WEIGHTED HOMOGENEOUS POLYNOMIALS AND FUNDAMENTAL GROUPS

PETER ORLIKT

(Received 19 September 1969; revised 17 January 1970)

§1. INTRODUCTION

A POLYNOMIAL $h(Z_0, \ldots, Z_n)$ is called weighted homogeneous if it is a sum of monomials $Z_o^{i_0}Z_1^{i_1}\cdots Z_n^{i_n}$ with the property that for some fixed positive rational numbers (w_0, \ldots, w_n) called the weights of the variables,

$$\frac{i_o}{w_o} + \frac{i_1}{w_1} + \dots + \frac{i_n}{w_n} = 1$$

holds for each monomial of h.

Suppose that $h(Z_o, Z_1, Z_2)$ is a weighted homogeneous polynomial in \mathbb{C}^3 and the variety

$$V = \{h(z_0, z_1, z_2) = 0\}$$

has an isolated singularity at the origin. For a sufficiently small sphere $S_{\epsilon}^{\ 5}$ we have that

$$K = V \cap S_{\epsilon}^{5}$$

is a closed, orientable 3-manifold.

In [3, p. 80] Milnor conjectured that if

$$\frac{1}{w_o} + \frac{1}{w_1} + \frac{1}{w_2} \le 1,$$

then the 3-manifold K has infinite fundamental group and has an open 3-cell as universal covering space. Moreover, that this infinite group is nilpotent only if

$$\frac{1}{w_0} + \frac{1}{w_1} + \frac{1}{w_2} = 1.$$

The purpose of this note is to prove these conjectures.

[†]Partially supported by NSF Grant 144-8709.

§2. THE STRUCTURE OF K

Let $d = \langle w_0, w_1, w_2 \rangle$ denote the smallest positive integer so that

$$q_o = \frac{d}{w_o}, q_1 = \frac{d}{w_1}, q_2 = \frac{d}{w_2}$$

are integers.

If $V = \{h(z_o, z_1, z_2) = 0\}$ and h is weighted homogeneous with weights (w_o, w_1, w_2) , then V is invariant under the C^* action on C^3 defined by $t \in C^*$ acting as

$$t(z_0, z_1, z_2) = (t^{q_0}z_0, t^{q_1}z_1, t^{q_2}z_2).$$

Now assume that V has an isolated singularity at the origin.

Restricting the action to $U(1) \subset \mathbb{C}^*$ we see that K is invariant. Thus we have a closed, orientable 3-manifold with an action of $U(1) \cong SO(2)$. These were classified in [4] by their orbit invariants:

$$K = \{\beta; (\varepsilon, g, \overline{h}, t); (\alpha_1 \beta_1), \dots, (\alpha_n, \beta_n)\}.$$

Since K is orientable and the action is fixed point free we have $\bar{h} = t = 0$ and $\varepsilon = o$. Thus K is a Seifert manifold [8]. For further details see [7].

$\S 3.$ WEIGHTED HOMOGENEOUS POLYNOMIALS IN C^3

In [7] we proved that if $h(Z_o, Z_1, Z_2)$ is a weighted homogeneous polynomial in C^3 and $V = \{h = 0\}$ has an isolated singularity at the origin then up to equivariant diffeomorphism, K is determined by the weights and V is equivalent to a variety in one of the classes below:

Class I (Brieskorn varieties):
$$V(a_0, a_1, a_2; I) = \{z_0^{a_0} + z_1^{a_1} + z_2^{a_2} = 0\}$$

Class II:
$$V(a_0, a_1, a_2; II) = \{z_0^{a_0} + z_1^{a_1} + z_1 z_2^{a_2} = 0\}, a_1 > 1$$

Class III.
$$V(a_0, a_1, a_2, III) = \{z_0^{a_0} + z_1 z_2 (z_1^{a_1} + z_2^{a_2}) = 0\}$$

Class IV.
$$V(a_0, a_1, a_2; IV) = \{z_0^{a_0} + z_1^{a_1}z_2 + z_0z_2^{a_2} = 0\}, a_0 > 1$$

Class V:
$$V(a_0, a_1, a_2; V) = \{z_{0a}^{a_0} z_1 + z_1^{a_1} z_2 + z_0 z_2^{a_2} = 0\}$$

Class VI:
$$V(a_o; VI) = \{z_o^{a_o} + z_1 z_2 = 0\}$$

The choice of class for h is not unique.

Define

$$K(a_0, a_1, a_2; I) = V(a_0, a_1, a_2; I) \cap S_{\varepsilon}^5$$

and use similar definitions for the other classes.

The weights (w_0, w_1, w_2) for these classes are computed as follows.

Class I: (a_0, a_1, a_2)

Class II: $\left(a_0, a_1, \frac{a_1 a_2}{a_1 - 1}\right)$

Class III: $\left(a_0, \frac{a}{a_2}, \frac{a}{a_1}\right)$ where $a = a_1a_2 + a_1 + a_2$

Class IV: $\left(a_o, \frac{a_o\,a_1}{a_o-1}, \frac{a_oa_1a_2}{a_o\,a_1-a_o+1}\right)$

Class V: $\left(\frac{u}{u_o}, \frac{u}{u_1}, \frac{u}{u_2}\right)$ where

 $u = a_0 a_1 a_2 + 1$, $u_0 = a_1 a_2 - a_2 + 1$, $u_1 = a_0 a_2 - a_0 + 1$, $u_2 = a_0 a_1 - a_1 + 1$

Class VI: Here the weights are not unique. For any $w_1 > 1$ we may choose

$$\left(a_o, w_1, \frac{w_1}{w_1 - 1}\right).$$

In [4, Theorem 4] we proved that unless K is a lens space, K admits a *unique SO*(2) action.

In [7, Chapter 3] we computed the orbit invariants of K for the classes above. They depend only on the weights [7; 3.1].

Finally in [6] and [4] we showed that unless K is a lens-space K is homeomorphic to K' if and only if $\pi_1(K)$ is isomorphic to $\pi_1(K')$,

From this we obtain that unless K is a lens space the weights (w_o, w_1, w_2) and the fundamental group $\pi_1(K)$ determine each other.

We shall see that if a lens space occurs then it is an $L(a_0, 1)$ and its possible distinct SO(2) actions are given by the choices of w_1 in class VI.

$\S4.$ THE FUNDAMENTAL GROUP OF K

A presentation for $\pi_1(K)$ may be given as follows [8], [6], [4]. Let a_1b_1, \ldots, a_g, b_g be the standard generators of $\pi_1(K^*)$ and let q_1, \ldots, q_n be the additional generators of $\pi_1(K_o^*)$. Let h be the homotopy element of a principal orbit. Then

$$\pi_1(K) = (a_i, \, b_i \,, \, q_j \,, \, h \,|\, \pi_* h^{-\beta}, \, [a_i \,, \, h] \,, \, [b_i \,, \, h], \, [q_j \,, \, h], \, q_j^{\,\alpha_j} h^{\beta_j})$$

where i = 1, ..., g; j = 1, ..., n and $\pi_* = q_1, ..., q_n[a_1, b_1] \cdots [a_q, b_q]$.

In [8] it was proved that $\pi_1(K)$ is *finite* iff:

- (1) $g = 0, n \le 2$ (here K is a lens space); or
- (2) g = 0, n = 3 and the three non-trivial stability groups have orders: (2, 2, k), (2, 3, 3), (2, 3, 4), or (2, 3, 5).

Moreover we proved in [6] that except for (1), (2) and

(3)
$$g = 1, n = 0, \beta = 0$$

the center of $\pi_1(K)$ is the infinite cyclic group generated by (h). Assume this now.

If $\pi_1(K)$ is nilpotent then so is its quotient by the center

$$\pi_1(K)/(h) = (a_i, b_i, q_i | \pi_*, q_i^{\alpha j}).$$

F

T

M

wi

wi

wi

Now a nilpotent group is c-nil for some c (being the length of its upper and lower central series [2], which means that every commutator of (c+1) elements is trivial.

$$[\ldots[[x_1,x_2],x_3],\ldots,x_{c+1}]=1$$

It is easily seen to happen for the above groups only if

(4)
$$g = 1, n = 0.$$

Here is a different argument for the last statement. Thomas [10] showed that if $\pi_1(K)$ is infinite and nilpotent then it is an extension

$$1 \rightarrow Z(a) + Z(b) \rightarrow \pi_1(K) \rightarrow Z(c) \rightarrow 1$$

where the matrix of the automorphism defined by c has the form

$$\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$
, y an integer.

Since all our manifolds are irreducible [12], [1] it follows from a result of Stallings [9] that K fibers over the circle with fiber the torus. For y = 0, $K = S^1 \times S^1 \times S^1 = \{0; (o, 1, 0, 0)\}$. For $y \neq 0$ the self-homeomorphism of the fiber given by the matrix above is of infinite order in its homeotopy group. Thus by [5; Corollary 1] we see that $K = \{\beta; (o, 1, 0, 0)\}$, that is g = 1, n = 0.

§5. PROOF OF THE CONJECTURES

Let $h(Z_0, Z_1, Z_2)$ be a weighted homogeneous polynomial in C^3 . Let

$$V = \{h(z_0, z_1, z_2) = 0\}$$

have an isolated singularity at the origin and

$$K = V \cap S^5$$
.

THEOREM 1. The fundamental group $\pi_1(K)$ is infinite and the universal cover of K is an open 3-cell if and only if

$$\frac{1}{w_0} + \frac{1}{w_1} + \frac{1}{w_2} \le 1.$$

Proof. First we show that if $\pi_1(K)$ is finite then

$$\frac{1}{w_o} + \frac{1}{w_1} + \frac{1}{w_2} > 1.$$

(1) For g = 0, $n \le 2$ K is a lens space. The only lens spaces that appear in our context are L(k, 1), for $k \ge 1$.

They are given by K(2, 2, k; I) and by $K(a_o; VI)$ for $k = a_o$ and different choices of w_1 . For k odd we have

$$K(2, 2, k; I) = \{-1; (o, 0, 0, 0); (k, k - 2), (k, k - 2)\}$$
 and for $k = 2r$
 $K(2, 2, 2r; I) = \{-2; (o, 0, 0, 0); (r, r - 1), (r, r - 1)\}.$

The reader will easily compute the orbit invariants for K in class VI using [7].

These exhaust all possible SO(2) actions on L(k, 1).

Notice that always

$$\frac{1}{w_0} + \frac{1}{w_1} + \frac{1}{w_2} = 1 + \frac{1}{k}.$$

Moreover

$$K = S^3/G$$

where G is the finite cyclic group Z_k .

(2) For
$$g = 0$$
, $n = 3$, $\alpha_1 = 2$, $a_2 = 2$, $\alpha_3 = k$ we have $K(2, k + 1, 2; \Pi) = \{-2; (o, 0, 0, 0); (2, 1), (2, 1), (k, k - 1)\}$ with weights $\left(2, k + 1, \frac{2(k + 1)}{k}\right)$.

Note that $K(2, k + 1, 2; II) = S^3/G$ where G is the binary dihedral group.

For
$$g = 0$$
, $n = 3$, $\alpha_1 = 2$, $\alpha_2 = 3$, $\alpha_3 = 3$ we have

$$K(2, 3, 4; I) = \{-2; (0, 0, 0, 0); (2, 1), (3, 2), (3, 2)\}$$

with weights

Note that $K(2, 3, 4; I) = S^3/G$ where G is the binary tetrahedral group.

For
$$g = 0$$
, $n = 3$, $\alpha_1 = 2$, $\alpha_2 = 3$, $\alpha_3 = 4$ we have

$$K(2, 3, 3; II) = \{-2; (0, 0, 0, 0); (2, 1), (3, 2), (4, 3)\}$$

with weights

$$(2, 3, \frac{9}{2}).$$

Note that $K(2, 3, 3; II) = S^3/G$ where G is the binary octahedral group.

For
$$g = 0$$
, $n = 3$, $\alpha_1 = 2$, $\alpha_2 = 3$, $a_3 = 5$ we have

$$K(2, 3, 5; I) = \{-2; (0, 0, 0, 0); (2, 1), (3, 2), (5, 4)\}$$

with weights

Note that $K(2, 3, 5; I) = S^3/G$ where G is the binary icosahedral group.

Since the weights and fundamental groups determine each other, the first assertion is proved. These special cases are well known, see [3].

The fact that the universal cover is an open 3-cell follows from results of Waldhausen [12] about Seifert-manifolds or results of Conner and Raymond [1] about SO(2) actions on $K(\pi, 1)$'s.

Conversely, suppose that

$$\frac{1}{w_o} + \frac{1}{w_1} + \frac{1}{w_2} > 1.$$

Using the weights determined by the exponents in Section 3 computation shows that only the above examples can occur.

This completes the proof.

Now let

$$M_b = \{-b; (o, 1, 0, 0)\}, b = 1, 2, 3.$$

Theorem 2. Let V and K be as above with $\pi_1(K)$ infinite. Then $\pi_1(K)$ is nilpotent if and only if

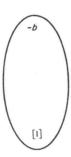
$$\frac{1}{w_o} + \frac{1}{w_1} + \frac{1}{w_2} = 1.$$

In that case K is equivariantly diffeomorphic to M_b for b = 1, 2 or 3.

Proof. As we have seen above, if $\pi_1(K)$ is nilpotent then g = 1 and n = 0. Let $\beta = -b$, then

$$K = \{-b; (o, 1, 0, 0)\}$$

for some integer b. According to [7] the resolution of the singularity of V at the origin is dual to the graph:



This is an elliptic curve with self-intersection -b. Since the quadratic form (-b) is negative definite, $b \ge 1$.

Since V is embedded in \mathbb{C}^3 , $b \le 3$. This follows from results of Wagreich ([11] and unpublished) and I am indebted to him for communicating an explicit proof of this fact.

These manifolds are realized by

$$M_1 = K(2, 3, 6; I), M_2 = K(2, 4, 4; I), M_3 = K(3, 3, 3; I)$$

and by [4, Theorem 4] their SO(2) action is unique, hence their weights and fundamental groups mutually determine each other.

Now suppose that

$$\frac{1}{w_0} + \frac{1}{w_1} + \frac{1}{w_2} = 1.$$

An easy computation using the weights determined by the exponents in Section 3 shows that there are only the following possibilities for exponents (a_0, a_1, a_2) in the six classes.

TABLE 1

Class	M_1	M_2	M_3
I	2, 3, 6	2, 4, 4	3, 3, 3
II	2, 3, 4	2, 4, 3	3, 3, 2
	3, 2, 3	4, 2, 2	
III	-	2, 2, 2	3, 1, 1
IV V	_	2, 3, 2	3, 2, 2
V	-		2, 2, 2
VI	-	-	

Computing the weights (w_o, w_1, w_2) associated to the exponents (a_o, a_1, a_2) shows that they are integers and equal to one of the unordered triples (2, 3, 6), (2, 4, 4), (3, 3, 3). Thus the corresponding K is equivariantly diffeomorphic to one of M_b , b = 1, 2, 3. The table above is arranged so that manifolds in the same column are equivariantly diffeomorphic.

This completes the proof.

REFERENCES

1. P. CONNER and F. RAYMOND: Actions of a compact Lie group on aspherical manifolds, to appear in *Proceedings of the Georgia Topology Conference* (1969.)

2. M. Hall, Jr.: The Theory of Groups, Macmillan, New York (1959), 151-153.

- 3. J. MILNOR: Singular points of complex hypersurfaces, Ann. Math. Stud. 61 (1968).
- P. Orlik and F. Raymond: Actions of SO(2) on 3-manifolds, Proceedings of the Conference on Transformation Groups, Springer-Verlag (1968), 297–318.
- 5. P. ORLIK and F. RAYMOND: On 3-manifolds with local SO(2) action, Q. Jl. Math. 20 (1969), 143-161.
- P. Orlik, E. Vogt and H. Zieschang: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64.
- 7. P. Orlik and P. Wagreich: Isolated singularities of algebraic surfaces with C* action, Ann. Math. To appear.

8. H. Seifert: Topologie dreidimensionaler gefaserter Räume, *Acta Math.* 60 (1933), 147–238.

9. J. Stallings: On fibering certain 3-manifolds, *Topology of 3-Manifolds*, Prentice Hall (1962), 95–100. 10. C. Thomas: Nilpotent groups and compact 3-manifolds, *Proc. Camb. phil. Soc. math. phys. Sci.* 64

(1968), 303-306.

11. P. Wagreich: Elliptic singularities of surfaces, Am. J. Math. To appear.

12. F. WALDHAUSEN, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, I, Invent. Math. 3 (1967) 308-333; II, Invent. Math. 4 (1967), 87-117.

Institute for Advanced Study and University of Wisconsin, Madison.