(G;M) = H2(H);
and Hz(a;M) & H2(a_lH) for any a: G — G. So by (iii), there is an

extension 1 — K — G -5 G — 1, such that if we set H = a_l(H)

and ao = a|f, then H2(ao) =0 and 6% is injective. If H <G,

then [ﬁ,K] 4G, and we can replace G by E/[ﬁ,x] (so KC Z(ﬁ))
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without changing the injectivity of 8., If G is a p-group, then ¢
can be replaced by any p-Sylow subgroup. o

Now, for any extension 1 — K — CS5c¢c—1 of p-groups, the

5-term exact sequence of Theorem 8.2 induces an exact sequence

@ K, (C)/HEP(C) —2 K068 1
K 2 2 ([g,h] €K: g,h€C) '

2 Coker (SK, (Ra))

By Lemma 8.3(i), for any G, there exists G —» G such that H2(a) = 0.
So H2(G)/Hgb(c) represents the largest possible group Coker(SKl(Ra)),

among all a: G —» G. This is the basis of the following proposition:

Proposition 8.4 Let R be the ring of integers in any finite

unramified extension of ﬁp Then for any p-group G, there is a natural

sur jection

Opc * K (R[C]) — H2(G)/H§b(0),

characterized by the following property. For any extension
1—Kk—&E5Hc—1

of p-groups, for any u € SK (R[G]), and for any lifting i€ Kl(R[a])
of u, 1if we write I"RG(G) = Zri(zi—l)gi (where riGR, ziEK, and

gieé), then
6% (Ope(w) = Ilz{" ") € K/([g. bl ek: ghe®). (6% Hy(€) — K/[E.KD)

Fur thermore, ORG is an isomorphism 1if ORa is an isomorphism for any

p-group ¢ surjecting onto G.

Proof The only thing left to check is the last statement. By the
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above discussion, eRG is an isomorphism if and only if SKl(Ra) =1 for

some surjection G -% G of p—groups. Clearly, this property holds for

G if it holds for any p-group surjecting onto G. u]

8b. Establishing upper bounds

It remains to show that the epimorphism GRG of Proposition 8.4 is
an isomorphism. While lower bounds for SKl(R[G]) were found by studying
Coker(SKl(Ra)) for surjections a: G —» G, the upper bounds will be
established by studying Coker(SKl(f)) when f: H“— G is an inclusion

of a subgroup of index p. The following lemma provides the main induc-

tion step.

Lemma 8.5 Let R be the ring of integers in any finite unramified

extension of @p Then for any pair H<4G of p-groups with [G:H] = p,

if SKI(R[H]) =1, then ORG is an isomorphism.

Proof For the purposes of induction, the following stronger state-—

ment will be shown: for any pair G2 H of p-groups with [G:H] = p,

GRG factors through an isomorphism

B : Coker[SKl(R[H]) - SKl(R[G])]

(1)
—= COker[H2(H)/}r;b(H) - H2(G)/H3b(G)].

Note that O is onto by Proposition 8.4. Let f: H— G denote the

inclusion, and let

SK, (£): SK;(R[H]) — SK, (R[G]), Wh(f): Wh(R[H]) — Wh(R[C]),
Hy(f): Hy(H) — Hy(C), and H/H3P(£): Hy(H)/HE (H) — Hy(G)/H3"(G)

denote the induced homomorphisms. Fix some x € G~H; and fix r€R such
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that Tr(r):lGip (Proposition 1.8(iii)).
b
Choose any § € SKl(R[G]) such that ORG(E) € Im(Hz/H; (f)). Ve
must show that § € Im(SKl(f)). This will be done in three steps. In

Step 1, Theorem 7.1 will be used to show that § = Wh(f)(fc), for some
fo € Wn(R[H]) such that Tp(Fo) = Jo_;r(h -xhx ), and where the

h, €H satisfy [hi,x] € [H,H]. In Step 2, we first identify
Coker(Hz/H;b(f)) with a certain subquotient of H; and then show that
00([£]) corresponds under this identification to hl---hn. Then, in Step

3, this is used to show that £ € Im(SKl(f)).

Step 1 We can assume that H is nonabelian: otherwise SKI(R[G]) =

1 by Theorem 1.14(ii). Fix =z € [H,H] which is a central commutator of
order p in G (Lemma 6.5), set A=Hz, G=0G/z, and let

—f)

H G
o
f—t

be the induced maps. Consider the following commutative diagram:

Coker (SK, (£)) —22— Coker(Hy/H3>(f))

lsm) lﬂ(a)

Coker (SK, (7)) -—‘iﬂ—a COker(Hz/Hgb(?)).

Here, 6 1is induced by ORa (and is assumed inductively to be an iso-
morphism); and S(a) and H(a) are induced by a. In particular,
[E] € Ker(6g) C Ker(S(a)).
Consider the following homomorphisms:
sk, (R[H]) 1), s (R[C]) —BE Coker(sK, (£)) — 1
lsxi(aH) K, (a) lsnz)

SK, (R[A]) s, SK, (R[&]) — Coker(sK, (f)) — 1
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Since S(a)([E]) = 1, there exists 7 € sxl(R[ﬁ]) such that sxl('f‘)(n) =
SK,(a)(§). By Proposition 8.1, we can lift fi to some mn € Wh(R[H])
such that FRH(n) = ra{(l1-z)go, for some a € Z and any desired go € H.

In particular, since z is a commutator in G, we may choose gg such
that go 1is conjugate in G to zgo.

Now set
1={g €G: g conjugate zg} = {g € G : [g,h] = z, some h € G} # &,

and let ~ be the relation on ! from Theorem 7.1. For any g € Q,
either g € H, or [g,h]=z for some h€H (since G/H is cyclic). So

each ~-equivalence class of 1 includes elements of H. By Theorem 7.1,

Ker(SK(a)) = (Exp(r(1-z)(g-h)) : g.h € HN 0)
C (Wh(f)(Tgy(r(e-28))) : g€H, g conj. g in G).
Since Wh(f)(n) = § (mod Ker(SK (a))), this shows that we can write
£=W(f)(fo), where Tp(Fa) = r(1-2)-g;.

and where 85 is conjugate in G to zg; for all i.

Recall that x € G generates G/H. Hence, for each i, there is

some rigp—l such that xrigixﬂri is conjugate in H to zg, . In

particular, FRH(fo) = Zr(gi —xrigixuri) € HO(H;R[H]). By relabeling, we

can find elements hl""’hn € H such that

n
Fag(Eo) = er(hi—xhix_l), and [h,,x] € [HH] (all 1). (2)
i=

Step 2 Now set

K = Coker(Hy/H32(£)) = Hy(G)/(HID(C) , Im(Hy(£))),
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for short, and fix a central extension 1 — K — ¢ —2* G — 1 such
that

6% Hy(G) — K = Coker (Hy/H3 (£))

is the projection (use Lemma 8.3(i)). In particular, Kﬂ[ﬁ,ﬁ] =1
(where B = p7'(H)), since Im(Hy(f)) C Ker(s").

The Hochschild-Serre spectral sequence for 1 — H -—f-) G — Cp -1

(see Brown [1, Theorem VII.6.3]) induces an exact sequence

Hy(C,) - Hl(Cp;Hab) —o, Coker (Hy(£)) — O.

The usual identification of Hl(Cp;—) with invariant elements modulo

norms takes here the form

e ;. xl=h in #®P)  (he€H: [h,x]€[HH])

1'p " (hexbo Lo oxP kP heH)  [HH]-((hx)PxP: heH)

Under this identification, 6(H3(Cp)) = (xp) by naturality (compare this
with the corresponding sequence for 1 — (xp) - (x) — Cp — 1). So

there is an isomorphism

{h€H : [h,x]€[H,H]}

oy

14

> Coker (H,,(£)).
[H,H]-{(hx)P: heH) e

Furthermore,

o?l(l-gb(c)) = (h€H : h conj. xhx 1 in H) 2 {(hx)P : heH);

and so o; factors through an isomorphism

{h€H: [h,x] € [H,H]} ~

= b
: > Coker(H./I2(£)) = K. (3)
’ [H,H]-(h€H: h conj. xhx * in H) er (/i

By construction, for each h,
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o(h) = [B%,87h] (mod [H,H]). (4)

n -1

By (2), Tpy(fo) = Zi=1r(hi-xhix ), where [hy,x] € [H,H] for all

i. Choose liftings Ei’§ €C of hi,x € G. Since Kﬂ[ﬁ,ﬁ] =1, there
are unique elements z, € K such that

[hi,x] =z,

(mod [ﬁ,ﬁ]). (5)
Fix u, € Wh(R[ﬁ]) such that rRﬁ(ui) = r(ﬁi —ﬁii-l + (l-zi)) (use
Theorem 6.6).  Then Wh(B|ﬁ)(ﬂ?=1ui) =fo (mod SK (R[H])). Also,

I’RE(Wh('f)(ui)) = r(l-—zi); and so by the formula in Proposition 8.4,
LS| Hab
0o([£]) = iqlzi €K = Coker(H2/ 5 (£)

Then by (4) and (5), O—I(GO(E)) =

1=1hi :

Step 3 Now by (3), we can write ﬂ?_lhi =ﬁ'hi'”hr'n’ where

he [H,H], and where each h:]. is conjugate in H to xh"ix—'l. Ve may

assume n=m (mod 2) (otherwise just take h|;1+1=1)' By Theorem 6.6, we
n ’

can choose §; € Wh(R[H]) such that rRH(E‘) = r(zi=1hi_zr;=lhj)' Then

1 n

Fpp(EoxEux 101 .er(hi-xhix") - T(E:) + xT(E)x"
1=

#l

m
’ ’ -1 N .
er(hi—xhix ) = 0 € Hy(H;R[H]);

i=

and  §o = [§1,x] (mod SK,(R[H])). It follows that & = Wh(f)(fo) €

Im(SK,(f)), and this finishes the proof. O

The proof that GRG always is an isomorphism is now just a matter of

choosing the right induction argument.
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Theorem 8.6 Let R be the ring of integers in any finite unramified
extension of ﬁp Then for any p-group G,

Opc © SK,(RIC]) — Hy(C)/H3°(C)

is an isomorphism. Furthermore, the standard involution (g g‘l) acts
on SKI(R[G]) by negation.

Proof This will be shown by induction on |G/Z(G)|. Fix any non-
abelian p-group G (SKI(R[G]) =1 if G 1is abelian); and let H< G be

any index p subgroup such that H 2 Z(G). By Lemma 8.3(ii), there is a
surjection ay: G; —» G/Z(G) of p-groups, with H; = a;l(H/Z(G)), such
that Ker(a;) € Z(H,) and H2(a1|H1) =0. Let G be the pul lback

¢ —*—¢

|

G, —3— G/Z2(6)

and set H = a-l(H). Then 1 — K — -§-> H/Z(G) — 1 is a central
extension, so |H/Z(H)| < |G/Z(G)|, and ORﬁ is an isomorphism by the
induction hypothesis. Also, Hz(&) = 0, since a factors through
a;|H;; and so H;b(ﬁ) 2 Ker(H2(E)) = H2(ﬁ) by the 6-term exact sequence
of Theorem 8.2. This shows that SKI(R[ﬁ]) = Hz(ﬁ)/l-l;b(ﬁ) = 0; and Lemma
8.5 now applies to show that QRE is an isomorphism. But G sur jects
onto G, and so eRG is an isomorphism by the last statement in
Proposition 8.4.

By the description of ®RG in Proposition 8.4, for any
[u] € SKI(R[G]), ORG([ﬁ]) = -8([u]). Since ORG is an isomorphism, this

shows that SK1 (R[G]) is negated by the standard involution. O

Theorem 8.6 can in fact be extended to include group rings over

arbitrary finite extensions of ﬁp This does not have the same import-
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ance when studying SKI(Z[G]) as does the case of unramified extensions;

but we include the next theorem for the sake of completeness.

Theorem 8.7 Let R be the ring of integers in any finite extension
F of 6}1 Then for any p-group G,

SK; (R[C]) = Hy(C)/H3"(C).

If EJF is a finite extension, and if S CE 1is the ring of integers,
then

(i) i, : SKI(R[G]) = SKI(S[G]) (induced by inclusion) is an

isomorphism if E/F is totally ramified; and

(1i)  trf : SK(S[C]) —— SK;(R[G]) (the transfer) is an

isomorphism if E/F 1is unramified.

Proof Note first that for any finite extension E of @p, there is
a unique subfield F C E such that F/ﬁp is unramified and E/F is

totally ramified. To see this, let p C S CE be the maximal ideal and

ring of integers, and set m = |(S/p)*|. Let Ho be the group of m—th

roots of unity in E, and set F = Qp(um) CE and R = Zp[um]. By
Theorem 1.10, F/@)p is unramified, and R CF 1is the ring of integers.

Also, E/F 1is totally ramified since |[R/pR| = |S/p| = mt+l.
In particular, this shows that it suffices to prove (i) and (ii)

under the assumption that F 1is unramified over @ . If E is also

unramified, then the following triangle commutes by the description of

) and

G ORG in Proposition 8.4:

sk, (s[e]) —=5 sk, (R[eD)

Hy(G)/H3°(G).
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So the transfer is an isomorphism in this case.

Now assume that E/F is totally ramified (and F/ﬁsp is unramified).

Let pC S be the maximal ideal. Then

Ker[i*: sk, (R[]) — SKI(S[G])]

(@]

Ker|SK, (RICT) — K, (R/pC]) = K, (s/p[C]) ]

(]

torspIm[Kl(R[G],p) — KI(R[G])].

Using the logarithm homomorphism log: KI(R[G],p) _— HO(G;pR[G]) of
Theorem 2.8, one checks easily that KI(R[G],p) is p-torsion free if p
is odd, and that the only torsion is {#1} if p = 2.

Thus, in either case, i* is injective. The surjectivity of i, is

now shown by induction on |G|, using Theorem 7.1 again. For details,
see Oliver [2, Proposition 15]. 0O

We end the section by showing that the isomorphisms ORG are

natural, not only with respect to group homomorphisms, but also with

respect to transfer homomorphisms induced by inclusions of p-groups.

Proposition 8.8 Let R be the ring of integers in any finite

extension of ﬁp Then for any pair H C G of p-groups, the square

Orc

SK, (RIC]) — 5 H,(C)/H3°(C)

trfSK trf

0
SK, (R[H]) — H,(H)/H3"(H)

H

commutes. Here, trfSK and trf

homomorphisms for Kl and H

g ore induced by the usual transfer

59 respectively.
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PN

Proof By Theorem 8.7, it suffices to show this when R = Zp. Using

Lemma 8.3(ii), choose an extension

1 —>K—¢He—1, fH=alm, % = aly

of p-groups, such that K € Z(H) and Hy(ao) = 0. Then 8%°: Hy(H) = K
is injective, and SKl(ip[ao]) =1 by Theorem 8.6. By the description of

® 1in Proposition 8.4, it will suffice to show that the following squares

all commute:

2 5 Ay P T'e ~ A
K, (2,06]) > K (2 [6]) —— K, (2,[8]) —E— Hy(@2, [E])
trfSK (1) ter (2) trfﬁ (3) lResg
~ ~ Qo A Yo rH ~ A
S, (2,[H]) — K, (Z,[H]) — K, @ [{]) — Hy(H:2 (i)
= o “a o 8" b
Hy(G;1,) —— K/([g,h] €K: g,hel) Hy(G)/H (C)
Resg Nom (5) trfy

- © ~ %o
Ay(f;1, ) —20— K/([g.h]ek: g,hefl) ——— B (m)/H (R)

~

Here, Resg is the homomorphism of Theorem 6.8;
Ay(&1) = Ker[uo(é;ip[é]) — Ho(c;ip[c])],

r
i ~ ~
wa(Zri(l—ai)gi) = l'la:l (r:l € Zp’ a, € K, g4 € G),

(and similarly for HO(H;Iao) and wao); and No, is the norm map for
the conjugation action of G/H on K. The commutativity of (1) and (2)

is clear, (3) commutes by Theorem 6.8, and (4) by definition of Resg.

The commutativity of (5) follows since ter splits as a composite
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Hy(G) —His Hy(GZ(G/H)) —Z— Hy(H)

~

(see Brown [1, Section III.9]); and similarly for NG/H' Here, f; and

f2 are induced by the inclusions 1ii,i>: Z < Z(G/H), where 1i,(1) =

ngG/Hg and i(1) =1 (note that i, is only Z[H]-linear). D

8c. Examples

It turns out that H2(G) need not be computed completely in order to
describe H2(G)/H;b(G) = SKl(ip[G]). In practice, the following formula

provides the easiest way to make computations and to construct examples.

Lemma 8.9 Fix a central extension 1 — K — G 2 ¢ — 1 of

p-groups, and define
AG) = {gah € Hy(C) : g,h € G, gh = hg} € Hy(6)

(a subset of Hz(é)). Let &% Hz(a) —> K be the boundary map in the

5-term homology exact sequence (Theorem 8.2). Then, if R 1is the ring of

integers in any finite extension of ﬁp,
SK, (R[G]) = H2(G)/H;b(c) = Ker (8%)/(A(G) N Ker(5™)).
In particular, SKI(R[G]) =1 if Hz(a) =0,

Proof Consider again the 6-term homology exact sequence for a

central extension (Theorem 8.2):

a

K®cP —1 Hy(G) Hy(a), Hy (@) b K — P @b,

Here, 7(x®g) = x~g € l-gb(G) for any x € K and any g € G. So

Ker(Hy(a)) € H3°(C). Furthernore,
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Hz(a)(Hgb(G)) = {g~h € Hz(ﬁ) : g,h 1lift to commuting elements in G)

= (A(G) N Ker(6%));
and the result follows. u]

As a first, simple application of Lemma 8.9, we note the following
conditions for SKl(ip[G]) to vanish.

Theorem 8.10 Let R be the ring of integers in any finite extension
of ﬁp Then SKI(R[G]) =1 if G 1is a p-group satifying any of the

following conditions:

(i) there exists H 9 G such that H 1is abelian and G/H is

cyclic, or
(ii) [G,G] is central and cyclic, or
(iiit) G/Z(G) is abelian of rank ¢3.
Proof See Corollary 7.2 and Oliver [2, Proposition 23]. 8]

The smallest p-groups G with SKl(ip[G]) # 1 have order 64 if

pP=2, or p5 if p 1is odd (see Oliver [2, Proposition 24]). The

following examples are larger, but are easier to describe.

Example 8.11 Fix n > 1, and set

n n n

n
G = <a,b,c,d : [G,[G,G]] =1 = a? =bP =P =P = [a,b][c,d]).

Z/pn .

IR

Then sxl(ip[c])

Proof By construction, G sits in a central extension

1 — (cpn)5 — 2 (cpn)‘1 — 1;
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where 6%: Hz(Gab) — (Cpn)5 is surjective with kernel

Ker(6%) = (a~b+c~d) & Z/p".

Then A(Gab)ﬂKer(Ga) = 1, in the notation of Lemma 8.9, and the result
follows. o

Recall that for any G and n, GkCn denotes the wreath product
n ces b %
G an. The next proposition describes how Hz(G)/H; (G) and SKI(Zp[G])

act with respect to products and wreath products.

Proposition 8.12 For any finite groups G and H, and any n>1,

IR

Hy (G x H)HED(G x H) & Hy(€)/HED(C) @ Hy(H)/H3P(H), and

Hz(czcn)/xf;b(czcn) = H2(G)/H§b(G)-

In particular, if R is the ring of integers in any finite extension of
ﬁp, and if G and H are p-groups, then

SK, (RIGxH]) = SK, (R[G]) ® Sk, (R[H]) and SK (R[GIC]) & SK,(R[CI).
Also, SKI(R[G]) =1 if G is a p-Sylow subgroup in any symmetric group.

Proof See Oliver [2, Proposition 25]. The only point that is at all
complicated is that involving G?Cn.

For 1<i<n, let f;: G — GkCn be the inclusion into the i-th

factor of G°. Fix x € (GtCn)\Gn such that X" = 1, and such that

x(gly---ygn)x_l = (g2,---,gn,gl) (for all (g1’°--’gn) € Gn)°

Define

T = (f:i(e)f;(h) : g.h € G, 145) CHY(GC)).
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A straightforward argument using the Hochschild-Serre spectral sequence
(see Brown [1, Theorem VII.6.3]) shows that f; induces an isomorphism

Fi,, ¢ Hy(G) —— Hy(GIC )/T.

Then l-gb(GZCn)/T is generated by fi*(l-gb(c)) (i. e., elements g~h

for commting g,h € Gn); as well as all gx~h for g,h € 6" such that
[ex,h] = 1. For elements of the last type, if g = (g:1,...,8n) and
h = (hy,...,h,), then a direct computation shows that

b
gxrh = £ (g1 ga)~hi) € £1,(H3 (6));
. . . b ~ b
and so f;  induces an isomorphism H2(G)/H; (G) = 1{2(GZCn)/H;1 (GZCn). 1]

By Theorem 7.1, if 1 — (z) — ¢ -H g —1 is any central

extension of p-groups such that [zl = p, then

Ker(SKl(ipa)) = <Exp((1—z)(g—h)): g,h€ﬂ>. Q= {gGE: g conj. zg})

Also, for any r€ip, [Exp(r(1-z)(g-h))] depends only on r (mod pip),

and on the classes of g and h modulo a certain equivalence relation ~
in 1. It is natural now to check where these elements are sent under the

isomorphism 9(‘;’ This is done in following theorem, which describes one
case where elements in SKl(ip[E]) can be constructed or detected

directly (in contrast to the very indirect definition of 9(‘;’ in

Proposition 8.4).

Theorem 8.13 Fix a p-group G and a central commutator z€G of
order p, and let a: G —» G/z denote the projection. Let R be the
ring of integers in any finite extension of ﬁp, let pCR be the

maximal ideal, and let @&: R[G] — le[G/z] be the epimorphism induced

by a and by T:R-—»R/p-ﬁ»mp. Set

Q= {g€G : g conjugate to zg} = {g€G : [g,h] = z, some hE€G}.
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Define functions
X a e b
F (/z) — Hy(G/z)/(Ker(6%) N A(G/z)) «—— H2(G)/H; ©)

where x(g) = a(g)~a(h) for any g,h € Q@ such that [g,h] = z; and

where a, 1is induced by Hz(a) (an injection by Lemma 8.9). Then for

any [u] = [1+ (1-2)E] € Ker(SKl(Ra)), if we set Log(u) = (1-z)n, then
&(n) = &(E-€°) € F (Vz) and

0a([u]) = ol o x(a(m) = a0 x(&(E - £7)).

Proof See Oliver [2, Proposition 26]. Note that if ~ 1is the
equivalence relation defined in Theorem 7.1, then x factors through
!Fp(ﬂ/~). This then gives a new interpretation of the inequality

rkIFp(Ker(SKl(Ra))) <l -1

of Theorem 7.1. u}
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¥e now turn to the problem of describing Cll(Z[G]), when G 1is a

pgroup and p is any prime. This question is completely answered for
odd p in Theorem 9.5, and partly answered in the case of 2-groups in
Theorem 9.6. Conjecture 9.7 then suggests results which would go further
towards describing the structure of Cll(Z[G]) (and SKI(Z[G])) in the

2-group case. Some examples of computations of Cll(Z[G]) are given at

the end of the chapter, in Examples 9.8 and 9.9.

All of these results are based on the localization sequence
s e e
K3(2,[6]) —= c_(a[c]) —— C1,(Z[¢]) — 1

of Theorem 3.15. The group CP(Q[G]) has already been described in

Theorem 4.13. So there are two remaining problems to solve before

Cll(Z[G]) can be computed: a set of generators must be found for
K;(ip[G]), and a simple algorithm is needed for describing their images
in CP(Q[G]). The first problem is solved (in part) in Proposition 9.4,

and the second in Proposition 9.3.

If Q@G] = ﬂli<=1Ai, where the Ai are simple, then CP(Q[G]) =

nli(—lcp(Ai)’ and the Cp(Ai) have been described in terms of roots of

unity in Z(Ai)’ The following theorem helps to make this more explicit,
by listing all of the possible "representation types" which can occur in a

group ring of a p-group: 1i. e., all of the isomorphism types of simple

summands. As usual, when p is fixed, then En (any n20) denotes the

root of unity § = exp(2ri/p") € C.

Theorem 9.1 Fix a prime p and a p-group G, and let A be any
simple summond of Q[G]. If p 1is odd, then A is isomorphic to a
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matrix algebra over Q(fn) for some n20; and K;(Xp)(p) = (fn) =
Cp(A). If p=2, then A is a matrix algebra over one of the division

algebras D in the following table:

D KE(A2) C(A) = Cz(A)
Q {$1} 1
Q(E,) (n22) (£,) (£.)
Qg +E0") (n23) {1} 1
Qg -§-*) (n23) {1} {1}
Qg .J) (CH) (n22) {1} {1}

Proof See Roquette [1]. In Section 2 of [1], Roquette shows that
the division algebra for any irreducible representation of G is
isomorphic to that of a primitive, faithful representation of some
subquotient of G; and in Section 3 he shows that the only p-groups with
primitive faithful representations are the cyclic groups; and (if p = 2)
the dihedral, quaternion, and semidihedral groups. For each such G,
Q[G] has a unique faithful summand A, given by the following table:

o | | ey |

Ay | meess | e | meE D)

n+l) |

Q2 n+l)

SD(2

The computations of K;(Xp) and Cp(A) follow immediately from Theorems

4.11 and 4.13. O

We next turn to the problem of describing ¢({g,u}) € CP(Q[G]), for
certain Steinberg symbols {g,u} € K;(ip[c]) The homology group
Hl(G;Z[G]), where G acts on Z[G] via conjugation, provides a useful

bookkeeping device for doing this. Note that for any G, if g4,...,8x

are conjugacy class representatives for elements of G, then

ab

k k
H,(G;Z[G]) = iGBIHI(CG(g;))‘?i’Z(ga) B ,GBICG(E‘) 8Z(g:)-
= 1=
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In particular, Hl(G;Z[G]) is generated by elements g®h, for commuting

g,h € G.
Let

o + Cplaleh —— 1 i),

be the isomorphism of Theorem 4.13: where Q[G] = Hl;:lAi’ Ki = Z(Ai)’

and IC {1,...,k} 1is an appropriate subset.

Definition 9.2 Fix a prime p and a p-group G, and define a
homomorphism

IR

Yo * Hy(GiZ[C]) = H,(G:Z [6]) — C,(Q[C])

as follows. VWrite Q[G] = Hli(—lAi’ where each Ai is simple with
irreducible module Vi and center Ki' Let 1c¢C{1,...,k} be the set of
all 1 such that Cp(Ai) #1; 1. e., such that Di = EndA. (Vi) ¢ R. For

each i € I, set

€., =
1

{2r“1+1 if p=2 and K Q)

1 otherwise.
Then, for any commuting pair g,h € G, set

vo(28h) = o&l((detKi &V ) ) € ¢, (@rel). (P = (xev;:hx=x)

Note in particular the form taken by ‘pG when G 1is abelian. Fix

such a G, write Q[G] = Hli(—lKi where the Ki are fields, and let

X G —» My be the corresponding character. Let e, be defined as in

i
Definition 9.2, and set I = {i: Ki ¢ R}. Then

ooV (g8h) = (¥, (g8h)),y € iEI(pKi )y
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x; (@) if x,(h) =1
vwhere \#i(gOh) = . i ) £ 1
Xy .

Vhen p 1is odd, the \IIG are easily seen to be natural with respect

to homomorphisms between p-groups. This is not the case for 2-groups:

naturality fails even for the inclusion 02 — C4.

We now focus attention on certain Steinberg symbols in K;(ip[G]):
symbols of the form {g,u}, where g € G and u € (ip[CG(g)])* (i. e.,

each term in u commutes with g). The next proposition describes how

Vo 1s used to compute the images in C(Q[G]) of the {g,u}. Afterwards,
Proposition 9.4 will show that when p is odd, Im(ac) is generated by

the images of such symbols.

Proposition 9.3 Fix a prime p and a p-group G. If p =2, then

let Al""'Ae be the distinct quaternionic simple summands of Q[G];

i. e., those simple summands which are matrix algebras over Q(fm,j) for

some m. Define Cg(Q[G]) ng(Q[G]) by setting

Q 1 if p is odd
CP(Q[G]) = ne o (A oF _ 2
i=1 P 1) p= *

Then, for any g € G, any H C G such that [g,H] = 1, and any
u e (2",

eal{g.u}) = ¥(8OTy(w)  (mod CX@LCD).

Proof This is a direct application of the symbol formulas of Artin
and Hasse (see Theorem 4.7(ii)).

Fix a simple summand A of Q[G], let x: Q[G] — A be the
projection, and let V be the irreducible A-module. Let K = Z(A) be
the center, and assume that K has no real imbeddings. In other words,

K=aq() (»">2) or Q(EI.-E;I) (p=2, r23); where f_= exp(2wi/p")

as usual. Let '\ and \IIA denote the composites
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c.a e G (x)
¢y ¢ Kp(@ [€]) —— c (@[C]) — C,(A), and

¥, ¢ Hl(G;l[G]) e CP(Q[G]) e Cp(A).
We must show that wA({g,u}) = \PA(gGFH(u)) for any g,u as above.

Set p" = exp(G), and let L = K(E) = Q(E ). Define

{1 if p>2, 0or p=2 and KEQ(fr-f;l) (r 2 3)
K] 142" if p=2 and K2QE) (r22)

and similarly for € Set W = L@KV, and let LUERRREL N € (En) be the
distinct eigenvalues of g on W. Write W = VIIO me’ where Vlj is
the eigenspace for nj. Then, for each h € HC CG(g), the action of h

on W leaves each W, invariant.

J
Write
k k 1.p .
Log(u) = 1§1aihi’ I(u) = 1§1ai(hi - I;-hi). (hy €H, a € Qp)
Then by definition of ,
n T;e
oo haEe Ty = T (e, (1)

where g, Cp(A) = Hy is the norm residue symbol isomorphism, and where
for each j,
X hiy 1 hE
T, = .[di W.)7') - =-di V) ] 2
5= 2 agam ™y - Seaim (™) (2)

Note that TJGip for all j, since FH(u) € ip[H] (modulo conjugacy).

Now let «pk denote the composite
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" 7] 1®
o ¢ K@ [6]) —2= ¢ () —— c as).
Then
L m
aonwA({g,u}) = jEl(nJ,detL(u,WJ))L.

The Artin-Hasse formula (Theorem 4.7(ii)) takes here the form

m
on o y(le) = T npes, 3)

where for each j,

7]
|

= l—)lﬁ'TrL/Q(log(detL(u,Wj))) = #‘TrL/Q(TrJ(log(u)))
1 k 1 k
= ;ﬁ-TrL/Q(TrJ(iélaihi)) = F.Trum(iélai.xj(hi)). (4)

Here, Trj: EndL(WJ.) — L is the trace map, and )(J.(h) is the character

(in L) of h on VIJ..

For each { € (]-LL)p = <§n>’

1
1-= if [ =1
P ¢
Lo, @ ={-%  if 1g1=p
P L/Q P
0 if 1Tl 2 p2.

In particular, for each j and each h € CG(g),
1 . 1 .. hP
SweTrpq(x;(h)) = dim (W) - S-dim (W))").
Substituting this into (4) and comparing with (2) now gives

k
. hyy _ 1, by -
s; = i§1ai[dm’“((wj) ) - 5edim (W) )] =T
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Now consider the diagram

c, 5 ‘A R %K
Ko(Z,[6]) —"— C_(A) —z— (), —=— C,(K)
L 10 (5a) I (5b) inel (5)
A7 |
o l

LOA A
C (L8 A) —F— (n), —=— C,(L).

Here, (5a+5b) commutes by Proposition 4.8(ii), and so there is a
homomorphism ¢ which makes each square commute. By (1) and (3),

s T;ex i S;eL
00, ({g.u}) = jEl(nj) and  coo,0¥, (g8 Ty (u)) = jEl(nj) ;

and Sj = Tj for all j. So the relation wA((g,u}) = \#A(gGI‘H(u)) will
follow, once we show that (({*) = {*' for any ( € (pK)p.

It suffices to do this when [L:K] =p; 1i. e., when L = Q(fn), and

K = Q(fn_l) or Q(fn—f;ll). Consider the following diagram:

(L) trf C_(K) incl C (L)

laL Jax

(b)), — O%), —

124 'UO
R '©

where T(f ) = (§n)q if g = [(),:0g) ). The left-hand square

commutes by Theorem 4.6. The composite inclo trf is induced by the
(L,L)-bimodule L@KL (see Proposition 1.18), and is hence the norm

homomorphism for the action of Gal(L/K). If K = Q(fn__l), then

p-1 s -1 n-1
LE ) = or(g ) = (T (g P ) = (et
i=0
= ()P =8 = P if p is odd
= (1+277%) (242771 _ - L =
= (&) =f ;=@ ) if p=2.
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If, on the other hand, K = Q(’g‘n—-f;l), then € = 1,
C-1F = cor(E) = () (-E;) = -1 = (D)%

and this finishes the proof. o

The remaining problem is to determine to what extent K;(ip[c]) is

generated by symbols {g,u} of the type dealt with in Proposition 9.3.
¥hen G is abelian, then by Corollary 3.4, K;(ip[c]) is generated by

such symbols (and {-1,~1} if p = 2). The next proposition gives some
partial answers to this in the nonabelian case. Recall that for any ring
R and any ideal I CR, we have defined K2(R,I) = Ker[K2(R) - K2(R/I)]

(and similarly for K;)

Proposition 9.4 Fix a prime p and a p-group G, and let R be

the ring of integers in some finite unramified extension F 2 ﬁp Then
(i) For any central element 2z € Z(G),
K;(R[G],(I—Z)R[G]) = <{g,l-r(l—z)ih} :g,h€G, gh=hg, r €R, i l>.

(it) For any H<G such that HN[G,G] =1, {if a: G —» G/H

denotes the projection, and if I_ = Ker[ip[c] — ip[c/n]], then
K;(ip[c],xa) = <{g,l—r(l—z)h} :gh€G gh=hg, r€R, z € H>.
(iit) If p is odd, then
KSRIGD® = ({80} + 5 € 6, v € K RIGED").

Here, K;(R[G])+ is the group of elements in K;(R[G]) fixed under the

standard involution.
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Proof The most important result here is the first point; all of the
others are easy consequences of that. The main idea when finding

generators for K;(R[G],(I—Z)R[G]) is to construct a filtration

(1-2)R[6] = 1,21, 2 I, 2

1 92 e

where n:—llk = 0; and such that for each k, Corollary 3.4 applies to
give generators for Kz(lp[G]/Ik,Ik_l/Ik). These generators are then
lifted in several stages to K;(ip[G]). The exact sequences for pairs of

ideals are used to show at each stage that all elements which can be
lifted are products of liftable Steinberg symbols; and that the given
symbols are the only ones which survive. The complete proof is given in
Oliver [7, Theorem 1.4].

(ii) If H<4 G and HN[G,G] =1, then a pair of elements g,h € G

commutes in G 1if and only if it commutes in G/H. Hence, if

a}
=+
-
[a}
[(a}
"
=+

is any sequence such that Hi 4G and |[H,| = pi for all 1i; then all

of the symbol generators given by (i) for each group
C 4 A
Ker[Kz(Zp[G/Hi]) — K;(ZP[G/H1+1])]
1ift to symbols in K;(ip[c]).

(iii) Now assume p 1is odd. For each h€G and each Tre€R,
define u(rh) € KI(R[(h)])+ such that F(h)(u(rh)) = %r-(h+h—1) (see

Theorem 6.6). Note that this element is unique, since KI(R[(h)])zp) is

torsion free by Theorem 7.3.

Recall the formula for the action of the standard involution on a
symbol in Lemma 5.10(i). In particular, {g,u} = {g.d) for any commuting
g€G and u € (R[G])*. So {g,u(rh)} € KZ(R[G])+ for any commuting

g.,h € G, and the homomorphism
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6 : H (G:R[C]") — KZ(RICD),

-1
defined by setting BG(gQ r-h+g ) = {g,u(rh)} for any commuting g,h€G

and any r€R, 1is uniquely defined and natural in G.

Ve claim that BG is surjective. This is clear if G = 1: K;(R) =

1 since M, ¢ R. If IGl > 1, then fix a central element z € Z(G) of
order p, set G = G/z, and assume inductively that 0& is onto. Set
Iz = (1-z)R[G], and consider the following diagram:
+ Ao At O A
H, (G:R[GT") — H (&:RE]") — H (&1 )
o, (1a) lee (1b) LI (1)
+ + Aqnt K
K5(R[G],1,)" — K5(R[G])" ——— KS(R[E])" — K, (R[C]. 1)

where L is the logarithm homomorphism constructed in Theorem 2.8

((Izp) c pIz). Square (la) commutes by the naturality of 6. The bottom
row is part of the relative exact sequence for the ideal Iz (see Theorem

1.13). The upper row is part of the homology sequence induced by the

conjugation G-action on the short exact sequence
o——>Iz——>R[c]—>R[&]—»o

(and note that Hl(G;R[G]) sur jects onto Hl(a;R[G])).

To see that square (1b) commutes, fix any commuting g,h € 6
together with liftings g,h € G. Then, for any r € R,

LoaKoea(g ® r&;) = Lod, ({2,u(rh)}) = Log([g,u(rh)]).

Set H = (z,h), an abelian group. Then, in (1-z)R[H],
Log([g,u(rh)]) = Log(g'U(rh)'g_l) - Log(u(rh))

= g-Log(u(rh))-g_l - Log(u(rh))
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(1 - 30)(e-Loguirn)) g7 - Logurh)))  (@(1-2) = 12P = 0)

g-T(u(rh)) g} - T(u(rh))

hh* -1 heh7!

o a ﬁ+ﬁ“)
gr—s STy = BH(g ®r 5 )

The surjectivity of OG now follows from the commutativity of (1),

together with the fact that Ko(R[G].I )" € In(8;) (by (1)). ©

The proof of Proposition 9.4(i) can also be adapted to show that for

any prime p, any p—group G, and any i21,

({g.1+p’h} : g,h€G, gh=hg) if pl>2

PPN i
(2 [61.p") =
K p[ 1.p) {({_1,-1}, {g.1+#2h} : g,h€G, gh=hg) if p'=2.

The description of Cll(Z[G]) when G 1is an odd p-group is now
immediate.
Theorem 9.5 For any odd prime p and any p-group G, the sequence

Yo e
Hy(G5Z[C]) —— C,(€[C]) —— €1 (Z[C]) — 1

k A where each Ai is simple

is exact. In other words, if Q[G] = "i—l i

with center Ki’ then

K
c1,(Z[e]) = @ker[aco\uc : Hy(G;Z[6]) — iﬂl(uKi )p]

k
& [."1‘”K; ),1/{oo¥(e8h) : g.h € G, gh = he).
1=

Proof Consider the localization sequence

5 ? 3
K3(2,[61) — ¢ (a[c]) — C1,(2[c]) — 1
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oq and 6G both commute with

the standard involution, and Cp(Q[G]) is fixed by the involution by

of Theorem 3.15. By Proposition 5.11(i),

Theorem 5.12. Hence

In(eg) = 9o(K5(Z,[G])")

= (pg{g:u}) : g €G, ue Kl(ip[cc(g)])") (Prop. 9.4(ii1))
= (¥oe®x) : g € G, x € I(K (2 [C@ D)) (Prop. 9.3)
= “‘G(Hl(c;ip[c]+))- (Theorem 6.6)

But \PG(g@h) = \bG(g@h_l) by definition, and so Im(:pG) = Im(\llG). o

Note in particular that by Theorem 9.5, for any odd prime p and any
p—group G, the kernel of 6G: Cp(Q[G]) —» Cll(Z[G]) is generated by

elements which come from rank 2 abelian subgroups of G. In other words,
if o denotes the set of rank 2 abelian subgroups H € G, then there is

a pushout square

® C (@[H]) @ c1, (z[H])
Hed l Hed l
C,(@[G]) C1,(Z[G])-

If, furthermore, Cll(Z[H]) =1 for all H€ o (and by Example 9.8 below

this is the case whenever sz xsz ¢ G), then
c1,(2[e]) = Coker[H% ¢, (@[H]) — ¢, (@[] -

In the case of 2-groups, the situation is more complicated. The
following theorem gives an algorithm which completely describes Cll(Z[G])

when G is abelian, but which only gives a lower bound in the nonabelian

case.



CHAPTER 9. Cl,(Z[G]) FOR P-GROUPS 217
Theorem 9.6 Fix a 2-group G, and set
X = (2g, (1-g)(1-h): g,h € G) C Z[C].
Write Q[Gab] = ﬂk K. where the Ki are fields, set

i=1"1

9 ={1<ick : K, €R} = {1<1<k : K1$Q}:

and for each i let Xy G — (uKi )2 be the character induced by

projection. Then if G is abelian, the sequence
Yo %
G®X —— C(Q[G]) —— Cll(Z[G]) — 1
is exact; and so
K, (2[61) = 1, @[eD) = [ [ i Wogovg(e®n): £€C, x€X).

Otherwise, aG induces a surjection

v
c1,(2[6]) —> Coker[Hl(G;Z[G]) —£, c(are1) B2 c(are™y)]
= Coker[acabow : H,(6;2[6]) — igiji].

Proof If G 1is abelian, then by Corollary 3.4, applied to the
augmentation ideal I = (g~1: g€G) C iz[G],

KS(Z,[C]) = K(Z,) @ K(Z,[G1,1) = ({-1,-1}) ® ({g.u} : g € G, u € 1+I).
Also, by Theorem 6.6, since (1-g)+ (1-h)=(1-gh) (mod I®?) for g,h € G,
F(1+1) = Ker[w: Hy(G;I) — Gab] = {Zaigi: 29'1:0' Hg?" =1} = 12,

Hence, by Proposition 9.3,
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Im[¢G: KS(2,[G]) — C(Q[G])] = (Wg(8®T(u)) : BEC, u€ 1+I) = Y (GO I?).

The relations WG(gQg) =1 and WG(th) = wc(geh_l) show that

WG(GQ 1?) = WG(GQX); and hence that

C1(2[6]) = Coker(v) = QD G(COX) = [ T (g )Vogorg(GoX).

If G is nonabelian, let a: G — Gab denote the projection, and
set Ia = Ker(i2[G] —_— %[Gab]) Consider the following homomorphisms:

C

a a
KS(2,[C) 5 KS(2,[¢*) —2— K, (2,[61.1))
Fa
5 b 5 .ab %
H,(GiZ,[G]) — H,(¢*";Z,[¢*"]) Hy(Gs1,)-

Both rows are exact, and Fa is the homomorphism of Theorem 6.9. For any

£€G and u€Z,[™], and any liftings to & € G and U € Z,[C],
(@, ({g.u}) = T ([&.8])

~ ooy 1 ~ .
= g~I’G(u)~g - I’G(u) (by definition of Ia)

aH(g ®r(u)).

Hence, for any x € 1(;(22[0]), if we write
c r k Gab N Gab »*
K@) = L™ gy (g, € ¢, u € (Z,0*°D%)

(using Corollary 3.4), then

K K
aH(izlgier(ui)) = Faoaa(iﬂl{gi,ui}) = T 08 _oKS(a)(x) = 1.
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In other words,

k
C(a)o¢G(x) =¢ b(K;(a) (x)) b( 121g1’ ® F(ui)) (Proposition 9.3)

@ G

€y b(Ker(aH))

@ C(a)ovg(H, (6:2,[61)).

So there is a surjection

‘P
C1,(Z[6]) —» Coker[KS(2,[6]) —— Cy(ac]) ~X%» ¢, (a[c®®)) ]

X v
—— Coker[H, (6:2,[€]) —2— ¢ (arc]) ~<2» ¢, (are®®y) |;

and this finishes the proof. o

Recall Conjecture 6.13: that for any p-group G, there should be an

exact sequence
Hy(6) —— Wh(Z [6]) —2— H,(G:Z [G])/(eoe) —2— ()

which is natural with respect to group homomorphisms. This would still

not be enough to give a general formula for Cll(Z[G]) in the 2-group

case (for reasons discussed below), but it does at least suggest the

following approximation formula:

Conjecture 9.7 Fix a 2-group G, and write Q[G] = Hl =145 where

each Ai is a matrix algebra over a division algebra Di with center

K.. Set
i
J:(i:Dig[R} and 3:(1:1(1@[»!}

(so i € §~¢ if and only if Di is a quaternion algebra). Define
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Qe = I oA co el ad@el = a,cxerel)) ¢ c1, (z61);
2 = i€3\$2 i’ = 72 ! 1 = UGY2 = 1 !

and let

¢I al
H)(GiZ[G]) —— C,(QC1)/C(A[6]) —— Cl,(Z[c])/C1](ZI6])

be the homomorphisms induced by \#G and 6G, respectively. Then there

are homomorphisms
6% 13P(6) — c1 @en/cf@e), 8 Hy(e) — sk @)/ @eD,

such that the following are pushout squares:

H, (G:Z[C]) ——2—— K3°(G) « » Hy(G)

% " i
a ’

c,(are1y/care]) — 1, @en/afae)) — sk, @e1/aae).

To see the connection between Conjectures 9.7 and 6.13, assume that

Conjecture 6.13 holds, and consider the following diagram:

KS(2,[G1) — 2 H, (6;2,[C1)/(e0) ——2— H°(6) — 0
Elid 14,('; iezb
n lp, al
KS(2,[61) —— c,(@[e1)/cHarel) —— c1 zren/crfae) — 1.

Both rows are exact; and the left-hand square commutes on symbols {g,u},
when u € (22[Cc(g)])*, by Proposition 9.3 (note that T2({g,u}) =

g®l(u)). If T, 1is also natural with respect to transfer homomorphisms
(see Oliver [6, Conjecture 5.1] for details), then the relation

4p(’; = \#(’;ol"z can be reduced to the case where G is cyclic or

semidihedral; and this is easily checked. The first part of the
conjecture would then follow immediately.

The second part of the conjecture (the existence of © defined on
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H2(G)) is motivated partly by the isomorphism
SK, (Z[G1)/C1,(Z[C]) = Hy(G)/H3>(C)

of Theorem 8.6; and partly by the existence of homomorphisms

Hy(G) — LS(Z[C]) —— fi' (2/2:sK, (Z[G]))

defined via surgery. There is some reason to think that this surgery
defined map can be used to show that Oab, at least, is well defined.
This conjecture seems at present to be the best chance for getting

information about the extension

1 — C1,(2[G]) — K, (Z[C]) — SK (Z,[6]) — 1

when G is a 2-group. In fact, if the conjecture can be proven, it
should then be easy to construct examples of G where this extension does
not split. In contrast, it will be shown in Section 13c that this
extension always splits when G 1is a p—group and p is odd.

There seems to be no obvious conjecture which would describe

Cl 1 (Z[G]) or SK1 (Z[G]) completely. The problem with including

quaternionic components in the above diagram is that when G=(a,b)=Q(8),
for example, the element x = {a?,I"'(l+atb+ab)} € K;(iz[G]) has the

property that TI'z(x)=0, but 1pG(x);£1.

There are, however, some other cases which can be handled with the
present techniques. For example, if G 1is a 2-group such that [G,G] is
central and cyclic, then K;(iz[G]) can be shown to be generated by

{-1,-1}, and symbols {g,u} for g € G and u € (iz[CG(g)])*. Using
this, the image of K;(iz[c]) in Cz(Q[G]) can be described — in

principal, at least — also when Q[G] contains quaternionic components.

Another class of nonabelian 2-groups for which Cll(Z[G]) can be

computed using Proposition 9.4 is that of products GxH, where H is
abelian and Cll(Z[G]) is already known. Fix such G and H, and set
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I-= Ker[Z[GxH] — Z[G]] and  Ig = Ker[Q[GxH] — o[c]].
Then

Cl,(Z[GxH]) = CL,(Z[G]) ® C1 (Z[GxH],I);

and using Proposition 9.4(ii):

Cl,(Z[GxH],I) = COker[K;(i2[cxH],f2) — C(Q[GxH],IQ)]
= C(Q[G><H].IQ)/(wG((g,h(l—z)h}): z€H, g,h€GxH, gh=hg).

A special case of this will be shown in Example 9.10 below.

We now look at some more specific examples of computations. The case
of abelian p-groups will first be considered.

It will sometimes be convenient to describe elements in C(Q[G])

using the epimorphism ?G: RC(G) —» C(Q[G]) of Section 5b — or rather
its projection }G : RC(G) —» C (Q[G]) to p-torsion. Recall the
P P
description of }G (but adapted to }G p) given in Lemma 5.9(ii). For
’

any irreducible C[G]-representation V, let A be the unique simple

summand of Q[G], and let a: K = Z(A) —— € be the unique embedding,

such that V 1is the irreducible C@aKA-module. Then ?G p([V]) € Cp(A).
’

If Cp(A) ¥ 1, if 0, Cp(A) = (“K)p is the norm residue symbol

isomorphism, and if p" = |(pK)p|, then

Fo p(IVD) = 0ploa (E) € C(A).  (F, = exp(2ri/p"))

Example 9.8 Fix any prime p. Then

(i) SKI(Z[Cpn x Cp]) =1 forany n 20, and

(11) SK(ZC 2 x C21) = @p)* .
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Proof The two computations will be carried out separately. To
simplify the notation, the groups CP(Q[G]) are written additively here.

Step 1 For each n, write G = Cp" x Cp = {g,h), vhere Igl =p"

n-1

and |hl = p. VWe identify Gn—l = Gn/<gp ) for each n. Then
SKI(Z[GO]) =1 by Theorem 5.6. Also, if p = 2, then SKI(Z[Gi]) =1
by Theorem 5.4 (C(Q[G;]) = C(@Q[C>xC>]) = 1). If p is odd, then

CP(Q[G1]) = (Z/p)IH-1 is easily seen to be generated by the elements

i
¥(h®gh') (0<1<p-1) and V(g®h).
Now fix n 2 2, and assume inductively that SKI(Z[Gn—ID =1. Set

{ (2a, (1-a)(1-b): a,b € G_) C Z[G_] if p=2
X = n n

Z[Gn] if p 1is odd;

so that SK,(Z[G ]) = Cp(Q[Gn])/\p(GnQX) by Theorem 9.5 or 9.6. Write
Q[Gn] = Q[Gn-IJXA’ where A is the product of those simple summands
upon which g acts with order pn. For each r = 0,...,p-1, let Vr
denote the C[G_J]-representation with character x, (g)=§_, xy (h) = Er
. n Ve n Ve 1

n-
= (§n)rp (§n = exp(2ri/p")). Then CP(A) is generated by the

elements ?(Vr), each of which has order pn.

Since SKl(Z[Gn_l]) = 1, we have

C,(@[C,1) = (G, (A), ¥(C,®X)). )

Also, a direct computation shows that for each O0{r {p-1,
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Y s (R e )
1=

i=0
F((p-1)'V)) + pC (LG, ;T) if p is odd
€
F(2hv) + 2.c@[6, 1) if p=2.

Together with (1), this shows that for each r, there is some n. € Gn0X

such that
W(n) € F(V) + prC (A).

The elements W(nr) then generate Cp(A). Together with (1), this shows

that ¢ 1is onto, and hence that SKI(Z[Gn]) = 1.

Step 2 The proof that SKI(Z[C4XC4]) = Z/2 is very similar to the

proof of Example 5.1, and we leave this as an exercise. So assume p is

odd. Write G = sz xsz for short, fix generators g,h € G, and set H

= (gP,hP).

Let 911 and 912 denote the sets of irreducible C[G]-representa-

tions upon which G acts with order p and p2, respectively. Define

a:ﬁz-——-)i’ll

by letting a(V), for any V € 912, be the representation whose character

satisfies (xv)p. Then by Definition 9.2, for any generating pair

Xa(V)
a,b € G, y(a®b)

F(V ® a(V)), where V€ 912 is the unique representa-
tion such that )(v(a) = §2 and )(v(b) = 1.

Now define an epimorphism

: - > > p+l
B : C(a[G]) C,(Q[G/H]) = C (Q[C xC 1) = (Z/p)

by setting B(F(V)) = F(V) for Ve &: B(FV)) = Fla(V)) for Ve
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¥e have just seen that Ker(B) C ¥(GO®Z[G]); and that foy(a®b) =1 if
{a,b) = G. Also, Poy(a®) =1 if a € H (since Cp(Q[G/H]) has
exponent p); and Poy(a®b) = Poy(a®l) if b € H. Since y(a®a) = 1
for all a, it now follows that

SK, (Z[C]) ¥ C (QG/H])/(Pov(e81), Poy(b81)) ¥ (p)* . @

Some more complicated examples of computations of SKI(Z[G]) for

abelian p—groups G can be found in Alperin et al [3, Section 5]. Some
of these are listed in Example 6 at the end of the introduction.
The next example illustrates some of the techniques for computing

Cll(Z[G]) for nonabelian p-groups G wusing Theorems 9.5 and 9.6. We
already have seen one example of this: Cll(Z[G]) =1 for any dihedral,

quaternion, or semidihedral (2-)group by Example 5.8. Note that for
groups of the same size, it is often easier to compute Cll(Z[G]) when G

is nonabelian — C(Q[G]) 1is smaller in this case, and computations can
frequently be carried out via comparison with proper subgroups H & G for
which Cll(Z[H]) is already known.

Example 9.9 Fix a prime p, and let G be a nonabelian p-group.
Then Cll(Z[G]) # 1, unless (possibly) p=2 and Gab has exponent 2.

Also,
(i) SK,(Z[C]) = C1 (Z[C]) = @p)P! if p isodd and IG| = 2
and
(ii) if p=2 and IGl = 16, then
{1 if 2 ()2 or (C2)°
SK. (Z[G]) = Cl.(Z[G]) &
126D 12D 772 if P2 cyxC,.

Proof The proof will be split into two cases, depending on whether
P 1is odd or p = 2. Note first that all of the groups G in (i) and
(ii) have abelian subgroups of index p. Hence SKl(ip[G]) =1 for these
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G by Corollary 7.2, and SKI(Z[G]) = Cll(Z[G]).

Case 1 Assume p is odd, and fix a nonabelian p—group G. Set
Ho = [G,G] 9 G. Then [G,Ho] $Ho (G being nilpotent); and G/[G,Ho]

is also nonabelian. So 6 # 1 in the five term homology exact sequence

Hy(G) — Hy(¢*”) —& Ho/[6,He] — ¢ = (¢/Ho)*® — 1

of Theorem 8.2. Write G/Hp = Gab ={g1)x... x{gx), where the g; are
ordered so that 6(gi~gz)#1; and let H<4G be the subgroup such that
H/Ho = {((81)”,(82)"+83s++++8x) 4G/Ho. Then H has the property that any
commuting pair g,h € G generates a cyclic subgroup in G/H.

Now consider the composite

‘#G @,
v ¢ H(GZ[C]) —— cp(o[c]) —_— cp(o[c/H]) (1)

I~ I~ ptl
2 C (@[C, xC,1) = (@p)” .

By the construction of H, we see that Im(y’) is generated by ¥’'(g:®1)
and ¥'(g201) (¥(a®a) =1 for all a € G). Hence, there is a surjection

C1,(2[6]) —— Coker(¥y) —E» Coker(v) = @Rl (2)

and Cl,(Z[G]) # 1.
If |Gl = p3, so that H = [G,G] & Cp’ then all nonabelian

C[G]-representations are induced up from proper subgroups K C G, for

which Cll(Z[K]) = 1. So the Ker(a*) c Im(\#G) in (1) above, and & is

an isomorphism in (2).

Case 2 Now assume that p = 2, and that G 1is a nonabelian p-group
such that Gab is not elementary abelian. Set Ho = [G,G], as in Case
1, and write G/Hg = @b - {g1) x +.. x {gx) such that &(gy~g2) # 1 (i.
e., g1,Z2 lift to noncommuting elements of G/[G,Ho]); but this time
arrange the g; so that Ig,l 2 4. Let H < G be such that H/Hp =
((g1)*,(g2)%.83++-+,8x)- Then G/H = C4xCz, and no abelian subgroup of
G surjects onto G/H.
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Define

¥
¥+ H (GiZ[6]) —— C(Q[G]) —» C(Q[G/H])

IR

~ 2
C(Q[Cq sz]) = (1/4) N
as before; so that there by Theorem 9.6 is a surjection

Cl,(2[G]) —» Coker(¥').

Then in this case,

Im(y') = (¥'(2181), ¥'(2201) =¥’ (820g2), V' (81982)),

and this has index 2 in C(Q[G/H]).
If G 1is any nonabelian group of order 16, then Cll(l[K]) =1 for

all proper subgroups K & G (see Examples 5.8 and 9.8, and Theorems 5.4
and 5.6). So by Proposition 5.2, there is a commutative square

@ R (K) — @ C1 (Z[K]) = 1
A KG !

fl=0 Indlc(:

~

e

Re,/p(G) c1,(2[C);
and hence |C11(Z[G])| < |Coker(f)|. Coker(f) 1is easily checked to have

order 2 if Gab—.’!C4 xCz, and order 1 otherwise (note, for example,

that G always has an abelian subgroup K of index 2, and that all
nonabelian irreducible C[G]-representations are induced up from

C[K]-representations). We have seen that Cll(l[G]) has order at least

2 if Ga'b = CyxCs, and this completes the computation. 1]

As has been mentioned above, Proposition 9.4 can be used to calculate

Cll(l[GxH]), for any abelian 2-group H, and any 2-group G for which
Cll(l[G]) is already known. The last example illustrates a special case

of this.
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Example 9.10 Let G be any 2-group. Then, for any k,

k
1, (@ox ()] = & (¥)-c1,@re1.2%);

where for each 121,

c1,(2[61,2") = C,(@[6])/(v({g,142'h}): g.h € G, gh = hg).

In particular, if G is any quaternion or semidihedral 2-group, then

c1, (26 x (¢2)¥1) = @2)2 k1,

Proof For abelian G, this is shown in Alperin et al [3, Theorems
1.10 and 1.11]. The proof in the nonabelian case is almost identical;
except that Proposition 9.4(i) is now used to construct generators for

«p(Kg(iz[G],2i)) c C2(Q[G]). The last formula (when G is quaternion or

semidihedral) is an easy exercise. O
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So far, all of the results on KI(Z[G]) and Wh(G) presented here

have dealt with either their torsion subgroups or their ranks; and that
suffices when trying to detect whether or not any given x € Wh(G)
vanishes. For many problems, however, it is necessary to know specific

generators for Wh'(G) = Wh(G)/SKl(Z[G]); or to know generators p-locally

for some prime p. In general, this problem seems quite difficult, since
it depends on knowing generators for the units in rings of integers in
global cyclotomic fields, and this is in turn closely related to class
numbers.

One case which partly avoids these problems is that of p-groups for
regular primes p (including the case p = 2). For such G, Wh'(ip[G])

is a free ip—module by Theorems 2.10(i) and 7.3; and so the inclusion
Z[G] c ip[G] induces a homomorphism ip@Wh'(G) —_ Wh'(ip[G]). This is

a monomorphism (Theorem 10.3 below); and the image of the composite

r
fg + 20w’ (6) — W' (Z [c]) —C Hy(G:2 [€1)
will be described in Theorems 10.3 and 10.4. One consequence of these
results (Theorem 10.5) is a description of the behavior of Wh’(G) under
sur jections, and under induction from cyclic subgroups of G.

In the last part of the chapter, we turn to the problem of
determining which elements of Wh’(G) (or of Wh(G)) are representable
by units. Theorem 10.7 gives some applications of logarithmic methods to
this problem in the case of 2-groups. For example, it is shown that not
all elements in Wh’(Q(32) xCz xCz) are represented by units in the group
ring. In addition, some of the results in Magurn et al [1] are listed:
these include examples (Theorem 10.8) of quaternion groups for which
¥h’(G) 1is or is not generated by units.

The first step towards obtaining these results is to establish an
upper bound for the image of fG in HO(G;ip[G]). This is based on a
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simple symmetry argument, and applies in fact to arbitrary finite G.

Lemma 10.1 Fix a prime p, and let G be any finite group. Let

P ip@Wh'(c) —_— Ho(c;ip[c]) be defined as above, and set

Y(G) = <E+g_1-gn—g_n, h-h" : g,h € G, h conj. h_l,
(n,lgl) =1, (m,lh|)=l> Cc HO(G;ip[G]).
Then fc(ipevm'(c)) C Y(G).

Proof Set n = exp(G), K = thn ((n = exp(2ri/n)), and R = Z(n.

By Theorem 1.5, R is the ring of integers in K, and K is a splitting

field for G. In particular, we can write
k
K[G] = N M (K)
i=l ™

for some m . Consider the following commutative diagram:

k
KI(Z[G]) _Z9R | KI(R[G]) .ﬂﬁ_tﬁ_m_, N R®

i=1
Ilog ‘log l“log

k
A Q=K o ||Tropr,~ 5
H.(G; —_— ;K = K ;
0(G:Q,[6]) Hy(G3K [G]) = 1E1 >y
where prg: K[G] —» Mm- (X) denotes the projection onto the i-th

component.
By Theorem 1.5(i) again, for any a € (Z/n)*, there is an element
»*
7, € Gal(K/Q) = Gal(® /@) such that 7,({) = (€)% Also, (Z/n)

acts on HO(G ;%[G]) and Ho(G;ﬁp[G] ) via the action 7a(Zrigi) =
Z‘ya( ry ). gai'. Then "Tropr:.l commutes with the (Z/n)*—actions on
HO(G;ﬁp[G]) and “ﬁp (note that each matrix pri(g) € Mr' (K), for any

g € G, can be diagonalized).
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Write T = (Z/n)*, for short. For any u € R*,

Vusa /e G)  amd Ty ) = Neg(n) €7 = (21).

So by the commutativity of (1), for any u € KI(Z[G]) and any 1¢1i<k,
1_1(Tropriolog(u)) = Tropriolog(u) and 2 1a(’l‘ropriolog(u)) = 0.
a€T

Since I'I’I‘ropri is a T-linear isomorphism,

7_1(log(x)) = log(x) and aér’ia(log(X)) =0 (in Hy(G:@ [6]))

for all x € Kl(Z[G]). Also, T = (1 - %-‘b)olog, and ¢ commutes with

the 9 (Q(Zrigi) = Zrigli)). It follows that
(K, (Z6D) € Hy(G:2,L61) N {x € By(GR [6D) = 7_,0) = x, PRACE o}

= Y(G). o

We now restrict to the case where G 1is a p—group. The goal is to
show that fc(ip@Wh'(G)) = Y(G) whenever p is an odd regular prime,

and to describe Im(fG) when p = 2. The key to these results is the

following proposition, due to Weber for p =2, and to Hilbert and
Iwasawa for odd p.

Proposition 10.2 Fix a prime p and a number field K such that
KCQE ) for some n21 (§ = exp(2ri/p")). Let R =Z[E 1NK be the

ring of integers. Then the homomorphism
A 3 a %
g Zp@ZR e (Rp) ,

induced by the inclusion R C ﬁp (and by the ip-mod.ule structure on
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(ﬁp)?p)) ts injective. If p is regular (possibly p = 2}, then

Coker (¢ is p-torsion free. If p =2, and if K = Q(§n+§;l) (and

K
R= Z[§n+§;l]), then

{u€R*:v(u)>O, all v:KHIR}={u2:u€R*). (1)

Proof The injectivity of t is a special case of Leopoldt’s

K
conjecture. For a proof, see, e. g., Washington [1,Corollary 5.32].

We next show that Coker(t is torsion free whenever p is

K

regular. If L € K is any subfield, then Coker(¢ is a subgroup of

L)

Coker (¢ it thus suffices to consider the case K:Q(fn). Set

K
£ = fn’ for short, and let p = (1-f)R € R denote the maximal ideal.

Define indexing sets
I={i:1<i<p", pliori=p"}; J={1i:1<1i<(p-3)/2, pti}.

Assume that {xi}i€I is any set of units in (ﬁp)* satisfying
X, = §; X, = 1+ ai(l—f)i (mod piH) (some ai€Z\pZ) (2)

for all i€I. We can then define X4 inductively for all 1<i€I by

setting

P : : n
) _{(xi,p) if plicp
i

- p AP -
(xi—v(p)) if i>p;

where v(p) = (p—l)pn—'l = [K : @] 1is the p-adic valuation of p. One

easily checks that (2) is satisfied for all i > 1; and hence that the
X, generate l+p as a ip—module. Since rki (14p) = (p—l)pn—l = |1| -1,
14

and since X = £, this shows that the elements X4 for 2<i€l are a
basis for the torsion free part of (ﬁp)*.

Assume now that there exist real global |units {u.].}.].€J
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(u; € (Z[E+E17)) which satisfy

2j+1

=1+ bj(l—f)j(l—f_l)j (mod p23*hy (some b, €Z>pZ)  (3)

%
for all j€ J. If p 1is odd, then we can set x2j = uJ. for j€J,
and extend this to some set {Xi}iGI satisfying (2). If p =2, a set

- . -2
{Xi}iGI can be chosen to satisfy (2) and such that X9441 = uJ. (Xj)

for all j€J: note that 2€p‘j+2 by assumption, and hence that

e
i

s = (1 a-la-E (s a-0?)? = e oo - 0

2j+1 2j+2

1+ (1-0)2(g-1) = 1+ (1-9)

{mod p ).

In either case, since rkZ(R*) = |JI by Dirichlet’s unit theorem (see
Janusz [1, Theorem I1.11.19]), this shows that there is a ip—basis for
(ﬁp)*/(if) which includes a Z-basis for R*/(if), and hence that
Coker(LK) is torsion free. Also, once the uJ. have been constructed,
this gives a second (and more elementary) proof that 'k is injective.

If p is odd and regular, then global units {uj}jGJ satisfying

(3) are constructed by Hilbert [1, §138, Hilfsatz 29] when n = 1, and by
Galovich [1, Proposition 2.5] when n>1. We include here a construction

of the uJ. when p =2, due to Hambleton & Milgram [1].

We may assume that n 2> 3 (otherwise J = @). Set

AN=BE -2 - (1-p(-EY (so AR = (1-E)(1- )R = p?).

Then (1+A)(1-1A) = —(l+§2+§_2); and an easy induction shows that

N, {1\ = -1. (Ko = QE)NR = @A) (4)

Let g € Gal(K/Q) be the element g(f) = §3. Then g(A) = )\3 - 3\; and

so for all i > 1,
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i-1
gl - al = 3- (T e)E AT ealtPR - P2 5)
=0

Set u1=1+7\ (uIGR* by (4)); and define inductively u‘j = u}i2-g(uj_2)

then

for all odd j23. If congruence (3) holds for uj_2,

2j-3

=1 +n 2y L egad 2y 1g(a))  (some a€p3nar=aITlR)

o
|

-1

1+ (g2 - N2 g(a) -a)- (142324 a)

1+ @2 -N2)  (mea MR+ R ARy oy (5))

1+ 332221408 (moa AStlR - 2342

).

In other words, congruences (3) are satisfied for all J; and this

finishes the proof that Coker(¢ is torsion free.

&)
It remains to prove (1): the description of strictly positive units
in K= QE+E'). Set G = Cal(K/@). Let V be the set of all real

places of K; 1i. e., all embeddings v: K = R. Define

0 if wv(u) >0

A=®A : R\ —— @Z/2: where A_(u) =
v vey v

1 if v(u) <O.

Regard M = 0v€v2/2 as a free Z/2[G]-module of rank 1, so that Im(A)
is a Z/2[G]-submodule of M. By (4), NK/Q(1+§+§‘1) = -1; and hence
Zvev?\v(1+§+§_1) = 1. Then by Example 1.12, Im(A) € J(Z/2[G])-M, the

unique maximal proper submodule of M; and so A 1is surjective. Also,

rkZ(R*) = [K:Q]-1=|V|]-1 and R'= V-1 o 20

by Dirichlet’s unit theorem (Janusz [1, Theorem I1.11.19]); and this
implies that

{u€R v(u) >0, all v: KR} =Ker(A) = {u® : u€R}. O
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Proposition 10.2 will now be combined with a Mayer-Vietoris sequence
to give information about Wh'(G).

For any prime p and any p-group G, define

Yo(G) = (g+g ' -g"-g " s g €G, phn) C Hy(GsZ,[G1);
Y(C) = Yo(C) + (g-g" : g €G, g conj. g, phn) C Hy(GiZ [C]).

Note that 2-Y(G) C Yo(G), that Y(G) = Yo(G) if p is odd or if G is

abelian, and that HO(G;ip[G])/Y(G) is torsion free. As before, fG

denotes the composite

f

T
. 2 ' - S Wh'(7 —5 i
g Zp@Wh (G) ¥h (Zp[G]) HO(G,Zp[G]),

where the first map is induced by the inclusion Z[G] C 2P[G] and the

ip—module structure on Wh'(ip[G]). By Lemma 10.1, Im(fG) C Y(G).

Theorem 10.3 For any prime p, for any p-group G, and for any

maximal order M C Q[G], there is an exact sequence

A

f )
1 — ip ® Wh'(G) —2— Y(G) —— tors Coker[Zp@Ki(m) — Ki(mp)].

Furthermore,

(i) Im(fG) =Y(G) if p is an odd regular prime, or if p =2 and

Q[G] 1is a product of matrix algebras over fields; and

(ii) Yo(G) C Im(fG) C Y(G) if G 1is an arbitrary 2-group.

Proof Write Q[G] = ﬂ?_lAi, where each Ai is simple with center

Ki’ and let Ri C Ki be the ring of integers. By Theorem 9.1, each Ki

is contained in Q(fi) for some i. In the following diagrams
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A , L e (G ~ ~
Zp@Wh (G) Wh (Zp[G]) zpoxl(m) _— Kl(mp)
lﬂnr (1a) lﬂnr and lﬂnr (1b) lﬂnr (1)
A % LK~ AN A % LK~ AN
Nz e (&))" — Ny, 2 e ) — MRy,

the reduced norm homomorphisms have finite kernel and cokernel (Theorem

2.3 and Lemma 2.4), and the tg. are injective by Proposition 10.2. So

Ker(¢) is finite. But Wh’(G) is torsion free, and hence ¢ and

f'G=FGOL are both injective. Also, rkZ(Wh(G)) = rki (Y(G)) by Theorem
P
2.6, and so [Y(G):Im(fG)] is finite.

By Milnor [2, Theorem 3.3], for each n21 such that p“m c Z[G],

there is a Mayer-Vietoris exact sequence

K, (Z[G]) — K, (®) @K (Z[G)/p"M) — K, (W/p"W).

The group Ker[Kl(Z[G]) — Kl(m)] Cc SKI(Z[G]) is finite, by Theorem

2.5(i), and so this sequence remains exact after taking the inverse limit

over n. Since
Un K, @[G)/p'W) = K, (Z[C]) and  Lin K, (Wp"W) = K, (R,)
by Theorem 2.10(iii}), this shows that the sequence
K, (2[6]) — K, (M) @ K(Z [6]) — K, ()

is exact; and remains exact after tensoring by ip' Also, SKI(M)
sur jects onto SKl(flp) (Theorem 3.9), and so the top row in the following

diagram is exact:

~ , 3 e 6 7 (M) =K’ (R
1 — Z,8Wn (G) —— Wh (Zp[G]) — C°ker[lp°K1(’“) Kl(mp):l(p)'

[FG [rG (2)
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By Theorem 6.6, Y(G) € Im(T In particular, we can identify Y(G)

G)°
with F(_;I(Y(G)) c Wh'(ip[G]). Since Y(G)/Im(f'G) is finite, the top row

in (2) now restricts to an exact sequence

FG 2] ‘m

Y(G) > tors Coker[Zp@Kl(m) — Kl(mp)],

1 — ip ® Wh'(G)

where 6 = o (F(—;IIY(G)).

If p 1is regular, and if Q[G] 1is a product of matrix algebras over
fields, then the reduced norm homomorphisms in (1b) are isomorphisms, and

so Coker(Lm) is torsion free by Proposition 10.2. So Im(fG) = Y(G) in

this case. In particular, by Theorem 9.1, this always applies if p is
odd (and regular), or if p =2 and G is abelian. If G is an

arbitrary 2-group, then Im(fG)

all cyclic HC G; and hence Im(fc) 2Yo(G). O

contains the image of Y(H) = Yo(H) for

In principle, it should be possible to use these methods to get
information about Wh’(G) when G 1is a p-group and p an irregular
prime. With certain conditions on p (see Ullom [1]), the p-power
torsion in Coker[ip@(l[fk])* — (ip[fk])*] is understood (see also

Washington [1, Theorem 13.56]). But most results which we know of, shown
using Theorem 10.3, seem either to be obtainable by simpler methods (as in
Ullom [1]); or to be quite technical.

The next theorem gives a precise description of fc(izeww(c)) when

G 1is a nonabelian 2-group. Recall (Theorem 9.1) that if exp(G) = 2",
then Q[G] 1is isomorphic to a product of matrix algebras over subfields
of Q(fn) (fn = exp(21ri/2n)), and over division algebras Q(fk,j) (c H)

for k < n.

Theorem 10.4 Let G be a 2-group, and let Y(G) be as in Theorem
10.3. Then

A k k
T (Z,8Wh’ (G)) = Ker[e('; = igleé’i : Y(G) — 1‘111(2/2)],
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where Vl, ,Vk are the distinct irreducible C[G]-representations which

are quaternionic, and where

8¢y t Y(6) € Hy(G:Z,[C]) — Z/2

is defined by setting

9(';,1(3) = rgodimq:(Er-e1‘.gens1:)cc,ce of (g: Vi o Vi)). (for g € G)

Proof This is based on the exact sequence

1 = 2,8Wh' (G)

Y(¢) - tors COker[izexi(m) — Ki(ﬁz)] (1)

of Theorem 10.3; where M C Q[G] 1is a maximal order containing Z[G],

and where 6(I'(u)) = [u] € Ki(ﬁ2).
Write Q[G] = ?-lAi’ where the Ai are simple. Fix i, and set

A= Ai = Mr(D)’ where D 1is a division algebra with center K. Let
mA C A be a maximal Z-order, and let R C K be the ring of integers. If
D=K (i. e., D 1is a field), then K C Q(fn) (En = exp(21ri/2n)) for
some n by Theorem 9.1, and hence mA is Morita equivalent to R by

Theorem 1.19. So
~ A ~ A 3 A M
Coker[lzﬁKi(‘mA) —_— Ki(mm)] = Coker[ZzﬁR —_— (R2) ]

is torsion free in this case by Proposition 10.2.

By Theorem 9.1 again, the only other possibility is that D Q(fn,j)
(CH) for some n 2 2 (so K = Q(§n+§;l)). In this case, consider the

commutative diagram
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A nr s t ] A
1 — 2,0k ®,) -2, 0 —— Qu2

vev
lLA “K 2)

K, (8,,) = (&)

where A = GXV is defined by setting kv(u) =0 if wv(u) > 0O; kv(u) =1

if wv(u) < 0. By Theorem 2.3, nr is an isomorphism, and the top row in

2
(2) is exact. By Proposition 10.2, A is onto and Coker(LK) is torsion

free; and so by (2),

tors Coker|Z, ® K!(,) — Ki(ﬁAz)] s w2V,

In other words, tors(Coker(LA)) includes one copy of Z/2 for each

quaternion representation of R ®_  A. Sequence (1) now takes the form

Q

f
1 — 2 ¢ 8, @2k

® Wh' (G)

5 » Y(G)

where k 1is the number of quaternion components in R[G]. The details of

identifying 0 with Oé as defined above are shown in Oliver & Taylor

[1, Section 3]. O

A second description of Im(f wvhen G 1is a 2-group, is given in

G)’
Oliver & Taylor [1, Propositions 4.4 and 4.5].
The next result is an easy application of Theorem 10.3.
Theorem 10.5 Fix a regular prime p and a p-group G.
(i) For any surjection a: G —» G of p-groups,

Wh'(a) : Wh'(G) —— Wh'(G)

is surjective if p is odd or if G 1is abelian; and Coker(Wh’'(a)) has

exponent at most 2 otherwise.
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(ii) For any x € Wh'(G), x is a product of elements induced up
from cyclic subgroups of G if p is odd or if G is abelian; and x2

is a product of such elements otherwise.
Proof Fix a p-group G, and consider the group

C= Coker[Z{Wh'(H) : HC G, H cyclic} — Wh'(c)].

By a result of Lam [1, Section 4.2] (see also Theorem 11.2 below), C is

~

a finite p-group. So Cc = ip@C is isomorphic to a subgroup of

Y(G)/Yo(G) by Theorem 10.3. By definition, Y(G)/Yo(G) is trivial if p
is odd or if G 1is abelian, and has exponent at most 2 otherwise.

This proves (ii). To prove (i), it now suffices to consider the case
where G and G are both cyclic. By Theorem 10.3, ip@Wh'(a) surjects

onto ip@Wh'(G) in this case, and so Coker(Wh’'{(a)) 1is finite of order

X
prime to p. It thus suffices to show, for any u € (Z[G])*, that uP €

Im(Wh’(a)) for some k.
Assume that G & Cp“ and G Z Cpn-x; and consider the pullback

square
Z[C ] — ZE ]
al 1 (§, = exp(2wi/p"))

2[C n-1] L, 2/p[Cn-11-

This induces a Mayer-Vietoris exact sequence
K| (Z[C,n]) — K (Z[C n-11) @ K, (Z[E, 1) — (Z/PIC,n-11)-

Set I = Ker[Z/p[Cpn-,] — Z/p], the augmentation ideal. Then for any

u € Kl(z[cp""])’ either B, (u) or P, (-u) lies in 1+I, and this is a
X

group of p-power order. In other words, WP o€ (—l,Ker(B*)) C Im(a*) for

some k; and we are done. n]
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The result that Wh’'(a) 1is onto whenever a 1is a surjection of
cyclic p-groups (for regular p) is due to Kervaire & Murthy [1].
Ve now turn to the problem of determining, for a given finite group

G, vwhich elements of Kl(Z[G]) or Wh(G) can be represented by units in

Z[G]. This was studied in detail by Magurn, Oliver and Vaserstein in [1].
The main general results in that paper are summarized in the following
theorem.

A simple Q-algebra A with center K 1is called Eichler if there is
an embedding v: K —— € such that either v(K) ¢ R, or v(K) CR and
IR@VKA ¥ H. Note that A is always Eichler if [A:K] # 4. A semisimple

Q-algebra 1is called Eichler if all of its simple components are Eichler.

Theorem 10.6 Let A = VxB be any semisimple Q-algebra, where B
is the product of all commutative and all non-Eichler simple components in
A. Then for any Z-order A in A, if B CB is the image of A under

projection to B, an element x € Kl(ZI) can be represented by a unit if
and only if its image in KI(B) can be represented by a unit. In

particular, if A is Eichler — i. e., if B is commutative — then

there is an exact sequence

2 —— k() 228, s (3) — 1.

Proof See Magurn et al [1, Theorems 6.2 and 6.3]. O

We now list two results containing examples of finite groups G
where Wh’'(G) is or is not generated by units. The first theorem
involves 2-groups, and is an application of Theorems 10.4 and 10.5 above.
The second theorem will deal with generalized quaternion groups, and is

proven using Theorem 10.6.

Theorem 10.7 (i) For any 2-group G and any x € Wh'(G), x*® is

represented by some unit u € (Z[G])*.

(it) Set G =Q(32)xCy;xCz, where Q(32) is quaternionic of order
32. Then Wh’(G) contains elements not represented by units in Z[G].
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Proof Point (i) is clear: x® is a product of elements induced from

cyclic subgroups of G by Theorem 10.5(ii); and Ki(Z[G]) z (Z[G])* by
definition if G is abelian.

To prove (ii), fix any element a € Q(32) of order 16, and let
ti,tp generate the two factors C, in G = Q(32) xCy xCz. Set

x = (1- t)(1- t2)(a-a°) € Hy(GsZy[C1).

A straightforward application of Theorem 10.4 (in fact, of Theorem 10.3)
shows that x € fG(i2®Wh’(G)). Thus, if all elements of Wh'(G) are

represented by units, then there must be a unit u € (Z[G])* such that
FG(u) = x (mod 64). But using the relation (Z[§4,j])* = ((Z[§4])*,j)

(Magurn et al [1, Lemma 7.5(b)]), it can be shown that no such u
exists. See Oliver & Taylor [1, Theorem 4.7] for details. o

The following results are similar to those in Theorem 10.7, but for
generalized quaternion groups instead of 2-groups. Recall that for any

n 2 2, Q(4n) denotes the quaternion group of order 4n.

Theorem 10.8 For any n 2 2, and any x € Wh(Q(4n)), x* is
represented by a unit in Z[Q(4n)]. Furthermore:

(i) If n is a power of 2, then all elements of Wh(Q(4n)) can

be represented by units.

(it) If p 1is an odd prime, then the elements of Wh(Q(4p)) coan
all be represented by units, if and only if the class number hp is odd.

(iii) For any prime p = -1 (mod 8), Wh(Q(16p)) contains elements

not represented by units.

Proof See Magurn et al [1, Theorems 7.15, 7.16, 7.18, and 7.22]. O

An obvious question now is whether, for any finite group G and any

x € Wh'(G), x® 1is represented by a unit in Z[G].



PART II1: GENERAL FINITE GROUPS

One of the standard procedures when working with almost any
K-theoretic functor defined on group rings of finite groups, is to reduce
problems involving arbitrary groups to problems involving hyperelementary
groups: 1i. e., groups containing a normal cyclic subgroup of prime power
index. For most of the functors dealt with here, one can go even further.
The main idea, when dealing with sxl(ip[c]), C1,(Z[C]) (p)* St is to

reduce computations first to the case where G is p-elementary (i. e., a
product of a cyclic group with a p-group); and then from that to the case
whefe G 1is a p-group.

The formal machinery for the reduction to p-elementary groups is set
up in Chapter 11. The actual reductions to p-elementary groups, and then

to p-groups, are carried out in Chapters 12 (for SKl(ip[G])) and 13 (for

Cll(Z[G])). The inclusion Cll(Z[G]) c SKI(Z[G]) is then shown in

Section 13c to be split in odd torsion. Finally, in Chapter 14, some
applications of these results are listed.

Since much of the philosophy behind the reductions in Chapters 12 and
13 is similar, it seems appropriate to outline it here. The main tool
used in the reduction to p-elementary groups is induction theory as
formulated by Dress [2]. ThiS sets up conditions for when H(G), &
being a functor defined on finite groups, can be completely completely
computed as the direct or inverse limit of the groups M{(H) for subgroups
HC G lying in some family. The main general results on this subject are
Theorem 11.1 (Dress' theorem), Theorem 11.8 (a decomposition formula for

certain functors defined on Z- or ip—orders), and Theorem 11.9 (conditions

for computability with respect to p-elementary subgroups).

Using these results, SKI(Z[G])(p) is shown in Chapters 12 and 13 to

be p-elementary computable for odd p, and 2-R-elementary comput-able

when p = 2 (Theorems 12.4 and 13.5). In particular, for odd p,

SKI(Z[G])(p) = }% SKI(Z[H])(p);
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where & is the set of p-elementary subgroups of G, and the limits are
taken with respect to inclusions of subgroups and conjugation by elements
of G. When p =2, the connection between SKI(Z[G])(2) and 2-elemen-

tary subgroups is described by a pushout square (Theorem 13.5 again).
The process of reduction from p-elementary groups to p-groups is

simpler. Let G be a p-elementary group: G = Cnxw, where p*n and w
A k

is a p-group. Write Qp[Cn] = “i:lFi’ where the Fi are fields, and let

Ri c Fi be the ring of integers. Then

k
sxl(i [6]) = @ SK,(R,[*]) and Cl,(Z[C]) = @ C1,(Z4[7]):
P i=1 1 din

the first isomorphism is induced by an isomorphism of rings (Theorem
1.10(i)), and the second by an inclusion Z[G] C “dan(d[w] of orders of

index prime to p (Example 1.2, Theorem 1.4(v), and Corollary 3.10). The
groups SKl(Ri[w]) have already been described in Theorem 8.6, and the

Cll(Z(d[w]) are studied in Section 13b by comparing them with Cll(Z[w]).
These results then lead to explicit descriptions of SKl(ip[G]) for
arbitrary p and G (Theorems 12.5 and 12.10), and of Cll(Z[G])(p)

when p is odd (Theorem 13.9) or G is abelian (Theorem 13.13). For
nonabelian G, the situation in 2-torsion is as usual incomplete, but

partial descriptions of Cll(Z[G])(2) in terms of Cll(Z[w]) for

2-subgroups w can be pulled out of Theorems 13.5 and 13.12,



Chapter 11 A QUICK SURVEY OF INDUCTION THEORY

The term "induction theory” refers here to techniques used to get
information about WM{(G) 1in terms of the groups M(H) for certain H C G,
when M is a functor defined on finite groups. Such methods were first
applied to K-theoretic functors by Swan [1], when studying the groups
KO(Z[G]) and GO(Z[G]) for finite G. Swan’s techniques were

systematized by Lam [1]; whose Frobenius functors gave very general
conditions for WM(G) to be generated by induction from subgroups of G
lying in some family %, or to be detected by restriction to subgroups in
¥. later, Lam's ideas were developed further by Dress [2], who gave
conditions for when &(G) can be completely computed in terms of WM(H)
for subgroups HC G in %.

The results of Dress are based on the concepts of Mackey functors,
and Green rings and modules, whose general definitions and properties are
summarized in Section 1lla. The central theorem, Theorem 11.1, gives
conditions for a Green module to be "computable"” with respect to a certain
family of finite groups. Two examples of Green modules are then given:
functors defined on a certain category of R-orders (when R is any
Dedekind domain of characteristic zero)} are shown to induce Green modules

over the Green ring GO(R[-]) (Theorem 11.2), and Mackey functors are

shown to be Green modules over the Burnside ring (Proposition 11.3).
In Section 11b, attention is focused on p-local Mackey functors:

i. e., Mackey functors which take values in ip—modules. A decomposition

formula is obtained in Theorem 11.8, using idempotents in the localized

Burnside ring Q(G)(p); and this reduces the computation of
C1y(Z(C]) () SK (ZLED) (5 sxl(ip[c]), etc. to that of certain twisted

group rings over p-groups. This is the first step toward results in

Chapters 12 and 13, which reduce the computation of SKI(Z[G])(p) (at

least for odd p) to the case where G 1is a p-group.
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lla. Induction properties for Mackey functors and Green modules
The following definitions are all due to Dress [2, Section 1].

(A) A Mackey functor is a bifunctor X = (ﬂ*,ﬂ*) from the category

of finite groups with monomorphisms to the category of abelian groups,

>
such that W« is contravariant, ﬂ* is covariant,

K(G) = 4 (C) = 4(C)

for all G, and the following conditions are satisfied:

(i) £ and M, send inner automorphisms to the identity.
(i1) For any isomorphism a: G — G’, ﬂ*(a) = .A(*(a)_l.

(iii) The Mackey subgroup property holds for J(* and M : for any

G, and any pair H,K C G, the composite

A £

H(H) —D— 4(G)

> M(K)

is equal to the sum, over all double cosets KgH C G, of the composites
*

A(c) A
A(H) 2 4 ke nn) %, AKNghg ) — (k).

Here, cg denotes conjugation by g.

(B) A Green ring ¢ 1is a Mackey functor together with a commutative
ring structure on  %(G) for all G, and satisfying the Frobenius
reciprocity conditions. More precisely, for any inclusion a: H «— G,

a(xy) = a(x)-a”(y) for x,y € %(C)

x-a*(y) = a*(a*(x)-y) for x € %(G), y € ¢(H)
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a (x)'y = a (x-a”(y)) for x € G(H), y € %(G)
(where o = ‘9*(01), a, = ‘9*(01)).

(C) A Green module over a Green ring ¥ is a Mackey functor «,
together with a $(G)-module structure on MH(G) for all G, such that
the same Frobenius relations hold as in (B), but with y € #(G) or
y € M(H) instead.

(D) Let € be any class of finite groups closed under subgroups.
For each G, set %(G) = (HC G: H€ €}. Then a Mackey functor & is
called €-generated if, for any finite G,

‘*
D U(H) — U(G)
Hee(G)

is onto; M is called €-computable (with respect to induction) if, for

any G, J(* induces an isomorphism
HM(G) 2 lim H(H).
Hﬁc)

Here, the limit is taken with respect to all maps between subgroups
induced by inclusions, or by conjugation by elements of G. Similarly, «
is <¢-detected, or %-computable with respect to restriction, if for all

finite G the homomorphism

H(G) —— lim M(H)
KR (o)

(induced by J(*) is a monomorphism or isomorphism, respectively.

For convenience of notation, if H € G 1is any pair of finite groups

and i: H— G is the inclusion map, we usually write

Indg = A (1) : A(H) — K(C), Resy = A°(1) : (G) —— A(H)

to denote the induced homomorphisms.
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The first theorem can be thought of as the "fundamental theorem” of

induction theory for Green modules.

Theorem 11.1 (Dress [2, Propositions 1.1’ and 1.2]) Let { be a
Green module over a Green ring %, and let € be a class of finite
groups such that % 1is €-generated. Then M 1is ®-computable for both

induction and restriction.

Proof Fix any G, write € = €(G) for short, and let

T : lin H(H) —— X(G d R : 46) — lim H(H
ﬁ() (6) an ©) er;()

be the induced maps. Choose elements ay € $(H), for H € €, such that

G
I =1 € %(G). (1)
L ndii(ay) ©)

For any x € M{(G),

G G G %
= Ind X = Ind R € Im(I
X H%(g N H(a-H) X Hé(e 20 H(a-H esH(x)) m( )

by Frobenius reciprocity. In particular, x =0 if Resg(x) =0 for all

Hee, 1i. e., if ﬁ(x) = 0. Thus, i is onto and R is one-to-one.
To show that 1 is injective and R sur jective, the Mackey subgroup
property is needed. For each pair H,K € €, let guri (1<i<nugx) be

double coset representatives for H\G/K. Consider the maps

Rl:lli -1 IHKi
M(K) === M(guxiKgux: NH) Fp—1= M(H)
(and similarly for ). Here, I and R denote induction and

restriction, while I’ and R’ are the induction and restriction maps
composed with conjugation by gux; .

Fix any x € Ker(I). Write

= 2 [xk, K] € lin A(K),
* K€‘€x 'Kﬁ()
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where xy € M(K) and ZKeeIndg(x;) = 0. Then, in Llin 4(K),

b
[}

T [xx, K1 = J [Resg(1)'xx, K]
Kee Kee

2z ngt(nesﬁo Ind§(an)) -xx, K] (by (1))

Ny
T %3 [(Lies oRuxs (an)) xe, K]
Ke€ He® i=1

NHk
Z Z Z [ Taki (Ruxi (an) *Ruxi (%)), K]

K€€ Hee i=1
Nux

= Z Z Z [Tuxi (Ruxi (au) *Rixi (xx)) . H] (by defn. of _!_i_lg)
Hee Kee i=1

NHk
2 2 2 [an* (IuxioRix: (xx)), H]
He€ Kee i=1

D) [aH-(Resgo Indﬁ(xx)), H]
He€ Kee

y [aH-Resg( 3 Indﬁ(x.()), H] = 0;
Hee Kee

a
and so I 1is injective.

Now fix some element y = (yx) in lim A(H). Set
Keeg HL
€€

§ = T IndS(an-yn) € 4(C).
Hee

Then, for each K € €,

G, n G G
Res(¥) = ) Res_oInd (au‘yu)
K Hee K H

NHk
= Z Z Il:llioRHKi(aH'YH)
Hee i=1
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Nux
= Iixi (Ruxi (an) *Ruxi (yu))
Hee i=1
Nux
- Lici (Ruxi (an) Rixi (yx))  (since (yu) € lim 4(H))
Hee i=1
Nux
= (Iixi oRuxi (an)) *yx
Hee i=1

) (Resgolndg(aﬂ))-y; = Resg(l)'y;
Hee

Yk (vy (1))

Brn

In other words, y = (y")HG‘e = R(¥); and so R 1is surjective. @O

In fact, Dress [2] also proves that a Green module M as above is
"@-acyclic” with respect to induction and restriction, in that the derived
functors for the limits in (D) above are all zero. This is important, for

example, if one is given a sequence of Mackey functors '“i which is exact

for all G € €, and which one wants to prove is exact for all finite G.
Recall that for any prime p, a p-hyperelementary group is a finite

group of the form Cn>41r, where p*n and w7 1is a p-group. For any
field K of characteristic zero, a p-hyperelementary group G = Cn>41r is

p-K-elementary if

Im[1r Lo, pue(c) = (z/n)*] € Gal(KC_/K);

where (n is a primitive n~th root of unity, and Gal(K(n/K) is regarded
as a subgroup of Aut(Cn) via the action on ((n) = Cn (Theorem 1.5). A

finite group is K-elementary if it is p-K-elementary for some p. Note
that hyperelementary is the same as Q-elementary (Gal(Q(n/Q) = Aut(Cn)

by Theorem 1.5(i)); and that C %7 {is C-elementary only if it is a

direct product. A second characterization of p-K-elementary groups will
be given in Proposition 11.6 below.
The next theorem gives one way of constructing examples of Green

modules. For any ring R, GO(R) denotes the Grothendieck group on all
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isomorphism classes of finitely generated R-modules, modulo the relation

[M] = [M’] + [M"] for any short exact sequence
0O— M — M— M" — 0.

As defined in Section 1d, the category of "rings with bimodule morphisms”
is the category whose objects are rings; and where Mor(R,S), for any R
and S, is the Grothendieck group (modulo short exact sequences) of all
isomorphism classes of bimodules SMR such that M 1is finitely generated

and projective as a left S-module.

Theorem 11.2 Let R be a Dedekind domain with field of fractions K
of characteristic zero, and let X be an additive functor from the
category of R-orders in semisimple K-algebras with bimodule morphisms to
the category of abelian groups. Then, for finite G, WM_(G) = X(R[G]) is
a Mackey functor, and is a Green module over the Green ring GO(R[G]). In

particular, A is computable with respect to induction from and
restriction to K-elementary subgroups; and A(G)(p) (for any prime p)

is computable with respect to induction from and restriction to
p-K-elementary subgroups.

Proof Induction and restriction maps for pairs H € G are defined
using the obvious bimodules RGRGRH and RHRGRG This makes

M(G) =X(R[G]) into a Mackey functor: the properties all follow from easy
identities among bimodules. For example, the Mackey subgroup property for
a pair H,K € G follows upon decomposing RKRGRH as a sum of bimodules,

one for each double coset KgH.

Next consider the GO(R[G])—module structure on X(R[G]). For any
finitely generated (left) R[G]-module M, make M@RR[G] into an

(R[G],R[G])-bimodule by setting
g'(x®y)h = gx®gyh for g,h€G, x €M, y€R[G].

Then multiplication in X(R[G]) by [M] € GO(R[G]) is induced by

[M@RR[G]] € Mor(R[G] , R[G]). The module relations, and the Frobenius
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reciprocity relations as well, are again immediate from bimodule
identities.

The computability of X(R[G]) will now follow from Theorem 11.1,
once we have checked that GO(R[G]) is generated by induction from

K-elementary subgroups {and GO(R[G])(p) from p-K-elementary subgroups).
For KO(K[G]) and KO(K[G])(p), this is a theorem of Berman and Witt

(see Serre [2, §12.6, Theorems 27 and 28] or Curtis & Reiner [1, Theorem
21.6]). Also, for any maximal ideal p CR, GO(R/p[G]) is made into a

Green module over KO(K[G]) by the "decomposition map"
d : K (K[G]) —— Gy(R/p[C]);

where d([V]) = [M/pM] for any K[G]-module V and any G-invariant
R-lattice M in V  (see Serre [2, §15.2] or Curtis & Reiner [1,

Proposition 16.17]). There is an exact localization sequence

® GoR/PIC]) —— Go(RICT) —— K(KIE]) — O

(see Bass [2, Proposition IX.6.9]); and so GO(R[G]) and GO(R[G])(p)

are also generated by induction from K-elementary and p-K-elementary

subgroups, respectively. o

Note in particular that by Proposition 1.18, Theorem 11.2 applies to
the functors K (Z[G]), Cl,(Z[C]), SK, (Z[C]), sxl(ip[c]), etc.

The next proposition gives another example of Green modules. For any
finite G, Q(G) denotes the Burnside ring: the Grothendieck group on
all finite G-sets (i. e., finite sets with G-action), where addition is
induced by disjoint union and multiplication by Cartesian product.
Additively, Q(G) is a free abelian group with basis the set of all
orbits G/H for H C G; where [G/H,] = [G/H>] if and only if H; and

H, are conjugate in G.

Proposition_11.3 The Burnside ring 1 1is a Green ring. Any Mackey

functor M is a Green module over (1, where the Q(G)-module structure
on M(G) 1is given by
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[G/H]-x = IndgoResg(x) for HC G, x € M(G).

Proof For any pair H C G of finite groups,

Inds : Q(H) —— 0(C)  and  Resy : 0(G) — O(H)

are defined by setting Indg([S]) = [G xHS] for any finite H-set S,
and Resg([T]) = [TIH] for any finite G-set T. The Mackey property and

Frobenius reciprocity are easily checked.
Now let M be an arbitrary Mackey functor. To see that the above

definition does make M(G) into an €(G)-module for each G, note that
for any pair H,K C G,

G G G G G H K G
(Ind, oRes_)o(Ind oRes;,) = Ind o ) In -10{(c_)_oRes _, oRes
djjoResy)o(IndyoResy H (g€H\G/K dinekg-1°(Cg)noRes, HgﬂK) K

G G G G
= Z Ing -10(c_)_oRes _, = Z Ine -10Res 1.
ko Hnekg™t®(CghuoReSg i = L TMneke HNeKg

Thus, the composite of multiplication first by [G/K] and then by [G/H]
is multiplication by

Y [G/(HeKg™*)] = [(G/H)x(G/K)].
g€MG/K

Checking the Frobenius relations for this module structure is
straightforward. o

Proposition 11.3 cannot be directly combined with Theorem 11.1 to
give general induction properties of Mackey functors: the Burnside ring
is not generated by induction from any proper family of finite groups.
But often an apparently weak induction property of a Mackey functor &
implies that A 1is a Green module over some quotient ring of €, which
in turn yields stronger induction properties for M. One example of this
is seen in Proposition 11.5 below: any Mackey functor which is generated
by hyperelementary induction is also hyperelementary computable with
respect to both induction and restriction.
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11b. Splitting p~local Mackey functors

By a "p-local” Mackey functor, for any prime p, 1is meant a Mackey
functor A for which H(G) is a Z(p)

11.5 below, we will see that for any p-local Mackey functor Mo generated

-module for all G. In Proposition

by p-hyperelementary induction, #{(G) has for all G a natural splitting
indexed by conjugacy classes of cyclic subgroups of G of order prime to
P. Under certain conditions, these summands can be described in terms of
functors on twisted group rings (Lemma 11.7 and Theorem 11.8), and this is
then used to set up conditions for when H 1is computable with respect to
p-elementary subgroups.

By Proposition 11.3, any p-local Mackey functor M 1is a module over

the localized Burnside ring Q(—)(p). Hence, splittings of WM(G) are
automatically induced by idempotents in Q(G)(p). These idempotents were

first studied by Dress [1, Proposition 2].
When working with 2(G), it is often convenient to use its

"character” homomorphism

><=H><H ey — 1 z.
He¥(G)

Here, ¢(G) denotes the set of conjugacy classes of subgroups of G, and
)(H([S]) = ISHI for any finite G-set S and any H € ¥$(G). Note that

1(G) and Il Z are free abelian groups of the same rank; and that

Hey(G)
for H,K C G, )(K([G/H]) is nonzero if and only if K C gHg_l for some

g € G. In other words, if the elements of H € ¥(G) are ordered
according to size, the matrix for x is triangular with nonzero diagonal
entries. So x 1is injective and has finite cokernel. In particular, an

element x € Q(G (or x € QG is an idempotent if and only if
(p)

XH(X) € {0,1} for all HCG.

Lemma 11.4 Fix a prime p and a finite group G. Then, for any
cyclic subgroup CC G of order prime to p, there is an idempotent

EC = EC(G) € Q(G)(p) such that for all HCG,
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1 if for some C’' conj. C, C' < H, H/C' a p-group
xy(En) =
HY™C otherwise.
Proof Fix C. For each C CC, set

1

2(6) = {H CG: glg <H, H/(gég_l) a p-group, some g€G}.

We first claim that for any x € Q(G)(p),
xy(x) = xz(x)  (mod pZ(p)) for all H € £(C). (1)

It suffices to check this when C<H and x=[S] (some finite G-set §);

and in this case the p-group C/H acts on SC\S].l without fixed points.
Fix some M 2 C such that M/C is a p-Sylow subgroup of N(C)/C
(so M 1is maximal in ¥(C)). For any k 2 0, and any HC G,

Y 1 mod By ir 1Ml 2 0 (mod p)
(p-1)p"y =
xp([G/M] ) = k1 H
0 (mod p~ ) if I(G/M)'| =0 (mod p).
Since x = ﬂxH has finite cokernel, this shows that there exists

E€ Q(G)(p) such that

1 if 1Ml £ 0 (mod p)
XH(E) =

i 1ot

0 (mod p).

In particular, if xH(E) =1, then gHg—lgH for some g; so H is

p-hyperelementary, and H € ¢(C) for some C C C. Also, by (1),
X4(E) = xg(E) 1f H€ 2(C); and xc(E) = 1 since by choice of M:

1(eM)C| = |{eM: g 'cg € M}| = IN(C)I/IMI £ 0 (mod p).

Ve may assume inductively that for each CCC, an idempotent EE

is defined such that xy(Eg) = 1 if and only if H € ¢(C). Then E. can

C
be defined by setting
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EC=E—Z{E6:6§C, xg(E) = 1}. o

Lemma 11.4 will now be applied to split p-local Mackey functors.
Assume that p 1is a fixed prime, and that Mo 1is a p-local Mackey
functor which is generated by p-hyperelementary induction. For each
finite G, let Cy(G) be a set of conjugacy class representatives of
cyclic subgroups C C G of order prime to p. For each C € Cy(G), let
EC(G) € Q(G)(p) be the idempotent defined in Lemma 11.4, and set

4(G) = EL(G) 4(G) C 4(G).

If G 1is p-hyperelementary — if G = Cn>41r where pin and 7 is a
p-group — then for kin we write Jlk(G) = J(C(G) when C € G 1is the

subgroup of order k (and set .l(k(G) =0 if kjn).

Proposition 11.5 Fix a prime p, and let A be any p-local Mackey
functor generated by p-hyperelementary induction. Then M is

p-hyperelementary computable for induction and restriction. Also:

(i) #G6) = & JlC(G) for any finite G.
CeCy(G)

(ii) For any finite G and each C € Cy(G),

G) = lim M (Cxw) = im A (CxT).
11D = et ™ T renliteyy '

Here, ®%(-) denotes the set of p-subgroups, and the limits are taken with
respect to K (or J(*) applied to inclusions, and to conjugation by

elements in NG(C) .

(iit) Assume G = C Xw is p-hyperelementary (uhere pin and =
is a p-group). Then for any H = me'lr CG (mln), Resgolnd](_;I is an

automorphism of M(H); and for each klm the induction and restriction

maps
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k G = G =
Inds : 4 (H) — 4 (C) and FRes; : 4 (C) —— 4 (H)
are isomorphisms. Furthermore,

4_(C) = Ker[eRes : M(G) = A(C HNT) —> pelanﬂ(cn/pxw)].

Proof (i) Let ¥ denote the class of p-hyperelementary groups, for
short. Define Eo(G) = ZC€Q((G)EC(G) € n(c)(p). Then for any H C G,

1 if He#%(G)
xy(Eo(G)) = (1)

0 otherwise.

In particular, Eo(G) 1is an idempotent. Also, Resg(Eo(G)) =1 € Q(H)

for any H C #(G). Since M is generated by p-hyperelementary induction,

and since
G G- G G G
Eo(G) IndS(x) = IndH(ResH(Eo(G))-x) = Ind$(1-x) = IndS(x)

for any H € #(G) and any x € M(H); this shows that

M(G) = Eo(G)-4(G) = @ EG)4(GC)= & &4(6). (2)
CeCy(G) CeCy(G)

(iii) Now assume that G = Cn>41r is p-hyperelementary, and that

H= Cm>41r for some mln. Consider the maps

kI dG kR SG
A (H) — 4 (6) —H 4 (H). 3)
Choose double coset representatives Bisee By for H\G/H such that

giGCn for all i. For each i, write

K, = HNg Hg, -

-1_
i ;e = mepi where p; = {x€w : B;Xg, =X (mod Cm)}.

Then g € NG(Ki)’ so p, and gipig;1 are both p-Sylow subgroups of
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Ki’ and are therefore conjugate in Ki' It follows that conjugation by

- is an inner automorphism of Ki' Hence, in (3),
G k. G_ Tk _.H H Sk H H
kResHo IndH = 121 IndKi o (cgi ) © kResKi = izl IndKi okResKi;
and this is multiplication by
18 -1 G G
B () X [/(HNg g )] = By () Resy([/H1) = Resy(£,,(6)-[H]) € 0 (H).
1=

For any K € G such that )(K(Ek(G)) =1, Ck<l( and K/Ck is a

p-group. Hence, for such K,

xg(@/H) = [@m¥| = [(em%| = || 20 (mod p).

This shows that Ek(G)-[G/H] is invertible in the p-local ring ﬂ.k(G).
We have just seen that kResgoklndg is multiplication by
Resg(Ek(G)-[G/H]) € ﬂk(H)*; and kIndgokResg is multiplication by
Ek(G)-[G/H] € ﬂk(G)* by Proposition 11.3. It follows that kIndﬁ and
kResg are both isomorphisms between Jlk(H) and Jlk(G); and (after
summing over all klm) that Resgo Indg is an isomorphism of WM(H) to

itself.
In particular, this shows that for any prime pin,

Ker[Res : M(C M) — K(C n/pmr)] = kela 4 (C AT);
n

kin/p
and hence that

4 (C Hw) = Ker[Q Res : M(C Hw) — p?nﬂ(cn/p >11r)].

(ii) Now let G be arbitrary, again, and define
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(C) = Eo(6)R(6) () = - C?(G)EC(G)-Q(G) )’

Then o(G) is a ring factor of Q(G)(p), and M(G) 1is an (o(G)-module
by (2). Also, since Resg(Eo(G)) = Eo(H) for all HC G by (1), the

Frobenius reciprocity relations show that (g 1is a Green ring, and that
M is a Green module over flg.

If G 1is not p-hyperelementary, then xG(Eo(G)) =0 by (1), and so
the coefficient of [G/G] in Eo(G) € Q(G)(p) is zero. Since
multiplication by [G/H] € Q(G)(p) is IndgoResg by definition, this
shows that o(G) = Eo(G)-Q(G) () is generated by induction from proper

subgroups in this case. In other words, f(lp is #-generated; and by
Theorem 11.1 M is #-computable with respect to both induction and
restriction.

In particular, for any C € Cy(G),

G
M (G) = E(G)-H(G) = E.(G)- 1li M(H) = 14 R E~(G))-M(H). 4
e(®) = EG(0)-4(E) * EG(6): Ly () ¥ Lin Resy(E(0)) 4D (4

By definition of E(G), for H € ¥(G), Resg(EC(G))-J((H) = Ao, (H)  1f

HD2 C' for some (unique) C’ conjugate to C, and is zero otherwise.

Also, if H = Cnx1r, where C’' C Cn’ p*n, and w7 1is a p-group, then

.Alc,(H) = "C' (C’'Mw) by (iii). So (4) now takes the form

M (G) = 1 M (H) 11 CHuw).
(@ = Lin 4w = Lin  g(Cx)

i
ccH
where the limits here are taken with respect to conjugation in NG(C).

The proof for inverse limits is similar. o

So far, the results in this section apply to any p-local Mackey
functor MA. When WM{(G) = X(R[G]) for some functor X on R-orders, then

the summands .A(C(G) and .A(n(G) can sometimes be given a more accessible

description in terms of twisted group rings. Such rings arise naturally
as summands of (ordinary) group rings K[G] when G is p-hyper-
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elementary. This is explained in the following proposition. As usual,

(n denotes a primitive n-th root of unity.

Proposition 11.6 Fix a prime p, a field K of characteristic

zero, and a p-hyperelementary group G = Cn>41r (p»{’n, ™ a p-group).
Write K[Cn] = ‘;‘—lKi’ where the Ki are fields. Then G is
p-K-elementary if and only if the conjugation action of w on K[Cn]

leaves each Ki itnvariant. In this case, K[G] splits as a product
1 t
K[{G] = K[C_xw] = [l K. [x]",
n =1 1

where each Ki[w]t is the twisted group ring with twisting map
t:w — Gal(Ki/K)

induced by the conjugation action of w on Ki' If, furthermore, R is
a Dedekind domain with field of fractions K, and if Ri Cc Ki is the

integral closure of R, then n‘;‘—lRi[w]t is an R-order in K[G] and

RIG] = REG,xw] € T B[x]° ¢ L-rpcl.
i=1

Proof By Example 1.2, we can write K[C ] =K® @Q[C ] = [ K& & ;
n Q" din Q™d

and 7 acts on each K@o Md via the composite
7 9B, put(C ) —» Aut(C,) = Gal(&C,/@).

Then Gal(K(d/K) is the subgroup of elements in Gal(ﬂKd/Q) which leave
all field summands of K@omd invariant. So 7w leaves the Ki
invariant if and only if Im{w — Aut(Cd)] c Gal(de/K) for all din,

if and only if G = Cn>41r is p-K-elementary.
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The splitting K[G] & T:lKi[ﬂt is immediate. Also, "T:lRi is

the maximal R-order in K[Cn] = K and so

m .
i=1"1’

m
1
R[C]C i!1Ri C -°R[C ]

by Theorem 1.4(v). o

As an example of how this can be used, consider the functor {(G) =

Cll(Z[G])(p). If G = Cnxw, where pjn and w is a p-group, then by
the proposition, there is an inclusion Z[G] = Z[Cnxw] c |'|d’nZCd[1r]t of

orders of index prime to p. So by Corollary 3.10,

A(6) = €1y (Z[C D) ) = ke? Cll(Z(k[w]t) (6)’
n

We thus have two decompositions of WM{(G) & len’“k(c)’ both indexed on
divisors of n; and it is natural to expect that uk(c) = Cll(Z(k[w]t)(p)

for each k. This is, in fact, the case; but the actual isomorphism is

fairly complicated.
Lemma 11.7 Fix a prime p, let X be an additive (covariant)

functor from the category of Z-orders in semisimple Q-algebras with
bimodule morphisms to Z(p)-modules, and write WM|(G) = X(Z[G]) for finite

G. Assume that for any p-hyperelementary group G = Cnxw (ehh, 7 a

p-group), the projections Z[Cn] —» Z(k induce an isomorphism
X(Z[6]) —=— R X(Z(, [71°). (1)
n

Then there is an isomorphism

B+ 4 (6) = 4 (C xm) — X(&,[7]%)

which is natural with respect to both induction and restriction in w, as
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well as to the Galois action of (l/n)* on an.

Proof The definition of ﬁ, as well as the proof that it is an

isomorphism, are both fairly long and complicated. The best way to see
what is going on is to first read the proof under the assumption that n
is a square of a prime, or a product of two distinct primes.

Fix G = Cn>11r, where pin and w7 is a p-group, and let G € Cn
be a generator. For all mIn, set G = mew CG; 1i. e., the subgroup

- c
generated by gn/m and w. For all kimln, we fix the following

homomorphisms:

(1) Ind : (G) — H#(G,) and Res) : (G ) — 4(G,)  are

the induction and restriction maps

(ii) Px‘oj{'{I : J((Gm) — J((Gk) is induced by the surjection

Cm>11r —» Ckx'lr which is the identity on w, and which on the q-Sylow

T

q

subgroup of Cm (any prime qlm) is induced by a H— a for

appropriate r (so Proj;zo IndE=Id if (k'E) =1)

(iii) Pr]': : J((Gm) = X(Z[me'lr]) — X(Z(k['lr]t) is the composite

of l’ro,]']"{I with the map induced by sending gn/k € Ck to (k = exp(2wi/k)

(v) Iy X, [71%) — X(Z,[71%),  RE: X2, [71%) — X(Z (1)

are the induction and restriction maps for ka[w]t c me[w]t.

For k >0, let p(k) be the number of distinct prime divisors.

For each ulmin such that (u,E) =1, set

Binl -3 (_l)b([k.u])‘b(k).(I]Ek.u]°P{) D AG) — @ x(Z(k[r]t)
klm ulkl

(where [k,u] denotes the least common multiple). We claim that
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B =ploincl : @ 4 (G,) * A(C,) > @ X(ZL[M°)
ulklm ulklm

is an isomorphism for all wulmln such that (u,l"—:) = 1. In particular,

the lemma will follow from the case B = B:

To simplify notation, we write

X(k) =X(Z§k[1r]t) (any kin);  4%(G) = I?I 4(G) (any ulmin).
u m

The following naturality relations will be needed in the proof below. The
naturality of Indz with respect to projections to the X(k) is

described by the commutative square

Indz
4G ) > M(G)
=(oPr)] =(@Pr,, (a(m,k) = k/(k,ﬁ)) (2)
&) Iy K
@ x(x) —slnemk), gy,
kim kin

(this is induced by a commutative square of rings). No analogous result

for Resz seems to hold in general; but if q2|n for some prime q,

then the following square does commute:

A(,) Rwe )
n n/q
= PPOJ:/q ® @Pl‘ﬁ x Projxgz ® @PrE//g (3)
Resnnjqz
X(C,,) © kGPnX(k) —‘1—>0€B 29— U(G, ) 2) © keianxudq).
qfn/k d gk

The commutativity of (3) follows upon comparing bimodules, and the

: . n n
vertical maps are isomorphisms by (1). Since Resn/qundn/q is an

isomorphism (Proposition 11.5(iii)), (2) and (3) combine to show that
Rt/QOIll:/q is an isomorphism whenever qZ|n and q}(n/k). In particular,
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for each such Kk,

Ik

/g @ el : X(k/q)OKer(Rl;/q) —= X(x)

(4)

is an isomorphism. Finally, the commutativity of the following square is

immediate from the definition of PrE:

a(c,) -Eredi, y( )

Z|®Pr} 21@Pry (any min)

® X(x) X2l @ x(x)
kin kim

It suffices to prove that ﬁz is an isomorphism in the case m
Fix u, where (u,g) =1, If u

(1). Otherwise, let qlu be any prime divisor, and define v, m,
r to satisfy

u = qrv, n= qrm, alv, qjm.

We assume inductively that B: and Bzg both are isomorphisms.

Case 1 Assume first that r = 1; 1. e., that qz»{n, m = n/q,
v=w/q. Consider the following diagram:

o) —fa— ue) B @ xm
v"I n mn viklm k k. .qk
Ind) Ind vI?lnI (m,k) =v$|m(1k+ L)
&) —E— uc) Bo—s €B| X(k)
Ik
. v n ® (_Izk_'_lqt)
1 viklim q
£(c) @nu ® X(k)
ulkin

v
where {

(5)

= Nn.

=1, then 6: is an isomorphism by

and

and

Indx is the restriction of Indz, and the f are inclusion

maps. The two small squares commute — the right-hand square by (2) —
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and the lower rectangle commutes by definition of B and ﬁ Also,

A | S . ~
f, ® Indm is an isomorphism (recall .“.k(Gm)=.“k(Gn) for all klm, by

Proposition 11.5(iii)); and the right-hand column is short exact. Since

B?ofz = ﬁ: and B:,lof:, = ﬁ:,l are isomorphisms, by assumption, this shows

that ﬁﬁ is also an isomorphism.

Case 2 Now assume that q2|n, and consider the following diagram:

VRes™
n/q v
&) R, ,0)
= fy Z|f, (6)
v vReszqz v
WG, ) & x(k) —A— W (6,10 & X(k/9q)
n/q k n/q
ulkln Q@Rk/q ulkln

f, = vProj:/q ® (projo 63) and fo = vProjzgz ® (proj o ﬁ:lq) .

Diagram (6) commutes by (3), and the relations

k/i k, k,
I e

when qukln (i. e., q*E). The maps f; and f, are isomorphisms:

53 = (ﬁz/qﬂ)ld)o £y ﬂ"(cn) —_— .A(V(Gn/ )8 @ X(k) — D X(k),
9 ulkin vIkIn

where ﬁ: and ﬁ::/q are isomorphisms by assumption; and similarly for

an . .
f>. But now Bu is the composite
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Au(G ) = Ker(vResn ) (Proposition 11.5(iii))
n n/q
—%——; Ker(vResnn;qz)Q (3?) Ker(Rll:/ ) (by (6))
1 ulkln 1
_ gu/q k
= (Gn/q)QuI?InKer(Rk/q)

ﬁ://qe 1d

9 — @ (x(va)eker(®RE,))

ulkin
I, @ incl
= D X(k); (vy (4))
- ulkln
and is hence an isomorphism. [u]

Proposition 11.5 and Lemma 11.7 now lead to the following theorem,
which greatly simplifies the limits involved when applying Theorem 11.1 to
calculate SKI(Z[G]), Cll(Z[G]), SKl(ip[G]), etc., in terms of

hyperelementary subgroups. Recall (Theorem 1.6) that if G is any finite
group, and if K 1is a field of characteristic zero, then two elements
g,h € G are called K-conjugate if h is conjugate to ga for some
a€ Gal(K(n/K), where n = lgl. Also, for any cyclic o = {(g) C G, with

n=lgl=lol, we define

Nlé(a) = Nlé(g) = {x€G : xgx_1=ga, some a€Gal(K§n/K)}.

Theorem 11.8 Fix a prime p and a Dedekind domain R with field of
fractions K of characteristic zero. Let X be an additive functor from
the category of R-orders in semisimple K-algebras with bimodule morphisms
to the category of Z(p)-modules. Assume that any inclusion A C B of

orders, such that nB C A for some n prime to p, induces an
isomorphism X(2A) = X(B). Then, for any finite G, if Bpoee e By €G
are K-conjugacy class representatives for elements of order prime to p,

where n; = |gi|, there are isomorphisms:
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X t K
X(R[C)) = @ Lin (X(RC,, [71%) : ¥ € $((G(s,))) (1)
(wvhere %(—) denotes the set of p-subgroups), and
X t K
X(RLCD) = @ Lin (X%, [7]%) : 7 € 30G(e))))- 2)
1=

Here, the limits are taken with respect to inclusion of subgroups, and
conjugation by elements of Ng(gi). For all n, RCn denotes the

integral closure of R in Kfn. The first isomorphism is natural with

respect to induction, and the second with respect to restriction maps.

Proof Write A = X(R[-]), for convenience. Fix G, and let Cy(G)

be a set of conjugacy class representatives for cyclic subgroups C C G

of order prime to p. By Proposition 11.5,

AC) = @ 4 (C); (3)
CeCy (G)
where for each C, if n = [Cl|, then
M (G) 2 1i M (CHuw). 4
(@) = lin . 4, (Cx) (4)

Fix C € Cy(G), and set n = [C|. By Theorem 11.2, M is
computable with respect to p-K-elementary subgroups. In particular, for
any w € $(N(C)),

A (Cxw) 2 Lin {4 (CXp): p C TANS(C)).

Using this, the limit in (4) takes the form

4(C) = HO(N(C)/Nlé(C); Lin .«n(Cmr)). (5)
rer (N(C))

This time, the limit is taken with respect to inclusion, and conjugation
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by elements in Ng(C)
. r ~ N
Now write KQQan = ni:lKi’ vwhere Ki z K(n for each 1i; and let
Ri C Ki be the integral closure of R. By Proposition 11.6,

R[Cxw]l ¢ Il R@,ZC,[+]1" € 1-R[Cxw], and
kin

Re. 7t [+1° ¢ I R.[+]° ¢ L-Re. z¢ [+
Z™>n I i = n Z™>n *

So by Lemma 11.7 (applied to the functor A +—— X(R@ZU) on Z-orders),

for each w7 C ?P(NE(C)),

114

r
A(CHw) X(R@ZZIn[w]t) x X(‘ﬂlRi[w]t)
1=

(6)

R

r t r t
O X(R,[*]") & S X(R [7]1).
i=l i:l

Note that r, the number of field summands of Q(nQQK, is equal to

the number of equivalence classes of generators of C under the relation
g~g® if a € Gal(K(n/K). The factors X(Ri[w]t) are permuted, under

conjugation by NG(C), in the same way that these equivalence classes are

permuted in G. Thus, if there are m K-conjugacy classes (in G) of

generators of C, then (5) and (6) combine to give an isomorphism
. t K
4o(C) = @ Lin (X(RC [71°) : v € $(NS(C))), (1)

where again the limit is taken with respect to inclusion, and conjugation

by elements of Ng(C). Formula (1) now follows upon combining (3) and

(7); and formula (2) (for restriction) is shown in a similar fashion. O
Induction properties with respect to p-elementary groups — i. e.,
subgroups of the form Cnxw vwhere p*n and w 1is a p-group — will

play an important role in Chapters 12 and 13. The next theorem gives a
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simple criterion, in terms of twisted group rings, for checking them.

Theorem 11.9 Fix a prime p, and a Dedekind domain R with field
of fractions K. Let X be an additive functor on R-orders with bimodule
morphisms satisfying the hypotheses of Theorem 11.8. For any n, let Cn

be a primitive n-th root of unity, and let an denote the integral

closure of R in K(n. Then

(i) X(R[G]) is generated by (computable for) induction from
p-elementary subgroups if and only if for any n with pjn, any p-group
w, and any t: ¥ — Gal(K(n/K) with p = Ker(t), the induction map

t
ind : Hy(n/p; X(RC_[p])) — X(RC [71%)
is surjective (bijective).
(it) X(R[G]) is detected by (computable for) restriction to

p-elementary subgroups if and only if for any n with pin, any p-group
w, and any t: w — Gal(K(n/K) with p = Ker(t), the restriction map

res : X(RC[71%) —— Ko(/ps X(RC [p1))

is injective (bijective).

Proof We prove here point (i) for computability; the other claims
are shown similarly. Write &(G) = X(R[G]). Then 4« is p-K-elementary
computable by Theorem 11.2; and A(k(Cnxw) g 4(CG xw) if kin by

Proposition 11.5(iii). So A is p-elementary computable if and only if

A (C Hw) = }1{_3 A (H) (1)

for any p—-K-elementary group of the form G = Cn>d1r; where pin, 7 is a

p—group, and & 1is the set of p-elementary subgroups of G.
For HC Cn>d1r, J(n(H) =0 unless n|lH|l; i. e., unless Cn C H.
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Hence, if p = Ker[t: # — Gal(K(n/K)], then
lig A (H) 2 lim A (C_ xo0)
ﬁ n ﬁ n' n

where the limit is taken with respect to inclusion and conjugation in G.

In other words,

}ll% A (H)

iR

(lj_é% Jln(Cnxa) = Ho('lr/p; Jln(Cnx p));

and the result follows from the isomorphisms

4 (C_%7) = X(R8, I _[71%) = X(RC [v]%)"

4, (C,xp) % X(RO, 2L, [p]) = X(RE,[p])"
(where N = «p(n)/[KCn:K]) of Lemma 11.7. 0O

Finally, we list some specific applications of Theorem 11.8, which
will be used in later chapters. For technical reasons, a new functor
SKll:p] will be needed. If A 1is any Z-order in a semisimple Q-algebra,

and p is a prime, set

[Pl - i
skPIa) = Ker[sk, () qusxl(uq)](p).

In particular, there is a short exact sequence

— — sktPloy —— i —
1 CL (™), skiP(a) K (8 () 1.

By Theorem 3.14, for any finite G, sxl(iq[c])(p) =1 for all
primes q#p; and so SKLPl(z[c]) = SK, (Z[C])(,) 1n this case. This is,

however, not always the case for twisted group rings. For example, if q
is any odd prime, and C2 c Gal(ﬂKq/Q), then it is not hard to show using

Theorems 2.5 and 2.10 that SKl(ich[Cz]t) z Z/(q-1). So in this case,
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[2] t t
SKi“(ZL[C5]7) & SK, (ZC[C,] )(2)°

Theorem 11.10 Fix a prime p and a finite group G. For any

HC G, %(H) denotes the set of p-subgroups. Let O sevesO) be a set

of conjugacy classes of cyclic subgroups of G of order prime to p. Set
n, = Iail and N1=NG(01)' Then

k
(1) CL@C]), = 1?1 m% )011(zcm [w]t)(p),

R’

(2) 8K (Z[C])(,y = ie_al m% )SKEP](zgm [(v]%), and

k
~ t
(3) c,ae = @ %i )Cp(“lfni [»17).

i=1
Proof By Proposition 1.18, Cll(—)(p), SKEP], and CP(QQZ-) are
all functors on the category of Z-orders with bimodule morphisms. Also,
elements g,h € G are Q-conjugate if and only if they generate conjugate
subgroups (by Theorem 1.5(i)). The condition that X(¥) £ X(B) whenever
PHB:A], 1s trivial for C(@8;-); and holds for Cly(-),) and sk(P]

by Corollary 3.10. So the above decomposition formulas follow from
Theorem 11.8. o
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The induction techniques of Chapter 11 will first be applied to
describe sxl(ip[c]) = SK,(Z[G])/C1,(Z[C]), as well as Kl(ip[c])(p) and

Ki(ip[G])(p), for finite groups G. In particular, all three of these

functors are shown to be computable for induction from p-elementary
subgroups. A detection theorem would be still more useful; but in Example
12.6 a group G 1is constructed for which SKl(ip[G]) is not detected by

restriction to p-elementary subgroups.

These results lead to two sets of formulas for SKl(ip[G]) and
torspKi(ip[G]). The formulas in Theorem 12.5 are based on the direct sum
i e b
decompositions of Theorem 11.8, and involve only the functors H2/H; and
ab
G

torspKi(ip[G]) as abstract groups. As applications of these formulas, we

They are the easiest to use when describing either SKl(ip[G]) or

show, for example, that SKl(ip[G]) =1 if Sp(G) contains a normal

abelian subgroup with cyclic quotient (Proposition 12.7), or if G is any
symmetric or alternating group (Example 12.8).

In Theorems 12.9 and 12,10, alternative descriptions of the groups
Ki(ip[G]), SKl(ip[G]) and torspKi(ip[G]) are derived, in terms of

homology groups of the form Hn(G;ip(G,)), where G, = {g€G: ptigl}.
The formula for SKl(ip[G]), for example, can be applied directly to

determine whether a given element vanishes. The new formula for

torspKi(ip[G]) is derived from two exact sequences which describe the

kernel and cokernel of
It Ki(Zp[G]) _— Ho(c;ip[c])

for arbitrary finite G, and which generalize the exact sequences of
Theorems 6.6 and 6.7.

As was seen in Chapter 11, results on p-elementary induction are
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obtained by studying twisted group rings. This is the subject of the
first two technical lemmas. Each is stated in two parts: part (i)
contains (most of) what will be needed in this chapter, while part (ii) in
each lemma will be needed in Chapter 13 (in the proof of Lemma 13.1).

For convenience, for any finite extension F of ﬁp’ Gal(F/ﬁp)

will be used to denote the group of all automorphisms of F fixing ﬁp —_

whether or not the extension is Galois. In this situation, for any
mC Gal(F/ﬁp), F" will denote the fixed field.

Lemma 12.1 Fix a prime p, let F be any finite extension of ﬁp’
and let R CF be the ring of integers. lLet t: w — Gal(F/ﬁp) be any

homomorphism such that w7 1is a p-group, and such that the extension F/F"
is unramified. Let R[vr]t denote the induced twisted group ring; and set
p = Ker(t). Then the following hold.

(1) The inclusion R[p] C R[Tr]t induces a surjection

ind : K (R[p]) — K, (R["]").

1

(ii) For any w-invariant radical ideal I CR[p] (i. e., glg =1
for all g€ w), set I= dewl-g c R[w]t. Then
ind} : K, (R[p],T) —> KI(R[w]t,T)
is onto.
Proof Set S = R", the ring of integers in F", and let p C R
w

and g € S be the maximal ideals. Then p = gR, since F/F is

unramified, and
w/p = Gal(F/F") & Gal((R/p)/(S/9)). (1)

We first prove point (ii). Choose some r € R whose image T € R/p
generates (R/p)*. Fix coset representatives 1=g0,g1,g2,...,gm_l for

p in w, and set
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s, =r lt(g)(r) -1 € R

for each i ) 1. Here, s; € R since t(gi)(F) #T in R/p by (1).

Now fix any w-invariant radical ideal I C R[p], and any element

[u] € Kl (R[w]t,f) (u € 1+I). We want to construct a convergent sequence

U=U,,Uy,Uq,. .0, such that for each k 2 1,

u, € 1+1+T°  and [u] = [u,] € K (R[=1",T).

To do this, assume that

m-1

k
u = 1+ ionigi (xo€ I, xiGI

for 1<{k<{m1).

has been constructed. Then

I“l_ll(l ) = (1+x,) mﬁl(l T le@ ) -1) )
= +X = +x.)° + X,S °t -
Yy 120 181 0" 153 \T gy r gy

m-1
1+ "o)']lgl(1 + ’_l(xisglgi)" - (xisllgi))

Tk+1 )

m-1 -1 -1
1+ xo).i[ll[r ,1+xisi gi]. (mod

Thus, [u ] = [u ] for some wu 6 € 1+1+T wien uy Sy, (mod

Tk). Hence, since (1+T)ﬂE(R[1r]t,T) is p-adically closed (Theorem 2.9),

and since -I-k — 0 as k = (I is radical),

= [ € In|ind. : K, (R[p].1) — K, (R[x]1°.T)].
[u] = [lim ] m| ind;: K, (R[p1.T) L R71.T) ]

It follows that indI is surjective.

To prove (i), let J = (Zrigi : Zri € p} be the Jacobson radical of

R[p] (see Example 1.12), and consider the following commutative diagram:
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K, (R[p].J) — K, (R[p]) —— K, (R[p}/J) —> 1
]indJ lind lind'/p (2)

K, (R[71,J) — K, (R[7]") — K, (R[*1*/T) — 1.

The rows in (2) are exact, so ind is onto if ind_'r is. Also,

/p
R[p)/J=R/P  and  R[*]%/T = R/p[1/p]" 2 M _(5/q),
where m = |w/pl = [R:S]. The composite
indw/ ¢
K; (R/p) ——E— K, (R/pl[7/p]") % K, (S/4)

is the norm map for an inclusion of finite fields, and hence is onto. o

The next lemma will be used to get control over the kernels of the

induction maps studied in Lemma 1Z.1.

Lemma 12.2 Let pCw, RCF, and t: v — Aut(F) be as in Lemma
12.1. Then the following hold.

(i) Ki(R[p]), with the wsp-action induced by

w/p — Aut(R) x Out(p),
is cohomologically trivial.

(it) If SKl(R[p]) = 1, then there is a sequence R[p] 2 J = Il 2

I,2 ... of w-invariant ideals, where J 1is the Jacobson radical, such

2
that N'_ T =0, and such that for all k:

L, 2LJ+J,  ad  K(wpik (R[PV/1)) = 1. (1)

Proof Set E = F'. Since F/E is unramified, there exists r € R
with TrF/E(r) =1 (see Proposition 1.8(iii)). If M is any
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R[':r/p]t—module, then for all x € ¥

I g @) = I (t@)(r)x = x.
ge€n/p gen/p

In other words, the identity is a norm in End(M); and so M is cohomo—
logically trivial (see Cartan & Eilenberg [1, Proposition XII.2.4]).

In particulaf, if p 1is abelian, then this applies to any power of
the Jacobson radical J C R[p]; and so

k+1

I?I*(':r/p;(1+Jk)/(1+Jk+1)) = l?l,((':r/p;Jk/J )=0

for all k21. Also, w/p acts effectively on the finite field R[p]/J;
and (R[':r]/J)* is easily seen to be w/p-cohomologically trivial. Thus,

K, (R[p1/J%) = (RLP1)Y/(1+0%)

is cohomologically trivial for all k, and in the limit KI(R[p]) =

(R[p])* is cohomologically trivial.
Now assume that p 1is nonabelian. Let {zl,...,zk} C p be the set

of central commutators in p of order p, set o = (zl,...,zk) <4 p, let
a: p — p/o be the projection, and set Ia = Ker[R[p] —_— R[p/a]]. Then

ogdw; and o #1 by Lemma 6.5. We may assume inductively that the
lemma holds for R[p/0].
Define

k
d =<1 CR[p] : I w~invariant; I = p?I + } (1-z,)I,, some I,CR[p]}:
0",k ) e 2

a family of ideals in R[p]. For all I € J, the group
K; (R[p1.1) = In|K, (R[p].1) — K,(F[p]) ] € Ker[K;(R[p]) — K;(R/p°[0/01)]

is torsion free: tors(Ki(R[p])) = tors(R*) xpab by Theorem 7.3, and this

injects into Ki(R/pz[p/a]). Hence, by Theorem 2.8 and Proposition 6.4,
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log; + Kj(R[p1,T) —— Hy(psT) = In[Ho(p,T) — Hy(piRIp])]

is an isomorphism. In particular, Ki(R[p],I) is w/p-cohomologically
trivial for I € J, since ﬁo(p;I) is an R[w/p]t—module.

By Proposition 8.1, the map

SK, (Ra) : SK; (R[p]) —> SK, (R[p/0]) (3)

is surjective. Hence, Ki(R[p/a]) = Ki(R[p])/Ki(R[p],Ia). Both
Ki(R[p/a]) and Ki(R[p],Ia) are cohomologically trivial: the first by
the induction hypothesis and the second since Ia € 3. So Ki(R[p]) is

cohomologically trivial.
1f SKI(R[p]) =1, then SKI(R[p/a]) =1 by (3). So we may assume

inductively that there are ideals J(R[p/0]) = Ii 2 Ié 2 ... vhich

satisfy (1). Fix m such that I"n ¢ p?R[p/0], and set Ik = (Ra)_l(II:{)
for 1 <k < m In particular, Ia c Im c Ia+p2R[p]. So if we set
Ik = Jk.m-I'Il for k>m, then Ik €93 for all such k, and

K, (R[p)/1,) = K, (R[p])/K](R[p].1,)

is cohomologically trivial. But KI(R[p]/Ik) is cohomologically trivial

for k<{m by assumption; and hence the Ik satisfy conditions (1). O

This will now be applied to describe the functors SKI’ Kl’ and Ki

on twisted group rings.

Theorem 12.3 Fix a prime p, let F be any finite extension of
ﬁp, and let R C F be the ring of integers. lLet t: v — Ga.l(F/ﬁp) be

any homomorphism such that w is ¢ p-group, and such that the extension
F/Fw is unramified. Set p = Ker(t), and let R[w]t denote the induced
twisted group ring. Then the inclusion R[p] € R['lr]t induces

isomorphisms
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(1) 1ndg : Ho(w/piSK (R[p])) — SK,(R[r]%)

(2) indy : By(w/piK, (R[p1)) —— K (R[x]")
(3) indy, : By(1/piK{(R[p])) —— K{(R(x]")

(4) ey, @ KjR(N)Y) —— E(w/pik{ (R(pD))-

Kl
Proof Using Lemma 8.3(ii), choose an extension

1—>o—>7¥-SHr—1

of p-groups, where J = a_l(p) and ag = a|f, such that o C Z(p) and
H2(ao) = 0. In particular, by Lemma 8.9, SKI(R['E)']) = 1.

The composites

K, R(p1) <24 k, R¥1%) 5 K (RIF])

K: (R[p]) 2 k3 (Rx1%) =5 k) (RLp1)

are induced by tensoring with R[?]t or R[1r:|t as bimodules (see

Proposition 1.18), and are hence the norm homomorphisms N1r/p for the

w/p-actions. So Ker(ind) C Ker(N"/ in both cases. Since Kl(R['ﬁ])

)
(= Ki(R['ﬁ])) and Ki(R[p]) are cohomologically trivial by Lemma 12.2,

Ker(N,, ) = (g(x)-x " : g€w/p, x€K;{(R[p])
€ Ker| tnd: K:(R[p]) — K'l(R[w]t)]

and similarly for K,(R[}]). Also, since H(w/piK!(R[p])) = 1,

HO(w/p:K! (R[p])) = Im(N

1r/p)° The induction maps are onto by Lemma 12.1,

and it now follows that
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indy : Ho(w/piK (RIF])) — K (RI¥1%),
N (5)
ind, : Ho(w/piK{(R[p])) — K;(R[v]"), and

triy, : Ki(R[w]t) = HO("/P;Ki(R[P]))

are isomorphisms.
Now set I = Ker[R[?)'] — R[p]] and 1 = de_'rl'g, and consider the

following diagrams with exact rows:

K, (R[p],I) — Ho(w/piK, (R[F])) — Hy(w/piK (R[p])) — 1
lindl ’Ellndﬁ llndK
Ky (R[7]", 1) ——— K (R[¥]") ——— K (R[¥]") —> 1

1 — Hy(n/p3SK, (R[p])) — Hy(w/p;K,(R[p])) — Hy(w/p;K](R[p])) — 1
lindSK lindK ElindK,

1 —— K, (R[7]") ———— K, (R[7]*) —— K;j(R[*]") — 1.

Then 1nd]~( and 1ndK, are isomorphisms by (5), indI is onto by Lemma

12.1, and hence 1ndK and 1ndsK are also isomorphisms. o

Theorem 12.3 applies in particular to twisted group rings R(n[w]t
of the form occurring in Theorem 11.8: F(n/F is unramified if p»{'n by

Theorem 1.10(i). So Theorem 11.9 now implies as an immediate corollary:

Theorem 12.4 If p is any prime, and if R is the ring of integers
in any finite extension of 6])’ then the functors SKI(R[G]),

KI(R[G])(p)’ and Ki(R[G])(p) are all computable with respect to
induction from p-elementary subgroups, and Ki(R[G])(p) is computable

with respect to restriction to p-elementary subgroups. 0O

As another application of Theorem 12.3, the decomposition formulas of
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Theorem 11.8, when applied to SKI(R[G]) and tors K’l(R[G])(p), take the

following form:

Theorem 12.5 Fix a prime p, let F be any finite extension of
ﬁp’ and let R C F be the ring of integers. For any finite group G,

let - SRR - be F-conjugacy class representatives for elements in G

of order prime to p, and set

1

N, = Ni(g,) = {x€G: xgx '=g?, some a€Cal(K, /K)} (n=lg])

and Zi= G(gi). Then
k b
(1) SKy(RCT) = @ Ho(N,/2;; Hy(Z)/H57(2,)) ()3 ond
i=
(11) cors(K! (RECD) .y = L) 1 @ S HOM,/z,:720)
1 () -~ YW i=1 177171 Y(p)°

Proof Set n, = lg;l, and let Q(Ni) and #(Z;) be the sets of

p-subgroups. Then by Theorem 11.8,

k
® lin sk (R{_[7]°)
i=1 weF(N; ) i

IR

SK, (R[C])

k
31 m%; )Ho(w/(wﬂ 2,)5SK, (RL, [N z,1)

IR

R

k
& Ho(N,/2, by @, [eD)

IR
o=

i

1

Ho(N,/2, ¥ )H2(p)/H§b(p))
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IR

K b
Sl Ho(Ni/Zi‘ Hz(Zi)/Haz (Zi))(p)'

Here, the last step follows since H2(_)(p) and H;b(—)(p) both are

computable for induction from p-subgroups by Theorem 11.1: they are Green

modules over the functor Ho(—;Z(p)).
The formula for torspKi(R[G]) is derived in a similar fashion, but

using inverse limits (and Theorem 7.3). O

In contrast to the results for induction, the following example shows

that SKl(ip[G]) is not in general detected by p-elementary restriction.

Example 12.6 Fix a prime p, and let p be any p-group such that
SKl(ip[p]) # 1. Set n=pp—l, let H = Cn>v1Cp be the semidirect

product induced by the action of Cp x Gal(ﬁp((n)/ﬁp) on ((n), and set
G =p x H. Then SKl(ip[G]) is not detected by restriction to

p-elementary subgroups of G.
Proof By Theorem 11.9, it suffices to show that the transfer map

trf : SKl(ipfn[pxCp]t) — SK (2.0 [e])

is not injective. Since the conjugation action of Cp on SKl(ipfn[p]) &

Hz(p)/HZb(p) is trivial, the inclusion induces an isomorphism
a ty o a
sk (2.0, [pxC,1%) = K, (2.C [P]) # 1

by Theorem 12.3. The composite

sk (Z,0,[1) 55 sk @ ¢ [pxc1%) —5 sk (@ ¢ [p])

is the norm homomorphism for the Cp—action on SKl(ipfn[p]) (use Prop-

osition 1.18); is hence multiplication by p, and not injective. o

The next proposition gives some very general conditions for showing
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that SKl(ip[G]) = 1. Note, for example, that it applies to the groups

SL(2,q) and PSL(2,q) for any prime power (.

Proposition 12.7 Let p be any prime, and let G be any finite
group. Then SKl(ip[G]) =1 (if SKl(ip[r]) = 1 for all p-subgroups

7w CG. In particular, SKl(ip[G]) =1 1if the p-Sylow subgroup Sp(G)

has a normal abelian subgroup with cyclic gquotient.

A b _
Proof By Theorem 12.5(i), SKI(Zp[G]) =1 if Hz(r)/H; (wv) =1 for
all p-subgroups 7 C G; and this holds if SKl(ip[w]) =1 for all such

. If a p~group 1 contains a normal abelian subgroup with cyclic
quotient, then SKl(ip[v]) =1 by Corollary 7.2. D

As a second, more specialized example, we now consider the symmetric
and alternating groups. Note that Proposition 12.7 cannot be applied in

this case, since any p-group is a subgroup of some Sn.

Example 12.8 For any n 2 1 and any prime p,

sxl(ip[sn]) = SKl(ip[An]) =1,

Proof For any g € Sn of order prime to p, the centralizer

Cs (g) is a product of wreath products:
n

CS,,(g) = C"htSn1 X vae X Cm S

H
k Ny

where for each 1, mi|lgl and hence pafmi. So by Theorem 12.5(i),
A A . b
SK (2 [8,]) = SK|(Z[A]) = 1, if H2(G)/H; (G) =0 whenever G is a

product of symmetric groups, or is of index 2 1in such a product.
The groups H2(Sn) and H2(An) have been computed by Schur in [1,

Abschnitt 1]. It follows from the description there that for any n24,

the maps
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Hy(GyxCy) — Hy(Ay) — Hy(A ) (g) — Hy(S))

(induced by inclusion) are all isomorphisms. Furthermore, H2(An) is a
2-group unless n =6 or 7, H2(A6) and H2(A7) both have order 6,

and AS and A7 have abelian 3-Sylow subgroups. So for all n,

Hz(An)/H‘;b(An) = Hy(s )/H3°(s,) = o.

By Proposition 8.12, the functor HZ/H;" is multiplicative with
respect to direct products of groups. Thus, H2(G)/l-§b(G) = 0 whenever

G 1is a product of symmetric or alternating groups. If G is a

semidirect product

k-1
G=(Amx...xAnk)>4(C2) gsmx...xsnk,

then since H. (A x...xA ) has odd order, H,(G) 1is generated by
1 ny Ny 2

)k-l

H2(An1 X .o XAnk) and 1-12((02 ).

Thus, H2(G)/H;b(G) =0 for suich G, and this finishes the proof. O

Example 12.8 was the last step when showing that Wh(Sn) =1 for all
n. We have already seen that Wh'(Sn) is finite (Theorem 2.6) and
torsion free (Theorem 7.4); and that Cll(Z[Sn])=l (Theorem 5.4). The
computation of SKI(Z[An]) = Cll(Z[An]) will be carried out in Theorem

14.6.
To end the chapter, we now want to give some alternative, and more
direct, descriptions, of SKl(ip[G])' torspKi(ip[G]), and Ki(ip[G])

for arbitrary finite G. For any G, and any fixed prime p, G will
denote the set of p-regular elements in G: 1i. e., elements of order
prime to p. For any g € G, g.,2s € G will denote the unique elements
such that g. € G., g, has p-power order, g = grgs, and [gr,8,] =1
(note that g.,g, € (g)). For any R, H (GiR(G:)) denotes the homology
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group induced by the conjugation action of G on R(G.). It will be

convenient to represent elements of Hl(G;R(G,.)) via the bar resolution:

H)(GiR(G:)) % Hy(Z[C] 0, Z[c] 85 R(C.) —%2— Z[G] 0y R(G:) —4im R(G:)).

where 8,(g®x) =x—gxg'1 and 3.(zg®h®x) =h0x-ghox+gohxh'1.

When R 1is the ring of integers in a finite unramified extension of

ﬁp’ then ¢ denotes the automorphism of Hn(G;R(G,.)) induced by the map

¢(Zrigi) = Z¢(ri)g]i) on coefficients. As usual, we write
H_(GiR(G:)), = H_(G3R(G:))/(1-0); Hn(c;R(c,))“’ = Ker(1-9) C H_(GiR(G:))-

Theorem 12.9 Fix a prime p, an unramified extension F 2D ﬁp’ and

a finite group G. Let R CF be the ring of integers. Define

upg ¢ Hy(G3RIG]) — H(G:R(G:)) and 6p. : Hy(G3RIG]) — H,(G:R/2(G:))

by setting, for r; € R and g; € G:

o(lrig:) = Jgi ®ri(gi): and  8(Jrig:) = XFi(gi) (Fi € R/2).
Then

(i) There are unique homomorphisms

A

vpe ¢ K{(R[G]) — H,(GiR(G:)) and  Bp. : K;(R[C]) — H,(G;R/2(G:)),

RG

which are natural with respect to group homomorphisms, and which are
characterized as follows. For any u € GL(R[G]), write u = Zir;g; and

u_l = zjsjh_;, where r;,s; € Mn(R) and g;,h; € G. Then

p([u]) = .z.g; ®Tr(s;r; ) (h;g:i)r € Hl(G;R(Gr)). (Tr: Mn(R) — R)
1,]

If p=2, then for any commuting pair of subgroups H,rCG, where I[HI
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is odd and w7 1is a 2-group, and any x € J(R[Hxw]), ©6(1+x) is the
image of x under the composite

J(R[Hx v]) —BZH» J(R[H]) = 2R[H] 2> R[H]CR(G.) — H(G:R/2(C.)).
(ii) The sequence

1 — K;(RIGY) () {28 1 (GiRIG]) © H (GR(GH)) @ Hy(G:R/2(G))

o0 ¢1 0)
6 0 ¢-1

> Hy(GiR(G-)) ® Hy(GsR/2(G,)) — 0

is exact.
(iii) There is an exact sequence
L 4 ’
0 —> H,(GiR(G-))" ® Hy(G:R/2(G-))” —— K{(RIC]) ()

—L Hy(GIRIGT) —— H, (G3R(Gr)), @ Hy(GiR/2(Gr)), — O.
In particular,

tors_K; (RIG]) ¥ H, (GiR(G-))® @ H(GiR/2(c:))®.

Proof Using the relation gh®x = h®x+g®hxh !, for g,h € G and
: GL(R[G]) —> H,(GiR(G-))

x € R(G.), one easily checks that the map Vo

defined in (i) is a homomorphism. Hence, this factors through KI(R[G]) =
GL(R[G])®®. If G 1is p-elementary, then H, (GsR(G:)) znl(cab;n((cab),))

and  SK (R[G®P]) =1, so that SK (R[C]) C Ker(v Since SK, (R[G])

RG)'
is generated by p-elementary induction, this shows that Ve factors
through Kj(R[G]) = Kl(R[G])/SKl(R[G]) for arbitrary finite G.

To see that 6RG

G=Hxw where |Hl 1is odd and 7 1is a 2-group. Then J(R[H]) = 2R[H],

and so

is well defined when p=2, assume first that
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Ky (R/4[H]) (5 % K, (R/4[H],2) & Hy(H;2R[H]/4R[H]) & H,(GiR/2(Gr))

by Theorem 1.15. This shows that (] is well defined in this case; and

RG
in particular when G is 2-elementary. Since K'l(R[—])(z) is

2-elementary computable, 8 now automatically extends to a homomorphism
defined for arbitrary finite G.

If G 1is p-elementary — if G = Cnxw where p*n and ® 1is a
p—group — then R[G] is isomorphic to a product of rings Ri['lr] for
various unramified extensions Ri/R' So in this case, sequence (ii) is

exact by Theorem 6.7, and sequence (iii) by Theorems 6.6 and 7.3.
All terms in sequence (ii) are computable with respect to induction
from p-elementary subgroups. Hence, since the direct limits used here are

right exact, (ii) is exact except possibly at Ki(R[G])(p)' But then (ii)

is exact if and only if (iii) is, if and only if
] (]
[Ker(r)| = [H,(GiR(G-))" |- [Hy(G:R/2(G:))" |- (1)

Also, Ker(T') = Ker(log) = torspKi(R[G]) (Theorem 2.9), and so (1)

follows from a straightforward computation based on Theorem 12.5(ii). For
details, see Oliver [8, Theorem 1.7 and Corollary 1.8]. o

The above definition of v was suggested by Dennis’ trace map from
K-theory to Hochschild homology (see Igusa [1]). We have been unable to
find a correspondingly satisfactory definition for 8.

We saw in Theorem 6.8 that a restriction map on HO(G;R[G]) can be

defined, which makes ch natural with respect to transfer homomorphisms.

Unfortunately, there is no way to define restriction maps on the other
terms in sequence (ii) above, to make the whole sequence natural with
respect to the transfer. If there were, the proof of the injectivity of
(I‘,v,‘bﬁ) would be simpler, since inverse limits are left exact.

We now end the chapter with a second description of SKl(ip[G]). For

any finite G and any unramified R, set

Hy(GiR(Gr))g = Hy(GiR(Gr))/(2-1);
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where ¢ is induced by the automorphism &(rg) = 4p(r)gp of R(G:). In

analogy with the p—group case, we define

B (ORE)y = T @ HyERE)) 12 ByGiR(E:)),]
H abelian

= <(g/~h)0rk € Hy(GiR(Gr))y : 8h€G, kEG,, reR, {g,h,k) a.beli.an>.

The following formula for SKl(R[G]) is easily seen to be abstractly

the same as that in Theorem 12.5(i), but it allows a more direct procedure

for determining whether or not a given element in SKl(R[G]) vanishes.

This procedure is analogous to that in the p-group case described in
Proposition 8.4. Note, however, that in this case, once u € SKl(R[G])

has been lifted to U € Kl(R[a]) for some appropriate G, it is
necessary to evaluate both va(ﬁ’) and I‘a(ﬁ'). Knowing I‘a(ﬁ) alone does

not in general suffice to determine whether or not u  vanishes in

SKl(R[G]) — no matter how large G is.

Theorem 12.10 Fix a prime p, and let R be the ring of integers
in any finite unramified extension F of ﬁp Then, for any finite group

G, there is an isomorphism
O ¢ SK (RIG]) —=— Hy(GiR(G:))g/Hy (GiR(Gr) )i

which is described as follows. let 1 —K—& -5 G— 1 be any

extension of finite groups such that
~ b
Inf Hy (SiR(Gr)) — Hy(G:R(G:)) | € H3D(GiR(G,)).- (1)

Consider the homomomorphisms
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Ker[Ho(E;R[E]) — HO(G;R[G])]
(T)a b .
K*” @, R(G,) O Ho(GiR(Gr))y

(KD (GR(G.)) + (10M(GiR(S:)))  HEP(GR(G)),

(@—1)07

Ker[H; (&:R(G.)) — H, (GiR(G)) ]

(2)

Here, Ga(r(z—l)g) = z®r-a(g,.) for any z€K, Tr€R, and g€C; and
6:1; and ¢ are induced by the five term exact sequence
x H ¢ ab
Hy(&R(G,)) 2202, 1 (ciR(G,)) —2— K20, R(G.)

(3
—— H, (ER(G)) Lule), H, (GiR(G:))

of Theorem 8.2. Let EE: KI(R[E]) — HI(E;R(G,)) be induced by the
homomorphi sm Vs of Theorem 12.9(i). Then, for any [u] € SKI(R[G]),

and any lifting to [¥] € K, (R[C]),

0([u]) = (6%) 7 (B 0T + (@-1)(« Tay(¥)) ) € Hy(GiR(G:)) /M3 (G3R(GH) ) -

a
ab
a

6ab is a monomorphism. To see that (T)a is well defined, first set

Proof By (1) and (3), & and (<l>—1)o:._1 are well defined, and

1, = Ker[R[E] — RC]] and H(&1) = Ker[H,(G:RIE]) — Ho(G:R[C) |
for convenience. The map I — HI(K;R(G,)) & KabOR(G,), defined by

sending (z-1)g to z®a(g.), 1is easily seen to be well defined; and

induces a homomorphism
vy ¢+ Hy(@T ) — Hy(GH (KiR(G))) = K2P 8, R(G.).

Consider the following commutative diagram:
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Hy GRIGT) —— By 1) —— B @RIE]) — Hy(GRLCT)

SR e e

8% . _ab po
Hy(G;R(G)) —— K 8,0 R(G) - H, (C:R(G,))
where vy is as in Theorem 12.9; and where
b 2
A(g®rh) = (a(g)»\h)@r-hr € H; (G;ZP(G,.))

forany r €R, g €CG, and h € G such that [a{g),h] = 1. The rows in
(4) are exact, and ﬁo(a;la) = Coker(aa); so @, factors through a
homomorphism E’a as in diagram (2).

For any U € Kl(Ra)_l(SKl(R[E])), B'é(ﬁ) € Ker(Hl(a)) = Im(¢). By

the exact sequence in Theorem 12.9(ii),
— ~ -1._ .~
G ola(U) + (-1)oc “(Ty(W))

b
K 8, R(G.)

€ Ker[ L (G;R(c,))] = Im(6%.).
s%(H2P(GiR(G )Y + (10, (GiR(E))) ! ab

So to see that (')G is uniquely defined — with respect to a given a, at

least — it remains only to check that

& oTx(¥) + (@-1)(5136(6)) =0 for any U € Kl(R[E],Ia). (5)

To prove this, set G = {(g,h) € G: a(g) =a(h)}, so that

— B2,
B1
—_—

O e (>
—
£

is a pullback square. Set I = Ker(R[B2]) € R[a]. Since P> 1is split
surjective (split by the diagonal map), 6’32 =1, and PB4y induces a

homomorphism
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B. : Ker[H (8;R(G.)) —> H, (&;R(G ))] = % R(G.)
1* . 1 ] r 1 ] r = IG r

K*® 8, R(G.)

6%(H2P(GiR(G.)) + (1-0)Hy(GiR(G:)) )

Then any & € K (R[C],I)) lifts to G € Kl(n[&],i);
B oTx(¥) + (#-1) (" () = Bi*(aﬁzor‘a(ﬁ) + (@-1)(<'55(8))) = B1(0)

by Theorem 12.9(ii); and this proves (5).
We have now shown that there is a well defined epimorphism

8 + SK, (R[G]) —» Hy(GiR(G-)),/H3 (GiR(G:)),,

such that 8,([u]) = [a‘a"b(ra(ﬁ))] for any [u] € SK (R[G]) and any
lifting to [U] € KI(R[E]). This is independent of a: given a second
surjection a’ onto G, the maps OG defined using a and a’ can
each be compared to the map defined using their pullback. Also, the
existence of a satisfying (1) follows from Lemma 8.3.

To show that G)G is an isomorphism, it remains to show that the two

groups are abstractly isomorphic. But this follows from the formula for
SKI(R[G]) in Theorem 12.5; the formula

m
Hz(c;R(Gr)) z 1?1}[2(Cc(gi)) ® R(gi)

(when Bys--08 are conjugacy class representatives for G.); and the
description of Ng(gi) in Oliver [8, Lemma 1.5].
b
Alternatively, since 1-12(G;R(G,))¢/H§ (G;R(G,))d) and SKI(R[G]) are

both p-elementary computable, it suffices to show for p-elementary G

that OG is an isomorphism. And this is an easy consequence of Theorem

8.6. O
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The goal now is to reduce as far as possible computations of
Cll(Z[G])(p) and SKI(Z[G])(p), first to the case where G is

p—elementary, and then to the p-group case. The reduction to p-elementary
groups is dealt with in Section 13a. The main result in that section,
Theorem 13.5, says that Cll(Z[G])(p) and SKI(Z[G])(p) are p-elementary

computable if p is odd; and that SKI(Z[G])(2) can be described in

terms of 2-elementary subgroups via a certain pushout square.
Section 13b deals with the reduction from p-elementary groups to
p—groups. In particular, explicit formulas for Cll(Z[G])(p), in terms

of Cll(l[w]) for p-subgroups ¥ € G, are given in Theorems 13.9 (p

odd) and 13.13 (G abelian). Theorems 13.10 and 13.11 deal with some of
the special problems which arise when comparing Cll(R[w]) with

Cll(l[w]) -— when ¥ 1is a 2-group and R 1is the ring of integers in an

algebraic number field in which 2 is unramified.

In Section 13c, the extension

¥ ] A
t— o1y are) — @) — @3 en — 1

is shown to be naturally split in odd torsion. An example is then
constructed (Example 13.16) of a 2-elementary group G for which ¢ has
no splitting which is natural with respect to automorphisms of G.

13a. Reduction to p-elementary groups

As seen in Theorem 11.9, reducing calculations to p-elementary groups
involves "untwisting"” twisted group rings. Before results of this type
for Cll(R[w]t) and SKI(R[w]t) can be proven, the other terms in the

localization sequence for SKI(_) must be studied. The main technical
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results for doing this are in Lemma 13.1 and Proposition 13.3.

Lemma 13.1 Fix a prime p, let F be any finite unramified
extension of ﬁp, and let R C F be the ring of integers. Fix a p-group

w7, and let t: ¥ — Gal(F/Qp) be any homomorphism. Set p = Ker(t),

and let R['lr]t denote the induced twisted group ring. Then the following
hold.

(i) For any radical ideal I C R[p] such that gIg_l =1 for all
g€, set I-= dewl-g € R[w]t. Then the inclusion R[p] C R[1r]t

induces an isomorphism
indy : Ho(a/piK (R[p1.1)) —= K (R[71°,T).

(ii) If SKI(R[p]) = 1, then the inclusion R[p] C R[1r]t induces

an epimorphism
indy, : K5(R[p]) — K3(R[x1").

Proof Let J C R[p] denote the Jacobson radical, and set # = w/p.
I

R
For any pair Io € I C R[p] of w—-invariant ideals of finite index, let

t —— - -
arq, ¢ Bo(#/piK (R[p)/ 10, 1/T0)) — K, (R[7]"/To,1/To)
t — - -
Bis1, ¢ Kp(R[P)/Io,1/I0) — K,(R[7]"/To,1/To)

be the homomorphisms induced by the inclusion R[p] C R[w]t. The lemma

will be proven in three steps. To simplify notation, we write Ki(I/Io)

for Ki(R[p]/Io ,I1/10), etc.

Step 1 Assume first that Io € I C R[p] are w-invariant ideals of

finite index such that IJ+JI C I,. We want to show that aI/I is an
o

isomorphism, and that pI/I is surjective.
o

Write I1=I10T and To=1o® I,, where 1T = dew\pbg and
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To = dev\plo-g. By Theorem 1.15,
K,(1/10) % (1/10)/[R[p}/10,1/10] % Hy(p;1'/1)

and (since R-w generates R[n‘]t as an additive group)

K,(1/To) (T/160)/[R[7] /10, T/To] & Hy(m:1/1o) @ Hy(R-m1/To).

In particular, this shows that a is a monomorphism. But «a is
/1, 1710

sur jective by Lemma 12.1(ii), and is hence an isomorphism.

By Example 1.12, J = {p,g-1: g€p) (as an R[p]-ideal); and the
Jacobson radical 3 Cc R[:W]t has the same generators as an ideal in
R[w]t. Hence, by Theorem 3.3, Kz(flfo) is generated by symbols {l+p,v}

and {g,v} for g€ p and v € 141/15. To show that [31/1 is onto, it
[+]

will thus suffice to show that {u,1+§g} = 1 whenever u € (R[p])*, § €
I/Io, and g € w~p. As in the proof of Lemma 12.1, choose r € R such
that t(g)(r) 2 r (mod pR) (cal(F/ap) = Gal((R/pR)/le)); and set

1

s = r_l-t(g)(r) -1=r -grg-l -1¢€R"

. -1
Then, since rur = u,

{u,148g) = {u, 1+s (¢ Logrg™ - 1)Ee)

(u,1+1r (s tEg)r)-{u, 1+s lEg) ! = 1.

Step 2 In order to prove (i), we first show that «a is an

I/1o
isomorphism for any pair Iy C I C R[p] of w-invariant radical ideals
such that [I:Is] < ®». This will be done by induction on |I/Io|. Fix
Io €I, set I, =1+ IJ+ JI (so I, €Iy € I), and consider the

following diagram:
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Ko(1/1,) — Hy(FiK;(11/10)) — Ho(FiK,(1/10)) — Hy(#:K, (I/1,)) = 1
lﬂI/I, gl"‘l,/l0 1‘1‘1/10 g1‘1‘1/11 (1)

Kz(T/T,) —_— KI(T,/TO) —_— KI(T/'I'O) —_— KI(T/T,) — 1.

The top row is exact, except possibly at Ho(i;Kl(I,/IO)). By Step 1,

aI/I, is an isomorphism and BI/I: is onto. Also, is an

%1./1¢

isomorphism by the induction hypothesis, and so a1 is an isomorphism
[}

by diagram (1).
Now, for any w-invariant radical ideal I C R[p],

K (R[p).I) = Um K (I/Io) and KI(R[w]‘,T) ® lim K (I/To)

by Theorem 2.10(iii), where the limits are taken over all I C I of

finite index. Also, Ho(l'r;-) commutes with the inverse limits, since the
Kl(I/IO) are finite. Since the a1 are all isomorphisms,
o

ap = lim Te is also an isomorphism.

Step 3 Now assume that SKI(R[p]) = 1. By Lemma 12.2(ii), there is

a sequence

R[PJ2J=1,21,2 ...

of w—invariant ideals, such that JIk_l+Ik_lJ [ Ik for all k, such that
ﬂ:=11k = 0, and such that KI(R[p]/Ik) is TW-cohomologically trivial for
all k. We claim that BR[p]/Ik is surjective for all k; this is clear
when k =1 since K2(R[p]/J) =1 (Theorem 1.16).

Fix k 2 0, and assume inductively that pR[p]/Ik_, is onto.

Consider the following diagram:
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Ko(L_/T) = Ky(R[PV/L) = Hy(®:K,(R[p)/T, _)) — Hy(F:iK (I, _,/1,))

Pry /1 PRLpY/1 PRLp1/ 14 ol R Y2
Ko(T,_/T,) = KRI¥1/T) — K RI71/T,_ ) —— K (T,_,/T))
Since the last two terms in the exact sequence
Ko(R[PY/T,_) — K (/1) — K (R[p)/T,) — K (R[p)/T, ) — 1

are ¥-cohomologically trivial, by assumption, the top row in (2) is exact
at Ho(w;K2(R[p]/Ik_1)). Also, by Step 1, O/ is an isomorphism

and BIk-l/Ik is onto. We have assumed inductively that BR[p]/Ik-l is
onto, and so the same holds for BR[p]/Ik'

In particular, in the limit, indK2 = &1 BR[p]/I is onto. a
k

Under certain circumstances, twisted group rings actually become

matrix rings. This is the idea behind the next lemma.

Lemma 13.2 Let R=ﬂl.l R, €S be rings, and let WQS* be a

subgroup such that gRg =R for all g € w, and such that this

conjugation action of w permutes the Ri transitively. Assume that w
generates S as a right R-module, and that gRl = R1 for any g € w

such that gng-l = Rl' Then there is an isomorphism a: S —_— Mn(Rl)

which sends R to the diagonal. More precisely, if - SETERYE -9 € w are
such that giRIg;I = Ri’ then a can be defined such that for any

r= (rl,...,rn) €R (ri € Ri)’
a(r) = a(rl,...,rn) = diag(gzlrlgl,...,g;lrngn).

Proof Fix elements - SEERREE -9 € 7, and central idempotents
-1
LERERRL N € R, such that gingi = Ri and Ri = Rei for each i. In

particular, if ' = {g€w: gng_1=R1}, then the g, are left coset
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representatives for 7' in w. We first claim that {glel,...,gnel} is

a basis for Se as a right Rl—module. The elements generate by

1
assumption (gR1 = Rl for g € v'). To see that the g;e; are linearly

independent, note for any TlseeesT € Rl such that Zigiri = 0, that

-1 -1 _ .

a1, gry if 1=
i85y = ey (84T 385 ) 8 = {

0 1f i#j

so that for all {, 8;F; = €8Ty = ei-ZJ.gJ.r:j = 0.

In particular, if we consider Se as an (S,Rl)-bimodule, this

1

induces a homomorphism

R
(7]
g
b
e
~
[72]
o
—
—
R

=M (R).

Furthermore,

n n -1 n -1 n n -1
S= @Se, = DS'geg, = DSe, g, ® DgRg ;
=1 1 4 T 31

and for all i, j, and Kk,

g.R

-1 5 if k=1
a(g;Rg )(gR) = o

1
-1 -1
if k # 1. (elgi 8181 = B €08 = 0)

This shows that a 1is an isomorphism. The formula for «|R is clear. O

As 1is suggested by Theorem 11.9, the goal now is to compare
SKI(R[w]t), where R[w]t is a global twisted group ring and p = Ker(t),

with SKI(R[p]). The next proposition does this for the other terms in

the localization sequence of Theorem 3.15.
Recall the definition of Steinberg symbols in Section 3a:

{u,v) = [¢7 (diag(uu™h 1)) L ¢ (atag(v.1,v7))] € seqm)

for any (not necessarily commuting) u,v € R". Here, ¢: St(R) — E(R)
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denotes the standard projection. It will be convenient here to extend
this by defining, for arbitrary n2l and arbitrary matrices
v € GL (R), {u,v) € St( (R)) = St(R).

Proposition 13.3 Fix a prime p, a p-group w, a number field K
in which p is unramified, and a homomorphism t: v — Gal(K/Q). Let
RC K be the ring of integers, set p = Ker(t), and let K[1r]t and
R[1r]t be the induced twisted group rings. Let

iy ¢ Ho(m/piC, (KIp1)) — C(KIMT), iy : KSR [6]) — KSR [71%),

igkp © Ho(m/p3SK (R [p1)) — K, (R [7]°)

be the homomorphisms induced by the inclusion R[p] C R[1r]t. Then

(i) iCp is surjective, and is an isomorphism if p s odd, or if

P=2 ad K" has no real embedding;

(it) ISKp is an isomorphism; and

(iii) there is an isomorphism

a: Hl(w/p;SKl(ﬁp[p])) —— Coker(iy,).

. _ vk . a
In (iii), for any § = Zi:lgigai € Hl(w/p,SKl(Rp[p])), where gi€1r,
aiGSKl(ﬁp[p]), and “(gi(ai)-azl) =1, aff) is defined as follows.

Fix matrices u; € GL(ﬁp[p]) which represent the a and write

i’
[g;09,)ey0u] - [g0 ] = $(X) € E(R [p])
for some X € St(ﬁp[p]). Then

k
o(E) = af ) g;0a,) = {g).u;} {gpup}{gom} X | € KR [1%).
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Proof Point (i) will be proven in Step 1. Point (ii), and point

(iii) when Sl(l(ﬁp[w]) = 1, are then shown in Step 2; and the general
case of (iii) is shown in Step 3. Recall (Theorem 1.7) that l?p £ “plpﬁp
and R 2 R

P "plp P
R which divide p.

, where the products are taken over all prime ideals in

Step 1 Set n = lw/pl and Ko = K", for short. Then KOKOK is a
product of n copies of K, K@K K[p] = (K[p])n; and the factors are
o

permuted transitively under the conjugation action of w. By Lemma 13.2,
t .
Ky K(x]® 2 M (K[p]),

ty ~
and the composite Cp(K@KO K[p]) — Cp(K@KO K[(#]") = Cp(K[p]) is the

transfer map. In the following commutative diagram:

f ~
C (K& K[p]) —» C (K[p]) = G, (K8 K[x]°)

ltrf ltrf
i

Cp R t
¢, (K[p1) ¢, (K1),

the transfer maps are all onto by Lemma 4.17, and so iCp is onto.

If p is odd, or if p =2 and Ko = K" has no real embedding,
then by Lemma 4.17 again,

C,(K[7]") = Hy(Gal(K/Ko);C (K& K[x]%)) & Hy(Gal(K/Ko):C,(K[p]))-

To see this when p = 2, note that Conjecture 4.14 holds for K[1r]t by
. % t o R t
Theorems 1.10(ii) and 4.13(ii): since K2[1r] = ﬂplzKp[w] , and each

factor is a summand of some 2-adic group ring of the form F[Cnxw]. By

the description of the isomorphism K@, K[1r]t = Mn(K[p]) in Lemma 13.2,
o

the action of Gal(K/Ke) on Cp(K[p]) is just the conjugation action of

w/p. So iCp is an isomorphism in this case.
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Step 2 Fix some prime plp in R, and let P=PgseeeaPy be the
orbit of p wunder the conjugation action of w. Let 1r'i C w7 be the
i1s -1
stabilizer of v, = {g €w: g;P;8; _pi} and set ¢ = Pyt Pye

Then ﬁ = l'l1 lAp . Consider the following homomorphisms:

n
Ho(n/p:K, (R [01)) —H Ho(n/p: @R, [r51) —F sk Ry[nd").

Here, f; 1is an isomorphism by Theorem 12.3; and f> 1is an isomorphism
s 3 t . D 1t s s n 3 .t
Lemma 13.2: since Rq[w] S Mn(Rp[wl] ), and the inclusion "i:lRpi [1ri]

c ﬁq[w]t is the inclusion of the diagonal. If SKl(ﬁp[p]) =1, then by

a similar argument,

KGR[oD) = BIGR, [p) —> DGR, [r;1%) — k3R [r] %)

are surjections by Lemma 13.1. After summing over all w-orbits of primes

plp in R, this shows that i is an isomorphism, and that iK2 is

SKp
sur jective if SKl(ﬁp[p]) =1,

Step 3 Now assume that SKl(ﬁp[p]) # 1. Using Lemma 8.3(ii), choose

an extension
~ _a ~ -1 ~
1—D0o—7% D1 —1 where B =a (p), ao =a|f,

such that o C Z(p) and H2(ao) = 0. Then SKl(ﬁp['b']) =1 by Lemma 8.9.

Consider the following commutative diagram:

Ko( p[ 51) — KR [p]) > Bo(w/pik (R [31.1)) > Ho(w/pik, (R, [51))

IR

iz i Zlig

KSR [11%) — KR [71%) —5 kR (15 T) ——— kR 115,

Here, I = Ker[ﬁp['b'] - ﬁp[p]] and T = Ker[ﬁp[?’r]t - ﬁp[w]t]. Then is
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is onto by Step 2 (SKl(ﬁp['ﬁ]) = 1), 1is4 1is an isomorphism by Lemma

13.1(i), and is is an isomorphism by Theorem 12.3. Furthermore,
Ki(ﬁp[p]) and Kl(ﬁp['ﬁ]) (= Ki(ﬁp['ﬁ])) are w/p-cohomologically trivial

by Lemma 12.2(i); and so a diagram chase gives isomorphisms
Coker(12) & Ker(y)/In(B) = H;(n/piK, (R [p1)) = H, (x/piSK (R [s1))-

To check the formula for a(f):a(ZgiQai), life 8;s Uy and X

to § €¥, ﬁiGGL(ﬁp['ﬁ]), and )'ZGSt(ﬁp['ﬁ]). Then § lifts to

~ o I -1 P
[8).8,1 - [&. 51 ¢(X) © € K (R [F].1);
and as an element of Kl(ﬁp[?]t,-f) this pulls back to
() = {g;0;){gou )X T € KR [719). o
= 1Bty &k "k 2%y :

Now recall the functor SKll:p] of Theorem 11.10. This was defined so

that for any Z-order A, there is a short exact sequence

— E— [p] D — | —
1 CL ™) SK; P (2) K, () () 1.

By Theorem 3.14, SKEP](R[G]) = SKI(R[G])(p) whenever G is a finite

group and R is the ring of integers in a number field.

Theorem 13.4 Fix a prime p and a number field K where p is
unramified, and let R € K be the ring of integers. Let 7 be a
p-group, fix a homomorphism t: w — Gal(K/Q), and set p = Ker(t). Let
R[1r]t be the induced twisted group ring. Then

(1) ig :Hy(n/p;Cl (R[p])) —> Cll(R[w]t)(p) is surjective, and

is an isomorphism if p {is odd; and

(1) ig : By(n/piSK (R[p1)) —» SKEPIR[w1®) ts surjective, and

is an isomorphism if p {is odd or if K" has no real embedding.
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Here, in and iSK are induced by the inclusion R[p] C R[‘lr]t. In

general, the following square is a pullback square:

Hy(n/p3C,(KLp1)) —21— Hy(n/piSK, (Rp]))

i (1)

Cp Isk
t a t
¢, (k[r]*) —22— skfPlrra®).
Proof First consider the following two commutative diagrams, whose
rows are exact by Theorems 3.9 and 3.15:
5 3
K5(R [p1) — Hy(w/piC,(K[p])) —— Ho(w/p;Cl, (R[p])) — 1

i i

K2 - (2b) 1o (2)

N t a t
KGR [7]%) — C (K[¥]") ——2—— C1;(R[%]) () — 1

H, (v/p3SK (R [o])) —2—

Hy(n/p3CL, (R[p1)) ~ Hy(/p3SK, (RLP1)) —> Ho(w/piSK (R [p])) — 1

R

i (3a) 1ge =g (3)
— t D — [p] |3 QN f t —
1 €1y (R[71) ) kP (R(71%) sk, (R [71°) 1.

Here, by Proposition 13.3, iCp is surjective and iSKp is an

isomorphism. It follows that i and 1 are surjective.

Cl SK
From the exactness of the rows in (2) and (3), we see that (3a) is a
pushout square, and that (2b) is a pushout if 1K2 is surjective. Thus,

14

the "obstruction” to (2b) being a pushout square is Coker(iKz)
Hl(w/p;SKl(ﬁp[p])) (Proposition 13.3(iii)). On the other hand,
Hl(w/p;SKl(ﬁp[p])) also occurs in (3), where it generates Ker(f). So if

we somehow can identify these two occurrences of Hl(w/p;SKl(ﬁp[p])),
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then (2b) and (3a) will combine to show that (1) is a pushout square.
To make this precise, consider the following square:

H, (n/p3iSK; (R [p1)) —%— Ho(n/piCL, (RLP1))

al proj (4)

Coker (1g5) —E— B (w/piC1 (RLp1))/B, (Ker(ig))-

Here a 1is the isomorphism of Proposition 13.3(iii), and B is induced
by diagram (2). Assume for the moment that (4) commutes. Then

Im(projod’) = Im(B) = Ker(iCl)/él(Ker(icp)).
It follows that
Ker(ig,) = 51(Ker(icp))-+1m(6') = 51(Ker(icp))*'KeP(f):
and hence from (3) that

Ker(igy) = f(Ker(iy))) = foél(xer(i ) = 8, (Ker(i

&) )L

Since Coker(d,) Z Coker(dz) by (3), this shows that (1) is a pushout
square.

If p 1is odd, or if p =2 and K" has no real embedding, then
iCp is an isomorphism by Proposition 13.3(i), and hence iSK is also an

isomorphism. If p 1is odd, then &' =1 in (3) — the standard
involution fixes Cll(R[p]) (Theorem 5.12) and negates SKl(ﬁp[p])

(Theorem 8.6) — and so iCl is an isomorphism.

It remains to prove that (4) commutes. Fix
Kk R 4 .
£= 2 g 0a € H(n/pisk (Ry[p])) (so Meey(ap)-aghy=1esK,R [o])):

and represent each a, by some ug € GL(R[p]) (SKI(R[p]) sur jects onto

i
SKl(ﬁp[p]) by Theorem 3.9). Write
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(29,0 [g,,m,] = #(X) € ER [p]) (x € se(R [p]))-
By Proposition 13.3(iii),

o(§)

{Eug)e e {geu) X € KR [#15).

1 by Theorems 4.15 and 3.14, so the u can be

Also, SK,(R[21Cp]) ;

lifted to x, € St(R[%][p]). Then o) lifts to
n = g (%)) x] By(xp) X5 gy ) K X! € KR [p]);
and the elements
£1(x)) X gy(%p) g g () ! € SUREIIAD. X € se(R [p])

are both liftings of H[gi,ui] € GL(R[p]). From the description of 51

in Theorem 3.12, it now follows that
~ k _1
ﬁoa(f) = 61(11) = [gl'ul]...[gk'uk] = inl(gi(ui)'ui )

= 9'(§) € Hy(w/p;CL (R[p])). o

Diagram (1) above need not be a pushout square if SK1 is replaced

by Cl (wvhen p = 2). This is the basis of Example 13.16 in Section

1
13c.
Recall that a 2-hyperelementary group Cn>41r (2fn, 7™ a 2-group) is

2-R-elementary if Im(w —conj, Aut(Cn) = (Z/n)*] C {#1}. Theorems 13.4,

11.9, and 11.10 now combine to show:

Theorem 13.5 For any finite group G, Cll(l[G]) and SKl(l[G])

are generated by induction from elementary subgroups of G. For any odd
prime p, Cll(l[G])(p) and SKl(l[G])(p) are p-elementary computable;
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while for p =2, SKl(Z[G])(z) is 2-elementary generated and

2-R-elementary computable. Also, if & denotes the set of 2-elementary
subgroups of G, then the following is a pushout square:

. a
Li Cy(a[H]) —— Lig K, (Z[H]) o)

I

Cy(Q[6]) ——— K/ (2[C1) (5)-

Proof For odd p, this is an immediate consequence of Theorems 13.4
and 11.9. As for 2-torsion, square (1) is a pushout square by Theorem
13.4 and the decomposition formula for SK|1:2] of Theorem 11.10. Note

that direct limits are right exact, so a direct limit of pushout squares
is again a pushout square.

Recall the formula

C(Q[G]) = G) & L/

@re]) = [Re, (@) n](m)*

of Lemma 5.9: where Rg .(G) = RC(G)/RIR(G), 2in, and exp(G)|n. The
functor RC/IR(-)(2) is 2-R-elementary computable by Theorem 11.2.

Tensoring by Z/n and taking coinvariants are both right exact functors,
so they commute with direct limits; and C2(Q[G]) = C(Q[G])(2) is thus

2-R-elementary computable. Square (1) remains a pushout if the limits are

taken over 2-R-elementary subgroups; and so SKI(Z[G])(2) is also comput-

able with respect to induction from 2-R-elementary subgroups of G. o

Square (1) above need not be a pushout square if SKI(Z[G])(2) is
replaced by Cll(Z[G])(2); and Cll(Z[G])(2) is not in general

2-R-elementary computable. Counterexamples to both of these are
constructed in Example 13.16 below.
What would be more useful, of course, would be a result that

Cll(Z[G]) and SKI(Z[G]) were detected by restriction to elementary

subgroups. Unfortunately, just as was the case for SKl(ip[G]) (Example
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12.6), Cll(Z[G])(p) is not in general p-elementary detected.

13b. Reduction to p—groups

The goal now is to compare Cll(R[w]) to Cll(Z[w]), whenever

is a p—group and R 1is the ring of integers in any algebraic number field
K in which p 1is unramified. The main results in this section are that
Cll(R[w]) = Cll(Z[w]) if p 1is odd (Theorem 13.8); and that when p = 2,

Cll(R[w]) is isomorphic to one of the groups Cll(Z[w]), Cll(Z(,(['lr]),
or Cll(Zfs[w]) (Theorem 13.10). The differences between these last

three groups {(when = 1is a 2-group) are examined in Theorems 13.11 and
13.12. When p 1is odd or G 1is abelian, these results then allow a
complete reduction of the computation of Cll(Z[G])(p) to the p-group

case.
The main problem here is to get control over the relationship between
Kg(ﬁp[w]) and K;(ip[w]) in the above situation. In fact, these two

groups can be compared using Proposition 13.3{iii) from the last section.
But first, some new homomorphisms, which connect K;(ip[w]) with H2(1r),

must be defined.

For any group T,
A, ¢ Hy(m) — Ky (Z[7])/{-1.7}

will denote the homomorphism constructed by Loday [1]. One way to define

7\1r is to fix any extension 1 — R — F L g — 1, where F is the

free group on elements a_,...,a_; and let
2 n

A: F — St(Z[7])

be the homomorphism defined by setting A(ai) = hli(a(ai))' In
particular, ¢(A(ai)) € E(Z[r]) 1is a diagonal matrix with entries a(ai)

and a(ai)“1 in the first and i-th positions (and 1 elsewhere). Then
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for any a € R, ¢(A(a)) = diag(l,a(a2)j2,...,a(an)j“) for some i € Z;

and so A([R,F]) € ({g.g} ={-1.,g): g € G) = {~1,7} by Theorem 3.1(i,iv).
Also, A(RN[F,F]) € Ker(¢) = K2(Z[1r]), and so A induces a homomorphism

A, @ Hy(w) 2 (RN[F,F])/[R,F] — K,(Z[#])/{-1,7}.

Note that A (g+h) = {g,h} for any commuting pair g,h € w.
WVhen 7 1is a p-group for some prime p, we let X’ denote the
composite

A, Z-12) on
Re + Hy(m) — = Ky@[w])/{-1,7) —F= Ky(Z [*])/{-1,47}.

A splitting map for x" is constructed in the next lemma. This map
9": K;(ip[v]) — H2(1r) can be thought of as a K2 version of the

homomorphism

2 ab

v s Kl(Zp[v]) — 7

of Theorem 6.7: defined by setting uv(Zrigi) = (ﬂg;‘ )I/Er; for any unit
Zrigi € (ip[v])*. One can also define 91r using Dennis’ trace map from

K-theory to Hochschild homology (see Igusa [1]); but for the purposes here
the following (albeit indirect) construction is the easiest to use.

Lemma 13.6 Fix a prime p and a p-group w. Then there is a unique
homomorphtsm

0=0_: K;(ip[v]) — Hy(m);

such that for any central extension 1—og—¥-SHg—1 of

p-groups, the following diagram commutes:
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K@ (r]) —2= K, (2 [71.1,) — K (L [¥])

Bw v, vy (1)

H2(1r) ot o 'i‘ab.

Here, I = Ker[ip[?] o ip[‘lr]], v, is the map defined above, and for

r1€lp, g1€1r, and zi€a,

- - Ti
"a(l + Iy (2 l)gi) =llzg'.
In addition, the following two relations hold for Bw:

(1) 6, factors through Kg(ip[w])/{—l,:hr}, and the composite

A

A 0
Hy(w) —— K3(2 [7])/(-1, 47} — Hy(n)
is the identity.

(it) For any g € v, any p C v such that [g,p] =1, ond any
A *
u€ (Zle]), 6,({g,u}) =g (u).

Proof For any central extension 1 — o — ¥ Ly — 1, let Ia

be as above, and let I = Ker[ip[?] — ip] be the augmentation ideal.

Then v, factors as a composite

[5)
K, (Z,[#1.1,) —proj, Ky (@ [¥)/11,,1,/11)) % By(#:1/11,) %4, (2)

where the middle isomorphism follows from Theorem 1.15, and where
- = ry v

(.)w(z:'i(z1 l)gi) = l'lz1 for ri€lp, zi€a, and gi€G. In particular,

this shows that v, is well defined. Since the rows in (1) are exact,

;) can be defined uniquely to make (1) commute whenever 8% s

T

injective. There exist central extensions with &* injective by Lemma
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8.3(i); and two such central extensions are seen to induce the same 91r

by comparing them with their pullback over .

It remains to prove the last two points.

(i) Let % - 7 be such that &% H2(1r) — o0 = Ker(a) is

injective. Fix x € H2(1r), and write
a ~
67(x) = [g;,h;1 [g,.h ] € oN[#7].
By the above definition of X" (and Theorem 3.1(iv)):

Rp(x) = {a(g))ah )} {algy) alhy)} € Ky(Z [7])/{-1,4w).

Then

6%(8,oX_(x)) vaoaoxw(x) = v ([g,.h;1- " [g,. 1 ])

(re;oh,d € K, (@ [71.1,))

[g,-h, 1 [ ] = 6%(x) € o3
and so Bwox"(x) = X.

(ii) Now let g and p be such that [g,p] =1, and fix

~

u = Zrihi € (ip[p])*. Let 1 — o — %% 7 — 1 be as before,

~

choose liftings g,ﬂi €% of g and hi; and set G:Zriﬁi. Then

8({g,u}) = [€,4] in diagram (1); and

1 ~—1

A =1+ @F - =1+ @) @ -H  (wd 11,

(where I again denotes the augmentation ideal). So



CHAPTER 13. Cl,(Z[G]) FOR FINITE GROUPS 309

8,({g,u}) = (6" (12,41 = (697 v,(1 + IrpT @™ - m))
(by (2))

@ o (1 + Qrp 7 Ir, @R FIED))

6 M0 517 )20 < (Men™ )7 = g ). o

As was hinted above, Ow is needed here mainly as a tool for

describing the cokernel of certain transfer homomorphisms in K;

Lemma 13.7 Fix a prime p, and let R be the ring of integers in
any algebraic number field in which p 1is unwramified. For each prime
plp in R, set

k, = ord ([R/p:2/p]) = maX{i : pt | [R/p:2/p] = [ﬁp=ﬁp]};

and set k = minplp(kp). Then for any p-group w, the sequence

"

3 trf C, 5 k k b
KR [7]) =55 K3(Z [7]) —— 2/p" 8 (Hy(m)/Hy (r)) — O
is exact, where Oi; is the reduction of Ow.

Proof Since ﬁp = nplpﬁp (Theorem 1.7), it suffices to show that

C,5 trf .c.5 Oi; kp b
KR [7]) =5 K (2 [7]) —p— Z/p P8 (Hy(m)/i (1)) — 0 (1)

is exact for each p. Since k\p/ﬁp is unramified, this involves only
cyclic Galois extensions of Qp If Qp CFcC Rp’ p*[ﬁp:F], and SCF

is the ring of integers, then

trf : Kg(ﬁp[w]) — Kg(S[w])

is surjective, since the composite trf o incl is multiplication by



310 CHAPTER 13. Cl,(Z[G]) FOR FINITE GROUPS

[RP:F] on the pro-p-group K;(S[v]). In particular, it suffices to prove
the exactness of (1) when [Rp(l%] = pk for some k.

In this case, write G = Gal(ﬁp/A%), and consider the twisted group
ring ﬁp[va]t. Then ﬁp[G]t is a maximal order (see Reiner [1, Theorem

40.14]), and so ﬁp[G]t £ Mp"(ip) by Theorem 1.9. The transfer thus

factors as a composite
et : KSR [v]) 1220 KE(R [rx€]) = KM 4 (2 [7]) = KS(E [7]).
Proposition 13.3(iii) now applies to show that
Coker| erf: KSR 1) — K;(ip[w])] = H,(GiSK; (R [7]))
= G (Hy(m)/H2 (v)) (Theorem 8.6)
= 7/p% 8 (Hy(n)/H30(m)).

The exactness of (1) will now follow, once we have shown that the
composi te

KSR (7)) —E K5(2 [r]) —T> 26" 0 (Hy()/H(m))

vanishes. To see this, assume that H2(1r)/H;b(1r) #0, and fix an
extension 1 — (z) — ¥ % 7 — 1 such that &%: H2(1r) —» (z) = Cp
is surjective and Ker(&a) 2 H;b(vr) (use Lemma 8.3(i)). Then 2z is not
a commutator in %. The induced map SKl(a): SKl(ip[?]) — SKl(ip[w])

is injective by Theorem 7.1, and its image has index p by Proposition
8.1. We can thus assume, by induction on |SK1(ip[1r])|, that the result

holds for 7.

Consider the following commutative diagram with exact rows:
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a
KSR [#]) —F— KGR [r]) —F K (R [7].(1-2)) — K, R [¥])

R

A

K2 7)) —I> K2 (v]) — I K @ [71,(1-2));

where the t; are transfer homomorphisms. By Proposition 6.4, the only
torsion in Kl(ﬁp[?],(l-z)) is {(z) (HO(%';(l-z)ﬁp[?]) is torsion free
since z 1is not a commutator); and so this subgroup generates Im(aR).
It follows that l(;(ﬁp[w]) is generated by iR(Kg(ﬁp[?])) and

Xw(uz(w)) C K;(ip[w]); and hence that
Im(tz) = (iy(Im(t1)), K;(ip[w])pk).

Clearly, l(;(ip[w])pk C Ker(6r); and iy(Im(t:1)) C 1y(Ker(8.")) C Ker(8))

by the induction assumption. o

Lemma 13.7 will now be applied to compare Cll(R[1r]) with
Cl,(Z[v]), when = is a p-group and p 1is unramified in R. As usual,
this is easiest when p 1is odd.

Theorem 13.8 Fix an odd prime p, a p-group w, and a number field
K in which p is unramified. Let R C K be the ring of integers. Then

the transfer homomorphism

trf @ Cl,(R[w]) — Cl,(Z[+])

is an isomorphism.

Proof Consider the following commutative diagram of localization

sequences (see Theorem 3.15):
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( p[1f]) — G (K]} — CL (R[7]) — 1

=lerf

Cp trfcl (1)

K5(Z [7)) — ¢ (@[v]) — C1,(@[7]) — 1.

Here, trfcp is onto by Lemma 4.17. For any simple summand A of Q7]
with center F, F 2 Q(fn) (§n = exp(21ri/pn)) for some n by Theorem
9.1; and since p 1is unramified in K, K@QF = Z(K@QA) is a field
with the same p—th power roots of unity as F. So Cp(K[1r]) = Cp(Q[1r])
by Theorem 4.13; and trfcp is an isomorphism.

It follows from diagram (1) that trfcl is onto, and also (using

Lemma 13.7) that there is a surjection
Z/pk@( (1r)/l'§b(1r)) Z Coker(trf,,) —f Ker(trf.,)
Hy = K2 c1)-

The standard involution is the identity on Cll(R[1r]) by Theorem 5.12;
and is (-1) on Coker(terz) by Lemma 13.7 (and the description of 6

in Lemma 13.6). Hence f =1, and trfCl is injective. 0O

This can now be combined with Theorems 11.10 and 13.4, to give the
following explicit description of Cll(Z[G])(p) in terms of p-groups.

Theorem 13.9 Fix a finite group G and an odd prime p, and let

OpseeesOp C G be conjugacy class representatives for the cyclic subgroups
of order prime to p. For each i, set Ni = NG(ai), Zi = CG(ai), and

let ?P(Zi) be the set of p-subgroups. Then

c1,(@eD) ) = @H( "e_rzg )c1 ,@i=D)). o

The formula in Theorem 13.9 gives a quick way of computing

Cll(Z[G])(p) as an abstract group, but it is clearly not as useful if one

wants to detect a given element. The best thing would be to find a
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generalization of the formula Cll(Z[G]) ECoker(\IdG) for p-groups in

Theorem 9.5. The main problem in doing this is to find a satisfactory

definition of \PG in the general case. The closest we have come is to

show that for any finite G,

v
011(2[01)[%] > Coker(Hl(G;Z[G]) —C, [Rm(c) ® Z/n](z/n)*)[%]

for any n such that exp(G)|n, where \IJG(th) is defined for any

commuting pair g,h € G as follows. Let Vl,...,Vm be the distinct
irreducible C[G])-representations. For each i, let V}; c Vi be the

subspace fixing h, and let V?(g) c V]; be the sum of the

exp(2wi/d)-eigenspaces for g: Vl: —_ Vl;, for all din. Then

m
¥o(g8h) = ) dimc(v‘i‘<g>)-[vi] € [RMR(G) ® Z/n] x
i=1 (Z/n)

Under the isomorphism [RCIIR(G) ® Z/n] x = C(Q[G]) of Lemma 5.9, this
(Z/n)

is easily seen to be equivalent to the definition of \I:G in Definition
9.2 when G is a p-group. Also, \I:G is natural with respect to
inclusions of groups; and so the isomorphism Cll(Z[G])[%] £ Coker(\IdG)[%]

follows from Theorems 9.5, 13.5, and 13.8.
In contrast to Theorem 13.8, when w is a 2-group, it turns out that

there can be up to three different values for Cll(R[w]) for varying R

(in which 2 is unramified). These are described more precisely in the

following theorem.

Theorem 13.10 Fix a 2-group w oand a number field K where 2 is
unramified; and let R C K be the ring of integers. Consider the maps

o ¢ Ky(Z[1]) — Co(@w]) and  § : Ky(Z,[w]) — K(@,[7]).
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0" & Ky(Zy[r]) — 220 (Hy(m)/H"(m))
be the homomorphism induced by 8, . Then
(1) ClL(R[¥]) = C2(Q[w])/1m(¢) if K has a real embedding;

(i) Cl(R[7]) = K;(%[w])/lm(ib') if K is purely imaginary and

[R/p:F2] is odd for some prime p|2 in R; and

(iit) Cl (R[7]) & K§(62[1r])/$(xer(e")) if K is purely imaginary

and [R/p:Fz] is even for all primes p|2 in R.

Proof For any simple summand A of Q7] with center F,

Fc Q(fn) for some n (fn = exp(21ri/2n)) by Theorem 9.1. In
particular, since 2 1is unramified in K, KQQF = Z(KQQA) is a field
with the same 2-power roots of unity as F, ?2, and ﬁpeQF for any
prime pl2 in K. Furthermore, KQQF has a real embedding if and only

if K and F both do. It follows that

C2(K[1r]) = C2(Q[1r]) if K has a real embedding; and

(1)
C2(K[1r]) 4 Kg(ﬁp[ﬂ])(m = ;(62[1r]) if K is purely imaginary.

In the first case, the isomorphism is induced by the transfer map (which
is onto by Lemma 4.17). In the second case, we define an isomorphism «

to be the composite

a & Cy(K[w]) = Coker| K, (K[x]) —"?K;(ﬁp[”])](g) RRL KSR [11) (5,

Zltrf

Ko (@,[71)

for any prime pl2 in K. To see that a 1is independent of the choice
of p, note that for any simple summand A of Q[w], either



CHAPTER 13. CI1,(Z[G]) FOR FINITE GROUPS
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Co(K8gA) = Z/2 = Kg(xz)

(and so there is only one possible isomorphism C2ﬂ(qDA) = K;(A2)); or
else alcz(KQQA) is the composite

Cy(KogA) —E5 c,(a) BRI KS(A,).

Now consider the following diagram:
Hy ()

X”J \YJ
t
KS(Ry[7]) —1o KS(Z,[n1)/{-1,

o
i} =5 /258 (Hy (MM (m)) — o,
where k = max{{i: 2i|[R/p:|l-"2], all p|2 in R}, and t

(2)

map.

1 is the transfer
By Lemma 13.7, the row in (2) is exact, and the triangle commutes.
Furthermore, Xw

factors through K2(Z[1r]), and the composite

Ky(Z[7]) — Kg(Z,[v]) —*— Lin SK, (Z[7]n) () = Co(@L7])

vanishes by construction (K;(ip[w])(z) =1 for odd p). It follows that

K;(iz[w]) = <Im(tl) . Im(Xw)> = <Im(tl) . Ker(¢)>. (3)
Similarly, since Ker(¢) and Ker(¢) differ by exponent 2 (Theorem 9.1),
Im(tl) C Ker(0") = Ker(ﬂ'l') c <Ker(9i;) , 2°Ker(¢)> c <Im(tl) , Ker($)>. (4)

When K has a real embedding, there is a commutative diagram

K5(Ry[7]) — C,(K[x]) — C1,(R[7]) — 1

lc, glcz lca

Kg(Z,[7]) —£ c,(@[v]) — C1 (Z[*]) — 1,
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where the t, are transfer maps, and tz 1is an isomorphism by (1). Then

Im(¢) =Im(pot;) by (3), and so t; is an isomorphism.
If K has no real embedding, then we use the diagram

. ®
KS(Ry[7]) —% C,(K[7]) —— C1,(R[¥]) — 1

ts Zla
KS(Zy[r]) —E KS(8,[%])

where the top row is exact, and the square commutes by definition of a.
If [R/p:F2] 1is odd for some p|2 in R (i. e., if k=0), then t; is
onto by (2), and so Cll(R[w]) % Coker(¢). And if k > O, then by (4),

CL, (R[w]) & K3 (&[v])/In(F o t1) = K (&[v])/F(Ker(6")). O

In particular, for any 2-group 7 and any R (such that 2 is
unramified in R), Cll(R[w]) is isomorphic to Cll(Z[w]) (in case (1)),

Cll(Z§7[1r]) (case (ii)), or Cll(Z§3[1r]) (case (iii)). Theorem 13.10

gives algorithms for computing these groups, and the "unknown quantity” in
all of them is K;(iz[w]). This is why one can hope that any procedure

for describing Cll(Z[w]) will also extend to the other two cases. Note
~ b
that Cll(Z§7[1r]) =~ Cll(Z§3[1r]) if H2(1r) = Hg (v) — in particular, if

7 1is abelian.

Ve now want to carry these results farther, and get lower bounds, at

least, for the differences between these groups Cll(R[w]). We first

consider the case where w7 1is abelian (so Cll(R[w]) = SKI(R[‘II’])).

Theorem 13.11 Let =7 be an abelian 2-group, and set k = rk(w).
Then

SK, (ZL,[7]) = SK (Z0,[7]) & SK, (Z[w]) © SK, (ZC,[w/7°])

IR

SK, (Z[]) @ @22 k()
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2 2

Here, =#°={g°: )k

g€w}. If w2 (C2 (so 7 =1), then the following

triangle commutes:

0
KS(Zy[]) —> Hy(m)
’ ' (1)
Ko(@[r1)/{-1, 4w} = w221k,

where V(g~h) = {g,h} for g,h € v oand is injective.

Proof For convenience, set ¥ = 1r/1r2, and let a: ¥ — ¥ be the

projection. For each simple summand A of Q[w], either A= Q and is
a simple summand of Q[¥], in which case C(A) = 1; or A= Q(Ei) for

some 122, and C(A) 2 (E,) = Kg(ﬁ2). See the table in Theorem 9.1 for

more details. In particular, this shows that
£1®f2 : Kg(@[r]) —— c(@[r]) & K3(@,[71)

is an isomorphism; where f; is the usual projection and f, is induced
by a.
Let J=4(2, 1-g : g€w) C 22[1r] be the Jacobson radical (Example

1.12). From the relation
(g-1) + (h-1) = (gh-1) - (g-1)(h-1) = (gh-1) (mod J?) (for g,h € n)

we get that (iz[w])* =1+J = (4g, u: g€w, u€l +J2). So by Corollary

3.4,
K;(i2[1r]) = ({g,th}, {g,u} : g,h€w, u€l+J3). (2)

For any g,h€r,

{3g.th} € Im[K2(Z[1r]) - K;(22[1r])] € Ker(f10%_)
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by definition of C(Q[7]). Also, {w,14J3}C Ker(fzo$1), since for any
u€l+J?, {g,u} maps to {:tl,l+422} =1 at each simple summand 62 of

~ ~ k
02[1'r] (= (‘1)2)2 ). So by Theorem 13.10, (f,,f2) induces an isomorphism

SK, (Z{,[7]) % SK, (20;[7]) & Coker[§,: KS(2,[v]) —> KS(@,[v])]

R

c°ker[x§(22[1r]) L, cal])] e Coker[l(;(iz[i]) 5, K@) |

R

SKI (Z[W]) ® SKI (Z§3[1—r]) M

Now assume that w = ¥ & (Cz)k,
clearly commutes on symbols {tg,th}. For any u € 1+J* and any g€,

we have seen that @({g,u}) = 1; and ev({g,u}) = ghuw(u) =0 by Lemma

and consider triangle (1). This

13.6(ii). This shows that (1) commutes; and hence by Theorem 13.10 that

SK, (ZL,[7]) = SK, (ZL,[7]) = Coker(¥) & Coker(V).

since @.[r] = (8)2, K°(@ o 2*
Q,[r] = (Q,)" ., Ky (Qy[r]) = (2/2) by Theorem 4.4. So the

remaining claims — the injectivity of V and the ranks of Coker(V) and
K;(ﬁz[w])/{—l,:hr} — will all follow, once we have shown, for any basis

{gl.-...gk} for w, that the set
9= {(-1-1) L (g (epep) € KSD) ¢ 1<1 < ISk

is linearly independent in K;(ﬁ2[1r])

To see this, define for each s € ¥ a character xsz * — {f1} as

follows:
s = {-1,-1}: xs(ge) =1 (all &)
s = {-l.g;}: Xs(zi) = -1, xs(ge) =1 (all e#i)
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S S S
s = {g;.8;}: x'(gy) =x(gy) = -1, x(gy) =1 (all £#1,]).

Then, if xi: K;(ﬁ2[1r]) — K;(ﬁz)g{il} denotes the homomorphism induced
by xs, we see that xi(s) = -1 for each s, while (under an obvious
ordering) x;(s) =1 for all t <s in ¢. This shows that ¢ is

linearly independent in K;(ﬁ2[1r]) o

For nonabelian =#, the best we can do in general is to give lower
bounds for the "differences” between the groups Cl,(Z[v]), Cl1,(Z{,[7]),

and Cll(Z§3[1r]). Recall that for any 2-group w, the Frattini subgroup

Fr(w)Cw 1is the subgroup generated by commutators and squares in w;

i. e., the subgroup such that u/Fr(w) & 7/201rab.

Theorem 13.12 Let w be any 2-group, and set k = rk(w/Fr(w)). Set
R = rk(In[Hy(m) = Hy(w/Fr(@))]); s = o W[HE°(m) — Hy(x/Fr(m) ),
so that S (R ¢ (’2‘) Then there are surjections
1, @ fx]) —— 1 ape]) @ @)
CL, (Z4[7]) = CL (T, [7]) —> C1 (2L, [7]) @ @2)" .

In particular, Cl (Z{,[7]) ¥ Cll(Z§7[1r]) if R>S.

Proof Set # = w/Fr(w) & (Cz)k, and let a: 7 —> T be the
projection. Let
6, : Ky (Z,[r]) — Hy(m), 6, : KS(Z,[¥]) —» Hy(¥)

be the homomorphisms of Lemma 13.6. Consider the following commutative
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diagram:

Hy(m) Hy ()

N A

2,[n1)/{-1,4w) 2Ly K@ [71)/(-1,47) —T> H(F)

AT 4

Cy(@x]) L K@ [7]1)/ (1,47} —L2—» KS(@,[71)/{-1,47}.

Here, V(g~h) = {g,h}, and is injective by Theorem 13.11. Note in
particular the following three points:

(a) K;(%[i])/(—l,ﬁ) = (Z/2)2k_1_k, and V091_r = ¢_, by Theorem

13.11.

oA = y Lemma .6(1).
b kaw Id by L 13.6

(c) ¢on =1 since f\w factors through K2(Z[1r]), and the

composite

Ky(Z[7]) — K(Z[x]) —> Lin 8K, (2{x].m) (5) = Cy(@L7])

vanishes by construction (K;(ip[w])(z) =1 for odd p).
Now consider the homomorphism
(f1.£2): KS(@[7])/{-1,4m} — Cp(Q[r]) ® K (& [71)/(-1,47}.

Write Q7] = A x Q[#], where A is the product of all simple summands
of Q[wv] not isomorphic to Q. Then, since Cz(Q[w]) = Cz(A) (Theorem

4.13), (f,,f2) factors through a product of epimorphisms

[0/ -1, 4wy — cy)] x [KE@,L71)/¢-1,48) 2> KE@,[71)/(-1,47) .
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This shows that (f;,fz) 1is onto; and hence (using Theorem 13.10(ii))

that there are surjections

C1, (2L,L¥]) * Coker(¥) ——» Coker((f1.f2)oF) (by (@)

—— Coker(f;0¢) ® Coker(fz0¢)

Coker(¢) © Coker|[Hy(r) B2y y(7) s KE(By[w])/(-1, 47} |

2%-1-k-R

IR

C1,(Z[7]) & (2/2) (by (2))

To compare Cll(Z§3[1r]) with Cll(Z§7[1r]), set
D = Ker[0" : Hy(w) —» 2/26 (Hy(w)/H20(x) )]

so that Cl (Z,[v]) = K5(@,[71)/v(6; (D)) by Theorem 13.10(1i1). Fix
any splitting fB: K;(ﬁ2[1’r])/{-1,h'r} —» Im(fz 0 P) of the inclusion

(K;(ﬁ2[1’r]) has exponent 2). Then there is a surjection

Im(fz09)

£200(6] " (D))

C1, (24071 = KS@,Lv1)/w(6] ! (0)) ~{Brolifefz), coer(y) o

Im(VoH,(a)) In[Hy(7) — Hy(¥)]
& Coker(y) & ———=—— = Coker(P) © :

VoH,(a) (D) In[H) (1) — Hy(¥)]
& C1 (Z(,[7]) @ (/2)*. o

The groups constructed in Example 8.11 (when p = 2) have the
property that R > S in the above theorem, and hence that Cll(Z§3[1r]) %

Cll(ZL',?[v]) for such T. This difference is the basis for the

construction in Example 13.16 below of a group G for which the inclusion
Cl,(Z[C]) € SK,(Z[G]) has no natural splitting.

When G is a finite abelian group, Theorems 13.8 and 13.11 yield as
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a corollary the following formula for SKI(Z[G])(p) (= Cll(Z[G])(p)).
Note that this reduces the computation of SKl(Z[G]) (for abelian G) to

the p-group case — which is handled by Theorems 9.5 and 9.6.

Theorem 13.13 Fix an abelian group G and a prime p|IGl. Write
G =Hxw, uvhere w is a p-group and p{IH|. Set k = rk(v), and let n
denote the number of simple summands of Q[H]. Then

%SKI(Z[W]) if p tis odd

SK. (Z[G]) =
1 (r) n 1Y (K1l (k

@ K, (2[r]) 0 (z/2)(n ") 21k () ¢ p=2.

are fields. Let

Proof Identify Q[H] = ﬂ‘i‘=lxi, where the K,

Ri c Ki be the ring of integers. Then M = ,il—lRi is the maximal order

in K[H], and ([M[7]: Z[G]] 1is prime to p by Theorem 1.4(v). Hence

n
K, (2061) () = @ K, (R,[x])

by Corollary 3.10, and the result follows from the formula in Theorem
13.11 (p = 2) or Theorem 13.8 (p odd). O

13c. Splitting the inclusion Cl,(Z[G]) € SK,(Z[G])

So far, all results about SKI(Z[G]) deal with its components

Cll(Z[G]) and SKl(ip[G]) separately. It is also natural to consider

the extension

1 — C1,(2[6]) — sk, (2(6]) —— ® s, (2,[6]) — 1;

and in particular to try to determine when it is split. The key to doing

this, in odd torsion at least, is the standard involution.
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Theorem 13.14 For any finite group G, there is a homomorphism

natural in G, whose restriction to Cll(Z[G]) is multiplication by 2.

Proof This will be shown for SKI(Z[G])(p), one prime p at a

time. Fix p, and consider the short exact sequence
eG .
1 — Cl1,(Z[G — SK, (Z[G — SK.(Z [G]) /™ 1
(26D ) 12D ) NEAG)

of Theorem 3.15.

Step 1 Assume first that G 1is p-elementary: G = Cnx1r, where ¥

is a p-group and pal'n. Instead of the usual involution, we consider the

antiinvolution 7 on Q[G] defined by:

-1
'r(Za:lx‘igi)_Zaix':lg:l (aiEQ, rieCn, g1€1r).

We claim that 7, acts via the identity on Cll(Z[G])(p), and via

negation on SK1 (ip[G]) .

Step 1A Let a € Aut(G) be the automorphism: a(rg) = r—lg for
x'€Cn and g€w. Then T is the composite of Qfa] with the usual

involution on  Q[G]. In particular, by Theorem 5.12, Te =@, on
Cl. (Z[G d C G]).

By construction, @Q[a] fixes all p-th power roots of unity in the
center of Q[G]. So by Theorem 4.13, a, is the identity on CP(Q[G]),

and hence (by the localization sequence of Theorem 3.15) on Cll(Z[G])(p).

It follows that 7, =1d on C1,(Z[C]) -

Step 1B Write Q[C] = M_F,, and ACKIE M¥_R,, where the

Fi are unramified field extensions of ﬁp’ and Ri c Fi is the ring of
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integers. Then this induces decompositions
A k k
Z[c)= iglni[w] and sxl(ip[c]) = iglsxl(ni[w]).

By construction, T leaves each of these summands invariant, and acts on
each one via the identity on coefficients and by inverting elements of .

By Theorem 8.6, 7, acts on each SKl(Ri[w]), and hence on SKl(ip[G]),

by negation.

G
given x€SKl(ip[G]), lift x to §€SK1(Z[G])(p), and set

Step IC Now define s': sxl(ip[c]) —_— SKI(Z[G])(p) as follows:

sg(x) = Br,®7

This is independent of the choice of lifting by Step 1A, and its composite
with the projection to SKl(ip[G]) is multiplication by 2 (i. e.,

squaring) by Step 1B. By construction, s/

G is natural with respect to

homomorphisms between p-elementary groups.

Step 2 Now let G be an arbitrary finite group, and let & be the
set of p-elementary subgroups of G. By Theorem 12.4,

SK;(Z,[6]) = Lin Sk, (,[H]),

where the limit is taken with respect to inclusion and conjugation.
Hence, by Step 1, there is a well defined homomorphism

Ind
s, = lin s’ : SK.(Z [G]) — lim SK, (Z[H -5 sk (z[6 ;
G e H 1( P[ D I_-IE% 1( [ ])(P) 1( [ ])(P)
vwhere s/, is natural and e.o0s’ is multiplication by 2. So

G G G
sg! SKI(Z[G])(p) — Cll(Z[G])(p) can be defined by setting:

sG(x) = x2°(s(';o eG(x))—l. u]
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An immediate corollary to Theorem 13.14 is:

Theorem 13.15 For any finite group G and any odd prime p, the
p-power torsion in SKI(Z[G]) splits naturally as a direct sum

SK, (2[6]) ) = C1,(Z[CD) () © SK) (2 [CD). o

The problem remains to describe the extension Cll(Z[G]) c SKI(Z[G])

in 2-torsion, in general. It seems likely that examples exist of 2-groups
where the inclusion Cll(Z[G]) c SKI(Z[G]) has no splitting at all. This

problem is closely related to Conjecture 9.7 above, and the discussion
following the conjecture. In particular, the splitting of the inclusion
Cl,(Z[G]) € SK,(Z[G]) seems likely to be closely related to the splitting

b
of Hy'(G) € Hy(G).

The following example shows, at least, that the inclusion Cll(Z[G])
c SKI(Z[G]) need have no natural splitting in 2-torsion: more precisely,

no splitting which commutes with the action of the automorphism group
Aut(G). At the same time, it illustrates how Theorem 13.5 can fail if
SKI(_) is replaced by Cll(—).

Example 13.16 Let w be any 2-group with the property that
b
In| Hy(7) —> Hy(a/Fr(m))]| 2 In[HE2 () — Hy(a/Fr(m))].
Set G=C7XSQX1I', and Go=C7XCgX1l'<G (Sg§C3x02). Then

(1) Cll(Z[G])(2) is not 2-R-elementary computable;

(ii) the square

Lin C,(a[H]) — Liy C1,(2[H]) (5,

T

Co(@[6]) ——— CLy(Z[CD) 4
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is not a pushout square, where & denotes the set of 2-elementary
subgroups of G; and

(iii) the extension

1 — C1,(Z[Go]) — SK;(Z[Go]) — K (Z,[Go]) — 1 (2)

has no splitting which is natural with respect to automorphisms of Go.

Proof Set o = Gal(®2:/@+) & C», and let Z{zi[r xo]® be the
induced twisted group ring. Then o acts trivially on Cll(Zfzt[v]) (it

acts trivially on Cz(ﬂKzz[ﬂ']) by Theorem 4.13). Furthermore, there is

an inclusion
ZLz1[7x 01" € Wy(ZLa[7])

of odd index (see Reiner [1, Theorem 40.14]); and so by Corollary 3.10 and
Theorem 13.12:

Cll(Zle[vxa]t) 4 Cll(Z§7[1r]) % Cll(Zfzt[v]) = HO(U;CII(ZQM['N])). (3)

Note that G = Czy; XM (wxog). Just as in the proof of Theorem 11.9, this
shows that Cll(Z[G])(2) is not computable with respect to induction from

2-R-elementary subgroups. Also, since Cz(Z[G]) is 2-R-elementary

computable, this shows that square (1) above is not a pushout square.
Now, by Theorem 13.4,

SKE2](Z§21['"' x g']t) e HO(U;SKI(ZCM['"']));

and similarly (by Proposition 13.3(ii)) for SK1(22§21[1rxa]t). Together

with (3) above, this shows that the sequence

1 = Hy(a3CL, (Z2:[7])) = H (038K, (Z21[71)) = Hy(038K, (Z2C24[71)) = 1

is not exact. This implies in turn that the exact sequence
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1 — Cl,(ZC2:[7]) — SK,(Z21[7]) — SK,(ZoLaa[v]) — 1 (4)

has no splitting which commutes with the action of o¢. But (4) is a
direct summand of sequence (2) above by Corollary 3.10 (izfm[w] is a
direct summand of iz[Go]); and so (2) has no natural splitting. O

More concretely, consider the group

r = {a,b,c,d |a®=b%=c®*=d®=1=[n,[r,7]], [a,b][c,d]=1).
Then "ab z (C )4,

2
a: v — _”ab is the projection, then H2(a) has image of rank one

and [m7] = 2(r) 2 (C,)° (see Example 8.11). If

(generated by a~bt+c~d); while its restriction to Hgb(w) is zero. So

7 satisfies the hypotheses of Example 13.16.
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We now list some examples of calculations of SKI(Z[G]). These

illustrate a variety of techniques, and apply many of the results from
earlier chapters.

We have already seen, in Theorem 5.4, that Cll(Z[G]) =1 if R[G]

is a product of matrix algebras over R. The first theorem extends this

to some conditions which imply that SKl(Z[G]) =1 or Wh(G) =1. It

shows, for example, not only that the Whitehead group of any symmetric
group vanishes, but also that Wh(G) vanishes whenever G 1is a product
of symmetric groups, or a product of wreath products szsn’ etc.

Theorem 14.1 Define classes %, @, ¥ of finite groups by setting:

% = {G : R[G] 1is a product of matrix algebras over IR};
Q= {G : Q[G] 1is a product of matrix algebras over Q} C % and
2= {o : my(C @M@ =0, a1t g <)

Then

(i) Wh(G) =1 for any G € QNY, SKI(Z[G]) =1 for any G € %NT,

and SKI(Z[G]) = Cll(Z[G]) for any G € 9;

(it) all symmetric groups lie in @&QN%, and all dihedral and
symmetric groups lie in %N%; and

(iit) all three of the classes %, @, and % are closed under
products, and under wreath products with any symmetric group Sn'
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Proof By Theorem 12.5(1), SK, (Z[G])/Cl,(Z[G]) = 0psxl(ip[c]) =1
for any G€%. If G €%, then Cll(Z[G]) =1 by Theorem 5.4. If
G€4Q, then Wh'(G) = Wh(G)/SKl(Z[G]) is torsion free (Theorem 7.4) and
has rank zero (Theorem 2.5); and so Wh(G) = SKI(Z[G]) in this case.

For convenience, write #(G) = H2(G)/I-§b(G) for any G. By

Proposition 8.12, # is multiplicative; and so % 1is closed under taking
products (note that CGxH(g’h) =CG(g) xCH(h)). When checking that

x(CGQS (g))=0 for any G€9P and any g€GS , we are quickly reduced

to the following two cases:

(a) g= (g1 sees ,gn) € GngGRSn: then CG?Sn(g) is a product of

wreath products (by symmetric groups) over the centralizers CG(gi)'

(b) g:(gl,...,gn)'UEGRSn, where o=(12 ...n)ESn: then

Cars, (8) =(&.Cn(8)), and  #(Chyg (8)) Z#(Cyn(e)) =#(Cyle, " "g,)) =0-

Using Proposition 8.12 again, we see that ﬁ(G?Sn)=O if #(G) =0 (any

p-Sylow subgroup of G?Sn is contained in a product of wreath products

G?Cp?...?Cp). Together, these relations show that G?SnGQ) if GE€9.
Clearly, % and @ are closed under products. Also, Q[Sn] is a

product of matrix rings over Q (see James & Kerber [1, Theorem 2.1.12]);
and so Sn€Qg9§. Using this, it is an easy exercise in manipulating

twisted group rings to check that @ (or R) 1is a splitting field for
Q[G?Sn] for all n, if it is a splitting field for @Q[G].

Finally, for each n, D(2n) € 9, since ¥(G)=0 whenever G
contains an abelian subgroup of prime index (see Proposition 12.7). And
R[D(2n)] 1is easily seen to be a product of matrix algebras over R. O

The condition that Q[G] be a product of matrix algebras over @
does not by itself guarantee that Wh(G) = 1. The simplest counterexample

to this is the central extension
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1 — (C2)4 — G — (C2)4 — 1;

defined by the relations:

2 2 2 2

G = <a,b,c,d ta” =b =c¢ =d" =1 = [G,[G,G]] = [b,ac][c,d]

= [a,cd][b,d]>.

A straightforward check shows that Q[G] 1is a product of copies of Hr(Q)

for r =1,2,4; and so Wh(G) = SKl(iz[G]) by the same arguments as in
4
)

R

the above proof. But using Lemma 8.9, applied with G = G/[6,C] (C2
one can show that sxl(i2[c]) = (/2) x (1/2).

The next theorem gives necessary and sufficient conditions for when
SKI(Z[G]) = 1 1in the case of an abelian group G. Note that while it

also gives some conditions for when SKI(Z[G]) or Cll(Z[G]) does or

does not vanish for nonabelian G, a comparison of Theorems 14.1 and 14.2

indicates that a complete answer to this question is quite unlikely.
Theorem 14.2 Fix a finite group G.

(i) If each Sylow subgroup of G has the form Cpn or CpxCpn

(any n20), then SKI(Z[G])(p) =1.

(it) If G is a p-group for some prime p, and if Cll(Z[G]) =1,
then either G & Cpn or CpxCpn for some n, or p=2 and

@ = (C,)* for some k.

(tii) If G is abelian, then SKI(Z[G]) =1 if and only if either

(a) each Sylow subgroup of G has the form Cpn or CpxCpn for some

n; or (b) G%(Cz)k for some k.

Proof (i) By Theorem 5.3, SKI(Z[G])(p) is generated by induction

from p-elementary subgroups. Hence, it suffices to show for all n2l1
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that SKI(Z[Cn]) = SKI(Z[Cpan]) = 1. This follows from Example 9.8 when

n is a power of p; and from Theorem 13.13 in general.

(ii) For nonabelian G, this was shown in Example 9.9. In the
abelian case, recall first that a surjection G ——» G’ of finite groups
induces a surjection Cll(Z[G]) —_— Cll(Z[G’]) (Corollary 3.10). So

Cll(Z[G]) is nonvanishing if G surjects onto sz xsz (Example

9.8(ii)), onto C4%xCy xC, (Example 5.1), or onto (Cp)3 if p 1is odd

(Alperin et al [3, Theorem 2.4]). The only abelian p-groups which do not

surject onto one of these groups are Cp“’ CpxCpn, and (Cz)k.

(iii) By Theorem 13.13, for any finite abelian group G and any
prime p]IGI, SKI(Z[G])(p) =1 1if and only if SKI(Z[SP(G)]) =1 and

(if p=2 and G 1is not a 2-group) rk(Sz(G)) < 2. By (i) and (ii),

this holds if and only if S (G) G or C xCp, or G (02)“. o

Note that the exact exponent of SKI(Z[G]), for arbitrary abelian

G, 1is computed in Alperin et al [3, Theorem 4.8] (see Example 5 in the
introduction).

We next give a direct application of the results about twisted group
rings in Chapter 13. We want to describe the 2-power torsion in
SKI(Z[G]) when Sz(G) is dihedral, quaternionic, or semidihedral. Note

that this includes all groups with periodic cohomology, in particular, all
groups which can act freely on spheres — and that was the original
motivation for studying this class. The following lemma deals with the

twisted group rings which arise.

Lemma 14.3 Let R be the ring of integers in an algebraic number
field K in which 2 is unramified. Let w be any dihedral,
quaternionic, or semidihedral 2-group. Let t: v — Gal(K/@Q) be any
homomorphism, set p = Ker(t), and let K[1r]t and R[1r]t be the induced
twisted group rings. Then

. Z/2 if p 1is nonabelian and K' ¢ R
Cl, (R[7] )2) 2

1 otherwise.
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Proof Assume first that t = 1. If K has a real embedding, then
Cll(R[w]) =1 by Example 5.8. If K has no real embedding, then

|C11(R[1r])| <{ 2 by Example 5.8 again; while |C11(R[1r])| 2> 2 by Theorem
13.12 (Hy(¥) maps trivially to Hy(r*)) = 2/2).

Now assume that t: w — Gal(K/Q) 1is nontrivial, and set p =
Ker(t). By Theorem 13.4, Cll(R[p]) sur jects onto Cll(R[w]t), and

C1,(R[7]°) = H,(w/p:Cl (R[p])) & Z/2

if K" has no real embedding. So it remains only to consider the case
where p is nonabelian, where K" C R, but where K Z R.

Assume this, and consider the pushout square of Theorem 13.4:

a
Hy(7/p3Co(K[p1)) —E— Hy(w/p;CL, (R[])) = Z/2

i

Cy(K[x]") ———— C1,(R[¥]") ).

We saw, when computing Cll(R[p]) in Example 5.8, that ap can be

identified with the composite

R

4
Cy(K[p]) —» Co(K[p™°]) & @ C,y(K) -2 ¢, (K) = 7/2;

ab

(note that p = & CzxCz). Also, w/[p,p] £ D(8), the dihedral group of
order 8: since [m:p] = 2, 1rab| =4, and D(8) is the only
nonabelian group of order 8 which contains Ca xCs. The pair

K[pab] c K[‘!r/[p,p]]t now splits as a product of inclusions
(KxK) x (KxK) C (My(K)) x (My(K") x My(K")).

Since C2(K1r) =1 (K" ¢ R), this shows that Ker(icz) '3 Ker(ap) in (2);

t
and hence that Cll(R[‘rr] )(2) =1. 0O
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Applying this to integral group rings is now straightforward.

Example 14.4 lLet G be a finite group such that the 2-Sylow
subgroups of G are dihedral, quaternionic, or semidihedral. Then

~ k
SKI(Z[G])(2) = Cll(l[G])(2) = (1/2) ’

vhere k is the number of conjugacy classes of cyclic subgroups o € G
such that (a) |o] tis odd, (b) CG(a) has nonabelian 2-Sylow subgroup,
1

and (c) there is no g € NG(a) with gxg = = x_1 for all x € o.
Proof Note first that sxl(i2[c]) = 1 by Proposition 12.7, so that
SKl(Z[G])(2) = Cll(l[G])(2). By Theorem 11.10, if O1s+--:0,  are

conjugacy class representatives of cyclic subgroups of G of odd order,

and if n, = Iail and Ni= G(ai)‘ then

k
~ t
CL(Z6]) 9y = D 1?#; )011(zgni [717) (9

i=1

where ?P(Ni) denotes the set of 2-subgroups. The result is now an

immediate consequence of Lemma 14.3. D

We now finish by giving examples of two more specialized families of
groups for which SKI(Z[G]) is nonvanishing in general, but still can be

computed.

Theorem 14.5 For any prime power q = pk,

(1) SK,(Z[PSL(2,q)]) = Z/3 and SK (Z[SL(2,q)]) & Z/3 x L/3, if

Pp=3 and k is odd, k 2 5; and

(ii) SKl(Z[PSL(2,q)]) = SKI(Z[SL(2,q)]) =1 otherwise.

Proof Write G = PSL(2,q) and G = SL(2,q), for short. By Huppert
[1, Theorem II.8.27], the only noncyclic elementary subgroups of G and
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¢ are dihedral and quaternionic 2-groups, elementary abelian p-groups,

and (in &) products of 02 with elementary abelian p-groups. In
particular, SK,(Z[G]) = C1,(Z[G]), and similarly for G, by Proposition

12.7. Furthermore, by Theorem 14.2 and Example 14.4, this list shows that
Cll(Z[H]) =1 for all elementary subgroups H in G or G, except

possibly for p-elementary subgroups when p 1is odd. Since Cll(Z[G]) is
generated by elementary induction (Theorem 5.3), Cll(Z[G]) and
011(1[§]) are p-groups, and vanish if p=2 or k= 1.

Assume now that p 1is odd and k > 1. Most of the terms vanish in
the decomposition formulas for Cll(Z[G])(p) and 011(2[61)(p) of

Theorem 13.9; leaving only

Cl.(Z[G]) £ 1i Cl,(Z
(@D ¥ Ly oL, @]y

(where #(G) 1is the set of p-subgroups), and

Cl,(Z[G]) & lim CI,(Z lim Cl. (Z[p]).
1(ZIGD) peTr'?E) 1 [p])xP@%) 1(Zlr])

Since these limits are all isomorphic, it remains only to show that

/3 if p=3, k25, k odd
lin Cl,(Z[p]) &
pﬁG) 1 1 otherwise.

Furthermore, the p-Sylow subgroups of G are isomorphic to IFq, and any

two p-Sylow subgroups of G intersect trivially (any nontrivial element
of SL(2,q) of p-power order fixes some unique l-dimensional subspace of
(Il-'q)z). Hence, for any p-Sylow subgroup P C G,

. N I
p%?G)cH(Z[p]) = Hy(N(P)/P; C1,(2[P])) = Ho(ll-'q : 011(2[|Fq])).

Here, IF:2 denotes the group of squares in IF:.

Now, since IF:2 has order prime to p,
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%2 ~ F 2 2
. a4 q
Ho(qu H Cll(Z[IFq])) 4 Cll(l[IFq]) (elements fixed by IFq )

= Coker[(F, ® z[qu])'r’:2 — cp(o[rq])r:ﬁ-

Also, any element a € F: acts on Cp(Q[IFq]) via (x > xa), and this

leaves no fixed elements if a # 1. So HO(IF:2;CII(Z[Fq])) =1 if

IF:ﬂIF:z;tlz and this is the case if p » 5, or if p=3 and k is
even.

Now assume that p =3, k >3, and k is odd. Then IF:2 permtes
the nontrivial summands of Q[IFq] simply and transitively; so that

P2
c(@F D = c (ay) = 23,

Furthermore, by Alperin et al [3, Proposition 2.5], there is an

isomorphism
Im[qu@Z[IFq] — cp(n[qu])] = SP(F )

(the p—-th symmetric power) which is natural with respect to automorphisms

of F,. This now shows that HO(IF:2; CL (@F 1)) = @3)", where

r=1- rku:p(Sp(IFq)lF:z).

If we regard V = IFq as an IFp[IF:z]—module, tensor up by the splitting

field IFq, and then look at eigenvalues in the symmetric product, we see

that Sp(IFq) has a component fixed by IF:_:2 if and only if k=3. O

The last example is given by the alternating groups. These show the
same phenomenon: the only torsion in their Whitehead groups is at the

prime 3.
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Theorem 14.6 Fix n > 1, and let An be the alternating group on

n letters. Then

T
3 if n= 23" 227, m > .. 0w 20,

i=1
SK, (Z[A 1) = X(m,) odd

1 otherwise.

Proof We sketch here the main points in the proof. For more
details, see Oliver [3, Theorem 5.6].

(1) SKI(Z[An]) = Cll(Z[An]): SKl(ip[An]) =1 for all p by
Example 12.8.

(2) Since [Sn:An] =2, and Q[Sn] is a product of matrix algebras
over @ (see James & Kerber [1, Theorem 2.1.12]), Q[An] is a product of

matrix algebras over fields of degree at most 2 over Q. Hence, if p 2
5, then Cp(Q[An]) = Cll(Z[An])(p) = 1.

(3) 1If Olsee+s0p are conjugacy class representatives for cyclic
subgroups of An, and if m:i = Iail, then

k
zia)) = 1 SR

To see this, note that both sides are products of fields of degree at most
2 over Q. Hence, it suffices to show that both sides have the same
number of simple summands after tensoring by any quadratic extension K
of Q. This follows from the Witt-Berman theorem (Theorem 1.6): for each
K, the number of irreducible K[An]-modules equals the number of

K~conjugacy classes in An.

(4) By Theorem 4.13, C2(Q[An]) has rank equal to the number of

purely imaginary field summands of Q[An]; and by (3) this is equal to
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the number of conjugacy classes of cyclic subgroups o = (g) C An such

that g 1is not conjugate to g—l. Each such g 1is a product of disjoint

cycles of lengths k1> >ks, such that Zki=n, ki is odd for all

i, and Zi(ki_l)/2 is odd. In particular, the centralizer CA (o) has

odd order for each such o, and so by Theorem 13.4:
t
lim C1.(zC,[#]) =1 (k = lol)
weﬁa) 115K 2)
(#(No) denotes here the set of 2-subgroups). On the other hand,

lin C.(®C, [#]%) & lim C ™ 2 e )% = 22
i oY) = L e = 6e")

since (GKn)Na ¢ R. These terms thus account for all of C2(Q[An]) under

the decomposition of Theorem 11.8; and so Cll(Z[An])(2) = 1.

(5) By (3) again, CB(Q[An]) =] (Z/B)S, where s is the number of

conjugacy classes of cyclic o C An such that 3|lol, and such that

C3 C o 1is centralized by N(o). An easy check then shows that

> m,

5 > .ee > m 20, Zmi odd

S
3 if n= 23", m
i=1

C3(Q[A D) &

1 otherwise.

Assume that Cy(Q[A ]) % Z/3: write n = Z?_ISmi, where the m,

are as above. Let PC An be the "standard" 3-Sylow subgroup. Then

P= Pl X ees X Ps’ where Pi is a 3-Sylow subgroup of A(Elmi ). Also,
b . ~
P = (Cy)"  and Nsh(P)/P = (C,)"

In fact, there are bases SRR - of Pab and x X of NS (p)/pP

10
such that in Pab, [xi’gj] =1 if i # j, and xigix;1 = g;I for all

(cy)°

IR

i. For example, if n = 12, then Pab is generated by
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g,=(123), g =(147)(258)(369), g5 = (1011 12);
while NS (P)/P = (02)3 is generated by
x, = (12)(45)(78), x,=(14(25)(36), x4=(1011).

For any Epsenerly € /3, let V(el,...,em) denote the irreducible

3
Q[Pab]—module with character x(gi) = (§3) L 7 any €, = 0, then

i
there is an element of NA (P)/P which negates the character, and hence
n

m
negates the corresponding Z/3 summand in C3(Q[Pab]) = (Z/3)(3 “1)72,
The remaining irreducible representations of Pab (ei = #1 for all i)

are permuted simply and transitively by NA (P)/P; and hence
n
Hy(N(P)/P; C4(Q[F*P])) = 2/3.

If P’ # P 1is any other 3-Sylow subgroup in An’ then P'NP is
contained in the subgroup generated by some proper subset of the g q It

follows that the induced map
C4(Q[P* NP]) —— H(N(P)/P; C4(@[P*"]))
is trivial. Hence, there is a natural epimorphism

lin C,(Q[p]) — H (N, (P)/P; C.(e[P?P])) = 2/3.
p<F(Rn) > A 3

But by Theorem 11.8, this limit is a direct summand of C3(Q[An]) z /3.

So with the help of Theorem 9.5 we now get

Cl,(Z[A ]) & Llig Cl (Q[p]) & Coker|KS(Z,[P]) — Llim C,(Q[p])
D (S [Ga, peF(ha) > ]

> Coker[Hl(P;Z[P]) —¥ Hy(N(P)/P; c3(0[pab])) z 2/3].
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The calculation now splits into the following cases:

n=34: P=C

3s SO Cll(Z[An])(3) =1 by Theorem 14.2(i).

n=12,13: ip(g3 ® g1g2g3) generates HO(N(P)/P; C3(Q[Pab])) (where

g; are the elements defined above); so Cll(Z[An]) = 1.

n = 27,28: The image of any abelian subgroup of P is cyclic in
P, Hence, Im(¥) = #(P 8 1) =0, and Cl (Z[A]) = Z/3.

n > 28: In this case, m=Zmi 25. By Alperin et al [3, Proposition

2.5],
I K(Z,[P*°]) — C,(alF*"))] = $*(p),

where S3(Pab)

IR

S3(IF3m) denotes the symmetric product. Furthermore,
since m 2 5, S3(l’ab)N(P)/P = Ss(IF:;“)N(P)/P = 0 by the above description

of N(P)/P. There are thus surjections

Z/3 = C,(Q[A 1) — C1,(Z[A 1) — H(N(P)/P; Cll(l[Pab]))
x Coker[S3(Pab)N(p)/p — c3(o[pab])N(p)/P] x 2/3;

and so Cll(Z[An]) = Z/3 in this case. O
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