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PREFACE

My goal in these lectures is the isomorphism theory of symplectic groups over
integral domains as illustrated by the theorem

PSp,(0) = PSp, (0,) & n =n;and o = o,

for dimensions > 4. This is a sequel to my Lectures on Linear Groups where
there was a similar objective with the linear groups in mind. Once again I will
start from scratch assuming only basic facts from a first course in algebra plus a
minimal number of references to the Linear Lectures. The simplicity of PSp,(F)
will be proved. My approach to the isomorphism theory will be more geometric
and more general than the CDC approach that has been in use for the last ten
years and that I vsed in the Linear Lectures. This geometric approach will be
instrumental in extending the theory from subgroups of PSp, (n > 6), where it is
known, to subgroups of PI'Sp, (n > 4), where it is new('). There will be an
extensive investigation and several new results(') on the exceptional behavior of
subgroups of PI'Sp, in characteristic 2.

These notes are taken from lectures given at the University of Notre Dame
during the school year 1974-1975. 1 would like to express my thanks to Alex
Hahn, Kok-Wee Phan and Warren Wong for several stimulating discussions.

O. T. O’Meara

Notre Dame, Indiana
March 1976

(")The research aspects of these notes were supported by National Science Foundation grant
MPS74-06446 AOI.



PREREQUISITES AND NOTATION

We assume a knowledge of the basic facts about sets, groups, fields and vector
spaces.

If X and Y are sets, then pow X will denote the set of all subsets of X; X C Y
will denote strict inclusion; X — Y will denote the difference set; X — Y will
denote a surjection, X >— Y an injection, X>— Y a bijection, and X —— Y an
arbitrary mapping. If fi X —— Y is a mapping and Z is a subset of X, i.e., Z is
an element or point in pow X, then fZ is the subset { fz|z € Z} of Y; this
provides a natural extension of f: X - Y to f: pow X —»— pow Y, namely the
one obtained by sending Z to fZ for all Z in pow X; if f is respectively injective,
surjective, bijective, then so is its extension to the power sets.

If X is any additive group, in particular, if X is a field or a vector space, then
X will denote the set of nonzero elements of X ; if X is a field, then X is to be
regarded as a multiplicative group. Use F, for the finite field of g elements. By a
line, plane, hyperplane, in a finite n-dimensional vector space we mean a
subspace of dimension 1, 2, n — [, respectively.

V will always denote an n-dimensional vector space over a (commutative)
field F with 0 < n < oo. After the appropriate definitions have been made (in
fact, starting with Chapter 2) it will be assumed that V is also a nonzero regular
alternating space, i.e., that V is provided with a regular alternating form q: V X V
—— Fwith2 < n < c0.And V\, Fy, n,, q, will denote a second such situation.

These lectures on the symplectic group are a sequel to;

O. T. O'MEARA, Lectures on linear groups, CBMS Regional
Conlf. Ser. in Math., no. 22, Amer. Math. Soc., Providence, R.I.,
1974, 87 pp.

which will be referred to as the Linear Lectures. In general we will try to keep
things self-contained. Our general policy will be to redevelop concepts and
restate propositions needed from the Linear Lectures, but not to rework proofs.



1. INTRODUCTION
1.1. Alternating Spaces

We say that a vector space V over the underlying field F is an alternating
space if it is a composite object consisting of the vector space V' and an
alternating bilinear form ¢, i.e., a mapping q: ¥V X ¥V —— F with the properties

q(x,y +z) = q(x,y) + q(x, 2),
q4(x +y,2) = q(x,z) + q(y, 2),
g(ax,y) = aq(x,y) = q(x, ay),
q(x,x)=0
for all x, y, z in ¥ and all « in F. Note the consequence

(%) = —q(y, x).
If g: V X V —— F is alternating, and if a is any element of F, then the mapping
q*: V X V—>—F defined by ¢*(x,y) = ag(x, y) is also alternating and the
composite object consisting of the original vector space ¥ with this new form ¢
is an alternating space which will be written V.

A representation of an alternating space ¥V into an alternating space W (both
over F, both with forms written g) is, by definition, a linear transformation o of
V into W such that

q(ox, oy) = q(x,y) Vx,y € V.

An injective representation is called an isometry of ¥ into W. And V and W are
said to be isometric if there exists an isometry of ¥ onto W. We let V —- W
denote a representation, ¥ >— W an isometry into, and V> Wor V = W an
isometry onto. It is clear that the composite of two isometries is an isometry, and
the inverse of an isometry is also an isometry. In particular the set of isometries
of V onto V is a subgroup of the general linear group GL,(V) of the abstract
vector space V. This subgroup is called the symplectic group of the alternating
space V and is written Sp,(V). For any nonzero field element a we have
Sp, (V) = Sp,(V*).

1.1.1. Let o be a linear transformation of an alternating space V into an
alternating space W. Suppose there is a base x,, . .., x, for V such that q(x, x;)
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= q(ox;, ox;) for all i, j. Then o is a representation.

Prook. This is a trivial consequence of the definitions. Q.E.D.

To each alternating space V with underlying alternating form g we associate
mappings / and r of ¥ into the dual space V' (of V regarded as an abstract
vector space over F). The mapping / is the one taking a typical x in V to the
linear functional /(x) defined by /(x): y —— q(y, x), while r is the one taking x
1o r(x): y —>— q(x, y). It is easily verified that /: V' —— V' and r: V' —— V"’ are
linear transformations.

Recall that an n X n matrix 4 over F is called skewsymmetric if ‘4 = — A4,
alternating if ‘4 = — 4 with (’s on the main diagonal. So alternating matrices
are skewsymmetric. And skewsymmetric matrices are alternating when the
characteristic of F'is not 2.

Consider an alternating space V. We can associate a matrix B with a base

Xp....,x, for V by forming the matrix B whose i, j entry is equal to g(x; x)).
We call this matrix B the matrix of V in the base x,, . . ., x, and write
V=B inx,...,x,.

If there is at least one base in which V" has matrix B we write ¥ = B. The matrix
B associated with the alternating space V in the above way is clearly alternating.
What happens under a change of base? Suppose V' = B’ in xj, ..., x,, and let
T = (1;;) be the matrix carrying the first base to the second, i.e., let

X = 2
A
then
q(xi/’ xj/) = q( 2 tw'xu’ %t)\jx)\) = 2 tviq(xv’ x)\)t)\j’
v v, A

so the equation

B’ = 'TBT
describes the change in the matrix of V as the base is varied.
If V is just an abstract vector space with base x,, ..., x,, and if B is any
n X n alternating matrix over F, there is a unique way of making V into an
alternating space such that V' = Bin x,, . . ., x,: just define

o Sas.3 bix) = 3 bl

where b,, denotes the v, A entry of B.

1.1.2. Suppose V is alternating, let X be a base for V, and let V = A in X. Then
the matrix isomorphism determined by the base X carries Sp, (V') onto the group of
all invertible n X n matrices X over F which satisfy the equation

'XAX = A.

By the discriminant d(z,,...,z,) of vectors z,,...,z, in the alternating
space V we mean the determinant
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det(q(z,-, zj))
In particular, if x,, . . ., x, is a base for ¥ and if V' = B in this base, then
d(x),...,x,) = detB.
If x1, . . ., x;, is another base, the equation ‘TBT = B’ shows that
d(x}y...,x))=a%d(xy...,x,)
for some nonzero a in F. Hence the canonical image of d(x,,..., x,) in
0 U (F/F? is independent of the base; it is called the discriminant of the
alternating space ¥, and it is written d¥. The above set 0 U (F/ F?) is formed in
the obvious way: Take the quotient group F/F?, adjoin O to it, and define 0
times anything to be 0. If we write dF¥ = B with 8 in F we really mean that dV is
equal to the canonical image of 8 in 0 U (F/F?); this is equivalent to saying
that V has a base x,, . .., x, for which d(x,,..., x,) = 8. If V' = 0 we define
dv = 1.

1.1.3. ExaMPLE. Consider an alternating space V with alternating form ¢, a
base X = {x,,..., x,} for V, and the dual base X' = {y,,...,y,} for the dual
space V' of V.Let V= A in X. So 4 = (a;;) = (q(x;, x;)). Then it is easy to see
that the matrix of the linear transformation /: V' —— V' defined earlier with
respect to the bases X and X’ is equal to 4; for if we write Ix; = 2,/,.y,, then

a, = 4l ) = 1)) = (Shon ) = b,

Similarly, the matrix of r: ¥ —— V' with respect to the bases X and X’ is equal
to‘A.

1.1.4. Any m vectors x,, . . ., x,, in an alternating space V with d(x,, . . ., x,,)
s 0 are independent.

PROOF. A dependence X;a;x; = 0 yields £,a,q(x;, x;) = 0for | < j < m; this
is a dependence among the rows of the matrix (¢(x;, x;)); and this is impossible
since the discriminant is not 0. Q.E.D.

1.1.5. The following are equivalent for an alternating space V:

Dgx, V) =0x=0.

@qV,y) =0y =0.

3)dv # 0.

(4) r is bijective.

(5) 1 is bijective.

PROOF. We can assume that V' # 0. Fix a base X for V and let X' be its dual.
Write V' = A4 in X. By Example 1.1.3 we have

dV #0sdet4 #+0
< A 1s invertible
< [ is bijective;

hence (3) is equivalent to (5). Similarly (3) is equivalent to (4). And
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lis bijective = [(y) 0 Yy eV
SI(Y)W+#0 VyevV
oq(V,y)#0 Yyev
e (g(V,y)=0=y =0)
= (q(V,y)=0ey =0)
so that (5) is equivalent to (2). Clearly (2) is equivalent to (1). Q.E.D.

1.1.6. DEFINITION. An alternating space V is said to be regular if it satisfies
any one of the five equivalent conditions in 1.1.5. An alternating space V is said
to be degenerate if it is not regular. It is said to be totally degenerate if
q(V, V) =0.

If V' = 0, then V is regular. If ¥ 5= 0, then

V totally degenerate = V degenerate
by 1.1.5 and 1.1.6.

1.1.7. Let 6: V —— W be a representation of alternating spaces. If V is regular,
then o is an isometry.

PRrROOF. Take x in the kernel of 6. Then ¢(x, V) C q(ox, W) = 0. So x = 0 by
regularity. Q.E.D.

1.1.8. To each base X = {x,,..., x,} of a regular alternating space V there
corresponds a unique base §) = {y\, ..., y,} of V, called the dual of X with respect
1o q, such that q(x;,y;) = 8;; for all i, j. If V.= A in X and V = B in J), then
A='B""

PRrooF. (1) Define y; = l‘lzj for 1 € j < n where z,, ..., z, denotes the dual
of X in the dual space V'. Then 3 = {y,...,»,} is a base since / is bijective.
And

q(xi’yj) = l(yj)(xi) = Zj(xi) =4,
This proves the existence of ). Uniqueness follows immediately from regularity.
(2) Write y; = Z,fy;x). So B = 'TAT. Then

%q(x,-, Xy = q(x, ;) = 8,_‘1,

s0AT =1,50B="T="4 1 s04="B"'. QED.
Consider an alternating V with its associated alternating form g. We say that
V has the orthogonal splitting

V=V,L L1V,

into subspaces V|, ..., V, if V is the direct sum V' = V, @ - - - @ V, with the
V, pairwise orthogonal, i.e., with g(V;, V;) = 0 whenever i # j. We call the V;
the components of the orthogonal splitting. We say that the subspace U splits V,
or that it is a component of V, if there exists a subspace W of V such that

V = Ul W. We have
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d(V,L--- LV,y=4dV,---dV

re

the multiplication being performed in 0 U (£/ F?).

Consider two alternating spaces ¥ and W over the same F, suppose we have
an orthogonal splitting for ¥V = V, L - - - LV,, and suppose W is a sum of
subspaces W = W, + - - - + W, with q(W,, W) =0 whenever i # /. Let a
representation o;: V; —— W, be given for each i (1 < i < r). Then we know from
linear algebra that there is a unique linear transformation o of V into W which
agrees with each g; on V.. In fact it can easily be verified that this ¢ is actually a
representation o: ¥ —— W. We write this representation in the form

o=0,1L--- lo,.

The important case is where V' = W, all ¥V, = W, and all o, € Sp(V)); in this
event

oL Lo, €Sp(V);
if we take another such 7, L - - - L7, we obtain the following rules:

(o L--+ Lo)r,L -+ L7)=0y1 L - Lo,
(oL -+ Lag) '=07'L--- Lo,
det(o, L - -+ Lo,) = (deto,)- - - - (deto,).

Consider an alternating space V over F. By the orthogonal complement U* of
a subspace U of V in V is meant the subspace

U* = {x € V|g(x, U) = 0}
which is also equal to
U* = {x € V|q(U, x) = 0}.
Define the radical of V to be the subspace rad V' = V*. Clearly
V regular < rad V = 0.

1.1.9. Let V be alternating and suppose V is the sum of pairwise orthogonal
subspaces,i.e, V =V, + - - - + V, withq(V,, V,) = 0 whenever i 5 j. Then

DradV=rad V,+--- +rad V,.

(2) V regular <> each V, is regular.

@) Vregular=V =V L--- 1V,

Proor. (1) Take a typical x in rad ¥ and write it x = Zx, with each x, in V,.
.Then for each i (1 < i < r) we have

a(x V) = q(Zx V) Sa(x, ¥) =0,

so x; € rad ¥}, so x € ¥ rad V,. Conversely, if we take x = Xx, with each x, in
rad V,, we have

q(x, V) g Eq(x)\’ V}\) = 0,
sox €Erad V.
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(2) This follows from (1) and the fact that an alternating space is regular if
and only if its radical is O.
(3) If 0 = Xx, with each x, in V), then

0= q(zx» Vz) =q(x, V;)
sox;=0,s0V=V& - --BV,soV=V,1L--- LV, QED.

1.1.10. If U is any subspace of an alternating space V, then U* is the annihilator
inVof I(U), i.e., U* = (I(U))°. In particular, dim U + dim U* > n.

PROOF. The proof follows directly from the definitions involved. Q.E.D.

1.1.11. Let U be a regular subspace of an alternating space V. Then U splits V,
infact V.= ULU* IfV = UL Wis any other splitting, then W = U*.

PrOOF. By regularity, U N U* = 0. Hence by 1.1.10 we have
n > dim(U + U*) = dim U + dim U* > n.

SoV=U®U*SoV=ULU* Now consider V= UL W. Then q(W, U) =
0,s0 W C U* so W = U* by dimensions. Q.E.D.

1.1.12. If U and W are arbitrary subspaces of a regular alternating space V', then
(1) dim U + dim U* = n.

@ Uu*>*=U.

U+ W)= U*n W~

@D U N W)*r =U*+ W*.

B)rad U= U n U*

Proor. Since V is regular / is bijective by 1.1.5; hence dim /(U) = dim U;,
hence dim U* + dim U = n by 1.1.10. This proves (1). Clearly U C U**, so
U = U** by dimensions. This proves (2). To prove (3),

(U+ W)t =(I(U+ W))°
0
= ({(U) + [(W))
0 0
(HU) n (W)
= U*n W+,
Similarly with (4). Finally, (5) is trivial. Q.E.D.
Consider the radical rad V of the alternating space V and let U be any
subspace of V for which V = U @ rad V. Then clearly ¥ = Ulrad V. We call

any such splitting a radical splitting of V. Obviously U is not unique unless V is
regular or V is totally degenerate. The equations

rad ¥ =rad ULrad(rad V) =rad Ulrad V
imply that rad U = 0, and so U is regular.

1.1.13. THEOREM. If V is a regular alternating space with n > 0, then
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01
-1 0

<
IR

01
-1 0

In particular, regular alternating spaces have even dimension and discriminant 1.
And regular alternating spaces of the same dimension over the same F are
isometric.

ProoF. By regularity we have vectors x and y in ¥V with ¢(x, y) = 1. Since
q(x, x) = 0, these two vectors must be independent, so U = Fx + Fy is a plane.

Clearly
(0 1)
u=(2 o)

In particular U is regular by discriminants. Hence V' = UL W by 1.1.11. But W
is also a regular alternating space. The first result then follows by an inductive

argument. The second result is now trivial. To prove the third result apply 1.1.1.
Q.E.D.

A base X for a regular alternating space V is called hyperbolic if

01 \
-10

~
In

in X,

it is called symplectic if

If
f = {xlayl’ MR ] xn/z’yn/Z}
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is a hyperbolic base for V, then the rearrangement

X = {Xl, cea X Yy ’yn/Z}

is symplectic, and conversely. A nonzero regular alternating space has a
hyperbolic base by Theorem 1.1.13, and it therefore has a symplectic base too.

1.1.14. Let V be a regular alternating space, let D be a totally degenerate
subspace, and let x,, . . ., x, be a base for D. Then there is a regular subspace U
of V of the form U= P, L --- LP, with P, a regular plane and x; € P, for
I1<i<r

PrOOF. The case r = 1 is immediate. Proceed by induction to r > 1. Put
D,_,=Fx,+---+ Fx,_,and D, = D. Then D,_, C D,, so D¥ c D* | by
L.1.12. Pick y, € D* | — D} and put P, = Fx, + Fy,. Then ¢(x,y,) =0 for
1 € i< r~—1; hence q(x,, y,) # 0. Hence P, is a regular plane containing x,.
By 1.1.11 we can write ¥V = P, L P* Then P, C D* | since x, € D* | and

y, € D} |; hence D,_, C P*. Apply an inductive argument to D, _, regarded as
a subspace of the regular alternating space P*. Q.E.D.

1.1.15. If M is a maximal totally degenerate subspace of a regular alternating
space V, then diim M = ;dim V.

ProOF. We have M C M* since M is totally degenerate, so dim M < dim M*
=n—dim M by 1112, so dim M < 1dim V. If we had dim M < jdim V,
then an easy application of 1.1.14 and 1.1.11 would produce a totally degenerate
subspace strictly containing M, thereby denying the maximality of M. So
dim M =idim V. QE.D.

1.1.16. If M, and M, are maximal totally degenerate subspaces of a regular
alternating space V with M, N M, = 0, then, given a base x, ..., x, for M|,
there is a base y,, . . ., y, for M, such that {x,, ..., x|y, ...,y } is a symplec-
tic base for V.

PrOOF. Of course V' = M, ®& M,, by 1.1.15. Let z, . . ., z, be a base for M,.

Sox,...,xX,2,...,2z isabasefor V.Lety, ...,y ¥ 41,...,V, be the
dual of this base with respect to g, as in 1.1.8. We have M} = M,,s0y,,...,),
arein M, (= M3),soy,,...,y, is a base for M,, and

{xp s x|yp o0}

is clearly a symplectic base for V. Q.E.D.

1.1.17. Suppose V is a regular alternating space and let

E={xp. s XV sV}
be a symplectic base for V. Let M be the maximal totally degenerate space
Fx; + - - - + Fx, ;. Then the matrix isomorphism associated with X carries the

group of linear transformations

{0 €Spy(V)|oM = M}
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onto the group of matrices of the form

(IC : )
| ¢!
with C 5 n X 3 n invertible, and B 3 n X 1 n satisfying '(BC) = BC.

PRrROOF. This can be verified by suitably applying 1.1.2. Q.E.D.

1.1.18. WitT’s THEOREM. Let V and V' be isometric regular alternating spaces
over the same field F. If U is any subspace of V, and if ¢ is an isometry of U into
V', then there is a prolongation of o to an isometry of V onto V'.

PROOF. Take a radical splitting U = W _lrad U and let x, ..., x, be a base
for rad U, with the understanding that r = 0 when rad U = 0. By applying
1.1.14 to the regular alternating space W* we see that there is a subspace P of
W* of the form

P=PL---LP
in which P, is a regular plane and x, € P, for | < i < r. Since P is regular it

1

splits W*; hence there is a regular subspace S of W* such that
V=PLSLW.
Put U’ = oU, W = oW and x; = ox,for1 < i < r.So
rad U' = g(rad U) = Fx{ + - - - + Fx].

And

U'= W Lrad U’
is a radical splitting. We can repeat the preceding argument to obtain a splitting

V=P 1S LW
in which

P=PL---LP

where P/ is a regular plane and x/ € P/ for 1 < i < r. By suitably applying
1.1.1 we can find an isometry of P onto P’ which agrees with ¢ on each x;, and
hence on rad U. Also, the given o carries W to W’. Hence there is a
prolongation of ¢ to an isometry of P L W onto P’ L W’. Now dim ¥V = dim V'
since V is given isometric to V’; hence dim S = dim §’; hence there is an

isometry of S onto S’ by Theorem 1.1.13. Hence there is a prolongation of ¢ to
an tsometry of ¥V =(PLW)LSonto V' =(P ' LW)HLS. QED.

1.2. Projective Transformations

A geometric transformation g of the abstract vector space } onto the abstract
vector space V| is a bijection g: V>— V, which has the following property for all
subsets X of V: X is a subspace of V if and only if gX is a subspace of V.

It is clear that a composition of geometric transformations is geometric, and
that the inverse of a geometric transformation is also geometric. If g: V>— V| is
a geometric transformation, then g preserves inclusion, join, meet, Jordan-Hol-
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der chains, among subspaces. So we have the following proposition.
1.2.1. If g is a geometric transformation of V onto V', then
g(Un W)=gUngW, g(U+ W) =gU+ gW,
dimg gU = dimzU,
g0=0, gV=1V,
holds for all subspaces U and W of V.

By the projective space P(V) of V' we mean the set of all subspaces of V. Thus
P(V) consists of the elements of pow V' which are subspaces of V; P(V) is a
partially ordered set, the order relation being provided by set inclusion in V; any
two elements U and W of P(V) have a join and a meet, namely the subspaces
U+ W and U N W, so that P(V) is a lattice; P(V) has an absolutely largest
element V, and an absolutely smallest element 0; to each element U of P(V') we
attach the number dim.U; each U in P(V) has a Jordan-Holder chain 0
C - -+ C U, and all such Jordan-Hélder chains have length 1 + dim,U. Define

P(V)={U € P(V)|dim;U = i}
and call P\(V), P3(V), P*~ '(V), the set of lines, planes, hyperplanes, of V.

A projectivity 7 of V onto V| is a bijection «: P(V)>— P(V,) which has the
following property for all U, Win P(V): U C W if and only if #U C #W.

It is clear that a composition of projectivities is a projectivity, and that the
inverse of a projectivity is also a projectivity. If 7: P(V)>— P(¥)) is a projectivity
of V onto V|, then = preserves order, join, meet, Jordan-Holder chains, among
the elements of P(¥") and P(V,). So we have the following proposition.

1.2.2. If m: P(V>— P(V)) is a projectivity of V onto V', then
T(UnNnW)=aUnaW, a(U+ W)=qxU+7W,
dimp U = dimzU,
770 = 0, oV = V],
holds for all elements U and W of P(V). In particular = carries P'(V') onto P(V)),
and 7 is determined by its values on P\(V), i.e., 7 is determined by its values on
lines.

If g: V> V, is geometric, then the mapping g: P(V)>— P(V,) obtained from
g: pow V>- pow V| by restriction is a projectivity of ¥V onto V. Any projec-
tivity 7: P(V)>> P(¥,) which has the form = = g for such a g will be called a
projective geometric transformation of ¥ onto V. The bar symbol will always
be used to denote the projective geometric transformation g obtained from a

geometric transformation g in the above way. So g sends the subspace U of V,
i.e., the point U in P(V), to the subspace gU of V,. We have

g1- - &=8&" &
under composition, and
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§'=g"
for inverses. In particular, composites and inverses of projective geometric
transformations are themselves projective geometric transformations.

A geometric transformation of V is, by definition, a geometric transformation
of V onto V. The set of geometric transformations of V is a subgroup of the
group of permutations of V. It will be written ZL, (V) and will be called the
general geometric group.of V. By a group of geometric transformations of ¥ we
mean any subgroup of ZL, (V). The general linear group GL,(V), and the
special linear group SL,(V) = {0 € GL,(V)|det 0 = 1}, are therefore groups
of geometric transformations. By a group of linear transformations of V we
mean any subgroup of GL, (V).

A projectivity of V' is, by definition, a projectivity of ¥ onto V. The set of
projectivities of V' is a subgroup of the group of permutations of P(V’) which will
be called the group of projectivities of V. The bar mapping then provides a
homomorphism

: ZL,( V') —»— group of projectivities of V.
We sometimes use P instead of ~ and put

PX =X

for the image X of a subset X of ZL,(V) under P. In particular PGL,(V) and
PSL, (V) are subgroups of the group of projectivities of V' called, respectively,
the projective general linear group and the projective special linear group of V.
It was established in the Linear Lectures that PZL (V) is the entire group of
projectivities of ¥ and so we use this symbol for this group. By a group of
projectivities of ¥ we mean any subgroup of PZL (V). By a projective group of
linear transformations of ¥ we mean any subgroup of PGL, (V).

For any nonzero a in F define the linear transformation r, by

r,x = ax VxeVb.

Thus r, is in GL,(V). Any o in GL, (V) which has the form ¢ = r, for some
such a will be called a radiation of V. The set of radiations of V is a normal
subgroup of GL,(V) which will be written RL, (V). The isomorphism RL ,>— F
is obvious. The following two propositions were established in the Linear
Lectures.

1.2.3. Let o be an element of GL,(V). Then o is in RL (V) if and only if
6L = L for all lines L in V. In particular,
ker(P|GL,) = RL,, ker(P|SL,) = SL, n RL,

and
PGL, = GL,/RL,, PSL, =SL,/(SL, n RL)).

1.2.4. The centralizer in GL,(V') of a nonradiation in GL(V') is abelian.

All that we have said so far in §1.2 is for abstract vector spaces and is taken
directly from the Linear Lectures. Now let V be, in addition, a regular alterna-
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ting space. Then Sp, (V) is, of course, a group of geometric transformations of
V. By a group of symplectic transformations of the alternating space V' we mean
any subgroup of Sp, (V). The group PSp, (V) is the group obtained by applying
the homomorphism P to Sp,(¥), and it is called the projective symplectic group
of the alternating space V. By a projective group of symplectic transformations
of ¥ we mean any subgroup of PSp, (V).

1.2.5. If V is a nonzero regular alternating space, then
Sp.(V) N RL(V) = (£1,),

ker(P|Sp,) = (£1)),

PSp, = Sp,/ (1,).

PRrOOF. The proof is left as an easy exercise. Q.E.D.

1.2.6. If V is a regular alternating space with dim V = 2, then Spy(V) =
SL,(V).

ProOF. Take a symplectic base X for V" and use 1.1.2 to show that an element
g of GL,(V)isin Sp,(V)if and only if det ¢ = 1. Q.E.D.

A polarity of an abstract vector space V over F is a bijection P(V)>— P(V),
denoted U «> U ¥, such that

WU CWeU* D W*,

QQU** =,
for all U, W in P(V). If V is actually a regular alternating space over F, then
U & U* defines a polarity, called the polarity determined by the underlying
alternating form gq.

1.2.7. Let V be an abstract vector space over F with n > 2. Suppose V is a
regular alternating space under each of two alternating forms q, and q,. Then q,
and q, determine the same polarity if and only if there is a nonzero « in F such that
q, = 4q;.

Proor. If g7 = g5 the result is clear. We must prove the converse. Since V is
regular under ¢, and g,, the associated linear mappings /, and /, are bijective by
1.1.5 and 1.1.6, 1e., I;: V>— V' and ,: V>— V. It follows from 1.1.10 and the
hypothesis that ¢, and ¢, determine the same polarity that /,(U) = /,(U) for all
subspaces U of V. Hence /,; '/, is an element of GL,(V) that stabilizes all
subspaces of V. In particular, /,”Y, stabilizes all lines of V. Hence ;Y €
RL,(V) by 1.2.3. In other words there is a nonzero a in F such that /,(x) =
l,(ax) for all x in V. But then g,(y, x) = ¢,(y, ax) for all y in V. So g, = g5
Q.E.D.

1.3. Residues

Suppose that ¥ is an abstract vector space over F. Consider ¢ in GL (V). The
residual space R, the fixed space P, and the residue, res o, of o are defined by
the equations
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R=(e—-1,)V, P=ker(oc—1,),
res 6 = dim R.

The subspaces R and P of V are called the spaces of 6. We have

dim R + dim P = n,

oR = R, oP =P,

rese=0=0=1,.
Obviously o and 6 ™' have the same R, P, res; and P = {x € V]ox = x}.If R is
a line, plane, hyperplane, etc., we also refer to it as the residual line, etc., of a.
Similarly with the fixed line, etc.

1.3.1. Convention. Whenever a o in GL,(V) is under discussion, the letter R
will automatically refer to the residual space of o, the letter P to the fixed space.
In the same way R; and P; will be associated with g; in GL,(V).

1.3.2. Let 0, and o, be elements of GL,(V') and put 0 = 0,0,. Then

R C R, + R, PO P NP,
res 0,0, < res g, + res o,.

1.3.3. Let g, and o, be elements of GL, (V) and put o6 = 0,0,. Then

() V=P, + P,=R =R, + R,.

QR NR,=0=P=P NP,

1.3.4. Let 0 and X be elements of GL, (V). Then the residual and fixed spaces of

So= "1 are =R and EP respectively. In particular res 2027 = res 0; and 0= =
2o implies SR = Rand 2P = P.

1.3.5. Let 0, and o, be elements of GL,(V). Then R, C P, and R, C P, makes
0,0, = 0,0,.

1.3.6. Let 6, and o, be elements of GL, (V') with 6,0, = 0,0,. Then

R, CP, and R,C P,

provided either Ry R, =0o0r V = P, + P,.

1.3.7. Let o be any element of GL,(V). Then ¢ = 1, if and only if (o|R) =
— 1.

An element o in an arbitrary group with 6> = 1 is called an involution.

1.3.8. Let 0 # 1, be any element of GL, (V). Then det(o|R) = det 0.

139. If V=V, ®V, and o =0, Do, with 0, €GL, (V) and o, €
GL, (V>), then

R =R, ® R, P=P &P,

All that we have said so far in §1.3 is for abstract vector spaces and is taken

directly from §1.3 of the Linear Lectures-only the proofs of the propositions

have been omitted and these can be found by referring to the Linear Lectures.
Now assume that V is, in addition, a regular alternating space.
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1.3.10. If V is a regular alternating space and o € Sp,(V), then R = P* and
q(R, P) = 0.

PrROOF. For any x € V and p € P we have

g(ox — x,p) = q(ox, p) — q(x,p) = 4(ox,p) — q(0x,p) = 0,
sog(R, P) = 0,s0 R C P*. But

dim R = n — dim P = dim P*.
So R = P*. Q.E.D.

1.3.11. If V is a regular alternating space and o = 0,0, with o, a,, 0, in Sp,(V),
then the following are true:

)V =~P + P,implies R=R,+ Ryand P = P, N Py;

@) R, N R, =0implies P = P, N Pyand R = R, + Ry;

()if Ry C Py, or R, C Py, 0orq(R, Ry)) =0, then 0,0, = 0,0,.

PrOOF. The first part of (1) is contained in 1.3.3 as is the first part of (2). To
prove the second part of (1) we note that by 1.3.10 and 1.1.12,

V=P +P,=0=R NR,=P=P NP,
Similarly with the second part of (2). So consider (3). If R, C P,, then R, C P,
by 1.3.10, so 6,0, = 0,0, by 1.3.5. Similarly if R, C P,. If g(R,, R,) = 0. then
R, CR¥=P, QED.

1.3.12. DerFINITION. By a regular, degenerate, totally degenerate, element of
Sp, (V) (where V is a regular alternating space) we mean an element ¢ of Sp,(¥V)
whose R is, respectively, regular, degenerate, totally degenerate.

So o regular is the same as R N P =0, i.e., the action of o is described
pictorially by

R P
while ¢ degenerate is equivalent to R N P # 0, i.e.,

R

and o totally degenerate means R C P, ie.,

7
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1.3.13. Let V be a regular alternating space. Then the following are true.
(1) If char F 5 2, every involution in Sp,(V) is regular.
(2) If char F = 2, the involutions in Sp, (V') are the totally degenerate elements

of Sp, (V).
Proor. Apply 1.3.7. Q.E.D.
1.4. Transvections

Once again let us start out by assuming that V is just an abstract vector space.

An element ¢ in GL,(V) 1s called a transvection if 6 = 1, or if res 6 = 1 with
deto = 1.

If 6 is a transvection then so is o2~ for any = in GL (V).

1.4.1. Let o be an element of GL, (V') withres o = 1 and n > 2. Then

(1) R C P if and only if o is a transvection;

(2) If o is a transvection, its characteristic vectors are P, its characteristic roots
are all 1.

Foranya € V, p € V' with pa = 0, define the linear transformation 7, , of }’
into V by the equation
TX=x+(px)a VxeV.

One easily sees that
.0 € GL(V),

T.0 = lye@a=0o0rp =0,

T)\u‘p_——'r)\p VAEF,

a,

and, if 7,, # 1,, that ,, is a transvection with residual line Fa and fixed
hyperplane ker p. In particular

detr,, = 1.
142.If 7,, and 7, ; are defined and not equal to 1, then 7, = 1, if and or..
if there is a X in F such that @’ = Aa and o' = A" 'p.
We have
TapTogX = {X + (px)a + (x)b} + (¢x)(pb)a,

TapTop = Tatbp

T, T, =T

ap'aqp a,p+ @’
Tao = Trmap (m € Z),
0T, 0 ' = Ty oot (o € GL(V)),

provided all the 7’s on the left are defined.

1.4.3. Suppose dim V > 2. Let L be a line and H a hyperplane in V with
L C H. Then there is a transvection o in GL (V) with R = Land P = H.
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1.4.4. Let 0 be any transvection in GL,(V) with 6 # 1,,. So R is a line and P is
a hyperplane with R C P. If we take any nonzero a in R and any nonzero linear
functional p annihilating P, then there is a X in F such that 0 = 7y,

1.4.5. Let 7, and , be transvections in GL,(V) with n > 0 and let « € F. Then
r,7, = 1, if and only if a = 1 with 7| = 1,. In particular, r 7, is not a transvection
when a 7 1.

1.4.6. Let 0, and o, be elements of GL, (V) of residue 1 with 6,0, # 1,.. Then
reso,0, = l ifandonly if R, = R,or P, = P,.

1.47. Let o, and o, be nontrivial transvections in GL, (V). Then 0,0, is a
transvection if and only if R, = R, or P, = P,.

1.4.8. Let X be a subgroup of GL,(V) that consists entirely of transvections.
Then all nontrivial elements of X either have the same residual line, or they all
have the same fixed hyperplane.

1.4.9. Let o, and o, be nontrivial transvections in GL, (V). Then 6,0, = 0,0, if
and only if R, C P,and R, C P,.

All that we have said so far in §1.4 is for abstract vector spaces and is taken
directly from §1.4 of the Linear Lectures—only the proofs of the propositions
have been omitted. Now assume that ¥ is, in addition, a regular alternating
space with its alternating form g. For any a € V, A € F, define the linear
transformation 7,, of ¥ into ¥ by the equation

TaX=x+A(x,a)a VxeV.
One easily sees that
Ta,)\ e Spn( V )’

Taa=1l,®a=00rA =0,

T

aar = T,

a,a’A?
and, if 7,5, # 1,, that 7,, is a transvection with residual line Fa. (The fixed
hyperplane is (Fa)* but there is no need to emphasize this, by 1.3.10.)

1.4.10. If 7, and 7, . are defined and not equal t0 1y, then 7,, = 1, ,. if and
only if there is an « in F such that @ = aa and o«*N' = \. In particular,

— —_ I4
Tax = Taxv A =X,

— 4
Tia = Tppea=*a.

We have
TaaTo,X = X + Mq(x, a) + vq(x, b)q(b, a))a + vq(x, b)b;

Ta,)\Ta,v = Tar+w
Tm)x = Tamr (m € Z)’

oT, ,}\0_1 = Toa (0 S Spn(V))

a
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1.4.11. If V is a regular alternating space with dim V > 2, and if L is any line
in V, then there is a transvection o in Sp,(V) with R = L.

1.4.12. Let V be a regular alternating space with dim V > 2 and let ¢ be any
transvection in Sp, (V) with 6 # 1. So R is a line. If we take any nonzero a in R,
then there is a X in F such that 6 = 7,,.

PrROOF. By 1.4.4 there is a linear functional p with p(Fa)* = 0 such that
ox = x + (px)a. By 1.1.5 we have b € V such that /(b) = p, i.e., px = g(x, b)
for all x in V. Then g((Fa)*, b) = 0, so b € (Fa)**, i.e., b = Aa for some A in F,
i.e., ox has the desired form x + Ag(x, a)a. Q.E.D.

1.4.13. Let V be a regular alternating space and let o, and o, be nontrivial
transvections in Sp, (V). Then 6,0, is a transvection if and only if R, = R,.

ProoOF. Apply 1.4.7 and 1.3.10. Q.E.D.

1.4.14. Let V be a regular alternating space and let X be a subgroup of Sp, (V)
that consists entirely of transvections. Then all nontrivial elements of X have the
same residual line.

ProOF. Apply 1.4.8 and 1.3.10. Q.E.D.

1.4.15. Let V be a regular alternating space and let o, and o, be nontrivial
transvections in Sp, (V). Then 0,0, = 6,0, if and only if g(R,, R,) = 0.

PrROOF. Apply 1.49 and 1.3.10. Q.E.D.

1.5. Matrices

We shall use GL,(F) to denote the multiplicative group of invertible n X n
matrices over F, and SL,(F) for the subgroup consisting of those matrices of
determinant 1. The group of scalar matrices, i.e., the group of matrices of the
form diag(a, . . ., a) with « in F, will be written RL,(F). For any even integer

n > 2 define Sp,(F) as the subgroup of GL,(F) consisting of all n X n matrices
X over F which satisfy the equation

(X O In/z X _ 0 1"/2 .
- In/2 0 - In/Z 0

If we fix a base X for V, then the associated isomorphism of linear trans-
formations to matrices induces

GL,(V)— GL,(F),
SL,(V ) SL,(F),
RL,(V )= RL,(F).

If V is, in addition, a regular alternating space and if X is a symplectic base for
V, then

Sp,(V )= Sp.(F)
by 1.1.2.
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For matrices we define P as the natural homomorphism
P: GL,(F)—> GL,(F)/RL,(F).
Thus PSL,(F) is the image of SL,(F) in PGL, (F) = GL,(F)/RL,(F). The
kernel of P restricted to SL,(F) is, of course, SL,(F) N RL,(F). If X is a base
for V, then GL,(V)>—> GL,(F) induces

PGL,(V )>—> PGL,(F)

via cosets modulo RL,; we call this the projective isomorphism associated with
X. It induces

PSL,(V > PSL,(F).
If V is regular alternating and we fix a symplectic base X for V it induces
PSp,(V ) PSp,(F).

Givenn > 2,1<i<n 1< j<ni#*jandA € F, we use £, (A) to denote
the elementary n X n matrix with 1’s on the diagonal, A in the (i, j) position, and
0’s everywhere else.

Suppose n > 2. Fix a base x,, . . ., x, for the abstract vector space V, and let
P1s - - - » P, e the corresponding dual base for V'. By an elementary trans-
vection with respect to the base x,, ..., x, we mean any transvection of the
form Taxog, (7)) with A in F. It is easy to see that every transvection is an
elementary transvection with respect to some base for V. The matrix corres-
pondence associated with the base x,, ..., x, establishes the correspondence
Taep, < 1ij (M) between elementary transvections and elementary matrices.

1.6. Projective Transvections

Call an element & of the group of projectivities of ¥ a projective transvection
if it is of the form k = o for some transvection ¢ in GL, (V). It follows from
1.4.5 that the transvection ¢ representing a projective transvection k = ¢ is
unique, and we accordingly call it the representative transvection of k. Define
the residual and fixed spaces of a projective transvection as the corresponding
spaces of its representative transvection. The R, P convention of §1.3 will be
extended to projective transvections—if, for example, a projective transvection ¢
in PGL,(V) (or ¢ with o in GL,(V)) is under discussion, then R and P will
automatically refer to its residual and fixed spaces respectively. Note that we
make no attempt to define residual and fixed spaces for arbitrary elements of
PGL, (V). Of course, if 6 is a projective transvection with ¢ # 1, then R is a line,
P is a hyperplane, and R C P. If, on the other hand, we are given a line L, a
hyperplane H, and L C H, then there always exists a projective transvection ¢
in PGL,(V) having R = L and P = H. If o is a projective transvection and X is
any element of PGL,(V), then 6=~ ' is also a projective transvection, and its
spaces are ZR and Z P respectively. In particular

06> =20=>2XR=Rand ZP = P.

Note that we sometimes describe elements of PGL, (V') in the form ¢ with ¢ in
GL,(V), and at other times in the form ¢ with ¢ in PGL (V).
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1.6.1. Suppose dim V' > 3. Let o, and o, be nontrivial projective transvections in
PGL, (V). Then 6,0, is a projective transvection if and only if R, = R, or P, = P,.

1.62. Let X be a subgroup of PGL, (V) that consists entirely of projective
transvections. Then all nontrivial elements of X either have the same residual line,
or they all have the same fixed hyperplane.

1.6.3. Let o, and o, be nontrivial projective transvections in PGL, (V). Then
0,0, = 0,0, ifand only if Ry C P,and R, C P,.

So far in §1.6, V has just been an abstract vector space over F-see the Linear
Lectures for proofs. Now let V be, in addition, a regular alternating space.

1.6.4. If V is a regular alternating space then the representative transvection of a
projective transvection in PSp, (V') belongs to Sp, (V).

PrROOF. By 1.2.6 we can assume that n > 4. It is enough to show that if g is a
transvection in SL, (V) with ao in Sp,(V), then a = 1. Since
dimP > n—1>1n, and since all totally degenerate subspaces of ¥ have
dimension < 3 n by 1.1.15, there are vectors x, y in P with g(x, ) = 1. Then

I = q(x,») = q(aox, agy) = q(ax, @) = a’q(x, y) = a?,
soa = *1asrequired. Q.E.D.

1.6.5. If V is a regular alternating space and o is a projective transvection in
PSp, (V), then R = P*,

PrROOF. The representative transvection of ¢ is in Sp,(V) by 1.6.4; apply
1.3.10. Q.E.D.

1.6.6. Let V be a regular alternating space with dim V' > 4 and let 0, and o, be
nontrivial projective transvections in PSp, (V). Then o6, is a projective trans-
vection if and only if R, = R,.

Proor. Apply 1.6.1 and 1.6.5. Q.E.D.

1.6.7. Let V be a regular aliernating space and let X be a subgroup of PSp, (V)
that consists entirely of projective transvections. Then all nontrivial elements of X
have the same residual line.

PrOOF. Apply 1.6.2 and 1.6.5. Q.E.D.

1.6.8. Let V be a regular alternating space and let o, and o, be nontrivial
projective transvections in PSp, (V). Then 0,0, = 0,0, if and only if ¢(R,, Ry} =
0.

PrOOF. Apply 1.6.3 and 1.6.5. Q.E.D.
1.7. Some Theorems about SL,

QOur purpose here is to quote some theorems about the abstract case. See
Chapters 2 and 3 of the Linear Lectures for proofs. Corresponding theorems for
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the regular alternating situation will be developed later.

1.7.1. THEOREM. SL, (F) is generated by elementary matrices when n > 2.
SL, (V) is generated by transvections, indeed by elementary transvections with
respect to a given base, when n > 2.

1.7.2. If 0 € GL (V) is expressed in the form 6 = a, - - - 6, with 0, € GL (V)
andreso, = 1for 1 < i < t,thent > reso.

We say that an element o in GL, (V) is a big dilation if there is a splitting
V=U®® W with W # 0 such that 0 = (1)) @ (al,,) forsome a # 1. If 6 15 2
big dilation as above, then

R=W, P=U.

1.7.3. THEOREM. Each nontrivial o in SL,(V), other than a big dilation, is a
product of res o transvections in SL, (V). A big dilation o in SL,(V') is a product of
(res ) + 1, but not of res o, transvections. No o in SL, (V) is a product of fewer
than tes o transvections.

1.7.4. THEOREM. The order of GL,(F ) is

n

qn(n—l)/ZH(qx _ 1),
I

of SL,(F,) and PGL,(F,) it is
qn(n—l)/2Hrl-(qi - l)
(¢-1b

and of PSL,,(F ) it is
qn(n-l)/ZHrll(qi _ l)
(@ - 1)-ged(g — 1,n)

1.7.5. THEOREM. The group PSL,(F) is simple for any natural number n > 2
and any field F but for two exceptions, namely the groups PSL,(F,) and PSL,(F,)
which are not simple.

1.7.6. If X is any subgroup of GL, that is invariant under conjugation by
elements of SL,, then X C RL, or X D SL,, but for the two exceptional situations
n = 2 with F = F,, F; which clearly do not possess this property .

1.8. Comments

The symplectic groups are the second of the four large families which make
up the classical groups, the other families being the linear groups, the unitary
groups, and the orthogonal groups. Closely related to these families are the
Chevalley groups and algebraic groups. All these groups have been studied
extensively over fields, and with varying degrees of success over rings, often over
rings that come from algebraic number theory. In these notes we concentrate on
the symplectic family which 1s almost as well-behaved as the linear family which



INTRODUCTION 21

we studied in the Linear Lectures. Our philosophy is the same as in the Linear
Lectures. We ask, what are the generators of the symplectic groups, what is their
structure, and what are their isomorphisms? We prove what we can over
arbitrary fields and integral domains but we stay clear of theories which depend
on special properties of the underlying rings since that would take us too far
afield. As supplementary reading matter we suggest:

E. ARTIN, Geometric algebra, Interscience, New York, 1957,

J. DIEUDONNE, La géométrie des groupes classiques, 3iéme éd.,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5,
Springer-Verlag, Berlin and New York, 1971,

for the classical groups over fields;
R. W. CARTER, Simple groups of Lie type, Wiley, New York, 1972,
A. BOREL, Linear algebraic groups, Benjamin, New York, 1969,
for Chevalley and algebraic groups over fields; and

L. E. DICKSON, Linear groups, Teubner, Leipzig, 1901,

B. L. vAN DER WAERDEN, Gruppen von linearen Transfor-
mationen, Julius Springer, Berlin, 1935,

J. DIEUDONNE, Sur les groupes classiques, Actualités Scien-
tifiques et Industrielles, no. 1040, Hermann, Paris, 1948,

for historical perspective.



2. GENERATION THEOREMS

Recall our general assumption that, starting with Chapter 2, V' is a regular
alternating space over F with associated alternating form ¢q: V X V — F and
n = dimV > 2. Similarly with V|, F|, n;, q,.

2.1. Generation by Transvections in Sp,

2.1.1. Let a be an element of V, and let v be a transvection in Sp, (V). Then
ta = a if and only if q(a, Ta) = 0.

PRrROOF. If ra = a, then of course g(a, Ta) = 0. Conversely, suppose g(a, ra) =
0. Express 7 in the form 7 = 7, using 1.4.12. Then

g(a, a + Ag(a, b)b) = q(a, 1a) =0
implies A = 0 or g(a, b) = 0, whence ra = a. Q.E.D.

2.1.2. If 7, and v, are transvections in Sp,,(V) with 1,a = t,a # a for some a in
V, then 1, = 1,.
PROOF. Let the transvections in question be expressed in the usual form 7, ,,
and 7, , . Then 7ja = 7,0 #* a becomes
Agq(a, a))a; = Ayg(a, a))a, 0,
whence Fa, = Fa,. We can therefore assume that the transvections in question

are actually 7, , and 7, , . Then

._] —
TaxTad, = Tah—x,

is identity on the hyperplane (Fa,)*, and also on the vector a which falls outside
this hyperplane since 1,a # a,s0 7, '1, = 1,507, = 7, QE.D.

2.1.3. Suppose a and b are distinct vectors in V. Then there is a transcection T in
Sp, (V) such that Ta = b if and only if q(a, b) % 0. If this condition is satisfied,
then

T = Tp—alglab))™

is the one and only T that will do the job.

PrOOF. If g(a, b) = 0, then ¢g(a, 7a) = 0, s0 7a = a by 2.1.1, i.e, b = a. so the
existence of 7 implies q(a, b) # 0. Conversely, suppose g(a, b) # 0. Then direct

23
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substitution shows that the 7 specified in the statement of the proposition does
the job. Uniqueness follows from 2.1.2. Q.E.D.

2.1.4. Let o be an element of Sp,(V'). Then there is a transvection 7 in Sp, (V)
such that tes ro < resc if and only if q(a,oa) # 0 for some a in V. If this
condition is satisfied, then

T= Ta;~a,(q(a,oa))7‘

will do the job. The fixed space of this 70 is equal to P + Fa (which O P).

Proor. First let us suppose that we have a 7 with res 7o <reso. Let L C H
be the residual and fixed spaces of r. Of course H = L*. Put 6, = r¢. Then the
equation 0 = 7~ o, implies that L ¢ R, hence H 2 P, hence thereisanain V
with 0,¢ = a and ra #* a. Then

q(a, 0a) = g(a. 7" '0)a) = g(a, ra) # 0

by 2.1.1.
Conversely, let there be an @ in V' with ¢(a, ga) # 0. Put

1

TI = Toa—alqlaca) s TET .

Then 7,0 = oa by 2.1.3. Hence 70a = a. Now the residual space of ro is
contained in F(oa — a) + R which is R since 6a — a € R; hence the fixed
space of 7o contains P; but a is in the fixed space of ro though not in the fixed
space P of o; hence the fixed space of ro contains P + Fa which strictly
contains P. So res 70 < res o. If the fixed space of 7o strictly contained P + Fa,
then

res 70 + 2 < res o = res(7 7 '7¢) < 1 + res 79,

which 1s absurd. Q.E.D.
2.1.5. DEFINITION. A geometric transformation & of V, ie., an element k of
ZL,(V), is called hyperbolic if g(x, kx) = 0 for all x in V.

2.1.6. Every hyperbolic transformation in Sp, (V') is an involution.
Proor. Consider a hyperbolic ¢ in Sp, (V). Then for all x, y in V we have
q(o’x — x, ) = q(o’x, ) — q(x, )
= q(ox,)) + q(ay, x)
=g(ox+ay, x +y)=0;

2

hence g(o’x — x, V) = 0; hence o%x — x =0 for all x in V by regularity.

Q.E.D.
2.1.7. If o is hyperbolic and a transvection in Sp,(V), then o = 1,.
Proor. Apply 2.1.1. Q.E.D.

2.1.8. Let o be a nontrivial hyperbolic transformation in Sp, (V') and let T be any
transvection in Sp, (V) whose residual space is a line in R. Then o still has
residual space R, but it is not hyperbolic.
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PROOF. Express 7 in usual form 7 = 7,,. Here a € R. Since V is never the
union of two of its hyperplanes, there is a b in V with b & (Fa)* and b €
(F(o™'a))*, i.e., with

g(a,b) #0, g(a,ob) #0.
Then
q(b, Tob) = q(v'b, ob)
q(b — Aq(b, a)a, ob)
—Aq(b, a)q(a, ob) # 0.

So 10 is not hyperbolic. Its residual space is clearly contained in R, and it 1s
actually equal to R by 2.14. Q.E.D.

2.1.9. THEOREM. The transvections in Sp, (V') generate Sp, (V).
PRrOOF. Successive application of 2.1.4 and 2.1.8. Q.E.D.
2.1.10. Sp, (V) C SL, (V) and Sp,(F) C SL,(F).

ProoF. Apply Theorem 2.1.9. Q.E.D.

2.1.11. THEOREM. Suppose F # F, and let o be an element of Sp,(V) with
a # 1. If o is not hyperbolic, it is a product of tes o transvections in Sp,(V). If o
is hyperbolic, it is a product of (res o) + 1, but not of res a, transvections in
Sp,, (V). Of course, o is not the product of fewer than res o transvections.

This result will be established in several steps in the course of §2.1.

2.1.12. If char F % 2, and if ¢ is any element of Sp,(V), then the following
assertions are equivalent:

(1) o is hyperbolic.

(2) 0 is an involution.

(3YV =RLPwitho = (—15) L(1,).

(4) o is a big dilation or 1,,.

Proor. To prove that (1) implies (2), apply 2.1.6. To prove (2) implies (3).
apply 1.3.7. That (3) implies (4) is a consequence of the definition of a big
dilation. Finally let us show that (4) implies (I). By definition, we have a direct
sum V= U @ Wwitho = (1,)) ® («aly) for some a in F with a # 0, 1. We can
clearly assume that W # 0. Then foranyu € U,w € W,

q(u, w) = g(ou, ow) = q(u, aw) = aq(u, w).
whence ¢(U, W) = 0,s0 V= UL W. We then have, foranyu € U,w € W,
glu+w,o(u+w))=qgu+w,u+aw)=0. Q. E.D.

2.1.13. If Char F # 2, then Theorem 2.1.11 is true.

PrOOF. (1) First suppose the given o is not hyperbolic. If we can find a
transvection 7 in Sp, (V) such that res o < res ¢ with 7o either nonhyperbolic
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or 1,, then by a successive application of this fact, we will be through. So our
purpose in step (1) is to establish this fact.

(1a) We can suppose that P C R. For suppose this case is already known and
consider a ¢ with P Z R. Then P is not totally degenerate. Take a radical
splitting P = Pyirad P and write V' = P, L P§. Here P, and P} will be
nonzero, regular, alternating spaces over F. Then (o|P%) is a nonhyperbolic
transformation in Sp(PJ) whose fixed space is equal to rad P and therefore
totally degenerate. We therefore have a 7, for o/ P§. Then 1, L 7is a 7 for o.

(1b) We can assume, in addition, that P is a line. For if dim P =0 or
dim P > 2, we can apply 2.1.4 and 2.1.12-the 7o resulting from 2.1.4 will then
have a degenerate fixed space and will therefore be nonhyperbolic.

(1c) We therefore have to prove (1) under the assumption that P is a line with
P CR=P* Soreso=n — 1. Apply 2.1.4 to o. If the resulting o is nonhy-
perbolic or 1, we are through. If not, some adjustments become necessary. So
let us assume that our given ¢ has the form o = 7,0, with 7, a nontrivial
transvection in Sp,(V) and with o, a hyperbolic transformation in Sp,(V)
having res 6, = n — 2 > 0. This makes n > 4. And V' = R, L P, withdim R, =
n—2,dimP; =2 and 6, = (—1g)L(1p), by 2.1.12. Express 7, = 7,, in the
usual way. We must have

(Fa)*

&

a € V — R, since otherwise reso < n — 2. If a € P, the adjustment is as
follows. Since a & P, we must have R, Z (Fa)*, so we can pick a vector
b € R, — (Fa)*. Since (Fa)* is a hyperplane and P, is a plane we can pick
¢ € P, N (Fa)* with ¢ # 0. Clearly P = Fc by 1.3.11. Then
q(b, ob) = q(b, 7j0\b) = —q(b, 1,b) # 0

by 2.1.1. By 2.1.4 we have a transvection 7 in Sp, (V) with 7o having fixed space
P+ Fb = Fc + Fb and res 70 < res 0. Then 7o cannot be hyperbolic since its
fixed space 1s totally degenerate, by 2.1.12. So we must adjust the case where
a € P,. This time pick 4 and e in R, with ¢(d,e) =1, and f in P, with
gta. f) = 1. This time note that o(d + f) — (d + f) = —2d — Aa and

R,
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then g(d + f, o(d + f)) = A. Accordingly, by 2.1.4, if we let 7 be the trans-
vection
T =T 2d-2a-A""

we find that res 76 < res g, and that the fixed space of 7o is equal to Fa +
F(d + f). If 7o were hyperbolic its action on its residual space would have to be
—1by 2.1.12. But it is easily verified that e + a is orthogonal to Fa + F(d + f),
i.e., that e + a is in the residual space of ro; and also that ro(e + a) # —(e +
a). So 76 is not hyperbolic, as required.

(2) Now suppose that the given ¢ is hyperbolic. Then 2.1.8 and the first part of
the present proposition imply that ¢ is a product of (res ) + 1 transvection in
Sp, (V). Since o is hyperbolic it is a big dilation by 2.1.12; hence it is not a
product of res ¢ transvections by Theorem 1.7.3. Q.E.D.

2.1.14. Let char F = 2 and let A be any symmetric matrix over F with A # 0.
Then there is an invertible matrix T over F such that

et (2
0
with A’ invertible and diagonal if A is not alternating, and A’ of the form

01
10

— O
o —

if A is alternating.

ProoF. If we add a multiple of one column of 4 to another and then add the
same multiple of the first corresponding row to the second corresponding row,
or if we interchange two columns of 4 and then interchange the corresponding
rows, or if we multiply a column of 4 by a nonzero scalar and then multiply the
corresponding row by the same scalar, then, in each of these cases, it is easily
seen that the matrix obtained is a nonzero symmetric matrix of the form ‘TAT
for some invertible matrix 7 over F. We leave it as an exercise in elementary
matrix theory to verify that 4 can be put in the desired form

[*+)

using a sequence of operations of the type just described, and hence that there
is a T of the desired type such that ‘TAT has the desired form. Q.E.D.

27
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2.1.15. Let char F =2, let X be a symplectic base for V, and let o be the
involution in GL (V') that is defined matrically by

o~(1 A) inX
1

where A is any given 3 n X 3 n matrix over F. Then

(V) o is in Sp,(V) if and only if A is symmetric.

() If 6 is in Sp,(V'), it is hyperbolic if and only if A is alternating.

ProOF. The first part is a special case of 1.1.17. Now suppose that ¢ is in
Sp,(V). So A = (a;) is symmetric. If o 1s hyperbolic, then

n/2
a; = ‘Z(yj” 2 aijxi)

i=1
= q(y )
=0,
s0 A is alternating. Conversely, if 4 is alternating, express a typical z in ¥ in the
form

= ax + 2 By,
i J
and show, by direct computation, that g(z, oz) = 0, i.e., that o is hyperbolic.
Q.E.D.

2.1.16. Let char F=2. If o # 1, is an involution in Sp,(V), there is a
symplectic base X for V in which

1) e (e

I 0

where A’ is invertible and diagonal if o not hyperbolic, and A’ has the form
01
10

— O
O -

if o is hyperbolic.

PRrROOF. Since o is an involution we have R C P by 1.3.13. Now R = P* so
R =rad P, so it follows easily that P contains a totally degenerate subspace of
dimension 1 n that contains R. Accordingly, by 1.1.14, there is a symplectic base
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)= {Xl’ N N PAIEEE ’yn/Z}
for V in which
R=Fx;+ .-+ Fx,

CFkq+ -+ Fx, +--- + Fx,,

C P
By 1.1.17 we know that

11Dy .
o~( 1) in J)

for some {n X 1n symmetric matrix D. By 2.1.14 there is an invertible
3n X 3n matrix T over F such that ‘7DT = A4 with

A=(A’ o)

for some A’ of the form given in 2.1.14. Put

()

and let S carry 9 to some base X for V. We have

(A ) - (2445

so that X is also a symplectic base for V. And the matrix of o in the base X is
equal to

(1) () () - (e - (1)

By 2.1.15, if ¢ is not hyperbolic, then A is not alternating, so A’ is invertible and
diagonal by 2.1.14; and similarly if ¢ is hyperbolic. Q.E.D.

2.1.17. If char F = 2 and if o is a hyperbolic transformation in Sp,(V'), then
Ies o is even.

PRrROOF. The results follow by suitably interpreting 2.1.16. Q.E.D.

2.1.18. If char F = 2 and o is an involution, then Theorem 2.1.11 is true (even if
F =F,).

PRroOF. First let ¢ be nonhyperbolic. By 2.1.16 there is a symplectic base X for

V in which
O ~ (I_}%) with D = diag(d,, .. ., dn/2)

where d,,...,d € F and gy d,,/2 are 0. Note that we must have
r=reso. For 1 <i < rlet D, bethe $n X n diagonal matrix with 4 in the
ith position and 0 everywhere else. Then
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T, ~ in X
1

defines a transvection in Sp,(V), and 6 = 7, - - - 1,, s0 ¢ is a product of res ¢
transvections in Sp,(¥), as required. Now assume that o is hyperbolic. If ¢ were
a product of res o transvections in Sp,(¥), say 6 = 1,- - - 7,, then res 7,7 'o <
res o, and this would contradict 2.1.4. On the other hand, it follows from 2.1.8
and the first part of Theorem 2.1.11 for involutions which we have just proved,
that o is a product of (res o) + 1 transvections in Sp, (V). Q.E.D.

2.1.19. If char F = 2 (with F # F,, of course) then Theorem 2.1.11 is true.

ProoOEF. (1) First suppose the given o is not hyperbolic. If we can find a
transvection 7 in Sp, () such that res 76 < res o with 7o either nonhyperbolic
or 1,, then by a successive application of this fact, we will be through. So our
purpose in step (1) is to establish this fact.

(1a) Proceeding as in step (1a) of the proof of 2.1.13 allows us to assume that
P C R for the given o.

(1b) We can assume, in addition, that dim P is jn — 1 or 3 n. For P, being
totally degenerate, must have dim P < jn. If dim P < 3n — 2 we can apply
2.1.4-the 7o resulting from 2.1.4 will have a fixed space of dimension < 3n — 1
and so res To > %n + 1; such a 70 cannot be an involution, let alone a
hyperbolic transformation, since involutions in characteristic 2, being totally
degenerate by 1.3.13, must have residue < %n.

(lc) Let us now prove the case where dim P = %n — 1. If n =2, then an
application of 2.1.4 gives us a r whose res 76 = 1 is odd and therefore whose 7o
cannot be hyperbolic by 2.1.17. So let n > 4. Then P # 0. So there are vectors
in ¥V — R. In fact we can find a € V — R with g(a, oa) # 0; to see this, pick
b € V — R; we can assume that g(b, ob) = 0, else b would be a suitable q;
since ¢ is not hyperbolic, there is a vector r with g(r, or) # 0, and we can
assume that r is in R, else r would be a suitable a; then

g(b + A, 0(b + Ar)) = Nq(b, or) + q(r, ob) + Aq(r, or))
cannot be 0 for more than a single A in F: since F # F, we have a A in F with
g(b + Ar,0(b + Ar)) # 0;

b + Ar with this value of A is our a. Let 7 be obtained for the given ¢ using this @
in the manner of 2.1.4. Then the fixed space of 7a, being P + Fa, is not totally
degenerate since a & R. Now dim(P + Fa) =1n, so resto = 1n, so if the
residual space of 7o were totally degenerate it would be equal to P + Fa which
15 not totally degenerate. So 7o is not totally degenerate. So 76 is not an
involution. So ta is not hyperbolic.

(1d) Finally the case dim P = jn. Here we actually have P = R. So ¢ is
totally degenerate. So o is an involution. So ¢ =7, - - 7,,, by 2.1.18. Put
=1 ' Then res to = 3n — 1 < res a. If 70 were hyperbolic it would be an
involution, hence 2.1.18 would apply. so 76 would not be a product of 3n — 1
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transvections in Sp,(¥), and this is absurd. So 7o is nonhyperbolic, as required.
(2) If ¢ is hyperbolic it is an involution; hence 2.1.18 applies, so o is a product
of (res 6) + 1, but not of res o, transvections in Sp, (V). Q.E.D.

2.2. Elementary Generation of Sp,

Is Sp, (V) generated by elementary transvections in Sp,(}’) with respect to a
fixed symplectic base

E={x1,. s %, | V152 Vn2}
for V'? Using the fact that
Tax = Targ( s .a)
where 7,, denotes a transvection in the symplectic situation, while 7, , with p a
linear functional denotes a transvection in the linear theory, we see that the

elementary transvections with respect to X that fall in Sp, (V) are precisely the
transvections

Txlv)" ey T)’n/zv)‘

as A runs through F. Do these elements generate Sp,(V)? If we let ¢;; denote the
3n X 3 n matrix over F with 1 in the (i, j) position and 0 elsewhere, then it is

clear that the elementary transvections in Sp,(¥") correspond to all the matrices

I| Ae; d I
1 an Ae,; | 1

as A runs through F and 1 < i < 4 n. These matrices generate Sp,(F) = SLy(F),
so our question is answered in the affirmative when n = 2. So consider n > 4 for
the remainder of §2.2. Then any product of the above matrices will be of the
form

diag | diag
diag | diag )’

in particular the matrix

(47

with X a nondiagonal symmetric § 7# X 1 2 matrix over F cannot be obtained as
a product of such matrices. So the above matrices do not generate Sp,(F), i.e.,
the elementary transvections in Sp,(¥) do not generate Sp, (V). In fact let us
show that Sp,(F) is generated by the matrices

) )

I }\(e,-j+eﬂ.) 1
) N +e)| 1)

I+}\e,-j|
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as A runs through F and i and j run through 1 < i < 5‘n, 1< /< %n with i = J.
All these matrices are, of course, in Sp, (F); iet G denote the subgroup of Sp,,(F)
which they generate. Clearly G is the group generated by

(%)’ ([ BI) (113 1)’

as A runs through SL, ,(F) and B runs through all ;7 X ;n symmetric
matrices over F. G can also be described as the group generated by the matrices

(i‘_'Ai—‘)’ (1 l;) (-01 f))

with 4 and B as above, in view of the equations

(=7t5) = ()=l
() - (20) ()

We must show that G = Sp,(F), or that G, = Sp, (V) where G, consists of the
transformations corresponding to G. Now G, contains all transvections in
Sp,. (V) with residual line Fx, so, since Sp, (V') is generated by transvections, it is
enough to prove that there is a 0 in G, such that

ox;=axy+ -t nx, 0t Byt + Bayas
whenever the a’s and B8’s are given in F with not all 0. This will certainly be
accomplished if we can find a matrix in G whose first column is equal to

(@ s @B v o5 Buya)-
If all o’s are 0 pick 4 in SL,, ,(F) with first column equal to

(’:81, ey T :8,./2)

and observe that

(22 - () A=) <o

If some o; # 0, let 4 be a matrix in SL, ,,(F) whose first column is equal to

(a, ..., U‘n/z)
and let B be the 1 n X § n symmetric matrix
r
B!
-1 -1
B - x cU :Bn/Zai

:8n/2ai_ l
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where x is given by

(:Blai_l)al o A (X)e+ et (Bn/Zai_l)an/2 =B

Then the first column of
B 1 [A 1

(0‘1’ ey a,,/z,,Bp ceey :Bn/Z )’

is equal to

as required.

2.3. Comments

The main theorem of this chapter is due to Dieudonné. If the underlying field
is F,, then the theorem fails, i.e., it is no longer possible to express every ¢ in
Sp, (V) as a product of res o or of (res 6) + 1 transvections in Sp, (V). There is a
theorem for F,, but it is considerably more complicated. See

J. DIEUDONNE, Sur les générateurs des groupes classiques,
Summa Basil. Math. 3 (1955), 149-179

for Dieudonné’s original proof when F # F,,

D. CALLAN, The generation of Sp(F,) by transvections, J. Algebra
42 (1976), 378-390

for the case of F = F, (Callan points out that Dieudonné’s treatment of the case
F, is incomplete). For generation theorems for an alternating ¥V that is not
necessarily regular, see

U. SPENGLER, Relationen zwischen symplektischen Trans-
vektionen, J. reine angew. Math. 274 /275 (1975), 141-149.
U. SPENGLER AND H. WOLFF, Die Lange einer symplektischen
Abbildung, J. reine angew. Math. 274 /275 (1975), 150-157.

Generation questions over rings are of the following form. What is a good set of
generators? For example, do transvections generate symplectic groups over
rings? Which groups are finitely generated? Results are highly dependent on the
underlying ring. See the survey article:

Yu. I. MERZLYAKOV, Linear groups, J. Soviet Math. 1 (1973),
571-593

for more information on the generation theory over special rings.



3. STRUCTURE THEOREMS
3.1. Orders of Symplectic Groups

3.1.1. If F has an infinite number of elements, then so do the groups Sp, and
PSp,, over F.
Proor. The number of transvections 7,, in Sp, (V) is infinite. Q.E.D.

3.1.2. THEOREM. The order of Sp,(F,) is
n/2
q(n/2) H (q21 _ 1)’
1
and the order of PSp,(F,) is
q(n/2)‘Hrlt/2(qu _ 1)
ged(2,9 - 1)

ProorF. The second part follows from the first since, by §1.5. PSp,(F) is
isomorphic to Sp, (F)/(=I). We prove the first part by induction on n. If n = 2,
then SL, = Sp, by 1.2.6. Apply Theorem 1.7.4. So let n > 4.

By a pair we will mean an ordered pair of vectors x, y with g(x,») = 1. If x 1s
fixed in ¥, then there is exactly one pair (x, y) with y belonging to a given line
that is not orthogonal to x. So the number of pairs with x in first position is
equal to the number of lines that do not fall in (Fx)*, and this number is equal
to

qn —1 qn—l -1 3

g-1 q-1 1
Therefore there are ¢"~! pairs with x in first position. Therefore there are
" '(g" — 1) pairs in all.

Fix a pair (i, j). For each pair (x, y) we have at least one element of Sp,(V)
carrying (i, j) to (x, y) by Witt’s Theorem. Hence there are exactly

card Sp,_,((Fx + Fp)*)

elements of Sp,(¥) which will carry the pair (i,j) to the pair (x.y). By
induction, this number is equal to

n—1

35
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n/2—1

q(n/z—l)2 H (qu_ 1)‘
1

Now every element of Sp, (V) carries (i, ) to exactly one pair. Hence Sp, (V)
contains
n/2—1 n/2
q(n/z—l)2 H (qu _ 1),qn—1(qn -1 = q(n/z)2 H (q2i _ 1)
1 1

elements. Q.E.D.

3.1.3. The number of maximal totally degenerate subspaces of V is equal to
n/2

I (¢'+1)
1
when F = Fq.

Proor. (1) First let us show that the subgroup G,, of Sp,(V) which stabilizes
a typical maximal totally degenerate subspace M of V has order
n/2
¢ Il (q" - 1),
1

To see this, fix a symplectic base

X = {Xl, e x,,/2|y|, s ’yn/2}

for V in which the x’s span M. This can be done because of 1.1.14. Then it
follows from 1.1.17 that the matrix of a typical 6 € G,, can be expressed in the

: EE

with C € GL, ,(F) and with B a symmetric 3 # X ; n matrix over F; and these
C and B are uniquely determined by o¢; and every such C and B come from
some o in G,,. The result then follows by multiplying the order of GL, »(F,)
(which is given in Theorem 1.7.4) by the number of ;n X in symmetric
matrices over F.

(2) Fix a maximal totally degenerate subspace M of V. By Witt’s Theorem,
every maximal totally degenerate subspace of ¥ can be obtained by forming oM
as o runs through Sp, (V). It follows easily from step (1) that each maximal
totally degenerate subspace is duplicated exactly

n/2
q(n/2)2 H (qi _ 1)
1

times by this process. So the number of such subspaces is equal to the order of
Sp,(V) divided by the above quantity. This is clearly the desired number.
Q.E.D.

3.1.4. The number of regular planes in V is equal to
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n
n—2 q — 1
q 2
q

PROOF. By arguing as in the proof of 3.1.3 we find that ¥ must contain

when = F,.

card Sp,

card Sp, - card Sp,_,

regular planes. This number turns out to be the number given above, by
Theorem 3.1.2. Q.E.D.

3.1.5. Spy(F,) is isomorphic to the symmetric group S,.

ProOOF. By a configuration let us mean any subset C of 5 elements in the
4-dimensional regular alternating space V over F, with the property that no two
distinct elements of C are orthogonal. Every nonzero vector x in V belongs to
exactly 2 configurations C and C’, and these two configurations must then
intersect in the set {x) itself. To see this take a symplectic base {x,, x5|y,.y,)}
for V in which x = x,. Then it is obvious that

{(xpyuxi+yit x5x vy 4y x +y + x,+ ;)
and
{xp Xy +ypys Xy )+ X+ )}

are two distinct configurations intersecting in {x}. And a quick check by the
process of elimination will show that there are no other configurations

containing x. If we now list all distinct configurations C,, ..., C; in V, then
every x in V appears in exactly 2 of the C’s; hence 5/ = 2.15; hence j = 6. We
letI' = {C,, ..., Cq} denote the set of all configurations of V.

If o is any element of Sp,(V'), then ¢C is a configuration if and only if C is, so
o induces a mapping 6: I' > I'. It is clear that & is surjective, hence a
permutation of I'. So 0 -— 6 defines a mapping, indeed a homomorphism,
Sp,(V) > &. To find the kernel take ¢ in Sp,(¥') with ¢ % 1. Then there is an
x in V with ox # x. Let C and C’ be the two configurations containing x. Then
ox does not belong to one of them, say ox & C. So 0C # C. So 6 # 1. In other
words, the kernel is trivial and we have an injective homomorphism Sp,(V)
>— &. But Sp,(V) has 6! elements by Theorem 3.1.2. So Sp,( V) is isomorphic to
&, as required. Q.E.D.

3.2. Centers

Note that PSp,(¥) is not commutative. To see this take nontrivial projective
transvections in PSp, (V) with nonorthogonal residual lines and apply 1.6.8. So
Sp, (V) is not commutative too.

3.2.1. PSp, (V) is centerless and cen Sp,(V) = (£1,).
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Proor. Consider a typical o in the center of PSp, (V). Let L be a typical line
in V. Let 7 be a projective transvection in PSp, (V') with residual line L. Then
the residual line of or6 ™' is equal to oL. But o706~ ' = 7 since o is in the center.
SooL = L forall L. Soo = 1. So PSp, (V) is indeed centerless. The second part
follows by applying P and using 1.2.5. Q.E.D.

3.3. Commutator Subgroups

3.3.1.If L and L' are any two lines in V, then the set of transvections in Sp,(V)
with residual line L is conjugate under Sp,(V) to the set with residual line L’.

ProoF. By Witt’s Theorem there is a = in Sp, (V) such that 2L = L. Then
conjugation by Z carries the transvections in Sp,(¥) with residual line L into,
indeed onto, those with residual line L’. Q.E.D.

3.3.2. ExaMpLE. Two transvections in Sp,(}’) need not be conjugate in
Sp, (V). For example, the conjugates of 7,, with residual line Fa are the
transvections 7, ,», as a runs through F.

3.3.3. REMARK. Let ¥ be a symplectic base for V. If S is any 1n X in
symmetric matrix over F, and if o is the linear transformation defined matrically

by
o~ (I S ) in %,
1
then we know from 1.1.17 that ¢ is an element of Sp, (V). If we now derive S’
from § by (1) adding a multiple of one column to another and then doing the
same thing with the corresponding rows, or (2) interchanging two columns and
then interchanging the corresponding rows, then the linear transformation ¢’

with
a’~(1 S/) mnx
I

is still in Sp, (V) since S’ is still symmetric. But in fact 0 and ¢’ are conjugate in
Sp, (V). To see this observe that in either case S’ has the form §’ = ‘TST for
some T in GL, ,,(F). Then X defined by

t
z~(T ) in%
T—l

isin Sp,(¥) by 1.1.17, and ¢’ = 0=~ ' since

(I[S’)=(’T| )(1|s)('r| )
| 7 | r-1J\ |1 | -
3.3.4. Suppose n > 4 with F#F,, F;, and let G be a normal subgroup of

Sp, (V') which contains a regular element ¢ of residue 2 which is a product of two
transvections in Sp, (V). Then G = Sp,(V).
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ProOOF. Here V' = R L P with R a regular plane. Let G, be the group
G,={g ESpR)|gLl, €EG}.

Then (a|R) € G, < Spx(R). And (6|R) # *1,: This is obvious when char F
= 2; if char F # 2 apply 2.1.12 and Theorem 2.1.11. So G, is a normal subgroup
of SL,(R) which is not contained in RL,(R). This implies that G, = SL,(R) by
1.7.6. In particular, if we fix a line L in R, then G, contains all transvections on
R with residual line L. Hence G contains all transvections in Sp,(V) with
residual line L. Hence G contains all transvections in Sp,(V), by 3.3.1. Hence
G = Sp,(V), by Theorem 2.1.9. Q.E.D.

3.3.5. Suppose n > 4 with F = ¥y, or n > 6 with F = F,, and let G be a normal
subgroup of Sp, (V) which contains a degenerate element o of residue 2 which is a
product of two transvections in Sp, (V). Then G = Sp, (V).

PROOF. (1) A variation of the argument used in the proof of 3.3.4 allows us to
assume thatn = 4if FisF;,andn = 61if FisF,.

(2) First the case n = 4 with F = F;. Here ¢ has the form 6 = 7, 7, with
R = Fal Fb and with the stars equal to *+1. Now the 7’s permute since
q(a, b) = 0, so we can replace o by its square if necessary and thereby assume
that in fact ¢ = 7,,, 7, ,. We can then assume that this new * is — 1. For if

6 = 7,7, use Witt’s Theorem and pick Z € Sp,(V) with 2b = b, Za = a + b.
Then

S0 2 =1 15,
Replace ¢ by
oS¢ 1=71 = i TSa — 1
So indeed let us assume that ¢ = 7,7, _|.Extend {q, b} to a symplectic base
X = {a, bjc, d}
for V and note that

By suitably conjugating and applying Remark 3.3.3 we can find linear trans-
formations in G whose matrices with respect to X are equal to

Multiplying these transformations gives us an element of G with matrix
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So G contains 7, _,. So G contains all (= both) transvections in Sp,(V) with
residual line Fa. So G contains all transvections in Sp,(¥) by 3.3.1. So G =
Sp,(¥) by Theorem 2.1.9.

(3) Now the case n =6 with F=F,. Here 6 = 1,,7,; with R = Fa L Fb.
Extend {a, b} to a symplectic base
X={ab clderf}.
Then

Conjugating and applying Remark 3.3.3 gives us linear transformations in G
with matrices

1 1 0 1 1 1 1

1 1 0 0 1 1 0 0

110 0 O I{1 0 O
and l

—
—
—
—
—_—

hence with matrices

1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 O
111 0 O 110 0 O
and )
1 1
1 |
1 1
hence with matrix
1 1
1 0
1 0

In other words, G contains 7, ;. So G contains all transvections in Sp, (V). So
G = Sp,(V). QE.D.
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3.3.6. If n > 4, then DSp,, = Sp,, but for the following exception:
(Spa(F2): DSpy(Fy)) = 2.

PrOOF. Put 7 = 7, for some a in V. By Witt’s Theorem there is a = in Sp,, (V)
such that Fa + F23a is a plane with

1 ifF=F,F,

E —3
9a20)=10 $F-F,F,

Define
o=12r"'E7 '€ DSp(V).

Apply 3.3.4 and 3.3.5. In the exceptional case apply 3.1.5 plus the well-known
behavior of &,. Q.E.D.

33.7.1f n > 4, then DPSp, = PSp,, but for the following exception:
(PSp4(F,): DPSp,(F,)) = 2.

3.4. Simplicity Theorems

3.4.1. THEOREM. The group PSp, (F) is simple for any natural number n > 4 and
any field F but for the group PSp,(F,) which is not simple.

ProoF. (1) The exceptional behavior of PSp,(F,) follows from 3.3.7. So let us
assume that n > 4 in general, and n > 6 when F is F,. Instead of working in the
projective group we will work in Sp,,. It is enough to consider a normal subgroup
G of Sp, 4th G Z (= 1,) and deduce that G = Sp,,

(2) First let us show that we have a € V, S € G such that Fa + F3a is a
regular plane. To this end pick & € G with ® # *=1,. Then ® moves at least
one line in ¥ by 1.2.3 and 1.2.5, so there is a line L in V such that ®L # L. Let
T be a nontrivial transvection in Sp, (V') with residual line L. Then

S = (TOT Hd~! = T(®T ')

is an element of G; it is also a product of two transvections in Sp,(}) whose
residual spaces are the distinct lines L and ® L. So the residual space of 2 is the
plane L + ®L, in particular res £ = 2. If £ were a hyperbolic transformation,
then £ would be an involution by 2.1.6; so 2.1.18 would apply in characteristic
2; and 2.1.13 would apply in characteristic not 2; in particular £ would not be a
product of res X = 2 transvections in Sp,(}'); and this is absurd. So 2 is not
hyperbolic. There therefore exists an a in V such that q(a, Za) # 0, 1.e., such
that Fa + FZa is a regular plane.

(3) We can also show that we have a € V, = € G such that Fa + F3a is a
degenerate plane. Pick @ € G with ® # *1,. Then there is an ¢ in V such that
Fa # F®a. If g(a, Pa) = 0 we are done, so assume g(a, ®a) # 0. Pick b € V
— (Fa + F®a) with

g(b,a) =0 and ¢q(®a, b) = q(a, Pa) # 0.

41



42 O. T. O'MEARA

By Witt’s Theorem there is a T in Sp, (V) with Ta = ®a and T ®a = b. Then
S = TO®T '@ is an element of G which carries a to b, so Fa + F3a is a
degenerate plane.

(4) Pick @ € V, £ € G such that Fa + F3a is a regular plane when F #
F,. F,, a degenerate plane when F = F,, F;. Then

o= (T 27_1)

= Ta,l(ETajl —l)

Ta‘lTEa,—l

is an element of G, it is a product of two transvections in Sp,(V), and its
residual space is the plane Fa + FXa. So G = Sp,(V) by 3.3.4 and 3.3.5.
Q.E.D.

3.4.2. If X is a normal subgroup of Sp, withn > 4, then X C (1) or X = Sp,,
but for the exceptional situation SpyF,) which clearly does not possess this

property.

PROOF. For the exceptional situation see 3.3.6. By applying Theorem 3.4.1 to
PX we see that X C (x1)or X (x£1I) = Sp,. Assume the latter. Then

X 2 DX =D(X (1)) = DSp, =Sp,. QED.

The Simplicity Theorem 3.4.1 can also be proved using the permutation group
approach given in §3.5 of the Linear Lectures. Recall that a permutation group
G on a nonempty set 4 is a subgroup of the group of all permutations of 4.
Recall that G is called transitive if, given a € 4 and b € A4, thereisa o in G
such that oa = b. Recall that a partition ¢ of 4 is a set of nonoverlapping
subsets of 4 whose union is 4. The trivial partitions of A4 are the ones consisting
of A itself on the one hand, and of every point of 4 on the other. A transitive
group of permutations on the set A is called imprimitive if there is a nontrivial
partition % of 4 such that X € % for all ¢ in G and all X in 9. Otherwise it is
called primitive. The key result (see 3.5.4 of the Linear Lectures for the proof) is
the following.

3.4.3. A primitive permutation group G on a set A is simple if it satisfies the
Sfollowing two conditions:

(1) DG = G.

(2) For some a € A there is a normal abelian subgroup H, of the stabilizer S, of
a such that G is the group generated by gH,g ™" as g runs through G.

In order to prove Theorem 3.4.1 using this result one considers PSp, (V') as a
permutation group on the set of lines £ of V. This is possible since PSp,(V),
being a subgroup of the group of projectivities of ¥, acts faithfully on £; hence
PSp, (V) is naturally isomorphic to a permutation group on the set £. We know
that PSp,(V) is transitive by Witt’s Theorem, that DPSp, (V) = PSp, (V) by
3.3.7, and that the set of projective transvections in PSp,(V) with residual line
L, plus 1, is a normal abelian subgroup of the stabilizer of L in PSp, (V") which,
along with its conjugates in PSp,(V), generate PSp,(V), by §1.6, 3.3.1 and
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Theorem 2.1.9. So all that remains before we can apply 3.4.3 is for us to verify
that PSp, (V) is primitive.

3.4.4. The permutation group PSp,(V) acting on the set of lines £ of V is
primitive when n > 4.

PrOOF. (1) We must consider a partition & of £ which contains at least two
cosets such that at least one coset, say C,, has at least two lines. And we must
find an element of PSp, (V') that will disrupt this partition. Suppose, if possible.
there is no such element.

(2) First let C, contain two distinct lines L;, L, which are nonorthogonal.
Then every pair of distinct lines X, K, in C, must be nonorthogonal. Otherwise
we would have distinct K, K, in Cy with ¢(K,, K;) = 0. Pick a line J of ¥ that 1s
not in the coset C,. If g(L,,J) = 0, then it follows from Witt’s Theorem that
there is a £ in PSp, such that 2K, = L, 2K, = J, and this disrupts the
partition. If g(L,, J) # 0, it again follows from Witt’s Theorem that we have =
in PSp, with 2L, = L,, 2L, = J, and this is again absurd. So, indeed, every
pair of distinct lines in C, 1s nonorthogonal. The argument just used then shows
that if L is any line in C;, then C, contains all lines of ¥ that are nonorthogonal
to L. Now we can clearly find a line M in V that is nonorthogonal to L, and
orthogonal to L,; the first condition puts M in C,, the second puts it outside C,.
and this is absurd.

(3) We may therefore assume that all lines in C; are mutually orthogonal. The
arguments used in step (2) then show that if L is any line in Cy, then C, contains
all lines orthogonal to L. This is again impossible. Q.E.D.

3.5. Comments

The simplicity of PSp, is due to Dickson and Dieudonné. See

J. DIEUDONNE, Sur les groupes classiques, Actualités Scien-
tifiques et Industrielles, no. 1040, Hermann, Paris, 1948.

for details. For the Chevalley groups see

C. CHEVALLEY, Sur certain groupes simples, Tohoku Math. J. (2)
7 (1955), 14-66.

For simplicity theorems in a unified algebraic framework see

J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2)
80 (1964), 313-329.

If we pass from fields to rings there is no longer any hope for simplicity.
Structure theory then becomes not a question of simplicity but a question of
describing all normal subgroups. Results are highly dependent on the underlying
ring. See
Yu. I. MERZLYAKOV, Linear groups, J. Soviet Math. 1 (1973),
571-593

for the extensive literature on structure theory over special rings.



4. SYMPLECTIC COLLINEAR TRANSFORMATIONS
4.1. Collinear Transformations

In §4.1 we assume that ¥ and V| are just abstract vector spaces, i.e., we ignore
the alternating forms which our general assumptions say they possess. For
proofs see the Linear Lectures.

Consider a field isomorphism p: F>~ F,. We will write a* for the action pa of
g on any a in F. Thus

(a0 + B)'=ar+ B, (aB)'= a*p*.
And if p;: F;>> F, is a second such situation, then
(a“)“'= at,
A map k: V —— V, is called semilinear with respect to u: F>— F if
k(x +y)=kx+ ky, k(ax)= a*(kx)

for all x,y in V and all a in F. A map k: V' —— V, is called semilinear if it is
semilinear with respect to some y. If & # 0, then the associated p is unique. If
k: V-V, is semilinear with respect to u: F>— F, and k;: V| —— V, is semi-
linear with respect to p,: Fj>> F,, then k k: V —— V, is semilinear with respect

to p, p. If the bijection k: V> V', is semilinear with respect to p: F>— Fj, then
k~': V> V is semilinear with respect to u " ': F>> F.

4.1.1. Let k: V —— V| be semilinear and let W and W, be subspaces of V and
V| respectively. Then

(1) kW is a subspace of V.

(2) k='W, is a subspace of V.

(3) dimg k¥ + dimgk ~'0 = dim, V.

412 If x|, ..., x,is a base for V,and v,, . . ., v, are any n vectors in V|, and
if a field isomorphism yu: F— F,| is given, then there is a unique semilinear map
k: V —— V| with associated field isomorphism p which carries x; to v, for 1 < i <
n. The defining equation of this k is

k( 2 aixi) = 2 alv;.
1 1
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The field isomorphism p: F>> F, is extended to matrices in obvious way,
entry by entry. With the usual restrictions on matching rows and columns we
have

(4 + B)"=4*+ B*, (4B)" = A*B*,
det 4* = (det A)*, (4~ )" =(4")7!

where the last equation means that 4 is invertible over F if and only if A* is
invertible over F), and then (4 ")* = (4*)~'. Under composition we have
(A¥)H = Ams,

If &: V——V, is semilinear with respect to u: F>> F;, and if bases X =
{x,....x,) and X, = {y,,...,y,} are fixed in V and V, respectively, then
each kx; can be expressed in the form

m
kxj'_'zaijyi (a; € Fy)

i=1
and the resulting n; X n matrix 4 = (a;) over F, is called the matrix of K with
respect to the pair of bases X, X,. If we consider a second such situation
ky: V, —— V, with respect to u,: F;>> F, with bases X,, X,, then the matrix of
k,k with respect to X, X, is easily seen to be 4,4"'. We have

k bijective < 4* ' invertible < A4 invertible.
1

If k is invertible, then the matrix of k ! with respect to X,, X is (4 ~)* .

All this holds if we take F=F, V=V, X=X, and p: F>> F an
automorphism of F. We then call the n X n matrix 4 = (g;) over F the matrix
of k with respect to the base X. If 3 = {z|,..., z,} is a second base for V' that
is related to the first by the n X n matrix T = (¢;) over F that is given by

n
7= 2 1,x,

i=1
and if B is the matrix of k with respect to 3, then
B=T"'AT*

A collinear transformation k& of ¥ onto V, is, by definition, a semilinear
bijection k: V> V,. Composites and inverses of collinear transformations are
themselves collinear. Clearly

k collinear = k geometric.
In particular we can form k for any collinear k and thereby obtain a projec-
tivity, indeed a projective geometric transformation, k: P(V )= P( V,) of V onto
V.. A projectivity 7: P(V)>> P(V|) which has the form 7= = k for some collinear
k: V>— V, is called a projective collinear transformation of ¥ onto V. Clearly
composites and inverses of projective collinear transformations are themselves
projective collinear transformations, and

7 projective collinear = 7 projective geometric.

4.1.3. Let 7 be a bijection of the lines of V onto the lines of V,, and let
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dimg V = dimg V| > 3. Suppose that for each hyperplane H of V there is a
hyperplane H, of V| such that wL is a line in H, whenever L is a line in H. Then =
can be extended uniquely to a projectivity 11: P(V)>— P(V)).

4.1.4. FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY. Suppose dim V >
3. Then every projectivity of V onto V| is a projective collinear transformation.

A collinear transformation of V is, by definition, a collinear transformation of
V onto V. The field isomorphism p associated with a collinear transformation of
V is therefore an automorphism of the field F, i.e., if k: ¥>> V' is a collinear
transformation of ¥ with associated field isomorphism p: F>— F, then

u € aut F

where aut F denotes the group of automorphisms of F. The set of collinear
transformations of V is a subgroup of the general geometric group ZL (V). It
will be written 'L, (') and will be called the collinear group of V. By a group of
collinear transformations of V' we mean any subgroup of I'L (V). Clearly
GL,(V) CTL,(V); so any group of linear transformations of V' is a group of
collinear transformations of V.

A projective collinear transformation of V' is, by definition, a projective
collinear transformation of V onto V. The set of projective collinear transfor-
mations of V is exactly the subgroup of projectivities of V' consisting of the
images of I'L,(¥) under the bar mapping, i.e., it is the group PI'L (V). This
group is called the projective collinear group of V. By a projective group of
collinear transformations of ¥ we mean any subgroup of PTL, (V). Clearly
PGL,(V) C PTL,(V); so any projective group of linear transformations is a
projective group of collinear transformations of V.

4.1.5.RL,, SL, and GL,, are normal subgroups of I'L,; and PSL, and PGL,, are
normal subgroups of PT'L,.

4.1.6. Suppose n > 2 and let k € TL, be such that kL = L for all lines L in V.
Then k € RL,,.

4.1.7.PZL, (V) = PTL,(V) for n > 3, and ker(P[TL,) = RL, forn > 2.

By a representative of an element X in PI'L,(}) we mean an element £ of
TL,(V) such that k=3 1If k, and k, are elements of I'L,(V), then the
following statements are equivalent when n > 2:

(1) £, and k, represent the same Z in PI'L,.

(2) k; = k,r for some rin RL,,.

(3) k; = rk, for some r in RL,.

If n > 2, then all representatives of an element = of PGL,, fall in GL.,.

We now introduce a group isomorphism @, where g is first a collinear
transformation g: ¥>— V| of V onto V,, and secondly a projective collinear
transformation g: P(¥V)>— P(V ) of V onto V.

First consider a collinear transformation g: V> V. Let pu: F>— F, be the
associated field isomorphism. Here n = n, follows. Then @, defined by
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Dk = gkg™! VkeTL,(V)

1s a group isomorphism

@, TL(V)—TL, (V).
Under composition and inversion,

o, , = 9,0, q)g_] =Dy

And @, induces

®,: GL(V)—GL, (V}),

®,: SL(V)—SL, (V)

@, RL,(V)—RL, (V).
If o is in GL,(V), then the residual and fixed spaces of ®,0 are gR and gP
respectively; in particular

res &0 = reso.

If H is a hyperplane and L is a line with L C H, then gL is a line contained in
the hyperplane gH of V), and ®, carries the set of transvections with spaces

L C H onto the set of transvections with spaces gL C gH. If ¢ is the trans-
vection ¢ = Tap in usual form, then

dr =71

glap ga.upg "

Now consider a projective collinear transformation g: P(V)— P(V,) of V
onto V,. We again have n = n,. This time define

® k= gkg™! VkePIL(V)
and obtain a group isomorphism
@, : PTL,(V)— PTL, (V).
Under composition and inversion,
Dy = Dy 2y q)g_] =0,
Since g is projective collinear it is of the form g = 4 for some collinear
h: V>— V. We have
=05 =0, VjETL(V).
And @, induces
®,: PGL,(V)— PGL, (V)),
®,: PSL,(V ) PSL, (V).
And @, carries the set of projective transvections with spaces L C H onto the

set with spaces gL. C gH.

4.1.8. Suppose n = n, > 2. If g, and g, are collinear transformations of V onto
V. then the following statements are equivalent:

(o, = o;.

(2)g, = &>
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(3) g, = g,r for some r in RL (V).
4) g, = r, g, for some r in RL,,I( V).

4.1.9. Let 6 € GL (V) and let g be a collinear transformation of V onto V| with
associated isomorphism p: F>— F,. Let X and X, be bases for V and V| respec-
tively. Let A be the matrix of ¢ in X, and let X be the matrix of g in X, X,. Then
the matrix of ®,0 in X, is

XA*X 1
In particular, det ,0 = (det 0)*.

_ We say that two elements &, and k, of T'L, (V') permute projectively if kj and
k, permute. Obviously
permutability = projective permutability.

4.1.10. Let o be any element of GL, (V') which satisfies any one of the following
conditions:

(Dreso < % n;

(2) res ¢ = 1 n with o not a big dilation;

(3) o is a transvection.
If o permutes projectively with some k in UL, (V'), then o permutes with k.

4.1.11. Suppose that ¢ € SL, and k € TL,, or that ¢ and k are in GL,. If o
permutes projectively with k, then 6" permutes with k.

4.2, Symplectic Collinear Transformations

We now return to our general assumptions that V' and V, are regular
alternating spaces.

A collinear transformation k of ¥ onto ¥, (with associated field isomorphism
p: F>> F}) is said to be a symplectic collinear transformation if there is a
constant m, in F,, dependent on k, such that

5 s
q1(kx, ky) = my(q(x, y))
holds for all x and y in V. This constant is clearly uniquely determined by &
(since V is regular and nonzero) and it is called the multiplier of the symplectic
collinear k. It is obvious that composites and inverses of symplectic collinear
transformations are themselves symplectic collinear transformations with
-1
M =mmf, e = (m')"

By a projective symplectic collinear transformation we mean a projective
collinear transformation which can be expressed in the form g for some
symplectic collinear transformation g of J onto V;. Composites and inverses of
projective symplectic collinear transformations are, of course, projective symp-
lectic collinear transformations.

4.2.1. The following statements are equivalent for a collinear transformation k of
Vonto V,:
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(1) k is symplectic collinear.

(2) k is projective symplectic collinear.

B3 gx, ) =0 qkx. k) =0V x,y € V.
(4 kU* = (kU*V U € P(V).

ProoF. (1) implies (2) by the definition of projective symplectic collinear. And
(2) implies (1) follows easily from 4.1.8 and the definition of symplectic
collinear. So (1) is equivalent to (2). And the equivalence of (3) and (4) follows
easily from the definitions. Clearly (1) implies (3). To prove that (3) implies (1)
we observe (after some checking) that we can define a regular alternating form
q,: V| X V, - F, by the equation

g, (kx. kyy = (q(x,»))" Y x,yE V.
Then
q,(kx, ky) =0 ¢q(x,y) = 0= q,(kx, ky) =0,
so g, and ¢, determine the same polarity on ¥,. Apply 1.2.7. Q.E.D.

A symplectic collinear transformation of V is, by definition, a symplectic
collinear transformation of V onto V. The set of symplectic collinear transfor-
mations of ¥ forms a subgroup of 'L, (¥), denoted I'Sp,(¥), and called the
symplectic collinear group of V. By a group of symplectic collinear trans-
formations of V' we mean any subgroup of I'Sp, (V).

A symplectic similitude of V is, by definition, a symplectic collinear trans-
formation of V that is actually linear. Thus

q(ox, 0y) = m,q(x,y) Yx,y€eV.
The set of similitudes of ¥ forms a subgroup of I'Sp, (V). denoted GSp,(V),

and called the group of symplectic similitudes of V. By a group of symplectic
similitudes of V' we mean any subgroup of GSp, (V).

422 Let V = A in some base X. Let k be an element of TL (V), let p be its
associated field automorphism, let K be its matrix with respect to X. Then
k € T'Sp, (V) if and only if ' KAK = BA* holds for some [3 in F. If this condition is
satisfied. then m, = f3.

Accordingly GSp, (V) 1s isomorphic to the group of n X n matrices K over F
which satisfy ‘KAK = agA4. And, of course, Sp,(V) is isomorphic to the
subgroup of these matrices with a, = 1.

Of course GSp, (V) is the normal subgroup GSp, (V) = I'Sp,(V) n GL,(V)
of I'Sp, (V). and it follows from Theorem 1.1.13, 4.1.2 and 4.2.2 that

I'Sp,(V)/GSp,(V) = aut F.
For similitudes we have

= — -1
My, = m, m, m -, =

so the mapping 0 —— m, is a homomorphism of GSp, (V) into F; and it follows
easily from Theorem 1.1.13 and 4.2.2 that this mapping is surjective. Its kernel is
clearly Sp, (V). Therefore Sp, (V) <1 GSp, (V) with
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4.2.3(%). (1) TSpy(V) = TLy(V).

(2) GSpy(V) = GL(V).

(3) Spy(V) = SLy(V).

(4) m, = det o for all o in GSp,(V).

Proor. Take a symplectic base for V and apply 4.2.2. Q.E.D.

To define the projective symplectic collinear group PI'Sp,(V), apply P to
I'Sp, (V). By a projective group of symplectic collinear transformations we mean
any subgroup of PI'Sp,(V). To define the projective group of symplectic
similitudes PGSp, (V') apply P to GSp, (V). By a projective group of symplectic
similitudes we mean any subgroup of PGSp, (V).

Clearly every element r, of RL (V) is a similitude with multiplier &?, in
particular RL,(}') is a normal subgroup of I'Sp,,(¥), and so of GSp, (V). So

PI'Sp, = I'Sp,/RL,,  PGSp, = GSp,/RL,.
And
PI'Sp,/PGSp, = T'Sp,/GSp, = aut F.
The kernel of the composite homomorphism
GSp,, — PGSp,, — PGSp,, /PSp,,

is easily seen to be RL, - Sp,,, whence
PGSp, /PSp, = F/F™.
4.2.4. If 0 € GSp,(V), then 6 € PSp, (V) if and only if m, € F.

We can summarize the above information in the following diagram (where we
assume n > 4, and also F # F, when n = 4).

I'Sp, PI'Sp,,
aut F aut F'
GSp,, PGSp,,
/ \p FJE?
RL, Sp,, PSp,
%mple simple
(#1,) 1
|
1 14

(®)We can therefore adopt the philosophy that symplectic groups really begin in 4-dimensions.
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4.2.5. (1) The centralizer of PSp,, in PI'L, is trivial.
(2) PI'Sp,,, PGSp,,, PSp,, are centerless.

(3) The centralizer of RL, in I'Sp, is GSp,,.

(4) The centralizer of Sp,, in 'L, is RL,.

(5)cen GSp,, = RL

PROOF. Left as an exercise. Q.E.D.
Note that all representatives in 'L, of an element of PT'Sp, actually fall in

I'Sp,; and all representatives of an element of PGSp, fall in GSp,; of course,
the representatives of an element of PSp,, will fall in GSp,, but not necessarily in
Sp,..

If we consider the isomorphism @, of §4.1 with g: V>— V; symplectic
collinear (not just collinear) then, in addition to the properties stated in §4.1, we
find that ®, induces

®,: TSp(V)>—TSp, (V)
®,: GSp,(V')— GSp, (V)
®,: Sp,(V)— Sp,,l( Vi)
in particular if we take a transvection in Sp, (V') and express it in the usual form
7, and if u denotes the field isomorphism associated with g, then we find that
(pgTa,)\ = Tga,A“mg‘"
Similarly we find that if g is a projective symplectic collinear transformation
g: P(V)>— P(V}) of V onto V| (not just projective collinear) then @, induces
®,: PI'Sp,(V ) PT'Sp, (V1),
®,: PGSp,(V)> PGSp, (V),
®,: PSp,(V ) PSp, (V).
If o is an element of GSp,(V), then ¢ is in GL, (V) so that R, P, res o are
already defined.

4.2.6. Let 6 be any element of GSp, (V). Then

(DR=P*=acSp,(V)orP=0.

(2)g(P, P)# 0= 0 € Sp, (V).

Proor. (1) If ¢ € Sp, (V) then R = P* by 1.3.10. If P = 0 then P* = V, but
dim R +dim P = n,s0 R = V, so R = P* Finally suppose R = P* and let us
show that ¢ € Sp,(V) if P+# 0. Pick x € V and p € P with q(x, p) = 1. Then
ox — x € R,sog(ox — x,p) = 0,50 g(ox, p) = q(x,p) = 1. So

= q(x,p) = m; 'q(ox, ap) = m; 'g(ox, p) = m .

So o isin Sp, (V).
(2) Take p,, p, in P with g(p,, p,) = 1. Then

1 = q(py, p2) = q(opy, ap3) = myq(py, p2) = m,. QE.D.

4.2.7. Every transvection in I'Sp,(V) is already in Sp,(V). Every projective
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transvection in PU'Sp, (V) is already in PSp,(V), and its representative trans-
vection is in Sp, (V).

PrOOF. If n =2, apply 4.2.3. So assume n > 4. If o is a transvection in
I'Sp, (V). then o € GSp,(V), and g(P, P) # Osincedim P > n — 1 >1insoo
is in Sp, (V) by 4.2.6. A projective transvection in PI'Sp, (V) has the form 7 = k
with 7 a transvection in SL,(¥) and k an element of I'Sp, (V). Then 7 = r k by
4.1.7, so 7 is in I'Sp,(V), so 7 is in Sp,( V), so the representative transvection r
of a given projective transvection in PI'Sp, (V) is in Sp,(V), and the given
projective transvection 7 is in PSp, (V). Q.E.D.

4.2.8. ExampLE. If X is a symplectic base for V' and if

al,
6~ | ] in X,
In/ZJ
with a # 0, 1. theno € GSp,,(V), m, = a,
R=Fxl+--'+Fx,,/2, P=F,+ -+ F,,

and g(R, P) = F# 0.

4.29. ExampLE. If k£ € T'Sp, (V) and r, € RL,(V), then k and r, obviously
permute projectively, but kr, = (r,.,1)r,k so that k need not permute with r,.
On the other hand, if o, and o, are elements of GSp,(V) that permute
projectively, then applying multipliers shows that 0,0, = *+ 0,0,.

4.3. Hyperbolic Transformations

4.3.1. Let k be a hyperbolic transformation in I'Sp, (V). Then

(1) rk and kr are hyperbolic for all r in RL, (V).

(2) k € GSp, (V).

3) k_2 =ml,.

(4) k is an involution in PGSp, (V).

ProoOE. (1) follows immediately from the definition of hyperbolic. In order to
prove (2) we note that

q(x, ky) + g(»,. kx) =0

1s a consequence of g(x + y, k(x + y)) = 0. Replacing y by ay (a € F) gives

a’q(x, ky) + ag(y, kx) = 0.

Therefore (a* — a)q(x, ky) = 0. Therefore a* = a. So k is in GSp, (V). i.e., we
have (2). We have

q(kzx = myx, ky)

q(k’x, kv) — mq(x, ky)

= mq(kx,v) + mq(ky, x)

= mq(x + y, k(x + y))

=0: ~
hence g(k*x — m,x, V) = 0; hence k*x = m, x, and we have (3). So k* = | and
we have (4). Q.E.D.
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4.3.2. If k is a hvperbolic transformation in T'Sp,(V), then k is in Sp, (V) if and
only if k is an involution.

PrROOF. Apply 4.3.1. Q.E.D.

4.3.3. If a hyperbolic transformation k in T'Sp, (V) stabilizes a line in V, then k
is in PSp, (V).

Proor. Apply 43.1 and 4.24. Q.E.D.

4.34. Let k be a hyperbolic transformation in TSp,(V'), and hence in GSp,(V),
such that m, € F — F*. Then n = 0 mod 4, and there is a symplectic base X for V

in which
A
'A
where A is the 3 n X 1 n marrix

0 my
10

0 m,
10

PrROOF. By 4.2.4 we know that k & PSp, (V). hence by 4.3.3 we know that k
can stabilize no line in V. So by 4.3.1 we know that L + kL is a totally
degenerate plane for which

k(L + kL) =L + kL,

for any line L in V. We therefore have totally degenerate planes I1, and II} in ¥
with

KII, = 11, kI = II},
g(I1,. TI}) 0, I, N II, = 0.

Then Q = II, + II; is a 4-dimensional subspace of V' with kQ = Q. The space
Q is clearly not totally degenerate, but can it be degenerate? If this were so, then
rad Q would have to be a plane (take a radical splitting and recall that regular
subspaces are even-dimensional). Now II, N rad Q = 0 would make Q totally
degenerate; so would II;, = rad Q since then II} nrad Q = 0; so I, N rad Q is
a line, and this is impossible since k& would then have to stabilize this line.
Therefore Q is indeed regular. Repeat the entire argument on Q* which is
clearly stabilized by &. Continue. Ultimately we obtain totally degenerate planes
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Im, ;. ..., 11, I1;
with I1, N II; = 0, and I1; + II; regular and 4-dimensional, such that
V=1 +II)L - LI, + II),

and such that each plane is stabilized by k. At this point we know that n =0
mod 4. Fix a nonzero vector x, in 11, and define x, in I1; by kx, = x,. Thus

kx|, = x,,
kx, = mx,.
Similarly pick x; and define x4 in [1,. And so on. Then x|, ..., x, , is a base for

the maximal totally degenerate subspace
W=II,+--- + 1,
of V' and the matrix of k& in this base is equal to 4. Put
W =1I{ + - - - +1II,.
By 1.1.16 we can find a base y,, . . ., y, ,, for W' such that
X={x,....; e L2 TR Yas2)

is a symplectic base for V. By 4.2.2,

k~(i'7) in¥. Q.E.D.

4.3.5. Suppose m € F — F*and n = 0mod 4. Let X be a symplectic base for V.,
let A be the +n X 1n matrix

—_ o
© 3

and let k be the linear transformation defined by

~fefy) ns

Then k is a hyperbolic transformation in GSp, (V') with m, = m.

PROOF. k is in GSp, (V') with m, = m, by 4.2.2. And q(x, kx) = 0 for all x in
V by direct calculation. Q.E.D.
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A projective hyperbolic transformation in PI'Sp, (V) is, by definition, an
element of PI'Sp,(V) of the form k for some hyperbolic transformation in
[Sp, (V). 1t follows from 4.3.1 that every projective hyperbolic transformation is
in fact an involution in PGSp,(V), and all representatives in I'Sp,(V) of a
projective hyperbolic transformation are hyperbolic.

4.3.6. There are projective hyperbolic transformations in PGSp, (V) —PSp, (V)

if and only if n = 0 mod 4 with F* C F.



5. THE ISOMORPHISMS OF SYMPLECTIC GROUPS
5.1. Groups with Enough Projective Transvections

We say that a subgroup A of PT'Sp, (V) has enough projective transvections if
for each line L in V there is at least one projective transvection ¢ in A with
R = L, atleast two when n = 4 with char F =2 and F # F,.

5.1.1. ExaMPLE. PSp, (V) has enough projective transvections.

From now on A will denote a subgroup of PI'Sp, (V') which has enough projective
transvections. And A, will denote a subgroup of PT'Sp, (V) with enough projective
transvections. And A will denote a group isomorphism A: A > A, of A onto A,.
Our purpose is to describe A.

We call F the underlying field, char F the underlying characteristic, V' the
underlying alternating space, and dim ¥ the underlying dimension, of such a A.

5.1.2. ExampLE. If F = F,, then A has exactly one projective transvection with
given residual line. On the other hand, if char F % 2, then A will have at least
two projective transvections with given residual line,

We say that A preserves the projective transvection o in A if Ao is a projective
transvection in A,, that it preserves the projective transvection o, in 4, if Ao,
1s a projective transvection in A, and that it preserves projective transvections if
it preserves all projective transvections in A and A,.

5.1.3. If Ry is any subspace of V, then there is a o in Sp,(V) with R = R, such
that g is in A.

ProOF. Use 1.3.11 and the definitions. Q.E.D.

5.1.4. We have card A > L(8!) when n > 4 but for the following exception:
card A = 6! when n = 4 with F = F,.

Proor. (1) If n = 4 with F=F,, then A = PSpy(V) by §4.2 and Theorem
2.1.9, s0 card A = 6! by 3.1.5. If F is a prime field F,, then taking powers of a
nontrivial projective transvection will produce all projective transvections with
the same residual line, so here A D PSp,(V), so card A > }(8!) (if we exclude
n =4 with p = 2) by Theorem 3.1.2. If F is infinite, then card A is clearly
infinite. So we may assume for the rest of the proof that n > 4 with F=F,
where g 1s not a prime.

57
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(2) It is enough if we can find more than 1(8!) elements in Sp,(¥) which are
not big dilations, whose residual spaces are regular planes in V, and which are
projectively in A, since any two distinct elements of this type remain distinct
when read projectively in A. Consider a regular plane IT in V, fix a line L, in
I1, and let 7, be a transvection in Sp,(¥) which is projectively in A and whose
residual line is L. For each line X that falls in T but 1s distinct from L, let 7, be
defined in the same way. Then the elements 7, 7y with variable X are distinct
elements of Sp, (V) with residual space TI by 1.3.11, they are not big dilations by
Theorem 1.7.3, and they are projectively in A. Now the number of such elements
associated with a given II is equal to the number of lines in I1 distinct from L,
i.e., it is equal to ¢g. But there are

n—2 q" -1 )
! ( g -1
such planes in ¥ by 3.1.4. Therefore

R
card A » g”7! )
f (qz—l)

If n > 6 this gives card A > 1(8!), also if n = 4 with F # F,. If n =4 with
F=F, we see that A contains all projective transvections, so A D PSp,(V),
apply Theorem 3.1.2. Q.E.D.

5.2. Preservation of Projective Transvections(*)

5.2.1. Suppose n > 4, n| > 4. Let v be a transvection in Sp,(V) that is
projectively in A, and let k| be an element of I'Sp, (V) with At = k,. Suppose
there is a transvection T in Sp,(V)) that is projectively in A, such that
kymoky oL which is always an element of Sp, (V) of residue < 2, is actually
regular of residue 2. Then k| is a projective transvection, i.e., A preserves the
projective transvection 7.

PROOF. (1) Pick k in T'Sp, (V) with Ak = 7, and put
o=rtkr 'k, o, =k k'
)
Ad = o,.

By hypothesis R, is a regular plane. And the equation o = k= 'k ~' € Sp,(V)
shows that R is either a line or plane containing the residual line of 7. By
Theorem 1.7.3 we know that o, is not a big dilation; so any element of 'L, (V)
which permutes projectively with ¢, will also permute with o,, by 4.1.10. And
any element of 'L, (¥) that permutes projectively with o will also permute with
o8

(2) First let us show that if we consider a line L, in P, and if we pick a

()This paragraph extends to the symplectic group a new and more general approach to the
1somorphisms of the classical groups. See §5.7 for references.
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transvection 7, in Sp, (V) that is projectively in A; and has residual line L,
and if j is an element of I'Sp, (V) for which Aj = 7, , then jP = P and j moves
at least one line in P.

R,
P P,
The equation jP = P is easy: L, C P, so q(R,, L)) =0 by 13.10, so 7,
permutes with o; by 1.3.11, so 7, permutes with ¢, so j permutes with o, so j
permutes with o by step (1), so jP = P by §4.1. Suppose, if possible, that j fixes
all lines in P. Then j is a radiation on P by 4.1.6 and, by changing the
representative j of ; if necessary, we can assume that ( jIP) = lp. Let e, be a
transvection in Sp, (V) that is projectively in A, such that e, permutes with o,
but elv-,_lel'l does not permute with 7, (any transvection in Sp, (V) that is
projectively in A, and whose residual line is nonorthogonal to L, and contained
in P, would be a suitable ¢,, by 1.4.15). Let e be an element of I'Sp,(¥") with
Ae = e;. We have seen that j permutes with o. By a similar argument e permutes
with o; and clearly eje ! does not permute with ;. Since e permutes with o we
have eP = P, s0 ¢je ! is identity on P. We therefore have found two elements ;
and j' (= eje ') with the following properties:
UIP) = (J1P) = 1,
JJ € GSp (V). ) J" €A,
Jjo=gaj,jo=da,
b #F 7.

If R is regular, we note that jR = R since joj ' = o, and similarly ;'R = R; so
(J|R) and (J'|R) are elements of GL,(R) which permute with (¢|R); but (6| R)
is a nonradiation since o, being a product of two transvections, cannot be a big
dilation; so (j|R) and (j’|R) permute by 1.2.4; but (j|P) = (j/|P) = 1p; s0o j
and ;' permute; and this is absurd. So R cannot be regular. So R is either a line
or a totally degenerate plane. If R is a line, then P is a hyperplane, and j and
have fixed space P, but g(P, P) # 0 so that j is in Sp, (V) by 4.2.6, so j and
are transvections in Sp, (V") with the same residual line, so j and j° permute by
1.4.15, and this is absurd. Therefore R has to be a totally degenerate plane. If
n > 6 we again find that j and ;* are elements of Sp, (V') whose fixed spaces
contain P, hence with residual spaces in R, hence with orthogonal residual
spaces; but then j and j* permute; and this is absurd. So the only thing that can
happen is that R is a totally degenerate plane and n = 4; let X = {x|, x|y, y5}
be a symplectic base for V with Fx, L Fx, = R = P. By 4.2.2, 0. . j* will have

matrices
(1 A) (1 B ) (1 B )
I ’ BI 3 ﬁ,I )

1
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in X with A4, B, B’ symmetric and 8, 8’ in F. Of course 4 # 0. The equation
jo = oj then makes B8 = 1; similarly 8’ = 1; but then ji’ = j’j; even this is
absurd. Therefore, in all cases, the assumption that j fixes all lines in P leads to a
contradiction. So step (2) is established.

(3) Given any line L, in P, there are elements 0, and o; with A6, = o, such
that

0, € Sp(V) o3 € Sp,, (V1)

6, €A 0; €A,

o, not big dilation o5 not big dilation
resg, =2 l <resog, <2
R,CP L, CR,CP,.

To see this, pick 7, and j as in step (2). Then jP = P and /L #* L for some line
L in P, by step (2). Let T, be a transvection in Sp, (V') that is projectively in A
and has residual line L, let J, be a representative in I'Sp, (V) of AT,. Then

0, =jTJ_ITZ'- 03 = TL,JITL_IIJI_I’

have the desired properties.

(4) Let us show that k, stabilizes R, and P,. Pick o, and o, as in step (3), for
any choice of L, in P,. Then the residual line of 7 is contained in R by step (1);
hence it is orthogonal to P, hence to R,; hence r permutes with g,; hence k,
permutes with o,; hence k,R; = R,; hence kL, C k;R; C Py; hence kP, C P,
since L, is arbitrary in P,. Therefore k| P, = P, and k;R, = R|, as required.

(5) We shall now show that k, stabilizes all lines in P,.

(5a) The case n, > 6. Let L, be a typical line in P,. Choose 0, and o5 as in
step (3). Then, as in step (4), we have k| Ry = R;. If resg; =1, then L, = R,
and k, stabilizes L,. So let res o, = 2. i.e., suppose that R; is a plane. It is easily
seen that there is a transvection in Sp, (V) that is projectively in A, which
permutes with o,, and which carries R, to a plane in P, which intersects R; in
L,. Conjugating o, by this transvection and carrying things back to I'Sp, (V) in
the usual way, we obtain a new situation o3, 3, etc., with R; 0 Ry = L. Then
k, stabilizes R; and R, hence L, as required.

(5b) The case n; = 4 with F, # F,. Suppose, if possible, that &, moves a line
in P,. We then have a base X = {x,.y,} for P, such that k;x; = y,. Let T| and
T, be distinct transvections in Sp, (¥,) which are projectively in A, and which
have residual space equal to the line F,x; (possible because A, has enough
projective transvections). Then k,T; 'k, ! and k,(T;) 'k ! are transvections in
Sp, (V) which are projectively in 4, and have the same residual line F,y,. Of
course T, T}, &, T; %", k(T)) "'k, ', all act on R, and P, and are identity on
R,. And

mpo~(" ) @eo~(" 1)

(ler‘kr’|P1)~(}; 1)' (kl(T})_'k,“|P1)~([1;, 1)
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in the base X, with a # o’ and B # 8’ in F,. By direct matrix computation we
find that T k,T; 'k ' and T}k,(T}) "'k, ' do not permute on P,, and hence they
do not permute at all. They do, of course, permute with o,. Let g and g’ be
representatives in I'Sp, (V) of A~ ‘Tl and A~ 'T] respectively. So

A(grg v ') =Tk Tk, A(gr(g) 7)) = Tiky(T)) 'k

By standard arguments, grg '~ ! and g’7(g’) " 'r 7! permute with o but not with

each other. We shall now obtain a contradiction by proving that they permute
with each other too. Since T, permutes with o, we find, by standard arguments,
that g permutes with o, so gR = R and gP = P. Of course TR = R and 7P = P
with 7|P = 1, since the residual line of 7 is contained in R. So grg~'r ! is an
element of Sp,(V), it acts on R and P, it is identity on P, and it permutes with o.
Similarly with g'r(g)~'v~". If R is regular, then (grg~'v"'|R) and
(g'7(g)~'r7'|R) are in the centralizer of (o|R), and (o|R) is a nonradiation
since o is not a big dilation, so grg "'~ and g'7(g")"'r ! permute on R by
1.2.4, so they permute on ¥, and we have our contradiction. If R is degenerate it

is totally degenerate, and in this case the residual spaces of grg 'r ! and

g'7(g) 'r7! are contained in R and therefore orthogonal, grg ™' ! and
g'7(g)~ '~ ! permute, and we again have our contradiction.

(5¢) The case n; = 4 with F|, = F,. In this case PT'Sp, (V) = PSp,(V)) = 4,,
so card A; = 6!. Hence n =4, F=F, and A = PSp(V), by 5.1.4. If R were
degenerate, then o would be an involution by 1.3.13, so o, would be an
involution, so R; would be degenerate, which it is not. Therefore R is a regular
plane. Take an arbitrary line L, in P, and let 7, be a transvection in Sp,(V;)
with 7, in A; and with residual line L;. Pick j in Sp4( V) with Aj = 7., Then by
standard methods j is an involution permuting with ¢, so jR = R and JjP =P,
Then (j|R) is an involution permuting with (6|R) and a study of the possibilities
involved shows that (j|R) = 1. But then 7 permutes with j since the residual
line of 7 is contained in R. So k, permutes with 7, . So k, stabilizes a typical line
L, inP,. ‘

(6) So k, stabilizes all lines in P,. So k, is a radiation on P,. Replacing k, by
another representative allows us to assume that the k; in the statement of the
proposition is such that (k;|P) = 1, . In particular, k, is an element of Sp, (V)
with 1 < res k; < 2. If res k, = 1, then k, is a transvection and we are through.
So let res k; = 2. The residual space of k, is then the regular plane R,. If k| were
a big dilation, then k,7,k; '7;! could not have residual space R,. So k, is not a
big dilation. So k£, moves a line in R,—in fact it moves it to a nonorthogonal line
in R,. So there is a line L] in ¥, with

LiZR UP, g(L}, kL}) # 0.

Let 7| be a transvection in Sp, (V) which is projectively in A; and has residual
line L]. The statement of the proposition then applies to the 7, k,, 7 situation.
Therefore, by step (5), k, is a radiation on the (n, — 2)-dimensional space
(L} + Kk L)*. This space is distinct from the (n, — 2)-dimensional space P,.
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This clearly implies that res k; = | when n, > 6; and that k, is a transvection or
a big dilation, hence a transvection, when n; = 4. Q.E.D.

5.2.2. Suppose n > 4, n| > 4. Let 7 be a projective transvection in A. Then At is
either a projective transvection or a projective hyperbolic transformation in A,.

PROOF. Suppose AT is not a projective hyperbolic transformation in A,. Let &,
be a representative of A7 in I'Sp, (V). Then k, is not a hyperbolic trans-
formation, so we have a line L, in V|, with (L, kL) # 0. Let 7, be a
transvection in Sp, (V) which is projectively in A, and which has residual line
L,. Then the residual space of k;7,k; 'r;"! is the regular plane L, + kL,. So
5.2.1 applies. So k_1 is a projective transvection. Q.E.D.

523. If n > 4, n| > 4, then char F = char F|, i.e., the two underlying fields
have a common characteristic.

PRrOOF. If exactly one of the fields has characteristic 2, let it be the second. We
may therefore assume that char F # 2. Let 7 be a nontrivial projective trans-
vection in A. Since char F # 2, 7 is not an involution. So A7 is a projective
transvection by 5.2.2 and 4.3.1. If char F = p # 0, then 77 = |, so (A7) = 1, s0
char F| = p. Similarly if char F, = p, # 0. So char F = char F,. Q.E.D.

524. If n > 4, n| > 4, and if the common characteristic is not 2, then A
preserves projective transvections.

PROOF. See the proof of 5.2.3. Q.E.D.

5.2.5. Suppose n > 4, n, > 6, and that the common characteristic is 2. Let 7 be a
nontrivial projective transvection in A. Then AT has a representative ky in Sp, (V)
with 1 < rtes k, < 2.

PRrOOF. (1) Let 7 be the representative transvection of 7. So 7 is in Sp, (V). Let
L be the residual line of 7. Let k; be a representative (arbitrarily chosen to begin
with) of A7 in T'Sp, (V). By 5.2.2 we may assume that k, is a hyperbolic
transformation.

(2) Since k, # 1, k, will move at least one line in V. Let L, be any line in V¥,
that is moved by &, (the line L, will be varied later). Let 7, be a transvection in
Sp, (V) that is projectively in A; and with residual line L;. Let k be a
representative in I'Sp,, (V) of A~'7,. Put

o=rtkr k7, 0, = kl'rlk,‘l'rl—l.
So Ad = a,; and R, is a totally degenerate plane containing L,; so o, is an
involution; so & is an involution; so o is an involution with res o < 2; so Risa
totally degenerate line or plane containing L. By standard methods we can find
a conjugate ¢’ to o in I'Sp, (V) and a conjugate o} to o, in I'Sp, (¥}), such that
Ad’ =0, RNR =1L
(start by suitably conjugating ¢ by a transvection in Sp,(¥) that is projectively
in A). So dim(R, + R{) < 4. Consider a typical line K, in the space (R, + R))*
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of dimension > n; — 4. Take a transvection 75 in Sp, (V) which is projectively
in A, with residual line K. Then 7, permutes with ¢, and ¢] so, by standard
methods, a representative j of A~'7; in I'Sp, (V) will permute with ¢ and o', so
will stabilize the line L = R 0 R’. Now if j is not a hyperbolic transformation,
applying 5.2.2 to A~ ! shows that j_ is a projective transvection; so in this case j
~can be chosen as a transvection, in particular as an involution, in Sp,(V) that
stabilizes the line L; if, on the other hand, j is a hyperbolic transformation, then
j is in PSp, (V) by 4.3.3, i.e., j can be chosen as a hyperbolic transformation in
Sp,(V), ie., j is an involution in Sp,(V) by 4.3.2. In either event, our repre-
sentative j has now been chosen to be an involution in Sp, (V') that stabilizes the
line L, and hence that acts like 1, on L. But then j permutes with 7. Hence, by
standard methods, k, permutes with 7;. Hence k, stabilizes K, which is a typical
line in (R, + R{)*. We may therefore assume that our representative k, of AT
has been so chosen that it acts like identity on (R, + R{)* which has dimension
> n — 4. We have m =1 by 43.1, 1e, k, is in Sp, (V). And res k; < 4. If
res k; = 4, then the fixed and residual spaces of &, will be (R, + R))* and
(R, + R)); pick a new line L, (instead of the original L,) that is contained in
V, but not in

(R, + R{) U (R, + R)%;
then k, moves L,, since k,, being an involution by 4.3.2, has all its characteristic
values equal to 1; so we can repeat the entire operation using L, instead of L:
this shows that k, stabilizes all lines in (R,; + R;,)*; since L,; C (R, + R[,) we
have (R;, + R{)) # (R, + R)); so

(R + Rpy) 2 (R, + Ry)
since dim(R,; + R{,) < 4 = dim(R, + R)); so

(Ryy + Ry)* Z (R, + Ry)*;

in other words, k, stabilizes a line outside (R, + R{)*; since k, is an involution
it must therefore fix a vector outside (R, + R{)*; but (R, + R|)* is the fixed
space of k,; this is absurd. Therefore res k, < 3. But k; is a hyperbolic

transformation in Sp, (¥,) so that res k, is even by 2.1.17. Therefore res k; = 2.
Q.E.D.

5.2.6. It is impossible to have n = 4, n, > 6, in characteristic 2.

PROOF. Suppose to the contrary that we had an isomorphism A: A >> A in
characteristic 2 with n = 4 and n; > 6.

(1) First we observe that if k is a projective hyperbolic transformation in A
which permutes with a pair of nonpermuting projective transvections in A, then
k = 1. To see this pick a representative k of k in I'Sp, (V). Then k stabilizes the
residual lines of the projective transvections in question, so k can be chosen in
Sp, (V) by 4.3.3. So the hyperbolic transformation k is an involution by 4.3.2.
But the residual lines in question are nonorthogonal by 1.6.8. So & is identity on
a regular plane I1 in V. Then the residual space of (k|II*) has dimension 0 or 2
by 2.1.17, and it is totally degenerate by 1.3.13,s0itis 0. Sok = 1,.So k = I.
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(2) Next let us show that A preserves at least one nontrivial projective
transvection. Start with a nontrivial transvection r in Sp,(¥V) which is projec-
tively in A. By 5.2.5 we can pick o, in Sp, (V) with 1 < res o, < 2 such that
A7 = ¢,. By standard methods we can find a conjugate 7’ to = in I'Sp, (V) that
does not permute with 7, and a conjugate o) to ¢, in I'Sp, (V}), such that
AT =0]. Then dim(R, + R;) < 4, so there is a transvection 7, in I'Sp, (V) that
is projectively in A, whose residual line is orthogonal to R, and R;. Then 1,
permutes with ¢, and o;. So A~'7, permutes with 7 and 7. So A~'7, is not a
projective hyperbolic transformation by step (I). So A™'7, is a projective
transvection by 5.2.2. In other words, A preserves the nontrivial projective
transformation A“"Fl, as required.

(3) In the argument that follows the 7, will denote nontrivial transvections; for
even / they will be in Sp,(¥) and projectively in A, for odd 7 they will be in
Sp,, (V) and projectively in A;; L; will denote the residual line of 7,. By step (2)
we can find 74 and 7, with A7y = 7,. By suitably conjugating 7, we can find 7,
and 7, with A7, = 7, such that 7, does not permute with 7, and 7, does not
permute with 7;. Then L, and L, are nonorthogonal, so are L, and L, so
Lo+ Lyand L, + L, are

/\

regular planes. Choose 7swith L, orthogonal to (L, + Ls), and then define 7, by
A1, = 75 (the fact that 7, can be chosen as a transvection follows from step (1)
and 5.2.2). Clearly L, is orthogonal to (L, + L,) by the usual argument of
permutability. Now

\ 7
&y
N\
)

pick L, orthogonal to L, + L, but not to L; and thereby introduce 7, and 7.
Note that

V=Lo+L,+L,+L, V, DL +L,+Ls+ L,
Repeat this procedure one last time with L, orthogonal to L, + L, + L, + L,
to obtain Aty = 7,. Then 74 is a transvection permuting with 7, 7,, 7,, 7, as such
it must stabilize Ly, L,, Ly, L, s0 74 = 1, and this is absurd. Q.E.D.
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5.2.7. Suppose n > 4, n, > 4. If A preserves one projective transvection it
preserves all.

PrOOF. By 5.2.4 we can assume that the common characteristic is 2. We must
consider two transvections 7, and 7, in Sp, (V) which are projectively in A and
whose residual lines are L and K respectively, and show that if A7, is a
projective transvection in A, then so is AT,. If L and K are orthogonal,
conjugate 7, in an appropriate way to obtain a new L which is nonorthogonal to
K. This allows us to assume that the given L and K satisfy ¢(L, K) # 0.

Let IT denote the regular plane IT = L + K. Then J = 1L is a line in II that
is distinct from L and K. Since 747, 7, ' is a transvection with residual line J we
can denote it 7, = 7,7, 75 '. Of course 7, is in Sp,(¥) and projectively in A. And
A7, is a projective transvection in A, by conjugation. Let L, and J, be the
residual lines of the projective transvections A7, and A7, respectively, and write
A7, =1, and A7, =1, with 7, and 7, transvections in Sp,(V,). The
nonorthogonality of L and J leads to the nonorthogonality of L, and J, in the
usual way. Let IT, denote the regular plane I, = L, + J,. Consider an arbitrary
line X, in II}. Let 7y be a transvection which is in Sp, (V).

1,

which is projectively in A;, and which has residual line X,, and let & be a
representative in I'Sp, (V) of A~'r, . If A~ l”_'x, is a projective transvection, then
k can be chosen as a transvection, in particular as an involution in Sp,(V);
otherwise A_l"_'x, is a projective hyperbolic transformation by 5.2.2, and &
stabilizes L by standard arguments, so k can be chosen in Sp, (V) by 4.3.3, and
then k is an involution by 4.3.2. In either event & can be chosen as an involution
in Sp, (V) that stabilizes L and J. Hence (k|II) = 1};. Hence k permutes with 7.
Hence 7y permutes with A7,. So any representative of A7y in I'Sp, (V) will
stabilize X. So A7y has a representative k; in I'Sp, (V) with (k,|II}) = Ip,.
Then &, is an involution; hence (k,|IT,) is an involution; hence (k|JII)) is a
transvection; hence k, is a transvection, i.e., A preserves the projective trans-
vection 7. Q.E.D.

5.2.8. Suppose n > 4, n| > 4, but rule out the case where n = n, = 4 with
char F = char F| = 2. Then A preserves projective transvections.
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ProOOF. If the common characteristic is not 2, apply 5.2.4. So let char F =
char F; = 2. This makes n > 6, n; > 6 by 5.2.6. By 5.2.7 it suffices to prove that
A preserves at least one nontrivial projective transvection. Suppose, to the
contrary. that A preserves none. Then, by 5.2.5, A sends each projective
transvection in A to an element of A, having a representative in Sp, (V) of
residue 2. And similarly with A",

Fix a nontrivial transvection 7 in Sp, (V') that is projectively in A and let o, be
an element of residue 2 in Sp, (V) such that A7 = 6,. Here R,, the residual
space of o,. is a totally degenerate plane by 1.3.13. Let L denote the residual line
of 7. Let Q, denote a regular quaternary subspace of V| that contains R,. It 1s
easy to find a X that is in Sp, (V) and projectively in A, such that @, = R, ©
2R, (in fact a product of two suitable transvections will do the job). Using this
2 and standard methods we have a conjugate o} to o, in I'Sp, (V) and a
conjugate 7' to 7 in T'Sp, (V) such that A7 =0 and such that the residual space
R| of o] is a totally degenerate plane with Q, = R, @ R|. Let L’ denote the
residual line of 7. Then o, and o] do not permute since R, N R; = 0 with
qi(R,, R} # 0, by 1.3.6. Hence 7 and 7’ do not permute. Hence I = L + L’ is
a regular plane.

m* 0*

It 0,

Consider a typical line K in IT*. Let 7, be a transvection in Sp,(¥) with
residual line K that is projectively in A. Write A7, = o; with ¢; an element of
residue 2 in Sp, (¥)). By standard methods, o; will stabilize R, and Rj; hence it
will stabilize Q, and Q. It is easily seen that o, is identity on either Q, or QF:
Otherwise (0, Q) and (05| QF) will have residue 1 and so be transvections, so a;
will be a product of two transvections in Sp,(V), so o, will not be a hyperbolic
transformation by 2.1.18, so o; will not be a projective hyperbolic trans-
formation. so d; will be a projective transvection by 5.2.2, and this is absurd.
Therefore. as K is allowed to vary through IT*, all the corresponding Rj’s will
vary through Q, and Qf. A simple logical argument then shows that you cannot
have some R.'s in Q,, and others in QF: If K gives R; C Q, and K’ gives R; in
Q% (say). take K" orthogonal to neither K nor K’; then where is R; to fall? Let
us therefore assume that all the R;’s fall in Qf (the argument is similar if they all
fall in Q). Let T, be a transvection in Sp, (V) that is projectively in A, and
whose residual line falls in Q,. Let = be an element of residue 2 in Sp, (V) with
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AZ =T,. Of course = is a hyperbolic transformation and an involution. Then
T, permutes with all g;’s, so = permutes with all 7’s, so £ stabilizes all lines in
IT*, so (Z|II*) = 1., and ZI1 = II so that (Z|II) is a hyperbolic transformation
and an involution in Sp,(II), but this makes (Z|II) = 1,3, so = = 1,, and this is
absurd. Q.E.D.

5.3. The Isomorphism Theorems in General

We let £ denote the set of lines of ¥, i.e., £ will stand for the subset P!(V) of
the projective space P(V). For each L in £ define A(L) to be the group
consisting of all projective transvections in A with residual line L, plus 1. The
quantities £,, A,(L,) are defined in the same way for the ¥ situation.

5.3.1. If L and L’ are lines in £, then:

WAL =AL)YsL=1L".

AAMNALY)YD 1l L =L

(3) A(L) is a maximal group of projective transvections in A.

(4) Every maximal group of projective transvections in A is a A(L).

Proor. (1) and (2) are obvious. Then (3) follows from 1.6.7. So does (4).
Q.E.D.

We can now derive a mapping 7: £ > £, from the group isomorphism A: A
> A, in the following way, provided A is known to preserve projective trans-
vections. For each L in £, A(L) is a maximal group of projective transvections
in A; hence AA(L) is a maximal group of projective transvections in A; hence
there is a unique line L, in £, such that AA(L) = A\(L,). Define 7L = L,.

5.3.2. The above mapping m: £ > £, associated with a A which preserves
projective transvections satisfies the following properties:

(D7 £ >> £, is a bijection.

(2) Its defining equation is AA(L) = A(wL) for all L in £.

(3) L is orthogonal to L' if and only if wL is orthogonal to wL'.

Proor. (1) and (2) are immediate. To prove (3) we take nontrivial projective
transvections 7; and 7,. in A with residual lines L and L’ respectively. Then
q(L, L'y = 0 1, permutes with 7,
< A1, permutes with A,
< 1, permutes with 7,
< q(nL, 7L’y =0. QE.D.
5.3.3. If A preserves projective transvections so that the above bijection = of £
onto L, is defined, and if ® is any isomorphism of A into PI'Sp, (V) such that

every element of PA(L) is a projective transvection with residual line =L for each
line L in 2, then ® = A,

PrOOF. Let k be a typical element of A. We must show that &4 = Ak.
Consider a typical line L in V. Then =L is a typical line in ¥,. Let 7, denote a
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projective transvection in A with residual line L. Then k7, k™' is a projective

transvection in A with residual line kL and we write k1, k' = 1,,. Now ®7, is
a projective transvection in PI'Sp, (V) with residual line 7L; accordingly we
can write &, = 7_,. Similarly ®7,, can be written ®7,;, = 7,,,,. We have

Ty = Py = (D(kTLk_l)

= (®k)(Pr,)(Pk) ™' = (Pk)(,.)(Pk) ™
and so (®AYwL) = w(kL). Now A is a ® so that (Ak)(wL) = w(kL). Hence
(Pk)(wL) = (Ak)(7L).

In other words, ®k and Ak have the same action on the lines of V,. So
&k = Ak.So® =A. QED.

5.3.4. If A preserves projective transvections, then n = n,.

Proor. By interchanging the two groups if necessary, we can assume that
n > n,. Since A preserves projective transvections, the bijection m: £ >— £, is
now available. For any subspace U of V define IIU as the subspace of V,
spanned by all 7L as L runs through all lines in U. Then II agrees with = on £.
And

UCcW=IIU ciw.
By considering a strictly ascending chain of n + 1 subspaces of V' we see that we
will be through if we can verify that

Uc W=IIU cIIW.
To prove this pick a line L in V that is orthogonal to U but not to W-this is
possible since W* < U*. Then L is orthogonal to all lines in U but not to all
lines in W, so #L is orthogonal to IIU but not to #W by 5.3.2, so ITU # IIW,
soIIU < ITW as asserted. Q.E.D.

5.3.5. Suppose n > 4, ny > 4 and that A preserves projective transvections. Then
there is a unique projective symplectic collinear transformation g of V onto V, such
that Ak = gkg ™! for all k in A.

ProOOF. By 5.3.4 we have n = n;. Once again the bijection 7: £ > £, is
available. For any hyperplane H of V define a hyperplane H, of V, by the
equation H, = (wH*)*. Then for any line L in £ which falls in H we have L
orthogonal to H*, so =L is orthogonal to wH*, so wL C H,. Therefore = can be
extended uniquely to a projectivity IT: P(¥) >>P(¥V)) by 4.1.3. So by the
Fundamental Theorem of Projective Geometry there is a projective collinear
transformation g: P(V) >— P(V)) such that gL = 7L for all L in £. Of course L
is orthogonal to L’ if and only if gL is orthogonal to gL', so g is a projective
symplectic collinear transformation by 4.2.1. The group isomorphism

®,: PI'Sp,(V) ~—>PI'Sp, (V)
of §4.2 now becomes available. It sends A(L) into a group of projective

transvections in PI'Sp, (V) with residual line gL = 7L. So (9,|4) = A by 5.3.3.
In other words. Ak = gkg ™' for all k in A.
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Now the question of uniqueness. If we have two projective symplectic
collinear transformations g and j of ¥ onto V| such that
gkg ™' = Ak = jkj~! VkeEA,
then for any line L in £ we have

grig” ="

for a nontrivial projective transvection 1, in A(L), so gL = jL, so g = .
Q.E.D.

5.3.6. THEOREM. Let A and A, be subgroups of PI'Sp,(V) and PI'Sp,(}'))
respectively. Suppose that A and A, have enough projective transvections, and thut

the underlying dimensions are > 4. Let A be a group isomorphism of A onto A,. If

one of the A’s has underlying characteristic 2 and underlying dimension 4, then su
does the other. Exclude this situation. Then there is a unique projective symplectic
collinear transformation g of V onto V| such that

Ak =gkg™'" VkeA

Proor. If one underlying characteristic is 2, then so is the other by 5.2.3; if, in
addition, one underlying dimension is 4, then so is the other by 5.2.6. Now
exclude this situation. Then A preserves projective transvections by 5.2.8. Apply
5.35. Q.E.D.

5.3.6A. THEOREM. Isomorphic projective groups of symplectic collinear trans-
formations with enough projective transvections and with underlying dimensions
> 4 have equal underlying characteristics and equal underlying dimensions. If we
exclude characteristic 2 with dimension 4, then the underlying fields are isomorphic.

Now let us extend the isomorphism theorems to the nonprojective case. We
say that a subgroup T of I'Sp, (V) has enough transvections if for each line L in
V there is at least one transvection o in I with R = L, at least two when n =4
with char F = 2 and F # F,. We let I denote a subgroup of I'Sp, (V) which has
enough transvections. And T, will be a subgroup of T'Sp, (V) with enough
transvections. And @ will denote a group isomorphism ®: I' > I';. Note that
T=PlandT, = PT", are subgroups of PI'Sp, (V') and PI'Sp, (V) vnth enough
projective transvections so that the preceding theorem for A and A, applies to T
and I';.

5.3.7. ® naturally induces an isomorphism o: T > I_‘l by the equation

Ok=0k VkeTl

whenn > 4,n, > 4.

ProoF. It is enough to verify that &T n RL,) =T, n RL,. in fact that
oI n RL,) is contained in I', " RL, .

Suppose, if possible, that a radiation r in I' is such that ®r is not a radiation in
T,. Put ®r = k,. Then k, moves a line L, in V,. So if we form the commutator
k,m.k;'r7" with 7, a transvection in T, with residual line L,, and then pull
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things back to I, we obtain transformations ¢ and ¢, with ®o = o, such that R,
is a plane containing L, and

s €T NGSp(V), o, €T, N Sp, (V).

By suitably conjugating on the right and pulling things back to the left we find
another pair ¢’, o; with the same properties as the pair o, 6,, and such that
R, N R{ = L,. Then r permutes with o and ¢’; hence k, permutes with ¢, and
oy; hence k| stabilizes R and Rj; hence k, stabilizes L,, and this is absurd.
Q.E.D.

5.3.8. THEOREM. Ler T and T, be subgroups of T'Sp,(V) and TSp,, (V) respec-
tively. Suppose that T and T have enough transvections, and that the underlying
dimensions are > 4. Let ® be a group isomorphism of T onto T,. If one of the I"’s
has underlying characteristic 2 and underlying dimension 4, then so does the other.
Exclude this situation. Then there is a symplectic collinear transformation g of V
onto V' and there is a mapping x of I into RL,, (V) such that

Ok = x(k)gkg ™! Vkerl.

5.3.8A. THEOREM. Isomorphic groups of symplectic collinear transformations with
enough transvections and with underlying dimensions > 4 have equal underlying
characteristics and equal underlying dimensions. If we exclude characteristic 2 with
dimension 4, then the underlying fields are isomorphic.

5.4. 4-Dimensional Groups in Characteristic 2(*)

Throughout §5.4 we assume that we are in the exceptional situation where
n=mn =4 and char F=char F, =2,
By our general assumptions, A is a subgroup of PI'Sp,(¥") with the property that

for each line L in V there is at least one projective transvection o in A with
R = L, at least two if F # F,. Similarly with A,. Let us fix a symplectic base

x= {xb le)’p)’z}
for V. We let mon V stand for the multiplicative monoid of semilinear maps of
V into V. So I'Sp, is a submonoid of mon V.
For each k € I'Sp, with associated field automorphism g and with matrix
A = (ay) in X, define E(k) € mon V to be the semilinear map of V into V" whose
associated field automorphism is g and whose matrix in the base X is equal to

Ap0;) — Q)10 Q144 — a4y,
A5G4 — 1104 Q1494 — 1Ay

Q3034 — A4z A3y — d)ads3
A13044 — A14Q43 G344 — A1y

Q43034 = Qaudz3  Ag3a3; — Agpaas
334 — GaQ33  dy3d3; — G303

Agd3) = Q4143  Qqady) — 41034

Apdsy — 43143,  Qyds; — 443,

If we say that the action of E on a certain element of I'Sp, can be described

(*The isomorphism theory for subgroups of PT'Sp, which is developed in this paragraph is new.
See §5.7 for references.
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by
A with p —— B with p

we mean that E carries the element of I'Sp, whose matrix (in X) is the matrix .4
and whose field automorphism is the automorphism p, to an element A, of
mon V with matrix B and with field automorphism u. If we omit the p's we
mean that the k¥ and k, in question are actually linear. It follows immediately
from the definition of E that E has the following action on the following
elements of I'Sp,:

1 a 0) B 0 a
110 O lja O
(5.4.1a) - )
1 1
1 1
1 0 0 1 «a
(5.4.1b) ! (1) S ! — |
1 a 1
1 0 a) 1 a? 0
(541¢) ||« Op } 1]0 0}
1 1
1 1
1 « 1 0 0
(5.4.1d) 1o o ,
1 1
a 1 1
] ]
a 1 1
4.
(5.4.1¢) ’1 " — 0 011
i 0 o 1
1
(5.4.1f) 1 1
1 J
a
(5.4.1) -
1
(5.4.1h) I with p" —— I with p/,
(5.4.1i) al —— o?l.

Let J denote the set of elements of the type listed on the left-hand side of
(a)(h) above. Note that it follows from §2.2 that

71
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Types (a)- (f) generate Sp,;
hence, by Example 4.2.8,
Types (a)-(g) generate GSp,;
hence
Types (a)- (h) generate I'Sp,,
in other words, J generates I'Sp,. Also note that (g) gives an example of a

similitude of multiplier a« on the left that becomes a similitude of multiplier a?
on the right. It is easily verified, by direct computation, that

E(k) = EWE()) ¥k €TSp,,) € J;
note that in verifying this for j of the types (c), (d), (¢) one needs the identities
A4y + 138y + Ay + apay =0,
A1484) + d304 + Ay a4 + A2 = 0,
A3g + 431843 + a3ay + a3ayh =0,
A3y + G310y + a3y + A34ay; =0

for the matrix 4 = (a;) of a typical k in I'Sp,; these identities follow from the

equation
I10
which is obtained from the usual

k-G
110 10
by taking inverses.

If we now take typical k, k" in I'Sp, and express k" = j, - - - j, with the j’sin J
we find that

|

*
——
NIO
o~
N ————

E(kk’) = E(kjy - - - j-)E()

E(K)E(j) - - - E(J)

E(k)E(K').
In particular E(k") is in I'Sp, since all E(/) are. The mapping E is therefore a
group homomorphism
E: I'Sp, = I'Sp,.
Now it follows from the definition of E that the field automorphism of E(k) is

equal to the field automorphism of k; in particular, EGSp, C GSp,; and it
follows from (a)—(f) that ESp, C Sp,. We also have

mg, = (m) Yk €TSp,
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And

E(I'Sp, — GSp,) C I'Sp, — GSp,, E(GSp, - Sps)  GSp, — Spa.
In particular ker E C Sp, so that, by 3.4.2, ker E = | (note that 3.4.2 does not
apply when F = F, but in this case the result follows by showing that the

right-hand side contains a set of generators for Sp,, so ker E = 1 by counting).
We therefore have group monomorphisms

E: I'Sp, >—TI'Sp,,
E: GSp, > GSp,,
E: Sp, >— Spa.
By studying equations (a)—(f) and using the fact that

(a,)(by) = (cy) = (a7)(7) = (cf)
holds for square matrices in characteristic 2, we see that E? has the following
action on a typical element of Sp,:

(a;) > ( )
It follows from this fact, in conjunction with (g) and (h), that the matrix of E*&
for any k in I'Sp, has the form

y

(acg) inX

with « in F and the ¢, in F.
We can associate w1th the above isomorphism E a mapping E of PT'Sp, into

PI'Sp, by defining
Ek=Ek Vke&TSp,

Note that E is well defined since, by (i), we have E(RL,) C RL,. So Eisa group
homomorphism. Now if Ek € RL,, then & € GSp,, so we can write k = g0,
with o, of type (g) and o, in Sp,; let the matrices of ¢, and g, in the base X be

(i-’——;) and (ay)

respectively; then E% = E(Ek) is in RL,, so (a; 2) is diagonal, so (a;) is diagonal:
$0

k ~diag[a,, ..., a,] inX;
)
Ek ~ diag] aya, o) g, g3, ya3]  in X;

but Ek is in RL,; from this it follows that «; = a3 and «, = ay,; then a; = a; by
4.2.2; s0 k is in RL,. We have therefore proved that E is injective. Note however
that EPGSp, C PSp, since the multipliers of all elements of EGSp, are squares.
So we have group monomorphisms

E: PT'Sp, ~— PT'Sp,,  E: PGSp, > PSp,.

Of course we still have
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E(PTSp, — PGSp,) C PI'Sp, — PGSp,,

5.4.2. The following statements are equivalent for the monomorphism E under
discussion:

(1) ET'Sp, = I'Sp,.

(2) EGSp, = GSp,.

(3) ESp, = Sp,.

(4) F is perfect.

ProOF. (1) implies (2) is a consequence of the inclusions EGSp, C GSp, and
E(I'Sp, — GSp,) C I'Sp, — GSp,.

And (2) implies (3) 1s done in a similar way. Next let us prove that (3) implies
(4). Let a be a typical element of F. Then there is an element o of Sp, with
matrix

0
0 in X,

—_ o R

1

but o is in ESp, by hypothesis, and E? has action (a;) - (a) on elements of
Sps, 50 a is a square, so F is perfect. Finally we have to prove that (4) implies
(1). Here F is perfect. If we can prove that ESp, = Sp,, then EGSp, = GSp, by
(5.4.1g), and then EI'Sp, = I'Sp, by (5.4.1h), so we will be through. Let us prove
ESp, = Sp,. Consider a typical o in Sp, and let 0 have matrix (g;) in X. Then
(ay) satisfies the matrix equation

,X(o 1)X=(0 1),

110 110

hence (\/;,;-) satisfies the same equation; hence the linear transformation
defined by = ~ (Va, )in ¥ is in Sp,. But E’S = 0. Q.E.D.

5.4.3. The following statements are equivalent for the monomorphism E under
discussion:

(1) EPT'Sp, = PI'Sp,.

(2) EPGSp, = PGSp,.

(3) EPSp, = PSp,.

(4) F is perfect.

PROOF. It is an easy consequence of 5.4.2 that (4) implies each of the others. If
we have (1), then EPI'Sp, = PI'Sp,, but

E(PT'Sp, — PGSp,) C PT'Sp, — PGSp,,

and EPGSp4 C PGSp,, so EF’GSp4 = PGSp,, i.e., (1) implies (2). If we have (2),
then

PGSp, = EPGSp, C PSp, C PGSp,,
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so PGSp, = PSp,, so

EPSp, = EPGSp, = PGSp, = PSp,,

so (2) implies (3). If we have (3), then ESp, = Sp,, so F is perfect by 54.2.
Q.E.D.

5.4.4. If 1 is the transvection T, , g, 4 +8,a i SPs, then

1+ Aay Aad Aa? AaB
ABy [ + AB6 Aaf3 AB?
TN M6 | 1+Aay A8y |
Ayé AS? Aad 1+ ABS
1+ Aay + B8) AB? 0 Ao?
A82 1+ Aay + B5) Ad? 0
Fr~ 0 AY? I+ Nay + 55) 262
Ay? 0 AB? I+ Alay + 86)
in the base X.
PRrROOF. From the definitions. Q.E.D.

Given any a, f3, ¥, 8 in F and any A which satisfies
AEF, )\+(ay+,88)€F2,

define Z, 5 5., to be the linear transformation with matrix

Nyyrry) B 0 a
8 VA + (ay + 85) a 0
0 VA + (ar + B8) 5
Y 0 B VA + (ay + B8) |

in the base X. Using 4.2.2 one verifies that this transformation is an element of
GSp, with multiplier A. With a little calculation one sees that in fact it is
hyperbolic. We have

Zooooa =Tvi fAE F2.

Note that if
Zppysn and  Zg g s

are defined, then

if and only if
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Projectively we find that

Ea',,l?’,y',&':)\' = Ea,ﬁ.y,&;)\
if and only if we have a proportion

"=af B =BE Y =98 8 =688 N =\
for some ¢ in F. For transvections the situation, as we know, is slightly different.
If

Ta’x, + B x4 Yy, + 8y N and Tu_r, +Bxat vy + 0,4

are not equal to 1, then

T

o+ By 48N T T

axy+ B+ vy +82A
if and only if

T"'X|+ﬁ')’z+7"y1+5')’z»/\l - Tax|+ﬂx2+yyl+8yz,A

if and only if we have a proportion
@=af B=BE Y=y 8=85 N=XT

for some ¢ in F.

5.4.5. If k is any hyperbolic transformation in I'Spy, then there are a, B, v, 8 in F
and X in F with X\ + (ay + BS) in F? such that k = T By

ProOOF. We know from 4.3.1 that k is in GSp,. Since

q(xl’ kx]) == q(yZ’ k.YZ) = 0’
the matrix of & in the base ¥ will have the form

G, B/ 0 4,
D, G, |4, 0
0 C,| G, D,|
c, 0 ’ B, G,

The six equations
g(xy + xp k(x; + x)) =0, q(x; +y, k(x, +»)) =0,
glxy + vy k(x) +3)) =0, q(x; +y, k(x;+y,)) =0,
q(xy + ¥ k(x; +y2)) =0, q(y; + s k(¥ +»,)) =0,
then give in turn
Ci=0C =y, Gy = G,
D,=D, =4, = B, =p.
G, = G, A =4, =«

where a, B, v, 8 are defined to be the common values indicated in the equations.
Now

q(kxy, kyy) = q(kxy, kyy) = A
where A is the multiplier of &, and hence an element of F, so
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GGy + (ay + Bd) = G,G, + (ay + B8) = A.

Therefore G? = G}. Therefore G, = G,. Therefore G, = G, = G, = G,, and
A + (ay + B8)isin F?, and all diagonal entries are equal to

VA + (ay + 88) . QED.

5.4.6. ReMARK. The set of hyperbolic transformations in I'Sp, is the set of
Z..8.y5 And the set of projective hyperbolic transformations in PI'Sp, is the set
of T A

a,B.v.8;A

54.7. Forany a, B,v,8 in F,and any A in F satisfying A + (ay + B8) € F?,

A+ ay ad I a? af
A+ B8 2
ES, ;0 ~ By B af B
o Y ¥ | Atar By
v6 82 a8 A+ 5

in the base X.
PrOOF. From the definitions. Q.E.D.
5.48. Forany a, B,v,8in Fand any A in F we have

ETaxl+Bx2+yyl+8yz,A = E}\az,)\ﬁz.)\yz,}\slzl =r Azaz,ﬁz,yz,az;)\-l

and so
E¥ax1+ﬁx2+yy|+6yz,)\ = Eaz,ﬁz,yz,GZ;A‘z‘
5.4.9. For any a, B, v, 8 in F and any \ in F satisfying A + (ay + 88) € F2, we
have
EZopiyon = MTax + b + 7,07
and so
EEa,B,y,S;)\ = /Fax,+/3xz+)y,+5y2,)\_"
5.4.10. EPGSp4 has enough projective transvections.

5.4.11. REMARK. We know that PGSp, has enough projective transvections,
and we have just seen that EPGSp, has enough projective transvections, so
E: PGSp, > EPGSp, is an isomorphism between two groups with enough
projective transvections. But E clearly does not preserve projective trans-
vections!

5.4.12. Given a, B, v, 8 in F, not all 0, and given X in F, then
;ax|+ﬁxz+yy|+8y2,)\ € EPGSP4

if and only if
A"+ (ay + B8) € F2
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If this condition is satisfied, then

Tax, + Bxy;+yy, +8v2A

= Eza,ﬁ,y,&:)\“’ .

ProoF. If the condition is satisfied we just apply 5.4.9. So assume that the
given transvection is in EPGSp,. Since PI'Sp, and EPI'Sp, have > enough projec-
tive transvections by 5.4.10, and since we have an isomorphism E of PI'Sp, onto
EPI‘Sp4, it follows from 5.2.7 and 5.2.2 that the given projective transvection
comes from a projective hyperbolic transformation, so by 5.4.5 we have a,, 8,
Y1, 8;in Fand A, in Fwith A\[! + (a,y, + 8,8, in F2 such that

EE"‘I*/}th‘SH'\fI T lax+ Bxytyy H O AC

So by 5.4.9

Ta,x,+[3,x2+7,y,+8,y2)\, ax;+ Bx;+ vy, + A0

There is then a proportion
ay=af B=PBE& vi=7vE 8, =08 A =X"?

for some £ in F, whence the result. Q.E.D.

5.4.13. Given a, B, v, 8 in F, not all 0, and given X in F, then
» € EPSp,

;axl*ﬁxz*')’)’l"‘a)’z‘
if and only if
A'EF? and ay + B8 € F2.

Proor. If the condition is satisfied apply 5.4.12 observing that the X in
question is in PSp, since the multiplier of the ¥ in question is a square (see
4.2.4). Conversely, : suppose the given 7 is in EPSp4 Then A~ + (ay + BS) is in
F?by5.4.12,and = = E~Fisin PSp,, so A ~'isin F? by 424 again. Q.E.D.

54.14. EPSp4 has enough projective transvections if and only if F is perfect.

PROOF. If F is perfect, then PSp, = PGSp, by 4.2.4, but EPGSp, has enough
projective transvections by 5.4.10, hence EPSp4 does. Conversely, suppose I—EPSp4
has enough | projective transvections. Let @ be any element of F. Then 7, ., \
must be in EPSp, for some A in F. So a € F2by 5.4.13. So F is perfect. Q. ED.

5.4.15. The residual space of a nontrivial hyperbolic transformation in Spy(V') is
a totally degenerate plane.

Proor. The given transformation is an involution by 2.1.6, and involutions in
characteristic 2 are totally degenerate by 1.3.13, and hyperbolic transformations
in Sp,(V') have even residue by 2.1.17. Q.E.D.

We define I1(a, 8, v, 8) for any a, B, y, 8§ in F that are not all 0 and which -
satisfy ay + 38 € F?2 to be the subspace of ¥ that is spanned by the vectors
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Vay + 6 x, + dx, + p2g)
Bx, + Vay+ B6x, + W,
ox; + Vay+péy + By,
ax, + + o, + Voy+ B8 Y2

where X is the fixed symplectic base { x|, x,|y,, y,} of §5.4.

5.4.16. Il(a, B, v, 8) is a totally degenerate plane; indeed it is the residual space
of the nontrivial hyperbolic transformation 2, 5. 5.1 in Spy(V).

PrOOF. Directly from the definitions. Q.E.D.
5.4.17. Every totally degenerate plane is a Il(a, 83, v, 8).

Proor. Let II be a typical totally degenerate plane. Choose a symplectic base
{x}, x3|y}, y3) for V with II = Fx| + Fxj. By 2.1.15 there is a hyperbolic
transformation ¢ in Sp, with residual space I1. So by 5.4.5 we have a, 3, v, § in
Fand A in Fwith A + (ay + 88) in F? such thate = =, , .. Then A = 1 since
o is in Sp,, and not all «, B, v, § are 0 since 0 # 1. Therefore ay + B6 € F?and
I(a, B, v, 8) is defined. It is equal to IT by 5.4.16. Q.E.D.

5.4.18. Let T1, denote 11 defined with respect to a second symplectic base X, for
V. Then Il(a, B, v, 8) is equal to

(1) HO(a’ 65 Ys B) lfxo = {x2’ xl|y29yl}’

(2) HO(Y’ :8’ a, 6) ’f-%o = {y2’y11x2’ xl}’

(3) HO(B’ a, 8’ Y) lfxo = {xl’y2|yl’ XZ}’

(4 (8, v, B, a) if Xy = { ¥, x3]xp, 2}

PRroOOF. Directly from the definitions. Q.E.D.
5.4.19. I(a, B,v,8) = II(a’, B', ¥, 8') if and only if there is a proportion
o' =af B'=BE Y =v 8 =6
Jor some £ in F.

Proor. If £ exists then the IT’s are obviously equal. So assume conversely that
the IT’s are equal. By 5.4.18 we can assume that a % 0, and hence that & = 1. So
by definition the two vectors

x;3 + Vy+By + By,
X + &y + Vy+ sy,

form a base for I1(1, B3, v, 8).
Let us show that o’ # 0. Suppose, to the contrary, that o’ = 0. If 8’ # 0, then
the two vectors

B'x, +V B8 x, + Y

VB8 y, +BY,
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form a base for I1(0, 8, v/, 8°), hence for I1(1, B, v, §), and this is clearly false.
Similarly o’ = B8 = 0, ¥ # 0 is impossible. Similarly &’ = 8" =y =0, §’ # 0,
is impossible. So indeed a’ # 0.

We may therefore assume that o’ = 1. So

X, + VY + B8y o+ By,

Xt 8y, + \f}” + B8 y,
is a base for II(1, B’, ¥, 8"), and hence for II(1, B, v, &). This implies 8 = B/,
§=8,Vy+ps=Vy + B¢ .Y = v, and hence the result. Q.E.D.

5.4.20. (e, B, v, 8) N (', B, ¥, 8) = 0 if and only if
ay + B6" + ya' + 68 = 0.

Proor. (1) First let us assume that the given II's have at least one of aa’, 88,
vY', 88’ nonzero. By 5.4.18 we can assume that in fact aa’ 0, hence that
a=a =1 Soll(l, B, v, §) has a base

{xz + Vyvpoy + By,
Vy + 86 y,

+

X, + o,
and II(1, B8, y’, 8”) has a base
X, + VY +pB8& y o+ By,
X, + 8y, + VY + B8y,
So the two IT’s intersect if and only if there are scalars A, », not both 0, such that
AVy+ B8 +v8 =AVy + B8 +v8,
AB+vVy+ B8 =28 +vVyYy + B8,

i.e., such that

MVy+ B8 +Vy + B8 )=w+8,
p(Vy+ B8 +Vy + B8 )=NB+ B).

If B = B, the existence of the above A, v is easily seen to be equivalent to the
required condition. Similarly if § = 8. We may therefore assume that 8 # 8’
and § # &'. In this case the nontrivial intersection of the planes in question is
equivalent to the existence of A, », both nonzero, satisfying the last pair of
equations, hence to the existence of A, v in F such that

_Vy+ s +Vy + B

B 8+ ’

_ Vy+ B +Vy +p¥
B+ B

w > > w
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This is equivalent to the condition
Vy + B85 +Vy + B8 . Vy+ps +Vy + B8
8+ 68 B+ B

1.e., to the condition

=1’

Y+ B8 + v+ 6868 =0,

as required.

(2) By step (1) we may now assume that the given IT’s satisfy

ao’ = BB = yy = 86" = 0.

By 5.4.18 we may assume that « 0, hence that « = 1 and o’ = 0. By 5.4.18
again we may assume that §" = 0 if 8’ = 0. Therefore we may assume that we
are in one of the following situations:

(1) I1(1, 0, v, 8) and T1(0, 1, v/, &7),

(i) II(1, B, 0, 8) and I1(0, O, 1, 0).
In case (i) the two planes have bases

{xz +  Vyy,

and

{xl +V8 x, + Yy
V& v+,
respectively, and these two planes intersect if and only if there are & n in F such
that
X, +éx, + (5\/? +5))’1 +W)’2 =X +\/yx2 + (Y/ + nW)yl + )
i.e., if and only if there are £, 5 in F such that
E=V&, tVy +é=y +qVs, Vy=n,
1.e., if and only if
V8 Vy +8 =y +Vy Vs,
i.e, if and only if y' + § = 0, i.e., if and only if
ay' + B8 + ya' + 88 =0.
In case (ii) the same sort of argument shows that the given planes never intersect
while the required equation is never satisfied. Q.E.D.

We define L(a, B, v, 8) for any «, B, v, § in F that are not all 0 to be the
subspace of V that is spanned by the vector
ax; + Bx, + y, + &y,
where X is the fixed symplectic base {x,, x,|y,, y,} of §5.4. The following facts
are self-evident-they are listed in order to emphasize the analogy between
L(a, B,v,8) and II(a, B, y,8). We know that L(a, 8,7,08) is a (totally
degenerate) line, indeed it is the residual space of the nontrivial transvection
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Tax+Bxp 4w, +oy,n 1OT any A in F; every (totally degenerate) line is an
L(a, B, v, 8);
L(a, B,v,8) = L(«, B, ¥, 8")
if and only if there is a proportion
a'=af, B =B Y =v5 8 =28§
for some ¢ in F; and
g(L(a, B,v,6), L(a', B',7.8)) =0
if and only if
ay + B8 + ya' + 88" = 0.

As usual, £ stands for the set of all lines of V, regarded as a subset of the

projective space P(V); we let ¢ denote the set of totally degenerate planes of V,

also regarded as a subset of projective space P(V'). Of course ¥ consists of all
II(a, B, v, 6) by 5.4.16 and 5.4.17. And £ consists of all L(a, 8, ¥, 8).

5.4.21. The mapping I: 9 —— £ defined by l(a, B, v, 8) = L(a, B, v, 8) for
any given scalars a, B, y, 8 which are not all 0 and satisfy ay + B8 € F?, is an
injection I: § >— £ with the property that

ONnIl'+#+ 0e q(/ILI/IT') =0.
It is bijective if and only if F is perfect.
PROOF. At this point, the proof of this result is obvious. Q.E.D.

5.4.22. LEMMA. Let £, be a family of lines in V with these properties:

(1) L(a, B, v, 8) € £, whenever ay + B8 € F?;

(2) whenever three independent lines in £, are orthogonal to a given line L in £,
L is also in £,.

Then £, = €.

ProOF. (1) £, clearly contains all lines L(a. 8, v, 8) with exactly one of the
scalars nonzero, by the first property.

(2) Let us show that £, contains all L(a, 8, y,8) with exactly two scalars
nonzero. We need only consider situations in which ay + 88 # 0, and these are
the situations L(a, 0, y, 0) with ay # 0 and L(0, 8, 0, §) with 3§ # 0.The three
lines

L(0, 1,0, 0), L(0,0,0, 1), L(a,a,v,7)
are all in £y, they are independent, and they are orthogonal to L(a, 0, v, 0). So
L(a, 0, v, 0) is in £, by the second property. Similarly with L(0, 8, 0, ).

(3) Next we verify that L(a, B, v, 8) is in £, whenever exactly three of the

scalars are nonzero. These are the situations

L(a,B,v,0); L(a,B,0,8); L(,0,v,8); L(0,B,7,86).
In the first situation we note that
L(0,0,a”",B7"), L(y™,0,a7%,0), L(0,1,0,0)
are in £, by steps (1) and (2); these three lines are clearly independent; and they
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are orthogonal to L(a, 8, v, 0). So L(a, B, v, 0) is in £,. Similarly with the other
situations.
(4) Finally, for L(a, f3, vy, 8) use

L(a,0,7,0), L(0,5,0,8), L(B0,0,7y). QED.

5.4.23. There exists a bijection i: P > € with the property that
IINITI" # 0= q(Il, {IT') = 0,
if and only if F is perfect.
Proor. If F is perfect apply 5.4.21. So assume, conversely, that we have a

bijection 7 with the stated properties. Let ¢ be the injection

i
Q! £ > ¥ > £

where / is the injection of 5.4.21, and put £, = ¢£. If we can prove that £, = £,
then / will be surjective, hence bijective, and so F will be perfect by 5.4.21. By

definition of / we know that
Lo = {L(a, B,v,8)|ay + B8 € F? }

So, by Lemma 5.4.22, we will be through if we can prove that L is in £,
whenever there are three independent lines K;, K,, K; in £, which are
orthogonal to L. These three K’s are, of course, in ¢, so there are lines J,, J,,
Jyin £ with
@/, = K, ¢/, = K, @/3 = K;.

Pick J in £ orthogonal to J,, J,, J;. It follows from the nature of i and / that
@ = li ! sends orthogonal lines to orthogonal lines; hence ¢/ is a line in £, that
is orthogonal to K|, K, K;. So

L=(K1+K2+K3)*=(Pc] (S Eo. Q.E.D.
5.4.24. The following statements are equivalent:
(1) 2, 5.0 permutes with 2, 5. . 5. ..

(2) 2, g, 500 permutes with Z . 5. . s..5-.
B)ay + B8 + ya' + 68" = 0.

ProoOF. (1) obviously implies (2). And (2) implies (1) by Example 4.2.9. The
proof that (2) is equivalent to (3) is as follows: by 5.4.9 we have
Eia,ﬂ,y,&}\ = T_ax,+sz+}y,+8y2,)\"'
and similarly with the second =. Then
55 = 5 o (ES)(EY) = (E)(ES)

STt =77

sSay + B8+ ya' + 68 =0,
using 1.6.8. Q.E.D.
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54.25. If o and o' are nontrivial hyperbolic transformations in Sp,, then
o6’ = o'oifandonly if R N R’ # 0.

ProOOF. By 5.4.5 we can write

0 =2, py50 o' =2y gyt
by 5.4.16 we have
R =1l(a, B,7,8), R =1, B, 7,8
by 5.4.24 we have o6’ = a0 if and only if
ay' + B8+ ya' + 88 =0,

and by 5.4.20 this is equivalentto R 1 R’ = 0. Q.E.D.

5426. Let 2 =3,,,5x and 2" = Z o . 5. be typical hyperbolic transfor-
mations in TSp, which are not radiations. So T and X' are typical nontrivial
projective hyperbolic transformations in PT'Sp,. Then the following statements are
equivalent:

(1) ZZ' is a hyperbolic transformation.

) S isa projective hyperbolic transformation.

B)a' =af B =B Y = vE 8 = 8¢ for some £ € F.

If these equivalent conditions are satisfied, then

EVAaT+nal,  VASTINGE A
is defined (over F) and equal to £X'.

Proor. That (1) implies (2) is obvious. To see that (2) implies (3) express
33 =3 using 5.4.5; then (EE)(E)_:) is a product of two nontrivial projective
transvections which is equal to a third projective transvection, namely (EZ"), by
5.4.9; so the residual lines of EZ and EX’ are equal by 1.6.6; so the proportion
given in (3) holds.

We will now prove that if (3) holds, then so does the last part of the
proposition. This will of course show that (3) implies (1). So assume (3). Since =

and 2’ are defined we must have
A+(ay + BS)EFL XN+ (oY + p8) € F~L
Substituting from the proportion gives A{? + A’ in F2. Multiplying by

a?, ..., 8% gives

A2+ Na? ... A2+ N82E F
So

A2+ Na?,..., VA8?+ N82 €F.
On the other hand,

MW+ VAa? + Va2 Y\y? + Ny? + A7 + VB2 VAS? + N8>
=M + A’y + Nay) + (AB'S’ + N 8)
=M+ Ma'y + B8) + N(ay + B8)
= A+ (ay + B8))(N + (a’y' + B’8’)) + square

square.



THE ISOMORPHISMS OF SYMPLECTIC GROUPS 85

So the big new X is indeed defined. By applying E and the formula for the
product of two transvections given in §1.4 we find it is equal to Z2'. Q.E.D.

5.4.27. Let 0 and o' be typical hyperbolic transformations in Sp, which are not
1,. So G and &’ are typical nontrivial projective hyperbolic transformations in PSp,.
And R and R’ are totally degenerate planes. Then the following statements are
equivalent:

(1) 60’ is a hyperbolic transformation.

(2) 00’ is a projective hyperbolic transformation.

B)R=R".
PrROOF. By 5.4.5 and 5.4.16 we can express
0= 2, py80 0 = Zypyeit
with
ay + B8 € F?, a'y + B8 € F?,
and

R =1Il(a, B, v, 8), R =1II(a', B, ¥, 8").
Then (1) is obviously the same as (2). And a6’ is a hyperbolic transformation if
and only if there is a proportion

o =af, B'=pE v =vE 8 =8¢
by 5.4.26, and this is true if and only if R = R’ by 5.4.19. So (1) is equivalent to
3). Q.E.D.

Recall from 5.4.15 that the residual space of a nontrivial hyperbolic trans-
formation in Sp, is a totally degenerate plane. Accordingly, in the 4-dimensional
situation in characteristic 2 that is now under discussion, we say that a subgroup
X of PI'Sp,(V) has enough projective hyperbolic transformations if, for each
totally degenerate plane Il in V, there is at least one hyperbolic transformation o
in Spy(V) with R=1I and o € X. If we say that our subgroup A that is
currently under discussion has enough projective hyperbolic transformations,
then we mean that A has this property in addition to the general assumption that
it has enough projective transvections. Similarly with A,.

5.4.28. ExaMPLE. PSp,(7') has enough projective hyperbolic transformations.

5.4.29. Let 11 be a totally degenerate plane in V, and let L be a line in TL.
Suppose A has enough projective hyperbolic transformations. Then there is a
hyperbolic transformation o in Sp, with 6 € A such that oL # L and o1l = I1.

Proor. Take a symplectic base X = {x,, x,|y,, y,} for ¥V with L = Fx, and
II = Fx, + Fx,. Here I1 =1I(1,0,0,0). Now II(0, 1,0, 1) is a totally
degenerate plane in V. So there is a hyperbolic transformation ¢ in Sp, with
R =1TI(0, 1,0, 1) and 6 € A. Then it follows from 5.4.5, 5.4.16 and 5.4.19 that
0 = 2,404 for some B in F. This o does the job. Q.E.D.

5.430. If A and A, have enough projective hyperbolic transformations, then A
sends all projective transvections in A into PSp(V,).
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ProOF. If A preserves at least one nontrivial projective transvection, then it
preserves all projective transvections by 5.2.7; hence it sends all projective
transvections in A into PSp,(V|). We may therefore assume that A does not
preserve a single nontrivial projective transvection in A.

(1) First let us show that there is at least one nontrivial projective transvection
in A which is sent into PSp,( V) by A.

In order to verify this we first prove that it is possible to find nontrivial
transvections 7, and 7, in Sp,(¥') having distinct and orthogonal residual lines
L, and L, such that 7, and 7, are in A, and such that A7, and A7, can be
conjugated into each other using a projective transvection in A,. To see this start
with an arbitrary nontrivial projective transvection in A, pull it back to a
hyperbolic transformation in GSp,( V) using 5.2.2, take a line that is moved by
this hyperbolic transformation (into a distinct orthogonal line, of course), let 7,
be a transvection in Sp,(¥) with residual line the first of these lines and with 7,
in A, conjugate 7, in the usual obvious way to define 7,, then push things back to
V| in the obvious way.

So we have the desired 7, and 7,. By 5.2.2, A7, and A7, are projective
hyperbolic transformations in A;. Since they can be conjugated into each other
by a projective transvection in A,, we can find hyperbolic transformations X,
and =, having the same multiplier in GSp (V) such that

A7, =3, Af, =3,
We can assume that my = my = Bwith fin F, — F Z since otherwise =, would
be in PSp,(V,) by 4.24 and we would be through. Then by 4.3.4 and the

definitions involved there is a symplectic base X, = {x,, x,/y,, »,} for V| such
that

2 = Eo‘/m]:/?'

(Note that in this proof X, and the 2’s, etc., appear in the context of V| rather
than in the context of V) By 5.4.5 and 5.4.24 we have a, v, £ in F, with

B+ (ay + BE*) € F}
such that

23 = 2aprosp

Now a, B(( + 1), v, (§ + 1) are elements of F|, they are not all 0, and they
satisfy

ay + B¢+ 1)’€ F?

(if all were 0 we would have =, = Z|). Therefore Il(a, B(§ + 1), v, (£ + 1)
defines a totally degenerate plane in V. But 4, has enough projective hyperbolic
transformations. Hence there is a hyperbolic transformation o5 in Sp,(V) with
residual space II(a, B(§ + 1), v, (§ + 1)) such that o5 € A,. Using 5.4.5, 5.4.16
and 5.4.19 we see that g5 must have the form

05 = zan.,li(£+l)11,yn.(£+l)n:l
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for some 7 in F,. Let k be an element of T'Sp,( V') with k in A such that Ak = as.
Let us show that & stabilizes all lines in the totally degenerate plane L, + L,. It
is enough to show that k permutes with 7 whenever 7 is a projective transvection
in A whose residual line is contained in L, + L,. By 5.2.2, AT is a projective
hyperbolic transformation, so by 5.4.5 we can express

AT =2, ren
with p, ¢, r, s in F,, not all 0, and with A in F,, and with

A+ pr+gs € Fl
Now 1 permutes with 7, and 7,; hence A7 permutes with f, and 53, so by 5.4.24

Bs + q =0,

ar + B&s + yp + &9 =0,
$O

ar+ BE+Ds+wp+(E+1)g=0,
s0, again by 5.4.24, 65 permutes with A7. Hence k permutes with 7. So k does
indeed stabilize all lines in the totally degenerate plane L, + L,. We can, in fact,
assume that the action of & on this plane is 1, by 4.1.6. This puts k in GSpy(V').
Now k is an involution since o5 is, so k” is a radiation, so k> = 1,,, so (m,)? = 1.
So k is in fact in Sp,(V) with res k < 2. If res k = 1, we have proved our
assertion. So let res k = 2,
Taking a fresh notation we see that we now have elements o and o, with

0 ESpy(V) o0, €Spy(V))
o6 €A 0, €4
ReY R, € 9,

g, hyperbolic

and Ao = o0,. By standard arguments, starting with an appropriate conjugation
on the right by a suitable transvection in Sp,(V) that is projectively in A,, we
can find another pair o', 0] having the same properties as g, ¢, and such that

R, n R{ = aline.

Then o, and o] permute by 5.4.25; hence o and ¢’ permute; hence R N R’ # 0
by 1.3.6. Let T be a nontrivial transvection in Sp,(¥) that is projectively in A
and has residual line contained in R N R’. Then T permutes with ¢ and ¢’ by
1.3.11; hence AT permutes with &, and o; hence AT has a representative in
I'Spy( V) which is both a hyperbolic transformation and permutes with o and o};
this representative must therefore stabilize the line R, N Rj; this puts AT in
PSp4(V,) by 5.4.3. We have proved (1).

(2) Next let us show that if we have nontrivial projective transvections 74 and
710 In A with orthogonal and distinct residual lines Lg and Ly, and if A7g is in
PSpy(V)), then A7)y is also in PSpy(V)). Let I1 = Ly + L,,. By 5.4.29 there 1s a
nontrivial projective transvection 7,, in A which is conjugate to 73 and such that
II=1Lg+ L, Clearly A7, € PSp,(V,). Since A7y and AT, are projective

817
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hyperbolic transformations in PSp,(¥), there are hyperbolic transformations o,
and o,, in Sp,( V) with

A';S = 67 and A’;lz = 61['
Of course R, and R, are totally degenerate planes by 5.4.15. Now by conjuga-
ting 7z by a suitable projective

hyperbolic transformation in A (use 5.4.29) we can find 7,, permuting with 74 but
not with 7,,. Hence we can find a hyperbolic transformation which is in Sp,(V)
and projectively in A,, and which permutes with o, but not with o,,. Therefore
R, # R,, by 54.25. So R, N Ry, is a line, again by 5.4.25. Then 7,, permutes
with 73 and 7,,; hence Aty is a projective hyperbolic transformation permuting
with o, and g;;; hence A7, has a representative which is a hyperbolic trans-
formation permuting with ¢, and o,,, so this representative must stabilize the
line R; N Ry, so AT,y is in PSp,(V,) by 4.3.3, as required.

(3) To complete the proof we must show that a typical nontrivial projective
transvection 7 in A is carried into PSp,(¥,) by A. By step (1) we know that this
happens at least once, say to 7,. Let L and L, be the residual lines of 7 and 7,,. If
L and L, are distinct and orthogonal, apply step (2). If L and L, are distinct and
nonorthogonal, take 7, with L, orthogonal to L and L, and apply step (2)
twice. Similarly if L = L,. Q.E.D.

5.4.31. REMark. Note that 5.4.30 need not hold if we drop the assumption
about enough projective hyperbolic transformations. To illustrate this consider
V = V, with F = F, imperfect and pick A € F — F2. We saw in Remark 5.4.11
that E prov1des an isomorphism E: PGSp, — EPGSp4 between the two groups
PGSp, and EPGSp, which have enough projective transvections. Then

EZA.O,LO;)\ = ’Fxxl+y,.)c'
by 5.4.9, so E~! carries the projective transvection on the right to the S on the
left which, by 4.2.4, is not in PSp,.
5.4.32. REMARK. It follows from 5.4.30 and Remark 5.4.31 that there exist
groups which have enough projective transvections but do not have enough
projective hyperbolic transformations.

5.4.33. If A and A, have enough projective hyperbolic transformations and if A
does not preserve projective transvections, then F and F, are perfect.

ProoF. It is enough to prove that the field F, 1s perfect.
(1) First let us establish a bijection j: £ > P, of the lines £ of ¥ onto the
totally degenerate planes &, of V', with the property that

q(L, L) = 0ejL N jL 0.
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To define j, take a typical line L in V, let 7 be a projective transvection in A with
residual line L; then A7 is a projective hyperbolic transformation in PSp,(V,) by
5.2.7, 5.2.2 and 5.4.30, so there is a hyperbolic transformation o, in Sp,(V,) with
AT =0, € A,; the residual space of o, is a totally degenerate plane II; by
5.4.15; we define jL = II,. That jL is well defined is a consequence of 1.6.6 and
5.4.27. To see that j is injective consider L = L’; pick L” orthogonal to L but
not to L’; construct appropriate 7, 7, 7"; these lead to o, o', 0” with their totally
degenerate planes II,, IT;, II]; then 7 permutes with 7 but not with 7’; hence
Iy N II; # O but I17 n II} = 0, by 5.4.25; hence I, % IT}; but jJL = I, and
JL' = TI}; so j 1s indeed injective. To prove that j is surjective consider a totally
degenerate plane II, in ¥,; let 7; and 75 be nontrivial projective transvections in
A, whose residual lines span II,; move them to the left and up to a pair of
hyperbolic transformations ¢, and o, in Sp,(¥’); on grounds of permutability we
must have R, N R, # 0; let 7 be a projective transvection in A whose residual
line L is contained in R, N R,; move 7 to the right and up to a hyperbolic
transformation o, in Sp,(¥)); then g, permutes with 7, and 75; so o, stabilizes L,
and Ls; but o, is an involution being totally degenerate; so R, = L, + L; =II;;
so j is surjective, as asserted. The condition
g(L,L'y=0s,LNjL #0

follows easily by interpreting each side in terms of the permutability of corres-
ponding transformations.

(2) Now fix a symplectic base X, = {x,, x,|y,, y,} for ¥, and let I: P, ~— £,
be the injection defined in 5.4.21 (for V, not for V, of course). Then / © j is an
injection

Toji €50 @ > g
which preserves orthogonality. Let £, be the set of lines of £, which are images
under / ° j, i.e., but £, = /,. If we can prove that £, = £, we will be through
by 5.4.21. Now if a;, B,, v;, 8, are elements of F,, not all 0, with a;y, + 8,8, €
F{, then I \(a), B, vy, 8,) is defined and in 9;; hence L(«;, B,, v, 8,) is in £,

by definition of /; so the first condition of Lemma 5.4.22 holds for £,: we must
verify the second, and this is done as in the proof of 5.4.23. Q.E.D.

5.4.34. If A and A| are actually subgroups of PSp,(V)) and PSp,(V) respectively.
and if A does not preserve projective transvections, then A and A, have enough
projective hyperbolic transformations, and F and F, are perfect.

ProoF. By 5.4.33 it is enough to show that A and A, have enough projective
hyperbolic transformations. On grounds of symmetry it is enough to prove that
A; has enough. Accordingly consider a totally degenerate plane I1, in V. Take
two lines Ly and Ls with II, = Ly + L,. Let 7, and 75 be projective trans-
vections in A with residual lines L, and L, respectively. Pull 7; and 7 to the left
and up to hyperbolic transformations ¢, and g, in Sp,(V’) (note that we have just
used the fact that A C PSp,(V)). On grounds of permutability we must have
R, N R, # 0. Let 7 be a nontrivial projective transvection in A whose residual
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line is contained in R, N R,. Then 7 permutes with 6, and o,; hence A7 lifts to a
hyperbolic transformation o, in Sp,(¥/) that permutes with 7, and 75. From this
it follows that R, = L, + L; = II,. So we have a hyperbolic transformation ¢,
in Spy(V),) with o, = A7 in A, and R, =1I,. So A, has enough projective
hyperbolic transformations. Q.E.D.

5.4.35. If A and A, have enough projective hyperbolic transformations, and if A
does not preserve projective transvections, then A carries the set of projective
transvections in A onto the set of projective hyperbolic transformations in A,, and
the set of projective hyperbolic transformations in A onto the set of projective
transvections in A,.

ProoF. By considering A™' instead of A we see that it suffices to prove the
first part of the proposition. By 5.2.7 and 5.2.2 we see that it suffices to prove
that every projective hyperbolic transformation g, in A, is the image under A of
a projective transvection in A. Since F| is perfect by 5.4.33, we have PGSp,(V)
= PSps(V,) by 4.2.4, so we may assume that our o, actually is a hyperbolic
transformation in Sp,(V,). By the argument used in proving surjectivity in the
proof of 5.4.33, there is a nontrivial projective transvection 7 in A such that
AT = 0y € A, for some hyperbolic transformation o, in Sp,(V,) having R, = R|.
Let L be the residual line of 7. If L, is any line in V that is orthogonal to L, take
a nontrivial projective transvection 7, in A with residual line L,; then 7,
permutes with 7, so A7, permutes with A7, but A7, has the form A7, =0, €
A, for some hyperbolic transformation ¢, in Sp,(¥,) by arguments already used;
then o, permutes with o, so R, N Ry # 0, so R, N R, # 0, so ¢, permutes
with ¢/, so 7, permutes with A~'5,; hence A~ 'o, has a representative in I'Sp (V)
which stabilizes all lines in the hyperplane L* of V; hence A~'5, has a
representative in ['Sp,(¥") which is the identity map on L*; this representative is
in Spu(V) by 4.2.6, and therefore a transvection in Sp,(¥); so A7's, is a
projective transvection in A, ie., ¢, is the image under A of a projective
transvection in A. Q.E.D.

5.4.36. DEFINITION. An automorphism A of PT'Sp,(V) is called exceptional if
it does not preserve projective transvections.

5.4.37. The group PT'Sp,(V) has an exceptional automorphism if and only if the
field F is perfect.

ProOF. If F is perfect, then the isomorphism E of §5.4 provides an
automorphism of PI'Sp,(V') by 5.4.3, and this automorphism does not preserve
projective transvections by 5.4.8, so E is exceptional. Conversely, if PI'Sp,(V)
has an exceptional automorphism, then F is perfect by 5.4.33. Q.E.D.

5.4.38. REMARK. There is no point in defining exceptional automorphisms of
PT'Sp,(¥') unless n = 4 with F perfect of characteristic 2, by 5.2.8 and 5.4.37.

5.4.39. If A is an exceptional automorphism of PUSp,(V), and if A has enough
projective hyperbolic transformations, then AA has a projective transvection with
residual line L for any line L in V.
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ProOF. Here F is perfect since A exists. By 5.4.35 and 4.2.4 there is a
hyperbolic transformation ¢ in Sp,(¥’) such that A is a nontrivial projective
transvection with residual line L. Since A has enough projective hyperbolic
transformations there is a hyperbolic transformation o, in Sp,(¥) with g, in A
and R, = R. Then o, 0, 0o, are projective hyperbolic transformations in
PI'Spy(V), by 54.27. Hence Ao, Ag, Aoco0, are projective transvections by
5.4.35; hence the residual lines of A6 and Ag, are equal by 1.6.6. In other
words, Aag, is a projective transvection in AA with residual line L. Q.E.D.

5.4.40. THEOREM. Let A and A, be subgroups of PI'Sp( V') and PI'Sp (V) over
fields F and F, of characteristic 2. Suppose A and A, have enough projective
transvections and enough projective hyperbolic transformations. If F is perfect, let
E, denote a fixed exceptional automorphism of PU'Sp (V). Then each isomorphism
A: A > A has exactly one of the forms

Ak=gkg™!' Vkea
or
Ak = g(Egk)g™' VkeEA

for a unigue projective symplectic collinear transformation g of V onto V|, the
second possibility appearing only when F is perfect.

Proor. If A preserves projective transvections, apply 5.3.5. If A does not
preserve projective transvections, then F and F, are perfect by 5.4.33, in
particular E, is defined. By 5.4.39 we know that E,A has at least one projective
transvection with residual line L for each line L in ¥ (in particular EjA has
enough projective transvections if F = F,). If we take a nontrivial projective
transvection T in EyA, then Ej 'T is a projective hyperbolic transformation in A
by 5.2.7 and 5.2.2; hence AEO_"T" is a projective transvection in A; by 5.4.35;
hence AE;': E/A >— A, sends projective transvections in EA to projective
transvections in A,. If F # F,, then it follows from 5.1.4 that F, # F,, so A, has
at least two projective transvections with residual line L, for each line L, in V.
and it then follows by a standard argument that E A has the same property, i.e..
that E,A has enough projective transvections. So, whether F is F, or not, EjA has
enough projective transvections. Hence AE;': E/A >— A, preserves projective
transvections by 5.2.7. So, by 5.3.5, there is a unique projective collinear
transformation g of V onto V| such that

Ak = AEg\(Eok) = g(Eok)g™' V& €A
Finally we must show that A cannot have both the Ak = g kg, ' and Ak =

g(Eok) g ™! forms. For the first equation would imply that AT is a projective
transvection whenever T is, while the second implies that it is not. Q.E.D.

5.4.40A. THEOREM. Isomorphic projective groups of symplectic collinear trans-
Sformations with underlying characteristics 2 and underlying dimensions 4, and with
enough projective transvections and enough projective hyperbolic transformations.
have isomorphic underlying fields.
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Recall that in §5.3 we defined what we meant by saying that a subgroup of
I'Sp,(V) had enough transvections. Also recall that the residual space of a
nontrivial hyperbolic transformation in Sp,(V) is a totally degenerate plane.
Accordingly, in the 4-dimensional situation in characteristic 2 that is now under
discussion, we say that a subgroup X of I'Sp,(}) has enough hyperbolic
transformations if, for each totally degenerate plane II in V, there is at least one
hyperbolic transformation o in Sp,(¥) with R = [T and 6 € X. We let I" denote
a subgroup of I'Sp,(V) that has enough transvections and enough hyperbolic
transformations. Similarly with I') in I'Sp,( V). And we let &: I' > T, denote a
group isomorphism between them. Note that T’ = PT is a subgroup of PTSp,(V)
with enough projective transvections and enough projective hyperbolic trans-
formations. Similarly with T, = PT, in PT'Sp,(V)).

5.4.41. DEFINITION. Let B be any automorphism of I'Sp,(V'). Then B naturally
induces an automorphism B of PTSp,(V) by defining Bk =Bk for all k in
PT'Sp,(¥). by 5.3.7. We call B an exceptional automorphism of I'Sp (V) if Bis
an exceptional automorphism of PI'Sp,(V).

5.4.42. The group I'Spy(V) has an exceptional automorphism if and only if F is
perfect.

Proor. See 5.4.37 and its proof. Q.E.D.

5.4.43. THEOREM. Let T and T'| be subgroups of TSp (V') and TSpy(V,) over
fields F and F, of characteristic 2. Suppose T and T, have enough transvections and
enough hyperbolic transformations. If F is perfect, let E, denote a fixed exceptional
automorphism of TSp,(V'). Then each isomorphism ®: I" > T'| has exactly one of
the forms

Ok = x(k)gkg ™! VkeTl
or
Ok = x(k)g(Eyk)g™! VkeTl
for a mapping x of T into RL(V') and a symplectic collinear transformation g of
V onto V', the second possibility appearing only when F is perfect.
ProoF. Apply 5.3.7, Theorem 5.4.40 and 4.2.1. Q.E.D.

5.4.43A. THEOREM. Isomorphic groups of symplectic collinear transformations
with underlying characteristics 2 and underlying dimensions 4, and with enough

transvections and enough hyperbolic transformations, have isomorphic underlying
fields.

5.5. Bounded Modules over Integral Domains

We now consider an arbitrary (commutative) integral domain 0. We let F be a
field of quotients of 0. So 1 € o C F. Later o, will be a second integral domain
with field of quotients F,. In §5.5 we assume that 7 is just an abstract vector
space over F with 1 < dim < o0, i.e., we ignore the alternating form which our
general assumptions say it must possess.
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By a (fractional) ideal a with respect to o we mean a nonzero subset a of F
which is an o-module in the natural way, and which satisfies Aa C o for some
nonzero A in o. Here Aa stands for the o-module

Aa = {Ax|x € a}.
It is clear that ao is a fractional ideal for any « in F. Any fractional ideal which
can be expressed in the form ao for some « in F will be called a principal ideal.
If a is a fractional ideal, then so is aa for all a in F. Every finitely generated
nonzero o-module that is contained in F in the natural way is a fractional i1deal.
For any two fractional ideals a and b it is easily seen that there is a nonzero A in
o such that Aa C b. If Fis o, then F is the only fractional ideal with respect to o.

An integral ideal is a fractional ideal that is contained in o. Thus the integral
ideals are the ideals of o in the usual sense of the word, with the exception of 0.
Every integral ideal satisfies 0 C a C o.

For any two fractional ideals a and b define:

gcd.: a+b={a+ Bla€apED}

l.c.m.: anb,

product: ab = { > afla€a,BE b}.
finite

It is easily verified that a + b, a N b, ab are again fractional ideals. The
following laws are evident:

a(b + ¢) =ab + ac, (aa)( Bb) = (afs )(ab).
a(be) = (ab)e, ab = ba, ao = q.

We say that the fractional ideal a is invertible if there is a fractional 1deal b such
that ab = o; this b, if it exists, must be unique and we then write a =" = b for the
inverse of a. Every principal ideal is invertible with (a0)™' = a ~'0. So the set of
invertible ideals forms a commutative group under product formation. and the
set of principal ideals is a subgroup.

By an o-module M in the vector space V' we mean a subset M of V' that is an
p-module in the natural way. We say that an o-module M in V' is on V if it spans
V over F. It 1s easily seen that if M is in V, then it is on V if and only 1f it
contains a base for V.

Consider an o-module M in V. Define

FM = {ax|aEF,xEM}.
We have
FM = {a"x|a€o,a#0,xEM}

since F is a quotient field of o. Hence FM i1s a subspace of V, in fact the
subspace of V that is spanned by M. Thus M 1s on V if and only if FM = V.
For any a in F, and any fractional ideal a, and any M in V, define

aM = {ax|x € M}, aM={ > Bx|BEa,xEM}.

finite
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Both aM and aM are again modules in V, in fact in FM, and the following laws
are easily seen to hold:
a(M N N)=(aM)n (aN), a(M + N)=aM + aN,
a(aM) = (aa)M = a(aM),
(a+B)M =aM + bM, (ab)M = a(bM),
a(M+ N)=aM + aN,
F(M+ N)= FM + FN.
A subset of vectors of V is independent over o if and only if it is independent
over F. In particular, an o-module M on V is free if and only if there is a base
Xy ..., x, for Vsuchthat M = ox, + - - - + ox,,.
We say that an o-module M on V is bounded if it is contained in a free
o-module on V. Thus free o-modules on ¥ are bounded. And a bounded module

on V contains a free module on V, and is contained in one too. A submodule of
a bounded module is bounded if it is on V.

5.5.1. Let M and N be o-modules on V with N free. Then M is bounded if and
only if aM C N holds for some nonzero a in o.

PrOOF. If aM C N, then M is contained in the free module a = !N, so M is
bounded. Conversely, suppose M is bounded. So M C P with P free on V. Take
bases in which

N=ox;+ -+ +o0x, P=oy, +--- +oy,
and write
n
y; = Za,-jx, (a; € F).
i=1
Let a be the product of the denominators in the a;. So «a is a nonzero element of
o with ag; € o foralli,j. WehaveaM C aP C N. Q.E.D.

5.5.2. Let M and N be o-modules on V with N bounded. Then M is bounded if
and only if aM C N holds for some nonzero « in o.

It follows from the above results that if M and N are bounded o-modules on

V, then so are aM, aM, M N N,and M + N.If a, ..., q, are fractional ideals,
and z,, . . ., z, are vectors spanning V, then
az,+ - +az

is 2 bounded o-module on V. In particular, any finitely generated o-module on V'
is a bounded o-module on V. Note that if z; and z, are independent in V, then

a,2) + 0,2, = a,2; + ay(z, + Az))
if and only if Aa;, C a;. Also note that a(bc) = (ab)c. In particular,
a(a,z; + -+ +q,z,) = (aa))z, + - - - + (aq,)z,.
For any bounded o-module M on V, and for any nonzero x in V, the
coefficient ¢, of x with respect to M is defined as the set
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¢, ={a € Flax e M }.

Clearly ¢,x = M n Fx and, using 5.5.2, we find that c, is actually a fractional
ideal. Note that

ac,, =¢, Va€F.
If x, ..., x,is a base for V and
M=qx + - - +a,x,

with the q, fractional ideals, then we know that M is a bounded o-module on .

so the coefficient ¢, is defined for any nonzero x in V. If we express
x=px + -+ px,

with B,, .. ., B, nonzero, then it is easily seen that

= (B la) N n (B
In particular ¢, = a,.
5.5.3. DEfINITION. By an o-lattice M on V we mean a subset M of ¥ which
can be expressed in the form
M=aqx +- - +aq,x,
for some base x,, . . ., x, for V, and some invertible fractional ideals a|, .. . , a
So for any o-module M on ¥ we have
M is free = M is a lattice
= M is bounded.

If M is a lattice on V, then so are aM and aM lattices on V, for any a in F and
any invertible ideal a.

ne

5.5.4. Let M and N be o-modules on V of the form
M=qx +- - +a,x N=by, +- - +by,,

n’vn’

with the x’s and y’s bases for V, and the a’s and b’s fractional ideals. Let (a;) be
the matrix defined by y; = X,a,x,. Then

()N C Mifandonly if a;b, C a, forall i, j.

(D IfN=M,thena, - -a,=Db - bdet(a).

(3) M is a lattice if and only if each «; is invertible.

(8 If N and M are lattices with N C M, then N = M if and onl if

a,- - a, =0, b, det(a,).

PROOF. Let (b;) denote the inverse of the matrix (). So x = X.b,y,. The
proof of (1) is easy and consists of a comparison of coefficients in the x-base.
Let us prove (2). Here N = M. So by part (1),

by---b,-det(g) =D - b, - (Zxa, - a.)
g 2(alnba) T (anwbw)
g 201 DRI a",

Le.,

ne

by -+ b, -det(ay) Ca;---a
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On grounds of symmetry,
Q-+ - a,det(b;) b - b,
But (g;) is the inverse of (b;). So (2) follows. Now (3). If each q; is invertible,
then M is a lattice by definition. Conversely let M be a lattice. Then M has the
form of N with all b, invertible, by definition of a lattice. So
a---a,=Db b, det(ay)
by part (2). So q, - - - a, is an invertible fractional ideal. So each q; is invertible.
Finally let us prove (4). By part (2) it is enough to consider N C M with
a;---a="Dby b, det(a))
and deduce that N = M. Here the a’s and b’s are invertible by part (3). We have
a, € a,b7 " for all relevant i, j. The cofactor A, of a; is equal to
A,.j=2ia,a---aw

in which the first index avoids i and the second ;. Hence

A;007  C(ay - - a)by - b))

gy
=0 - deta;.
Therefore
A;
b.a = . .q,Ch.
S det(a,-j) e

This is true for all 7, . Hence M C N by part (1). Hence M = N. Q.E.D.
Consider a bounded o-module M on V. Define the integral linear groups

GL,(M) = {0 € GL(V)|oM = M },
SL,(M)=GL, (M) SL(V).
We say that a linear transformation is on M if it is in GL,(M), i.e., if oM = M.
For any nonzero integral ideal a, define the linear congruence groups
GL,(M; a) = {0 € GL,(M)|(o — 1,)M C aM},
SL(M; a) = GL,(M; a) n SL(V).
It is clear that SL,(M; a) and GL,(A; a) are normal subgroups of GL,(M). We
have
GL,(M; 0) = GL (M), SL,(M; o) = SL(M).
The projective integral linear groups PGL (M), PSL, (M), and the projective
linear congruence groups PGL,(M; a), PSL,(M; a) are, of course, obtained by
applying P.
If we consider any nontrivial transvection 7 and express it in ihe usual form
7., then we find that

M=MotM CMs(pM)aC M
and
T €SL(M; a)s (pM)a C aM.
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An n X n matrix over a field F is called integral (with respect to the
underlying integral domain o) if its entries are in o; it is called unimodular if it is
integral with determinant a unit of o. By looking at cofactors we see that an
integral matrix 4 is unimodular if and only if it is invertible with 4~ integral.
We let GL,,(0) denote the subgroup of unimodular matrices in GL, (F), and put

SL,(0) = GL,(0) N SL,(F).

The groups GL,(0) and SL,(0) are called integral matrix groups. For any
nonzero integral ideal a, define the matrix congruence groups

GL,(0; a) = {X € GL,(0)]X = I mod a},

SL,(0; a) = GL,(0; a) N SL,(F),
where congruence of two n X n matrices mod a means congruence mod u.
entrywise. It is clear that SL,(0; a) and GL,(0; a) are normal subgroups of
GL, (0). We have

GL,(0; 0) = GL (0), SL,(0; 0) = SL,(0).

The projective integral matrix groups PGL,(0), PSL,(0) and the projective
matrix congruence groups PGL,(0; a), PSL,(o; o) are, of course, defined by
applying P.
Now assume that M is actually free on V, say
M=ox+- - +ox,

with x,, ..., x, a base for V. Let p,, ..., p, denote the dual base. If a linear
transformation ¢ in GL,(F) has matrix § in the above base, then it follows
easily that

oM C M < S is integral
and
oM = M < S is unimodular.

In particular, the elementary transvection 7, , is on M if and only if A is in ¢.
. e
Le.,

Tagg € SL (M)A €o.
Since a unimodular matrix has determinant a unit, we easily see that in the free

case GL,(M)/SL,(M) is isomorphic to the group of units of 0. We find that the
matrix isomorphism associated with the above base (for M and V') induces

GL, (M) > GL,(0), GL/(M;a) >> GL(0: a),
SL,(M) >»SL,(0), SL,(M;a) >>SL,(o:a),
so the associated projective isomorphism PGL, (V) > PGL,(F) induces

PGL,(M) >»PGL,(0), PGL,(M;a) >>PGL,(0: a),
PSL,(M) >>PSL,(0), PSL,(M;a) > PSL,(o: a).
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5.6. The Isomorphism Theorems over Integral Domains

We now return to our general assumptions that V and ¥V, are regular
alternating spaces over fields F and F, with dimensions n and n,. We also
consider arbitrary integral domains o and o, with quotient fields F and F,. And
we consider bounded o- and 0,-modules M and M, on V and V.

We define the integral symplectic group Sp, (M) by the equation

Sp.(M) = GL,(M) 1 Sp,(V').

For any nonzero integral ideal a, we define the symplectic congruence group

Sp,(M; a) = GL(M; a) N Sp,(V).
It is clear that Sp,(M; a) is a normal subgroup of Sp,(M). We have
The projective integral symplectic group PSp, (M), and the projective symplectic
congruence groups PSp, (M; a) are, of course, obtained by applying P.

If we consider any nontrivial transvection 7 in Sp,(¥) and express it in the
usual form 7,, then we find that
M=MostM CMoshg(MaaC M

and

T € Sp,(M; a)y = Ag(M, a)a C aM.

5.6.1. Let M and N be bounded o-modules on V and let a be a nonzero integral
ideal. Then there is a nonzero integral ideal b such that Sp,(N; b) C Sp,(M; a).

PROOF. By 5.5.2 there is a nonzero « in F such that aM C N. But it is easily
seen that Sp,(M; a) = Sp,(aM; a). In effect this allows us to assume that
M C N. Let us do so. Let b be any nonzero integral ideal for which

bN CaM C M CN.
For any o in Sp,(N; b) we have
(o0 —1,)N CON CaM;

hence (6 — 1,)M C aM. In particular, oM C M. But Sp,(N; b) is a group. So
0™ '"M C M.SoeM = M.Soo € Sp,(M; a). QE.D.

5.6.2. If M is a bounded o-module on V and a is a nonzero integral ideal, then
Sp,.(M; o) has enough transvections.

ProokF. If o is a field, then Sp,(M; a) = Sp,(¥) and the result is obvious. So
assume 0 C o C F; in particular that o is infinite. Given a nonzero a in V it is
enough to find two distinct A’s in F such that each T, 18 in Sp,(M; a). It is
easily verified that (M, a) is a fractional ideal. There is therefore a nonzero A in
o such that Ag(M, a) C ac,, where ¢, denotes the coefficient of a with respect to
M. Since o is infinite it contains an element 0, 1, and multiplying A by this
element gives us a second A with the same properties as the first. Then for either
A we have
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Ag(M, a)a C (ac,)a C a(c,a) C aM,
$0 7,5 € Sp,(M; a), so Sp,(M; a) has enough transvections. Q.E.D.

5.6.3. If M is a bounded o-module on V, and a is a nonzero integral ideal, and if
we are in the 4-dimensional situation in characteristic 2, then Spu(M; a) has
enough hyperbolic transformations.

PrOOF. Let X = {x,, x,|y,, y,} be a symplectic base for ¥ and put
N =ox, + ox, + oy; + oy,
By 5.6.1 it is enough to prove that Sp,(N; b) has enough hyperbolic transfor-
mations. So we must consider a totally degenerate plane II in V and find a
hyperbolic transformation o in Sp,(N; b) with R = II. By 5.4.17 and 5.4.19 we
can assume that

II=1I(e, B.v,8)
with a, 3, v, § elements of b, not all 0, which satisfy

ay + B8 € F?, Vay + 86 € b.
Then

G = 2&.[3.7,5;1

is a hyperbolic transformation in Spy(V) with R = I1, by 5.4.16. If ¢ has matrix
X in the base X, then the defining matrix of o = 2 shows that X has integral
entries, and det X = 1 since o is in Spy(V), so X is a unimodular matrix with
respect to 0. Again referring to the defining matrix of ¢ = 2 we see that
X = I'mod b. So 6 is in GL,(N; b) by §5.5. So ¢ is an element of Sp,(N; b) with
R=1II. QE.D.

5.6.4. THEOREM. Let o be an integral domain with quotient field F, let M be a
bounded v-module on the regular alternatiry space V over F, let a be a nonzero
integral ideal, let A be a group with

PSp,(M; a) C A C PTSp,(V),
and let n > 4. Let o, F\, M|, V|, a,, A, n, be a second such situation. In the
exceptional situation where F is a perfect field of characteristic 2 and n = 4. ler E,
denote a fixed exceptional automorphism of PI'Sp,(V). Then each isomorphism
A: A > A has exactly one of the forms

Ak =gkg™! VYkeA
or
Ak = g(Egk)g™! VkeaA
for a unique projective symplectic collinear transformation g of V onto V. the

second possibility appearing only in the exceptional situation.

ProOOF. It follows from 5.6.2 that A and A, have enough projective trans-
vections. If n > 6 or char F # 2, apply Theorem 5.3.6. So let n =4 with
char F = 2. Then n, = 4 with char F, = 2, by Theorem 5.3.6. And A and A

99
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have enough projective hyperbolic transformations, by 5.6.3. Apply Theorem
5.440. Q.E.D.

5.6.5. THEOREM. Let 0 be an integral domain with quotient field F, let M be a
bounded o-module on the regular alternating space V over F, let a be a nonzero
integral ideal, let T be a group with

and let n > 4. Let o, F\, M\, V,, a,, T', n, be a second such situation. In the
exceptional situation where F is a perfect field of characteristic 2 and n = 4, let E,

denote a fixed exceptional automorphism of TSp(V). Then each isomorphism ®: T
> I, has exactly one of the forms

bk = x(k)gkg ™! Vkerl
or
bk = x(k)g(Ek)g™! Vkel
for a mapping x of T into RL, (V) and a symplectic collinear transformation g of

V onto V|, the second possibility appearing only in the exceptional situation.

5.6.6. DEFINITION. We say that a free o-module M on V has a symplectic base
if M has a base X which, when viewed as a base for V, is symplectic.

5.6.7. If a is an invertible ideal, then GL,(aM) = GL,(M) and Sp,(aM) =
Sp,(M).

ProOF. For each ¢ in GL, (M) we have oM = M; hence o(aM) C aM, the
same for o~ !, so GL,(M) C GL,(aM). Equality follows from the fact that,
since a is injective, GL,,(aM) C GL,(a~'aM). Finally

Sp,(aM) = GL(aM) N Sp,(V)
= GL (M) N Sp,(V)=Sp,(M). QED.

5.6.8. Let M be a free v-module with a symplectic base on V, let M’ be any
o-lattice on V, and suppose Sp, (M) C Sp,(M’). Then there is an invertible ideal a
such that M' = aM. And in fact Sp,(M) = Sp,(M’).

PROOF. Let X = {x,, ... . x,} be a symplectic base for M. So

M=ox + - +ox,
Let ¢; (I < i < n) denote the coefficient of x; with respect to M’. So each ¢, is a
fractional ideal and

Ogx + - +,x, C M.
We shall prove that ¢, = - - - =¢,, and then that the above inclusion is an
equality. Once this is done we will be through since a =¢; = - - - =, will be
invertible by 5.5.4, and
aM =a(ox; + - +ox)=¢x;,+ - +¢,x, =M

and Sp, (M) = Sp,(M’) by 5.6.7.
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So consider ¢, for some i (1 < i < n). Take that j (1 < j < n) for which
g(x;, x;) = = 1. Then
To+x1 € Sp(M) C Sp, (M),
SO
Tx,+x,.l(7xi) EM
for any y in ¢;, and from this we find thaty € ¢, s0¢; C¢. A similar argument
using 7, ., instead of ot shows that ¢, C ¢, for k # i, j. Hence ¢; C ¢, for
all k. Hence ¢; C ¢, for all / and k. Hence ¢; = ¢, for all i and k. Let a stand for
the common value of all the c,.
We still have to show that eachm’ € M isin¢ x; + - - - + ¢,x,. Write
m =px +-- +px, (p; € F).
We must show that each p, is in ¢; = a. Again take j with ¢(x;, x;) = = 1. Then
Tx,,l € Spn(M) Q Spn(M/)’
hence
Toa(m) € M’
hence
m * px. € M’
hence p;x; € M’; hence p; € ¢, = q, as required. Q.E.D.

5.69. If M is a bounded o-module on V, and if g is a symplectic collinear
transformation g. V> V| with associated field isomorphism p: F > F|, then

(1) o* is an integral domain with quotient field F\;

(2) gM is a bounded o"-module on V;

(3) ®,Sp,(M) = Sp, (gM).

Proor. Only (3) really needs proof. Since we already know from §4.2 that
®,Sp, (V) = Sp, (V)), we need only check that &,GL,(M) = GL, (gM). But it
is clear that ®, sends GL,(M) into GL,(gM). Equality then follows by
considering g~ ! instead of g. Q.E.D.

5.6.10. Let M be a free o-module with a symplectic base on V, let M| be a free
o,-module with a symplectic base on V,, and let g be a symplectic collinear
transformation of V onto V| with associated field isomorphism p. Then the following
assertions are equivalent:

(1) @,Sp, (M) = Sp, (M.

(2) ®;PSp, (M) = PSp, (M)).

(3) o* = 0, and gM = oM, for some invertible ideal a, with respect t0 o,.

PrROOF. Express M = ox; + - - - + ox, with X = {x, .. ... x,} a symplectic

nlJ

base for V. The proof that (1) is equivalent to (2) is straightforward. And
(I)gspn(M) = Spn,(gM) = Spn](alM]) = Spnl(‘Ml )
so that (3) implies (1). We must prove that (1) implies (3). We have 7, | €
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Sp,(M); therefore by §4.2
Tgxl‘e]' = ngl.l g—l € Spn,(Ml )’
where £, denotes the multiplier of g. So
e 'q (M, gx1)gx, C My,
50
L6 'q (M), gx,) gx, C M,

for any ¢, in o0y, s0O

Tox, £ert € Spn,(Ml )’
SO
Txvg‘\‘dl = g_ngxhgl":\_lg € Spﬂ(M)’
SO
£ q(M, x,)x, C M,
SO

& x, Eox, + -0 +0x,
SO g;f‘ €0, so £ € 0¥, so o, C o*. Considering g~'
equality, i.e., o, = 0.
To show that gM has the desired form gM = a, M, with q, invertible, observe
that

instead of g gives us

Sp,. (M) = ®,Sp, (M) = Sp, (¢§M) C Sp, (gM)

with gM an o*-lattice, i.e., with gM an o,-lattice, and that M, is a free o,-module
with a symplectic base on V. Apply 5.6.8. Q.E.D.

5.6.11. Let F and F| be perfect of characteristic 2 and let n = n, = 4. Let M be
a free o-module with a symplectic base X on V, let M, be a free o,-module with a
symplectic base X, on V. Let g be a symplectic collinear transformation of V onto
V, with associated field isomorphism p. Let E be the exceptional automorphism of
I'Spy(V) of 5.4.2 (defined with respect to X). Finally suppose that

(®,  E)Spy(M) = Spy(M,).
Then
(1) o* = oy,
(2) ESpy(M) = Spy(M).
3) ‘I)gsp4(M) = Sps(M,).

ProoF. Write X = {x|, x|y, »,} and X, = {x}, x|y}, y3}. Let ¢, denote the
multiplier of g.

Consider the hyperbolic transformation £ = X, ., defined with respect to
X. The matrix of Z with respect to X is clearly integral, and det £ = 1 since X is
in Sp(V), so Z is unimodular, so X is in Sp,(M). Therefore

Tatx,+v.ert = (P, © E)Z € Spy(M,).
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So
T glx +y e € Sp4(M1 )

for any £, in o,. But

(Pe ° E)Zey o7 001 = Teygritmer™

So

Zertoen 0,1 € Spa(M).
So £,"7' € 0. So 0, C o*.

Now consider the hyperbolic transformation

2= 20100 € Spa(My)
defined with respect to X, (primes on the 2’s indicate that they occur in the V|
situation). Then &/ 13’ is a hyperbolic transformation in Sp,(V) since g is
symplectic collinear, so there are a, 8, v, 8 in F with

(I)gza‘ﬂ,y,&l = 2Z10,10:1
by 5.4.5. By 5.4.8 we have
ETx,l = Ea,ﬂ,y,a;l
where x =Va x;, + V8 x, + Vy y, + V8 y,. Then
(@, ° E)7ey = Zlo100 € Spa(M)),

$0 7, | is in Sp4(M), so for any § in o we have 7., in Sp,(M). Hence

Oy spevesn = (@ © E)Tg € Spy(M).
It then follows from a matrix computation using 4.1.9 and the action of @, on
2,8y, that

Dy 2o tpirenit = Zgn04n041
Since this element is in Sp,(M,) we must have {* &€ o,. Hence o* C o,.

We now have o; C o* C 0, so 0¥ = p,, so (1) is true.

If ¢ is any element of Sp,(M) its matrix with respect to X is unimodular:
hence the matrix of Eo is integral, but det Eo = 1 since Eo is in Sp,(V'); hence
Eo also has a unimodular matrix with respect to X; hence Eo is in SpyM):
hence ESp,(M) C Sp,(M); hence

Spa(M,) = (@, ° E)Spy(M) C @,Sp(M) = Sp,(gM).
Here gM is a free 0,-module on ¥, since we already know that o, = o*. But then
Sp4(M,) = Sp,(gM) by 5.6.8. Hence @,Sp,(M) = Sp,(M,). Hence ESp,(M) =
SpM). Q.E.D.
For any even integer n > 2 and any nonzero integral ideal a we define

Sp,(0) = GL,(0) N Sp,(F),
Spn(O; a) = GLn(O; 0) ﬂ Spn(F)
The projective groups PSp,(0) and PSp,(0; a) are, of course, obtained by
applying P. Note that Sp,(0) consists of all unimodular n X n matrices X over o
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which satisfy the equation
0 ’ IH/Z
~1L,| O

X

0 ’1"/2
~L,| 0

while PSp, (o) is isomorphic to this group reduced modulo (7). If M is a free
o-module with a symplectic base on ¥V, then the associated matrix isomorphism
induces

Sp,(M)>>Sp,(0),  Sp,(M: a)— Sp,(o; a),
so projectively we obtain
PSp, (M) > PSp,(0). PSp,(M; a) > PSp,(o; a).

5.6.12. THEOREM(®). Let n and n, be even integers > 4, and let v and o, be any
two integral domains. Then the following statements are equivalent:

) n=n ando = o,.

(1) Sp,(0) = Sp,, (0)).

(2) PSp,(0) = PSp, (0)).

PRrOOF. (0) implies (1) is trivial. To see that (1) implies (2), convert to modules,
apply 5.6.2 and 5.3.7, convert back to matrices. We must prove that (2) implies
(0). Converting to modules gives us a situation

PSp,(M)— PSp, (M, )

with M, M, free with symplectic bases. If there is a projective symplectic
collinear transformation g of ¥ onto V, such that

@,PSp,(M) = PSp, (M,),

then obviously n = n|, and 0 = o, by 5.6.10. So assume there is no such g. Then
by Theorem 5.6.4, F must be a perfect field of characteristic 2 and n must be
equal to 4, and

(q>g o E)PSp,,(M) = PSp, (M,),

for some symplectic collinear transformation g of ¥ onto V|, where E is the
exceptional automorphism of PI'Sp,(}') associated with a fixed symplectic base
for M in the manner of 5.4.3. This of course makes n = n, = 4. It follows easily
that

(P, © E)Spy(M ) = Spy(M,).
Apply 5.6.11. Q.E.D.

5.6.13. REMARK. Let us consider the group of automorphisms of the group
PSp,(0) over an arbitrary integral domain o or, more exactly, of PSp, (M) where
M is a free o-module with a symplectic base X and n > 4. It follows from
Theorem 5.6.4 that every automorphism of PSp,(M) can be lifted to an
automorphism of PT'Sp,(V) (also to one of PSp,(V)). Furthermore, if the
characteristic is not 2, or if the characteristic is 2 and n > 6, or if the

(®)This result is known for fields, new for integral domains.
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characteristic is 2 with F imperfect and n = 4, then every automorphism of
PSp,(M) is induced by a @, for some projective symplectic collinear transfor-
mation g of V. Consider the exceptional 4-dimensional situation over a perfect
field of characteristic 2. Here the automorphisms of PSp,(M) which are induced
by ®,’s form a subgroup of the entire group of automorphisms of PSp,(M); they
are precisely the automorphisms which preserve projective transvections; hence
by 5.4.35 they form a subgroup of index 1 or 2 in the entire group of
automorphisms of PSp,(M); if o is “perfect”, i.e., if 0 = o? where 0? denotes the
integral domain consisting of the set of squares of o, then the mapping E of §5.4
is easily seen to induce an automorphism of Sp,M), so E induces an
automorphism of PSp,(M) which does not preserve projective transvections, so
the ®Ss induce a subgroup of index 2 in this case; conversely, if the
automorphisms of PSp,(M) that are induced by @,’s form a subgroup of index 2
in the entire group of automorphisms of PSp,(M), then it follows from Theorem
5.6.4 that there is a symplectic collinear transformation g of ¥ onto V such that

(®; ° E)PSpy(M) = PSpy(M).
This implies that
(q)g ° E)Spy(M) = Spy(M),

and so ESpuM) = Sp M) by 5.6.11, in particular E>Sp,(M) = Sp,(M).
Consider a typical a in 0. Then 7, , is in Sp,(M). And

2, S =
ETXl,\/" =7 15

X1,

by 5.4.8 and 5.4.9. So 7, Va is in Sp(M). So Va is in 0. So 0* = o. In other
words, in the exceptional case of a perfect field of characteristic 2 with n = 4, the
automorphisms of PSp,(M) which are induced by ®,’s form a subgroup of index 2
in the entire group of automorphisms of PSp,(M) if and only if o is equal to its own
set of squares(®). We will now see that both 0®> = o0 and o® C o are possible.

5.6.14. REMARK. Let us produce a situation 0 C o C F with F perfect of
characteristic 2 and o? = o. Start with a fixed perfect field k of characteristic 2,
let x be transcendental over £, let C be an algebraic closure of k(x). Then

k- xP/¥ = {a-x”/zq|a IS k}

is an additive subgroup of C for any given integers p > 0, ¢ > 0. (Here x'/%,
and so x?/%, are well defined since the characteristic is 2.) Let o be the additive
subgroup
o= > k-xP7
r>04>0

generated by all the k- xP/%. It is easily seen that o is closed under multip-
lication in C, so o is in fact an integral domain in C. It is also easily seen that
0? = 0. The quotient field of o in C will then produce the desired situation
provided we can prove that o is not a field. But x is clearly in o; and if x ' were

(®)This answers a question raised in a paper of mine in 1968.
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in o we would immediately get an algebraic equation over k satisfied by x, which
1s impossible. So o is not a field, as desired.

5.6.15. REMARK. Now let us produce 0 C o0 C F with F perfect of characteris-
tic 2 and o C o. By Remark 5.6.14 we have an integral domain / with perfect
quotient field k& of characteristic 2 such that 0 ¢ J c k and /> = I. Fix a
nonzero nonunit « in I. So

Ocalcal CI
Let x be transcendental over k and let C be an algebraic closure of k(x). Define
o=I1+ X I-a x*7%
p»0,4g>0
This is an integral domain that contains / and is contained in C. Let F be the
quotient field of o in C. Then F contains k; hence F contains the larger integral
domain
k+ X k-xt/%
p>»0,430
This new integral domain is equal to its set of squares; hence F is perfect. We
will be through if we can prove that 0 C 0. Now ax is clearly in o. If 0> = o,
then ax is in 02, so there is an expression
ax = (A4, + aup()cl/z"))2
with 4, in I and ¢(x'/*") a polynomial in x!/%
in 1. Putting t = x!/%,

for some g > 0 with coefficients

ar = (4, + ag(1))’,

so « € a¥l since ¢ is transcendental over k, so af C a*l C al, and this is
absurd.

5.7. Comments
The isomorphism theory of the classical groups over fields was initiated by

O. SCHREIER AND B. L. vaAN DER WAERDEN, Die Automorphismen
der projektiven Gruppen, Abh. Math. Sem. Univ. Hamburg 6
(1928), 303-322,

in which the automorphisms of PSL, were determined over arbitrary commuta-
tive fields. Several years later

L.-K. Hua, On the automorphisms of the symplectic group over
any field, Ann. of Math. (2) 49 (1948), 739-759

extended the theory to symplectic groups in characteristic not 2. Then

J. DIEUDONNE, On the automorphisms of the classical groups,
Mem. Amer. Math. Soc., No. 2, Amer. Math. Soc., Providence,
R.L, 1951,
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C. E. RICKART, Isomorphisms of infinite-dimensional analogues of
the classical groups, Bull. Amer. Math. Soc. 57 (1951), 435448

introduced their method of involutions which was subsequently used by them
and a large number of other authors to determine isomorphisms and
nonisomorphisms among big classical groups. (A big classical group is one like
PSL,(V), PSp,(V), etc.) For finite fields

E. ARTIN, The orders of the linear groups, Comm. Pure Appl.
Math. 8 (1955), 355-365.

E. ARTIN, The orders of the classical simple groups, Comm. Pure
Appl. Math. 8 (1955), 455-472

gave an entirely different argument, based on comparing group orders. to
establish the expected nonisomorphisms. Automorphisms and isomorphisms of
Chevalley groups have been found over various fields in

R. STEINBERG, Automorphisms of finite linear groups, Canad. J.
Math. 12 (1960), 606-615. - ‘

R. STEINBERG, Lectures on Chevalley groups, Yale Lecture
Notes, 1967.

J. E. HUMPHREYS, On the automorphisms of infinite Chevalley
groups, Canad. J. Math. 21 (1969), 908-911.

An isomorphism theory for a wide class of groups that includes big linear and
symplectic groups over infinite fields, as well as big classical groups in the
isotropic case over infinite fields, is provided by

A. BOrREL aND J. Trts, Homomorphismes “abstraits” de groupes
algébriques simples, Ann. of Math. (2) 97 (1973), 499-571.

The first move towards an automorphism theory over rings, in fact for linear
groups over Z, was made by Hua and Reiner in 1951. This was extended to the
symplectic groups over Z in

I. REINER, Automorphisms of the symplectic modular group,
Trans. Amer. Math. Soc. 80 (1955), 35-50.

The automorphisms of standard symplectic groups over arbitrary integral
domains for n > 4 were determined in

O. T. O'MEARA, The automorphisms of the standard symplectic
group over any integral domain, J. reine angew. Math. 230
(1968), 104-138.

The automorphisms of certain groups of integral points of certain split groups
over algebraic number fields were determined by

A. BOREL, On the automorphisms of certain subgroups of semi-
simple Lie groups, Proc. Conf. on Algebraic Geometry, Bombay.
1968, 43-73,
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thereby giving the automorphisms of symplectic groups over arithmetic domains
of number fields as a special case. In

O. T. O’MEARA, The automorphisms of the orthogonal groups
Q. (V') over fields, Amer. J. Math. 90 (1968), 1260-1306,

a method called CDC was introduced which was subsequently used by a number
of authors to find the isomorphisms of several of the classical groups over
integral domains.The automorphisms of subgroups of PSp,(V) with enough
projective transvections were determined in

R. E. SoLazzi, The automorphisms of the symplectic congruence
groups, J. Algebra 21 (1972), 91-102,

for char F # 2 with.n > 6, while

A. J. HABN, The isomorphisms of certain subgroups of the
isometry groups of reflexive spaces, J. Algebra 27 (1973), 205-242

determined the isomorphisms and nonisomorphisms between such groups,
indeed gave a unified treatment including linear, symplectic and unitary groups,
when n > 5. Their methods depend on CDC. So do the methods in my Linear
Lectures. In the summer of 1974, after unsuccessfully trying to adapt CDC to
noncommutative fields, I developed a new approach which is less group-theore-
tic, more geometric, than CDC and which works for subgroups of linear groups
over division rings. These results have appeared in

O. T. O'MEARA, A general isomorphism theory for linear groups,
J. Algebra 44 (1977), 93-142.

I extended this approach to the symplectic group in lectures at Notre Dame
during the academic year in 1974-1975 (these are the notes of the lectures),
thereby extending the isomorphism theory from subgroups of PSp, (n > 6) to
subgroups of PI'Sp, (n > 4). The exceptional automorphisms of the big groups
PSp,(V) over perfect fields of characteristic 2 date back to

J. Tits, Les groupes simples de Suzuki et de Ree, Sem. Bourbaki,
13¢ annee, no. 210, 1960/61, .
Z.-X. WaN aND Y.-X. WANG, On the automorphisms of symplec-
tic groups over a field of characteristic 2, Sci. Sinica 12 (1963).
289-315.

I wish to thank Warren Wong for bringing these exceptional automorphisms to
my attention several years ago, and also for giving me the explicit description of
the monomorphism E of §5.4. The isomorphism theory for subgroups of PI'Sp,
which is developed in §5.4 is new.

L. McQueeN AND B. R. McDoONALD, Automorphisms of the
symplectic group over a local ring, J. Algebra 30 (1974), 485-495,

have moved the automorphism theory of the symplectic group to rings with zero
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divisors. For further references to the extensive literature on the isomorphism
theory see the Linear Lectures and

J. DIEUDONNE, La géométrie des groupes classigques, 3iéme ed.,
Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 5.
Springer-Verlag, Berlin and New York, 1971,

and the survey articles

J. Tits, Homomorphismes et automorphismes “‘abstraits” de
groupes algébriques et arithmétiques. Actes Congres Int, Math.
Nice 2 (1970), 349-355,

O. T. O'MEeARA, The integral classical groups and their
automorphisms, Proc. Sympos. Pure Math., vol. 20, Amer. Math.
Soc., Providence, R.1., 1971, pp. 76-85,

Yu. I. MErzLYAKOV, Linear groups, J. Soviet Math. 1 (1973),
571-593.



6. THE NONISOMORPHISMS
BETWEEN LINEAR AND SYMPLECTIC GROUPS

6.1. The Nonisomorphisms

We continue to consider the symplectic situation of a subgroup A of
PI'Sp, (V) which has enough projective transvections, where V' Is a nonzero
n-dimensional regular alternating space over a field F with underlying form q.

And we introduce the following abstract situation: ¥; will be an n;-dimen-
sional vector space over an arbitrary field F;, and A; will be a subgroup of
PTL, (V) that i Is full of projective transvections. Recall from the Linear Lectures
that a subgroup Ay of PI'L, (V) is said to be full of projective transvections if

> 2 and, for each hyperplane H of V, and each line L C H, there is at least
one projective transvection o in A; with R = Land P = H.

We let A denote an isomorphism A: A>->A;. Our goal is to show that,

generally speaking, A does not exist.

6.1.1. Let ny > 3 and F; # F,. Then for each hyperplane H in V5 and euch line
L C H there are at least two distinct projective transvections in Ay with residual
line L and fixed hyperplane H.

PROOF. See 5.2.8 of the Linear Lectures. Q.E.D.

6.1.2. Suppose n > 4, ny > 4. Let 7 be a transvection in Sp,(}') that is
projectively in A, and let k| be an element of T'L, (V) with AsT = k. Suppose
there is a transvection 7| in GL, (V5) that is projectively in Ay such that ¢, =
kyrik 't has residue 2 with R, N P, = 0. Then k, has a represeniative in
GL, (V3) with residue 1.

PROOF. (1) Pick k in T'Sp, (V) with Ak = 7, and put

o= 71hkr k!
so that
A6 =0,
By hypothesis R, is a plane, and P, is an (n; — 2)-space, and R, » P, = 0. And
the equation ¢ = 7kr 'k ~! shows that R is either a line or plane containing the

111



112 0. T. O'MEARA

residual line of 7. By Theorem 1.7.3 we know that o, is not a big dilation; so any
element of I'L, (V3) which permutes projectively with o, will also permute with
a;, by 4.1.10. And any element of 'L, (V') that permutes projectively with ¢ will
also permute with o.

(2) If L, is an arbitrary line in P|, and if H, is an arbitrary hyperplane of V;
which contains L, and R, and if we pick a transvection 7, 5 in SL, (V;) that is
projectively in A; and has spaces L; C H,, and if j is an element of I'Sp, (V) for
which Aj = T, .u, then jP = P and j moves at least one line in P. The proof of
all this is almost identical to the proof of step (2) of 5.2.1.

(3) Given any line L, in P, and any hyperplane H, of V5 which contains L,
and R, there are elements o, and o5 with Ao, = 4, such that

0, €ESp,(V), o3 €SL, (V3),

62 E A, 63 e A3’

¢, not big dilation, o, not big dilation,

res o, = 2, 1 <resoy < 2,

R, C P, R; C Pyand P, D R,

L, C RyorHy = Py,
H D PyorL, =R,

To see this, pick 7, , andj as in step (2). Then jP = P and jL # L for some
line L in P, by step (2). Let T, be a transvection in Sp, (V) that is projectively in
A and has residual line L, let J, be a representative in I'L,, (V5) of AT,. Then

_ o 1l-1 — -1 —1
o, =jT, T, 03 = TL,.H,JITL‘.H‘JI ,

have the desired properties.

(4) Let us show that &, stabilizes P, and R,. Pick o, and o5 as in step (3) (for
any choice of L, and H,). Then R, C P implies that r permutes with g,; hence
k, permutes with o;, so k, stabilizes R,. In particular k, stabilizes a nonzero
subspace of P,. Let W, be any nonzero subspace of P, that is stabilized by &,. If
W, = P, we have k P, = P,. Otherwise 0 C W, C P,. It is easily seen that
there is a transvection in SL, (V;) that is projectively in A;, that permutes with
6,, and that carries R; outside W, (but still in P;). Conjugating o; by this
transvection and carrying things back to Sp,(V) in the usual way, we obtain a
new situation L;, H{, d, 63, etc., as in step (3), with R; € W,. Then k, stabilizes
W, and R;, i.e., stabilizes a subspace of P, that is larger than W,. So k, stabilizes
P,. To prove that k, stabilizes R,, proceed in an analogous way, working with
spaces that contain R, instead of with spaces that are contained in P,.

(5) We shall now show that &, stabilizes all lines in P,.

(5a) First let n; > 5. Let L, be a typical line in P,. If k, stabilizes all
hyperplanes H, of V, containing L, and R,, then k, stabilizes all resulting
H, n Py, so k, stabilizes all hyperplanes of P, containing L,, so k, stabilizes L,.
We may therefore assume, for the sake of argument, that there is a hyperplane
H, of V5 which contains L, + R,, but which is not stabilized by k,. Let o, and
05 be associated with L, and this H, in the manner of step (3). Then 7 permutes
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with ¢,, and this leads to k;R; = R; and k,P; = P,. Since H, is not stabilized
by k, we must have H, # P;, and hence L, C R, by step (3). It is easily seen
that there is a transvection in SL, (¥3) that is projectively in A,, that permutes
with ¢;, and that carries R; to a subspace of P, which intersects R; in L,.
Conjugating o5 by this transvection and carrying things back to Sp, (V) in the
usual way, we obtain a new situation L}, H|, 6}, 03, etc., as in step (3), with
R; N Ry = L,. Then k, stabilizes R; as well as R;; hence k| stabilizes L,, as
required.

(5b) Next consider n; = 4 with F; # F,. Proceed as in step (5b) of the proof
of 5.2.1. Use 6.1.1.

(5¢) Now n; = 4 with F; = F,. In this situation PT'L(V;) = PSL(V;) = A,,
so card A; = 3-(8!). Therefore card A = 5 -(8!). This is impossible by 5.1.4.

(6) So k, stabilizes all lines in P|. So k| is a radiation on P. Replacing &, by
another representative of k, therefore allows us to assume that the k, in the
statement of the proposition is such that (k,[P)) = 1, . In particular, &, is an
element of GL, (V5) with 1 < res k; < 2. If res k) = I, we are through. There-
fore assume that res k, = 2. The residual space of k, is therefore the plane R,. If
k, were a big dilation, then k,7,k; 'z could not have residual space R,. So k,
is not a big dilation. So k; moves a line K in R,. Let H| be a hyperplane of ¥,
which intersects R, in K| and P, in a hyperplane of P,. Let L] be a line

in K, + (H{ n P)) that falls neither in K, nor in (H; N P,). We find

L] C H|,
k\Ly# L. kH # H|
kL g H|, Ly Z kH|,
whence
dim(L; + & L}) =2, dim(H| N kH{)=n; — 2.
and

Vy= (L) + kL)) ® (H] O ke HY ).
Let 7} be a transvection in GL, (¥;) which is projectively in A; and which has
spaces L; C H|. Then it is easily verified that the residual and fixed spaces of
o) = ky(t)k,; (1) 7" are, respectively.
R{ = (L} + kL)), Py =(H{n kH{).
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The statement of the proposition therefore applies to the 7, k;, 7i, o situation.
Therefore, by step (5), k, is a radiation on the (n; — 2)-space (H| N k{H;). This
space 1s distinct from the (n; — 2)-space P,. This clearly implies that res k; = 1
if n; > 5; and that k, is a big dilation or has residue 1, hence has residue 1,
when n, = 4. Q.E.D.

6.1.3. Suppose ny > 3. Let k, be any element of 'L, (V) that moves a line L, of
Vy. Then there is a hyperplane H, of Vy containing L, such that for every
transvection 7, in GL, (V3) with residual line L, and fixed hyperplane H,,
o, = k,mk; 7V is an element of GL, (V) of residue 2 with Ry = (L, + k,L,)
and Ry n P, =0.

PROOF. Pick a hyperplane H, of V| such that L, C H,, k,L, ¢ H,, k]'L, &
H, (why possible?). We have
L, ZkH, H, #kH,
and
dim(L, + kL) = 2, dim(H, N kH,) = n; - 2,
and
Vy=(L,+ k\L))® (H, N kH,).
Any 7, with spaces L, C H, will satisfy the required conditions. Q.E.D.

6.14. Suppose n > 4, ny > 4. Let 1 be a transvection in Sp,(V) that is
projectively in A. Then A7 is a projective transvection in A,.

Proo¥. Suppose if possible that we have a 7 for which A7 is not a projective
transvection. We will show that this will lead to a contradiction. Of course  is
nontrivial. Let L be its residual line. By 6.1.3 and 6.1.2 there is a k, in GL,, (V5)
with res k; = 1 such that k, = A7 € A;. By our hypothesis k, is not a trans-
vection, so, by 1.3.8, V; = L, @ H, where L, denotes the residual line of &, and
H, denotes its fixed hyperplane. Let I denote a set of indices labelling the lines
L, (i € I) of H,. It is easily seen that if we commutate k, with a transvection in
GL, (V) with spaces I, C H, that is projectively in A; we obtain a transvection,
call it 7, that is projectively in A; and whose spaces are L, C H,. Carrying this
commutator back to I'Sp, (V) in the usual way we obtain an element o; with the
following properties:

0, ESp(V). & EA
g; is not a big dilation,
R, is a regular plane,
V=RLP, LCR,
Ao, = 1.
Let us show that all R; (i € I) must be equal. Consider a, 8 in I. Then 74

permutes with 7,; hence o, permutes with o,; hence o4 stabilizes R, and P,. If
(03 P,) = 1, we are through. If not, then res(ag|R,) is 0 or 1 and so, since
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L C R, N Ry, res(og|R,) =1. This makes res(og|P,) =1. But then R, is
degenerate, which it is not. So (ag|P,) = 1,, i.e, Ry = R,, as required. Of
course this makes all P, (i € I) equal too.

Now let 7, be a transvection in Sp, (V) whose residual line X is a typical line
in P; and which is projectively in A. Let kx be a representative in I'L, (V3) of

!

A1y. Then by standard methods

Ll
Hl
R, P;

ky stabilizes all L, (i € I). So in fact we can assume that k, stabilizes H, with
(kg|H)) = 1y Now T, permutes with 7 since K and L are orthogonal. so all &,
permute with k,, so all k, have fixed space H, and residual space L,. This
implies that all k; permute as K runs through P,. But all 7 clearly do not. So we
have our desired contradiction. So A7 is indeed a projective transvection.
Q.E.D.

6.1.5. A does not exist when n > 4, ny > 4.

PrROOF. We suppose that A does exist and we show that this leads to a
contradiction. In what follows we will construct nontrivial transvections 7. 1,, 74,
¢ that belong to Sp, (V), that belong projectively to A, and whose residual lines
will be written L, L,, L,, L,. And we will construct transvections 7,. 7,. 75, 7, that
belong to SL, (V73), that belong projectively to A,, with spaces

L CH, LyCH, LsCH, L,CH,
and such that
Ar=1, Ar,=1;, AT,=175, ATq=T1,

Pick 7 in any way at all (but subject to the above specifications. of course). By
6.1.4 we have a 7, (again as above) such that A7 = 7,. Define 7, by conjugating
T, by a suitable transvection in such a way that

L #L,CHy;=H,
and then define 7, by pulling this conjugation back to Sp, (V). It

L, L

Hy =H,

follows from the fact that 7, permutes with 7, that g(L,. L) = 0. Now construct
75 from 73, and then 7, from 7, by a similar construction. in such a way that

L= L, L g H.

Then 75 permutes with 7, but not with 7,; from this it follows that
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H

q(L4, Ly) = 0 and g(L,, L) # 0. Now let 7, be any transvection (of the above
form) for which L, is orthogonal to the regular plane (L, + L), but not to the
line L,, and then define 7, by A7, = 7, {use 6.1.4 again). Since 7, permutes with
7, we have r, permuting with 7, so

L, C H = Hy
similarly

H7 ; [45 = 143:
but then 7, permutes with 75, so 7, permutes with 7,. so ¢(Lg, L)) = 0, i.e., Lg is
orthogonal to L,, and this is absurd. Q.E.D.

6.1.6. A does not exist when n > 4, ny = 3, and Ay C PGL,4(V5).

PrOOF. We assume that A does exist and we show that this leads to a
contradiction. If F; = F,, then card A; = 168, so card A = 168, and this is
impossible by 5.1.4. Therefore we can assume from now on that F; # F,.

(1) Let us show that we have elements o and g, with Ag = g, such that

o € Sp,(V), o, € SLy(V;),

g EA, 5] S A;u

R regular plane, R, plane, P, line,
R,NnP =0

o, not big dilation.

Pictorially, then, we are looking for

R P R,

(la) Pick a transvection 7 in Sp, (V) that is projectively in 4, and fix it. Then
pick k, in GLy(V;) with A7 = k. Since k, is nontrivial there will be a line
L, = Fsain Vywith kL, # L,. Pick a hyperplane H, of V5 such that

L, CH, kL gH, k'L gH,
(why possible?). We have
L,z kH, H, % k/H,
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and
dim(L, + k,L,) =2, dim(H, 0 k,H,) =1,
and
Vi=(L, + kL)® (H, N kH,)).

(1b) Let p be a linear functional describing the hyperplane H, of }';. Of course
there are several nonzero a in L, for which 7, , € A, since A, is full of projective
transvections. We claim that there is at least one such a for which 4, does not
permute projectively with fa_pklqup'. Suppose this does not hold for a first choice
of a. Then there is a scalar « in Fj such that

-1 _ —1_-17
lea.pkl Ta,p =T kl 1'u.p/‘l’

a’ap

Tiyapki ' T—ap = TaTapT -k apk,:

Hence
(a = 1)x + ((« + 1)(px) = a(pk,x)(pk; 'a))a

+ ((px)(ok, 'a) — (ki 'x))kya = a(pk x)k; 'a.

for all x in V5. Putting x = a shows that a, k,a, k{ 'a are dependent, i.e.. they all
fall in a plane; taking x outside this plane shows that a = 1; so

(2(px) — (pk,x)(pk[ 'a))a + ((px)(pki 'a) ~ (pky 'x))k,a = (pk,x )k 'a.

Since F; # F, we can replace a by Aa for some A 5 0, 1, by 6.1.1. The last
equation, along with its counterpart for Aa. then yields

(ok,x)(oky 'a) = Nok x)(pk|” la)’

and this is absurd since A % 1 and pk; 'a # 0. Therefore, if @ does not work, Aa
will. Our ciaim is established.

(Ic) We now have a linear functional p describing H, and a nonzero vector «
in L, such that 7,, € A; with k; not permuting projectively with 7, k~ ‘Tafp'.
Choose & in I'Sp, (V) with k in A and Ak = 7, . Define

e Py — R
o =Tkt 'k, 0,——1\,70'/,1\1 Tap -

It is easily verified, using standard arguments, that ¢ and ¢, have the properties
desired in step (1).
(2) Note that

char F=3=0; # I;

for the equation 67 = 1 implies 6> = 1: hence (6|R)* = 1: hence (o|R) has | a4
a characteristic root; hence res ¢ < 1. and this is absurd.

(3) Let 7, and 7, be transvections which belong to Sp,(V), which belong
projectively to 4, and whose residual spaces are nonorthogonal lines in P. Pick
ky and kg in GLy(V;) with A7, = 4,
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W

and Aty = k_5 If char F + 3, then 73 and 7 are transvections with residual
spaces L, and L,; so 7, and 7, permute with o, but 'rz and 74 do not permute
with each other; so k, and k permute with &,, but k3 and k2 do not permute
with each other; so k3 and k2 permute with o, (use 4.1.11) but not with each
other. This is impossible by 1.2.4, If char F = 3 proceed in the same way. This
time we find that k, and k5 permute with &, but not with each other; so k, and
ks do not permute with each other. If k; did not permute with ¢,, then
kyo,k; ! = {o, for some { in F; with { # 0, 1 and {® = 1. This implies that o,
has characteristic roots 1, {, {? in F,. From this it follows that o7 = 1, and this is
impossible by step (2); so k; does permute with o,; similarly for ks; so k; and ks
are elements of GL,(¥;) which permute with ¢, but not with each other. This is
impossible by 1.2.4.
We have our desired contradiction. Q.E.D.

R,

6.1.7. A does not exist whenn > 4, ny = 2, and A; C PGL,(V5).

Proor. Pick elements o and o, with Ag = g, such that
a € Sp, (V). o) € GLy(V3),
g E A, 0, € A,
R regular plane.

Pictorially, we are looking at

U=, Uy

Let 7, and 1, be transvections which belong to Sp,(¥’), which belong projec-
tively to A, and whose residual spaces are nonorthogonal lines L, and L, in P.
Pick k3 and ks in GL,(V;) with A7, = k; and A7, = k. If char F % 2, then 7}
and 75 are transvections with residual spaces L, and L,; so 7, and 7, permute
with o, but 73 and 72 do not permute with each other; so k; and k5 permute with
a,, but k2 and k5 do not permute with each other; so k3 and k2 permute with o
(use 4.1.11) but not with each other. This is impossible by 1.2.4. If char F = 2
we find that &, and ks permute with &, but not w1th each other; so k; and ks
permute with crl but not with each other: but > # 1 since char F = 2, so
of & RL,(V,); again impossible by 1.2.4. Q.E.D.

6.1.8. THEOREM. A projective group of symplectic collinear transformations which
has enough projective transvections and whose underlying dimension is > 4 cannot
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be isomorphic to a projective group of collinear transformations (resp. linear
transformations) that is full of projective transvections and whose underlying
dimension is > 4 (resp. > 2).

We now extend the nonisomorphism theorems to the nonprojective case.
Accordingly consider a subgroup I' of I'Sp, (V') with enough transvections, and
a subgroup I'; of T'L, (V) that is full of transvections. Recall from the Linear
Lectures that a subgroup I'y of I'L, (V) 1s said to be full of transvections if
ny > 2 and, for each hyperplane H of V; and each line L C H, there is at least
one transvection o inI'; withR = Land P = H.

We let & denote an isomorphism &: I'>—I';. Our goal is to show that,
generally speaking, ® does not exist.

Note that T =Pl is a subgroup of PI'Sp,(V) that has enough projective
transvections, and T'; = PT'; is a subgroup of PT'L, (V) that is full of projective
transvections. The preceding nonisomorphism theory therefore applies to I' and
L.

6.1.9. ® naturally induces an isomorphism of T onto I_’3 whenn > 4, ny > 3.

PrOOF. It is enough to verify that ®T n RL,) = T; N RL,.

(1) First let us verify that &I N RL,) C T'; N RL, . Suppose to the contrary
that there is a radiation r in I' such that ®r is a nonradiation in [';. Put
®r = k. Then k, moves a line L, in V5. So using 6.1.3 we can find elements ¢
and o, with ®¢ = o, such that

o €I'nGSp(V), ¢ €TynSL, (V3),

R, plane,

R, nP =0,

L, C R,
By suitably conjugating on the right and pulling things back to the left, we can
find another pair o', o] with the same properties as the pair o, 0. and such that

R,NR/ =1L,
Then r permutes with ¢ and ¢’; hence k, permutes with o, and o}; hence k,
stabilizes R, and R;; hence k, stabilizes L, and this is absurd. So indeed
oI N RL,) C I3 NRL,,
(2) Conversely, consider r; in T'; N RL, and suppose, if possible, that o',

= kisnotin RL,. Then kK moves a line L in V. Let 7 be a transvection in " with

residual line L. Putting 6 = 7k7 "'k ! shows that we have elements ¢ and o,
with ®o = o, such that

cel'nSp(V), o,€Tl,nGL, (V3),
R plane,
L CR.

By suitably conjugating on the left and pushing things to the right we find
another pair o', ¢, with the same properties as o, 6,, and such that R 0" R’ = L.
Then r; permutes with 6, and o}; hence k permutes with ¢ and ¢": hence &
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stabilizes R and R’; hence k stabilizes L, and this is also absurd. So ®~'(T; N
L,)STNnRL, QED.

6.1.10. ® naturally induces an isomorphism of T onto f3 whenn > 4, n, = 2, and
Iy € GLy(V3).

PROOF. Again it is enough to verify that &' N RL,) = I'; n RL,.

(1) In order to see that ®(I' n RL,) C I'; N RL,, consider r €I N RL,. Let
7, and 7, be transvections in I" with nonorthogonal lines. Then 7, and r, permute
with 7 but not with each other. So the elements ®7, and ®r, of GL, permute
with ®r € GL, but not with each other. So ®r € RL, by 1.2.4.

(2) Conversely consider 7, in T; N RL,. Then r, is in the center of T}, so ®~'r,
is in the center of T, so ®'r, permutes with all transvections in T, so &~ 'r,
stabilizes all lines in V, so ® ', is in RL,, i.., (P_‘(F3 N RL,) CT nRL,.
Q.E.D.

6.1.11. THEOREM. A group of symplectic collinear transformations which has
enough transvections and whose underlying dimension is > 4, cannot be isomorphic
to a group of collinear transformation§ (resp. linear transformations) that is full of
transvections and whose underlying dimension is > 4 (resp. > 2).

Recall from the Linear Lectures that if M, is a bounded o;-module on V,
where 0; is an integral domain with quotient field F;, and if a5 is a nonzero
integral ideal, then SL, (M;;a;) is full of transvections if n; > 2. We also know
that in the analogous alternating situation, Sp,(M; a) has enough transvections.
We therefore have the following special case of Theorems 6.1.8 and 6.1.11.

6.1.12. THEOREM. Let n > 4 and n, > 2 be natural numbers, let 0 and o, be any
two integral domains with quotient fields F and F,, let a and a, be nonzero integral
ideals with respect to 0 and o,. If A and A, are groups such that

PSp,(0; a) C A C PSp,(F),
PSL, (05 ay) C 4, C PGL, (Fy),
then A is not isomorphic to A,. If T and T'| are groups such that
Sp.(0; a) C ' C Sp,(F),
SL, (03 ay) C T, C GL, (Fy),

then T is not isomorphic to T',.
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