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THEORY OF NON-COMMUTATIVE POLYNOMIALS.*

By OysTEIN ORE.

In the present paper I have tried to give the principal results of a general
non-commutative polynomial theory. The polynomials considered have
coefficients in an arbitrary commutative or non-commutative field, while
the multiplication of polynomials is so restricted that the degree of a product
is equal to the sum of the degrees of the factors. In this form the theory
contains not only the equations studied in non-commutative algebras but
also most of the linear operational equations of analysis as, for instance,
linear differential and difference equations.

One could have deduced this theory using the theory of moduli studied
by Noether and Schmeidler." One would then have to study the residue-
classes of non-commutative polynomials; these form a generalized Abelian
group according to the terminology introduced by Krull,® and there exists
a correspondence between the structure of this generalized Abelian group
and the corresponding polynomial such that the properties of a polynomial
can be deduced from the general theorems on generalized Abelian groups.
I have preferred, however, to build up the theory directly, that is, to use
only the properties of the polynomials themselves as, for instance, in the
ordinary polynomial theory. This seems preferable for various reasons.
It makes the theory independent of the more general theory and it brings
out more clearly some of the specific properties of polynomials.

In Chapter I, section 1, one finds the principal properties of the two
operations comjugation and differentiation defined by means of the rules
of multiplication. In section 2 the Euclid algorithm is introduced; of
particular interest is the formula for the least common multiple for non-
commutative multiplication; one also finds a construction of a quotient-field
for general polynomials. Sections 4 and 5 are devoted to the transformation
of polynomials, a very important notion which is characteristic for the
non-commutative polynomials. In section 6 the connection between left-hand
and right-hand divisibility properties is considered. The general theorems
about the structure of non-commutative polynomials then follow in Chapter II.

* Received December 7, 1932.

! E. Noether and Schmeidler, Moduln in nichthommutativen Bereichen, insbesondere aus
Differential- und Differenzenausdriicken, Math. Zeitschrift 8 (1920), pp. 1-85.

2 W. Krull, Uber verallgemeinerte endliche Abelsche Gruppen, Math. Zeitschrift 23 (1925),
Pp- 161-196. Theorie und Anwendung der verallgemeinerten Abelschen Gruppen. Sitz.-Ber.
Heidelberger Akademie 1926.
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CuarTER L
Fundamental Properties.

1. Multiplication. In the following let K denote an arbitrary commutative
or non-commutative field with an arbitrary characteristic p in the sense of
Steinitz. The objects of our investigations are then the formal polynomials

(1) F(x) = apa™+ a2 1+ - - 4 an,

where the coefficients a belong to K while # is a formal variable or
symbol. Let
(2) G(x) = boxm+ blx’"—l—l—---—l—bm

be a second polynomial of the same kind; the sum and difference F'(x) + G (x)
is defined as the polynomial one obtains from (1) and (2) by adding or
subtracting corresponding coefficients. The polynomial ¢, F (x), where co
is an arbitrary element of K, is the polynomial one obtains from F(x)
by multiplying all coefficients on the left with ¢o. The polynomials (1) there-
fore form an additive Abelian group with K as domain of multipliers.
When a, + 0 the number n is said to be the degree of F(x). F(x) is
said to be reduced when ay, = 1.

We shall now define multiplication for the additive group formed by
the polynomials (1) so that the group is made a ring. We assume that
the multiplication of polynomials shall be associative and both-sided
distributive. One can obtain a definition satisfying these conditions in
an infinite number of ways, but we shall here further limit the possibilities
by means of the following postulate:

The degree of a product shall be equal to the sum of the degrees of the
Jactors.

It is clear that, due to the distributive property, it suffices to define
the product of two monomials ba”-az’, or even more specifically, to
define the product z-a. According to our assumption one must have

3) x-a = ax+d,

where @ and o’ are elements of K. We shall call a the conjugate and
a the derivative of a. It follows from our postulate that « = 0 only
when @ = 0. We can introduce higher conjugates and derivatives and
we shall use the notation
a=aV G =qa? ... q" ... d=a,a =a® -, am, ...
From (3) one easily obtains B
z(a+b) = (@+bz+a'+V,
xz(ab) = abx+ab +a'bd.
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This leads to the following rules for the conjugates and derivatives of
a sum and a product:

4) (m) = E+g’ ab = ab,

(B) (a+b) = d+V?, (ab) = ab'+a'd.
One also obtains

(6) gl = E_l, (@)= —a ‘a’a

It may not be superfluous to mention a few special cases which often
appear in the applications. In the common non-commutative theory of
polynomials one assumes that the variable x is permutable with the coef-
ficients with the result that

a = a, a = 0.
In the theory of linear differential equations K is commutative and @ = a
so that
) (a+b)= a'+7?, (ab) = al'+a'b,

and the derivative has the ordinary properties of a derivative. It is
therefore possible to introduce the notion of a derivative into non-
commutative fields, letting it satisfy the relations (5). We mention finally
that in the theory of difference equations one puts a'= 0, though @
usually is different from a.

The special properties of the operations @ and a' will not be discussed
further; this can be done by the metliods of the abstract theory of fields.
Only a few almost trivial facts will be mentioned.

THEOREM 1. Through the correspondence a — a one obtains a homeomorphism
in K, the elements a form a subfield K of K.

This follows immediately from (4), (5), and (6). The correspondence
between K and the conjugate field K is a one-to-one correspondence, for
from @ = b, where a ¥ b, it follows that z(a — b) has the degree zero.

One also observes, using (4), (5), and (6), that those elements for which
a = a form a new field K® which we shall call the invariant field of K.
When « is an element of K™ one obtains

!
za = ax+a,

and for the elements of the invariant field one has the same rules of
operation as for the ordinary linear differential polynomials.
THEOREM 2. Those elements a for which o' = 0 form a field K© which
we shall call the constant field of K.
For if a'= b'= 0, then
(a+b)'= 10, (ad)=0, () =0.

For an element of the constant field, za = ax. This leads to
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THEOREM 3. The elements permutable with x form a field which s the
greatest common subfield of the invariant field and the constant field.

If one wants to determine those elements of K which are permutable
with all polynomials F'(x) one easily finds that they form a field which
is the greatest common subfield of K@, K® and the center Z of K.

When one repeats the multiplication (3) one obtains

2% = ax*+ (a’'+a)x+4a”,
x3a — ﬁx3+(ﬁ,+7+?)x2+ (Ell_i_al_l_m)x_i_aln,

and, in general,

(8) 2"a = Spo(a)x™+ Sn1 (a)x'l_l+"'+Sn,1z(a),
where

9 Sn,O (a) = a™, Sa,n (@) = a™,

and

(10) Sni(@) = (@74 (@) ",

n

Sn,i (@) denotes the sum of the (2) elements which one obtains when a

is conjugated n»—i-times and differentiated i-times in an arbitrary order.
For an arbitrary product one obtains finally

(11) G () F(x) = ™t cant™ 1+ ...+ cntm,
where
(12) Co — bO a[u"‘]

when G (x) and F(x) are defined by (1) and (2), and, in general,

(13) 6= 22;; ba ﬂ;o Sm—a, i—e—p (ag).

2. The Euclid algorithm. When F(x) = D, (x) D, (x) we shall call
Dy (x) a right-hand and D, (z) a left-hand divisor of F(x). The congruence
F(x) = G(x) (mod M(x))

denotes that F'(x) — @ (x) is divisible by M (x) on the right, while
(mod M (x)) F(x) = G (x)
indicates that this difference is divisible by M (x) on the left.
When F'(x) and G (x) are given by (1) and (2), and n = m, the difference
(14) Fi(x) = F(z)— a(b )" ™z" ™" G (2)

is of degree lower than n. It follows that one can always perform a
right-hand dzvesion

F) = Q@) @@+ B (),
where Q(x) is of degree n — m and the degree of R (x) does not exceed
m — 1. One furthermore concludes that a Euclid Algorithm
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Fil@) = Q@ Fy@) — Fi),
@ = Q@ Fi@ HF (o),

Fos@ — Quos(@) Fas(@+ Fal@),
Fr1(x) = Quoi(x) Fy,(x)

exists for two arbitrary polynomials Fj (x) and F; (x).
It follows from the Euclid Algorithm that there exists a unique, reduced,
greatest common right-hand divisor or cross-cut

D(z) = Fo(x) = (Fl (-77); F; (2)),

where of course F, (x) is assumed to be reduced. A further consequence is
THEOREM 4. When C () is divisible by the cross-cut D(x) of Fy (x) and
F (x) one can determine polynomials A, (x) and As (x) such that

(16) As () Fy (z) + 4; @) F; (v) = C ().

When D(x) = 1 we say that F|(x) is relatively prime to Fy(x). From
Theorem 4 one obtains
THEOREM 5. When Fi (x) is relatively prime to Fs (x) the congruence

(17) Y(z) Fi (z) = C(z) (mod F; (»))

always has a solution Y (x) for an arbitrary C(x).

We have here considered only right-hand divisibility; it should be observed
in the following that when the type of divisibility is not specified, right-
hand divisibility is always implied.

Left-hand division differs from right-hand division in that it cannot always
be performed. If one wants to determine, as in (14), an element % of K
such that

(15)

Fi@ = F@)—G @) karm

is of degree less than n, then one obtains for the determination of %,
according to (12), ap = bok™. From this condition it follows that one
can determine % in general only when each element ¢ of K is also an
element o of K.

THEOREM 6. In general, left-hand division can be performed in K only
iof the correspondence a—a is an automorphism of K.

When this condition is satisfied there exist a left-hand Euclid Algorithm,
a unique left-hand cross-cut, and theorems analogous to Theorems 4 and 5.

We point out that every polynomial

H(x) = x"by-+ 2" 10, +-- -+ 2by14bn
with the coefficients as right-hand multipliers can be written according to
the definition of multiplication as
H(z) = Bya®+ Bia" '+ ..+ By_1z+ Ba
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with left-hand coefficients. According to (8) one obtains the following
expressions for these coefficients:

(18) B; = Sn,i (bo) ‘l‘ Sn—l, i—1 (bx) + v + Sn—i,o (bi) .

One can ask, however, whether inversely every polynomial with left-hand
coefficients can always be represented as a polynomial with right-hand
coefficients. One directly obtains

THEOREM 7. The necessary and sufficient condition that every right-hand
polynomial be also a left-hand polynomial and every left-hand polynomial
be also a right-hand polynomial is that K = K.

If one denotes the inverse conjugate of a by a1 it follows that
a1 = gq,

(19) axr = za—1 — (a1,
and, in general,
ax® = 2" Ty o(a) — 2" 1 Tphy,1(a)+- - -+ (— 1)* Ty n(a),

where the 7%, ; (a) are constructed from the inverse conjugates and derivatives
in a way similar to that by which the Sy ;(a) were obtained from the
conjugates and derivatives of a.

3. Union and quotient field. Let 4(x) and B(x) be arbitrary poly-
nomials; the reduced polynomial M (x) of lowest degree which is right-
hand divisible by both A(x) and B(x) will be called the right-hand union
of A(x) and B(x) and will be denoted by

(20) M(x) = [A(x), B(x)] = 4, (x)- B(x) = B (z)- A(x).

It is obvious that if the union exists it must be uniquely determined.

We shall now show that the existence of a Euclid algorithm implies
the existence of not only the cross-cut but also the union of two polynomials.
We shall also show that the Euclid algorithm gives an explicit formula
for the union; this result holds for arbitrary non-commutative domains
with a Euclid algorithm, but the formula for the union does not seem to
have been observed even in special cases. We want to prove

THEOREM 8. When a FEuclid algorithm of Fy (x) and Fy(x) of the form (15)
is given, then the union of these polynomials is given by the formula

[F} (x), F3(x)] = aFn(x) Fo(x)™ Faa(x) Fpa(x)™---
- Fy () Fy(x) Fy () F5 (x)7! Fy ().

The constant a must be chosen so that the union is reduced.

In order to prove Theorem 8 we first deduce a necessary property of
the union.

THEOREM 9. When
(22) A(x) = B(x) (mod C(x))

(21)
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then
(23) [4(x), C@)] = k[B(x), C(x)]- B(x)™- A(x).

If the H () of A(x) and C(x) exists, then one must have H(x) = C, (@) A(x),
and C;(x) is the polynomial of lowest degree such that this product is
also divisible by C(x). According to (22) one has

. A(x) = B@)+ Q(z) C(x)
and one obtains

H(z) = Ci(x) Ax) = Ci () B(x) + C1(2) Q) C(x),

and the product C,(x) B(x) must be divisible by C(x).
The lowest degree of Cj(x) is therefore obtained when

and this relation obviously gives (22).

When the formula (23) is repeatedly applied to the union [F} (z), F; ()],
it follows according to (15) that if the union exists it must have the
form (21). It therefore remains only to show that the right-hand side
of (21) is a polynomial which is divisible by both F,(z) and Fj(x).

We prove this by induction; let

9i (x) = Fp1 (x) F (x) ! Frs (2) - - - Fi ().

It follows from the last equation (15) that ¢,y (z) = F,— (x) is integral
and divisible by both F,_; (x) and F, (x). Let us therefore assume it has
already been shown that ¢;4 (x) is integral and divisible by Fj.; (z) and
Fiis(x). It is then obvious that

9i () = 9it1 (@) Fips ()71 F; (2)

is integral and divisible by F;(z). In order to prove the divisibility by
Fit1 (x) we observe that
Fi(x) = Qi (@) Fip1 (@) + Fiy2 (x)
and consequently that
9i (x) = 9it1 (@) Fiyz (@) Q: (@) Fity (@) + 9it1 (2).
This shows the divisibility by Fj4; ().

From (21) it follows furthermore that when the degrees of F} () and
F3 (x) are m; and ny respectively, the cross-cut being of degree d, the
union must be of degree n, + ns — d.

In the following let d4,p denote the degree of the cross-cut (4 (x), B (x))
and let ps,p denote the degree of the union; we have shown then that

(24) a+ 8 = pap+ 043,
where o and 8 are the degrees of A (z) and B (z).
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For an arbitrary number of polynomials one defines the union

in a corresponding manner. Among the more important properties we
observe that

(25) [4 (x), [B (), C(@)]] = [[4(x), B (2)], C(x)]
and that
(26) (4 (x), B (z), D (x)] = [4(»), B ()],

where D (x) is a divisor of [4 (x), B(x)]. Further,
(27) d*+# (A (x) D (), B (z) D (x)] = [4 (z), B ()] D (%),

where d, is the highest coefficient in D (x) and wpa,p is the degree of
[4 (), B @) B

When left-hand division can be performed, that is, when K = K in
accordance with Theorem 6, it follows in the same way that also a left-
hand union exists and has analogous properties.

It should be mentioned that it is possible to enlarge the ring of poly-
nomials considered here to a non-commutative field through the introduction
of formal quotients. This quotient field then corresponds in the commutative
case to the field of all rational functions with coefficients in the field K.

The existence of the quotient-field is a consequence of the existence of
a union.®* If we define the quotient as

e = 45 — 407 BO),

we can define the sum of two quotients as

B(x) + D(x) _ Ci(z) B(x)+ 4, () D(x)
A(x) C(x) M(x) !

where
M(z) = [A(x), C(z)] = A;(x) C(x) = Ci(x) A(x)

is the right-hand union of A(x) and C(x). We define the product by
B(x) D(x) _ Bi(x)D(x)
A@) Cl@)  G@A@’
[B(x), C(x)] = Bi(x) C(z) = Ci(x) B().
(B(x))"‘l_ A(x)
A(x))] — B)’

One easily shows that addition is commutative and multiplication is
associative and distributive on both sides.

where

Finally,

3.0. Ore, Linear equations in non-commutative fields, Annals of Mathematics 32 (1931),
pp. 463-471.
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4. Transformation. Having established the existence of a union we
can proceed to introduce the fundamental notion of ¢transformation of a poly-
nomial.

The polynomial

(28) 4,@) = o074 [4(2), B@)]- B(@)™
is called the transform of A(x) by B(x) and will be denoted by
(29) A,(x) = BA(x) B'.

Here o denotes the degree of A(x). The transform A,(x) is of degree
o — 04 p; consequently, when A(x) and B(x) are relatively prime, A(x)
and 4,(x) are of the same degree. The multiplicative constant in (28)
is chosen so tha. the highest coefficient in 4;(x) is equal to a,. It
might have been possible to choose this constant in a different way or
even to omit it, but after several trials I have found it most satisfactory
to use the form given here.

When A(z) is relatively prime to B(z), and 4, (x) is consequently of
the same degree as A(x), we shall call the transformation (29) a special
transformation and A4, (x) is said to be of the same kind or similar to A (x).
When, however, A(x) and B(x) have a common factor, we shall call the
transformation general.* In both cases one obtains, according to (28) and (29),

(30) BA(x) B B(x) = a,b" %5 [A(z), B()).

We shall now deduce various properties of the transform, and we
commence with the following theorem:
THEOREM 10. When

A(@) = B(x) (mod C(z))
AC@x) A~ — BC(z) B-.

In order to prove this theorem we have to go back to the identity (23)
in Theorem 9. Since here both sides are reduced, one easily obtains for
the factor k& the value _

L — (agl)lr—d"x. d b(')y—da, d
and (23) takes the form

a‘[)}’_d\ﬂ."'] [A (x), C(x)] . A (l‘)—l J— bf)y_ds,cl [B (x), O(x)] B (a) “1-

then

Since dpc = 04,c, according to assumption, our theorem follows.

The next theorem is particularly important in its applications.

4 The general transformation can always be reduced to the special. When D (x) is the
cross-cut of A(xr) = 4,(x) D(x) and B(x) = B;(x) D(x), then it follows from the
definition of the transformation that

AB@ A = 4, B,(x) 47".
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THEOREM 11. When a product A (x) B (x) is divisible by C (x), then A (x)
is divisible by BC (x) B~

Since A (x) B (x) is divisible both by B (x) and C(x), the product must
also be divisible by the union of these polynomials, and it is therefore
possible to find a polynomial K (z) such that

A(x) B(2) = K (2) b7 [B (), C (@).
Division by B (z) gives
A(x) = K(x) BC(x) B

We shall usually apply Theorem 11, as in the commutative theory of
polynomials, to the case where C(z) is relatively prime to B (x). The
more general formulation 11 seems, however, to command some interest.

THEOREM 12. When the transformer is a product, one can transform by
the factors in order from right to left, that 1s,

(31) (CB)A(x)(CB)™ = C(BA(x) BY)C,

From the identity

[4 (z), C(z) B (z)] = [4(2), B (z), C(x) B ()]
one obtains, applying (27),
(CB) A (2) (CB)™ = aydy~"*" [BA (z) B, C(@)]- C (@),
and since
6.4,013 = JA,B+6BAB"‘,C7

one has obtained the theorem. The associative law for the transformation
can also easily be shown to hold.

The symmetry of the notion of similarity follows from

THEOREM 13. When A, (x) is similar to A (x), then A (x) is similar to
A, (x), that s, when

4, (x) = BA(x) B,
where B (x) is relatively prime to A (x), then ome can determine B (x)
so that
A(x) = B, A4, (x) BT\

According to Theorems 10 and 12 it is sufficient to choose B, (x) such

that
Bi()B(x) =1 (mod 4(x)),

and this always possible according to Theorem 5.

We also see that Theorem 5 can be stated in the following more
complete form:

THEOREM 14. When the congruence

X (@) B(z) = C(2) (mod 4 (),

has a solution X, (x), the most general solution has the form
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X (@) = X (@) + K (x) BA(x) B,

where K (x) is an arbitrary polynomial.
It follows that _
X(@)— X, (x)) B(x) =0 (mod 4 (x)),

and the theorem follows from Theorem 11.
THEOREM 15. The transform of a union is equal to the union of the
transforms of the components, that is,

(32) Cl[A@), B(x)]-Ct= [CA(x)C7Y, CB(x) C1].

The theorem follows immediately when one multiplies both sides by C (x).
Finally it should be mentioned that the corresponding theorem does not
hold for the cross-cut. One sees, however, that in any case

33) (CA@CYHLCB(@C™?) =0 (mod C(4(x), B(x)C™),

and one concludes that, when C(z) is relatively prime to the union
(4 (), B ()], then
(34) (CA(x)C,CB@x)C™) = C(4(x), B(x) C.

5. Transformation of a product. We shall finally examine the trans-
formation af a product; the results are in this case not quite as simple as
for the preceding theorems on transformation. The complications are due
chiefly to the multiplicative constant in the definition (28) of the transform.
It may be possible to choose this constant in a different way, making the
transformation of a product more symmetric, but after various attempts
I have found that the former theorems then become correspondingly more
complicated.

Since one has for an arbitrary product

B(2)A(x) = [B(z) A(x), A@)]
one obtains according to Theorem 5
(35) CB@x)A@)Ct=0 (mod CA(x)C?).

It should be observed that the congruence (33) is a consequence of (35).
According to (35) one can always write

(36) CB@)A@)C*'= K(@)CA (@) C,

and the problem is to determine K (x). We shall simplify the formulas
by assuming that the transformation is a special one in that C(x) is
relatively prime to B (x) A (r). The same method is, however, applicable
even in the most general case.
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From (36) it follows by multiplication with C(x) that
bo alf! “tA[B (z) A (), C (@)] = K (2) a0 ¢ [4 (2), C (2)].
Division by 4 (x) gives
bo alf! (e tF1 (ag YA [B (), AC () A7 = K (x) ao f* (a7 )P ;T AC (x) A1
Another division by C, (x) = AC(x) A gives
(37) K (x) = by alf! oA (ag)# H71 (¢ 1) by OB (2)C ¢o af? (g ) ag

One should now observe that, when an arbitrary polynomial E (x) of
degree ¢ with highest coefficient ¢, is transformed by an element %, in K,
one obtains the polynomial

e, ki et E (x) k.
It is then seen that (37) can be written in the simpler form
(38) K(x) = G B(x) C:,
where
(39) C,(x) = a,d® (agh) gt AC(x) A7

This proves
THEOREM 16. When C(x) is relatively prime to B(x) A(x) then

(40) C(B@A@)C "= G:B@)C:*- CAx) C,

where Cq(x) is determined by (39).
The theorem can be extended to an arbitrary number of factors and
then gives

@1) C(dn () -+ Ay (@) C~1= Cp A (z) Ci *--- CoAz(z) C5 ' CA1(2) O,

where the transformation, as before, is a special one. The factors of the
transform are similar to the factors of the original product.

If one assumes that A(x) and B(d) are reduced, or in general, that
all A(z) in (41) are reduced, then similar formulas hold also for a general
transformation.

6. Left-hand transformation. Having thus deduced the main pro-
perties of the right-hand transformation, we shall briefly discuss the left-
hand properties. It has already been mentioned in section 3 that if K is
identical with K, there exists a left-hand Euclid algorithm and consequently
a left-hand union

H(z) = [4(2), Bl
for two arbitrary polynomials A (x) and B(z). The left-hand union is of
course defined as the reduced polynomial of lowest degree which is left-
hand divisible by both A (z) and B(x). The degree of H;(x) is « -+ 8 — a3,



492 0. ORE.

where d4 5 is the degree of the left-hand cross-cut (4 (x), B(z)): of A(x)
and B(x).
The left-hand transformation can now be defined by putting

B A@@), B = B@) - [4(), B@)}- b *F+9usl gf-edus),

where the constants are chosen so that the transform of A(x) has the
highest coefficient ap. One then proves without great difficulty the cor-
responding theorems for left-hand transformation as before for right-hand
transformation.

In many cases however, the left-hand notions can be replaced by the
corresponding right-hand notions. We first prove

THEOREM 17. When A, (x) and B, (x) are left-hand relatively prime, then
the left-hand union of these polynomials can also be considered as a right-
hand union
(42) [41(z), Bi(@) = [4A(2), B@)]

and this can be done in such a way that A,(x) is right-hand similar to
A(x) and By (x) right-hand similar to B(x).
According to the definition of the left-hand union

(43) (4, (), By (@)l = Ai(x) Bs(x) = B, (x) 4s (z),

and here A4, (x) is right-hand relatively prime to B, (%), for if they had
a common factor, one could find a polynomial of lower degree that would
be left-hand divisible by both 4,(x) and B;(x). From Theorem 11
and (43) it follows that

(44) A (x) = K@)+ By 4y(x) By', By(x) = L(x)- A B (x) 43

If « is the degree of A,(xr) and @ the degree of B, (x), then according
to (43) As (z) is of degree « and B;(x) is of degree 8; one finds furthermore
for the highest coefficients in A4;(x) and B;(x)

as = G, by = (@)Y,

where a;, and b; are the highest coefficients of 4, (x) and B, (z). If one
substitutes the expressions (44) into (43), one can divide on the right-hand
side by [d4s(x), Bs(x)], getting

K@) 0 et = L) (@)™ b
Since (44) shows that K (x) and L (x) are left-hand relatively prime, this
identity can hold only when K (x) and L (x) are both of degree zero. It

follows then from (44) that
K@ = abi?, L) = bai ™.
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The relation (44) also gives

4,(@) = a b7 By 4, (2) By
B, (z) = byal ¥ 4, By () 42"
where one has put
(46) A@) = et 4,(x), B@ = bal ™™ By(x).
Then one has, however, according to (43)

(4, (z), B, (®)k = [4:(x), Bs(x)] = [4 (x), B ()],

and the theorem is demonstrated.

From the definition of left-hand transform one deduces the notion of
left-hand similarity: Two polynomials 4, (x) and A (x) are said to be left-
band similar if A4, (x) is obtained from A (z) by transformation by some
polynomial B (z) left-hand relatively prime to A4 (x). Left-hand similarity
offers, however, little new, as the following theorem shows:

THEOREM 18. When two polynomials are left-hand similar they are also
right-hand similar.

One obtains, according to (43) for the left-hand transform of an arbitrary
polynomial 4 (x) by another B, (x) left-hand relatively prime to A4, (x),

By A (z) B: 7,
A3 B (z) 43 7,

[

(45)

H(z) = B4, () By = Ay (@) bi " o™

O™ 6 A @) b a7,

where the notation is as above. The theorem to be proved then asserts
that H () can also be obtained from 4, (z) through right-hand transformation.

According to (45) A, (x) is right-hand similar to A (z) and one obtains H(x)
from A (x) by right-hand transformation with the element

(@)™ @A

(47)

I

CrapTER II.

The Theorems of Decomposition.

1. First theorem. A reduced polynomial P (x) is called a prime poly-
nomial when P (x) has no reduced factors aside from constants and P (x)
itself.

Among the properties of prime polynomials we observe that

Every polynomial which is similar to a prime polynomial is a prime
polynomial.

This follows from Theorems 13 and 16. One deduces furthermore from
Theorem 11 the following:



494 0. ORE.

When a product 4 () B () is right-hand divisible by a prime polynomial
P(x), and B (x) is not divisible by P (z), then A (x) is divisible by the
prime polynomial B P (x) B

Let us now consider the decomposition of an arbitrary polynomial into
prime factors. To describe the following results more completely we shall
need the notion of interchangeability:

A polynomial A (x) is said to be interchangeable with a second polynomial
B (x) if one can determine a polynomial A, (x) similar to A (x) such that

) A(z) = B4, (z) B

It is hardly necessary to mention that the notion of interchangeability
is not symmetric.

When the identity (1) holds, where A (x) and B (x) are reduced, then
the product A (z) B (x) is a union

@ A (@) B(x) = [4; (x), B(@)] = 4 B () AT - 4, (2).

One has therefore in this case two different decompositions of the product
A () B (x) wherein the factors are similar but occur in inverse order. We
shall say that the second decomposition (2) is obtained from the first
through interchange of factors.

The first decomposition theorem then takes the following form:

THEQREM 1. Every reduced polynomial has a representation as the product
of prime factors. Two different decompositions of the same polynomial have
the same number of prime factors and the factors are similar in pairs. One
decomposition can be obtained from the other through interchanges of factors.

It is obvious that every polynomial possesses at least one decomposition
into prime factors. Let

(3 F@) =P@- - - B@P @ = Q- Q) @

be two different decompositions. The prime polynomial @, (x) then divides
the left-hand side of (3). If P, (x) = @, (), this factor can be cancelled.
If P,(x) + @ (x), let k be the first number such that the product Py ()
.+« P, (x) is divisible by @, (x). The product Px—(x)--- P, (x) is then
relatively prime to @, (x) and according to Theorem 11, Chapter 1, Px(x)
is then divisible by the prime polynomial Qi (x) obtained from @, (x) by
transformation with Py (x)--- P, (x). Since Pk (z) is a prime polynomial
one obtains

4) Pip(x) = (Pr—---P1) @ (@) (P --- P)7L

Then, however, according to the definition (1), Py (x) is interchangeable
with Px—; (x)--. P, (x) and one obtains according to (2) and (4)

6 P@Pa@- - P@ = QPa@-- @) QG @)
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We have shown by interchange of factors that also the first decomposition (3)
contains @, (z) as a right-hand factor, so that this factor may be cancelled.
Py (x) and @, (x) must be similar according to (4), and when one performs

the transformation .
Q (Pi—1 () - - - P, () Q!

one obtains, according to Theorem 16, Chapter 1, a product of prime factors
which are similar to the Py_;(x),---, P, (x). After division by @, (x) the
remdining products in (3) can be treated in the same way and the
theorem follows.

The number of prime factors which occur in an arbitrary prime factor
decomposition of a polynomial F(x) will sometimes be called the length
of F(x).

We point out as a consequence of Theorem 16, Chapter 1, that similar
polynomials must have decompositions of the same length and with
similar factors.

It may not be superfluous to mention that the number of factors of
a polynomial is in general not limited by the degree of the polynomial;
it may even happen, as for instance in the theory of linear differential
polynomials, that the number of divisors is infinite.

2. Completely reducible polynomials. A polynomial is said to be
completely reducible when it is representable as the union of a finite or
infinite number of prime polynomials.

THEOREM 2. A completely reducible polynomial F'(x) can always be
represented in the form
(6) F(CC) = [A (x)y P, (.’)3), S PT(I)L

where the P;(x) are prime polynomials such that mone of them divides the
union of the others.

Let P, (x) be an arbitrary prime divisor of F'(x); if then F (x) ¥ P, (),
let P;(x) be a second prime divisor. The union [P, (x), P:(x)] is then
a divisor of F(x), and if it is not equal to F'(z), let Ps(x) be a prime
divisor of F(x) not dividing [P (), P:(z)]. Then [P, (x), P;(z), P3(x)]
is a divisor of F'(x). This procedure can be continued, and one must
finally obtain a representation (6) since the degree of F'(x) is finite.

When a completely reducible polynomial (6) is transformed by an
arbitrary polynomial H (x), one obtains according to Theorem 15, Chapter 1,

) HF()H' = [HP, () HY, --., HP,(x) H].

The transform of a completely reducible polynomial is again completely
reducible.
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For two similar completely reducible polynomials one can choose the
basis representations so that the prime polynomials of the bases are
similar in pairs.

One obtains the prime factor representation of a completely reducible
polynomial (6) by writing

F@) = [P P@ P, -+, P, P(z) P{'1Pi(2)
and repeatedly applying the same process to the perfectly reducible factor
(P, Py(z) P17, -+, Py Pr(2) Y.

It is obvious that the length of the decomposition is » and that the factors
are similar to the P;(x).

One can also characterize the completely reducible polynomials by:

THEOREM 3. The necessary and sufficient condition that a polynomial
be completely reducible is that two arbitrary prime factors in an arbitrary
decomposition be interchangeable.

A completely reducible polynomial may therefore also be termed a completely
interchangeable polynomial.

We prove first that a completely interchangeable polynomial is also
completely reducible. This is obvious when the length of the decomposition
does not exceed 2, for when

F(x) = P (z) P;(x)

then, according to assumption, P,(z) = P, P,(z) P; ", where P, (z) also
denotes a prime polynomial. Hence

F(@) = [P(2), Py(@).
The general proof follows by induction. We write

(®) F(@) = Pr(2) --- K@) P(2) = Fi(2) Pi(2),

where Fj(x) contains a smaller number of prime factors and, since it is
completely interchangeable, it is also completely reducible according to
assumption. Let

9 Fi(@) = [P(=), -+, B(@)].

Since all prime polynomials P;(z) ¢ = 2, ---, ) may appear as right-
hand factors of F,(x), they are all interchangeable with P, (x), so that

Pi(x) = P, Qi(x) P, G=2,--+,7),

where @;(x) denote prime polynomials. From (7) and (9) one obtains
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(10) Fi(@) = P[Q@), -, Q@) P,
and from (8),
(11) F(x) = [Qr(x)y ) Q!(x)y Pl (x)]

The converse part of the theorem also follows by induction. When
F(z) = P, (x) Py(x) is completely reducible, then F(x) must be divisible
by a second prime function @, (x) other than P,(x), and one deduces
from Theorem 11, Chapter 1, that P,(x) = P, Q, (z) P; ", so that P;(x)
is interchangeable with P;(x). Now let (8) be a representation of a
completely reducible polynomial as a product of prime polynomials. Then
F,(x) has the form (10), it is completely reducible, and therefore, by
assumption, it is completely interchangeable. It remains only to show
that P,(x) is always interchangeable with P, (x). This follows easily
from the fact that every prime divisor of F)(x) must be of the form
P, Q) P,

From Theorem 3 one derives:

THEOREM 4. FEvery divisor of a completely reducible polynomial is completely
reducible, and the basis of a divisor can be completed to a basis for F(x).

The second part of the theorem follows by the method of construction
of a basis. One can also show somewhat more generally that every
factor occurring anywhere in a product decomposition of a completely
reducible polynomial must also be completely reducible.

Let us say that a completely reducible polynomial F'(x) is uniform
when it is the union of similar prime polynomials so that it may be
expressed as

F(z) = [4, P(x) 41", ---, A, P(x) 4;71).

Every prime divisor of F'(x) is then similar to P (x). The union of all
similar prime polynomials which divide a given completely reducible
polynomial (6) shall be called a maximal uniform divisor. One can
then prove

THEOREM 5. Every completely reducible polynomial is uniquely representable
as the union of its maximal uniform divisors.

It should be mentioned finally that the theory of left-hand completely
reducible polynomials is quite analogous. A polynomial is said to be
left-hand completely reducible when it is the left union of prime polynomials.
One easily proves

THEOREM 6. FEvery left-hand completely reducible polynomial s also
right-hand completely reducible and conversely.

One also finds that the left-hand and the right-hand basis representations
contain the same number of prime polynomials and that these are similar
in pairs.
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3. Second decomposition theorem.® Let F(x) be an arbitrary poly-
nomial; the union Hj(z) of all prime functions P(x) dividing F(x) from
the right shall be called the maximal completely reducible divisor of F(x).
This name is justified by the fact that every completely reducible divisor of
F(x) must also be a divisor of H;(z). H,(x) is uniquely determined and one
can write F(x) = F,(z) H; (). Fi(x) has then also a unique maximal com-
pletely reducible divisor H,(x), etc.

THEOREM 1. Every polynomial has a unique representation as the product
of maximal completely reducible factors

(12) F(x) = ag Hy(x) - - - Hy(x) Hy ().

There exists a certain relation between the decomposition of F'(x) and
any divisor of F(z) which we shall express in the following theorem:
THEOREM 8. Let F(x) be a divisor of F(x) and let

(13) Fi(x) = by Gs(x) - - - Gs(x) Gy ()

be any decomposition of Fy(x) into completely reducible factors, while the
decomposition of F (x) into maximal completely reducible factors is given
by (12). Every product Gi(x) --- Gy (x) (=1, -+, 8) is then a divisor of
Hi(z) -+ H; ().

According to the definition of a maximal completely reducible factor,
H,(x) is always divisible by G;(x). The theorem will be proved by in-
duction. Let us suppose that it has been shown that

(14) Hi(x) -+ Hi(x) = Ki1(x) Gia(2) - - - G1(2).
Since Fy(x) is a divisor of F(x) one can write F(z) = L(x) F;(x); from (14)
one also obtains, when multiplying on the left by a, Hy(x) - - - H; (2),
F@) = ao Hy(x) - - - Hi(x) Ki1(x) Gia() - - - G1(2).

Consequently, when one divides on the right by Gi—i(x) - - Gy (%),
(15) L(x) by Gs(z) - - - Gi(x) = ao Hy(z) - - - Hi(x) Ki—1(x).
According to Theorem 11 of Chapter 1, and (15), the product ao Hy(x) - - - H;()
is divisible by K;—1 Gi(x) K. Since Gi(x) is completely reducible,
while H;(x) is the maximal completely reducible factor of the product
ao Hy () - - - Hi (), one concludes that H;(z) is divisible by K; 1 Gi(x) K.
Consequently

H;(z) = T(z) Ki-1 Gi(2) Kih.

We multiply this relation right-hand by K; ;(x) and, since all the poly-
nomials are reduced, one obtains

5 Compare Krull, Heidelberger Akademie 1926.
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(16) Hi@z) Ki1(x) = T(2) - [Gi(x), Ki-1(2)] = Ki(x) - Gi(x).

When finally both sides of (16) are multiplied right-hand by Gi—1(z) - - - G1(),
one obtains according to (14)
Hi() - Hi(z) = Ki(z) Gi(z) - - - G1(2).

Q.E.D.

As an application of Theorem 8 one can prove

THEOREM 9. An arbitrary representation of a polynomial as a product
of completely reducible factors mever contains a smaller mumber of factors
than the decomposition in maximal completely reducible factors.

The proof follows when one applies Theorem 8 to the special case
F,(zx) = F(x). If one had s> in (12) and (13), then one would obtain

Hy(z) -+ Hi(2) = Ks(x) Gs(@) - - Gy (@) = K(@) F(x)

and a divisor of F (x) would be divisible by F'(x) itself.

Every decomposition of a polynomial in completely reducible factors
which contains the same number of factors as the decomposition in maximal
completely reducible factors may therefore be called a shortest completely
reducible decomposition.

We have, up till the present time, considered only right-hand completely
reducible representations; it follows immediately, however, that corresponding
theorems hold also for left-hand maximal completely reducible decompositions.
It follows also from Theorem 6 that every left-hand completely reducible
decomposition is also a right-hand completely reducible decomposition and
it is therefore natural to investigate the connection between the two types.

Let us suppose that F'(z) is reduced; the left-hand decomposition of F'(z)
in maximal completely reducible factors is also a right-hand (not maximal)
completely reducible decomposition and, according to Theorem 9, it does
not contain fewer factors than the right-hand maximal decomposition.
The analogous reasoning holds for the right-hand maximal decomposition,
and it follows that the right-hand and left-hand maximal decompositions
must contain the same number of factors. From Theorem 8 there follows

THEOREM 10. The decompositions

(17) F(x) = Hy(2) - - Hs(x) H, (),
(18) F(x) = L) - Ly () Ln ()

of a reduced polynomial F (x) into right-hand and left-hand maximal completely
reducible factors are both shortest completely reducible decompositions, and,
Sorevery i =1, -+, r, H(x) - - - Hy(x) 4s right-hand divisible by L; (@) Ly(x)
and L, (z) - - - Li(x) is left-hand divisible by H (x) - - - Hi(x).
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We shall finally prove a general property of the shortest completel:
reducible decompositions which gives a clearer picture of the particula
properties of the special shortest decompositions (17) and (18).

THEOREM 11. Let
F(x) = 8(x) - - - Sy (x) 8 ()

be an arbitrary shortest completely reducible decomposition of F(x) whil
the two maximal completely reducible decompositions are given in (17
and (18). Then, for every ¢t = 1,.--, r,

(19) Hi(x)--- Hi(x) = 0 (mod Si(z)--- 8;(x)),
(20) Si(x) -+ Si(x) = 0 (mod Li(z) - - - Ly (x)),
and similarly for left-hand divisibility,

(21) (mod Sy(z)--- Si(x)) 0 =L@ - Li(z),
(22) (mod H,(2) - - - Hi(®)) 0 = 8 () --- Si(x).

The congruence (19) is a consequence of Theorem 8. The congruence (20)
is correct for i = r and we prove it by induction for all smaller 7. Let
us suppose, therefore, that it has been shown that
(23) Sita(@) - - 8 (x) = Kita () Lita () - - - Ly ().

Since the same theorems will hold for left-hand divisibility as for right-
hand divisibility (assuming K = K), one can conclude that the product
Lij1(x) - -+ Ly (z) is left-hand divisible by the left-hand transform of St (x)
by Kit:1(xz). The polynomial KiiSij1(x);Kiys is completely reducible
and, since it divides Lit1(x) --- Ly (x), it is also a left-hand divisor of
Liy1(x). Consequently

Li1(@) = K181 x) Kit1 T()

Kit1(x) Lit1(x) = [Sit1(x), Kit1 (@) T'(x) = Sita(x) Ki(x).

When this expression is substituted in (23) one can divide on the left by
Sit1(x) and one obtains the congruence (20). The congruences (21) and (22)
can be obtained in a similar way.

Theorem 11 shows that right-hand maximal completely reducible decom-
position is uniquely characterized among the shortest completely reducible
decompositions by the fact that H;(x) - - - H, (x) has a maximal degree for
each ¢, while for the left-hand maximal completely reducible decomposition
the products L;(x) - - - L, (x) have a minimal degree.

4. The third decomposition theorem. A reduced polynomial is
said to be decomposible when it can be represented as the union of reduced
polynomials
(24) F(x) = [4(z), B)],

and
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where A(x) and B(x) are relatively prime; when no such representation
exists, F'(x) is said to be indecomposible. When A(x) or B(x) in (24) can
be decomposed further, we may continue the process and obtain the result
that every polymomial is representable as the union

F(x) = [4, (x)y tt 0y Ar(x)]

of mutually prime indecomposible polynomials. The term mutually prime
applied to a system of polynomials 4;(x) will indicate that every polynomial
is relatively prime to the union of the remaining polynomials.

In the proof of the principal theorem about such decompositions we
shall need an auxiliary theorem which we now deduce.

THEOREM 12. When F(x) is decomposible and has the decomposition (24),
then every divisor Fy(x) of F(x) which is divisible by A(x) is also de-
composible and has the representation

(25) Fi(x) = [A@@), (B(@), Fi())].

It is obvious that the right-hand side of (25) is a divisor of the left-
hand side; to prove the converse, let

Fi(z) = Q) A@x), Flx) = Q:(x) Fi().
Dividing (24) right-hand by A(x) one obtains
AB(x) A = @s(x) Qu(),

and @ (z) is consequently of the form AD(z) A—1. Hence F, (x) = [A(z), D(z)],
where D(z) is a divisor of B(x).

We can now prove the third decomposition theorem.®
THEOREM 13. Every polynomial has a representation as the union

(26) F(x) = [41(®), - -, 4r(2)]
of mutually prime indecomposible polynomials. If a second such representation
(27) F(.’IC) = (B, (x)’ ) Bs(x)]

exists, then the number of components in both must be the same and they
are similar in pairs. An arbitrary component A;(x) in (26) can always
be replaced by a suitably chosen componment Bj(x) in (27), and every Bj(x)
can be used for some such replacement.

6 By means of the method used by Krull, Math. Zeitschr. 8, one could have deduced
the fact that the components are similar. The present proof seems somewhat simpler
since the ‘Zuriickleitungsgruppen” of Krull are avoided. This proof also yields the fact
that the components are replaceable.
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It has already been shown that there exists such a decomposition. We
shall prove the general theorem by induction and assume it to be true
for all polynomials of degree lower than that of F'(x).

We show first: If two decompositions (26) and (27) exist, then an A;(x)
(or a Bi(x)) can replace a Bj(x) (or an Aj(x)). Let 4, (x) be the component
of highest degree in the two representations. If then A, (x) is relatively
prime to the union [B;(x), - - -, Bs(x)], one must have

F(CC) = [Al (x)y -B.‘.’ (x)y ) -Bs(x)L
and the conjecture is proven. Let P(x) be a common prime factor of A4, (x)
and [B;(x), - -+, Bs(x)]. Then
(28) B() = [B;(@), - - -, Bs(2)] = B(x) P(2)

and 4, (@) = 4,(x) P(x). We divide both sides of (26) and (27) by P(x)
and obtain

(29) [4,(x), PAs(x) P, ..., PA,(z) P = [PB,(x) P, B(®).

According to our assumption the theorem holds for the polynomial (29).
The indecomposible component P B, (x) P~ can therefore replace a compo-
nent on the left-hand side, that is, PB;(x) P! can replace a PA;(x) P!

(¢ = 2,.-..,7) or a component of 4, (x).
In the first case let PB,(x) P! replace PA;(x) P!, giving
F(z) P(x)! = [4;(z), PB,(x) P~', PAs(x) P, - .., PA,(x) P].
Multiplication with P(x) then gives
F(z) = [4i(2), Bi(x), 43(), - - -, 4r()].
In the second case one obtains
F(x)- P(xy™ = [PBy(z) P, 4,(x), PAy(x) P, - - ., PA,(z) P,

and consequently

(30) F(@) = [B:(@), 4 (@) P(), 4: @), - - -, 4, @)].
This is, however, impossible; if one puts
(31) Ax) = (4 (.’E), -eey A (2)],

one concludes from (26) and (30), when dividing by A(z), that
AA,(x) A = [AB,(z) 47, 4 (4 (x) P(x)) 471,

and it would follow that 4,(x) is decomposible, contrary to assumption.
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We have consequently shown that, with a suitable notation, one always
has a identity of the form

(32) (A (), - -, Ar(@)] = B (), 4s (@), -, Ay ()],

It then follows easily that the two decompositions (26) and (27) have
the same number of components similar in pairs. If one divides (32) by 4(x)

one obtains
AA () A7 = AB(x) 471,

and A4, (z) and B, (x) are similar. From the identity
[B, (2), 4: (), - -+, 4r@)] = [Bi (@), B: (), - - -, Bs(2)]
there follows, after division by B (x),
(33) [Bi4:(@) BT, -+, BiAr(#) Bi") = [Bi B: @) BT, - - -, B By(w) Bi'),

and, since the theorem holds for this polynomial, one must have r = s
and the A;(x) are similar to the B;(x) in pairs.

It now remains only to show that all components in (27) can replace
an 4;(x) and that all 4;(z) can be thus replaced, a similar relation holdmg
for the B;(x). Smce this is true for (33), one may replace any B, B;(x) Bt
by a By 4i(x) Bi', and when one multiplies afterward by B; (x) one obtains

(34) F(x) = [Bl('T)y Bz(x), Tty Ai(x)y ) .B,«(x)] (i = 2,0 7'))

and all B;(x), with the possible exception of B;(x), can be replaced.
From (34) one concludes, as from (32), that every 4;(x), with the possible
exception of A4;(x), may be replaced by a B;(x) and every B;(x), except
possibly B;(x), may be used for such a replacement. When » =3, one
might have used a different index j # ¢ in (34), and the exceptions are
thereby avoided. It follows then in the same way that all Bj(x) may be
replaced by A4;(z) and that all 4;(x) may be used for replacements.
This leaves only the special case

(85) F(z) = [4;(x), 4:(2)] = [By(2), 4:(2)] = [B1 (%), B (x)]

unaccounted for. We shall have to show that A,(x) may also be replaced
by B;(x) or B;(x), that is, that at least one of the relations

(36) F(z) = [4i(x), Bi@)], F(a) = [4i(x), B:(x)]

holds. Let us suppose, for instance, that Fi(x) = [4, (z), Bs (x)] is only
a divisor of F(x); then one has, according to Theorem 12,

37 Fi(x) = [4, (), (4s (), Fy (37»1 = [(F}(x), B, (x)), Bs (2)].
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The theorem holds for F}(x); from (35) it follows that A4;(x) and Bs(x)
are similar and consequently of the same degree, while the degree of
(45 (x), F,(x)) must be less than the degree of Bs;(x). In (37), there-
fore, 4, (x) can replace only Bs(x), giving

F (x) = [(F; (), Bi(x)), 4, ()],
so that

F(z) = [B,(2), Fi(2)] = [B1(2), (F1 (%), B (2)), 4 (2)] = [4; (), By (x)].

In the same way one shows all the other replacements.

5. Connection between representations of the second and
third kind. One may ask for the connection between the three main
types of representations which we have discussed up till now. It is fairly
obvious how one can deduce the prime function decomposition of a polynomial
when its representation as a product of maximal completely reducible factors
or as a union of indecomposible components is given. We shall study here
the connection between the two last types of representations.

Let
(38) F(2) = [4(x), B®)], (4A@),B@) =1,
and let
(89) A(@) = Ar(x) - 4s3(x) 4, (®), B(x) = Bs(x) - Bs(x) By ()

be the maximal completely reducible representations of 4 (z) and B(x). It is
easily seen that every prime divisor of F'(z) also divides F}(z) = [4, (x), B; ()]
and that F)(x) is the maximal completely reducible factor of F (x). One
also finds that F(x) can be represented in the form

F(z) = [4(z), B @)] F\ (),

where A (z) is similar to 4,(z) --- 42 () and B(z) similar to Bs (@) --- B: ().
When the same conclusions are drawn for [4(z), B(x)], one finds that the
maximal completely reducible factor of this polynomial is F3 (x) =[4s(x), Bs ()],
where As(z) is similar to A4;(x) and B, (z) to B;(x) and so on.

THEOREM 14. Let [A(x), B(x)] be a decomposible polynomial and let (39)
be the maximal completely reducible representations of A(x) and B(x). The
mazximal completely reducible representation of F(x) us then

F(x):Fr(x)Fl(x)’ Ft(x):[Zt(x)’Ez(w)] (2:1””')7

where A; (z) is similar to A; () and B; (x) similar to Bi(x).
When » >s one obviously must put B;(x) = 1 for ¢>>s. For an arbi-

trary representation
F(x) = [Fi(2), - -+, Fr (@)},
where ]
Fi(@) = 0 @)--- 0f (@)
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is the representation of each component as product of maximal completely
reducible factors, one finds for the corresponding representation of F'(x),

F(z) = 45 () - - - 41 (),
where B B
Aj (x) = [w.;'l) (x): tt wl('r) (x)]

and 0_0,(-” () is similar to w}” (x). It is also obvious that s is equal to the
greatest of the numbers s;.

6. The fourth decomposition theorem. In the preceding discussion
we have deduced some of the more important structure theorems for
noncommutative polynomials. They depend on various notions of in-
decomposibility, each notion leading to its own type of decomposition
theorems. There are various other possible definitions of indecomposibility
which lead to a number of decomposition theorems. We shall discuss
only one of these possibilities.

We shall say that a polynomial is distributive if there exists a representation

F(z) = [A(2), B(x)]

in which A(x) and B(x) are proper divisors of F'(x); the polynomials
A(x) and B(x) do not have to be relatively prime as in the case of
decomposible polynomials. Every decomposible polynomial is distributive,
but not conversely.

It is easily seen that every reduced polynomial has a representation
as the union of non-distributive polynomials

(40) F(x) = [4, (.’E), <oy Ay (.’E)],

where all 4;(x) are supposed to be reduced. In the following we shall
always assume that in a representation (40) we have omitted the super-
fluous components, that is, the polynomials which are divisors of the union
of the remaining polynomials. We shall then say that the representation
is minimal.

We shall first deduce a characteristic property of the non-distributive
polynomials. A non-distributive polynomial cannot be divisible on the
left by two different prime polynomials, for otherwise one would obtain
a representation
(41) A(x) = [P (z), P:(x)) K(z)

and, according to Theorem 17, Chapter 1, the left-hand union could also
be considered as a right-hand union
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[P (x), P (@] = [ (x), Qs ()],

where the prime functions @, (x) and @, (z) are similar to P, (z) and P; (x).
From (41) it would then follow that A (x) must be distributive, that is,

A@) = [Qi (2) K (z), Q: () K (2)].

We can also show the converse, namely, that when A4 (x) is divisible
by only a single prime function on the left, that is, when the maximal
left-hand completely reducible factor is a prime polynomial, then A (x) is
nop-distributive. If one had in fact

A (x) = [4; (x), 4s (2)],

then A4, () and A4; (x) would have some right-hand cross-cut D (x) which
would have to be a proper divisor of both polynomials. Let us put

4@ = A4 @ D@, 4@ = 4@ Dk, A@ = A@) Dw).
Consequently B _ _
Ax) = [4, (x)r As (.CE)],

where A, (x) is relatively prime to A;(z). From Theorem 17, Chapter 1,
one concludes, however, that A(x) must then also be the left-hand union
of two relatively prime factors, and A(x) would be left-hand divisible by
at least two different prime functions.

THEOREM 15. The necessary and sufficient condition that a polynomial be
non-distributive is that it be left-hand divisible by only a single prime polynomial.

To every non-distributive polynomial A (z) there exists a unique prime
polynomial P(x) which divides it on the left. We shall say that A(x)
belongs to P(x). An immediate consequence of Theorem 15 is

THEOREM 16. Every left-hand divisor of a mon-distributive polynomial is
again non-distributive.

It is clear that a left-hand divisor of 4 (x) can be only left-hand divisible
by P(x). We shall need also the following result:

THEOREM 17. The transform of a non-distributive polynomial is non-
distributive and belongs to a simidar prime polynomial.

Let us put 4, (x) = CA(x)C~!, where we first suppose that the trans-
formation is special, that is, that (C(z), A(x)) = 1. If then

4, (x) = [L(x), M(z)],
one obtains
A(x) = [C, L(x) O, CLM(x) €7,
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where C; (x) is determined such that C; (x) C(z) = 1 (mod 4 (z)). A(x) would
then be distributive. Now let A(x) and C(x) have a greatest common
factor D(x), and let _ _

4,(x) = A(2) D(z), C(z) = C(x) D(=).

Here A(z) is non-distributive, and, since
A @) = CA@) 0 = CA@)CT

this case has been reduced to the first. The second part of the theorem
follows from the rule of transformation of a product.
We are now able to prove the following fourth decomposition theorem:
THEOREM 18, Let F(x) be an arbitrary polynomial and let

Fl(x) = [Pl(x)y Yy Pf(m)]

be the maximal left-hand completely reducible factor of F(x). Every minimal
representation of F(x) as a union of non-distributive polynomials has then
the form

(42) F(x) = [4(), - -, 4r(@)],

where every nmon-distributive polynomial A;(x) belongs to a prime polynomial
which is similar to a P;(x).

The theorem is obviously correct for every completely reducible polynomial.
We prove it by induction, assuming it to be true for every left-hand divisor
of F(x) which is left-hand divisible by Fj(x). We can then assume that
F(z) is not completely reducible, so that

Fx) = Fi(z)- Q).

Let P(x) be a right-hand prime divisor of F(x) and Q(x) such that
F(x) P(x)™! is left-hand divisible by Fj(x).

Let us first suppose that F'(x) has a decomposition of the form (42)
with s 3 » components, and let us further suppose that P(x) does not.
divide any 4;(x). One then obtains

(43) F(x) -P(x)™! = [PA,(x) P, ..., PA;(x) P,
where every component PA;(x) P~! is non-distributive according to
Theorem 17. We wish to show that this representation (43) is minimal.

If namely PA,(x) P! were a divisor of the union of the other PA4;(x) P,
then one would obtain, when multiplying by P(x),

F(x) = [P(x), 4; (), - - -, 4s(@)].
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But this is not possible, since F(x) would be decomposible into
Fz) = [P(@), H)l; Hx) = [43(x), ---, 4s@)],

and the results of section 5, Chapter 2, would show that the maximal left-
hand completely reducible factor of F(x) P(x)~* would be of lower degree
than Fj(z). The representation (43) is then minimal, giving » = s, and
the components PA;(x) P~%, and therefore also the 4;(z), belong to prime
polynomials similar to the P;(z).

Let us assume in the second place that the first ¢ polynomials A;(x)
in (42) are divisible by P(x),

A (x) = 4 (@) P(x), - -+, 4(z) = Ai(z) P(x).

It follows from the choice of P(x) as above that the possibility 4;(z) = P(z) is

excluded; the polynomials 4;(x) are consequently non-distributive according

to Theorem 17 and belong to the same prime polynomial as 4;(x).
When (42) is right-hand divided by P(x), one obtains

(44) F(@) P@) = [4 @), - - -, A1), PAey1(x) P, - - -, Pds(x) P,

This non-distributive representation is also minimal. If, for instance,
PAg(x) P! were a divisor of the union of the remaining polynomials, then
it would follow from (44) that the original representation was not minimal.
If, for instance, A,(x) were a divisor of the union of the remaining, one
would obtain for ¢>1, that the original representation was not reduced

and for ¢t =1
F(.’L') = [P(x)’ 4, (.'L‘), ) A3($)].

This is shown to be impossible as before.
Since our theorem holds for (44), it follows that s = r and that A4;(x)
belongs to a prime polynomial similar to P;(x).
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