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Seminar notes on simply connected surgery

by Peter Orlik

During the fall of 1967 we studied simply connected surgery in
Professor Montgomery's seminar by reading Milnor [15], Kervaire and Milnor
[11], and parts of Novikov [17]. At Princeton University Professor Kervaire
was lecturing on Browder-Novikov theory. Since at the time only the original
papers were available for learning the subject, I decided to write some notes
to serve until an introductory text appears in print and hopefully to unify the
approach. As we proceeded to Wall [24] it became clear that the latter had
been done there, but I was not convinced that his paper wouid be a suitable
introduction to the topic. Therefore, I wrote these notes based on omitting
enough in Wall [24] and adding a chapter on preliminary material and a
chapter on applications. |

Simply connected surgery offers all the geometric difficulty of the
general case without the complicated algebra. We restrict ourselves to closed
manifolds of dimension > 5 or compact manifolds of dimension > 6 for the
usual reasons. For simplicity we treat only the smooth case. The PL case
is entirely analogous and it is left to the reader to supply the necessary
modifications. ‘

Finally I wish to thank the participants of the seminar ih general and
Tony Armstrong and Colin Rourke in particular for inspiring lectures and
helpful conver sations. Special thanks ar.e due George Cooke who read the

first draft and suggested many clarifications and improvements.

Institute for Advanced Study
March, 1968



I. PRELIMINARIES.

1. Smooth category.

Throughout these notes we are working in the smooth (Coo) category.
Objects are compact smooth manifolds (closed if the boundary is empty) and
maps are smooth maps.

The main reference for this section is Milnor [13].

Definition 1.1. A smooth m-manifold M~ is a (topological)
m-manifold with a collection of C° coordinate neighborhoods O = {(U, h)}
satisfying

(i) L covers M.

(i) hhol: b (U.nU,) —>R™ or R™ is a smooth ma

172 F M1 Y, + '8 @ smooth map.
(iii) £ is maximal with respect to these properties.
Definition 1.2. A map f: M —> N" between smooth manifolds. is

smooth if for every pair (U, h), (V, k) of coordinate systems of M and N

.the composite

kfh"1 : h(U) —>R" is smooth.

Definition 1. 3. The rank of f at p e M is the rank of the Jacobian
D(kfh‘l) at p. This is independent of the choice of coordinate neighborhoods
about p and f(p). '

Definition 1. 4. f: M —> N" is an immersion if rank f=m at
each point p e M.

f is an imbedding if it is an immersion and a homeomorphism of M
onto f{M)CN. |

f is a diffeomorphism if it is an imbedding and f(M) = N (hence m = n).

Definition 1. 5. QqC Mm is a submanifold if it is a subset, a topological
manifoid and the restriction of the coordinate neighborhoods gives a differentiable
structure to Qq. |

Lemma 1l.6. If f: N" —>M™ is an imbedding then £(N") is a sub-

manifold of M™.



The following result is proved in [13].

Theorem 1.7 (Whitney). M™ can be imbedded in R-T,

Smoothing corners [11 ]. We shall often be in the following situation.
Suppose N is a compact, smooth n-manifold with boundary and Sk-1 X Dn-k

is smoothly imbedded in the boundary. We wish to attach Dk X Dn-k along

the imbedded Sk‘1 X Dn-k, so that the resulting manifold N' has a differential

structure compatible with the one given on N. This is easy except at the
""corner" Sk-l X Sn-k-l. A neighborhood of it looks like Sk-1 X sn-k-l X Q
where QC RZ denotes the three-quarter disc containing all (r cos 8, r sin 8)
"with 0<r<1, 0<6<37/2. To smooth this corner map Q onto the half
disc H, consisting of all (r cos ©', r sin 8') with 0<r <1, 0<6'<7 by

@' = 20/3. Carry the differential structure of H back to Q making ita
differentiable manifold. The same transformation in the neighborhood of

Sk.1 X Snﬂkm1 makes N' a differentiable manifold. - We shall always assume

that this has been done whenever needed.

2. Vector bundles.

The main references of this section are [ 8 ] and [13].

Definition 2.1. A k-dimensional real vector bundle £ is a bundle
(E, m, B) together with the structure of a k-dimensional real vector space
Rk on each fiber Tl'-l(b) such that each point be B has an open neighborhood
U and a trivialization U X Rk —_—> 7r_1(U) where the restriction c¢ X Rk —_ 7r-1(b)
is a vector space isomorphism for each c e U.

_The structure group is GL(n), the group of n X n real non-singular

matrices. For paracompact B we may give £ a riemannian metric
[8, p. 36] and use it to reduce the structure group to O(n), the group of
n X n real, orthonormal matrices [ 8, p. 68].

Definition 2.2. The map g.: E(§) —> E(n) is a bundle homomorphism

of two bundles £, n over B if it is a vector space homomorphism in each

fiber and the following diagram commutes



E(¢) —E&—> E(n)

l Tt l "
id

B ——> B

If g is an isomorphism in each fiber it is called a bundle isomorphism,

£~ n. For paracompact B such an isomorphism has an inverse.

Definition 2.3. The cartesian product of two vector bundles §, n is

defined as § X n, where ‘
E(§ X ) = E(§) X E(n)
B(€§ X n) = B(§) X B(n)
(ﬂg X ”n)(x, y) = (Wg(X)» Wn(Y))-

‘Definition 2. 4. Given a diagram

where £ = (E, 7, B) .is a vector bundle and f a continﬁous map the induced
bundle f*(g) is defined to have total space E' a subsetof X X E,

CE'= {(x, e)|f(x) = m(e)}. There is a bundle map g covering the natural
projection \(x, e) = x defined by g(x, e) = e, making the following

diagram commutative:

X —>B

E' is unique up to isomorphism with this property. If £ is trivial
*
(isomorphic to BX F) sois { (§).
Definition 2.5. The Whitney sum £ © n of the bundles £ and q

over B is the induced bundle from the diagram,




E(£®n) ------- > E(£) X E(n)

B —> BXB
where A is the diagonal map A(x) = (x, x)
E@n=AT(EXn .

Note that the fiber of £ ® n is F(§) X F(n) and dim(§{ ® 1) = dim § + dim .

Lemma 2. 6. Whitney sum is commutative and associative.

Definition 2.7. Let §, n be two vector bundles with the same fiber
dimension. A bundle map f: { —> n is a continuous map of the total spaces
which induces isomorphism in the fibers.

E(£) ——> E(n)

#gl l’"n

B(§) —E—> B(n)
The induced map g is continuous. If g =id. then f . is a bundle
isomorphism (see 2.2).
An imbedding is a bundle map which is an isomorphism into.
Theorem 2. 8. If the continuous map f: E(§) —> E(n) is a vector
‘space homomorphism in each fiber then { may be factored into a bundle
homomorphism followed by a bundle map.

. .. n . n
Definition 2.9. Let M be a smooth manifold, xo e M . A tangent

vector at X, is a presheaf map X : I'(U, xo) —> R X X, from the sheaf of

germs of smooth maps on M to the constant sheaf R X M. Thus
(i) X commutes witn restrictions.
(ii) X is linear, i.e. X(af +Bg) = aX(f) + BX(g).
Moreover we require that
(iii) X(f-g) = X(D)- g(x,) + (x,)* X(g).
Notice that X(l) = X(1-1) = X(1) + X(1), hence X(l) = 0 and X(c) = 0.

Equivalently a tangent vector at x_. is an assignment to every

0

. 1 1 n n
coordinate system (u, ..., un) at x, anelement (a, ..., a )eR

0
such that if (8%, ..., p7) is assigned to (v}, ..., v) then

. i -
a'=Z, Qu—ﬁ The map X is then just X = Zali.-.
Joud ou'



o the tangent vectors at x, form an

‘n-dimensional vector space with basis _3_1_ The totality of these is called the
du
tangent bundle E(7) of M. Define 7 : E(7) —> M to map the tangent vector

Definition 2.10. For each x

X at X to the point X,
Definition 2.11. For each f: M1 —_—> M2 there is a bundle map

Df : E('rl) —> E('rz) defined by Df(X) = Y where Y(g) =X(gef), making the

diagram commutative

E(7)) —>—> E(1,)

e

f
. ——
M1 MZ

D is called the derivative of the function ’f.
vDefinition 2.12. Let f: M1 —_— MZ be an immersion; Ml’ M2

smooth manifolds. The normal bundle v £ is defined as follows:
Let T T, be the tangent bundles of Ml’ MZ' By (2.8)

Df: E('rl) _ E(TZ) may be factored into a bundle homomorphism

h: E(T) —> E(f*'rz) and a bundle map g.

E(r,) ——> E("1,) —E—> E(1))

R

2 5 —
M, > M, M,

Since f is an immersion h is 1-1, hence an isomorphism into, hence
. ‘ —_—

an imbedding. Thus f 'rzlimage h is a bundle over Ml. It is called the

normal bundle v _.

f
Moreover

0——>1'1——->f*72——>vf-———>0

¥ o~
is an exact sequence of bundle homomorphisms, thus f{ T, " 'rl © vf.



)

7.

(The splitting of an exact sequence of bundle homomorphisms requires only a

paracompact base.)

Definition 2.13. § and 7 are stably equivalent, £ 3 n if there exist

trivial bundles e, and ¢, such that

g@elzn_Qe

Note that 3 is an equivalence relation.
Theorem 2.14. If M is a compact manifold the s-equivalence classes
of vector bundles form an abelian group under ®.
(The above theorem holds for a much wider class of spaces.)

Let M be a smooth manifold. By (l.7) we can immerse M ina

large euclidean space RN with normal bundle v. Since RN has trivial

~tangent bundle (2.12) implies that

-and therefore the normal bundles of any two immersions are s-equivalent.

Definition 2.15. A smooth manifold M is parallelizable if it has

~trivial tangent bundle. It is s-parallelizable if it has stably trivial tangent

. bundle.

An s-parallelizable manifold is also called a 7m-manifold. Note that

_Sn with the standard differentiable structure is s-parallelizable, since

adding the trivial line bundle gives the tangent bundle of Rn+l.

Lemma 2.16. M" is a m-manifold if and only if it immerses in
some RN with trivial normal bundle.

Proof. Clear from 7, @V = N,
—-- The following three lemmas are proved in [11 ].

Lemma 2.17. Let £ be a k-dimensional vector bundle over an
n-dimensional complex, k >n. If ¢ is stably trivial then it is trivial.

Lemma 2.18. If Mn is a submanifold of Sn+N, N>n, then M is

-8-parallelizable if and only if its normal bundle is trivial.

L



Lemma 2.19. A connected manifold with non-empty boundary is
s-parallelizable if and only if it is parallelizable.

The proof of (2.17) uses a fact about classifying spaces, which we
do not want to introduce here, (2.18) and (2.19) are immediate corollaries.

Definition 2. 20. ‘If ¢ = (E, 7, B) is a trivial bundle of dimension n
a framing of ¢ is a given bundle isomorphism £% B X R™. .

Definition 2.21. A framed manifold (M, F) is a w-manifold with

a fixed trivialization F given for its stable tangent bundle, 'rM ® ek. Note
that if we frame Sn+N N > n (for example as a submanifold of Rn+N+1),

then the framing of M gives an essentially unique framing of the (trivial)
normal bundle of any imbedding M® —> 5" N

Definition 2.22. Let f, g: X—> Y, where Y has a metric d, and
let § be a positive, continuous function defined on X. Then g isa

§-approximation to f if d(f(x), g(x)) < 6(x) for all xe X.

Theorem 2.23. Given a smooth map £ : M"— RP, p>2n anda
continuous positive function § on M" there exists an immersion
g: M" —> RP whichisa §-approximation to f. '
Definition 2.24. Let f:M" —> N be a map of smooth manifolds,

: WP-q 'a submanifold of Np. Call f transverse regular to Wp-q if for

each x e f-]_'(W) with (ul, oo un) a coordinate system at x and

(vl, cens vp) a coordinate system at f(x) such that on W,

v1 = v2 =...=v1=0 the Jacobian of f has rank q and the induced map

Mx N "W i)

is an epimorphism for each xe M. Hére ('TM)x means the fiber of the

tangent bundle at x and pr is projection. (For Df see (2.11)).

Lemma 2.25. If f: M —> NP is transverse regular to wp-q’
then V = f-\l(W) is a submanifold of dimension n-q and the normal bundle
of V in M, v__ is isomorphic to f*(vw), where v__ is the normal

v w
bundle of W in N. Thus there is a bundle map g making the following



diagram commutative

Ew,) —E—E(,)

wvl .lzrw
v —L s w

P be smooth, let WP-q be a closed,

Theorem 2.26. Let f: M —>N
smooth submanifold of N. Let A be a closed subset of M such that f is
transverse regular to W at each xeAn f-l(W). Let § be a positive con-
tinuous function on N. Then there is a smooth map g : M" —> NP such that

(i) g isa 6-approximation to f.

(ii) g is transverse regular to W.

(iii) g|A = | A.

Definition 2.27. Let £ be a vector bundle with compact base. We

may assume that it has a Riemannian metric and the structure group is

reduced to O(n). Consider the unit disc bundle El(g) with boundary I:.‘.l( £),

the associated unit sphere bundle. The Thom complex T(£) is defined as

the identification space El(g)/ El(g).

An equivalent definition is the one point compactification of the total
space of the bundle, T(£) = Eue. Note that T(§) is a smooth manifold
except at the identification point e, hence maps into it can be made
transverse regular on manifolds missing e.

Lemma 2.28 (Thom isomorphism). Let Mn be an orientable smooth
manifold and VM the normal bundle of M for some imbedding with

codimension N. Then for all i we have an isomorphism
¢ H, —> .
$ : H(M) —> H, (T(V),))

Proof. Define § by the diagram
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H;(M) b Hy (T — HuuEy ) Ejr)
1» ¢
n-i = n-i

- (Using a different proof this theorem applies for more géneral spaces.)

Definition 2.29. A regular homotopy of an immersion Fo t:M—> N

is a homotopy F : M X I —> N such that for each t, Ft is an immersion

and the induced homotopy F* of 'rM' into TN is continuous.

The following theorem of Hirsch [6 ] will be needed as improved by
. Haefliger [5 ].

Theorem 2.30. Let v’ and M™ be smooth manifolds v <m, and
f: V—>M a smooth map. Suppose V has a handle decomposition with no
handle of dimension > m-2. Then regular homotopy classes of immersions
homotopic to f correspond bijectively (by the tangent map) to stable
homotopy classes of stable bundle monomorphisms 7__  —> f*'r .

v M
For handle decomposition see Milnor [14].

3. Poincaré complexes.

The main references for this section are Wall [22, §2] and Wall [24, §2].
We shall only give the simply connected definitions, hence assume
that each component of every space in this section is simply connected.

Let X be a finite CW complex.

Definition 3.1. X is a Poincaré complex of dimension n if for some

homology class [X] e H (X; Z)
r
[X]n : H(X; 2) —> Hn“r(X; Z)

is an isomorphism for each r. Call [X] the fundamental class of X. Itis
determined up to sign in each component of X.

Clearly for any Z-module G we have isomorphisms

gn tH(Xi G —>H_ (X G) .
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. Similarly if (Y, X) is a finite CW pair then (Y, X) is called a

Poincaré pair of dimension (n+l) if there isa [Y]e H_ (Y, X; Z) such
that '

[Y]n 1y, 2 —>H___(Y, X; Z)

'is an isomorphism for all r and each component of X is a Poincaré
complex with fundamental class 9_[Y].

Again for any Z-module G we have the isomorphisms
1
[¥]n : B (Y: G —>H___(Y, X; G)
Moreover the diagram below commutes up to sign

—s X6 — v xieg— #hvie) — v#'x0 —

1 [X]n l [¥]n l (¥l l X]n

'H (X, G —m@™> H (Y;G) —>H (Y, X; G)—m@8>H (X; G) —>
n-r n-r n-r' : n-r-1

‘hence [Y]: Hr+1(Y, X; G) —> Hn_r(Y; G) is an isomorphism for each r.

A finite Poincaré triadvis a finite CW triad (Y; X, X_"_) with
-X+n.-x_ = W (possibly empty) such that each of the pairs (Y, X_ v X_‘;),
(X_» W), (X, W) isa Poincaré pair with j 2 _[Y] = [X+] - [X_]. Here
d, and j, are given by '

9y Ju
Hr+1(Y’ X; 2) —> Hr(X; z) —> Hr(X, W; Z2) T

H (X,, Wi 2) @H (X, W; 2)

where the isomorphism at the right comes from the relative Mayer-Vietoris
sequence of the triad (Y; X+, X ) modulo W. |
Here is a result of Wall [23] on the geometry of a Poincaré complex.
Theorem 3.2. Let X be a connected, simply connected Poincaré€

complex of dimension n> 3. Then X is homotopy equivalent to a complex
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K Uf en with dim K < n-1. The pair (K, f) is unique up to homotopy type
.of K and homotopy and orientation of f.

Next we need the notions of homotopy groups and homology groups of
a mé.p, square, etc. For details see [16].

Definition 3.3. Let ¢ : M —> X be a map. The homotopy group

(¢) is defined as homotopy classes of commutative diagrams preserving

[

Tk+l
base point:

U)

————>
\Z
M—2
‘We have the exact sequence

...—-—>1rk+1(<p)%7r(M)—->7r(X)-—>1r((p)--) .

Definition 3.4. Let ¢ denote the commutative square

?,
N—% v

g

M———> X
41

The group 7rk+1(qo) is defined by taking homotopy classes of the image of the

model square

Dk +1

T

—>D_

in @. Again care must be taken to preserve base points to yield the exact

sequences
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-f>-7rk+1(<p)——>7r 1) —> (iz) —>7rk(<p)-—>...

Kkt Tk
Similar definitions apply to cubes, etc. (see [24]).
Definition 3.5. The homology groups of the map ¢ : M —> X are
defined as H'k+1(M(p’ M) where M(P is the mapping cylinder of @. Thus we
make ¢ an inclusion up to homotopy type and consider the relative group.

We have the exact sequence

o H () —> H (M) —> H (X) —> H (¢) —> ...
Definition 3. 6. Consider the square ¢

CPZ
N—m>Y

aT X i,
?

M——>X

Make all maps inclusions up to homotopy type. Define Hk+1((p) = I-Ik +1(Y. N v X).

- We have the exact sequences of a proper triad

—>H_, (@) —> H (@) —>H (@,) —>H (@) —>...
—>H_ (@) —>H (i) —>H(,) —>H(@)—>...

Similarly for cubes, etc.
We shall also have opportunity to use the homology exact sequence

connected with a triple of squares.

|

Let (pl be the left square, (pz the right square and ¢ the outside square.

o]
\4

~
e

H—>
O—>0

Y

L
>
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Then we have
—> H (p) —> H (@) —> H (¢,) —>H__(¢)—>...

Definition 3.7. A map ¢ : M —> X of Poincaré complexes is of
degree 1 if ¢ [M] = [X].
- L.emma 3.8. Let Mm, Xm be connected Poincaré complexes,
@ : M—>X a map of degree 1, B a finitely generated Z-module. Then

the diagram
r @ r
H (M; B) H (X; B)

[Mlnl l [X]n
Y
H (M; B) —*—> H (X; B)
m-r m-r

is commutative. Moreover [M]n induces an isomorphism of the cokernel
K'(M; B) of ¢ on the kernel K___(M:B) of ¢,. Thusif ¢ is k-connected,
then Py and (p* are isomorphisms for r<k and r > m-k.

Similarly let ¢ : (N, M) —> (Y, X) be a map of degree 1 of Poincaré
pairs. Then ¢ gives split surjections of.homology groups for M —> X, |
N—Y, (N, M) —> (Y, X) with kernels K and (p* gives split injections
of cohomology groups with cokernels K*. The duality map [N]n vinduces

isomorphisms
* *
K (N) -—->K*(N, M), K (N, M) ——>K*(N) .

The homology (cohomology) sequence of (N, M) is isomorphic to the direct
sum of the sequence for (Y, X) and a sequence K*(K*).

Proof. Commutativity of the first diagram follows from the naturality
of cap products. The fact that each Hr(M) —_— Hr(X) is onto implies that
Kr(M) = Hr+1 " -1

Now ¢ = ((M]n)p ([X]n) = is a right inverse for ¢, so Hm_r(M; B)

(). Hence the assertions of the first paragraph.

splits into Km_r(M; B) and an isomorphic copy of Hm_r(X; B). Similar
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considerations apply to cohomology and for pairs.
Suppose we have a Poincaré triad (Y; X+, X ). Then the commutative
diagrani ‘

-_—> Hl..(x_*_; B) —_—> Hr+1(Y, X+; B) —> Hr+l(Y; By —>

l[xgn lmn lmn

ce. ™>H (X,, W; B)y—/™H (Y, X ;B)—™ H (Y, X; B) —>
: m-r + : m-T - m-r :

shows that the middle vertical map is an isomorphism.

Let ¥ : (N; M+, M ) —>(Y; X+, X ) be a degree 1 map of Poincaré
triads. In addition to ¥_[N] = [Y] it follows that «ll*[M+1] =;[X+1]. Also the
diagram '

*

N, M,; B) —Y gy, X,; B)

[N]njl | l,[Y]n
/]

3
H (N, M ; B)—/> H (Y, X_; B)
m-r - m-r -

is commutative. Using the argument of (3. 6) we have
r+l ~ .
[N]n L. K (Np M+’ B) - Km_r(N, M-’ B) .

Lemma 3.9. The direct sum splittings above are preserved in any
_ of the homologyA or cohomology sequences of the triad.

This is immediate.

Assume now that (N, M+, M_) is a proper triad with M+u M_=M
and M+n M_= L. Combine the homology exact sequences of the triples

(N, M+1’

L) and (N, M, M+1) into the diagram
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H (ML) H (N, i:-) ng M,) Hn(M_\,L) H}(‘N. M,)
Hn+1(N’ L) Hn+1(N’ M) Hn(N, L)
Hn,-l-l(M-’l/Hnﬂ(N’ M+)\\/’I,'In(M: M) = Hn(M+:U{n(N, M)

By a change of sign in the boundary map Hn+1(N, M) — Hn(M_, L) we can
make the above diagram commutative. A further adjustment of signs shows
that —> Hn+l(N’ L) —> Hn+1(N, M)® Hn+1(N’ M‘*-_) —> Hn+1(N, M) —> Hn(N, L)y —
is exact. A sequence of this kind is just a relative Mayer-Vietoris sequence.

By (3. 8) the kernels split off the diagram. In pariicular if Yy:L—>W
is a homotopy equivalence, then all Kr(L) = 0 and the homology exact sequences
of pairs involving L show that Kn(M_) = Kn(M—’ L) and similarly for M+

and N. Thus we have

Kn+1(M+)/\ Kn+1(N’ M-)/\ Kn(M-)/\Kn(N' M+)
N N SN/
) Kn+1(N) Kn+1(N’ M) Kn-l-l(N)
/ N N/
Kn+1(M-)\/K +1(N’ M+)\/ Kn(M-l-)\/,Kn(N’ M)

Lemma 3.10. Let ¢ : (N, M) —> (Y, X) be a muap of finite CW pairs.
Let Y be connected and assume that Hi(go) =0 for i<r. If Hr+1((p) =0
then »Hr(q)) is free (with Z coefficients).

Proof. Replacing (Y, X) by the mapping cylinder of ¢ we may

_suppose that ¢ is an inclusion and M = N nX. Now all spaces are simply

connected and Hk(q)) = Hk(Y, N u X). The result follows from the universal
coefficient theorem.

Note that the same applies to cohomology.

Corollary 3.11. Let 0—>C, —> C,—>C,—™ 0 ¢ be a short exact

sequence of free chain complexes over Z, each with finite total rank.

Assume that Hi(C) =0 for it r, Hi(C") =0 for i #r+l and




17.

) .
Hr+l(C) = Hr+ (C"y=0. Then Hi(C') =0 for i# 0 and we have an exact

sequence of free Z-modules
) — 11 [} .
0—>H_,(C")—> H (C') —>H _(C)—>0

Corollary 3.12. Let ¢" : (N, M) —> (Y, X) be a map of finite CW
complexes, Y connected. Denote the induced maps by ¢ : N—> Y and
@' : M—> X. Assume that H (¢") =0, i # r+l, H(¢) = 0i #r and
Hr+z»(<p"). = Hr+1((p) = 0. Then tve have the short e::act sequence of free

-Z-modules

0 —>H_, (¢") —> H_(¢") —>H_(p) —>0 .
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1I. SURGERY ACCORDING TO WALL

1. Description

In this chapter we follow Wall [24] to describe surgery and define the
obstruction groups. One basic difference is the assumption that we are working

only in the simply connected case. This will be frequently omitted from state-

ments although tacitly assumed throughout these notes.

Let X be a simply connected topological space, M" a closed smooth
manifold and ¢ : M —> X a map. The objective is to alter the map ¢ and the
manifold M to make ¢ as near a homotopy equivalence as possible.

For the following description of surgery see also [15], [11] and [14].

Let f:S" X DT —s M™ be an imbedding. The operation surgery

replaces M by the manifold M' obtained by deleting the interior of f(Sr x DM F

and replacing it by D'H-1 X Sm-r-l.

)
Now we want to define ¢': M' —> X,
In order to do this we shall look at the trace of the above surgery. Con-
sider M X1 and form a new manifold N by attaching Dr+1 x DT to

.{f(Sr x DT, 1}.

Call this attaching an (r+l)-handle to M XI. Now we shall define a map

Y : N—> X such that ¢|M = ¢ and the required ¢' is then defined as ¢/| M'.
Defining ¢ is a homotopy question. Up to homotopy N is just M
with an (r+l)-cell attached to f= £] s* x 0. Hence up to homotopy the con-

struction is defined by
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(i) the map f:8  —M
(ii) a nullhomotopy of ¢ e f

Let a denote the commutative diagram

_Sr Dr+1
7l | ¢
M— X

then equivalence classes of these diagrams define the relative homotopy group

9)-

Given a class a it gives an imbedding f: 8" —> M. Inorder to perform

1rr+1(¢). Our surgery is therefore a surgery on the class a ¢ T

surgery, however, we need an imbedding f: s*xD™ T —= M. Now S" XD "

is parallelizable. Hence if M is the tangent bundle of M we need fx7

trivial (see I. 2.12). Thus we have the following requirement:

M

(i) There is an orientable vector bundle v over X such that ¢*v
is the stable normal bundle of M (in some Sm+N), or equivalently that there
.is a stable trivialization F of ™ ® ¢*v. Since we want to preserve this
property under surgery we require in addition that F extends to a stable

trivialization of N & y*v. Thus we have the commutative diagram

N

L

He— «

v
where 7 4., T @sl
NM™ M .

Assume we have X, v, m satisfying (i). Consider triples (M, ¢, F)
where M is a smooth m-manifold ¢ : M—> X a map and F a stable triviali-
zation of ™ & o*v.

Disjoint union defines addition of triples. It is commutative, associa-
tive and has a zero (M = @). Define an equivalence relation (Ml, qSl, Fl) -~
(MZ, ¢2, FZ) if there exists a compact (m+l)-manifold N such that
dN= MuM_, amap ¢¥: N— X, w|M1= qSl, l//lMZ = ¢_ and a stable

1 2’ 2
trivialization of TN @ Y*v extending Fl and FZ' (Use the inward normal
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along M, in N and the outward normal along M2°)

Let Qm(X, v) denote the set of equivalence classes. It is an abelian
group under the above addition. The inverse of (M, ¢, F) is (M, ¢, F & (-cl))
in MXI. ‘

This equivalence is the same as equivalence by a sequence of surgeries
[15].

Similarly we can define a relative version. Let (Y, X) be a pair of

topological spaces, X, Y simply connected and (N, M) a pair of compact,

smooth manifolds, M = 9N. Let
¢ : (N, M) —> (Y, X)

be a map of pairs. Assume that
(i) there is a vector bundle v over Y and a stable trivialization F of
T ..® ¢*v as before.

N
The cobordism group Qm(Y, X, v) is defined by the equivalence relation:

(Nl’ ¢1, Fl) ~ (NZ' d)z, FZ) if there is a manifold Q such that 9Q = Nlu P UNZ,
oP = IvI]U M2 and an extension of ¢1U ¢2 to ¥:(Q, P)—> (Y, X) and an ex-
tension of F‘1 and FZ to a stable framing of ‘TQ @ y*v.

We can describe bounded surgery by first doing surgery on the boundary

and then in the interior.
Doing surgery on OM we obtain a cobordism P, where dP = MuUM'.
Now attach P to N along M to obtain a manifold V, where 0V = M',
The cobordism of N is V X1 with the corner along M' X0 rounded and a

corner introduced along M X 0,

V XTI

M' X1

| p— s

N X
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To see that the cobordism Q of our equivalence relation is obtained this
way, first construct V as above and the cobordism V X1 of N to V, then
find Q as a cobordism of V to N with boundary (M') fixed. (The shaded

part is the cobordism of the figure above.)
Nl

_

|

\

7777 LA
N

N

-

The description of bounded cobordism has one disadvantage, itis not
symmetrical with respect to N and N'. We shall return to this in the next

section.

2. Surgery below the middle dimension

In this section we shall describe a necessary and sufficient condition
for doing surgery on a class a € 7rr+1(¢) and show that no difficulty is encountered
below the middle dimension. ,

Theorem 2.1. Let (M, ¢, F) ¢ Qm(X, V). Any a € 1rr+1(¢), r <m-2
determines a regular homotopy class of immersions sTXxD™ T —> M. We
can use the imbedding £ : st x DT —> M to do surgery on a iff £ isin
this class.

Proof. Let

sr i Dr-l~1

—_—
fll 131
M—2 s X
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© ¢*v pulled back by f,
r+l

represent a. The stable trivialization F of 'rM

gives a stable trivialization of fi" TM f* o*v = 1 ™ @ ix gi“v . Since D'
is contractible we have a natural tr1v1a11zat10n of glv ,» which induces a stable
trivialization of i* gi"v . Thus we obtain a stable trivialization of fi" ‘TM which
we view as a stable isomorphism with the trivial tangent bundle of s*xD T,
By (I. 2.30) this determines a regular homotopy class of immersions
if r<m-2.
Now let f: S X D7 —> M be an imbedding. If it can be used for
surgery on a, then its homotopy class must be that of 9,0, 9 : 7rr+1(¢) — 7rr(M).
Assuming this, we can take fl to be flsr X 0. Construct N as described and

extend ¢ to ¥ using g More precisely

Y(M X t) = $(M) and

r+l

wp™ x D7) = (g (D7, 41(D™ T

-

Clearly d/ extends to a trivialization of ‘TN & y*y on M XI1I. The handle

Dr-l'1 x D™ is contractible and therefore it has a unique trivialization. This

agrees with the trivialization f*F on s x DT because it is induced by the
r+l

contraction of D and the stable isomorphism of f*r and T . By
M SrXDm-r

our discussion these ag"ree precisely when f lies in the regular homotopy
~class of a.
Corollary 2.2. If m > 2r, we can do surgery on a.

Proof. Since we have enough codimension general position gives an

immersion S XD ' —> M which defines an imbedding fo . st —> M

representing a. Let T denote the tangent bundle of s* and § its normal

bundle in M. By (I. 2.12)

*
fo'rM'z'rS$§

By the theorem we have a stable trivialization of fo M and Tg is clearly
stably trivial, hence §¢ is stably trivial. By (I. 2.17) we have that § is
trivial, since m > 2r. Thus we have an imbedding £ : sTxD™ T —>M

representing a.
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We use this to obtain )

Theorem 2.3. Let (M, ¢, F) ¢ Qm(X, v) and assume that X is a finite
simplicial complex. If m > 2k then we can perform a finite number of surgeries
on M with handles of dimension <k to make ¢ k-connected.

Proof. As in (I. 3.5) replace X by the mapping cylinder of ¢ so that

¢ : M—> X is an inclusion. Enumerate the s simplices of dimension < k in

X -M. Let X = M andlet Xi be the result of attaching the first i simplices

0
of X-M to M. Let NO = M XI. Now use induction on i. Suppose we already
have a manifold Ni-l’ aNi_l = MuU Mi-l' wi-l : Ni-l —_ Xi-l a homotopy equi-
valence and let l/Ji_1| Mi-l =¢ e Mi-l —> X. Suppose the i-th simplex is of

dimension (r+l). It determines an element a ¢ 1rr+1(X, Xi 1). Since Ni-l is
formed from M by attaching handles of dimension <k, starting from the other
boundary it is formed from Mi-l by attaching handles of dimension

> (m+l-k) > k+l > r+2. Thus (Ni Mi-l) is (r+l)-connected. Consider the

-1’

homotopy exact sequence:

M, )—

_ )y —> (X, M, ) —> 1rr+1(X, Xi-l) > ﬂr(xi-l’ i1

v‘”r-l-l(xi-l’ M Trsl i-1

" " " : n

M =0

0= M, )

9, ) — T X )N

TN M) T
Let o' map onto a and perform surgery on a'. This completes the induction.
We end up with Xs = M'.JXk and (X, Xs) is k-connected. By the above
argument (Ns, MS) is k-connected and Ns is homotopy equivalent to Xs.
Thus d)s : Ms —> X is k-connected.
Now consider the relative versions. Our data consists of a pair of simply
connected spaces (Y, X) with bundle v ‘and a smooth pair (N, M), M = 9N

and a commutative diagram of maps
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—_—

e

|

-
B—>z

and a stable trivialization F of ‘TN & d*v.
Theorem 2.4. Let (N, ¢, F) ¢ Qm(Y, X, V). Any ac€ 7rr+1(¢), r <m-2,
determines a regular homotopy class of immersions

m-r r-1 x

(Df xD T, s DTy — (N, M).

An imbedding f can be used to do surgery on a iff f is in this class.

Proof. The first part is similar to the proof of (2.1). If f1 : (Di, Sr-l)

—> (N, M) represents the class 8* a, then using f*F and the contraction

of Df+1 X Dm-r we can define a stable trivialization of (f1| Sr-l)* (1-M) which

extends to a stable trivialization of fi" TN' A relative version of (I. 2.30)

proves the first statement. Now suppose we have a nullhomotopy of ¢eof
given by a.

(Dr-l-l x Dm-r, Sr x Dm—r) i (Dr+1 x Dm-r’ D:. % Dm-r)

if
| (1\?\, M & 2— (Y, X)

We regard this as a nullhomotopy of ¢|imf and extend it to a homotopy of ¢.

Thus assume that d)(D_r X Dm-r) = * and that the nullhomotopy is constant

at the base point * in X. Form N0 by deleting the interior of D_r x DT

from N. Then ¢ induces a map d)O: (NO, aNo)——> (Y, X) and N is obtained
from N0 by adding an m-r handle. Obtaining N
called handle subtraction.

> \ . ‘ ‘ Dm-’r
N /‘. ) ‘.’3
A\ ,

0 from N this way will be
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Thus N X1 can vbe regarded as a cobordism between N and N0 (after straighten-
ing corners). Finally the stable framing on DI_. xDo T agrees with the one induced
by contracting the handle iff the tangent bundle pulled back by f has the properties
described, i.e. f is in the class of a.

Again this implies:

Corollary 2.5. If m >2r, we can do surgery on a.

In order to obtain an analogue of (2.3) we have to assume that a k-connected
map of the boundary M —> X induces a bijection 7r0M _— 71'0X and a k-connected
map of each pair of components. ’

Theorem 2.6. Let (Y, X) be a finite simplicial pair 1r1(X) = ”1(Y,) =1
and (N, ¢, F) ¢ Qn(Y, X, v). We can do surgery on ¢ to obtain

(i) if n= 2k, ¢ induces a k-connected map N—> Y anda (k-1)-
connected map ’M —> X, hence it is k-connected

(ii) if n = 2k+l, ¢ induces k-connected maps N—> Y and M —> X,
moreo‘ver ¢ is (k+l)-connected. ‘

Proof. First restrict to the boundary, (M, ¢| M, F‘M). By (2.3) we
can find a cobordism (P, ¢, Fo) to (M', ¢', F') such that ¢' is (k-1)-
connected if n = 2k and k-connected if n = 2k+l. By adding P to N we ob-
tain a cobordism to (N', ¢", F'") where ¢'" has the desired connectivity on
M' = dN'. Now apply (2.3) to N' keeping M' fixed. This shows that we can
make ¢" k-éonhected obtaining (N"™, ¢™, F™). This proves the theorem for
n = 2k and it only remains to prove that for n = 2k+l ¢'" can be made
(k+1)-connected.

The proof of (2.3) shows that if d)l = (blN : N—> Y, then 7rk+1(¢1) is
represented by a finite number of cells. Choose a finite set of generators for
1rk+1(¢1). By (2.2) each can be represented by a framed imbedding of Sk. Con-
nect each one by a tube to M so that we have framed embeddings of le. Now
perform surgery as in (2. 4).

Let H denote the union of the handles of this surgery and N0 the con-
structed manifold, ¢0 : (NO‘ MO) —> (Y, X) the resulting map. Note that
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(No, MO) —> (N, HUM) is an excision map. From the squares

N, > N >y [3] N——>N——>Y [6]
1M 1@ ] @ 1E)
MO———>HUM———>X M—>HUM —>X

we have that H* = 0, hence H*(dzo) = H* =~ H*. Moreover

oo —H [4]— H ,[6]— H,, 51— B[] —...
1" "

e = A — 0 6 — K[ — ...

From the exact sequence of we have that Hn(N’ N) = 0, hence
Hn_Hn_l(HUM, M) thus the sequence reduces to

—> H (HUM, M) —> Hk+1(d>) —> H_,(¢)) —> H, _(HUM, M) —>

the that ¢0 and ¢ are k-connected, (H, HnM)—> (Hu M, M) is an exci-

sion map and (H, Hn M) is just a collection of copies of (Dk X Dkﬂ, Sk-1 X Dk+1).

Thus Hk_l(HUM , M) = 0. In dimension k the original k-discs le

represent images in Hk+1(¢) of generators o.f 7Tk+1(¢1) = Hk+1(¢1). Now

Hk+1(¢1) —_ Hk+1(¢) is onto because the map M —> X is k-connected and

therefore Hk(HUM, M) —> Hk-l-l(d)) is onto. This proves HkH(d)o) = 0.
Corollary 2.7. If n= 2k+l and M —> X is already k-connected,

then all further surgery can be performed in a prescribed (non-empty) open

subset. The effect on M is just that of surgery on spheres which have trivial

framed imbeddings.

3. The bounded case

Up to this point we had a map ¢ : M™ —> X and a bundle v over X
together with a stable trivialization F cf TMQ ¢*v. This enabled us to
simplify ¢ considerably. If we are to make ¢ a homotopy equivalence,

however, we need additional assumptions.
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Since M satisfies Poincaré duality, a homotopy equivalent space will

do the same, thus we must assume
- (ii) X is a finite Poincaré complex of virtual dimension m and the

Thom isomorphism corresponding to v ‘takes [X] to a spherical class.

Moreover if ¢ : M —> X is a homotopy equivalence then the proper
choice of sign for [X] makes it a degree 1 map. This is preserved under
cobordism, hence we may assume

(iii) ¢ : M —> X 1is a degree 1 map.

Similar considerations apply to pairs (Y, X).

Definition. A map ¢ : M—> X [resp. ¢ : (N, M) —> (Y, X)] satisfy-

ing (i), (ii), (iii) will be called a surgery map.

In this section we shall give a complete solution for the case when
N = M#f@. We restate our data as follows:
(Y, X) is a connected finite Poincaré pair of virtual dimension n > 6, 1r1(Y) =1,
jrl(Xi) = 1 for each component Xi of X; there is a smooth manifold pair
(N, M), M = dN with a degree 1 map ¢ : (N, M) —> (Y, X) and thereis a
vector bundle v over Y with spherical Thom class and a stable trivialization
F of TN ® ¢*v which reduces to the boundary.
Theorem 3.1. In the above situation we can perform surgery on (N, M)
to make ¢ a homotopy equivalence; moreover, the resulting manifold pair
(NO, MO) is unique up to diffeomorphism in the bordism class (N, ¢, F) ¢ Qm(Y, X,
Proof. Uniqueness follows immediately from existence applied to the 7
cobordism between two solutions mapped into (Y X1, Y X 9I). ~Since the end re-
sult is a simply connected h-cobordism, the assertion is proved.
Now we proceed with the construction. The proof naturally breaks up
into two cases according to the parity of n.
The case n = Z2k. _
By (2.6) we can perform surgery on ¢ to make the induced map
doz : M—> X (k-1)-connected and ¢1 : N—> Y k-connected. By (I. 3.10)
Kk(N, M) is free. In fact we have the isomorphism
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T (8) = H (8) = K (N, M) .

If we choose generators e, for Kk(N, M), they determine classes a, € 7rk+1(¢)

and by (2.4) these in turn determine regular homotopy classes of immersions

£, : (D" x DX, aD* x DX) —> (N, M) .

We claim that the fi are regularly homotopic to disjoint imbeddings, and hence
we can perform surgery to kill 7rk+1(¢>). It is enough to show this for the ''cores',
'f_i : (Dk, aDk) —> (N, M) and use ''small' neighborhoods of these discs.

We shall use a technique called ''piping'. Put the fi in mutual general
position. The only intersections (and self-intersections) are isolated points B
in the interior of N. At each point the intersecting sheets meet transversely.
Choose arcs P, p' from B along the sheets to M, meeting no other singu-
larities. Then P v B' is an arc in N with both ends in M. Since 1rl(N, M)=0
we can find a singular disc A with boundary B, B' and an arc B'" connecting
the endpoints inside M. Put A in general position. Since k >3 itis then
imbedded disjointly from the discs ?i(Dk),i except along B and B'. Now con-
struct a regular homotopy of fi leaving everything fixed except a neighborhood
of B. Itpulls P across A past B' eliminating the intersection B and intro-
ducing no new intersections.

By induction each ?1 (and fi) is converted to disjoint imbeddings.

Now perform handle subtraction as in (2.4) to complete the argument.

The case n = 2k+l.

By (2.6) we may assume that ¢1 : N—> Y and ¢>2 : M —> X are

k-connected and 1rk+1(¢o) = Kk(N, M) = 0. We have the short exact sequence

0> Hy ,(8) —> Hy(65) —> Hyy (9) —> 0

0—> Kk+1(N’ M)—> Kk(M) e Kk(N) —> 0

where each group is free (see I. 3.12).



By a theorem of Namioka [16] since ¢, d>1, d)z are k-connected
s - ’ . . .
1rk+2(¢) Hk+2(¢) Kk+1(N M) is an isomorphism, hence we can apply
(2. 4) to obtain framed immersions

’f'i: (Dk+1, sk) —> (N, M)

to represent basis elements of Kk+1(N’ M).
Next we shall modify fi by regular homotopy to obtain disjoint imbeddings
" of the boundaries Sk —> M. Put the -f_l in general position and consider the
intersections and self-intersections. These are l-dimensional and along any
two sheets meet transversely. They form certain circles (of no interest) and
arcs P with both ends of M. Find in each sheet at B a disc Ai whose other
side, ﬁi, lies in M. The loop BIU [32 is in M. It spans the disc Alu AZ
in N, hence it is null-homotopic in N and (ﬂ'lM = 1) alsoin M. Span BIU ﬁz
by a disc A in M. Since k >3 we may suppose that A is imbedded meeting
the images of the -f_l only in [31U [32. Deform a neighborhood of ﬁl across A
to eliminate the intersections at the ends. By induction all intersections and

- -k
self-intersections of fi(S ) on M are eliminated.

Recall (I. 3.8) that we have the isomorphism
k
. .—9
[N]n : K (N)\ Kk+1(N, M)

where Kk(N) is dual to Kk(N) with dual base.
Since Kk+l(N’ M) injects into Kk(M) we have represented a base of

Kk+1(N’ M) by imbedded framed spheres %;(Sk) in M. Attach corresponding

(k+1)-handles to N. Let U be the union of these handles and the resulting
pair (N', M'). Since the 'f-i(Sk) are nullhomotopic in N, Kk(N) is unchanged.
In fact up to homotopy N' is just N U a bouquet of (k+1)-spheres, thus

no .
Kk+1(N ) is again free.

The exact sequence of the triple MCMvUCN! is

.0--_+K (N:, M'UU)_—>K

k+2 k(MO U M) — K

(N> M) —>

— Kk+1(N', M'v U) —> Kk(M'U u, M') —> Kk(N', M') —> Kk(N', M'uU)—> ...




30.

Here by excision Kr(N" M'v U)::'Kr(N, M) =0 r # ktl and Kr(M’uU, M')
»:.-Kr(U, UnM')= 0 r # k thus the above sequence reduces to

0——-9K (N, M)——e-K

k+l (N, M) —> K (U, UnM') —> K (N', M') —>0

k+1
Moreover K (U, UNnM') is free with one basis element correspondmg to each
handle (represented by the fiber of the normal disc to £, (S ) or equivalently by

the core of the dual handle). The map

k+1(N M) —> Kk(U, UnM')

is dual to

Kk+1(U’ Un M) —> K, (N)

representing the attaching maps, and hence zero. Thus Kk-i-l(N" M') ~ Kk+1(N, M)
and we have a new free kernel Kk(N', M') dual to Kk+1(N‘). The attached handles

correspond to a basis of K (N, M), hence we have an isomorphism

k+l

1 1 !
_ Ko —> Ky (N M)
The map of the duals

1 ! 1
Kk(N)——>Kk(N, M')
is also an isomorphism, hence the exact sequence
1 ! 1 — 1 ! 1) 1

0——>Iﬂ<+l(N)—-—>Kk+1(N,M) Kk(M)-—eKk(N)—>Kk(N,M)—->0
yields Kk(M') = 0, and d)'z : M' —> X is a homotopy equivalence.

Now choose a basis for Kk(N'). Using interior surgery on the elements

1) ~ [ 3 3 ' "n L)
of 1rk+1(¢1)-Kk(N) we obtain a cobordism P from N' to N'. Consider the

induced map of Poincaré triads
(P; NNUM'XI, N")—> (Y XI, Y XO0UX XI, Y X1)
Identify N' with N'u M' XI. In the exact sequence

' 1 d t
0—> K _ (N) —> K _,(P) —> K (P, N') —> K, (N') —> K, (P) —>0

k+l
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. . . ) - :
the map d is an isomorphism by construction, so Kk(P) 0 and Kk+1(N y —> Kk_H(P

is an isomorphism. On the other hand in

0— K, (N) —> K _ (P) 4,k (P, N") —> K (N") —> 0

k+l

d is dual to d, hence Kk(N”) = K (N = 0.,

k+l
Thus ¢!': N —> Y is a homotopy equivalence, which together with the
1 g

fact that ¢!'|M' = ¢' implies the homotopy equivalence
1 2 P
¢" : (N', M') —> (Y, X).

completing the proof.

At this stage we could deduce the results for closed manifolds by removing
a disc (care must be taken how to alter the Poincaré space), performing bounded
surgery and looking at the obstruction to putting the disc back. Thus we would only
‘need to compute the groups Pn as for example in Kervaire and Milnor [11]. On the
other hand more insight is gained by doing the closed case as a genuine surgery
problem. Moreover it resembles the non-simply connected case instead of empha-

sizing the advantages of simple connectivity.b We shall return to the computation

of Pn in chapter III.
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4. The closed case, m = 2k.

Here we shall consider the case when X is a Poincaré complex of
dimension 2k > 6, M a closed, smooth manifold and ¢ : M —> X a surgery
map. ~ We could assume that M has boundary which is fixed throughout and
all results would be valid but the statements and proofs more complicated.

By (2.3) we may assume that ¢ is k-connected.

By . (I.3.10) we have G = Kk(M) = 7rk+1(<p) free and Poincaré duality
induces an isomorphism of G and G=K (M). Since @ is k-connected
& = Hom, (G, 2).

An element of G=7

k+l
homotopy class of immersions of S X Dk in M. Through the isomorphism

() is represented by a well defined regular

7rk+1(<p) = Kk(M) we may identify it with the homology class of the core and use

‘homology intersections to define a bilinear pairing A\ : GX G—> Z. This is

clearly well defined. _
Represent elements of G by immersions f: Sk —> M (which may be
"fattened' when needed). Such an immersion will not necessarily preserve the

base point but we can run an arc from the base point of M to the base point

- of the sphere, f(1). Addition is represented by joining by an arc thickened to

a copy of Dk X 1 with ends Dk X 0I ‘on the two spheres and using aDk X1
for piping (i.e. based connected sum).
Theorem 4.1. Intersections define a map A : GX G —> Z such that
if x,yeG, ae Z we have
(i) A\ is bilinear

) My %) = (-)F\(x, y).
Z keven

ZZ k odd

Let Vk = z/ {lﬂ(‘fl)k}Z = Then self-intersections define a map

u: G —> Yk such th;:Lt .

(iii) Mx, x) = p(x) + (1) wuix)

(iv)  p(xty) - u(x) - ply) = NMx,y)

(v) uixa) = au(x).

Finally x is represented by an embedding iff u(x) = 0.

i



.ordering at each. Define u(S ) to be the element of V

B 330

Note that in (iii) although u(x) e K’ u(x) + (-1) u(x) is well defined in Z.
In fact u(x) is half the self- 1ntersect1on number for k even and the Arf-Kervaire
cohomology operatlon for k odd (see [11]). In (iv) \(x,y) is taken mod 2 if k
is odd. (v) shows that u is a quadratic form, again take mod 2 fo:L k odd.
Proof. Let S1 and S‘Z be two immersed k-spheres in M putin
general position. They intersect transversely in a finite number of points P.
To each P assign a sign e_= 4l as follows. Orient M at the base point *

P

and transport the orientation to P by the path chosen above to fl(l) € Sl' Since

jrl(M) =1 the choice of this path is immaterial. Define EP to be the sign of
intersection of S1 and S2 with respect to this orientation at P.

Define MSI’SZ) = EPEP over all intersection points P. Clearly \ is well
defined for elements of G and it is bilinear. To compute )\(y,x) note that the

sign of the intersection changes by (-=1)k by interchanging the order,

k
= (-1) € _..
(-1e g
Now let Sl be an immersed sphere in general position, so it has only a
finite set of transverse self-intersections. At each P two branches of S

1
cross. By using the above procedure and specifying on ordering of these

branches we can compute €p If we interchange the order s' = (- 1) s
Consider the sum X ptp °over all self-intersection points w1th an arbltrary
defined by X

k
Note that u(Sl) is unchanged by a change of any of the above choices.

PP’

Changing S1 by a regular homotopy can be done so that the self-intersections,

“hence u, vary continuously except at a finite set of points where two self-

inter sections appear or disappear together. At such an occurrence the two

self-intersections determine opposite ¢ thus u is constant. Hence

‘P’
u:G—> Vk is well defined.
Since the self-intersections of the connected sum of S1 and So2 consist
of the self-intersections of Sl, those of SZ and the intersections of S1 with

SZ (iv) follows. For (iii) note that \(x,x) is the intersection of two different

spheres S, and S! representing x. In particular choose S, as above, take

1 1 1

a tubular neighborhood and let Si be a cross-section of the normal bundle of
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: S1 (fiber Dk). This does not intersect the zero section (Sl) since our

immersions are framed. Each self-intersection of S, gives rise to two

1
with opposite order. (v) follows from (iii) and

intersections of S1 and Si
(iv). 4
Finally note that u(x) = 0 is clearly a necessary condition for finding
an imbedded representative' for x. We want to show it is also sufficient for
.k >3,
Let u(x) =0 and let S represent x such that its self-intersections
.are in pairs (Pi’ Qi) with e(Pi) = -e(Qi) =1 (with appropriate choices of
order of the two branches at each intersection). Join Pi to Qi by an arc
Bi along one branch and an arc [3; along the other. The loop defined by
, ﬁiu [3; -is null-homotopic and Pi and Qi have opposite signs on it. Such
singularities are removable, see [14].

Definition. A free Z-module G together with maps )\ and u as above

will be called a special Hermitian form (G, \, u4).

=
If the special Hermitian form G is generated by two elements {e,e }

X *
with u(e) = u(e ) =0, A\(e,e ) =1 it is called a standard plane.

Define the direct sum of special Hermitian forms by (G )‘1’“1) © (GZ, )\Z,uz) =
= (G ® GZ’ N ® Ay “1 + MZ)
A direct sum of standard planes is called a kernel.
Lemma 4.2. A special Hermitian form (G, \,u) is a kernel if and only
if G has a free submodule H with a base extending to G and hence defining
a basis for G/H, suchthat MHX H) = 0, u(H) = 0 and the map G/H —> Hom'Z(H, Z)
induced by )\ is an isomorphism. Such a submodule H is called a subkernel.
Proof. If (G, \,u) is a kernel then the conditions are satisfied. Con-
versely let {ei} be a base fpr H. There is a dual base of HomZ(H, Z),
which induces by the above isomorphism a base of G/H. Choose representative
elements {e } in G. By hypothesis {e e* } is a symplectic
base of G and we have

Ak
“(ei) = 0’ X(ei' ej) - 0’ x(ei, ej ) = ﬁij .
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sk
Let u, =pu(e, ) and
* k% - *d Kk
e. =e, + ('l)k l[e.u. + X e \e,,e, )] .
-J J JJ i<j 1 1 J '

. . . 6. . d o . 0

*
hence G is a kernel. The base {ei, e } provides an isomorphism of G witha

direct sum of standard planes. This also proves that if H —>H, is an

1 2
isomorphism of subkernels of Gl' G.,, then it extends to an isomorphism
— . .
G —G,

Call two subkernels HI’HZ of (G,\,u) complementary if Hln H2 =0,
with G/Hl. By

2

the above argument we can lift a base of G/ H1 to lie in HZ' Hence any two

complementary subkernels are isomorphic to the pair described above.

H1 ® H2 = G. Then there is an obvious isomorphism of H

Lemma 4.3. If (G, \,u4) is a special Hermitian form, then

(G, \,u) © (G, -\, -¢) is a kernel.

Proof. Let {ei} be a base of G. Write ei,e‘i‘ for the corresponding

"elements of the two summands. Then

' " ' "y — ' el ooty — - =
);(ei + e's e‘i + ej) x(el, ej) + )\(ei , ej) x(ei, ej) x(ei, ej) 0
' ny — ' "y — - = .

The submodule H of G ® G freely generated by ei + e'i' is a subkernel since

A induces an isomorphism of (G ® G)/H and HomZ(H, Z). Let the ei give

a basis for (G ® G)/H and the dual of {e"i + e:i'}_ for Hom,(H, Z). The

matrix of the map is

a,.= \Me',e' + e!')= \e.,e,
45 (}1 § J) (e J)

which is also the matrix of G —> HOmZ(G;Z). This map is an isomorphism

by hypothesis.
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Definition 4.4. The groups PZk are defined as follows. Consider the
semi-group of special Hermitian forms under ®. Write X ~X' if there are

kernels K,K' suchthai X ® K and X' ® K' are isomorphic. Since the sum
of kernels is a kernel this is an equivalence relation. Divide out and consider
the quotient semi-group. By (4.3) (G,\,u) has an inverse in the quotient,

2k’

The addition of kernels is described geometrically as follows.

Lemma 4.5. If ¢ : M—> X is a k-connected surgery map, then

performing surgery on a (k-1)-sphere corresponds to adding a standard plane

. to (G) X’ “)o

Proof. 7rk(<p) = 0, hence we are doing surgery on the zero element.
Thus the (k-1)-sphere is regularly homotopic and by general position isotopic

to an unknotted one inside a disc DZkC M with standard framing. Surgery

replaces M by the connected sum M # Sk X Sk. G is replaced by the

orthogonal direct sum of G with a standard plane whose basis elements

%*
{e,e } correspond to s¥x1 and 1xsX.

Now suppose that ¢ : M —> X is a surgery map. Its surgery obstruction

6(M, @, F) is defined as follows. Use (2.3) to make ¢ k-connected. Let-

@' : M' —> X be the resulting k-connected surgery map. Define 6 ¢ P to be

2k

the equivalence class of Kk(M') =G in P Naturally, we have to prove that

2k’
it is well defined, i.e. independent of the surgeries employed to obtain

(M!, ¢, F).

Theorem 4. 6. The surgery obstruction 6(M,®, F) depends only on the
bordism class of (M, @, F). This class has a representative with ¢ a homotopy
equivalence if and only if 6 = 0. A

Proof. Suppose we have bordant triples (M_,¢ ,F ) and (M+,<p+, F+)
where @, and ¢_ are k-connected and (N,§, F) is the cobordism. Regard

Y as a map of triads, Y =X X1

| Vi (Ni M_,M ) —>(Y; XX 0, XX1) .
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By (2. 6) we can do surgery on N relative to dN to make N —> Y k-connected.
We can obtain Kk(lll) = 0 by using handle subtraction (2.4) keeping for exarhple
M_ fixed. The only effect on Kl<(M+) is adding standard planes, leaving 6
unchanged. Thus all Ki of M_ and M+ vanish except for i = k and the

same is true for dN = M+U (-M_). In fact the only nonzero groups are
0—> Kk-l-l(N’ ON) —> Kk(aN) —_— Kk(N) —>0 .

Moreover Kk(M+) and Kk(M_) are free, hence Kk(aN) = Kk(M+)'®Kk(M-) is

free and therefore its subgroup K., .(N,dN) is free. Since

J40,[N] = [M+] ~ [M_] the special 1IiI:lrmitia.n form defined on Kk(aN) by using
immersed spheres in each component and connected sums of spheres in the
same component is the sum of a form representing the surgery obstruction for
M+ ~and the negative of a corresponding form for M_. To prove that these are
equal we show that Kk(aN) is a kernel. This is clear if we can show that
Kk+1(N. ON) is a subkernel. This we shall prove in (4. 7). Assume therefore
‘that 6 only depends on the bordism class.

Clearly if ¢ is a homotopy equivalence, then 6 = 0. Conversely assume
6 = 0. This means that we may assume that Kk(M) is a kernel with standard
base {ei, e:‘, 1<i<r}. Since u(er) = 0 the class e e Kk(M) = wk+l(cp) is
.represented by a f;arned embedded sphere Ser M by (4.1). By (2.1) we can
do surgery on M using this sphere. Let N be the trace >f the surgery. Up
to homotopy . N~ Muv ek+1 and if M+ is the resulting manifold then

N ~M+ v ek. The homomorphism n
K (M) —>H (N)">H (N,M) Tz

'has an immediate geometric interpretation by intersection numbers with e
Since )\(er,e:) =1, n is surjective. So go+ is still k-connectid, tl;(e surgery
from M+ to M is on a trivial (k-l)-sphereand M ® M+# (S XS).

Now Kk(M +) may be identified with the kernel with base

*
e,e. ;1<i<r-l} by the diagram (see I.3. %)
O S oy
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k+1(N M>/(\‘K K, (N, M)

\/‘\ /\/\/
/

0 K, (N, 3N) K, (N)

VANPZERN
N

Here Kk+1(N’M) and Kk(N,M+) can be identified with Z. We can
uientlfy Kk +}k
e except e and Kk(M+) with Kk(M)/{er}. Moreover the geometric

(N, 9N) with the submodule of Kk(M) generated by all e, and
description is mirrored in the algebra. In fact this construction is the reverse
of taking connected sum with s* x S*. The result now follows from induction
on the rank of Kk(M).

Let us return to invariance under cobordism.

Lemma 4.7. Let ¢ : (N,M) —> (Y, X) be a surgery map, M o,
dim N = 2k+l > 5. Suppose ¢ induces k-connected maps (p1 M —>X,
(pzv: N —> Y and that Kk(N, M) = 0. Then Kk+1
Kk(M).

Proof. By assumption the only non-zero groups are

(N, M) is a subkernel in

(1) 0 —>K,_,(N,M) —> K, (M) —> K, (N) —> 0o .

By duality K (N) k“(N, M). Since Kk(N, M) = 0 by assumption,

k“(N M) = Hom(K (N, M); Z) and hence Kk(N) is free. Therefore (1)

k+l
splits.

We want to apply (4.2). In addition to the isomorphism
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Kk(N) ol Hom(Kk +1(N, M); Z) we need to know that X and u vanish identically

“on Kk+1(N’ M).

Since gal : M —>X is k-connected, Kk(M) = ) is generated by

el @y
classes represented by maps of spheres. These were used to define the special
Hermitian form of Kk(M). Let x ¢ Kk+1(N, M). Represent 0x ¢ Kk(M) as a sum
of maps of spheres, each being a framed immersion. These spheres have
classes in jk(N) and we claim that the sum of these classes is zero. By the

exactness of (1) it is zero in Kk(N). Now consider the square of ¢

?>
N—>vY

[ ]

M-——?'X .

The homotopy exact sequences of ¢ and cpz and Hurewicz homomorphisms

K (M) —>K (N —> 0

[ \! |

ver T () T My (@) T ey (9 >0
I .
e () T (@) —> T (N ——> 7 (¥) —>0

give us a map Kk(N) —> 7rk(1‘«') proving the claim. (Note that (pz is

.k-connected, hence 7rk+1((p2) = Hk+1((,02) x Kk(N).)

We now have a map into N of a (k+l)-sphere with discs removed such
that the boundary spheres are mapped by the above framed immersions. Thus
the framed immersions of the Sk in M extend to a framed immersion of a
punctured Sk'ib1 in N. Let T and T' be representatives for x and x'
obtained this way and moved into general position. They meet in a finite

set of circles and arcs with both ends representing intersections of

9x and 0x'. Homologically all such intersections cancel in pairs, thus

A(ox, ax') = 0.
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The self-intersections of T can be computed as follows. Along each
arc choose an order of the two branches of T meeting there. Note that the
self-intersections of dT at the two ends have oppc;site signs, so they cancel
in pairs and u(dx) = 0. This completes the proof.

.We have proved (4.7) under weaker assumptions then needed for (4. 6),

but the full strength will be utilized in the next section.

5. The closed case, m = 2k+l.

Assume X is a finite Poincaré complex of formal dimension

m=2k+l>5 and ¢ : M—> X a surgery map, where (M,@,F) e Qm(x, v). By

.(2.3) we may assume that ¢ is k-connected.

Choose a set of generators for 7 (@) = Kk(M). By general position

k+l K K+l
they can be represented by disjoint framed imbeddings f.1 :S XD —> M,

each connected to the base point by a path. Let U = L‘)f.l(Sk X Dk+1),
' i

M, =M - Int U. Since the 'fi are trivial in X with given null-homotopies,

0
we can replace ¢ by a homotopic map such that @(U) = * and the null-

homotopies of Afi are constant.

The troube is that performing surgery may not reduce Kk(M). We
need to study the effect of surgery on Kk(M).

By (I.3.2) we may suppose that dim X = m and X has only one
m-cell, so we have a finite Poincaré pair (Xo, Sm-l) and X = Xou Dm. Using

a cellular approximation of <p| M_ we may suppose after a further homotopy

0
that ¢ is a map of degree 1 of the Poincaré triads

@ : (M; M, U) —> (X; X, D™ .

Combine the exact sequences of groups Ki for the pairs (M,Mo), (M,0),

(Mg, 9U) and (U, 3U) with excisions to the diagram
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(1) K, nM) Kk(au) K, (M)
0 K (M.U) = K 1M a0 K, () 0

Now ¢ maps (U,0U) to (Dm, Smsl) and the latter has trivial absolute and
relative middle homology. Thus we can replace Kk-l-l(U’ ou), Kk(aU), Kk(U)
‘ by Hk+1(U. ou), Hk(aU), Hk(U) respectively.

By (I.3.10) the groups Kk+1(M0,aU) and Kk(MO)_ are free. Let
H= H.k(aU). By (4.7) H is a kernel and S = Kk+1(U, dU) and A = Kk+1(M0’ ou)
_are subkernels. In fact we have an explicit representation of the former since

- U is a disjoint union of copies of Sk X Dk+1 and we can take the classes of

Sk X1 and 1X aDk+1 as basis for H to identify it with the standard kernel.
Let X denote the standard kernel with basis {L E ;1< i <r}
“and u(E)-p(E ) = 0, ME,, E)-x(E E, * = o, ME,, E; * = (- 1) x(E VE,) =8,

ij
Let Ja denote the subkernel generated by {E }.

Let H ‘be glven the ba.sxs obtained from the imbeddings f, (S X Dk 1)

where e -f(lan e L= f(S X 1). If we identify H_—> 9(’ by
ei-—-—>Ei, e, ——>E:, then it sends S —_— Jp 1somorph1ca11y Thus S
is generated by {ei}.
Qur aim is to kill Kk(M). One way to do this is to show that
0:K (M,MO) —> KR(MO) is an isomorphism. Equivalently we could show

k+l
that Sr and Ar are complementary subkernels of Hr'
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By. the remark following (4.2) any isomorphism of Sr onto Ar extends
to an automorphism Hr —_—> Hr and through the above identification to
Xr = 9€r We need to study the effect on a of admissible change of choices
made so far.

Firét we introduce some additional notation.

Definition 5.1. In the following

SU denotes the group of automorphisms of a€r, (i.e., Z-module automorphisms

preserving A\ and u).

TUr denotes the subgroup leaving fr setwise invariant (and induces an
automorphism on it).

UUr denotes the subgroup leaving ‘fr pointwise invariant (i.e. induces the
identity automorphism on it). ‘

SL_ denotes the group of automorphisms of fr'

The following sequence is split exact:
. 1—>Uyu —>TU_ —> SL_ —>1

The last map is surjective since we can define a splitting homomorphism

h: SLr —> TUr' Let V = (vlJ) *) be a matrlx representing an element of SL

and Vt= (vji) its transpose, = (V) Let
*
h(V)'e—écv,e—ﬁew
J i o

~and note that ¢ is an involutory anti-automorphism of SLr' A matrix
. representation of UUr is given by maps of the form
* £
e, —>e, e, —>e, tec,.
i i’ i St joii
since an element of UUr induces the identity on 'j’r hence also on its
dual, which is the same as the quotient module. Now such a transformation

*
preserves \ onlyif C + (-l)kC = 0. In order to preserve u we need

*)

- 'matrices act on the right.
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%*
. in addition that C = D - (-l)kD for some D. The last restriction affects only

the diagonal elements. Thus for k even C is anti-symmetric with zeros on
the main diagonal and for k odd C is symmetric with even entries on the
main diagonal.

Given the imbeddings f_1 the subkernels are already determined. The"
particular identification Hr —> &Fr determines a. If a different one gives

p then ﬁu-l preserves the subkernel Jar corresponding to K. _  (U,dU),

k+l

. hence (30.-1 lies in TUr' Thus the set {fi} determines uniquely a coset

TUr' a in SUr'
Next consider the change induced by a regular homotopy of fi. A

regular homotopy of Sk in 1\/12k+1 is an immersion of Sk X1 in

MZk+1 X I. Since the ends are imbedded, we can calculate the self-intersection
in Vkﬂ(':' Z or ZZ) of a regular homotopy or the mutual intersection (in Z)
of two such as in §4. Denote the regular homotopy by {ni} and the end results
by - Let the self-intersection of n be V. and the intersection of n with
ﬂj- be pij' Then Py; = vi + (-l)kﬂui andkpji = (-1)k+1pij .for 1<i,j<r. Thus
P= (pij) is a matrix of the form D - (-1) D* and hence P determines an
element v of UUr. We claim that the result of the regular homotopy replaces
a by av.

| Consider the new diagram (1) with U, Mo,aU replaced by .ﬁ,ﬁo, 9U. We
wish to show that the result of the regular homotopy corresponds to the change

of cosets from TUr°a to TUr°o.y, where

- & — —
y:e, —>e, e —>e -Xep. -
1 . '1 1 : 1 j J J].

Clearly v : Hr —->-I-_Ir is an isomorphism since P is invertible, moreover
v Sr —_—> Sr is naturally an isomorphism. Thus we investigate
v Ar -—->_Kr. In particular we wish to show that 7(Ar) C Ar.

If xe Ar then x is represented by a cl‘main in 09U such that x = dc,

¢ chain in Mo. Let

*
x=XYeu +Xe, v, .
g i G i




¢ chainin M._.
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We need to show that x = v(x) can be represented as a chain in U, x = dc,

0
- - —%
x-y(x):ZiDelui+)E(ei -Eejpji)v1=
=Teu +Ze v-EZp,. .
i 110 ij j i

Now ;+ z ‘c.;.p,iv,1 = 9r bounds in M (namely the regular homotopies capped

L K+l

off with c). Let s denote the chain I ?ju X D +v)pj.1vi. Clearly x = d(r-s).

i,j

- We need to show that r-s is represented by a chain in ﬁO' Now r-s is a

chain in M and it is a cycle in M let it be represented by

0’
Similarly x is a chainin M

weH  (M,M and 9w = x regarded in

"kl o)
Hk(MO)' We also have the intersection pairing

0

Hk,,ﬁ\‘M’Mo)
l

H (0) @ 1 (T,00) —> 2 .

—k
Let us calculate et .w. If this is zero for each t, then we can pull w off
interior U and represent r-s in IT/IO.

Recall that

r-s=c+Xfu +Znv. - X -f-.(l X Dk+l)p..V.
iCii oy il ij»J jii

where gi and n, are the obvious chains in ‘M such that agi = Zi - e
ani = _e-i* - e:‘ (qi is the regular homotopy, §i moving the framing).

In order to compute the intersections we need to consider U and U
in M simultaneously.

Let M XI—>M be projection onto the first factor. By an isotopy
we may assume Un U = ¢. Next we claim that the intersection of un and
0 in M X1 is the same as the intersection of -e-,: and o in M. This
follows by moving all intersection points of n and n to a small straight

—3%
collar near et in M. Hence
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—% - = k+l
etﬂi-et ?fjv(lxD )pji-pti-vpti—o .

Thus we have proved that a sequence of r elements generating

G = Kf(M) determines a double coset TUr' G'UUr C SUr and that a can be

replaced by any element of the double coset.
Now assume that both {xl, ceey xr} and {yl, cees ys} generate G.

We can pass from the first to the second by a sequence of operations. Write

Yi=§xj)\ji' Then
{)gl, cees xr}-——é{xl, cens xr,O}—%{xl, cees xr,yl}———>
-—-—}{xl, . xr,yl,O}—f{xl, “ees xr,yl,yz}——>...
--—}{xr cees KLY e ys}-—-—->{y1, e Y X e xr}—>

—_—, > {yl, .o ys}

Each operation is one of:
(T1l) Adjoin or delete a zero.
(T2) Permute the elements.
(T3') Add to the last element a linear combination of the others.
This can be reduced to a combination of:
(T3) Replace the first element by + itself.
‘(T4) Replace the first element by the sum of the first two.
Consider the effect of (T1) - (T4) on a.
(T1) This adds an imbedding of s* x D" whose image lies in a pkC M,

It takes the direct sum of (1) with the diagram (with all the natural maps)
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NN TN
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Z+2Z

/\/\/\
NN\

Thus the effect of (T1) is to form the direct sum of a with

0 1

-1 o

(T2) has the effect of altering the defining basis of Hr’ i.e. conjugating a

by a permutation.

+ 0

(T3) only alters the basis of Hr’ it conjugates a by the direct sum of

with the identity. o 4

(T4) join the two copies of Sk X Dk+1 by a thickened arc to obtain an imbedding

~of a trivial kandlebody JH (i.e. handles unlinked). The effect of the change of

-basis is performing a diffeomorphism of H. cConsider H as the thickening

of the join of Sk-'1 in Rk with the vertices of an equilateral triangle in R2

(the join is taken in a smooth neighborhood of Rm). The required diffeomorphism
is rotation in R2 by 27/3. Adjoining the thickened arc to U does not change
(1). The above diffeomorphism changes the preferred basis of Hr and hence

conjugates a by the automorphism

'y *'_*
el-el-}-ez e}“-ei .
| - = -
ez--e2 ez--e2 el.
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The effects of (T2), (T3) and (T4) combine to an elementary basis change
of rZ and hence generate Er’ the group of r X r matrices with 1 on the
main diagonal and one other non-zero off-diagonal entry. Since Er C SLr
for any £ e Er ‘we can conjugate a by h(§) e TUr' From above a is
equivalent to any member of the double coset TUr‘a-UUr. Provided Er = SLr
the effect of (T2) - (T4) is to replace a by an arbitrary element of the double

coset TU ‘a-TU_ C SU_. If welet r go to infinity in the limit we certainly

"have . E = SL.

The effect of (T1) is to stabilize, but rather thana —>a ® 1 by
a—>a ®o.

The natural inclusions a —>a ® 1 give

SUrCSU C...

r+l

where the limit is SU.

The inclusion a —>a ® o gives rise to

SU ——>Su _ ..
T r+l :

where the inclusions are not group homomorphisms but compatible with the

natural left and right actions of SUr' Taking limit we obtain SU' admitting

left and right actions of SU. It has a natural base point, X, the direct sum
of copies of o.

Let RU be the subgroup of SU generated by TU and o e SUl'

Theorem 5.2. Surgery can be completed to a homotopy equivalence
iff: a is equivalent to X under the two-sided action of RU.

Proof. Let fl(Sk X Dk+1) be one of the framed imbeddings of U.
Performing surgery leaves the groups of the exact sequence

0 —> Kk+1(M0’ 0l) —> Kk(aU) — Kk(MO) —>0

unchanged, but the basis of Kk(aU) is altered, since Skxl and 1><Sk are

interchanged. Hence a is replaced by ac. Thus the class of a in RU is
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invariant under surgeries on k-spheres. Now suppose ¢ : M —> X and

@' : M' —> X are k-connected maps which are cobordant. In order to show a
a surgery invariant we need to go from ¢ to ¢' by surgeries on k-spheres
alone. Let (N,¥,G) be any cobordism between (M,@, F) and (M',¢', F').

By (2.3) we can assume ¥ is (k+l)-connected, thus (N,M) and (N,M') are
k-connected pairs. Now by a relative handle decomposition theorem N is
built up from M with no handles of dimension < k and another with no
handles of dimension > k+l. These two can be satsified simultaneously since
k+1(N’ M)
‘to M, then the rest of N is an h-cobordism of the resulting handlebody to
M'. (See [14].)

Thus the class of a is a surgery invariant.

Kk+1(N, M) is free. Attach handles representing basis elements of K

If @ is a homotopy equivalence, then take U = ¢, a is a zero matrix,
hence stably a = XZ.

Conversely suppose that for £,ne¢ RU, a = £Xn. Choose r so large
that £, n e RUr. Then a = £Xn = 2(2-15,2)11. Note that ¥ operates on 2rZ
as a finite product of conjugates by permutation of summands (which belong to
TUr) composed with copies of o, hence X e RUr' Similarly z'lgz € RUr'
Thus a = ZB, P e RUr' Again choosing r large we may assume that p is
a product of elements of the form o,V,h(e), where Ve UUr’ le € Er.
Multiplying a on the right with o corresponds to a surgery; by the other
elements just a change of basis. Thus by induction on the length of p we
may assume a = L. This, however, implies that: 0 : Kk+1(M,U) —_> Kk(U)
is an isomorphism, hence Kk(M) = 0 and ¢ is a homotopy equivalence.

It can be shown [24] that RU is a normal subgroup of SU containing

the commutator and hence P2k+1 = SU/RU is the obstruction group. We

shall see in the next section that it turns out to be zero.
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III. APPLICATIONS.

1. The groups P_ .
m

In this section we shall compute the simply connected surgery obstruction

groups from the algebraic definitions given in Chapter II. Since again the
results are well known and available in the literature, only an outline is
given for the difficult case, P

2k+1’
alternative proof, which is more geometric, in the following section.

We shall remedy this by giving an

~

1.1, P, = Z.
4n
Proof. Recall the data from (II.4). We have (G, \,u) a special
Hermitian form consisting in our case of a free Z-module G, a bilinear
pairing X\ : GX G—> Z which is symmetric and a map 4 : G—> Z such
that \(x,x) = 2u(x), hence ) is even. Since )\ is just the intersection
pairing its matrix is unimodular. Let A denote the matrix (unimodular,

even, symmetric) of X and o(A) its signature. If o(A) = 0 it is possible

to choose a basis for G such that it becomes a sum of standard planes

~(Milnor [15]). On the other hand the signature is an invariant of (G, \,u)

under stabilization. Since there exists a special Hermitian form with

.o(A) = 8 and since every unimodular even, symmetric bilinear form has

signature divisible by 8 we conclude that o/8 : P,

For completeness let G=2Z+Z +Z +Z +2Z +Z + Z + Z. Define )\

—> Z 1is an isomorphism.

by the matrix

O OO OO =INV =~
e O N~OOO
O~NMH~HOOOO
oONvN~OOOOCO
NOO~OOOO

OO O0OO0O~IN~O
OO0 O m~=N=OO

— 1
0OO0OO0OO0OO0OO0O N
L

and u(x) = Elx(x, x). Then o(A) = 8.
l.2. P =

ans2 ~ &2
This time V2n+1 = ZZ, thus our data give (G, \,u), \: GXG—>Z
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a bilinear, skew-symmetric pairing with \(x,x) = 0 for all x and

u: G—> Z, a.quadratic form with

2
u(xty) = u(x) + uly) + N(x,y) mod 2 .
Every such form is the direct sum of only two types (see [11])
0 * #* *
H = <e,e;ue)=pule) =0, \e,e') =1)
1 * * *
H = <e,e ;’u(e): u(e ) =1, A\(e,e ) =1> .

1
Here Ho is the standard plane. One can prove that H1 ®©H = H0 ® Ho, hence
only the parity of the number of Hl-s .in a decomposition of G matters. The

latter is a stable invariant and is called the Arf-invariant c(G, \, u).

E3
Let {ei, ei} be a symplectic basis for (G,\,u), i.e. )\(ei,ej) =0,

* %k *
Me.,e.) =0, \e.,e.) =6.. and define
i’7j i’ 75 ij
*
c(G,\, u) = Zj,u(ei)-u(ei) mod 2 .
i

Clearly c is zero on a kernel, on the other hand c(Hl) =1 and the

‘geometric interpretation of u shows that we cannot complete the surgery.

Thus c: P4n+2 —_— ZZ is an isomorphism.
1.3, P2k+l = 0.
Since P2k+1 = SU/RU it would be desirable to be able to show that

SU = RU. To my best knowledge there is no direct proof of this fact in the
literature. Rather, the proof proceeds as follows. Recall that we have a

diagram
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/\/\/\

H/A

\/\/\/
/\/\/\

H/S

\/\/\/

where H is a kernel with subkernels S .and A and Go is the free part of
G Dby duality.

Clearly G = H/S+A. Wall [21] defines a complete set of invariants
for (S,A) in this situation by studying a bilinear form on G* = G/ GO,

x %
b:G XG —m>Q/Z

induced by .
It is a matter of direct computation (see Wall [20]) to show that the

~allowable changes (T1) - (T4) enable us first to make Go = 0 and then reduce

*
the order of G to 1l..- We shall do this in the next section in a more

- geometric way.

2. The Kervaire-Milnor proof for P2k+1 = 0.

In this section we are going to interpret Pm as the group of framed

cobordism classes of framed m-manifolds with boundary a homotopy sphere.

The cobordism is interior, i.e. it leaves the boundary fixed. The group
structure is given by connected sum along the boundary (see [11]).
First recall the closing remark of (II.3). Suppose we are given a

surgery map (pl : N —>X, m2> 6. Choose a small m-disc D in the top
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dimensional cell of X (see I.3. Z) and approxlmate cpl by a map which is
smooth in a neighborhood of D. Thus R = (pl (D) is a compact manifold with
boundary. Perform bounded surgery (as in II.3) on R to make it homotopy
equivalent to D so that each time we subtract a handle from R we add it
to the complement. Call the new map (p2 N —> X and <p2 (D) = B.

Now QDZ (B,9B) —> (Dm me ) is a homotopy equivalence (and since
m > 6 we have Smale's Poincaré theorem). Let N0 = N - int B,
< ' m-l ond 9, 1= 9y + (NG, INg) —> (X, 9K
is a surgery map, where (Xo, 8X0) is a Poincaré pair of dimension m. Notice,
moreover, that v is trivial over D and hence over the sphere EXO, thus
q):v and F give.a stable framing of TIN."
-Use theorem (II.3.1) to obtain a homotopy equivalence

Py (N, ONp) —> (X, 0X )

- Consider the trace of the boundary surgery, V: 0V = aNOU aNb. We have a map

'IJ:V——>8X0

covered by the stable framing we carried along and ¥ is a homotopy equivalence
restricted to either end since «p|aN0 = gDOIBNO and w|ano = (pblaNb. Attach

B to BNO and D to BXO, call Vv 8L1<I B=M, oM = aN'o and define a new map

0
-1
@ : (M, M) —> (D, s
using ¥ and (pol BNO = (pZ[ 9B. Clearly ¢ is a surgery map where the bundle

over D is trivial giving a stable framing of 7, . By (I.2.19) this shows

that M is in fact parallelizable. Notice moreovlzlr that ¢|dM = (p'olaNb is
already a homotopy equivalence.

Thus N is homotopy equivalent to X if and only if M is (interior)
framed cobordant to a contractible manifold.

Boundary connected sum gives a group structure to framed manifolds

with boundary a homotopy sphere and the differentiable pair (D™,s™ )
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represents the zero element, hence we have
Theorem 2.1. Pm can be identified with the group of (interior) framed
cobordism classes of framed m-manifolds with boundary a homotopy sphere.

In view of this P = 0 is established by showing ([11])

2k+l
Theorem 2.2. If m is odd we can use surgery in the interior of M to

make ¢ a homotopy equivalence.

Proof. By (II.2.5) we can perform interior framed surgery to make @
k-connected. We want to kill K, (M,3M) = K, M = H M. Let f: s*x D" s
be an imbedding and M' the result of surgery on f. Let M0 =M-intf (Skx Dk+

Then there is a commutative diagram

\
€
4

. e! N i
Hk+1M—L>Z——-> M, —>HM—>0

Ni'

A

oSN

such that the horizontal and vertical sequences are exact. It follows that the
quotient group HkM/p(Z) is isomorphic to HkM'/p'_(Z).

Here p is the class of f(Skx 0) in HkM and p: Z -—>H.kM is
p(l) = p. Themap :p: H‘k+1M —> Z carries T e I-Ik+1M into the inter-
section number T7-p. (Similarly for p', the classof f(0 X S) in H.kM'.)

The horizontal sequence comes from the exact sequence of the pair

(M, Mo). By excision
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Z  j=k#l

N k_ ki k_ .k _
Hj(M,MO) H(S XD ,8 x5)~{0 i<k .

It corresponds to Go —> S —> H/A —> G—> 0 in sectionl. Since the
generator of I-Il(+1(M, MO) has intersec‘tion nﬁrnber 1l with the cycle
f(Sk.x,O) which represents p, the homomorphism Hk+1M-—> Z may be
described as T —> T-p. The element €' = ¢'(l) € HkMO corresponds to
f(* X Sk). Similar description yields the vertical sequence. Thus ¢ = g(l)

is the class of f(Sk X *). Also i(e) = p and i'(e') = p'. The isomorphisms
HkM/p(Z) = HkMO/e(Z) +e'(2)= ;LkM'/p!(Z)

follow from the diagram.
If we define a primitive element p e I-IkM to be one for which there is

e = . . — . . .
a Te Hk+1M such that T7-p =1, then i: HkMO , HkM is an isomorphism
and hence HkM' = HkM/p(Z). ‘Thus any primitive element can be killed by
_surgery. This implies that HkM may be reduced to its torsion subgroup

s
(i.e. Go may be killed and only G remains). For suppose p generates an
infinite cyclic summand of HkM' By Poincaré duality there is a
‘0 =1. —_— , -_ =

T € HkH(M,aM) such that TP 1. But Hk+1M H.k+1(M M) Hk+1(8M) 0

.shows that 7. can be lifted back to I-Ik+1M.

1
Let W be an orientable homology manifold of dimension 2r and K a

%k
field. Define the semi-characteristic x (dW; K) to be

r-1
*
X (0W; K) = £ rank Hi(aw; K) mod 2
i=1

Lemma 2.3. The rank of the bilinear pairing
Hr(W; K) ® Hr(W; K)—K ,

*
given by intersection numbers, is congruent modulo 2 to x (dW; K) plus
the Euler characteristic x(W).

Proof. Consider the exact sequence (all coefficients in K)
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H W 2.7 H (W,8W) —>H__(3W) —> ... —> H (W,3W) —>0 .

Counting shows that the rank of h is equal to the alternating sum of the ranks

of the vector spaces to the right of h. Réducing modulo 2 and using

rank Hi(W, 0W) = rank HZr-iW we have
| r-1 2r
rank h = ¥ rank Hi(aW) + £ rank HiW
i=0 i=0

%
=x (0W; K) + x(W) mod 2 .
On the other hand the rank of
h:H W—>H (W,0W) = Hom_ (H W; K)
b o T k'''r

_is just the rank of the intersection pairing.
Assume k = 2n, m = 4n+l.
Lemma 2.4. If k is even surgery on f changes the k-th Betti
number of M.
Proof. Put a cone over dM to obtain a closed manifold M. Similarly
let M' be the result of the surgery and W the trace, dim W = 2k+2,
W =M X OuM' X1. W has the homotopy type of M with a (k+l)-cell
attached. Since dim M = 2k4l, x(M) = 0, hence (W) = x(M) + (-1)¥™ = (-)**L,

Since k is even the intersection pairing
Hk+1(W; Q)@ Hk+1(W; Q) —Q

is skew-symmetric, hence it has even rank. Setting K = Q in Lemma 2.3

we obtain
* — -
Mo Q) + (-0 =0 mod2
* — * — - —
hence x (M; Q)% x (M'; Q). Since HiM = HiM' =0 for 0<i<k we have

rank Hk(ﬁ; Q) # rank Hk(ii'; Q)




-
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but then also
rank Hk(M; Q) # rank Hk(M'; Q)

This lemma suffices to finish the argument for k even. By above

k k+l

we may assume that H M is a torsion group. Let f: S X D —> M

k
represent a non-trivial p e HkM We have

HkM/p(Z) = HkM'/p'(Z) .

Since the group p(Z) is finite it follows from the above lemma that p'(Z)

is infinite. Now
!
0—>z£L> H M' —> H M'/p'(Z) —>0

is exact, hence the torsion subgroup of M' injects into H M'/p'(Z) and
g K P

‘therefore it is strictly smaller than HkM By further surgery we can kill
- the infinite part of HkM' to obtain M'" with

" > i
HkM torsion subgroup of HkM‘ < HkM .

Induction on the order of H'kM completes the argument.
Assume k = 2n+l, m = 4n+3.

‘We shall now use the move of (II. 5) we have not employed yet --

changing f by a regular homotopy. Suppose f : Sk X Dk.*'1 —>M is an

imbedding. If B : Sk —> Sok+1 is a smooth map then we can define a new

imbedding

fp:SkXDk+1—-->M

by f_.(u,v) = f(u, v-B(u)) where - denotes the usual action of SO on

B k+l
Dk+1. Clearly f‘3 represents the same homotopy class as f. They extend

to the same stable framing (given by F) of 7 if and only if B is in

M

the kernel of
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8% TS0y T M (S0 40)
This kernel is infinite cyclic for k odd. ‘
Choose B in the kernel of Sy and denote by Mé the result of
: surgery on fﬁ' Note that M0 is independent of B. So is the class of
f[.’:(* X»Sk), i.e. €e¢ HkM0° On the other hand the class fﬁ(sk X %) depends
on B, in particular its class 813 € HkMO is given by
e, = ¢ + jpB)e’
B J(B)

where the homomorphism
. ~ k
Ju ® ﬂk(SOk_l_l) — > Z = 7rk(S )

is induced by the canonical map j: SO + —_—> Sk defined by j(§) = x- £, x ¢ Sk.

k+l
We may identify the stable group ”k(SOZkH) with the stable group

1rk~(SO The exact sequence

. k+2)'
S
)y —> 7rk(SO

k+l. 0
S ) k+2

—_— 7rk(SO

k+l )

el

‘arises from the fibration SO, | —>SO, , —> s*". Recall that B is in the

kernel of S,

The composition

J
sktly 2, 7 (SO, ) —> nk(sk)

e k4! T

. k+l .
is known to carry a generator of 7 S * ) onto twice a generator of

k k+1(
7rk(S ) for odd k. Thus the integer j*(ﬁ) can be any multiple of 2.

Next we shall consider the effect of replacing € by e, + j(B)e'

P

on the homology of M['S We. have
e!

- i
0 > Z ,HkMo—>HkM——>O

from the beginning of the proof, where i carries ee¢ HkMO into an

element p of order r >1. Clearly re is a multiple of €', say
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re + r'e' = 0. Since €' is not a torsion element, these two elements can
satisfy no other relation. Now 5[3 =¢ + j(B)e', hence
re_ +(r'-r (B))e' = 0 .
B ( J( ) |

Using the exact sequence

€ i!
ﬁ ﬁ
—.9 t
A ‘ H]MO—-_>HRM —>0

we see that i’

B
Since H‘kM['S/p['s(z) = HkM/p(Z) we see that H"kM['B is smaller than

I-I.kM‘3 iff

carries e¢' into some p"3 € HkMé of order - |r' - rj(B)]|.

o< |r - riB)| <r .
From above j(B) can be any even integer, thus j(B) can be chosen so that
-r<r'-rjBf)<r .

This choice of j(B) will give Hka < HkM[3 unless r' is divisible by r.
- We need to study the residue class of r' modulo r.
Recall the definition of linking numbers ([18, §77]). Let pe HPM,
T € HC;IM be homology classes of finite order, with dim M = p+q+l. Consider

.the homology exact sequence

i
S
.. —>H (M;Q/Z)——>HM—>H (M; Q) —>...
- ptl P P
associated with the coefficient sequence

0—>z—>Q—>Q/z—>0 .

Since p is of finite order, ip =0 and p =a(V) for some Ve Hp+1(M; Q/z).
The pairing

Q/z0zZ—>Q/2
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defined by multiplication induces a pairing
H .(M;Q/Z)®@H M—>Q/Z
ptl q

defined by intersection of homology claéses. Denote it by a dot.

The linking number L(p,7) is the rational number modulo 1 defined by

L{p,T)=v-7T .
This linking number is well defined, and satisfies the symmetry relation
Lip,7) + (-)PL(r,p) = 0 .

In fact for p = q = k this is just the bilinear form b derived from )\ we
referred to at the closing of section 1.

Lemma 2.5. The ratio r'/r modulo 1 is, up to sign, equal to the
self-linking number L(p, p).

Proof. Since re +r'e' =0 in H M_, the cycle re +r'e' on oM

k0 0 i

bounds a chain ¢ in M,. Let ¢ = f(*X DK*l) denote the cycle in £(S< x D<)

CM with boundary ¢'. The chain c - r'c, has boundary re, hence

(c-r'cl)/r has boundary ¢, representing the;{homology class p in HkM.
Taking the intersection of this chain with {(S X 0), which represents p
we obtain _tr'/r, since c is disjoint from f(Skx 0) and c1 has intersection
number +1 with it. Thus L(p,p) = + r'/r mod 1.
Now if L(p,p) # 0, then r's$ O mod r, hence p can be replaced by
a class of smaller order via surgery; Hence, unless L(p,p) = 0 for all
p e HkM’ HkM can be simplified. Recall that we assume that k is odd.
Lemma 2.6. If H M is a torsion group, with L(p,p) = 0 for

k

" every pe H M, then HkM is a direct. suri—z of Z

- S.
k 2
Proof. The relation L(§, n) + (-1)k I(n,§) =0 and kz = 1 mod 2 show

that L. is symmetric. If all self-linking numbers are zero, the identity

L(&+m, £+n) = L(§,€) + L(n, n) + L(E, n) + L(n, §)
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implies that

2L(£, 1) = 0

for all £ and 7. But, according to the Poincaré duality theorem for torsion

groups [18, p. 245], L defines a completely orthogonal pairing

TkMQTkM——>Q/z .

Hence the identity 2L(§¢,n) = L(2§,n) = 0 for all n implies 2§ = 0.
Thus a sequence of surgeries reduces HkM to a group of the form

ZZQZZG.'. @ZZ-_—SZZ-

Note that M and M. are parallelizable and so is the trace of the

P

surgery, W. It follows from the formulas of Wu that the Steenrod operation

st 15w, ow; z,) —> 552w, aw; z,)

is. zero.(see [10, Lemma 7.9]). Hence every £ e I-Ik+1(W; ZZ) has self-
intersection number §-§ = 0. ‘

Lemma 2.7. Suppose that every mod 2 homology class § e Hk_H(W; ZZ)

. has self-intersection number §-¢ = 0. Then surgery necessarily changes the

rank of the mod 2 homology group H.k(M; ZZ).
Proof. Analogous to (2.4). The hypothesis ¢-§ = 0 for all §,
guarantees that the intersection pairing

. .
Hk+l(w' ZZ) ® Hk+l(w’ ZZ) e Z2

‘has even rank.

By (2. 7) surgery on f‘3 changes the rank of H.k(M; ZZ). The effect

of this surgery on Hk(M; Z), provided B is chosen properly, will be to
replace p of order r = 2 by an element pé of order r!, where

ﬁ’

-2<r} <2, r'! =0 (mod?2) .

P p
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Thus ré is 0 or 2. Now using the sequence

> H My —> HkMﬁ/pp_(Z) —>0

0 > Zr'
P
where the right hand group is isomorphic to (s-l)ZZ, we see that I-I.kM"3 is

one of the following extensions:
zZ +-(s-1)ZZ
Z2 + (s-l)Zz

HMg=4 74 (s-2)Z,
Z4 + (s-Z)-Z2 .

The first two possibilities are excluded by (2.7). In the last two further surgery

will replace M! bya group which is definitely smaller than M.
B y

This completes the case k odd and proves the theorem.
3. A braid.
In [12] Levine constructs a sequence of braids. - We shall describe the

stable version originally due to Kervaire and Milnor. For proofs and details

the reader should consult [12].
Consider the following groups, whose elements are the objects under

the given equivalence relation. Let n > 5.
Objects: framed n-manifolds with boundary a homotopy sphere.

P_:
n
Equivalence relation: framed (interior) cobordism. Group operation: bounded

framed connected sum. These groups were computed as

n
P

1} m

0 1 2
Zz 0 Z
n

Objects: homotopy n-spheres. Equivaleﬁce relation: h-cobordism.

0_:
n
Group operation: connected sum. Kervaire and Milnor [11] showed that the On

are finite and computed them for n < 18. Only partial results are available

for n >18.
Equivalence relation:

Fen: Objects: framed homotopy n-spheres.




62.

framed h-cobordism. Group operation: framed connected sum. For n<14
‘these groups are listed in Novikov [17, p. 386]. They are finite except for
'n=3, 7mod 8 when Feh“-‘-' Z+ finite group.

An: Objects: closed n-manifolds, framed in the complement of a
finite set of points. Equivalence relation: cobordism framed in the complement
of the trace of these points. Group operation: connected sum framed in the
.complement of the above points. Again the structure is unknown except that
the ,An are finite for n ¥ 0 mod 4 and A4k"-‘= Z + finite group.

‘ 7fn(0):. Homotopy groups of the infinite orthogonal group O. Let O(k)
~denote the group of k X k real orthogonal matrices and define the inclusion
O(k) —> O(k+l) by y—> (g ?) The direct limit of O(k) is O. Its

homotopy groups were computed by Bott [1]:

0

1 2 3
7l"n(0)=-Z2 Z‘2 0-2

)
]

4 5 6 7
0 00-2
TTn: Objects: framed closed n-manifolds. Equivalence relation:
_framed cobordism. Group operation: framed connected sum. We can identity
. these groups with the stable homotopy groups of spheres as follows.

Thom-Pontrjagin construction:

Let M™ be a closed n-manifold with TM stably trivial. For sufficiently

large N > n we can imbed M in -Sn+N:

;-: Mn __> SN+n

no i vi ~1 ~7
and the normal bundle of f(M ) is trivial. ('rM v =1 T ('rM. (>} el) v =1 Ts (1} £

thus v is stably trivial. By (I.2.17) v is trivial.) Thus we have an imbedding

f: M x DN —>s" ",

Define a map
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by sending SN"'n - int f(Mn X DN) to the base point.

Conversely let

a: S'an — SN
represent an element of the stable n-stem. We can approximate a bya
smooth map transverse regular at, say x. Then a-l(x) = M is a smooth
n-manifold in SN+n and if Fx is a framing of the tangent plane at x then
the pullback gives a framing of M. _
| Finally we need to know that the correspondence is well defined. This
follows, since two closed framed n-manifolds are framed cobordant if and
only if the corresponding maps a, are homotopic. (See [9].)
Now consider the exact sequences:

! ? 9
(1) ee. > 71 (O) —> F6 > 0 > T ©) —>.
: n n . n .n-1 .

w, sends an element of 7rn(O) into the standard sphere whose usual framing
is twisted by this element

(pl forgets the framing

9, is the obstruction to framing 6 . By Kervaire and Milnor [11, 3.1]

~every homotopy sphere is s-parallelizable, hence 31 is zero.

Thus (1) splits into short exact sequences

0 —>7 (O) > F6 > 8 > 0
n : n n
w ¢
(2) oo —> F8_—2>] 225 p -(P—Z->Fe e
: n : n : n : n-1

wz the natural inclusion

(pz cut out a disc. Clearly goz is zero for n # 4k+2. Recent results of
Browder [3] show that ¢, is zero except possibly when n = 23- 2.

az restrict to the boundary with framing

3) ...—>8 —>A —>P —>08_  —>...
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give the complement of a point the natural framing

cut out a disc containing all points without framing

-restrict to boundary (no framing preserved)

oWy Yy 9,
...—->7rn(0)——f->'l| —-—-—>A —7 1(O)-——--->-...

is the H0pf -Whitehead J homomorphism defined as follows. Let N > n.

For Berw (O) represent P by a smooth map P : s" -——>SON+n. The

n+N has trivial normal bundle, thus we

have an imbedding f: s™ x DN —> Sn+N. Use P to twist the standard

‘standard subsphere S CS

framing (as in section 2) and the Thom-Pontrjagin construction to obtain

a map

o.:Sn+N—_->SN .

natural inclusion
obstruction to completing the framing. We may think of an element of

An as framed on the complement of a disc (containing all the unframed

points) and then the obstruction is clearly in 7rn_1(0).

The four exact sequences can be collected in the diagram; which is commutative

up to sign.

\/A\/x/
/\/\/\
\/\ﬂv/

T (O)

AWAWAN
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The reader familiar with G and PL will recognize the braid as the

_homotopy exact sequence of fibrations of OC PLC G.

4. Browder-Novikov theory.

The idea of surgery on a map was invented by Browder [2] and Novikov
[17] in order to solve the problems below. The present description is based,
in addition to these papers, on a talk by Browder at the Tulane Conference on
Transformation Groups and the earlier mentioned lectures by Kervaire.

1. Problem: Suppose we have a topological space X. Is X of the
homotopy type of a closed smooth manifold?

Certainly, we need some assumptions.
(i) X has the homotopy type of a finite complex,
(ii) X is a Poincaré complex for some n.

Now recall the situation of a surgery map, ¢ : M —> X. In addition
to (i) and (ii) we also had a bundle v over X and a stable trivialization F
of . © (p*v. Since M" imbeds in some large Sphere Sn+N with normal

M

%
bundle vM and ™M ®VM is stably trivial, ¢ v and v 2T st'ably
equivalent. Let EI(UM) denote the unit disc bundle of VM and El(vM) its

boundary. The Thom complex of Vv_, T(VM) is defined by (I.2.27)

M
T(vM) = El(vM)/El(vM) .
Lemma 4.1. The Hurewicz homomorphism

hiw (T ) —>H (T )

~is onto (spherical).
Proof. By the Thom isomorphism (I.2.28)

n
B 1 HM) —> H (T )

we need only to show that a generator, +J[M], is in the image of h. The

map SN+n —> T(VM) collapsing [SN+n\ E(VM)] v ﬁi(vM) to a point certainly
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represents a class in 7rn+N(T(vM)) whose image is + &[M].

In view of (4.1) we must require that
(iii) there is an.oriented vector bundle v over X (of fiber dimension N >> n)
such that 7rn+N(Tv) —_> Hn+N(TV) is onto. We say that v has a spherical
Thom class.

Theorem 4.2. Suppose X is simply connected and satisfies (i), (ii)
and (iii) above. Then there is a smooth manifold M" and a surgery map
@ Mn —> X. The obstruction to making ¢ a homotopy equivalence is an
element of Pn'

Proof. Imbed X in a suitably large euclidean space Rk Let U be
a smooth neighborhood of X in Rk such that i : X —> U is a homotopy
equivalence with inverse r : U —>X. We have the homotopy equivalence of
Thom complexes Tr : T(r*v) —> T(v) with inverse s. Let a: Sn-'*.N —> Tv

_represent a spherical class. Consider

sk
‘Sn+N a>Tv s.> T(r V) .

Approximate this map by a map g transverse regular at U, the zero section
of T(r*v). Now g-l(U) = M is a submanifold of Sn+N. Since U is closed
in T(r*v), g-l(U) is closed in Sn+N, hence compact. Since 00U = ¢, oM = ¢.
Finally codim M = codim U = N, hence dim M =n. Let
@¢=r oglM tM—>U—> 7. Clearly (p*v = VM and @ is a (degree 1)
surgery map. Application of Chapter II yields the desired result.

Thﬁs the above theorem answers the 1 Problem in the affirmative when
n is odd. For even n the situation is the following. If n = 4s we have an

additional cobordism invariant of M, its signature o(M). Recall the

definition: we have a bilinear form

H5(M; R) ® H2S(M; R) —> R
u®v = (u v v)[M]

“defined by cup product evaluated on the orientation class. It is a well-known
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theorem of H1rzebruch [7] that there is a universal polynomial L_ inthe

Pontrjagin classes P, ¢ H4 (M; Z) with rational coefficients such that

Ls(pl, e, ps)[M] = g(M)

'Recall [7, p. 65-66] that the Pontrjagin classes of M are just the Pontrjagin
classes of the tangent bundle ™

#* *
Now by assumption 7. _® @ v is stably trivial, hence @ v is the

M
stable inverse of 7. . Let -v denote the stable inverse of v. Define the

dual Pontrjagin cla:/sles ;i(v) = pi(-V) € H4i(X; Z). Define the signature of
X, 0(X) by the bilinear pairing in the middle cohomology as above. Let [X]
denote the fundamental class of the Poincaré complex  X.

Theorem 4.2 (continued). Suppose X 1is simply connected and
satisfies (i), (ii), and (iii). Then
(a) if n is odd X has the homotopy type of a smooth manifold,
(b) if n=4s then X has the homotopy type of a smooth manifold if and

only if
L (), ---, B NIX] = o(X)

The problem is undecided for n = 4k+2. For any given bordism class
the obstruction lies in ZZ’ but it is not clear how it depends on the choice of
a. This naturally raises the question:
2. Problem: How unique is the above construction?
Theorem 4.3. Suppose a and a' are homotopicand ¢ : M —> X
and ¢' : M' —> X are homotopy equivalences. Then for
n even M and M' are diffeomorphic
n .odd there exists a homotopy sphere =" bounding a parallelizable
manifold such that M and M'# Z are diffeomorphic.
Proof. Let A be the homotopy between a and a', A: Sn+N X1—>T(V).

Define the map

n+N

A :sTT XTI —> T(v) X1
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by A'(x,t) = (At(x), t). Now use the above construction and a relative transverse

‘regularity theorem to obtain a map
Y :N—>XXI

where N is a compact (n+l)-manifold, dN = Mu(-M') and ¥|M =@,
Y|M' = @' are homotopy equivalences. Moreover ¥ is a surgery map.

It follows that the obstruction to making ¥ a homotopy equivalence
keeping the ends fixed liesvin Pn+l’ hence the claim when n is even.

For n odd there may be an obstruction. But this can be eliminated if
we allow changes in the boundary (see theorem II.3.1). It is quite clear from
section 2 that the obstruction may be killed by adding a w-manifold with |

boundary a homotopy sphere. The h-cobordism theorem provides the

transition from the homotopy statement to diffeomorphism

5. Further topics.

There is a great wealth of applications of the theory. For example:

. Homotopy smoothings of manifolds.

The object is to study the collection of smooth manifolds homotopy
equivalent to a given manifold. The idea is present in Browder-Novikov
.theory and roughly one has the following:

- Let hS(M) denote the set of manifolds homotopy equivalent to M

under the equivalence relation

Pt

v

M, &
fj’ M
MZAZ

g and g, are the given homotopy equivalences, f is a diffeomorphism
making the diagram homotopy commutative. _
Let nm(M) denote the set of normal maps of M. An element is a

vector bundle ¥ over M of fiber dimension N >>n and a homotopy class
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of maps a : Sn+N——> T(v) whose image generates Hn+NT(V)' From (4.2)

this corresponds to a surgery map

*
Qv , v
@ : M' —>M

*
where M' is smooth, @ of degree 1 and LAY ® ¢ v stably trivial.

For M simply connected there is the exact sequence

P . > hs(M) 1> nm(Mm) > P_ .

-The map s sends the surgery setup into the obstruction to making ¢ a

homotopy equivalence. The map # just adds a homotopy sphere which bounds
a w-manifold to a manifold M'. (See 4.3.) The map mn associates with the

—k —
homotopy equivalence ¢ : M' —> M a vector bundle v =@ v where ¢ is

M,
a homotopy inverse to ¢ and VM' is the stable normal bundle of M'. We
shall not prove that the maps are well defined and exact. The reader should

consult Sullivan [19] for details.

Transformation groups.

The study of free involutions on homotopy spheres using surgery was

initiated by Browder and Livesay [4]. Several other pape:s have appeared

along those lines.

The free actions of S1 and S3 .on homotopy spheres can also be

“investigated by surgery methods. One has to classify homotopy smoothings

of complex and quaternionic projective spaces.

Hauptvermutung.

An outstanding application of the PL-theory is the result that if two
simply connected PL-manifolds of dimension > 5 with no 2-torsion in
3-dimensional homology are topologically homeomorphic, then they are

PL-isomorphic (Sullivan [19]).
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