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ACTIONS OF THE TORUS ON 4-MANIFOLDS-II 
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IN THE first part [5] of this investigation of closed orientable 4-manifolds admitting an 

action of the 2-dimensional torus group, G = T2, we obtained an equivariant classification 

of actions with no finite isotropy groups, provided the action was not free. The main tool 

there was a cross-sectioning theorem [5, 1.12 and 4.41. Our first result in this sequel is to 

obtain an equivariant classification of all actions. This is accomplished by specifying a 

cross-section on the boundary of a tubular neighborhood of each orbit with finite isotropy 

group (E-orbit) and considering the problem of extending this partial cross-section to the rest 

of the orbit space. This approach is analogous to the equivariant classification of 3-manifolds 

with S’-action [7] and in principle it goes back to Seifert [8]. We have to consider two cases. 

If there are points with infinite isotropy group, F u C # @, then there is no obstruction to 

extending this cross-section and the orbit data form a complete set of invariants. If theaction 

has only finite isotropy groups, F u C = @, then M is a Seifert manifold and an additional 

invariant appears, representing the obstruction to extending the cross-section. 

The remaining sections contain topological results. Since we have an equivariant 

classification, we may think of our manifolds given in terms of an action and ask when two 

such manifolds are homeomorphic (diffeomorphic). This problem was solved for simply 

connected manifolds in our first paper [5; $51. In $2 we investigate the Seifert case, 

F u C = @, using the techniques of Conner and Raymond [l-4]. In “almost all ” cases 

we see that two manifolds are homeomorphic if and only if they are equivariantly homeo- 

morphic. This result was obtained independently by H. Zieschang [lo] using different 

methods. We also observe that M fibers over S’ with fiber a 3-dimensional Seifert manifold. 

In 93 we show that in the presence of fixed points, F# 0, M can be represented as an 

equivariant connected sum of “ elementary ” 4-manifolds with G-action. Each elementary 

manifold has cyclic fundamental group. There are two unfortunate aspects of this result, 

’ however. First the mutual homeomorphism relationships of these elementary manifolds 

are not known. This difficulty resembles the classification problem of lens spaces. Next, the 

decomposition is not unique and in the light of [5; $5.81 this may turn out to be a rather 

serious obstacle. $4 is a partial answer to the first problem for manifolds with infinite 

cyclic fundamental group, i.e. for manifolds with no finite isotropy, E = $3. We call M 

t The authors were partially supported by NSF. 
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and N stably homeomorphic (diffeomorphic) if there exist non-negative integers m, n so 
that the connected sums M # mS2 x S2 and N # nS2 x S2 are homeomorphic (diffeo- 

morphic), and determine the stable homeomorphism (diffeomorphism) classification of 

elementary manifolds with E = a. At present we have only inconclusive results for the 

manifolds with finite cyclic fundamental groups and will not discuss them here. 

51. EQLJIVARIANT CLASSIFICATION 

Let us recall the notation of [Sj. The 2-dimensional torus group G = T2 acts on an 

oriented closed Cmanifold M4. The set of orbits with non-trivial finite isotropy group is 

denoted E. The set of orbits with isotropy group isomorphic to S1 is denoted C and the 

set of fixed points F. Given a parametrization of G = { cp, 010 I p, 0 < 27~) particular circle 

subgroups are denoted by G(m, n) = {cp, f3lmcp + n6 = 0, (m, n) = l}. 

The equivariant classification for E = 0, F u C # @ was obtained in [5, $41. The 

orbit space, M* is a compact 2-manifold with non-empty boundary. Interior points corres- 

pond to principal orbits and aM* = F* u C *. The components of F* are isolated points, 

each in the closure of two components of C* with isotropy groups G(m, n) and G(m’, n’) 

respectively, satisfying the condition mn’ - m’n = f 1. We label each C*-component by its 

“ weight ” (m, n). With the orientation of G above and the given orientation on M a com- 

patible orientation is chosen for M* and this together with the weights give an equivariant 

classification of the action [5; 4.41. 

To complete the equivariant classification for E # fa we shall discuss two cases 

separately : 

(a) C u F # 0, and 

(b) CuF=@. 

First it is necessary to examine the E-orbits. Later, when we desire to give presentations 

of the fundamental group as well as a normal form for the action in case (b), we shall find it 

useful to give other equivalent presentations for the E-orbits. 

1.1. Oriented slice invariants for the E-orbits. Let x1, . . . , x, be arbitrary points, one 

each on the distinct isolated E-orbits and let x1*, . . . , x,* denote their image in E* c M*. 

If x* E E* is one of these points and D* is a closed disk in the interior of M* which contains 

only x* from E* in its interior, then nn-‘(D*) is an invariant tubular neighborhood of G(x) 

and the action is topologically equivalent to 

(G, G x Z, 0’) 

where B, z G, E G and the action of Z, on G and D2 is given as follows: 

A x z + Pz, IzI 51, zeD2 

A x (Z1) z2) -+ (zlP, z2 P”), (z,, z2) E G, with 

o<v<u, (a, v) = 1, 1 = exp(2ni/cc), and 

0 I y1 < CI, 0 I y2 < tL. 
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We are indebted to the referee for pointing out that for p coprime to CI the map A -+ Ap 

induces an equivariant map replacing (yi, y2, v) by (yi’, y2’, v’), with 0 I yi’ < a, 

yi’ 3 pyi mod(a), 0 I v’ < CI, v’ E pv mod(a). Thus we may normalize so that v = 1, and 

call the corresponding triple (c(; yr, y2) the oriented slice invariants. Note that it follows from 

the effectiveness of the action that (tl, (yi, yJ) = 1. 

The action on D2 is the slice representation and the action of Z, on G is really an 

embedding of Z, in G, A + (Izyl, AyZ ). Note that if a/(cc, yl) = rl and a/(~, y2) = r2, then 

[rl, r2] = CI, where “ [ 1” means “least common multiple”. The projection of Z, to the 

first factor is isomorphic to Z,., while onto the second is isomorphic to Z,, . The oriented 

slice invariants (a; yi, y2) completely determine the action in a tubular neighborhood of 

G(x). (This is really not difficult to check and of the various ways to see this perhaps the 

quickest is by the methods of [2; $81.) Now in addition to our weights of the form 

{c; 9; s; t; <Pi, 41)> . . ., <A, 4,); {m 41, . . ., (4 4tl 

of [5; 441 we add the collection of slice invariants 

{(% ; Yk,l) Yk, 219 k= 1,2,...,n} 

and we call M* and this total collection our weighted orbit space. 

1.2. Equivariant classiJication,for C v F # @. If Ml* and M,* are two distinct oriented 

orbit spaces with weights, then an isomorphism between them 

h: M1*+M2* 

will be an orientation preserving homeomorphism which preserves the weights. That is, 

El* + E,* and 8M,* --+ aM,* are also isomorphisms. 

THEOREM. Let (G, M,) and (G, M,) be actions with C v F # 0. They are equivariantly 

homoemorphic through an orientation preserving homeomorphism if and only if there exists 

an isomorphism between their oriented weighted orbit spaces. 

Proof. The argument for this theorem is really the same as Corollary 2b of [7]. First 

if M, and M, are equivariantly homeomorphic then this homeomorphism induces an 

orientation and weight preserving map on the orbit spaces. On the other hand, given such 

an isomorphism 

h : Ml* + M2*, 

we shall show how one may construct an isomorphism from M, to M, . Obviously, h exists 

if the “ numerical data ” or weights are isomorphic. (Recall that the sets of numbers may be 

permuted.) Let us select closed 2-disks D,* about each xk*. They are mapped by h onto 

corresponding disks about h(xk*). We can assume that &* is in the interior of Dk* which is 

in the interior of Ml* and Dk* n E* = xk*. If we let 

MT,, = M,* - 
$,*k* 

where 8k* is the interior of D,*, then 

h, : MT,, -+ Mz*,l, 
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the restriction of h, is an isomorphism. Furthermore, as there are no E orbits in M,,, any 

section of the orbit map over ui, 1 aD,* can be extended to all of My,, by [5 ; $1. lo]. 

Thus it is easy to find an isomorphism 

To each M,, I we must attach the (G, V,) = (G, G x H,,r Dk) equivariantly. We have already 

a section over each aD,* and an action of G on G x dD,*. We may attach (G, V,) up to 

equivariant isomorphism in only one way and thereby extend H to all of M,. This completes 

the proof. 

1.3. Invariants as obstructions to cross-sections, C u F = a. In order to find the 

equivariant classification for case (b) we must find the analogue of the invariant “b” of 

Corollary 2b in [7]. Since 3M* is empty the weights, which are just the E-orbit data, are 

not enough. (For example, different principal actions can have the same orbit space.) The 

new invariants will be a pair of integers. When IBM* is empty the “weights” will include, 

in addition, this pair of integers and altogether will constitute a complete set of invariants 

for the oriented action. 

Arbitrarily choose a principal orbit, x0*, and a closed 2-cell, D,* meeting only principal 

orbits in its interior. If we select sections about each dD,*, 

xk: aDk* --f M, kr 1, 

these sections may be extended to 

N* = M* - i, 8,*. 
k=O 

We may without loss of generality assume that n-‘(D,*) = V,, where (G, V,) is 

(G, G x z+ 0’). That is by equivariant homeomorphism we can assume xk* is in the center 

of D,* and the action is equivalent to the standard linear action on the solid torus. 

If we fix the sections xk over each aD k*, k > 0, then any two extensions over N* are 

homotopic having the sections xk fixed; [9, 34.81. Thus we are interested in choosing normal- 

ized sections over aD,*, k > 0, and measuring the obstruction to extending over all of 

M* - i]l 8,*. This obstruction will be given by an element of 
k=l 

HZ M*, fi D,*;Z@Z XZQZ 
k=O 

and can be thought of as a pair of integers b, and b, . We wish to interpret this pair of 

integers and show that it is an invariant of our action. To do this we first show how to 

normalize the section over a&*. 

Let h, and h, denote the oriented circle subgroups of G defined by h, = G(0, 1) and 

h, = G(l, 0). On V, which is equivariantly (G, G x z,,* 0’) the curve m = aD2, that is the 

image of 80’ in G x D2 --, V, is homotopically trivial. On n-‘(aD,*) = & = G x Xk(aDk*), 
the cross-sectional curve Q = xk(aD,*) together with h, and h, form a mutually orthogonal 
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curve system for a( V,J. Of course we may alter this section at will and obtain a new section 

Q’, which must satisfy the homological relation 

Q-&Q’+& +s,h, 

for arbitrary integers s1 and s2 and E = + 1. (We allow ourselves the convenience of using 

the symbols for the oriented curves as also the symbols for the generators of the first integral 

homology group and later for the fundamental group.) 

The curve m satisfies the homology relation 

m - aQ +jlh, + jzhz 

for some integers cr,.jl and j, and since it is connected, (a, (jl,j2)) = 1. In fact, it is easy to 

see that 1 a 1 = uk. By replacing Q by its equivalent EQ’ + s,h, + s2 h2 we obtain 

m N EaQ’ + as,h, + as2 h, +jlhi + j, h, 

= &a&’ + (j, + as,)h, + (j, + as,)h, . 

Since the choice of s1 and sz is arbitrary we may choose them so that 

Ll = as1 +.k Pk, 2 = as2 +_i2 

and 

o 5 bk,l < IEai9 0 5 Pk, 2 < I &a I. 

In fact, this is our normalization. We have already implicitly oriented Dk* and hence 

aD,* with the positive direction being measured by increasing angle. This orients both 

curves m and Q in the positive directions and so the choice of E = 1 and a > 0 can always 

be made. Our numbers /?k,l and a,, 2 are then normalized invariants for the section Q’ 

about xk*. It can be seen by a computation, similar to that employed in [7; $51 that we are 

always led to the same numbers regardless of the choices. (Of course, the numbers do 

depend upon the orientation and the choice of generators h, and h, of G since this is part 

of our data.) Thus the cross-section x on 8D,*, Q’, is normalized and well defined up to a 

homotopy. We call (a,; &, 1, &, 2) th e oriented Seifert invariants of the E-orbit. As above, 

(a, (P1, P2)) = 1. 

Now having been given normalized sections, xk, over dDk*, k > 0, we extend to N*. 

This section intersects cYV, in a curve Q, . Any other choice of extension, x’ is homotopic 

by [9, 341. Thus Q, and Q,’ must be homologous on aV, and so m, is given by the homology 

relation 

m, - Q, + b,h, + 6, h, . 

The integers b, and b, are invariants of our action. In fact given the normalized extensions 

On iaDk*>k=,, 2. + 9 the obstruction to extending this section over M* - 
,‘;b *’ 

* is precisely 

the pair of integers 

(b,, b2) E HZ 
( 

M* - u 8,*, u aD,*; H 0 B 
> 

z H OH. 
k>O k>O 

This follows readily from the definitions of obstruction theory. In analogy with the notation 

above we define the “weights ” of M* as 

{(b,,b,);&,g;(al;p,,,,P1,2),...,(a,;p,,,,Pr,2)} 
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where E is a given orientation on the closed 2-manifold M* of genus g; (oli; pi, 1, pi, J are 

the normalized oriented Seifert invariants of the E-orbits and (b,, b2) E Z 0 B is the obstruc- 

tion class defined above. Two sets of “ weights ” are called isomorphic if they agree up to a 

permutation of the indices 1, . . . , r. 

THEOREM 1.4. Zf (G, MI) and (G, M,) are oriented actions, then they are equivariantly 
homeomorphic under an orientation preserving homeomorphism if and only if there exists an 

isomorphism between their (normalized) weighted orbit spaces. 

Proof. In (1.2) we settled the case when the orbit spaces have boundary. Since all the 

weights of an action are invariants, the necessity is clear. On the other hand, given an 

equivalence of the weights for the two actions, there is an orientation and weight preserving 

isomorphism h from MI* to M,*. By choosing disks D,* and h(D,*) we are led to choosing 

normalized sections xk, i : aD,* + M, and x& : h(aD,*) + M, . These sections are extend- 

able to iV,* and N,*, and are uniquely determined up to homotopy. With these two partial 

sections it is easy to define an orientation preserving equivariant homeomorphism 

H : M, --) M, which covers h, via the orbit maps. 

1.5. A presentation of 7c1(M, *) in terms of the weights. In this section we give a presen- 

tation of the fundamental group zn,(M, *) in terms of our orbit invariants when F u C = 0. 

For the E-orbits we use the oriented Seifert invariants. 

In fact, it is just as easy to present the fundamental group of an action (T”, Mm+‘), 

m > 0 with only finite isotropy groups. We choose h,, . . . , h, as standard generators for 

nl(Trn, *), ai, b,, . . . . a,, b, as standard generators for ~c,(M*, *), ql, . . . , q,, generators for 

e 1, ***, Q, or what is the same as aD,*. For each Vk we receive the relations: 

qk”“hsl”. t . . . A$, m. 

We may put all of them together via the cross-section and the Van Kampen theorem and 

obtain : 

zl(Mm+‘, *)={~~,b~,...,a~,b,;h,,...,h,;q,,...,q~l 

[al,b,]..*[a,, b,].q,...q,.h;b’...hmb”; 
qF he,’ . . . hi&n; 

[qk 3 hjl; tai, hjl; Lb;, hjl; [hj, h,lI. 

HereZandj=l,..., m,k=l,..., n,i=l,..., gand[x,y]=xyx-‘y-l. 

This is really the obvious analogue of Seifert’s presentation of the fundamental group 

of (S’, M3), see [8; 61. Note that when m = 2, this yields the case that concerns us here, 

Cmanifolds. That this is the correct formula follows from the fairly obvious extension to 

G = T” of our previous discussion on normalization when G = T2. 

1.6 The tubular neighborhood qf an E-orbit. In this section we shall associate a third 

set of invariants with an E-orbit, describing the action in its tubular neighborhood. This 

neighborhood is homeomorphic to 0’ x T2 with the E-orbit corresponding to 0 x T2, but 

the action is not translation in the second factor. 
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Our analysis here resembles [6; $21 where we considered S’ actions on D2 x S1 and 

it is for this analogy that we shall keep the order of the factors the reverse of the customary 

notation. 

We let D2 x S’ x S’ be parameterized by (p, or, 02, co& 0 < p I 1, 0 < wi < 271. 

The G-action is given by 

(P, ml? w2 3 %> 
(VP,@) 

l hq+w+b,fA oz+a,~++b,e,w,+~,cp+~,e) 

and we call the matrix 

al 6, 
A = a2 b, 

i 1 a3 b, 

the tube invariants of the equivariant tubular neighborhood of the E-orbit. This action is 

effective only if the solution to the simultaneous equations 

a,cp + b,B = 0, a2 cp + b, 0 = 0, a,cp+b,tI=O 

modulo the integers is cp = 0, 8 = 0. The isotropy group of (0, -, w2, w3) is finite if and 

only if CL = ( a2 b, - a3 b, ( # 0 and in this case the group is easily seen to be isomorphic 

to Z,. A suitable sequence of equivariant diffeomorphisms normalizes the entries of A 

the following way: 

(i) a3 = 0, az > 0, b3 > 0. 

(ii) 0 < a, < u2, 

(iii) 0 I b, < b, and 0 5 b, < b, . 

The effectiveness of the action implies moreover 

(iv) (a,, a2) = 1, 

This set of invariants will not be used in the sequel and we leave it to the reader to obtain 

conversion relations among the three sets of invariants associated with an E-orbit. Here 

is a sample. Given the normalized tube invariants A we obtain the oriented Seifert in- 

variants by : 

(i) u = a2 b, , 

(ii) p2 = a2 pz where j32’(a,b2 - a2 b,) = - l(b,) and 0 5 j12’ < b3, 

(iii) &al = w2 + l 
B,b, = .&(b,) 

determine y and PI so that 0 I PI < ~1. 

52. TOPOLOGICAL CLASSIFICATION FOR C u F = @ 

An analysis of the topological and equivariant classification for C u F = 0 is given 

in $5 and $12 of Holomorphic Seifert fiberings [3] primarily as an illustration of the tech- 

niques of [3]. In fact considerably more general situations are investigated in the cited 
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sections and SO it seems appropriate to extract and refine the relevant material here for the 
convenience of the reader. We shall briefly remind the reader of the terms injective, locally 
injective, homologically injective, holomorphically injective and Bieberbach classes and 
hint at their significance, but we must refer the reader to [3] for most of the details of the 
arguments. 

This approach, based on the theory of locally injective actions developed by Conner 
and Raymond [l]-[4], yields, except for a few cases, that the manifolds in question are 
homeomorphic if and only if their fundamental groups are isomorphic (see also 
Zieschang [lo]). It treats Tk actions on Mk+‘, and we shall use this generality unless 
specific results for k = 2 are called for. We shall also find conditions for M4 to fiber over T2 
and show that M4 always fibers over S’, although the fiber is not unique. The most striking 
aspect of this approach is that we do not need any of the local invariants defined in $1 to 
complete the equivariant and topological classifications In fact 92 is completely independent 
of $1. We shall also observe that for almost any given manifold any two actions of T2 are 
weakly equivalent. (Two actions (G, X) and (G, Y) are weakly equivalent if there exists an 
automorphism Q; G + G and a homeomorphism h : X + Y so that h(g(x)) = m(g)@), for 
all x E X, g E G. That is, they are equivariantly homeomorphic up to an automorphism of G.) 

2.1. Locally injective and injective actions. Let (Tk, X) be an action on a path-connected 
space. We need only now assume that the topology of X is sufficiently nice to admit covering 
space theory and use of the usual algebraic invariants of algebraic topology. In our applica- 
tions, X will be locally Euclidean and these conditions will be obviously met. 

Let f” : (Tk, 1) + (X, x) denote the evaluation map, f”(t) = tx, and let im(f*“) denote 
the image 

f*" : nl(Tk, l)+n,(X, 4. 
The image, im(f ,“), is a central subgroup of rri(X, x). If f ex is a monomorphism for some x 
(and hence all x E X), the action (Tk, X) is called injectiue, [l]. 

If g E Txk, and g1 : (Z, 0, 1) --f (Tk, 1, g) is a path in Tk, thenf”(g,) = g,x yields a loop 
in X, based at x, and induces a natural homomorphism 

rlx . * Txk --f il(X, x)/im(f *“). 

If nx is a monomorphism for each x E X, the action (T k, X) is called locally injective [3; $71. 

Znjective actions are always locally injective, [3; 7.41. When a locally injective action is 
lifted to the covering space Y of X associated with the subgroup im(f .“), the covering action 
(Tk, Y) is free, [3; 473. (This property is actually a characterization of those actions which 
are locally injective.) The action commutes with the right action (Y, N) of covering trans- 
formations, where N = rci(X, x)/im(f .“). The orbit map (Tk, Y) + (Y/Tk, N) = (W, N) 
induces a properly discontinuous action of N on the simply connected space W SO that 
WIN = X/Tk. Of course we may divide first by N and obtain 

(Tk, Y/N) = (Tk, X). 

Associated therefore with the locally injective action (Tk, X) is the extension: 0 + im(f *“) -+ 
rrt(X, x) -+ N + 1; the left principal bundle (Tk, Y) over the simply connected space W; 
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the group of covering transformations (Y, N); and the properly discontinuous action 

(W, N). If (Tk, X) is injective, the covering action (Tk, Y) splits, [1]: 

(Tk, Tk x w, N). 

In this splitting action, Tk acts by translation on the first factor. It is significant for our 

purposes that almost all of the actions to be considered in $2 are injective. The topological 

classification of these actions is accomplished by being able to interpret this problem entirely 

in terms of the ordinary second cohomology of planar groups. 

2.2. Bieberbach classes. Locally injective actions may be completely described coho- 

mologically by Bieberbach classes. These cohomology classes, in various situations, are 

readily computable and offer an algebraic method of classifying locally injective actions. 

In [3], a much more general concept of Bieberbach class is defined to describe “ Seifert 

fiberings ” of which the orbit map of a locally injective action is a special case. When we 

speak of Bieberbach classes here we shall be just referring to the special case arising from 

actions. The Bieberbach classes, in case of actions, are nothing but generalizations of the 

cohomological classification of principal toral bundles over W/N. 

One begins with a properly discontinuous action (W, N) on a simply connected space. 

There is a natural one-one correspondence between equivalence classes of left principal Tk 

bundles over W with properly discontinuous right N operators, (Tk, Y, N) and the elements 

of a certain cohomology group 

H*(N; 2”). 

The coefficients belong to a sheaf with operators, Sk, over W. For each commuting left 

Tk-right N action on Y there is induced a left Tk action, (Tk, Y/N) = (Tk, X). Those 

classes a E H*(N; L’Tk) which give rise to free actions (Y, N) and hence covering transforma- 

tions, are called Bieberbach classes. They may be easily characterized both algebraically and 

geometrically, [3; 93 and $41. 

If (Y, N) is a covering action, we obtain a locally injective action (Tk, Y/N) = (Tk, X). 

Of course, when this action is lifted to the covering space associated with im(f.“) we obtain 

the left Tk-right N action prescribed by the Bieberbach class. In fact, all locally injective 

actions which induce on Y/Tk an action equivalent to (W, N) are necessarily constructed 

this way. We have thus described a converse to the procedure of 2.1. 

For injective actions we again obtain a simplification. The cohomology group 

H*(N; ak) becomes H*(N; Zk), the ordinary cohomology of the discrete group N with 

coefficients in Zk where N operates trivially on Zk. The Bieberbach class, a E H*(N; Zk), 

which corresponds to the left-right splitting action 

(Tk, Tk x W, N), 

also naturally corresponds to the central extension 

0 + im(f*“) --f 7c1(X, x) -+ N + 1. 

(We should also remark that, if in addition, H*( W; Z) = 0, then every locally injective 

action must be injective.) 
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For the rest of $2 assume that we have a codimension 2 toral action, (Tk, Mk+‘), with 

only finite stability groups on a closed oriented manifold Mk+‘. Let E be the set of excep- 

tional orbits and x1*, . . . , x,* in M* their images. For any x on an orbit in E, the stability 

group, 7”k is a finite cyclic subgroup isomorphic to Z, of order c(. Let g be the genus of the 

orbit space M*. 

THEOREM. The action (Tk, Mk+‘) arises from a Bieberbach class if any one of the 

following holds: 

(1) 9>0, 

(2) g=Oandn>3, 

(3) g=O,n=3andl+L+L< 1, 
a1 a2 g3 

(4) g=O,n=3and$+i+$>I, 

(5) g=O,n=2andcc,=cl,, 

(6) g = 0, n = 0 (hence Mk+2 = Tk x S’). 

Conversely, those actions that do not arise from a Bieberbach class are just the remaining 

possibilities, i.e. where g = 0 and n = 1 or 2. For these remaining possibilities Mk” is homeo- 

morphic (with two possible exceptions), to Tk-l x L, where L is a 3-dimensional lens space. 

In 2.2.4 and in 2.2.5 (provided Mk’2 # Tk x S2) the action is locally injective but not 

injective. However, in all the other (Bieberbach) cases the action is injective. In 2.2.1, 2.2.2 

and 2.2.3, W is homeomorphic to the Euclidean plane, the group N is a planar group 

(crystallographic or Fuchsian) and the action is topologically equivalent to a smooth action 

which, in turn, is smoothly equivalent to a holomorphic action. (If (Tk, M) is smooth or 

holomorphic then so is (W, N).) In the remaining cases W is homeomorphic to the 2-sphere, 

N is finite, and (W, N) is topologically, smoothly, or holomorphically equivalent to a 

(finite) linear action. 

The proof of the theorem follows, without much difficulty, from the results and methods 

of $12 of [3]. The reader who wishes to verify all the details, especially in case g = 0, will 

find it helpful to be familiar with the methods employed in 912 of [3] as well as the explicit 

results. (The two minor exceptions mentioned above will be discussed at the end of 2.5.) 

2.3. We must dispense with a special case first for the topological classification. 

If g = 1, n = 0 then Mk+2 is a principal Tk bundle over the closed surface of genus 1. 

These principal bundles are classified by their Chern classes. All the possible actions 

can be described by fixing, say, the standard (W2, H 0 Z) and taking the elements 

a E Zk E H2(Z @H; Zk). The actions are determined by weak-bundle equivalences 

which, in this case, are almost the same as bundle equivalences. They are induced 

by automorphisms of H @Z which can at most change the sign of the projections, 

H2(h @Z; Z”) + HZ@ @ Z; E). There remains, for a topological classification, the 

automorphisms of Tk (which induce automorphisms of Zk). Thus (Tk, M,) and (Tk, N2) 



ACTIONS OF THE TORUS ON ‘&MANIFOLDS--II 99 

are weakly equivalent, if and only if, there exists an automorphism @: hk -+ Zk so 

that @*(a& = + a2. From an easy calculation of the first homology group we see that 

H,(M, ; Z) E H,(Mz; Z) if and only if they are weakly equivalent. 

2.4. Topological classiJication. We shall assume that (Tk, Mk+‘) satisfies 1, 2 or 3 

of 2.2. 

THEOREM. (T’, M:+2) and (Tk, M,2+2) are weakly equivalent actions if and only if they 

have isomorphic fundamental groups. 

Proof. If g = 1, we assume that n > 0 since we have already proved the theorem in 

case 12 = 0. The result is a consequence of [2, 8.61 and the generalized Nielsen theorem, [l I]. 

The theorem is a special case of a much more general result due to Conner and Raymond 

mentioned at the end of $12 of [3]. However, not many details were given there. It has been 

obtained independently by H. Zieschang by a different approach in the announcement, 

[I 11. The details of the proof of our stated theorem are given in [4; $91 for the case k = 1. 

We shall sketch the main points of the argument for the case k 2 1 and refer the reader to 

[4] for details. 

Notice that Mk+2 admits a (central) covering space of the form Tk x R2. Hence M is 

a closed aspherical manifold. (In all the other cases M is not aspherical.) 

Since N r IQ(M, x)/(im(f*“)) is an orientation preserving planar group with compact 

quotient and different from Z @H, it has trivial center. Consequently im(f*“) E Zk is pre- 

cisely the center of nr,(M, x). If 

y* : dM1, -G -+711@42 > ~2) 

is an isomorphism, then for the torsion free central extensions given by the Bieberbach 

classes : 

j Ye I Yt ; Y* 

; 
i 

a2:O-+Zk+~1(M2,x2)+N2+l 

there are induced isomorphisms 

and 

im(f,“‘) = center(n,(M,, x1)) -+ im(f,“‘) = center(ni(M,, x2) 

N1 = nl(M1, xJim(f2) -+ N2. 

Since all actions of N on R2 are equivalent we can assume that N1 = N2 and both 

actions (Tk, M,) (Tk, M2) induce the same action of N on R2. Because Y : N + N is an 

automorphism we can, by the generalized Nielsen theorem, find an isomorphism @ : R2 -+ R2 

so that 

@(w . a) = O(w). Y(a). 

Let us suppose now that Y* : im(,fg’) + im(f$‘) is the “identity “. Then a, = Y*(a,) 

and by [2; 8.61 we can find an equivariant homeomorphism (Tk, Mlk+‘)-+(Tk, MIk+‘). 
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Of course, in general, ‘I!, restricted to the center, im(f(T)), is not the “identity”. This 
automorphism then corresponds to an automorphism of Tk onto itself. Denote this re- 
striction by 0. Then Y!*(C)*-‘(a,)) = a,. By a slight modification of [2; 8.61 we are able to 
use covering space theory and the splitting actions to construct an equivariant homeo- 
morphism between (O(Tk), Ml) and (Tk, M2). We refer the reader to [4; $91 for further 
details (for k = 1). 

Remark 2.5. We have alluded that the manifolds which satisfy 1,2 or 3 of 2.2 can never 
admit any other type of action and so each has a unique action up to weak equivalence. 
Therefore we must distinguish these manifolds topologically from the remaining ones. Once 
again we refer to $12 of [3] to deduce the following. In 2.2.4 the fundamental group is non- 
abelian and has elements of finite order. All groups appearing in I,2 or 3 are torsionless and 
only 2.2.1 (M = Tk+‘) has abelian fundamental group. Furthermore, we know that the 
only time the fundamental group is abelian, in 2.2.1-2.2.6, other than Tkw2, is in 2.2.5 
and 2.2.6. Here the manifold is Tk x S2 or Tk-’ x L, where L is a lens space. Fortunately, 
we also know the manifolds where the action is not locally injective (they haveg = 0 and 
n = 1 or 2 and do not satisfy 2.2.5 or 2.2.6) by virtue of [3; 12.171. In fact it is shown that 
if (Tk, Mk +k) is non-locally injective then q(Mk+‘) is abelian. Furthermore, except for 
two minor special cases, these manifolds may be identified with Tk-’ x L, where L is a 
3-dimensional lens space. We described this action in terms of knowledge of the way the 
2-dimensional torus acts on a lens space, which was discussed in the first paper of this series 
[5], (The two non-locally injective exceptions, alluded to in the concluding paragraph of 
Theorem 2.2, probably yield Tk-’ x L also. They do possess regular Z, or Z, 0 Z, covering 
spaces homeomorphic to Tk-’ x L, [3; 12.161.) 

Notice that this section actually shows that the manifolds listed in 2.2 are all mutually 
non-homeomorphic with the exception of Tk x S2 occurring both in 2.2.5 and 2.2.6. 

Remark 2.6. We have mentioned nothing of differentiability since the techniques 
involved are valid in all of the categories: cohomological, topological, smooth and holo- 
morphic. Of course, in the smooth category homeomorphism can always be replaced by 
diffeomorphism. 

There are two more aspects of the approach of [l] and [3] that are of special interest here. 
We shall discuss these next. 

2.7. Reductions andfiberings over a torus. The action (Tk, Mk+2) for k > 1 can be 
described in terms of those fork = 1. For (Tk, Mk+‘) one can always find [3; 12.3 and 12.151 
a splitting Tk = T’ x Tk-’ and a finite abelian subgroup A c Tk-’ so that (Tk, Mk+2) 
has a A-fold regular covering and a lifting of the action to 

(T’ x Tk-‘, Tk-’ x Y, A). 

The action of the Tk-’ subgroup is by translation on the first factor. The action of A is a 
diagonal action. Hence, 

(Tk-‘, Mk+‘) = (Tk-‘, Tk-’ x A Y) 
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and (Tk-‘, Mkt2 ) is fibered equivariantly over (Tk-‘, Tk-l/A) with fiber Y and structure 

group A. The action of T’ on Tk-’ x Y induces an action of T’ on Y = Tk-l x Y/Tk-’ as 

well as an action (Y, A). Hence (T I, Y) is an action of S’ on a closed oriented 3-manifold 

with only finite isotropy subgroups. The commuting actions (T’, Y, A) are called associated 

actions to (Tk, Mk+’ ). It is definitely true, as we shall see, that a given (Tk, Mk+2) may have 

many different circle actions associated with it. 

(Let us return, for a moment, to the general hypothesis of 2.1. If the evaluation map 

induces a monomorphism on homology, 

_i-+t* : H,(Tk ; Z) -+ H,(X; Z) 

the action (Tk, X) is called homologically injective. The paper [l] is devoted to the assertion 

that homological injectivity, Bieberbach classes of finite order, and equivariant fibering with 

finite abelian structure group, are all equivalent concepts.) 

In summary we state: 

THEOREM [3; 12.151. Each associated action (T’, Y, A) to (Tk, Mk+2) is an action of the 

circle on a connected 3-manifold without jixed points. Local injectivity, injectivity and homo- 

logical injectiuity of the associated induced actions are equiualent to the samefor (Tk, Mk+‘). 

The splitting T’ x Tk-’ furthermore writes (Tk-‘, Mki2) as an equivariant jiber bundle 

(Tk-‘, Tk-’ X~ Y) over (Tk-‘, Tk-‘/A) with jinite abelian structure group A c Tk- ‘. 

Obviously, the last fact describes how one may reconstruct all the possible Mk+’ 

topologically. 

Each (Tk, Mk+2) fibers over a Tk-’ torus. However, it is possible to fiber Mkf2 over 

Tk sometimes. In fact, this fibering question leads to very interesting connections with 

differential and algebraic geometry. 

THEOREM ([l] and [3]). For (Tk, Mk+2) rhe following are equivalent: 

(1) (T k, M k+2) is homologically injective. 

(2) (Tk, Mk+2) fibers equivariantly over (Tk, TklA) with a closed oriented surface as 

Jiber and a$nite abelian structure group A c Tk. 

(3) The action (Tk, Mk+2) . IS re p resented by a Bieberbach class offinite order. 

(4) The circle action (T’, Y) f o our associated action (T; Y, A) to (Tk, Mk”) is homo- 

logically injective. 

(5) rank(H,(Mkt2 ; Z)) E k(2). 

Where the group A of (2) can be taken cyclic. We observe that A can then be embedded 

in a circle subgroup, say T’ of Tk. Then (T“, Mk+2)canbewrittenas(Tk, Tk-’ x (T’ x J)), 

where S is an oriented closed surface. In particular, Mk+’ = Tk-’ x X where X = T’ x *S. 

Now the action (T’, X) can be represented by a Bieberbach class a, whose order is a divisor 

of (A( = n. If (m, n) = 1, we may represent m, by (T’, Y) = (T’, T’ x aS) with a different 

diagonal action of A on T’ x S. In general m, will represent a different action and hence 
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x1(X) is not isomorphic to zl( Y). Explicit calculations are given for every situation in 

[4; $101. Now it is easy to see [4; $41, that T’ x X is diffeomorphic to T’ x Y and hence 

the closed Mk+’ can be written as Tk-l x X and simultaneously as Tk-’ x Y even though 

xl(X) f rcr( Y). To what extent this isomorphism is equivariant is also discussed in [4; 941. 

It would be interesting, especially when k = 2, to determine in general when Mk+’ 
may be written as a product of TkV1 with a 3-dimensional manifold. 

2.8. Holomorphic actions and elliptic fiber spaces. We have already seen that those 

(Tk, Mk+‘) which were not locally injective were essentially “linear” actions on Tk-’ x L, 
where L is a lens space. Such actions, when k is even, are topologically equivalent to holo- 

morphic actions. In all the remaining cases, where k is even, the topological actions are also 

topologically equivalent to holomorphic actions [3; $5 and 9121. 

Our observation is the following: 

THEOREM [3; 12.151. The topological action (Tk, Mk+‘) is topologically equivalent 

to a smooth action, which in turn when k is even is smoothly equivalent to a holomorphic 

action. In addition, for k even, the folIowing are equivalent: 
(1) (Tk, Mk+‘) is homologically injective. 

(2) Mk+’ admits a structure of a Kahler mantfold. 

(3) Mk+’ admits a structure of a nonsingular projective algebraic mantfold. 

(4) (Tk, Mk+‘) is topologically equivalent to a holomorphically injective action. (A 

holomorphic action is holomorphically injective if the evaluation map induces an epimorphism 
on the closed holomorphic l-forms f,* : h’,‘(M) --* h’,‘(T).) 

When k = 2, holomorphic (T’, M4) are precisely the elliptic surfaces of Kodaira which 

admit a whole complex torus of automorphisms. In terms of Kodaira’s notation this means 

that all singular fibers are multiple fibers and the elliptic bundle away from the singular 

orbits is principal. Thus all projective algebraic surfaces with a complex torus of auto- 

morphisms are of the form T2 x A Y where Y is a nonsingular algebraic curve and A is an 

abelian group of automorphisms. The analogous statement holds for a general (Tk, Mkf2) 

with Tk algebraic. 

The important feature to remember about these complex manifolds for which the 

action is injective (and more generally whenever we have a Seifert fibering of real co- 

dimension 2 which arises from a Bieberbach class H,‘(N ; Z’), where N is planar and 

@ : N+ GL(k, 9)) is that the homeomorphism type is completely determined by the funda- 

mental group. 

$3. CONNECTED SUM DECOMPOSITION, F # ,@ 

Let M be a closed, connected, oriented 4-manifold with G-action so that F# 0, 
i.e. the action has fixed points. It follows from Theorem 1.2 that the weighted orbit space 

M* is a complete set of invariants up to equivariant homeomorphism. In this section we shall 

exhibit M as an equivariant connected sum of “elementary” G-manifolds. 

We have seen that M* is a compact, oriented 2-manifold. Its boundary is non-empty 

since F # 0. Let f be a fixed point of the action and f * its image in M*. The connected 

sum decomposition is obtained by an inductive simplification of M*. 
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3.1. Removing E-orbits. Let E have r components. Move the image of an E-orbit, e* 

into a small disk near-f* so that the orbit space is as below: 

(P, 4) 
- 

0 s* 
0 

0 0 

Gh 0 --_ _-. 
w 

(II’> 4’) 

f* 

Then s* is the image of S3 and M is an equivariant connected sum 

M=N#L 

where the orbit space of N is that of M with e* removed and the orbit space of L is: 

L* 

Repeated application of this step gives M as a connected sum 

M = M, # L, # . . . # L, 

where the action on M, has no E-orbits. We shall call the Ci elementary manifolds of type L. 

3.2. Removing handles. Now consider M, and assume that MI* has g handles. Move a 

handle into a small disk near f * so that the orbit space is as below: 

’ .f* 

CP’, P’) 
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Consider the arc s* whose inverse image is S3. Cutting M, along this sphere and adding 

two equivariant 4-cells results in a new manifold N whose orbit space has (g - 1) handles 

and an additional boundary component : 

Q 
N” 

La c- 

(P’, 4’) 

Clearly 

M,=N#S3xS1 

and repeated application decomposes M, as a connected sum 

M, = M, # g(S3 x S’) 

so that the orbit space of M, is a disk with holes. 

3.3. Removing C-orbits. Now consider M, . We shall remove the boundary components 

of M2* containing no fixed points. Let c* be such a boundary component. Move it inside 

a small disk nearf* so that the orbit space is as below: 

f* 

and consider the arc s*. It corresponds to a sphere S3 in M, and we get the connected sum 

decomposition of M, as follows 

M,=N#R, 

where N has the same orbit space as M, except the boundary component c* is deleted, 

and RI is an elementary manifold of type R with orbit space 
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RI” 

Repeated application yields M, as a connected sum of M, and elementary manifolds of type 
R so that the orbit space of M, is a disk with holes and each boundary component contains 

images of fixed points. 

3.4. Removing fixed points. Now consider M, , Clearly each boundary component 

contains the images of at least two fixed points. Suppose we have a boundary component 8 

with more than two fixed points. Let g* be an arbitrary fixed point on 8 and run an arc s* 

as indicated on M,*. Thus s* meets d on either side ofg* and separates M,* into a simply 

connected component whose boundary contains all fixed points of a except g* and another 

component containing all other boundary components of M,* and has g* as only fixed point 

on the boundary containing s*. Again, s* is the image of S3 rendering M, as a connected 

sum 

M,=U,#N 

where U, is simply connected and N has the same orbit space as M, except 8 now has only 

two fixed points. Repeated application yields M, as a connected sum of simply connected 

4-manifolds (classified in [5; $51) and some M, whose orbit space is a disk with holes and 

each boundary component contains the images of exactly two fixed points. By choosing 

g* = f * on the component off * we may assume that f E M,. 
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3.5. Removing boundaries. Consider M, and suppose that M,* has k boundary com- 

ponents, k 2 1. If k = 1 then M, = S4 by [5; $51 and we have obtained M as a connected 

sum of simply connected manifolds, copies of S3 x S’ and manifolds of type L and type R. 
If k = 2 then M, has orbit space 

and we call it an elementary manifold of type T. If k > 2 we can decompose M, as a connected 

sum of type T manifolds. Move the boundary component 8 into a small disk near f * in 

M,* and consider the arc s* as below: 

M4* 0 

Then s* is the image of S3 and 

M,=N#T, 

where the orbit space of N is that of M, with 8 deleted and T, is a type of T manifold. 

Repeated application gives the required decomposition. 

We may state the final result as follows: 

THEOREM. Let M be a closed, connected, oriented 4manifold with T2-action. If the 
action has fixedpoints then M is an equivariant connected sum of simply connected manifolds, 
copies of S3 x S’ and manifolds of type L, R and T. 

Note that if the orbit invariants of M are known, then a specific decomposition can 

be given, but the decomposition is not unique. 
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$4. STABLE HOMEOMORPHISMS 

In this section we shall investigate G-manifolds of type R and T and show that for every 
such manifold M there exists a nonnegative integer k so that the connected sum of M and k 
copies of S2 x S2, M # kS2 x S2, is homeomorphic to a well-known manifold. This is 
what we mean by stable homeomorphism classtjication. 

4.1. Consider the closed, orientable 4-manifold R with T2-action, whose orbit space 
is below. According to [5; 1.101 the manifold admits a cross-section and hence its equi- 

(u, t.) 

R* (P,G~ 

0 

0 Cr, s> 

variant classification is given there. We are interested in the homeomorphism classification. 
A suitable automorphism of T2 will change the orbit invariants to 

and we denote this manifold by R(m, n). Note that if i?(m, n) is the reverse orientation, then 

R(m, n) = R(n, m) = i?(-m, n) =B(m, -n) = R(-m, -n) 

so we may assume m 2 n 2 0. 

4.2. First consider two special cases. If n = 0, then the fact that (m, n) = 1 requires 
that m = 1. Consider the invariant S3 whose orbit space is an arc (1,O) = (m, n) -(O, 1) 
connecting the two boundary components of R*(l, 0). Cutting R(1, 0) open along this S3 
and attaching two 4-cells, we obtain a simply connected Cmanifold X whose orbit space is 
below. 

X* 
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From [5; $51 we obtain that X g S2 x S2 = Q, . Removing two 4-cells from X and identifying 

the boundaries corresponds to taking the connected sum with S3 x S’, hence we conclude 

that 

R(1, 0) z Q, # S3 x S’. 

If n = 1 we lookat the invariant S3 whose orbit space is the arc (m, 1) -( 1,O) connecting 

the boundary components of R*(m, 1). Cutting open and attaching 4-cells we obtain X 

with orbit space: 

From [5; $51 we see that X = Q, if m is even and X = P # P = Q, if m is odd. Thus 

R(m, 1) = 
Q, # S3 x S’, form even. 
Q, # S3 x S’, form odd. 

4.3. Assume now that m 2 n 2 2 and consider the invariant lens space L(m, n) whose 

orbit space is the arc (0, l)- (m, n) connecting the two boundary components of R* 

(m, n). In order to do the analog of the construction above, we need a simply connected 

G-manifold W with d W = L(m, n) so that the action on the boundary is the one given above. 

W* 

By [5 ; $51 any such 4-manifold has orbit space W* and it is the result of a linear plumb- 

ing [5; $51. Suppose we have such a manifold. We cut R(m, n) open along the lens space 

L(m, n) and sew equivariantly two copies of W onto the two boundary components. This is 

represented in the orbit space as follows. 
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.> 01) 

The manifold thus obtained, X, is simply connected and by [5; $51 we can find out what it is. 

Now identify the shaded 4-cells in X. The new manifold S3 x S1 # X has orbit space 

(S3 x s’ # x)* 

(Ul, 

This manifold is an equivariant connected sum along the 3-sphere whose orbit space is 

indicated by the arc s*. In fact clearly 

S3xS1#XrR(m,n)# Y 

where Y is a simply connected manifold with orbit space 
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Y* 

According to [5; $51, Y is a connected sum of copies of Q, , P and is. We wish to choose W 

so that Y is a connected sum of copies of Q, only. This is clearly accomplished if we choose 

(*I ~1,~3,~5,...,v2,~4,v6,... odd and 

u2 ) u4) u6 ) . . . , VI, u3 ) 05 ) . . . even. 

We have to consider two cases. 

4.4. The case m * n = 0 (mod 2). Either m or n is even, the other is odd, since (m, n) = 1. 

If n is even and m is odd we expand m/n as a finite continued fraction with 1 ai 1 2 2 

m 1 
-=a1 - = 
n 

1% . . ..qJ. 
. 
1 

a2 - 
1 

a, - - 

1 

Such an expansion exists and according to [5; $51 there is a unique one with each a, even 

and k even. We construct Was a linear plumbing [5, $51 according to the graph 

I I I I 

I I I I i 

-ak - ak-l ---ai 

whose action satisfies (*). 
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That is, W* is the figure below, 

111 

W* 

satisfying (*) and 

kr I I u3 4 = 

u3 Vl 

-ak-ly . . . 

#k uk-2 _ 

I I vk vk-2 
- -a2, 1’ 

It is a simple exercise in linear algebra to see that all these conditions may be satisfied. 

From this we have that 

Y=Q,#Q,#s..#Q,=kQ, 
- 
k times 

X = (k + l>Q, 

so that we have the stable result 

R(m,n)#kQ,zQ,,#S”xS’#kQ,. 

If m is even and n is odd, then we do the same with the arc (1, O)----(m, n) and arrive at 

the same result. 

4.5. The case m * n E 1 (mod 2). In this case we can find an odd integer a, so that m/n 

= a, - ml/n where m’ is even. Apply (4.4) to n/m’ to obtain n/m’ = [a2 , . . . , akJ with unique 

even a2, . . . , ak . Then m/n = [a,, a2, . . . . a,]. We construct W as above, except that 

m uk-l _ 

I 1 n vk-l 

- -a, is odd. This is consistent with the condition of (*), since both m and n 

are odd, while u~-~ and vk-i have different parity. Thus Y z kQ,-, and X E Q, # kQO so 

R(m,n)#kQ,gQe,#S3xS1#kQ0. 

We summarize these statements as follows: 

THEOREM. Given relatively prime integers (m, n), there exists a non-negative integer k 

so that 

R (m, n) # kQ, z 
Q0#S3~S’#kQ,ifm.n~O(mod2) 
Q1#S3~S’#kQ0ifm~n=l(mod2). 
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4.6. A similar argument may be applied to the manifold T(m, n; m’n’) whose orbit 
space is below: 

(130) 

(m, n) 

T* 0 0 
(Id, I?‘) 

(0, 1) 

= + 1 at least two of these integers are odd and one is even. Let K = 0 

if there are two even integers and K = 1 if three of the integers are odd. If one of the weights 
equals f 1 then the cut and paste method of the earlier sections together with the fact that 
Q, # Q, z Q, # Q, shows that 

Qe#Q,#S”xS’ for K=O 
Q1 # Q, # S3 x S’ for K = 1. 

If none of the weights equals + 1 we use the construction of (4.3) to obtain a stable con- 
clusion : 

THEOREM, There, exists a non-negative integer k so that 

T (m, n; m’n’) # kQO E 
Q, # Q, # S3 x S’ # kQ,, if K = 0 
Q, # Q, # S3 x S’ # kQ, if K = 1. 
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